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Abstract. This report involves two concepts of geometric modeling: multi-
variate data interpolation by polynomials, and the study of generalized bary-
centric coordinates. These topics are connected to a wide range of of applica-
tions, from computer aided design (CAD) systems for designing airplanes and
automobiles to animation in movies to problems in numerical analysis and
partial differential equations. Traditionally these topics were studied mostly
from an analytic standpoint, but recently advanced algebraic tools have come
into the picture. The purpose of the mini-workshop was to bring together a
diverse group of researchers with different areas of expertise, drawing from
both the approximation theory and algebraic geometry communities, and to
explore the connections between the two areas in greater detail.
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Introduction by the Organizers

Interpolation of data and approximation of functions is a fundamental theme in
applied mathematics. Roughly speaking, given a dataset arising, for example, from
some sampling process, the aim is to fit a function f to this data, and then use
f to estimate or predict the behavior at points that were not sampled. Though
this process is mostly well understood in one variable, there are still many open
questions in two and more variables where the geometry of the sampling set plays
a crucial role even in the “simplest” case of polynomial interpolation, cf. [23, 32].
In particular, already the construction of sampling points for a given space of
polynomials becomes a nontrivial issue.
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• One much studied set of interpolating functions arise when the underlying sample
set consists of points which can be geometrically categorized (GC). Such sets are
important because they give very simple and computationally inexpensive meth-
ods for interpolating the data. The Gasca-Maeztu conjecture proposes a specific
structure for some particular sets of points in dimension two which satisfy the GC
condition due to Chung and Yao [13]. Work of Sauer and Xu [33] shows that GC
sets are very special algebraically: the vanishing ideal is generated by products
of linear forms. We aim to understand and exploit this structure to attack the
conjecture and understand potential generalizations to higher dimensions.

• The second theme of the proposal is closely tied to computer science and com-
puter graphics. Generalized barycentric coordinates are used in numerical analysis
and approximation theory when moving a dynamic shape in space. These coor-
dinates were introduced by Wachspress in [35], and fundamental results on their
structure were obtained by Warren [36], [37]. Recently Irving and Schenck [28]
gave a complete dimension formula for the space of barycentric coordinates in the
two dimensional case. One aim of the workshop is to understand what the proper
extension of these results is in dimension three or more.

1. Approximation theory and interpolation

Though polynomial interpolation has a long and distinguished history, there nev-
ertheless remain many intriguing open questions. One fundamental problem from
approximation theory is the following: for a space of functions, a set of data sites
is called correct for this space if it contains, for each choice of data values at the
sites, exactly one function matching those data. Even when the space of functions
consists of polynomials (possibly all) of degree ≤ k, finding a correct set of data
sites is very subtle; for more details and variants see the surveys [6, 23, 32]. The
most prominent and well-studied configuration of correct interpolation sites is due
to Chung and Yao [13] and can be described as follows.

Definition 1.1. A set X of
(
n+2
2

)
points in R2 is called a GCn set if for each

point pi ∈ X, there exists a product

Qi =

n∏

k=1

lk

of linear forms lk such that Qi(pj) = δij.

In 1982, Gasca and Maeztu made the following

Conjecture 1.2. [[21]] For a GCn set, there is a line V (l) with l | Qi for some

Qi, such that V (l) contains n+ 1 points of X.

The Gasca-Maeztu conjecture traces its origin back to the last century, in partic-
ular to the 1914 work of Berzolari [4] and subsequent work of Radon [31]. Roughly
speaking, the idea is to solve the interpolation problem inductively: find a set T
which has the desired property for degree n−1, then choose a set of n points from
a line which does not intersect T , and adjoin them to T . This process not only
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yields a correct set of sites, but even a GCn set in the sense of Definition 1.1. If
the Gasca-Maeztu conjecture holds, then in fact any GCn can be be constructed
using the Berzolari-Radon technique.

As pointed out in [21], Conjecture 1.2 is easily seen to hold for n = 1, 2. For n =
3, 4, it was first proved by Busch in [8]. Additional proofs for n = 4, using different
techniques, appear in [9] and [25]. Last year, Hakopian-Jetter-Zimmerman showed
in [26] that the conjecture holds for n = 5. For more on the problem and related
work, see [7, 10, 11, 22, 23].

Work of Sauer-Xu in [33] implicitly shows that the vanishing ideal IX of a

geometrically categorized set of
(
n+d
d

)
points in Rd is generated by

(
n+d
n+1

)
polyno-

mials of degree n+ 1, which are products of linear forms. Recent work [18] shows
that by replacing the linear forms with variables leads to combinatorial structure,
in the form of Stanley-Reisner ideals. This not only gives rise to deeper under-
standing of the Gasca-Maeztu conjecture, but also provides concepts for potential
generalizations to an arbitrary number of variables.
Goal: Understand how to exploit the combinatorial properties to attack and to
generalize the Gasca-Maeztu conjecture.

2. Generalized Barycentric Coordinates

The problem of determining the implicit equation of the image of a rational map
φ : Pm

99K Pn is of theoretical interest in algebraic geometry, and of practical
importance in geometric modeling. There are essentially three methods which can
be applied to the problem: Gröbner bases, resultants, and syzygies. Gröbner basis
methods work via elimination, which tends to be computationally intensive. Thus,
it is primarily the latter two techniques which are used in practice.

If φ is given by homogeneous polynomials {f0, . . . , fn}, then the resultant
method fails if the fi simultaneously vanish at some point of Pm. The common
zeroes of the fi are called the base locus of φ; maps with nonempty base locus
arise frequently in practical applications where polynomial systems of equations
have to be solved. So the use of syzygies to compute the implicit equation is of
real practical importance.

In his work on finite elements, Wachspress (1975) was led to define generalized
barycentric coordinates for a convex polygon Pd with d edges. The idea is as
follows: to deform a planar shape, first place the shape inside a control polygon.
Then move the vertices of the control polygon, and use barycentric coordinates
to extend this motion to the entire shape. For d ≥ 4 the barycentric coordinates
are rational functions βi depending on the vertices of Pd. Although the βi are not
unique, about 10 years ago, Warren showed that if one requires the βi to be of
minimal degree, then the resulting rational functions are unique.

The generalized barycentric coordinates define a rational map wd on P2, whose
value at a point p ∈ Pd is the d-tuple of barycentric coordinates of p. The closure
of the image of wd defines the Wachspress surface Wd, first studied by Garcia–
Puente and Sottile in their work on linear precision. Garcia-Sottile asked if it
was possible to determine the implicit equations for the image. Irving and the PI
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answer the question, finding the defining equations for the ideal of Wd. The work
involves beautiful connections to fatpoints (Wd is the blowup of P2 at a set of
special points determined by Pd) and to combinatorics (the initial ideal of I(Wd)
is a Stanley-Reisner ideal). We also prove that the image Wd is a smooth surface,
and that the ring k[x1, . . . , xd]/I(Wd) is very well behaved: it is arithmetically
Cohen-Macaulay and has regularity two.

Goal: There is also much interest in three dimensions, where things are more
subtle. Suitably merge algebraic and analytic techniques to attack the problem.

3. Aim of Workshop

The results discussed above suggest that the interaction between commutative
algebra and approximation theory is unusually rich. The purpose of the mini-
workshop is to bring together a diverse group of researchers with different areas
of expertise with the aim of clarifying the connections, the possibilities and the
limitations of the different approaches.

The first day will consist of surveys on the different concepts and tools, focused
on familiarizing the participants with the background material. The second day
more specialized talks will be given, and the remaining time will be mainly devoted
to questions and discussions which could lead to new projects in the field.
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Abstracts

Wachspress coordinates

Kathlén Kohn

(joint work with Ragni Piene, Kristian Ranestad, Felix Rydell, Boris Shapiro,
Rainer Sinn, Miruna-Stefana Sorea, Simon Telen)

Wachspress aimed to generalize barycentric coordinates on simplices to arbitrary
polytopes and further to certain semialgebraic subsets ofRn, that he called polypols

[7, 9]. The central ingredient in his constructions is the adjoint hypersurface, which
is the focus of this chapter. Wachspress’ work investigated mainly planar polypols,
which we will discuss in Section 2. In Section 1, we focus on polytopes of arbitrary
dimension. We present several applications, including barycentric coordinates, of
adjoint hypersurfaces in Section 3.

Figure 1. Three polypols (dark gray) and their adjoints (light
gray). Boundary curves and vertices are black. Residual points
are light gray.

1. Polytopes

Wachspress introduced the adjoint curve AP of a polygon P ⊂ P2 as the minimal
degree curve passing through the intersection points of pairs of lines containing
non-adjacent edges of P [7]. The degree of the adjoint is the number of vertices
minus three; see the first example in Figure 1. Warren generalized this to convex
polytopes P ⊂ Rn [11]. For a fixed triangulation τ(P ) of P that uses only the
vertices V (P ) of P , he defined the adjoint polynomial as

adjτ(P )(t) :=
∑

σ∈τ(P )

vol(σ)
∏

v∈V (P )\V (σ)

ℓv(t),

where t = (t1, . . . , tn) and ℓv(t) = 1 − v1t1 − v2t2 − . . . − vntn. He then showed
that this definition is in fact independent of the chosen triangulation – so we write
adjP := adjτ(P ) – and that it is a generalization of Wachspress’ construction in
the sense that the zero locus of Warren’s polynomial is Wachspress’ adjoint curve
of the polygon P ∗ dual to P , i.e., Z(adjP ) = AP∗ .

We gave a geometric definition of the adjoint hypersurface using a vanishing
condition à la Wachspress [5]. For a polytope P ⊂ Pn, we write HP for the
hyperplane arrangement spanned by the facets of P , and RP for the residual
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arrangement of linear spaces that are intersections of hyperplanes in HP and do
not contain any face of P ; see Figure 2 for an example. If HP is simple (i.e.,
through any point in Pn pass at most n of the hyperplanes), we show that there is
a unique hypersurface AP in Pn of minimal degree that passes through RP . We
call AP the adjoint hypersurface. Its degree is the number of facets of P minus n
minus one. To mitigate the simpleness assumption on HP , we show that adjoint
hypersurfaces are well-defined when taking limits; so one can obtain AP of any
polytope P by perturbing P such that HP becomes simple. We also show that
the adjoint AP is in fact described by Warren’s polynomial, i.e., Z(adjP ) = AP∗ .

Figure 2. The residual arrangement of a perturbed cube consists
of three skew lines. Its adjoint is the light gray quadric.

2. Rational planar polypols

A planar polypol P is given by its k ≥ 2 irreducible boundary curves C1, C2, . . . ,
Ck ⊂ P2 and vertices v12 ∈ C1∩C2, v23 ∈ C2∩C3, . . . , vk1 ∈ Ck∩C1 such that vij
is smooth on Ci and Cj , and the curves Ci and Cj intersect transversally at vij .
The polypol is called rational if the curves C1, C2, . . . , Ck are rational. Writing
C := C1 ∪ C2 ∪ . . . ∪ Ck, we define the residual points RP of P as the scheme of
singular points of C minus the vertices vij ; see Figure 1 for examples. Wachspress
argued that there is a unique curve AP of minimal degree passing with appropriate
multiplicities through the residual points RP [9]; see [4] for a formal proof. This
is called the adjoint curve of the polypol and its degree is

∑
i deg(Ci)− 3.

3. Applications

3.1. Barycentric Coordinates. Wachspress used the adjoint curve to define
barycentric coordinates on convex polygons and aimed to generalize this to reg-

ular rational planar polypols [7, 9]. To define regularity, we consider a polypol
P together with a choice of (real) segments connecting vi−1,i with vi,i+1 on Ci,
called the sides, and a closed semi-algebraic set P≥0 whose boundary is exactly
the union of the sides. We say that P is regular if all points on the sides except
the vertices are smooth on C = C1 ∪ . . . ∪ Ck and the curve C does not intersect
the interior of P≥0. For instance, a polygon is regular if and only if it is convex.

Warren generalized Wachspress’ coordinates from polygons to polytopes as fol-
lows [11]: For a convex polytope P ⊂ Rn, we recall that the set of facets F(P )
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of P is in one-to-one correspondence with the vertex set V (P ∗) of the dual poly-
tope. We write vF for the vertex associated with the facet F . Vice versa, we write
Fv ∈ F(P ∗) for the facet corresponding to the vertex v ∈ V (P ). The Wachspress

coordinates of P are

∀u ∈ V (P ) : βu(t) :=
adjFu

(t) ·∏F∈F(P ):u/∈F ℓvF (t)

adjP∗(t)
.

This is well-defined on the interior of the convex polytope P as the adjoint hyper-
surface AP does not have zeroes there. Wachspress provided a similar construction
for regular rational polypols in the plane, with the adjoint as the common denom-
inator. However, it is not obvious that the adjoint the does not have zeroes in
the interior of a regular polypol. This motivated Wachspress to formulate the
following conjecture (in its original form for polycons (i.e., polypols with lines and
conics as boundary curves) [8] and recently extended to polypols [4]):

Conjecture 1. The adjoint curve AP of a regular rational planar polypol P does

not intersect its interior.

The conjecture is widely open. The first non-solved case is polycons bounded
by three conics. It has been recently attempted by Wachspress’ grandson [10] and
by us [4]. For convex polygons, a case already known by Wachspress, we showed
that the adjoint curve is hyperbolic and gave an explicit description of its nested
ovals. For convex 3D polytopes, the adjoint surface is not hyperbolic anymore.

3.2. Moments of Uniform Distributions. We consider the uniform probabil-
ity distribution µP on a convex polytope P ⊂ Rn and its moments mI(P ) =∫
Rn xi1

1 xi2
2 · · ·xin

n dµP for I = (i1, i2, . . . , in) ∈ Zn
≥0. The adjoint appears in the

following normalized generating function over all moments [6]:

∑

I∈Zn
≥0

cImI(P )tI =
adjP (t)

vol(P )
∏

v∈V (P ) ℓv(t)
, where cI :=

(
i1 + i2 + · · ·+ in + n

i1, i2, . . . , in, n

)
.

3.3. Segre Classes of Monomial Schemes. We consider a smooth variety V
with smooth hypersurfaces X1, . . . , Xn that meet with normal crossings in V . For
I = (i1, i2, . . . , in) ∈ Zn

≥0, we write XI for the hypersurface obtained by taking
Xij with multiplicity ij . Any finite subset A ⊂ Zn

≥0 defines a monomial subscheme

SA :=
⋂

I∈AXI and a Newton region NA := Rn
≥0 \ convHull

(⋃
I∈A(R

n
>0 + I)

)
.

Aluffi [1, 2] showed that the Segre class of SA in the Chow ring of V is

n!X1 · · ·Xn adjNA
(−X)∏

v∈V (NA) ℓv(−X)
.

The Newton region may have vertices at infinity in the direction of the standard
basis vectors e1, . . . , en. For such a vertex vi in the direction of ei, the linear form
becomes ℓvi(t) := −ti.
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3.4. Scattering Amplitudes. Arkani-Hamed, Bai, and Lam [3] introduced pos-
itive geometries in their studies of scattering amplitudes in particle physics. We
consider a projective, complex, irreducible variety X of dimension n. Let X≥0

be a non-empty closed semi-algebraic subset of the real part of X such that its
Euclidean interior X>0 is an open oriented n-dimensional manifold whose closure
equals X≥0. We consider the Euclidean boundary ∂X≥0 := X≥0 \ X>0 and its
Zariski closure ∂X in X . We write C1, . . . , Ck for the irreducible components of
∂X , and denote by Ci,≥0 the Euclidean closure of the interior of Ci ∩X≥0.

The pair (X,X≥0) is a positive geometry if there is a unique non-zero rational n-
form Ω(X,X≥0), called its canonical form, satisfying: 1) if n = 0, then X = X≥0

is a point and Ω(X,X≥0) = ±1, and 2) if n > 0, every boundary component
(Ci, Ci,≥0) is a positive geometry whose canonical form is the residue of Ω(X,X≥0)
along Ci, and Ω(X,X≥0) is holomorphic on X \ (C1 ∪ . . . ∪ Ck).

One-dimensional positive geometries (X,X≥0) are finite disjoint unions of closed
segments on rational curves X such that each open segment in X>0 is smooth.
The canonical form of such a closed segment can be identified with the canonical
form of the interval [a, b] ⊂ P1, which is b−a

(t−a)(b−t)dt.

We show that planar positive geometries (X,X≥0), i.e., with X = P2, are
generalized rational planar polypols [4]. Moreover, we show that the canonical
form of a rational polypol P≥0 with boundary curves C1, . . . , Ck is

Ω(P2, P≥0) = η
αP

f1 · · · fk
dx ∧ dy

where αP and fi are defining equations of AP resp. Ci, and η is a normalizing
constant. The analogous formula for polytopes has been shown in unpublished
lecture notes by Gaetz.
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Apozyan’s counterexample to the GMd conjecture

Carl de Boor

The GMd conjecture [3] is a ready generalization of the GM conjecture [6]. It
concerns polynomial interpolation at the points of a finite set X ⊂ Rd, i.e., the
inversion of the restriction map

|X : Πn(R
d) → RX : p 7→ p|X := (p(x) : x ∈ X).

If it is invertible, X is called n-correct. In that case, the inverse is necessarily of
the form

(|X)−1 : RX → Πn(R
d) : v 7→

∑

x∈X

ℓxvx,

with the ℓx the Lagrange polynomials of the process, i.e., ℓx|X = (δx,y : y ∈ X).
An n-correctX is said [5] to satisfy the Geometric Characterization of degree

n, in notation

X ∈ GCn,

if for each x ∈ X there exist n hyperplanes in Rd whose union contains all of
X except x. Associating with each such hyperplane h some 0 6= ph ∈ Π1 that
vanishes on h, this says, in effect, that all ℓx have only linear factors. The GMd

conjecture is the claim that for any GCn set X in Rd, there exist d+1 maximal

hyperplanes, i.e., hyperplanes h whose intersection with X is an n-correct set
(for Πn(h)). The GM conjecture [6] is the more modest claim that every GCn

set X ⊂ R2 has at least one maximal straight line h. It reflects the hope that
interpolation on any GCn set could be done à la Newton, by inductive application
of the Berzolari [2], Radon [7] recipe which obtains from an (n − 1)-correct set
X ⊂ R2 the n-correct set X ′ := X ∪ L, with L an arbitrary (n + 1)-set on an
arbitrary straight line h that does not intersect X . The stronger GMd conjecture
was based on the fact [4] that the GM conjecture implies that every GCn set in
R2 has at least 3 maximal straight lines.

Note that, for an n-correct set in Rd and any k-dimensional flat F , #(X ∩ F )
cannot exceed dimΠn(F ) = dimΠn(R

k) since |X , being onto, must map Πn(F )
onto RX∩F , hence F is called maximal for X if #(X ∩F ) = dimΠn(F ), in which
case X ∩ F is n-correct for Πn(F ).

The statement of the GMd conjecture in [3] is followed immediately by a coun-
terexample in R3, of a GC2 set with only 3 maximal hyperplanes, obtained from
a standard GC2 set by moving one edge point. Apozyan’s counterexample in R6

is obtained by 7 such moves from cleverly chosen 7 edges in that standard GC2.
A standard GC2 set in Rd is obtained by picking d+1 hyperplanes h0, h1, . . . , hd

in general position. Get the GC1 set

A := {ai : i = 0:d} via ∩j 6=i hj =: {ai},
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(c)

Figure 1. (a) A 3-dimensional GC2 set with 4 maximal hyper-
planes changed into (b) one with only 3 maximal hyperplanes by
the move of one edge point, and (c) one obtained by another such
move which is still 2-correct but not anymore GC2.

hence hi is the affine hull or flat ♭{aj : j 6= i} containing all of A\{ai} but not ai,
and augment A with the set

B := {bij : j 6= i} with bij ∈ ♭{ai, aj}\{ai, aj}.
X := A∪B is readily seen to be GC2: For ai, hi is one of the hyperplanes, while

ki := ♭{bij : j 6= i}, being spanned by the remaining d points yet to be covered,
is at most a hyperplane, hence cannot contain ai since that would imply that it
contain all of A, contradicting that A is GC1. For any bij , X\{bij} ⊂ hi ∪ hj .

Each hi, i = 0:d, is a maximal hyperplane for X since #(X\hi) = d + 1 =
dimΠn(R

d)− dimΠn(hi), hence X satisfies the GMd conjecture. The counterex-
ample for d = 3 in [3] is obtained by choosing a triple Ai = {ai, aj , ak} and
replacing bjk by some b′

jk in ♭{bij ,bik}\{bij ,bik}, thus depriving hi of its maxi-
mality while all other hj are still maximal.

The resulting X ′ is still GC2 as one sees by verifying that |X′ is still invertible,
and then noticing that all points in X ′ but ai are off a maximal hyperplane, hence
its Lagrange polynomial must have that hyperplane as a linear factor, leaving
another linear factor, while for ai, all that happened was that a point on hi moved
into ki, hence its Lagrange polynomial is unchanged.

In contrast to what the author claimed in his talk, it is not possible in the case
d = 3 to carry out a second such move, e.g., for the triple Ak = {ak, ai, ao} (see
Figure (c)). While the resulting X ′′ is still 2-correct, it fails to be GC2 since such
a move removes, for the edge point bik from the pair {ai, ak} common to Ai and
Ak, some point of X formerly in hi ∪ hk, making it impossible for bik’s Lagrange
polynomial to have linear factors. This belated realization, caused by a question
from Jesús Carnicer during a second talk in which the author attempted to give a
counterexample already in R4, terminated that attempt.

Probably because of such an example, Apozyan [1] obtained his counterexample
for d = 6 by choosing, for each i = 0:d, a 3-set Ai = {ai, aj , ak} in such a way
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that no two have more than one point in common. Such a choice is not possible
for d = 3. However, for 3 < d ≤ 6, a (d + 1) set can have 2(d − 3) such 3-
sets, hence Apozyan’s proof also proves that such Rd contains GC2 sets with just
d+ 1− 2(d− 3) = 6− d maximal hyperplanes.

Here is Apozyan’s choice for d = 6:

x x x . . . .
. x . x . x .
. . x . x x .
x . . x x . .
. x . . x . x
x . . . . x x
. . x x . . x

Apozyan obtains his counterexample X ′ from X by replacing, for each Ai =
{ai, aj , ak}, the edge point bjk in the manner already described, thus depriving
each hi of its maximality while not increasing the points in any other hj .

The resulting X ′ is still a GC2 set: For each ai, hi and ki still work. For each
moved b′

jk and for each unmoved bjk whose {aj , ak} lies in no Ai, hj and hk still
work since hj ∪ hk contains all other points of X ′.

That leaves those bij with {ai, aj} in Ai or Aj , say in Ai wlog. Then bij is
off hj , hence can use hj for one hyperplane but still has to take care of bjr for all
r 6= i, k, and of b′

jk and aj , a total of d points hence certainly contained in some
hyperplane k′j . But such k′j therefore also contains ar for all r 6= i, k, and that
prevents it from containing bij since then it would have to contain A, contradicting
that A is a GC1 set.

Finally, if perchance the seven moves have generated another maximal hy-
perplane H then #(X\H) = d + 1 while, with µ := #(A ∩ H), #(X\H) ≥
(d + 1 − µ)(1 + µ) > d + 1 for 0 < µ < d, leaving only the possibilities µ = 0, d.
µ = d corresponds to one of the hi while µ = 0 implies that X ′ ∩H = B′, and its
maximality is easily destroyed by moving some bjk off H along ♭{aj , ak} without
destroying the GC2 property.
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Berzolari, Radon, H-bases, syzygies and maximal lines

Tomas Sauer

(joint work with Jesus Carnicer, Carmen Godés)

While polynomial interpolation in one variable is essentially a matter of count-
ing, geometry matters in several variables. In general, the Lagrange interpolation

problem

(1) f(x) = yx, x ∈ X ⊂ Rs,

is not n-correct, i.e., cannot be solved by f ∈ Πn, the space of all polynomials of
total degree ≤ n, even if #X = degn. Elementary linear algebra shows that (1)
is n-correct if and only if #X = dimΠn and there exist fundamental polynomials

or Lagrange polynomials ℓx ∈ Πn, x ∈ X , such that

ℓx(x
′) = δx,x′ , x, x′ ∈ X.

While the set of n-correct is open and dense among all sets of proper cardinal-
ity, i.e., interpolation fails only in very rare occasions, explicit constructions for
n-correct sets are rare. A particular case of such a construction, attributed to
Berzolari [1] and Radon [8] in the bivariate case, works as follows: using an n-
correct set Y of points and a line T such that Y ∩T = ∅, one picks n+2 points on
the line that extend Y to an (n+ 1)-correct set; the idea can easily be generated
to an arbitrary number of variables replacing “line” by “hyperplane”.

A different approach was presented by Chung and Yao [4] who introduced the
concept of the geometric characterization: for each point x ∈ X there exist n
hyperplanes Hx,1, . . . , Hx,n such that x is contained in none of them, but any
other point in X \ {x} lies on at least one of them. It is not hard to see that this
condition in equivalent to having fundamental polynomials that can be factorized
into linear polynomials. Gasca and Maeztu [6] conjectured that any set X in R2

that satisfies the geometric characterization is indeed generated by a Berzolari-
Radon construction. Moreover, this is equivalent to the existence of a maximal

line, i.e., a line that contains n+1 points of X . So far the conjecture is proven up
to n = 5, see [7].

The problem can be transformed by means of algebraic geometry. To that
end, one considers H-bases of the ideal I(X) = {f ∈ Π : f(X) = 0}, which is
generated by n+2 polynomials of degree n+1 that can be arranged into a vector
h = (h0, . . . , hn+1) ∈ Πn+2

n+1. These polynomials induce a linear syzygy matrix

Σ ∈ Π
(n+1)×(n+2)
1 which satisfied Σh = 0 and whose minors of size (n+1)×(n+1)

yield the H-basis up to a nonzero constant. The syzygy matrices for two different
H-bases are related by

Σ′ = AΣB, A ∈ R(n+1)×(n+1), B ∈ R(n+2)×(n+2),
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where A and B are nonsingular. The following result, originally from [5] was
proved in the above context in [2].

Theorem. An n-correct set X contains a maximal line if and only if there exists

an H-basis for I(X) with associated syzygy matrix Σ such that one column of

Σ contains only one nonzero element. Moreover, the variety associated to this

nonzero affine polynomial is the maximal line.

The talk describes the background of this story and some further implications
and reformulations from [3].
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Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials

Evelyne Hubert, Michael Singer

The goal of sparse interpolation is the exact recovery of a function as a short linear
combination of elements in a specific set of functions, usually of infinite cardinality,
from a limited number of evaluations, or other functional values. The function to
recover is sometimes refered to as a blackbox : it can be evaluated, but its expression
is unknown. We consider the case of a multivariate function f(x1, . . . , xn) that is
a sum of generalized Chebyshev polynomials and present an algorithm to retrieve
the summands. We assume we know the number of summands, or an upper bound
for this number, and the values of the function at a finite set of well chosen points.

Beside their strong impact in analysis, Chebyshev polynomials arise in the repre-
sentation theory of simple Lie algebras. In particular, the Chebyshev polynomials
of the first kind may be identified with orbit sums of weights of the Lie algebra sl2
and the Chebyshev polynomials of the second kind may be identified with charac-
ters of this Lie algebra. Both types of polynomials are invariant under the action
of the symmetric group {1,−1}, the associated Weyl group, on the exponents of
the monomials. In presentations of the theory of Lie algebras [5, Ch.5,§3], this
identification is often discussed in the context of the associated root systems, and
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we will take this approach. In particular, we define the generalized Chebyshev poly-

nomials associated to a root system, as similarly done in [11, 16, 18, 21, 22, 27].
Several authors have already exploited the connection between Chebyshev polyno-
mials and the theory of Lie algebras or root systems [7, 23] and successfully used
this in the context of quadrature problems [15, 17, 19, 22] or differential equations
[27].

A forebear of our algorithm is Prony’s method to retrieve a univariate function
as a linear combination of exponential functions from its values at equally spaced
points [26]. The method was further developed in a numerical context [24]. In
exact computation, mostly over finite fields, some of the algorithms for the sparse
interpolation of multivariate polynomial functions in terms of monomials bear sim-
ilarities to Prony’s method and have connections with linear codes [3, 1]. General
frameworks for sparse interpolation were proposed in terms of sums of characters
of Abelian groups and sums of eigenfunctions of linear operators [8, 10]. The al-
gorithm in [13] for the recovery of a linear combination of univariate Chebyshev
polynomials does not fit in these frameworks though. Yet, as observed in [2], a
simple change of variables turns Chebyshev polynomials into Laurent polynomials
with a simple symmetry in the exponents. This symmetry is most naturally ex-
plained in the context of root systems and Weyl groups and leads to a multivariate
generalization.

Previous algorithms [2, 9, 13, 25] for sparse interpolation in terms of Chebyshev
polynomials of one variable depend heavily on the relations for the products, an
identification property, and the commutation of composition. We show in this pa-
per how analogous results hold for generalized Chebyshev polynomials of several
variables and stem from the underlying root system. As already known, expressing
the multiplication of generalized Chebyshev polynomials in terms of other general-
ized Chebyshev polynomials is presided over by the Weyl group. As a first original
result we show how to select n points in Qn so that each n-variable generalized
Chebyshev polynomial is determined by its values at these n points. A second
original observation permits to generalize the commutation property in that we
identify points where commutation is available.

To provide a full algorithm, we revisit sparse interpolation in an intrinsically
multivariate approach that allows one to preserve and exploit symmetry. For
the interpolation of sparse sums of Laurent monomials the algorithm presented
has strong ties with a multivariate Prony method [12, 20, 28]. It associates to
each sum of r monomials f(x) =

∑
α aαx

α, where xα = xα1

1 . . . xαn
n and aα in

a field K, a linear form Ω : K[x, x−1] → K given by Ω(p) =
∑

α aαp(ζα) where
ζα = (ξα1 , . . . , ξαn) for suitable ξ. This linear form allows us to define a Hankel
operator from K[x, x−1] to its dual whose kernel is an ideal I having precisely
the ζα as its zeroes. The ζα can be recovered as eigenvalues of multiplication
maps on K[x, x−1]/I. The matrices of these multiplication maps can actually be
calculated directly in terms of the matrices of a Hankel operator, without explicitly
calculating I. One can then find the ζα and the aα using only linear algebra and
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evaluation of the original polynomial f(x) at well-chosen points. The calculation
of the (α1, . . . , αn) is then reduced to the calculation of logarithms.

The usual Hankel or mixed Hankel-Toepliz matrices that appeared in the litera-
ture on sparse interpolation [3, 13] are actually the matrices of the Hankel operator
mentioned above in the different univariate polynomial bases considered. The re-
covery of the support of a linear form with this type of technique also appears
in optimization, tensor decomposition and cubature [4, 6, 14]. We present new
developments to take advantage of the invariance or semi-invariance of the linear
form. This allows us to reduce the size of the matrices involved by a factor equal
to the order of the Weyl group.

For sparse interpolation in terms of Chebyshev polynomials, one again recasts
this problem in terms of a linear form on a Laurent polynomial ring. We define an
action of the Weyl group on this ring and note that the linear form is invariant or
semi-invariant according to whether we consider generalized Chebyshev polynomi-
als of the first or second kind. Evaluations, at specific points, of the function to
interpolate provide the knowledge of the linear form on a linear basis of the invari-
ant subring or semi-invariant module. In the case of interpolation of sparse sums of
Laurent monomials the seemingly trivial yet important fact that (ξβ)α = (ξα)β is
crucial to the algorithm. In the multivariate Chebyshev case we identify a family of
evaluation points that provides a similar commutation property in the Chebyshev
polynomials.

Since the linear form is invariant, or semi-invariant, the support consists of
points grouped into orbits of the action of the Weyl group. Using tools developed
in analogy to the Hankel formulation above, we show how to recover the values of
the fundamental invariants on each of these orbits and, from these, the values of
the Chebyshev polynomials that appear in the sparse sum. Furthermore, we show
how to recover each Chebyshev polynomial from its values at n carefully selected
points.

The relative cost of our algorithms depends on the linear algebra operations used
in recovering the support of the linear form and the number of evaluations needed.
Recovering the support of a linear form on the Laurent polynomial ring is solved
with linear algebra after introducing the appropriate Hankel operators. Symmetry
reduces the size of matrices, as expected, by a factor equal to the order of the
group. Concerning evaluations of the function to recover, we need evaluations
to determine certain submatrices of maximum rank used in the linear algebra
component of the algorithms. To bound the number of evaluations needed, we
rely on the interpolation property of sets of polynomials indexed by the hyperbolic
cross, a result generalizing the case of monomials in [28]. We show that our
method uses fewer evaluations than when one expands the Chebyshev polynomials
into Laurent polynomials and determines the total support of a r-sparse sum
of Chebyshev polynomials now considered as a sum of r times the order of the
group Laurent monomials. One stricking result is that for multivariate Chebyshev
polynomials associated with A2 the number of evaluations needed to recover the
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support of a sum of r such polynomials is the same as the number of evaluations
to recover the support of a sum of r Laurent monomials.

The related article will appear in the journal Foundations of Computational

Mathematics.

References

[1] A. Arnold. Sparse Polynomial Interpolation and Testing. PhD thesis, University of Waterloo,
3 2016.

[2] A. Arnold and E. Kaltofen. Error-correcting sparse interpolation in the Chebyshev basis.
In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic

Computation, ISSAC ’15, pages 21–28, New York, NY, USA, 2015. ACM.
[3] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial in-

terpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, STOC ’88, pages 301–309, New York, NY, USA, 1988. ACM.

[4] A. Bernardi and D. Taufer. Waring, tangential and cactus decompositions. J. Math. Pures
Appl. (9), 143:1–30, 2020.
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Analysis of the geometry of edges with the Taylorlet transform

Thomas Fink

In this talk, we consider an extension of the continuous shearlet transform which
additionally uses higher order shears. This extension, called the Taylorlet trans-
form, allows for a detection of the position, the orientation, the curvature, and
other higher order geometric information of singularities. Employing the novel
vanishing moment conditions of higher order,

∫
R
g(±tk)tmdt = 0 for k,m ∈ N,

k ≥ 1, on the analyzing function g ∈ S(R), we can show that the Taylorlet trans-
form exhibits different decay rates for decreasing scales depending on the choice
of the higher order shearing variables. This enables a faster detection of the geo-
metric information of singularities in terms of the decay rate with respect to the
dilation parameter. Subsequently, we consider an extension of the 3D continuous
shearlet transform which uses a different scaling matrix and second order shears.
This extension, called the 3D Taylorlet transform, allows for a detection of the
curvature tensor of a smooth singular surface in addition to its orientation and
position. To this end, the 3D Taylorlet is equipped with special vanishing moment
and non-vanishing moment properties. They provide the means to distinguish
between hyperbolic and non-hyperbolic points in the singular surface of the an-
alyzed function (after application of dilation, translation, first and second order
shears), thereby enabling the 3D Taylorlet transform to resolve the curvature ten-
sor through its decay at fine scales.

A plethora of different methods exists for the task of edge detection. Multi-
scale approaches play a special role as they offer a good noise robustness and are
motivated from a continuous setting where the term of an edge finds a more general
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mathematical analogue in the singular support. The detection of this feature, i.e.
the distinction between regular and singular points by the decay rate of continuous
multi-scale methods such as the continuous wavelet transform has been thoroughly
discussed in the literature, e.g. for the continuous wavelet transform in [1]. In
addition to the identification of singularities, the continuous curvelet and shearlet
transform as well offer a detection of directional information, i.e. a resolution of
the wavefront set [2, 3]. When the continuous shearlet transform is additionally
endowed with second order shears

Ss : R
2 → R2,

(
x1

x2

)
7→
(
x1 + s1x1 + s2x

2
2

x2

)
,

the resulting bendlet transform is capable of extracting the curvature of an edge
[4].

In this talk, we discuss the Taylorlet transform [6], which utilizes higher order
shears like the bendlet transform, and allows for an extraction of the position,
orientation, curvature and higher order geometric information of edges. It extends
the bendlet transform by conditions that ensure a high decay rate for a more robust
detection of the desired features. The approach is based on a modeling of a singular
support as graph of a singularity function q ∈ C∞(R), i.e. sing supp(f) = {x ∈
R2 : x1 = q(x2)}. The geometrical data accessible by the Taylorlet transform
consists of the Taylor coefficients of q. In this perspective, the 2D continuous
wavelet and shearlet transform essentially identify the 0th rsp. the 0th and 1st

Taylor coefficients of the singularity function.
For these detection properties, vanishing moment conditions for the respec-

tive analyzing function are essential. They are responsible for the ability of the
continuous wavelet transform to detect singularities of high regularity [1, Thm
3] and ensure the decay rate of the continuous shearlet transform for decreasing
scales [5, Thm 3.1]. It can be shown that analogously an analyzing Taylorlet
τ(x) = g(x1) · h(x2) satisfying vanishing moment conditions of the type

∫

R

g(xk
1)x

m
1 dx1 = 0 ∈ R for all k ∈ {1, . . . , n},

are of similar importance for the extraction of higher order geometric information.
Moreover, we present an extension of the Taylorlet transform and its detection

results in 3D. As was shown in [7], the continuous 3D shearlet transform is capable
of resolving the wavefront set of the characteristic function of an open set with a
piecewise smooth boundary, thereby enabling the extraction of directional infor-
mation of the analyzed function. When proving a similar result for the detection of
also the curvature of the boundary using the 3D Taylorlet transform, a distinction
between hyperbolic and non-hyperbolic points of the boundary becomes necessary.
In this regard, certain vanishing and non-vanishing moment properties force a dif-
ferent decay rate of the 3D Taylorlet transform in the case of hyperbolic points
and non-hyperbolic points for small scales. These case distinctions finally allow us
to devise a 3-step detection algorithm for the curvature tensor of the boundary.
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GC sets with few maximal lines

Jesús Carnicer

(joint work with Carmen Godés)

The Lagrange interpolation problem by polynomials in the space Pn(R
2) of bivari-

ate polynomials of total degree not greater than n on a planar set X ⊂ R2 consists
of finding a polynomial p ∈ Pn(R

2) for a given f ∈ RX such that

p(x) = f(x), x ∈ X.

If, for a set X , the interpolation polynomial exists and it is unique, we say that
the set X is Pn-correct.

The Lagrange polynomials of a Pn-correct set are the polynomials ℓx,X ∈ Pn(R
2)

can be defined by

ℓx,X(x) = 1, ℓx,X(y) = 0, ∀y ∈ X \ {x}.
Using the Lagrange polynomials, we can express the solution of the interpolation
problem by the Lagrange formula

p(t) =
∑

x∈X

f(x)ℓx,X(t), t ∈ R2.

If a set X is Pn-correct, no line of the plane L contains more than n + 1 nodes,
#(L∩X) ≤ n+1. A line with exactly n+1 nodes is called a maximal line (see [1]).
Chung and Yao in 1977 [10], obtained a geometric characterization of sets of nodes
such that the Lagrange polynomials are products of first degree polynomials.

Definition 1 (GCn set). A set X ⊂ R2, #X = (n + 2)(n + 1)/2 satisfies the
geometric characterization of degree n, (X is a GCn set for short), if for each
x ∈ X there exist a set of n lines Γx,X such that

x /∈
⋃

L∈Γx,X

L, X \ {x} ⊆
⋃

L∈Γx,X

L.
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If X is a GCn set, then it is Pn-correct. Gasca and Maeztu [11] stated the
following conjecture.

Conjecture 1 (Gasca-Maeztu conjecture). Each planar GCn set has a maximal

line.

Different authors have contributed to the conjecture showing that it holds for
all GCn sets up to degree n ≤ 5 (see [2, 4, 12]).

Theorem 1. If X is a GCn set with n ≤ 5, there exists a maximal line.

A hope for solving the conjecture consists of understanding the structure of
all known GC sets. Some GC sets have some particular structure, leading to
interesting algebraic relations in the corresponding syzygy matrices.

Definition 2. A Pn-correct set X ⊂ R2 with n ≥ 1 has defect d if the number of
maximal lines is n+ 2− d.

The defect of a GCn set is an integer between 0 and n+ 2. In [3] it was shown
that the Gasca-Maeztu conjecture implies that each GCn sets contains at least 3
maximal lines.

Theorem 2. Assume that the Gasca-Maeztu conjecture holds for all GC sets up

to degree ν, that is, each GCk set with k ≤ ν has at least a maximal line. If X is

a GCn set with n ≤ ν, there exists at least three maximal lines.

So, if the Gasca-Maeztu conjecture holds, the defect of anyGCn set is an integer
between 0 and n−1. The GCn sets with defect n−1 have a very special structure

Definition 3. A set X ⊂ R2 is a generalized principal lattice of degree n if there
exist 3 families of lines each containing n+ 1 lines

(Lr
i (X))i∈{0,1,...,n}, r = 0, 1, 2,

such that the 3n+ 3 lines are distinct,

L0
i (X) ∩ L1

j(X) ∩ L2
k(X) ∩X 6= ∅ ⇔ i+ j + k = n

and

X = {xijk | xijk := L0
i (X) ∩ L1

j(X) ∩ L2
k(X), 0 ≤ i, j, k ≤ n, i+ j + k = n}.

If the Gasca-Maeztu conjecture holds, it can be shown that each GCn set with
defect n− 1 is a generalized principal lattice [5].

Theorem 3. Let X ⊂ R2 be a generalized principal lattice of degree n ≥ 1. Then

X is a GCn set with defect n− 1 whose maximal lines are L0
0(X), L1

0(X), L2
0(X).

If the Gasca-Maeztu conjecture holds for all degrees up to ν and 1 ≤ n ≤ ν + 3,
then X is a generalized principal lattice of degree n if and only if it is a GCn set

with defect n− 1.

In the talk, we review the characterizations ofGCn sets according to their defect,
assuming that the Gasca-Maeztu conjecture holds [5, 6, 7, 8]. A description of the
GCn sets with defect 0, 1, 2 and 3 is discussed. We sketch part of the proof of the
following result in [9]
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Theorem 4. If X is a GCn set with n ≥ 6, then the defect of X cannot be 4.

As a consequence, if the Gasca-Maeztu conjecture holds, only GCn sets with
defect 0, 1, 2, 3 and n− 1 may exist.
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On n-independent, n-correct, and GCn sets

Hakop Hakopian

This talk considers some of the recent results on n-independent, n-correct, and
GCn sets, concerning the Gasca-Maeztu conjecture.

Along with the maximal line we consider also line passing through exactly n-
nodes, as well as the subset of the nodes in an n-correct set that use a given
line. Next, the space of curves of given degree passing through the points of an
n-independent set of certain cardinality is studied and a characterization for an
extremal case is provided.

Denote the space of all bivariate polynomials of total degree not exceeding n
by Πn. We have that

N := Nn := dimΠn = (1/2)(n+ 1)(n+ 2).
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Consider a planar set X of s distinct nodes. The problem of finding a polynomial
p ∈ Πn, which satisfies the conditions p(A) = cA ∀A ∈ X , is called interpolation

problem.

A set X is called n-correct if the interpolation problem is unisolvent for arbitrary
data {cA : A ∈ X}. For n-correct sets we have that |X | = N.

A fundamental polynomial for a node A ∈ X is, by definition, a polynomial p
which vanishes on the set X but A and p(A) = 1.

A set X is called n-independent if each node has a fundamental polynomial
from Πn. Otherwise, it is called n-dependent.

A set of nodes Xs is called essentially n-dependent, if no node has an n-
fundamental polynomial.

For n-independent sets we have that |X | ≤ N.
In view of the Lagrange formula one gets readily that a set X is n-independent

if and only if the interpolation problem is solvable in Πn for arbitrary data.
On the other hand each n-independent set X with |X | < N can be enlarged to

an n-correct set [5]. Thus n-independent sets can be characterized also as subsets
of n-correct sets.

We call a line k-node if it passes through exactly k nodes of X .
At most n+ 1 nodes can be collinear in any n-independent set and an (n+ 1)-

node line is called a maximal line (C. de Boor, 2007).
We say that a node A in an n-correct set X uses a line ℓ if ℓ divides the

fundamental polynomial of A. Denote the subset of nodes of X that use the line ℓ
by X ℓ.

An n-correct set X is called a GCn set if the fundamental polynomial of each
node is a product of n linear factors [3]. Thus in a GCn set each node uses exactly
n lines.

The Gasca-Maeztu (or briefly GM) conjecture (1982) states that every GCn set
has a maximal line [4]. Until now the conjecture has been proved only for the
cases n ≤ 5 ([4], [1], [6]).

A plane algebraic curve is the zero set of some bivariate polynomial of degree
≥ 1. To simplify notation, we shall use the same letter, say p, to denote the
polynomial p and the curve given by the equation p(x, y) = 0.

Set d(n, k) := Nn −Nn−k = (1/2)k(2n+ 3− k).
Let q be an algebraic curve of degree k ≤ n with no multiple components and

X be an n-correct set. Then q contains not more than d(n, k) nodes of X . A curve
of degree k ≤ n passing through exactly d(n, k) points of an n-correct set X is
called a maximal curve [13].

It is worth mentioning that any n-independent node set in the curve q of car-
dinality less than d(n, k) can be enlarged to a maximal n-independent set of car-
dinality d(n, k) [9].

Results. Let us start with two results on GCn sets.

Theorem 1 ([11]). Assume that GM conjecture holds. Let X be a GCn set, and
ℓ be a k-node line, k ≥ 2. Then, we have that X ℓ = ∅, or

X ℓ is an GCs−2 subset of X , hence |X ℓ| =
(
s
2

)
, where s ≤ k.
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Moreover, if λ is a maximal line then |λ ∩ X ℓ| = 0 or |λ ∩ X ℓ| = s− 1.

Let us mention that J.M. Carnicer and M. Gasca proved earlier that a k-node
line ℓ can be used by at most

(
k
2

)
nodes and, in addition, there are no k collinear

nodes that use ℓ [2].

Theorem 2 ([10]). Assume that GM conjecture holds. Let X be a GCn set with
n ≥ 4. Then there are at most three n-node lines. Moreover, any two n-node lines
intersect at a node of X .

Then let us bring two recent results on n-independent sets.

Theorem 3. Assume that X is an n-independent set of d(n, k− s)+ s nodes with
s + 1 ≤ k ≤ n − 1, where s = 1, 2, 3. Then at most Ns − s linearly independent
curves of degree ≤ k may pass through all the nodes of X . Moreover, there are
such Ns − s curves for the set X if and only if all the nodes of X but s lie in a
(maximal) curve of degree k − s.

The cases s = 1, 2, 3, are proved in [9], [7], [8], respectively.

Theorem 4. Assume that X is an n-independent set of d(n, k − s) + s+ 1 nodes
with s+1 ≤ k ≤ n−s, where s = 2, 3. Then at mostNs−s−1 linearly independent
curves of degree ≤ k may pass through all the nodes of X . Moreover, there are
such Ns − s− 1 curves for the set X if and only if either all the nodes of X lie in a
curve of degree k − s+ 1 or all the nodes of X but s+ 1 lie in a (maximal) curve
of degree k − s.

The case s = 2 is proved in [8].
Next let us bring a result on n-correct sets.

Corollary. Let X be an n-correct set of nodes and ℓ be an (s+2)-node line, where
s = 1, 2, 3. Then ℓ can be used at most by Ns nodes from X . Moreover, if ℓ is used
by at least Ns−1 + 1 nodes from X then it is used by exactly Ns nodes from X .
Furthermore, if it is used by Ns nodes, then these nodes form an s-correct set.

The cases s = 1, 2, 3 are proved in [9], [7], [8], respectively.
The results presented above are useful tools in the study of the Gasca-Maeztu

hypothesis for n = 6.
One may conjecture that Theorems 3, 4, and Corollary hold also for the values
s ≥ 4. Finally, we present the following

Theorem 5 ([12]). A set X with #X = mn, m ≤ n, is the set of intersection
points of two algebraic curves of degrees m and n respectively, if and only if the
following two conditions hold:

(i) The set X is essentially (m+ n− 3)-dependent;
(ii) The set X contains an (m− 1)-correct set.

It is worth mentioning that the necessity of the conditions (i) and (ii) follow
from the Cayley-Bacharach and Noether theorems, respectively.
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Higher order interpolation through the singular locus of a reflection

arrangement

Alexandra Seceleanu

We discuss higher order interpolation from an algebraic-geometric view point.

Higher order interpolation. Classically, the interpolation problem fixes a finite
set of points X = {p1, . . . , pn} together with desired values vi, one for each point,
and asks for the equation of a polynomian function F that satisfies F (pi) = vi. In
this talk the values to be interpolated will always be vi = 0 and an interpolating
function, that is, a polynomial F that satisfies F (pi) = 0 is the equation of a
hypersurface that contains X .

Higher order interpolation also fixes a finite set of points X = {p1, . . . , pn} and
requires a function F ∈ k[x0, . . . , xd] that vanishes to orderm at each of the points.
This is a polynomial function which satisfies

(1)
∂F

∂xi1 · · ·∂xiℓ

(pi) = 0 for all 0 ≤ ℓ ≤ m− 1, 1 ≤ i1 ≤ . . . ≤ iℓ ≤ d, 1 ≤ i ≤ n.
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To summarize, we now require F as well as all its derivatives of order up to m− 1
to vanish at X . If F is assumed homogeneous, for equation (1) to hold it suffices
that all derivatives of order m− 1 vanish.

Let Ipi
= {f ∈ k[x1, . . . , xd] : f(pi) = 0} be the defining ideal of pi. Then the

solutions to the classical interpolation problem form the ideal

IX = Ip1
∩ Ip2

∩ · · · ∩ Ipn

and the polynomials which vanish to order m at X form the ideal

I
(m)
X = Imp1

∩ Imp2
∩ · · · ∩ Impn

.

The latter is called a fat point ideal.

Example 1. Consider the points X = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. Then
IX = 〈y, z〉 ∩ 〈x, z〉 ∩ 〈x, y〉 = 〈xy, xz, yz〉
I
(3)
X = 〈y, z〉3 ∩ 〈x, z〉3 ∩ 〈x, y〉3 = 〈x2y2z, x2yz2, xy2z, x3y3, x3z3, y3z3〉.

Problems 2. Two fundamental open problems in higher order interpolation are:

(1) Given X , find the smallest degree of a polynomial in I
(m)
X .

(2) Given X, δ, find the dimension of the space of degree δ polynomials in

I
(m)
X .

If the points in X are general there are important conjectural answers to both
of the above problems. Nagata’s conjecture [7] predicts that the smallest degree of
a hypersurface vanishing to order m at n points in d-dimensional space is at least
m d
√
n. For general points in the plane the Segre-Harbourne-Gimigliano-Hirshowitz

(SHGH) conjecture predicts that the answer to the second problem is obtained by
counting the conditions (number of derivatives) imposed by the higher vanishing
at each point, with some geometrically determined exceptions.

The containment problem. Instead of asking enumerative questions regarding
the solutions to the higher order interpolation problem, one can ask the following
structural question:

Problem 3. How can polynomials vanishing to order m at X be expressed in
terms of products of polynomials vanishing at X? Equivalently, which pairs of

natural numbers r,m give rise to containments I
(m)
X ⊆ IrX?

Clearly, if f1, . . . , fm vanish at X then f1 · · · , fm vanishes to order m at X . In

other words there is an ideal containment ImX ⊆ I
(m)
X . But not all polynomials

vanishing at to order m at X are such products. In Example 1 we find that

x2y2z ∈ I
(3)
X \ I3X . However, it turns out that x2y2z ∈ I2X as x2y2z = (xy)2z. In

fact, in Example 1 there is a containment I
(3)
X ⊆ I2X ; all polynomials which vanish

to order 3 at X can be expressed in terms of products of two polynomials in IX .
Two prominent answers to the containment problem are:

Theorem 4 (Ein-Lazarsfeld-Smith [5], Hochster-Huneke [6]). If X ⊆ Pd then

I
(dn)
X ⊆ InX , ∀n ∈ N.
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Theorem 5 (Bocci-Harbourne [2]). If X is a generic set of points in P2 then

I
(2n−1)
X ⊆ InX , ∀n ∈ N.

In view of the difference between Theorems 4 and 5 it became important to

understand the sets of points X ⊆ Pd for which the containment I
(dn−1)
X ⊆ InX

does not hold for some n ∈ N. Such sets are termed containment-tight in [3]. The

first open case is d = 2, n = 3, i.e., sets of points in the plane for which I
(3)
X 6⊆ I2X .

Example 6 (Dumnicki-Szemberg-Tutaj-Gasińska [4]). Let X be the set of 12
points of intersection of the 9 lines pictured below (note that some of the lines are
depicted as curves) and let F = (x3 − y3)(y3 − z3)(z3 − x3) be the product of the

9 linear forms defining these lines. Then we have F ∈ I
(3)
X \ I2X .

The containment problem for singular loci of reflection arrangements.

Further examples of point configurations X in the plane which satisfy I
(3)
X 6⊆ I2X

are given in [1]: the Klein configuration consists of the 49 points of intersection
of 21 lines (21 of the points are quadruple intersections and 28 are triple) and
the Wiman configuration consists of the 201 points of intersection of 45 lines (36
points are quintuple, 45 quadruple, and 120 triple). The important feature of
these configurations as well as that of Example 6 above is that all singular points
of the respective line arrangements are at least triple intersections. This cannot
occur in the real plane (i.e. any real arrangement of lines that do not all meet at a
point has at least one point where only 2 lines meet) by the dual Sylvester-Gallai
theorem.

With hindsight, all the examples discussed here so far are seen to be reflection
arrangements. A reflection group is a finite group generated by reflections, that is,
linear transformations which fix a hyperplane pointwise. A reflection arrangement

is the collection of fixed hyperplanes for all reflections in a given reflection group.
Irreducible complex reflection groups have been classified by Shephard–Todd in
an infinite family denoted G(m, p, n) and 34 exceptional cases. Above we have
discussed the points of intersection of the reflection arrangements G(1, 1, 4) = S3

(the symmetric group on 3 elements) in Example 1, G(3, 3, 3) in Example 6, and the
exceptional groups G24, G27 which have the Klein and the Wiman configurations
as their respective singular points.

Finally, we are able to classify the complex reflection arrangements in terms of
their behavior with respect to the containment problem.

Theorem 7 (Drabkin-Seceleanu [3]). If I is an ideal defining the singular locus
of an irreducible reflection arrangement A in Pd then I(3) ⊆ I2 unless A is one of
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(1) G24 (Klein), G27 (Wiman) for d = 2
(2) G29(d = 3), G33(d = 4), G34(d = 5),
(3) G(m,m, d+ 1) with m ≥ 3, d ≥ 2.

Moreover I(2n−1) ⊆ In ∀n ≥ 3 for all examples with d = 2.

An key ingredient of the above result is the determination of syzygies for the
respective ideals. In particular, the containment I(3) ⊆ I2 corresponds to the cases
when I has a linear (degree one) syzygy, whereas the non containment corresponds
to the absence of linear syzygies.
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On Polynomial Interpolation on Arbitrary Varieties

Boris Shekhtman

This talk is based on joint work with Tom Mckinley and Brian Tuesink [2].
The interpolation problem had mostly been studied as interpolation on points.

The singular exception is the study of interpolation on “flats” done by Carl de
Boor, Nira Dyn and Amos Ron in [1].

Here is the general question addressed:

Problem 1. Let V1, . . . ,Vn be subvarieties of Cd and let p1, . . . , pn be polynomials
in C[x] := C [x1, . . . , xd] that I will refer to as “data”. When does there exist a
polynomial f ∈ C [x1, . . . , xd] such that the restriction f onto Vj coincides with pj
on Vj?

To the best of my knowledge this is the first effort to study interpolation on
general varieties, at least in the field of approximation theory. The best news is
that the proofs are extremely simple and rely on nothing more than The Hilbert
Nullstellensatz.

Of course the answers depend on varies and the data. Here is a simple example:

Theorem 2. Given a collection of pairwise non-intersecting varieties V1, . . . ,Vn

in Cd and arbitrary polynomials p1, . . . , pn in C[x] there always exists a polynomial

f ∈ C[x] such that f | Vk = pk | Vk for all k = 1, . . . , n.
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This is the direct generalization of the classical case when the varieties are
points.

Of course if the varieties have a non-empty intersection the data has to coincide
on the intersections. From now on we will let V(J) to denote the variety associated
with an ideal J

V(J) :=
{
x ∈ kd : f(x) = 0 for all f ∈ J

}
,

and with every variety V ⊂ kd we associate a radical ideal

J(V) =
{
f ∈ k[x] : f(x) = 0 for all x ∈ kd

}
.

Lemma 3. Let V1 and V2 be two varieties in Cd. Then the following are equiva-
lent:

a) For every pair of polynomials p1, p2 ∈ C[x] such that

(1) p1 | (V1 ∩ V2) = p2 | (V1 ∩ V2)

there exists a polynomial f ∈ C[x] such that

(2) f | Vk = pk | Vk for k = 1, 2.

b) The ideal J (V1) + J (V2) is radical.

More generally

Theorem 4. Let V1, . . . ,Vn be a collection of varieties in Cd. The following are

equivalent:

a) For every collection of polynomials p1, . . . , pn ∈ C[x] such that

(3) pk | (Vk ∩ Vj) = pj | (Vk ∩ Vj) for all k, j = 1, . . . , n

there exists a polynomial f such that f | Vk = pk | Vk for k = 1, . . . n.

b) For every m < n the ideal J

(
m⋃
j=1

Vj

)
+ J (Vm) is radical.

In the general case we where able to obtain only a sufficient conditions (which
is also necessary for two varieties):

Theorem 5. Let Ji = J (Vi), i = 1, . . . , n be given ideal and p1, . . . , pn be the

polynomial data on the varieties Vi. Suppose that for any i, j

(pi − pj) ∈ Ji +
⋂

k 6=i

Jk.

Then the interpolation problem has a solution.
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A Conjecture on Bernstein Basis Polynomials

Larry L. Schumaker

I made the following conjecture in 2003. It has not yet been completely proved
mathematically. However, there has been some progress to report on.

Conjecture 1. Given d and a triangle T := 〈v1, v2, v3〉, let Γ be an arbitrary

subset of the set Dd,△ of domain points associated with the triangle. Then the

matrix

MΓ :=
[
Bd

η(ξ)
]
ξ,η∈Γ

is nonsingular, and so for any real numbers {zξ}ξ∈Γ, there is a unique p :=∑
η∈Γ cηB

d
η such that p(ξ) = zξ for all ξ ∈ Γ.

It has been shown see [2] that the conjecture holds for Γ:=Dd,△\{ξd00, ξ0d0, ξ00d},
and for Γ := Dd,△ \ {ξi,j,k} such that i ≥ m1, j ≥ m2, k ≥ m3} for some
m1,m2,m3 ≥ 0 with m := m1 +m2 +m3 < d.

It was also verified numerically for all d ≤ 16 in [1].
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Adjoints, a short introduction with a view to interpolation and

Calabi-Yau varieties

Kristian Ranestad

Let
F ∈ C[x0, x1, x2]d

be a homogeneous form of degree d, and assume that

C = Z(F ) ⊂ P2
C

throughout has only ordinary double points as singularities. Then C has at most(
d
2

)
double points, with equality if and only if C is the union of d lines with no

three through any point. If, furthermore, F is irreducible, then C has at most(
d−1
2

)
double points, and they impose independent conditions on forms of degree

d− 3.
Any curve D ⊂ P2

C
of degree d− 3 that passes through all the double points of

C is called an adjoint to C. We immediately deduce:

Proposition 1 (Πd−3-correct). If C is irreducible with the maximal number
(
d−1
2

)

of double points, then the set of double points is Πd−3-correct. In particular C
has no adjoint.

Remark 2. The general Πd−3-correct set of points (d > 5) is not the set of double
points of an irreducible curve of degree d. ♦
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Consider the example of plane sextics (d = 6). Let C = Z(F ) be an irreducible
sextic curve with 10 double points. Enumerate the double points, n1, ..., n10. Then
there is a unique cubic curve Ei = Z(Gi) through all the double points except ni,
moreover, any curve Cs = Z(F + sG2

i ) is a sextic with nine double points. The
curves Cs form a Halphen pencil, the nine double points form a Halphen set of

points. Nine points form a Halphen set, if there is a pencil of curves of degree
3n, n > 1 with multiplicity at least n at each of the double points. Halphen sets,
with a given n > 1, form a 17-dimensional set in the 18-dimensional set of all
9-tuples of points.

Let C = Z(F ) be an irreducible curve with exactly
(
d−1
2

)
− 1 double points.

Then there is a unique curve AC of degree d−3 through all the double points. Fur-
thermore, C and AC have no common points outside the nodes, since by Bezout,
the number of intersection points are accounted for at the double points:

C · AC = d(d− 3) = 2(

(
d− 1

2

)
− 1)

In this case C is an elliptic curve, a ”Calabi-Yau curve”.
More generally, consider a hypersurface X ⊂ Pn

C
of degree d with ordinary sin-

gularities of multiplicity k in codimension k−1. An adjoint to X is a hypersurface
Y of degree d − n − 1 that passes through all the singularities. A hypersurface
X is Calabi-Yau if it has a unique adjoint Y , and this adjoint intersects X only
along the singular locus of X . (It is customary to have a more restrictive definition
of Calabi-Yau varieties, but for our purposes this suffices.) The first examples of
Calabi-Yau varieties are nonsingular hypersurfaces X ⊂ Pn

C
of degree n+ 1.

Adjoints have played a key role in the classification of isomorphism classes of
nonsingular varieties (cf [1]): Let

X ⊂ PN
C , N ≥ n

be a nonsingular variety of dimension n− 1, and let

X → X̄ ⊂ Pn
C

be a general projection. A first classification of X is then given by the number of
adjoints to X̄: (no adjoints, a unique adjoint, many adjoints). This was historically
the initial approach to classification.

Calabi-Yau varieties have received interest from physicists, and are conjectured
to form a finite set of families when n = 4. So it is tempting to use the theory of
adjoints to find possible new families of Calabi-Yau varieties.

Consider a relaxation of the ”irreducibility condition” on the hypersurface X ,
in order to find ”reducible Calabi-Yau varieties”. Let X ⊂ Pn

C
be any hypersurface

of degree d with ordinary singularities of multiplicity k in codimension k − 1. Fix
an algebraic subset

R ⊂ sing(X)

We define an R-adjoint to X to be a hypersurface Y of degree d−n−1 that passes
through R (non-standard notation).
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A hypersurface X with a unique R-adjoint for an algebraic subset R ⊂ sing(X),
is potentially a Calabi-Yau variety if the remaining singularities

sing(X) \R
are smoothable. The adjoints of simple polytopes or polypols (cf. [2],[3]) are
“R-adjoints”.

Reducible plane curves with unique R-adjoints are central objects in the study
[3] of polypols after Wachspress. In [2] we find all simple polytopes in P3

C
with a

unique adjoint (”R-adjoint”), such that the polytope can be deformed, keeping the
singular locus R, to a surface that is nonsingular outside R . The desingularization
of the deformed surface is then a minimal K3-surface ( a Calabi-Yau surface), a
nonminimal K3-surface or a proper elliptic surface.
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Polynomial interpolation and cubature rules

Yuan Xu

Let w be a nonnegative regular weight function on a domain Ω ⊂ Rd. A cubature
rule of degree m for the integral

∫
Ω
f(x)w(x)dx is a finite linear combination of

function evaluations

C(f) :=

N∑

k=1

λkf(xk), xk ∈ Rd, λk ∈ R,

that approximates the integral. We say it is of degree m if
∫

Ω

f(x)w(x)dx = C(f), for all f ∈ Πd
m,

where Πd
m denotes the space of polynomials of degree at most m in d variables,

and the identity fails to hold for at least one polynomial of degree m+ 1. If C(f)
is of degree m, then its number of nodes must satisfy

N ≥ dimΠd
n−1 =

(
n+ d− 1

d

)
, m = 2n− 1 or m = 2n− 2.

We call a cubature rule Gaussian if N =
(
n+d−1

d

)
. If d = 1, then a Gauss quadra-

ture rule of degree 2n− 1 always exists and its nodes are zeros of the orthogonal
polynomial of degree n with respect to w; moreover, it is the integral of the poly-
nomial that interpolates f on its nodes. For d > 1, it is known if a Gauss cubature
rule of degree 2n−1 exists, then its nodes must be common zeros of all orthogonal



416 Oberwolfach Report 7/2022

polynomials of degree n with respect to w. For m = 2n− 2, the nodes need to be
common zeros of a basis of quasi-orthogonal polynomials of degree n. Whenever a
Gauss cubature rule exists, its set of nodes admits unique polynomial interpolation
of degree n− 1. See, for example, [1, Chapter 3].

Gauss cubature rules exist rarely and they do not exist, for example, if w and Ω
are symmetric with respect to the origin (called centrally symmetric). There are
two families of weight functions for which Gauss cubature rules of degree 2n − 1
exist; both are derived with the help of symmetric functions and on domains that
are bounded by curves. The existence of the Gauss cubature rules of degree 2n−2
can be characterized by the solution of a non-linear system of equations, writing
in terms of the coefficient matrices of the three-term relations of orthogonal poly-
nomials. Apart from the two families of weight functions, the product Chebyshev
weight function of the second kind

w(x1, x2) =
1√

1− x2
1

√
1− x2

2

, (x1, x2) ∈ [−1, 1]2

is an exceptional case, for which the Gauss cubature rules of degree 2n− 2 exist.
An open question of considerable interest is if such a rule exists for the product
Chebyshev weight function in three variables. At the moment, the existence is
known only for n = 2 and n = 3.

In the centrally symmetric setting, the number of nodes of a cubature rule of
degree 2n− 1 satisfies an improved lower bound (called Möller’s bound)

N ≥ dimΠ2
n−1 +

⌊n
2

⌋
.

The bound is attained if and only if the nodes of the cubature rule are common
zeros of ⌈n+1

2 ⌉ orthogonal polynomials of degree n. Moreover, the nodes of such

a cubature admit a unique interpolation in a subspace Πd
n ⊂ U , where U is the

set of polynomials that vanish on the nodes. Cubature rules that attain Möller’s
lower bound hold for two families of weight functions, wα,β,− 1

2
and wα,β, 1

2
,

wα,β,± 1
2
(x, y) = |x+ y|2α+1|x− y|2β+1(1− x2)±

1
2 (1− y2)±

1
2 , α, β > − 1

2

on [−1, 1]2, which include the product Chebyshev weight function of the first kind
and the second kind as special cases. See [2] for a survey on cubature rules on the
square.

The Moller’s lower bound is not sharp for the Chebyshev weight function on
the unit disk. Moreover, it is likely not sharp for most weight functions. We can
formulate the problem as that of minimal cubature rules. For a given integral or a
weight function, a cubature rule is called minimal if it has the smallest number of
nodes among all cubature rules of the same degree. Those cubature rules that are
Gaussian or attain Möller’s lower bound are minimal. The existence of minimal
cubature rule is a tautology. More generally, we are looking for cubature rules
with fewer nodes. For d = 3, we do not know any centrally symmetric weigh
function that admits a cubature rule with dimΠ3

n−1 +O(n2) nodes. The problem
of constructing cubature rules with fewer nodes is challenging. There are few
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available tools. To illustrate the difficulty, let us formulate the problem in the
language of idea and variety.

A polynomial P is called m-orthogonal if it satisfies
∫

Ω

P (x)Q(x)w(x)dx = 0, ∀Q such that degP + degQ ≤ m.

The existence of a cubature rule of degree 2n−1 for w is equivalent to the existence
of a polynomial ideal I generated by m-orthogonal polynomials so that the variety
V is real, zero-dimentional, and its cardinality |V | is equal to the codimension of
the idea; that is, codimI := dimΠd/I = |V |. The problem is thus in the realm of
algebraic geometry and, more restrictively, of real algebraic geometry.
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On the dimension of trivariate spline spaces

Nelly Villamizar

(joint work with Michael DiPasquale)

A Cr-spline is a piecewise polynomial function on a partition ∆ of some domain
in Rn which is continuously differentiable to order r, for some integer r ≥ 0. If
the polynomial pieces have degree at most d, then the set of splines on ∆ is a
vector space which we denote by Sr

d(∆). Splines play an important role in many
areas such as finite elements, computer-aided design, and data fitting [12]. In
these applications it is important to construct a basis for Sr

d(∆), and a basic task
is simply to compute the dimension of the space.

A formula for dimS1
d(∆), where ∆ is a planar triangulation, was first proposed

by Strang [17] and proved for d ≥ 2 by Billera for generic vertex positions [6].
Subsequently the problem of computing the dimension of planar splines on trian-
gulations has received considerable attention using a wide variety of techniques,
see for example [12, 15, 18] and the references therein. An important feature of
planar splines is that the formula which gives dimSr

d(∆) for d ≥ 3r+ 2 is a lower
bound for any degree d ≥ 0 [16]. The computation of dimSr

d(∆) for planar ∆
when r + 1 ≤ d ≤ 3r remains an open problem.

The literature on computing the dimension of splines on tetrahedral partitions
is much less conclusive. The dimension has been computed if r = 0 (see [4] or [7]),
and also if r = 1, d ≥ 8, and ∆ is generic [5]. For r > 1 bounds on dimSr

d(∆)
have been computed in [1, 13, 3, 14]. A major difficulty is that for computing
dimSr

d(∆) exactly for d ≫ 0, we must be able to compute the dimension of the
space of homogeneous splines Hr

d(∆γ) exactly in all degrees, where γ is a vertex
of ∆ and ∆γ is the star of γ (that is, ∆γ consists of all tetrahedra having γ as a
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vertex). The computation of such spline spaces has only been made for r ≤ 1; for
r = 1, the partition ∆ is required to be generic [5]. Vertex stars ∆γ are a natural
generalization of planar triangulations, and understanding splines on vertex stars
is a crucial step to analyzing trivariate splines.

In [2], Alfeld, Neamtu, and Schumaker derive formulas for dimHr
d(∆γ) for de-

gree d ≥ 3r + 2. A crucial difference from the planar case is that, for splines on
tetrahedral complexes, these dimension formulas are not necessarily a lower bound
on dimHr

d(∆γ). On one hand, it is straightforward to show that this is the case
for all d ≥ 0 if γ is a boundary vertex, but if the vertex is completely surrounded
by tetrahedra – we call these closed vertex stars, it is quite delicate to determine
the degrees d for which the formula proved in [2] is a lower bound on dimHr

d(∆).
In our main result in [11], we show that the formula in [2] gives a lower bound

on dimHr
d(∆γ) for a closed vertex star ∆γ with at least six boundary vertices

when d ≥ (3r + 2)/2 and the vertex coordinates of ∆γ are general enough. If ∆γ

has only four (respectively five) boundary vertices, then we show that the formula
in [2] is a lower bound when d > 2r (respectively, d > (5r+ 2)/3). Our proof uses
ideals of fat points in P2 [9], and the so-called Waldschmidt constant of the set
of points dual to the interior faces of the vertex star [8]. We furthermore observe
that arguments of Whiteley [18] and Alfeld, Schumaker, and Whiteley [5] imply
that the only splines of degree at most (3r + 1)/2 on a generic closed vertex star
are global polynomials. This has a satisfying completeness: the formulas of [2]
may not be a lower bound on dimHr

d(∆γ) for closed vertex stars in small degrees;
however for most vertex positions there will only be trivial splines in these small
degrees anyway!

In [10], we apply our results on vertex stars from [11] to establish a formula
LB(∆, d, r) which is a lower bound on the dimension of the spline space on most
tetrahedral partitions of interest (any triangulation of a compact three-manifold
with boundary) in large enough degree. We illustrate in several examples that for
generic ∆, our formula begins to be a lower bound in degrees close to the initial

degree of Sr(∆); by the initial degree of Sr(∆) we mean the smallest degree d in
which Sr

d(∆) admits a spline which is not globally polynomial. It is worth noting
that none of the lower bounds in the literature [13, 3, 14] give the exact dimension
of the generic spline space (even in large degree) on these examples if r ≥ 2.
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GBCs Part 2

Michael Floater

This talk was given as a response to the earlier talk of Scott Schaefer on generalized
barycentric coordinates.

In this talk I tried to provide more details of Wachspress’s rational elements [5],
or ‘coordinates’ with respect to convex polygons, and how the theory developed
through papers by Warren, Meyer, Schaefer, Ju, Desbrun, and others [4, 6], and
in particular how we now have an explicit formula for the adjoint, the denomi-
nator in these elements, which immediately shows that it is positive inside (and
on the boundary) of the polygon. Both Wachspress’ linear elements and higher
order elements can be used to solve PDEs over polygonal meshes, with the same
convergence rates as when using piecewsie polynomials of triangular meshes [3].

I also reviewed the derivation of mean value coordinates [1]. These coordinates
are no longer rational, and require computing square roots. However, they have
two advantages. One is that for a vertex x of a triangulation, the coordinates can
be used to express x as a convex combination of its neighbouring vertices, since
in this case the coordinates are still positive. This was a motivation for using
them to compute ‘harmonic-like’ mappings of surface triangular meshes into the
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plane, for example to construct parameterizations for surface fitting, or to make
texture maps in computer graphics. The other advantage is that the coordinates
extend in a simple way to points in arbitrary polygons, although they are not in
general positive. This property means that they can be applied to morphing and
deformation of images. The 3D version of the coordinates can be used to model
deformations of surfaces.

I also mentioned some other properties of certain kinds of GBCs with respect
to convex polygons, such as the monotonicity property [2].
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Harmonic splines

Tatyana Sorokina

The motivation for introducing and studying harmonic splines arises from the
following idea. Suppose we would like to use finite elements and Galerkin method
to solve the following boundary value problem numerically:

−∆u = 0, in Ω,

u = f, on ∂Ω,

where Ω is a bounded polytopal domain in Rn. Typically, the full polynomial space
Pd is used to build a finite element, i.e., the corresponding spline space includes
all piecewise polynomials of degree ≤ d. It seems natural to try to use piecewise
harmonic polynomials only to build the finite element space. This would drastically
reduce the number of unknowns in the Galerkin scheme, and lead to computational
savings if the harmonic element assumes the same order of approximation.

We first note, that harmonic splines can be at most continuous, i.e., a piecewise
harmonic polynomial of global smoothness r ≥ 1 is a polynomial. The proof for
the bivariate case provided in [1] easily generalizes to n variables. Thus, we can

only hope to construct C0 harmonic finite elements. Let Ω̃ be a simplicial partition
of Ω. The following spline space is called a space of harmonic splines of degree d

on Ω̃:

Hn
k (Ω̃) := {s ∈ C(Ω) : s|T =: pT ∈ Pd, and ∆pT = 0, for all T ∈ Ω̃}.



Mini-Workshop: Interpolation, Approximation, and Algebra 421

In [4], [5], [6], and [7], we construct several families of bivariate harmonic fi-
nite elements and prove that they have optimal order of convergence. Our work
shows that such constructions heavily depend on the geometry of the underlying
partition. Of particular interest are interpolating sets of harmonic polynomials.

Bernstein-Bézier techniques, see [2], can be adopted to working with splines in

Hn
k (Ω̃). We begin by writing pT ∈ Pd in the Bernstein-Bézier (BB) form relative

a simplex T in Ω̃ as follows:

(1) pT =
∑

i1+···+in+1=d

ci1...in+1
Bd

i1...in+1
=
∑

|I|=d

cIB
d
I .

We denote I := (i1, . . . , in+1), and |I| = ∑n+1
j=1 ij. The question is: what are the

conditions on the BB-coefficients cI that would guarantee that the Laplacian ∆pT
vanishes? It turns out we need to involve some geometry. Let xj

i is the j-th-
coordinate of vertex number i in Rn, 1 ≤ j ≤ n. We use square brackets for the
convex hull. Let T := [v1, . . . , vn+1] be a non-degenerate simplex in Rn with the
vertices vi := (x1

i , . . . , x
n
i ), and the associated matrix

M(T ) :=




x1
1 x1

2 . . . x1
n+1

x2
1 x2

2 . . . x2
n+1

. . . . . . . . . . . .
xn
1 x1

2 . . . xn
n+1

1 1 . . . 1




with the cofactors Mk
j (T ) of x

k
j , k = 1, . . . , n, j = 1, . . . , n+1, where the k-th row

and the j-th column are deleted, and the minor is multiplied by (−1)k+j . Let Fj

be the facet of T opposite vj . For each facet Fj we form the following vectors

(2) hj =
(
M1

j , . . . ,M
n
j

)
/ detM, for any 1 ≤ j ≤ n+ 1.

In [3], we show that each hj is orthogonal to Fj , its magnitude is the reciprocal of
the distance from vj to the hyperplane containing Fj , and if hj is attached to the
centroid of Fj it points inward T . For the Laplacian of pT in its BB-form (1), we
obtain

∆pT =

n∑

i=1

DiipT =
∑

|I|=d−2

△
c IB

d−2
I ,

where

△
c I = d(d− 1)

n+1∑

j=1

n+1∑

k=1

cI(j,k)hj · hk, |I| = d− 2,

with I(j, k) := (i1, . . . , ij−1, ij + 1, ij+1, . . . , ik−1, ik + 1, ik+1, . . . , in+1), and hj is
as in (2). Consequently, we obtain our next result.

Theorem 1. A continuous polynomial spline is piecewise harmonic if and only if

each polynomial piece satisfies the following conditions on its BB-coefficients:

n+1∑

j=1

n+1∑

k=1

cI(j,k)hj · hk = 0, for all |I| = d− 2.
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Figure 1. Two sets of MDS for H2
5 (T ); for the MDS on the right

the angle at v0 cannot be equal to π/k, for any k = 2, 3, 4, 5.

Theorem 1 provides a tool to identify minimal determining sets for Hn
d . We

next find a useful minimal determining set for harmonic polynomials, and by
doing so, provide a proof for the dimension of this space, see Figure 1 (left) for an
illustration.

Lemma 2. Given T = [v1, . . . , vn+1], the set of
(
d+n−1
n−1

)
+
(
d+n−2
n−1

)
domain points

{ξI,0}|I|=d ∪ {ξI,1}|I|=d−1,

is a minimal determining set for harmonic polynomials of degree ≤ d.

Our next result provides another MDS for bivariate harmonic polynomials, see
Figure 1 (right) for an illustration.

Theorem 3. All domain points on two edges of a triangle form an MDS for the

space of harmonic polynomials of degree ≤ d if and only if the angle between the

two edges is not equal to π/k for any k = 1, . . . , d.

As Theorem 3 suggests, special care is needed when choosing interpolating sets
on the boundary of T , see Example 1.

Example 1. Consider bivariate quadratic harmonic polynomials defined over the
standard triangle T with vertices (0, 0), (1, 0), (0, 1). The dimension of this space is
five. However, no five points located on the x and y axis form an interpolating set,
since the harmonic polynomial p(x, y) = xy does not vanish there. In particular,
the five domain points on the edges of T aligned with the axes do not form an
MDS for H2

2 (T ).
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Problems presented during problem sessions

Dimensions of Spline spaces. (Schenck)
Let ∆ be a simplicial subdivision (triangulation) of a simply connected bounded
domain in the plane R2. For positive integers r,m, define Sr

m(∆) to be the real
vector space of piecewise polynomial functions of degree m on ∆ that have r
continuous derivatives. That is, on each triangle in ∆ the function is a polynomial
of degree at most m. This is a spline space and its elements are called splines.

The open question is to determine the dimension of Sr
m(∆) in terms of the

combinatorics of ∆, the local geometry of ∆, and the global geometry of ∆. This
is open even in the case of S1

3(∆).
There is much to elaborate on in this problem, as it has a long history. A

connection to algebra is found in the smoothness condition for a given spline.
The boundary between two adjacent simplices is a line segment. Let ℓ be the
affine form defining that segment and f, g the polynomials in the spline on the two
simplices. The condition of r-smoothness is that ℓr+1 divides the difference f − g,
equivalently, f − g ∈ 〈ℓr+1〉, the ideal generated by ℓr+1.

Interpolation spaces. (Shekhtman)
Let K be a field of characteristic zero. A subspace V of K[x, y] interpolates func-
tions on a set X ⊂ K2 if the restriction map from V to KX is surjective. It is
known that no three-dimensional subspace of K[x, y] interpolates all subsets X
consisting of three points, but at least one of

K{1, x, x2} , K{1, x, y} ,K{1, y, y2} ,
works for any set of three points.

What is the corresponding minimal number of four-dimensional subspaces of
K[x, y] with the property that at least one of them will interpolate functions for
any set of four points?
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It is not hard to see that an upper bound is provided by the spans of monomials
corresponding to the five partitions of 4,

K{1, x, x2, x3} , K{1, x, x2, y} , K{1, x, y, xy} , K{1, x, y, y2} , K{1, y, y2, y3} .
Also, at least three are needed. The bet is that four is the correct number.

Mean-value coordinates. (Sottile, but inspired by Schafer’s talk)
Given a polygon with n sides in the plane, there are mean-value barycentric co-
ordinates βv, one for each vertex v of the polygon. These define a map from the
polygon to the affine plane in Rn where the sum of the coordinates is 1, or to
the projective space Pn−1. What are the homogeneous equations for the Zariski
closure of the image? These are the algebraic relations among the mean-value
coordinates.

To see that is makes sense, one should note that the mean-value coordinates are
algebraic functions, even though some definitions use transcendental expressions
such as tan θ

2 .
This is inspired by the Ph.D. work of Corey Irving who studied the same ques-

tions for Wachspress coordinates (see later).

Three dimensional Wachspress varieties. (Sottile, Schenck)
Given a polytope P in R3, its Wachspress coordinates define a rational map from
R3 to PP , the projective space whose basis is indexed by the vertices of P . The
Zariski closure of the image is a Wachspress variety, which is 3-dimensional.

Some questions: What are the equations of the Wachspress variety? Describe
the Wachspress variety. The degree is known. What about in higher dimensions?

Schenck, Smith, and Sottile looked at this a little in 2013, but did not come to
a conclusive result.

Moduli spaces of Wachspress varieties. (Sottile)
Consider Wachspress surfaces, given by polygons in the plane. All surfaces for
n-gons lie in Pn−1, and have the same Hilbert polynomial (this is a result of Irving
and Schenck). The Wachspress surfaces move (deform) as the polygon moves, and
there should be natural limiting varieties (schemes) as the polygons degenerate.
Describe a reasonable space of Wachspress surfaces of n−gons: what are the lim-
iting objects (flat limits) and can a reasonable and meaningful compactification
be found?

Irving and Sottile worked out some examples of limits a decade ago, but nothing
conclusive was found.

Adjoints of heptagons and beyond. (Kohn)
A general heptagon in the plane has 14 degrees of freedom. Its adjoint has degree
four and hence also 14 degrees of freedom. There is a rational map from the space
(P2)7/D7 of heptagons to quartics. Experimentally, it is dominant and has degree
864 = 25 · 33. What is this map?

There are other mutations possible. Given n points in P2, a choice of a cyclic
order on them gives a directed n-gon, and the reverse of that order is the same
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undirected n-gon. There are (n− 1)!/2 different n-gons for this choice of n points.
How are their adjoint curves related?

Aluffi’s adjoint of a toric variety. (Schenck)
Toric varieties have well-understood Weil divisors (which are torus orbits). It
would be good to understand Aluffi’s formula in this case, as presented in Kohn’s
talk.
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