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Abstract. The regularizing effects of noisy perturbations of differential
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connection to numerical stochastic analysis, aiming to put the regularizing
effects of the noise into quantitative numeric use.
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Introduction by the Organizers

The mini-workshop Regularization by noise: theoretical foundations, numerical
methods and applications, organized by Oleg Butkovsky (Weierstrass Institute
Berlin), Ana Djurdjevac (FU Berlin), and Máté Gerencsér (TU Wien) was held in
February 2022. There were 21 participants from all over Europe (Austria, France,
Germany, Netherlands, Sweden, United Kingdom) at various stages of their career
(PhD students, postdocs, junior professors, full professors). Despite the challenges
of the pandemic, we were happy to see a majority personal turnout: 14 partici-
pants attended the workshop in person, and 7 more online. The workshop brought
together experts in various aspects of regularization by noise who shared their ex-
perience and knowledge with each other. This led to numerous new collaborations.
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The scientific focus of the workshop was on different aspects of regularization
by noise and its various connections: numerical analysis, stochastic differential
equations (SDEs), partial differential equations (PDEs), rough paths, and more.

The most classical instance of regularization, studied since 1970s, is that the
addition of a noise source into an ill-posed deterministic system might make it
well-posed. Novel aspects of this phenomenon of restoring well-posedness and

Figure 1. Regularization by noise. (a): Multiple solutions of

ODE dXt = sign(Xt)
√

|Xt|dt. (b): The unique solution of SDE

dXt = sign(Xt)
√

|Xt|dt + dBt (in blue) and white noise B (in
brown).

more generally, of the averaging of stochastic processes, were discussed in the
talks of Altman, Galeati, Kremp, and Menozzi.

By going to infinite dimensions, in other words, introducing a contiuous spatial
variable, new challenges arise and the influence of the randomness in small or large
space (in addition to time) gains relevance. Various such aspects were discussed
in the talks on SPDEs by Gerolla, Lange, Rosati, and Tapia.

The regularizing effects of noise are also highly relevant when it comes to the
question of approximations of SDEs/PDEs/SPDEs. By making the link to the
classical and modern tools of regularization, several new and interesting results
were presented in the context of numerical analysis by Dareiotis, Butkovsky, Eisen-
mann, Kruse, Lê, Ling, and Yaroslavtseva. Applications of these principles to
mathematical finance, McKean-Vlasov SDEs, and machine learning were discussed
by Bayer and Cox.

Apart from the talks, the other highlight of the workshop was the large number
of many informal blackboard discussions among the participants, which consti-
tuted an important first step for future research and publications.

On behalf of all participants, the organizers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for their out-
standing support and providing such a stimulating and inspiring atmosphere.
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Abstracts

RKHS regularization of singular local stochastic volatility

McKean-Vlasov models

Christian Bayer

(joint work with Denis Belomestny, Oleg Butkovsky, John Schoenmakers)

In order to be useful in practice, models for financial assets (equity) are required
to provide exact fits to liquid vanilla options, but have reasonable long-term dy-
namics. Dupire’s local volatility model easily satisfies the first condition, but fails
at the second. Conversely, some stochastic volatility models have reasonable long-
term dynamics, but are not able to exactly fit all liquid vanilla option prices. It
is, hence, tempting to use a combination of both approaches, called local stochas-
tic volatility model. Given a stochastic instantaneous variance process v – chosen
such as to give realistic dynamics of the asset price process S –, we are, therefore,
looking for a corresponding local volatility function Ã = Ã(t, x), such that the local
stochastic volatility model

(1) dSt =
:
vtÃ(t, St)StdWt

recovers given market prices of vanilla options. Formally, [1] realize that this is
indeed the case if Ã can be expressed in terms of Dupire’s local volatility function
ÃDup by ÃDup(t, x)

2 = Ã(t, x)2E[vt | St = x], x > 0, t g 0 – an easy consequence of
Gyöngy’s theorem, see [2]. However, the resulting stochastic differential equation
of McKean-Vlasov type

(2) dSt = ÃDup(t, St)St

:
vt

√

E[vt | St]
dWt

is quite difficult to both analyze and solve numerically. In a nutshell, the problem
is that the function (L(St, vt), x) 7³ E[vt | St = x] is not (Lipschitz) continuous in
any usual sense, where L(St, vt) denotes the joint distribution of (St, vt). Indeed,
existence and uniqueness of solutions to (2) is an open problem, see [3] for a
literature review and an interesting partial result.

In this paper, we consider a regularized version of (2), which is motivated from
a numerical point of view. A standard approach to numerical approximation of
conditional expectations E[vt | St] consists in global linear regression – often con-
sidered more efficient than local regression as suggested by [1]. We regularize the
regression estimate by including an l2-penalty (ridge regression), but still observe
exploding Lipschitz constants as the number of basis functions increases. In order
to better control the approximation, we, hence, work in a framework provided by
a reproducing kernel Hilbert space (RKHS) H, see, for instance, [4]. Indeed, we
use the approximation

(3) E[vt | St = ·] j argmin
f*H

{

E
[

(vt 2 f(St))
2
]

+ »‖f‖2H
}

,

with » > 0 and ‖·‖H denoting the norm in the RKHS.
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Inserting the approximation (3) into the system (2) gives, for any » > 0, a
well-posed McKean-Vlasov system of SDEs, if v is itself a solution to an SDE.
Moreover, we can also show convergence of the solution to the corresponding par-
ticle system to the solution of the regularized McKean-Vlasov system (propagation
of chaos). It turns out that the particle system can be seen as an excellent numer-
ical approximation to the original system (2). In particular, numerical evidence
shows excellent fits to imposed market prices of vanilla options, corresponding to
the actual calibration problem which motivates the whole problem.

References
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(2012), 88.
[2] I. Gyöngy, Mimicking the one-dimensional marginal distributions of processes having an
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[3] D. Lacker, M. Shkolnikov, and J. Zhang, Inverting the Markovian projection, with an appli-

cation to local stochastic volatility models, Annals of Probability 48(5) (2020), 2189–2211.
[4] I. Steinwart and A. Christmann, Support vector machines, Springer Science & Business
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An affine infinite-dimensional stochastic volatility model

Sonja Cox

(joint work with Sven Karbach, Asma Khedher)

We first showed the existence of a broad class of affine Markov processes on the
cone of positive self-adjoint Hilbert-Schmidt operators. Such processes are well-
suited as infinite-dimensional stochastic covariance models. The class of processes
we consider is an infinite-dimensional analogue of the affine processes on the cone
of positive semi-definite and symmetric matrices studied in [3].

As in the finite-dimensional case, the processes we construct allow for a drift
depending affine linearly on the state, as well as jumps governed by a jump measure
that depends affine linearly on the state. The fact that the cone of positive self-
adjoint Hilbert-Schmidt operators has empty interior calls for a new approach to
proving existence: instead of using standard localisation techniques, we employ the
theory on generalized Feller semigroups introduced in [5] and further developed in
Cuchiero and Teichmann [4]. For the precise formulation of our main result we
refer to [1, Theorem 2.8].

We then proceed to introduce a flexible and tractable infinite-dimensional sto-
chastic volatility model. More specifically, we consider a Hilbert space H-valued
Ornstein–Uhlenbeck-type process Y , whos instantaneous covariance is given by
above-mentioned pure-jump stochastic process taking values in the cone of posi-
tive self-adjoint Hilbert-Schmidt operators X :

dYt = AYt dt+X
1/2
t dWQ

t , t g 0, Y0 = y * H ,(1)



Regularization by Noise 463

where A : D(A) ¦ H ³ H is a possibly unbounded operator with dense domain

D(A) and (WQ
t )tg0 is a Q-Brownian motion independent of X , with Q a positive

self-adjoint trace-class operator on H .
The tractability of our model lies in the fact that the two processes (X,Y )

involved are jointly affine, i.e., we show that their characteristic function can be
given explicitely in terms of the solutions to a set of generalized Riccati equations,
see [2, Section 3]. The flexibility lies in the fact that we allow multiple modeling
options for the instantaneous covariance process, including state-dependent jump
intensity.

Infinite dimensional volatility models arise e.g. when considering the dynamics
of forward rate functions in the Heath-Jarrow-Morton-Musiela modeling frame-
work using the Filipović space. Several examples are discussed in [2, Section 4]

References
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Approximation of stochastic equations with irregular drifts

Konstantinos Dareiotis

(joint work with Oleg Butkovsky, Máté Gerencsér, Khoa Lê )

In this talk we are interested in the approximation of stochastic equations whose
drifts that are not Lipschitz continuous. The well-posedness of the equations under
consideration relies on the regularising properties of the driving noise, since their
deterministic counterparts are not, in general, well-posed. Our aim will be to
quantify those regularising properties of the noise at a numerical analytic level
in order to derive rates of convergence of discrete approximations. We deal with
different settings, including SDEs driven by Brownian motion and by fractional
Brownian motion, and with stochastic PDEs.

We consider the equation

(1) dXt = b(Xt) dt+ Ã(Xt) dBt, X0 = x * R
d, t * [0, 1],

where B is a standard Brownian motion, b is a vector field which is merely mea-
surable and bounded, and Ã is C2 and non-degenerate. Our first result states
that under these conditions, the Euler approximation Xn of X converges to X in
Lp(Ω;C([0, 1])), for any p g 1, with rate (almost) 1/2. This rate is known to be
optimal even for b c 0. In order to obtain this rate in our irregular setting, we
exploit the regularising properties of the noise. The main tool for capturing those
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properties is Lê’s stochastic sewing lemma (SSL) and appropriate generalisations.
By using the SSL we study functionals of the type

I(f, t, x) =

∫ t

0

f(Xs + x) ds,

which are closely related to the well-posedness/ stability/numerical approximation
of (1). In case Ã is constant, we show that the rate improves to (1+³)/2, provided

that b also belongs to the homogeneous Sobolev space Ẇ³
q , with ³ * (0, 1) and

q g max{2, d}.
Further, we study the asymptotic distribution of the error X 2 Xn (see [5]

for the case b * C1). We show that if b * C³ for some ³ > 0, then the process
V n =

:
n(X2Xn) converges weakly to a process V , which is uniquely determined

by the equation

(2) dV 3
t = V j

t dL
j
t [X, b3] + "jÃ

3i(Xt)V
j
t dB

i
r +

1:
2
("jÃ

3iÃjk)(Xt)dW
ki
t ,

where Lj
t [X, b3], formally given by

Lj
t [X, b3] =

∫ t

0

"jb
3(Xs) ds, i, 3 = 1, ..., d,

is a process which can be defined via the SSL, and with probability one Lj
t [X, b3] *

C(1+³)/2([0, 1]). Equation (2) is then understood as a hybrid Itô-Young equation.
In (2), W is a (matrix-valued) Brownian motion independent of B.

One of the advantages of the SSL is that it does not rely on the Markovian nature
of the underlying problem, in contrast to other techniques such as PDE transfor-
mations of Zvonkin-type. In this talk we use it further to study the approximation
of SDEs driven by fractional noise: Let BH be a fractional Brownian motion with
Hurst parameter H * (0, 1) and let b * C³ for some ³ > 0 * (1 2 1/(2H)). It is
known by [3] that under this condition the equation

(3) dXt = b(Xt) dt+ dBH
t , X0 = x * R

d, t * [0, 1],

is well-posed. We sketch in the talk that in this case, the Euler scheme converges
with rate (1/2 + ³H) ' 1.

Further, we discuss equations in infinite dimensions. Let us consider the periodic
problem

(4) "tu = ∆u+ f(u) + ¿, u(0, x) = u0(x), (t, x) * [0, 1]× T,

where ¿ is a space-time white noise on [0, 1] × T. While the approximation of
the solution has been extensively studied for f * C1, in the case f * C³, with
³ < 1, no quantitative result was available for the approximation of u. By using
an infinite dimensional version of the SSL, we show that the fully discrete explicit
finite difference scheme converges with rate 1/4 in time and 1/2 in space even for
merely bounded and measurable f , a rate which is known to be optimal even for
f c 0.

A problem related to these results is the optimality of the rate (1/2 + ³H)
for (3). To the best of our knowledge, the only available work in this direction
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is [6], for the case H = 1/2. It follows from the results in [6] that there exists

(discontinuous) b * W
1/2
2 for which the corresponding rate of convergence cannot

be better than 3/4 (= (1 + ³H) for ³ = H = 1/2). Even in the case H = 1/2, it
would be interesting to show that the rate (1+³)/2 cannot be improved for some
b * C³.

The talk is based on results from [1, 2, 4] and some work in progress.
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Randomized operator splitting schemes for abstract

evolution equations

Monika Eisenmann

Background. Abstract evolution equations are an important building block for
modeling processes in physics, biology and social sciences. Equations of the form

(1) u2(t) +A(t)u(t) = f(t), u(0) = u0,

include standard examples of A(t)v like

(2) 2' ·
(

³(t)|'v|p22'v
)

and 2∆
(

³(t)|v|p22v
)

for a function v : D ³ R on a domain D ¢ Rd. Moreover, they are tightly con-
nected to optimization problems appearing in a machine learning context, where
we want to find w7 such that

(3) w7 = argmin
w

F (w) =
1

N

N
∑

i=1

fi(w).

Standard examples for this are classification problems that we solve by minimizing
the function F . One approach to finding the minimum w7 is to compute the steady
state of the gradient flow

(4) w2(t) +'F (w(t)) = 0, w(0) = w0.

This equation is a special case of (1) with A(t) c 'F .
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To find a suitable approximation of the solution of (1), we can begin to discretize
with respect to the temporal variable t. For a step size h and the initial value
U0 = u0, two simple, standard schemes to find an approximation Un of u(nh)
(n * N) are given by

Un =
(

I 2 hA((n2 1)h)
)

Un21 + hf((n2 1)h), forward Euler,(5)

Un =
(

I + hA(nh)
)21

(Un21 + hf(nh)), backward Euler.(6)

In many applications, it is expensive to consider the entire operator A(nh) in
(5) and (6). However, after decomposing A(nh) into sub-operators Ai(nh), i =
1, . . . , s, such that A(nh) =

∑s
i=1 Ai(nh), an operator splitting can be applied to

rewrite the expensive equation into several small-scale equations.

Deterministic domain decomposition. For differential operators of the type
stated in (2), a domain decomposition scheme is a powerful tool. The domain
D can easily be decomposed into sub-domains. The idea is that Ai(nh) only
acts on one subset of the domain. It thus becomes possible to solve (6) only on
the sub-domains. It remains to combine the solutions on the sub-domains to a
solution on the entire domain. How to piece the solutions together is the key
part of the abstract operator splitting and gives rise to several different temporal
approximation schemes.

Stochastic optimizers. While the approach described above is purely determin-
istic, a very similar theoretical background can be found in optimization problems.
For a large-scale problem, it becomes unreasonable to consider the entire sum in
(3) to evaluate 'F in every step of (5) with A(t) c 'F . An alternative is given
by a stochastic method. Instead of including every summand in (3), we choose a
random subset B¿ of {1, . . . , N} and evaluate the corresponding summands. More
precisely, we obtain a random approximation of F given by

f(w, ¿) =
1

|B¿|
∑

i*Bξ

fi(w).

In every step of (5), we choose a new batch B¿ and therefore a new stochastic
approximation. In the optimization community, this method is known as the
stochastic gradient descent method. The scheme can be interpreted as an operator
splitting, where the decomposition happens in a randomized fashion. We save
computational costs as we do not need to evaluate the entire operator in every
step.

Combination of strategies and results. We apply a randomized operator
splitting in combination with a domain decomposition. It is common to use a
uniform distribution to decompose the sum in (3) if no additional information on
the data set is known. For an evolution equation (1) with a differential operator
of the form mentioned in (2), such an equation has a local structure. This means
that the solution at a point x depends on the solution at the point x + ·y for a
small deviation ·y but not on the solution far away. Thus, it is not advisable to
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choose a uniform distribution here. Instead, we choose a different probability dis-
tribution to select parts of the operator more efficiently by looking at the support
of the solutions of previous time steps and the source term.

We then use a prediction of the support of the solution at the new time-step
to give every sub-domain a certain probability of being chosen in our random
approximation of the operator. If the predictor indicates that nothing or very
little happens in a sub-domain, then we only choose this sub-domain with a small
probability. On the other hand, if the predictor suggests that change is very likely
to occur in one sub-domain, then we choose it with a high probability. To handle
the fact that certain parts of the domain are unlikely to occur, we then take a time
step considering such a sub-domain with a larger step size to compensate for the
low probability. If it is almost certain that one sub-domain is chosen, we take the
corresponding step with the almost ordinary length.

We provide error bounds in an abstract non-linear setting for a randomized
operator splitting scheme where the error is measured in expectation. While the
convergence rate in a purely deterministic framework is higher for smooth solu-
tions, in the non-linear framework solutions often lack the needed higher-order
regularity anyway. Moreover, the computational cost of time steps can be reduced
in the randomized framework. We verify the theoretical results with a preliminary
numerical example for a randomized splitting combined with a domain decompo-
sition scheme for a simple test equation.

Scaling Limits of Additive functionals of rough processes

without self-similarity

Henri Elad Altman

(joint work with Khoa Lê)

This talk addresses the long-time behaviour of additive functionals of a family of
stochastic processes known as mixed fractional Brownian motions.

For a stochastic process (Xt)tg0 with values in R
d, given a measurable function

f : Rd ³ R, the process
∫ t

0
f(Xs) ds, t g 0, is called an additive functional of

(Xt)tg0. Under standard assumptions, for all a * R
d we may also consider the

additive functional associated with f = ·a, the Dirac measure at a: one obtains
an object LX

t (a), called local time of the process X at the point a, and given

formally as
∫ t

0
·a(Xs) ds, see e.g. [4]. Jointly continuous local times exist for a

1-dimensional Brownian motion, and more generally for any fractional Brownian
motion (fBM) in R

d with Hurst parameter H such that Hd < 1.
We first recall a known result for the case of standard Brownian motion, and

more generally fractional Brownian motions, c.f. [6].

Theorem 1 (Darling-Kac Theorem). (1) Let (Bt)tg0 be a standard Brown-
ian motion in R. Let f * L1(R) and t g 0 fixed. Then, as » ³ >,
1:
»

∫ »t

0
f(Bs) ds converges in distribution to (

∫

R
f(x) dx)LB

t (0).



468 Oberwolfach Report 9/2022

(2) More generally, let d g 1 and H * (0, 1) such that Hd < 1, and let
(BH

t )tg0 be a d-dimensional fBM of Hurst parameter H. Let f * L1(Rd)

and t g 0 fixed. Then, as » ³ >, »Hd21
∫ »t

0
f(BH

s ) ds converges in

distribution to (
∫

Rd
f(x) dx)LBH

t (0).

The above results rely heavily on the self-similarity of the underlying process.
Thus the question arises: what can we say for a stochastic process that is not
self-similar? We consider a toy model of stochastic process that is not self-similar.

Definition 1 (see [1]). For ³ * R \ {0} and H * (0, 1), we call mixed fractional
Brownian motion (mixed fBM for short) a process of the form Xt := Bt + ³BH

t ,
where B (resp. BH) is a d-dimensional Brownian motion (resp. fractional Brow-
nian motion), and BH is independent from B.

As soon as H 6= 1/2, a mixed fBM as defined above is not self-similar. The
analysis of the long-time behaviour of its additive functionals therefore becomes
highly challenging. We have the following, main result:

Theorem 2 (Elad Altman, Lê, 2022+). For all f * L1(Rd) and any fixed t g 0,
the following limits hold:

(1) when H < 1
2 and d = 1, »2 1

2

∫ »t

0
f(Xr)dr converges as » ³ > in distri-

bution to
∫

R
f(x)dxLB

t (0),

(2) when H > 1
2 and d = 1, »H21

∫ »t

0
f(Xr)dr converges as » ³ > in distri-

bution to
∫

R
f(x)dxLBH

t (0),

(3) when d g 2 and H < 1
d , then »Hd21

∫ »t

0
f(Xr)dr converges as » ³ > in

probability to 0.

One of the major ingredients in the proof of the above Theorem consists in
identifying continuity properties of the local time process LX

t (a) with respect to the
underlying process X , an agenda one does not seem to be able to carry out using
standard techniques. In this perspective, a crucial tool to perform our analysis is
the Stochastic Sewing Lemma of Khoa Lê [7], which we use both to construct the
local times of mixed fBM, and study their continuity properties with respect to the
underlying process. Our techniques do not rely in a crucial way on Gaussianity
of the process X , although this feature makes computations easier. We believe
our construction can be used to tackle more general processes, even beyond the
Gaussian setting.

There remain many interesting open questions:

(1) One may study fluctuation results, by asking what is the correct scaling
in the first two statements of Theorem 2 above, when

∫

f(x) dx = 0. The
case of a fBM was studied in [6].

(2) Alternatively we may wonder what happens if f is not integrable. Note
that such results are known in the case of a standard Brownian motion [8]
and in the case of stable processes [3]. It would be interesting to obtain
an extension of such results to the non-self-similar setting.
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(3) Correct scaling when d g 2, H < 1
2 and dH < 1? Namely, the 3rd scaling

limit result in Theorem 2 is sub-optimal, and it seems very interesting,
albeit quite challenging, to find the correct scaling at which the additive
functionals exhibit a non-trivial limit. Note that, in d g 2, the standard
Brownian motion does not possess local times. It is plausible that the
correct scaling may be logarithmic, in a way reminiscent of the case of a
2-dimensional Brownian motion, see [5] and [2].

(4) Scaling limits for additive functionals of more complicated processes (e.g.
solutions to stochastic partial differential equations)? This seems to be
a very open question, but the Stochastic Sewing Lemma appears as a
promising tool to tackle it.
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Some recent advances on SDEs with fractional noise

Lucio Galeati

(joint work with Máté Gerencsér)

It is by now well established, after the pioneering work of Catellier and Gu-
binelli [1], that fractional noise can have a strong regularizing effect on ODEs.
Specifically, denoting by WH a fractional Brownian motion (fBm) of Hurst pa-
rameter H * (0, 1), SDEs of the form

(1) dXt = b(t,Xt) dt+ dWH
t , X |t=0 = x0 * R

d

are wellposed whenever b * C³
x with ³ > 1 2 1/(2H) (consider autonomous b for

the moment). More recently, the same result has been extended in [5] the cover
the whole regime H * (0,+>) \ N; observe that any choice of H < > allows
for values ³ < 1 (i.e. non-Lipschitz drift b), so that explicit counterexamples to
uniqueness for the ODE would be available in the absence of WH .
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The above results give rise to several natural questions:

A) Is the regime ³ > 1/(2H) (possibly ³ g 1/(2H)) optimal?
B) Even when wellposedness is already known, can one obtain finer informa-

tion on the solutions, e.g. construct the associated stochastic flow?
C) Is the stochastic transport equation associated to the SDE also wellposed?

One of the main challenges in addressing the above questions lies in the fact
that, for H * (0, 1) \ {1/2}, WH is not a Markov process nor a semimartingale;
therefore, all standard stochastic calculus tools used to solve the SDE (Itô formula,
Zvonkin transform, martingale problem, PDE methods, etc.) completely break
down and new strategies must be developed in order to overcome this diffuculty.

It is worth observing that a simple scaling argument already suggests the ex-
pected optimal regularity needed to solve the SDE. Recall that WH is self-similar
with parameter H , in the sense that W̃H

t := »2HW»t is again distributed as

WH ; applying the same scaling to (1), we see that X̃t := »2HX»t solves the SDE

associated to W̃H and new drift

b̃(t, x) = »12Hb(»t, »Hx).

Considering b * Lq
tC

³
x and looking at how it behaves under rescaling, the suggested

subcritical regime (i.e. where ‖b̃‖LqCα ³ 0 as » ³ 0) corresponds to

(2) ³ > 12 1

q2H

where q2 denotes to the conjugate exponent of q. Our main result from [3] roughly
speaking states that, for the choice q = 2, we can solve the SDE (1) in the full
subcritical regime.

Theorem 1. Let H * (0,+>) \ N, WH fBm of parameter H, b * L2
tC

³
x with

³ > 12 1
2H , ³ * R. Then:

1) Strong existence, pathwise uniqueness and path-by-path uniqueness hold
for the SDE (1), for any x0 * R

d.
2) The SDE admits a stochastic flow of diffeomorphisms.
3) Strong stability estimates are available. Namely, let X i be solutions to (1)

associated to (xi
0, b

i), i = 1, 2, and same WH ; then for any p * [1,>)
there exists a constant C, depending on ³,H, T, ‖bi‖LqCα , such that

(3) E

[

sup
t*[0,T ]

|X1
t 2X2

t |p
]

1
p f C(|x1

0 2 x2
0|+ ‖b1 2 b2‖L2Cα−1)

The proof relies on a combination of the strategy developed in [5] and the use
of an appropriate variant of the stochastic sewing lemma (SSL) developed in [6];
specifically, we need a version of the SSL accomodating the presence of controls,
shifts and conditional norms. For the concept of path-by-path uniqueness we refer
to [2]; in the case ³ < 0 (distributional drift), the SDE can be given pathwise
meaning by means of nonlinear Young integration as in [1]. Finally, the stability
estimate (3) is an improvement of the one presented in [4] and can be used as
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therein to solve distribution dependent SDEs driven by WH (this result will also
appear in [3]).

Theorem 1 provides further insight on questions A) and B) presented above; we
are currently working on C) and we believe we can give it a positive answer for
b satisfying the same assumptions as in Theorem 1. At the same time, although
we have further weakened the time regularity on b, our result does not improve
the spatial regularity threshold ³ > 1 2 1/(2H). Thus the fundamental question
of whether one can lower the value of ³, by assuming b * Lq

tC
³
x for higher values

of q, in accordance to formula (2), remains open.
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Fluctuations of the stochastic heat equation in dimensions three

and higher.

Luca Gerolla

(joint work with Xue-Mei Li, Martin Hairer)

Recent results concerning the stochastic heat equation (SHE) and KPZ equation in
dimension d g 3 showed that their large scales fluctuations converge to a Gaussian
field, given by the solution of the Edwards-Wilkinson equation

"tU = 1
2∆U + ³¿Ẇ .

Here ³ denotes a small coupling constant, ¿ the effective variance and Ẇ space-
time white noise. We start by introducing the models and the weak/strong disorder
regimes dictated by the value of ³ [7]. We then review currently available results
[6, 4, 2, 3, 1, 5] on the equations, in particular the effective variance and the role
of the compactly supported (integrable) spatial covariance in the noise considered.
Hence we motivate ongoing work on the non-linear SHE

"tu = 1
2∆u+ ³Ã(u)¿,

where ¿ is white in time Gaussian noise with non-integrable spatial covariance
R, displaying power law decay R(x) > |x|2» at infinity, with » * (2, d). In
these settings, we expect analogue Gaussian large scales fluctuations. However,
compared to current results, we observe different effective variance and order of
fluctuations, with a Edwards-Wilkinson limit which is now driven by noise that has
Riesz kernel |x|2» correlations in space. We outline the work in progress results
and the main techniques employed.
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Weak rough-path-type solutions for singular Lévy SDEs

Helena Katharina Kremp

(joint work with Nicolas Perkowski)

The talk is based on [5] and the recent works [6, 7]. We study the weak well-
posedness of multidimensional Lévy-driven stochastic differential equations of the
form,

(1) dXt = V (t,Xt)dt+ dLt, X0 = x * R
d,

where L is a non-degenerate, symmetric, ³-stable Lévy process for ³ * (1, 2], and
V * C([0, T ], (C ³)d) is a Besov distribution in the space variable for ³ < 0.

Since the works by Delarue, Diel [4] and Cannizzaro, Chouk [2] (in the Brownian
noise setting), and our previous work [5], the existence and uniqueness of solutions
to the martingale problem associated to (1) is known, when the Besov regularity
of the drift satisfies ³ > (22 2³)/3 (rough regime). In the socalled Young regime,
where ³ > (12³)/2, weak existence and uniqueness for the SDE with stable noise
was already established in [3] and [1] (with strong existence in dimension d = 1).

The key ingredient in the rough case is to solve the associated backward Kol-
mogorov equation

GV u = ("t 2 L³
¿ + V · ')u = f, u(T, ·) = uT(2)

for f * L>, uT * C 3, with the paracontrolled ansatz. Here, 2L³
¿ denotes the gen-

eralized fractional Laplacian, that is the generator of the stable process (¿ being the
spherical component of the jump measure). The idea of the paracontrolled ansatz,
is to treat u as a perturbation of the linearized equation, "tw = L³

¿w 2 V , and to
leverage this to gain some regularity. This works as long as the product V · 'u is



Regularization by Noise 473

of lower order than the linear operator L³
¿ , i.e. if ³ > 1 and ³ > 12³ (subcritical

regime). For that, in the rough case, we assume that the drift V can be enhanced,
i.e. that the resonant product V2 := JT ('V ) � V * C([0, T ], (C³+2³21)d) exists,

where JT (v)(t) :=
∫ T

t Pr2tvrdr and (Pt) being the (2L³
¿ )-semigroup (notation:

V = (V1,V2) = (V,V2) * X ³).
Motivated by the equivalence of probabilistic weak solutions to SDEs with L>-

drift and solutions to the martingale problem, we define a (non-canonical) weak
solution concept for singular Lévy diffusions, proving moreover equivalence to the
martingale solution in both the Young, as well as in the rough regime. In the
Young regime, a canonical weak solution concept is well-posed (cf. also in [1]).
Here, the canonical weak solution is a tuple of stochastic processes (X,L) on some
probability space, such that L is a symmetric, ³-stable Lévy process and X is
given by X = x+ Z + L, where Z satisfies, for all 0 6 s < t 6 T ,

‖Zs,t‖L2(P) . |t2 s|(³+³)/³, ‖Es[Zs,t]‖L∞(P) . |t2 s|(³+³)/³(3)

and is such that it exists a sequence (V n) of smooth V n with V n ³ V in
C([0, T ], (C ³)d) and with

Zt = lim
n³>

∫ t

0

V n(r,Xr)dr =: lim
n³>

Zn
t(4)

in L2(P). Notice that (³ + ³)/³ > 1/2, such that Z is a zero quadratic variation
process and X is a Dirichlet process. Constructing a counterexample, we prove
in [6] that, contrary to the Young case, in the rough regime, the canonical weak
solution is in general non-unique in law. This is due to the fact, that we can
construct sequences (V n), (Wn) with JT ('V ) � V n ³ · and JT ('V ) � Wn ³
· + C for a constant C > 0.
By imposing a rough-path-type assumption for a weak solution X , we obtain a
well-posed solution concept. That is, we furthermore require for a weak solution
X , that the iterated integrals

Z
V
s,t := lim

n³>

∫ t

s

(JT ('V )(r,Xr)2 JT ('V )(s,Xs))dZ
n
r(5)

are well-defined in L2(P) and satisfy the Hölder-type bounds, for all 0 6 s < t 6 T ,

‖ZV
s,t‖L2(P) . |t2 s|(³+³)/³, ‖Es[Z

V
s,t]‖L∞(P) . |t2 s|(2(³+³)21)/³,(6)

where 2(³+ ³)2 1 > ³+ ³. That is, we define:

Definition 1 (Weak solution).
We call (X,L,ZV ) a weak solution, if X is given by X = x+Z+L and if it exists
a sequence of smooth V n, n * N, with V n ³ V in X ³ and (4) and (5) holding
true. Furthermore Z satisfies (3) and Z

V satisfies (6).

The main theorem of [6] is then the following.
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Theorem 1.

Let V * X ³ for ³ in the rough regime and x * R
d. Then (X,L,ZV ) is a weak

solution if and only if X solves the (GV , x)-martingale problem (cf. [5, Definition
4.1]).

For a weak solution (X,L,ZV ), an application of the stochastic sewing lemma by
Khoa Lê [8], yields existence and stability of the rough stochastic integral with
germ Ξs,t = 'u(s,Xs)[Zs,t+Z

V
s,t] in L2(P) for u solving (2). This enables to prove,

that a weak solution is a martingale solution, in particular the weak solution is
unique in law. To prove, that for a martingale solutionX , the iterated integrals ZV

satisfy the bounds (6), we solve the backward Kolmogorov equation with singular
paracontrolled terminal conditions (theory contained in [7]) and utilize bounds on
those.
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Finite p-variation of solutions to (stochastic) evolution equations and

applications in numerical analysis

Raphael Kruse

(joint work with Johanna Weinberger, Rico Weiske)

In this contribution to the MFO mini-workshop 2207c we discuss the temporal
regularity of stochastic evolution equations in terms of the finite p-variation norm.
In addition, we illustrate how this norm can be used in numerical analysis to
derive error estimates for discretization methods. The content of the talk and this
extended abstract is based on joint work [4, 5] with Johanna Weinberger and Rico
Weiske (both MLU Halle-Wittenberg).

First, we briefly recall the analytical framework for stochastic evolution equa-
tions from [1]: For T * (0,>) let (Ω,F , (Ft)t*[0,T ],P) be a filtered probability
space satisfying the usual conditions. Further, letH,U be separable Hilbert spaces.
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Then, we consider the mild solution X : [0, T ]× Ω ³ H to a stochastic evolution
equation of the form

(1) dX(t) = AX(t) dt+G(X(t)) dW (t), t * (0, T ], X(0) = X0,

where X0 * L2(Ω,F0,P;H) denotes the initial condition, (W (t))t*[0,T ] is a U -
valued Wiener process with covariance operator Q : U ³ U satisfying Tr(Q) < >,
and the Lipschitz continuous mapping G : H ³ L2(U0, H) takes values in the
space of Hilbert–Schmidt operators.

In addition, we assume that the operator A : dom(A) ¢ H ³ H is densely
defined, linear, self-adjoint, and negative definite with a compact inverse. This
implies that A is the infinitesimal generator of an analytic semigroup (E(t))t*[0,>)

on H . Under these assumption (1) admits a unique mild solution of the form

X(t) = E(t)X0 +

∫ t

0

E(t2 s)G(X(s)) dW (s), t * [0, T ].(2)

For all details regarding existence and uniqueness of the solution X we refer to [1].
In numerical analysis of stochastic evolution equations one often depends on

estimates of the temporal regularity of the exact solution X to derive the optimal
order of convergence. For instance, the order of convergence of the backward Euler
method typically coincides with the exponent ³ * (0, 1] of Hölder continuity of the
exact solution as discussed in, e.g., [3, 6].

In [4] we illustrate that, in some situations, it is beneficial to measure the
temporal regularity of X in terms of finite p-variation instead of the more common
notion of Hölder continuity. To be more precise, for p * [1,>) we say that X is
of finite p-variation with respect to the L2(Ω;H) if

|X |p2var,L2(Ω;H) := sup
Ã¢[0,T ]

(

∑

ti*Ã

‖X(ti)2X(ti21)‖pL2(Ω;H)

)
1
p

< >,

where the supremum is taken over the set of all finite partitions Ã = {0 = t0 <
t1 < . . . < tN = T } of the interval [0, T ].

It is straight-forward to show that if X is Hölder continuous with exponent
³ * (0, 1] then it also of finite p-variation for every p * ( 1³ ,>). More importantly,

the Garsia–Rodemich–Rumsey result, see [2, App. A], yields embeddings of more
general (fractional) Sobolev and Besov spaces into the space of all functions with
finite p-variation.

The main purpose of [4] is then to show that, under certain conditions, the mild
solution X in (2) is not (or only with a very small exponent) ³-Hölder continuous
but, at the same time, it is of finite p-variation for some p < 1

³ . In fact, this

situation already occurs when the initial conditionX0 is of low regularity measured
in terms of fractional powers of the infinitesimal generator A. To be more precise,
if X0 * L2(Ω,F0,P; dom((2A)³)) for some small ³ * (0, 1] then the mapping
[0, T ] + t 7³ E(t)X0 * L2(Ω,F0,P;H) is ³-Hölder continuous with respect to the
norm in L2(Ω,F0,P;H). However, it is shown in [4] that the mapping t 7³ E(t)X0

is of finite 1-variation regardless of the value of ³ * (0, 1].
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By applying techniques for the numerical analysis of rough differential equations
from [7] it is then shown in [4, 5] that the temporal order of convergence of the
backward Euler method and the BDF2-Maruyama method only depends on the
value 1

p provided the exact solution is of finite p-variation. Together, these two

results yield the optimal order of convergence also for stochastic evolution with,
for instance, non-smooth initial values.
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On regularization by noise of an averaged version of the

Navier-Stokes equations

Theresa Lange

(joint work with Martina Hofmanová)

Consider the three-dimensional deterministic Navier-Stokes equations describing
the time evolution of an incompressible, viscous fluid on R

3 by

(1)

"tu+ (' · u)u+'p = ∆u,

' · u = 0,

u(0, ·) = u0

with velocity field u : [0,>)×R
3 ³ R

3 and pressure field p : [0,>)×R
3 ³ R. In

particular, projected onto the divergence-free vector fields these read

(2)
"tu = ∆u +B(u, u),

u(0, ·) = Πu0

with Π the Leray projection, and B the symmetric Euler bilinear operator satis-
fying the cancellation property

(3) 〈B(u, u), u〉 = 0
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in L2(R3). Well-posedness in the sense of existence of global-in-time smooth solu-
tions to (1) is a largely open problem: though in the regime of small initial data
or hyperdissipative variants there exist positive results exploiting symmetry and
cancellation property of B, these, however, do not extend to the general case. In
fact, approaches that merely use these two properties will be doomed to fail: in
[1], the author constructs a variant C of B satisfying symmetry and (3) such that
the corresponding system of the form (2) experiences a blow-up in finite time.
On the other hand, the field of regularization by noise investigates whether by
augmenting an ill-posed deterministic system by a stochastic perturbation im-
proves its regularity. Of large interest in the context of (1) is a recently analysed
Stratonovich noise of transport type employed in [2] and [3]: on T

3 consider

(4)
∑

k*Z3
0

2
∑

i=1

»kΠ((Ãk,i · ')·) ç dW k,i
t

with a specific choice of divergence-free vector fields Ãk,i, and W k,i a family of
complex Brownian motions. Via a scaling limit argument, the authors of [2] were
able to show that there exists a choice of parameters »k such that there exists
a unique strong (in the probabilistic sense) solution to the perturbed vorticity
equation of (1), and extended their result to hold for more general models as
exploited in [3].
This talk aims at bringing together these two concepts: let C be a bilinear operator
of the form as constructed in [1] on T

3 and let ¿ := ' × u denote the vorticity
field of a solution u to (2) with nonlinearity C. Then the time evolution of ¿ is of
the form

"t¿ = ∆¿ + F (¿)

and by means of the analysis in [2] and [3] we are able to show that the above
regularization result also applies to

(5) d¿ = (∆¿ + F (¿))dt +
:
C
∑

k*Z3
0

2
∑

i=1

»kΠ((Ãk,i · ')¿) ç dW k,i
t

and similarly for higher order derivatives of ¿. This illustrates a great strength of
the transport noise (4) rendering its potential regularization skills in the context
of (1). Note, however, that whether regularization in the above sense also holds
for (5) on the level of the velocity u is yet unresolved. Furthermore it remains to
be shown whether the concrete construction in [1] can be regularized by (4). On
the other hand, an interesting task is to identify a noise intrinsically related to the
model in [1] which delays the blow-up. Noise of type (4) might provide a good
starting point in this direction, which is part of our future research.
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Quadrature estimates by stochastic sewing

Khoa Lê

(joint work with Konstantinos Dareiotis, Máté Gerencsér, Chengcheng Ling)

The talk is based on recent joint works with K. Dareiotis, M. Gerencsér ([6]) and
C. Ling ([12]). Consider the stochastic differential equation (SDE)

dX = b(t,X)dt+ Ã(t,X)dB(1)

driven by a multidimensional Brownian motion B. The diffusion coefficient Ã is
uniformly elliptic and regular while the drift vector field b is irregular, discontin-
uous and possibly singular. Two particular classes of drifts are Borel bounded
functions and integrable functions in Lq([0, 1];Lp(Rd)) with d

p + 2
q < 1.

The corresponding equidistant tamed Euler–Maruyama scheme is given by

dXn
t = bn(t,Xn

kn(t)
)dt+ Ã(t,Xn

kn(t)
)dBt(2)

where kn(t) = j/n whenever j/n f t < (j + 1)/n. Here, bn is an approximating
drift coefficient, converging to b in some suitable topology. When b is a bounded
measurable function, the Euler–Maruyama scheme is well-defined and one can sim-
ply take bn = b. When b is merely integrable (and hence may have singularities),
the simulation of the usual Euler–Maruyama scheme can enter a neighborhood of
a singularity which can potentially make the scheme unstable and uncontrollable.
In this situation, a strategy is to replace b by an approximation bn which stabilizes
the scheme, resulting in the tamed Euler–Maruyama scheme (2). The terminology
is borrowed from [7] where a specific example of (2) is introduced for SDE’s with
regular but super-linear drifts. Thus “tamed” is understood in a generalized sense
since (2) allows for any generic approximation bn of b.

It is well-known that the strong convergence rate of Euler–Maruyama scheme
is closely related to the rate of the weighted quadrature error

∥

∥

∥

∥

∫ 1

0

(f(r,Xn
r )2 f(r,Xn

kn(r)
))g(r,Xn

r )dr

∥

∥

∥

∥

Lm(Ω)

(3)

where m g 2, f models bn, and g is a weight arising from Zvonkin’s transformation
([15, 14, 10]), typically g has one more (weak) regularity than f . This connection
can be traced back at least to [9, 8] and recently in [6, 4, 13] with some combination
with the Zvonkin’s transformation.

When b is Lipschitz continuous, the optimal rates of the Euler–Maruyama
scheme and the corresponding quadrature error are the same and equal 1/2 [9].
Optimal or almost optimal rate (with an ·-loss or with a logarithmic factor) for ir-
regular drift b is surprisingly difficult to obtain, albeit with recent successes started
from [5] and extended in [6, 12, 2]. These works are inspired by recent progress
from regularization-by-noise problems. While [5] uses direct moment computa-
tions, the other works employ stochastic sewing lemma from [11], an instrumental
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result which combines rough path and martingale techniques. To get the idea, we
put

At =

∫ t

0

(f(r, Br)2 f(r, Bkn(r)))g(r, Br)dr, As,t = E(At 2As|Fs),

Js,t = At 2As 2As,t.

Using statistical properties of Xn, one can show that

‖Js,t‖Lm(Ω) f Cw(s, t)
1
2+·,(4)

‖Js,t 2 Js,u 2 Ju,t‖Lm(Ω) f C(1/n)
1
2w(s, t)

1
2 ,(5)

where C is some constant and w is a continuous control (i.e. w = w(s, t) is
continuous and satisfies w(s, u) +w(u, t) f w(s, t) whenever s f u f t). Applying
a version of the stochastic sewing lemma, one can find a constant N = N(·,m)
such that

‖Js,t‖Lm(Ω) f N [(1/n)
1
2 logn]w(s, t)

1
2 .(6)

This estimate immediately yields a rate for (3). Note that this rate differs from
the optimal rate 1/2 by a logarithmic factor, and whether it can be improved
remains open. The implication from (4) and (5) to (6) displays an intimate con-
nection between statistical properties of Xn with moment estimates for additive
functionals through the stochastic sewing argument. With some additional effort,
the described method can be employed to obtain the same rate for the quantity

∥

∥

∥

∥

∥

sup
t*[0,1]

∣

∣

∣

∫ t

0

(f(r,Xn
r )2 f(r,Xn

kn(r)
))g(r,Xn

r )dr
∣

∣

∣

∥

∥

∥

∥

∥

Lm(Ω)

.

For the details, the reader is referred to [6, 12]. Many open questions, for which
this method could be implemented, remain to be explored. To name a few,
the strong convergence rate for Euler–Maruyama schemes for SDE’s driven by
fractional Brownian motion ([2]) and the strong convergence rate for numerical
schemes for stochastic partial differential equations with irregular drifts ([1, 3]).
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Regularization by noise: from a numerical (Wong-Zakai

approximation) viewpoint

Chengcheng Ling

(joint work with Sebastian Riedel, Michael Scheutzow)

Starting from a well-known example [1, P2, P8] which explains well on ’regulariza-
tion by noise’ effect concerning the existence and uniqueness of the solution to a
stochastic differential equation (SDE for short) of which the coefficients usually are
not Lipschitz continuous, we aim to show SDEs with multiplicative Stratonovich-
type noise of the form

dXt = b(Xt) dt+ Ã(Xt) ç dWt, X0 = x0 * R
d, t g 0,

with a possibly singular drift b * Lp(Rd), p > d and p g 2, such SDEs can be
approximated by random ordinary differential equations by smoothing the noise
and the singular drift at the same time. The main idea behind is the stability
results with respect to the drift term. Then based on the classical Wong-Zakai
theorem combining with the stability results obtained before, in the end we can
show the Wong-Zakai theorem for singular SDEs. We further prove a support
theorem for this class of SDEs in a rather simple way using the Girsanov theorem.
Usually the support theorem is derived from Wong-Zakai approximation, which is
not easy to get in most of the cases. However since the noise is non-degenerate,
we can obtain the support theorem via Girsanov theorem.

After the talk, there are some interesting questions from the audiences. One
of them is whether the method can be generalized to more singular settings, e.g.
distributional valued drifts. It is an inspiring point and worthy to continue working
in this direction.
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This talk is based on the joint work [2] with S. Riedel (Leibniz Universität
Hannover) and M. Scheutzow (TU Berlin).
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Stable SDEs with singular drift (the linear and McKean-Vlasov case)

Stéphane Menozzi

(joint work with Paul-Éric Chaudru de Raynal, Jean-Francois Jabir)

We investigate the well-posedness of Rd-valued equations of the form

(L) Xs = ¿ +

∫ s

0

b(r,Xr)dr +Ws

and

(NL) Xs = ¿ +

∫ s

0

{

∫

Rd

b(r,Xr 2 y)µr(dy)
}

dr +Ws,

where W is a d-dimensional stable process of order ³ * (1, 2] defined on some
probability space and for (NL), µr stands for the law of Xr. The law of the initial
condition ¿ (independent of the noise) can be any probability law on R

d.
Importantly we will focus on the case where b is singular. To keep things simple,

let us restrict to the case where b * L>((0, T ],B³
>,>(Rd,Rd)) =: E, ³ * (21, 0),

where B³
>,>(Rd,Rd) stands for the usual Besov space (see [9]). Put it differently, in

the time homogeneous setting, the drift b can be seen as the generalized derivative
of a Hölder continuous function, i.e. b(t, ·) = b(·) = DB(·), B * B

1+³
>,>(Rd,Rd) =

C1+³(Rd,Rd).
Many questions arise. What notion of solution can we consider to solve (L) and

(NL) and how can we specify a dynamics? This last difficulty is particularly clear
in the case (L) since the equation is only formal. Indeed the drift is not a priori
well-defined and we need to specify what we mean by (L). Before giving a precise
description for the dynamics, the first step usually consists in investigating the
martingale problem associated with the formal generator of (L), precisely

(G) Lt×(x) = 〈b(x),'×(x)〉 + L³×(x),

where L³ stands for the generator of the driving stable process. Again, it is
difficult to give a pointwise meaning to Lt×(x) for distributional drifts b. This leads
to consider slightly differently the martingale problem approach and in seeking
probability measures on C(R+,Rd) or D(R+,Rd) (depending on ³) s.t. for the

corresponding canonical process, u(t,Xt)2u(0, x)2
∫ t

0
f(s,Xs)ds is a martingale,
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for functions f in a rich enough function class to characterize the law, where u is
a mild solution of

(PDE)

{

"tu(t, x) + Ltu(t, x) = f(t, x), (t, x) * [0, T )× R
d,

u(T, x) = 0, x * R
d,

for some fixed T > 0 small enough. Namely, one looks for a function u solving the
integral equation

(M) u(t, x) = 2
∫ T

t

P³
s2tf(s, x)ds+

∫ T

t

P³
s2t〈b,'u〉(s, x)ds,

where P³ stands for the semi-group generated by L³ generator of the stable driving
process in the above SDEs. Observe that from the above implicit formulation, it
seems clear that to address the martingale problem the gradient of u in (M) needs
to be controlled. This is usually done through a Schauder type approach which
says that for b * B

³
>,> one can expect u to benefit from the related parabolic

boostrap, namely u should belong to B
³+³
>,> in its space variable, uniformly in

time. Anyhow, developing a Schauder type theory for (M) requires that the second
integral in the right hand side of (M). To this end, one can heuristically say that,
provided u benefits from the previously mentioned bootstrap, from the Bony rule
for paraproducts, this will be the case provided

(Y) (³+ ³ 2 1) + ³ > 0 ñó ³ >
12 ³

2
,

where ³ + ³ 2 1 is the expected spatial smoothness of 'u(s, ·). The condition
in (Y) corresponds to the so-called Young regime and appeared in several works
(see [6], [10] for the Brownian case or [1], [8] in the strictly stable setting). In the
indicated articles, the authors also considered various notions of solutions: virtual
solutions in [6] replacing namely the drift by the increment of the equation (PDE)
along the process with the drift as source, or viewing the drift in (L) as the limit
of smooth approximations of the drift (the limit drift being a Dirichlet process),
[10], [1].

Under some additional structure condition on the drift (e.g. provided it can
be enhanced into a suitable rough path-structure) it is possible to go below the
Young threshold reaching ³ > 222³

3 (see [5] in the Brownian setting and [7] for
³ * (1, 2]).

Importantly, following the approach introduced in [5], enhancing as in that
reference the martingale problem in order to have at hand a driving noise to
reconstruct the drift as a suitable Young integral, we managed in [2] to specify the
dynamics for (L) which actually writes:

(LD) Xt = ¿ +

∫ t

0

F(s,Xs, ds) +Ws, F(s, x, v 2 s) :=

∫ v

s

drP³
s2rb(s, x).

Let us observe that the above description is indeed well suited for possible associ-
ated numerical approximation schemes.

For the non-linear McKean-Vlasov dynamics (NL) we established weak, for
³ > 1 2 ³, and strong well-posedness, for ³ > 2 2 3

2³, for any initial condition ¿
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independent of the driving noise. This was performed in [4] in which we carry out
a specific a priori estimates strategy seeking for solutions to the related Fokker-

Planck equations with densities in B
2³
1,1 (which can be put in spatial duality with

the drift). This space is natural for the stability analysis and has lower spatial
regularity than the expected parabolic gain. The main idea is to proceed again
through a (non-linear) Duhamel type expansion of type (M) and to use a so-called
dequadrification strategy to get rid of the underlying quadratic dependence on the
density for the first order term. The previous threshold clearly improves the one
in (Y). Interestingly, it quantifies how a convolution with a singular interaction
kernel can help to decrease the Young threshold. Importantly, this thresholds
is the natural one for the driving noise from a scaling viewpoint, see e.g. the
discussion in [3] in the Brownian case. Also, in this latter case, the dynamics are
usual ones, the non-linear drift is a function.
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Spectral gap for projective processes of hyperviscous SPDEs

Tommaso Rosati

(joint work with Martin Hairer)

The study of Lyapunov exponents of stochastic PDEs has been mostly restricted
to order preserving systems, for example in relation to KPZ or Burgers’ equations
[6, 3, 5]. For order preserving systems it is generally well understood that one force
one solution principles (synchronization) hold: in particular Lyapunov exponents
associated to the Jacobian of solutions of order preserving systems are expected
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to be strictly negative [4]. This picture can change dramatically if one considers
more complex models. Recent results regarding the Navier–Stokes equations show
that finite dimensional approximations or toy models for these equations exhibit
chaos or non–uniqueness of invariant measures [1, 2].

Extending these results to infinite dimensions is very challenging, and even
basic questions concerning Lyapunov exponents are not well understood. The
main purpose of this work is to introduce tools through which to establish first
results beyond the order preserving setting. To do so we consider a class of linear
hyperviscous SPDEs

"tu = 2(2∆)au+ u¿ ,

for a smooth non-degenerate noise ¿. If a > 1 this equation does not satisfy a
maximum principle and hence is not order preserving. We then prove that there
exists a unique » * R such that for all u0 6= 0

» = lim
t³>

1

t
log ‖ut‖L2 .

In addition we provide Furstenberg–Khasminskii type formulas for the Lyapunov
exponent.

The main contribution of our work is a new approach to the analysis of the
projective component Ãt = ut/‖ut‖L2 on the infinite–dimensional sphere: through
classical arguments, many results concerning Lyapunov exponents, including the
ones just mentioned, follow from proving a spectral gap for this process. In ad-
dition, such a spectral gap is useful in establishing further properties such as
fluctuations and large deviations principles for 1

t log ‖ut‖L2 around ».
In order to prove the spectral gap we introduce a novel Lyapunov functional for

Ãt, which keeps track of the midpoint (in frequency space) of the process

M(Ã) = min

ù

ú

û

M * N :
∑

|k|>M

|Ã̂|2(k) f
∑

|k|fM

|Ã̂|2(k)

ü

ý

þ

,

as well as its high frequency regularity, controlled by norms of the kind:

‖Ã‖³,M =

û

ý

∑

|k|>M

(|k| 2M)2³ |Ã̂|2(k)

þ

ø

1
2

,

where M is the midpoint. The main challenge to overcome is that in the de-
terministic setting the equation can be trapped in high frequency states. In the
stochastic case this is not anymore possible, as long as the noise satisfies some weak
non-degeneracy assumptions (a finite number of Fourier modes are required to be
non-trivial). Under this assumption, we prove that a discretized version of the
midpoint follows roughly the dynamic of a discrete Ornstein–Uhlenbeck process:
this is the essential building block for the construction of our Lyapunov functional,
which is eventually roughly of the form
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F(Ãt) c exp
{

»M(Ãt) + ‖Ãt‖2³,M
}

,

for some ³, » > 0.
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Transport and continuity equations with (very) rough noise

Nikolas Tapia

(joint work with Carlo Bellingeri, Ana Djurdjevac, Peter K. Friz)

We prove existence and uniqueness for rough flows. Using this results, we show
well-posedness on a path-by-path sense of transport and continuity equations
driven by general weakly geometric rough path. The talk is based on the joint
work with Carlo Bellingeri, Ana Djurdjevac and Peter K. Friz [1].
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On strong approximation of SDEs with a discontinuous drift coefficient

Larisa Yaroslavtseva

(joint work with Thomas Mueller-Gronbach)

Consider a scalar autonomous stochastic differential equation (SDE)

dXt = µ(Xt) dt+ Ã(Xt) dWt, t * [0, 1],

X0 = x0

with deterministic initial value x0 * R, drift coefficient µ : R ³ R, diffusion coeffi-
cient Ã : R ³ R and 1-dimensional standard Brownian motion W . In this talk we
study Lp-approximation of X1 by means of methods that use finitely many evalu-
ations of the driving Brownian motion W in the case when the drift coefficient µ
may have discontinuity points.
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SDEs with a discontinuous drift coefficient arise e.g. in mathematical finance,
insurance and stochastic control problems. In the past decade, an intensive study
of strong approximation of such SDEs has begun. In many of the obtained results
it is assumed that the drift coefficient µ has finitely many discontinuity points
and is piecewise Lipschitz continuous and the diffusion coefficient Ã is Lipschitz
continuous and non-degenerate at the discontinuity points of µ. In this talk we
present our contribution to the analysis of strong approximation of such SDEs.

We first discuss the performance of the classical Euler-Maruyama scheme. We
show that under the above assumptions the Euler-Maruyama scheme achieves an
Lp-error rate of at least 1/2 for all p * [1,>) as in the case of SDEs with Lipschitz
continuous coefficients.

We then discuss higher order methods. We present a Milstein-type scheme
that achieves an Lp-error rate 3/4 in terms of the number of evaluations of the
driving Brownian motion W if, additionally to the assumptions stated above, both
the drift and the diffusion coefficients are piecewise differentiable with Lipschitz
continuous derivatives. We furthermore show that the Lp-error rate 3/4 can not
be improved in general under these assumptions by no numerical method based on
evaluations of the driving Brownian motion W at fixed time points and, finally, we
present a numerical method based on sequential evaluations of W , which achieves
an Lp-error rate of at least 1 in terms of the average number of evaluations of W .

The talk is based on the articles [1, 2, 3, 4].
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