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Abstract. Research at the interface between population dynamics and sta-
tistical physics has been developing rapidly, and represents a theme of growing
interest worldwide. Population dynamics addresses fundamental questions
about the cooperative behaviour controlling multi-type interacting popula-
tions subject to evolutionary forces in changing environments. Statistical
physics is concerned with the macroscopic behaviour of systems with many
interacting components, and with the role of emergent behaviour and phase
transitions. Fundamental ideas, methods and techniques have gradually made
their way from one field into the other, leading to new problems, new solu-
tions, and new mathematics. This crossroad has developed into a very active
research area. In the workshop the focus was on common mathematical con-
cepts and tools, and on the surprising new connections that have become
available recently.
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Introduction by the Organizers

Research at the interface between population dynamics and statistical physics rep-
resents a theme of growing interest worldwide. Over the years, a critical mass has
been reached in which joint research projects are beginning to have a deep impact
on both fields. Two earlier workshops on the same theme – at EURANDOM in
Eindhoven (August 2014) and at Centro di Ricerca Matematica Ennio De Giorgi
in Pisa (April 2019) – have marked this development. The DFG Priority Program
Probabilistic Structures in Evolution (SPP-1590) has brought together researchers
within Germany, who have connected to other researchers worldwide.



578 Oberwolfach Report 12/2022

Fundamental ideas, methods and techniques from statistical physics have grad-
ually made their way into population dynamics and vice versa, leading to new
problems that can only be tackled by combining new insights and new techniques.
There is great potential in bringing the two fields closer together, in a synthesis
of probability theory, functional analysis, combinatorics, biology and genetics.

Topics. The following topics were highlighted during the workshop:

(1) Emergent behaviour, space-time scaling, phase transitions, universality.
(2) Genealogies, random trees, trees within trees, coalescents, networks, Brow-

nian web.
(3) Selection, fitness, random environment, competition.
(4) Seed-banks, dormancy, switching.

Ad (1): Interacting particle systems is the area that describes large collections
of locally interacting stochastic components, with the aim to understand their
global behaviour. It embodies the mathematical foundation of equilibrium and
non-equilibrium statistical physics. Spatiality is key to understanding emergent
phenomena, including critical behaviour and phase transitions : drastic changes in
the macroscopic behaviour under infinitesimal changes of the microscopic interac-
tion parameters at threshold values. The holy grail of interacting particle systems
is to explain universality, the experimentally observed fact that microscopically
different physical systems fall into classes with similar macroscopic space-time
scaling behaviour.

Cooperative phenomena are crucial also in population genetics : they explain
the genetic composition of large populations subject to evolutionary forces such as
resampling, mutation, selection, migration and recombination. Also here univer-
sality is a key driving force: ‘What matters for a specific genetic trait to occur and
persist and what does not?’ A symbiosis of mathematical viewpoints has emerged
in the past years, allowing both fields to benefit from recently acquired insights.
Examples are the central role of duality and the effect of random environments.

Ad (2): The genealogy of a population captures the history of all the mutual rela-
tionships over space and time that have led to the present state of the population,
just like the history of all the interactions between the particles in a physical sys-
tem determines how it has evolved to its present state. The genealogy is described
with the help of coalescents : Markov processes where lineages move, meet and
merge. Key questions in population genetics are: ‘What is the type distribution
of those individuals that are ancestral to today’s populations?’ and ‘What do
genealogies look like that cross bifurcation points?’ In statistical physics, the ge-
nealogy of extremal particles was studied. Understanding the latter in population
genetics answers questions on the correlation structure of the individuals that have
mutated furthest.

The genealogy of a population gives rise to a random tree. In population genetics
one wants to understand the forces that determine the tree shape. In statistical
physics it is often assumed that large systems are hierarchically organised, i.e.,
that they are linked to ultrametricity, or equivalently, to a tree-like correlation
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structure. In statistical physics renormalization methods were developed to study
patterns that emerge via the collective actions of many individual entities. In
population genetics, genes evolve in species which themselves undergo evolution.
One of the challenges is to study the co-evolving populations on suitable separating
time scales that allow for emergence of new species.

Ad (3): How differences in reproductive success due to varying fitness and envi-
ronments shape genotype and phenotype variation is one of the main questions
in population genetics and evolutionary ecology. Here, the fitness of an individual
is a function of its genotype and phenotype, while the environment is an external
source of randomness that may vary in space and time and provides conditions
that are more or less beneficial for the reproduction of the individuals living there.
These effects lead to a selective advantage or disadvantage of individuals of a cer-
tain type living in a certain location. If resources are limited, then individuals
are in competition, and crossovers in behaviour can occur that are comparable to
phase transitions found for interacting particle systems.

Key questions in populations genetics are: ‘At what rate does a newly aris-
ing beneficial mutation become dominant in the population?’ and ‘What are the
effects of spatio-temporal changes in the environment on the selection parame-
ters?’ Key questions in statistical physics are: ‘Can equilibrium states in random
energy and spin glass models be understood by analysing the genealogy of local
minima in the free energy landscape?’ and ‘How does this genealogy influence the
non-equilibrium behaviour of these models?’ Linked to this there is much recent
activity towards studying interacting particle systems in dynamic random environ-
ments, which in discrete settings define dynamic networks, with many applications
in the social and the life sciences.

Ad (4): In nature, organisms are commonly challenged by conditions that are sub-
optimal for growth and reproduction. Many organisms have evolved the capacity
to persist through such conditions by engaging in dormancy, a switching strategy
that involves individuals entering into a (reversible) state of reduced metabolic
activity. The accumulation of dormant individuals creates a seed-bank, which is
a reservoir of genetic, phenotypic and functional diversity. Seed-banks can help
maintain diversity in populations and communities. They can also alter the fun-
damental forces of evolution by decreasing the effects of drift, natural selection
and mutations.

Seed-banks have important implications for understanding the ancestry or ge-
nealogy of populations and the rates at which lineages diverge. Switching be-
haviour can be either stochastic or responsive, the size of the dormant population
relative to the active population can be either small or large, and the effects of
the seed-bank can be both temporal and spatial. For interacting particle systems
dormancy can lead to non-classical transport laws, with new phenomena like up-
hill diffusion. Fat-tailed wake-up times may induce drastic changes in the scaling
behaviour compared to systems without seed-bank.
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Methodologies. The following methodologies were highlighted during the work-
shop:

(A) Exchangeability, sampling, duality.
(B) Graphical construction, coupling.
(C) Variational principles, bifurcations.

Ad (A): Duality relations provide the link between the forward time aspect of evo-
lution of type frequencies and the backward time aspect of random genealogies.
They rely on exchangeability, which captures symmetries of the model. The math-
ematical concepts of exchangeability and duality are closely related to the intuitive
concept of sampling, which plays a crucial role in important notions of convergence
of random structures such as random sample distances, random sample shapes, or
random adjacency matrices. Recently, new duality relations in population genetics
have been derived via a Lie algebra approach, which first appeared in the context
of models of non-equilibrium statistical physics. For many of these new dualities
an interpretation in terms of sampling is not obvious.

Ad (B): Coupling is a powerful technique in probability theory that constructs
of random objects of interest (stochastic processes, interacting particle systems,
random graphs) on a common probability space, allowing for a quantification
of similarities and differences. An example is the graphical representation for
interacting particle systems, which couples systems with different initial conditions
or interactions. Another application of coupling is to analyse functions of the
underlying random variables. In particular, the graphical representation defined
via Poisson processes can be considered forward and backwards in time, which
leads to a duality between the forward evolution and an appropriate backward
process, which in many population genetics models is given by the genealogy of a
sample.

Ad (C): Large deviation theory describes probabilities of microscopic trajectories
of interacting particle systems in terms of rate functions. Scaling behaviour can
often be captured in terms of variational principles involving these rate func-
tions, selecting the optimal strategy for the microscopic trajectory to achieve a
specific macroscopic behaviour. Phase transitions can often be associated with
bifurcations in the solution to these variational problems as the underlying system
parameters are varied across critical threshold values. The solution often requires
advanced functional analysis and operator theory. Generators of Markov processes
in populations dynamics lead to deep questions about well-posedness of associated
martingale problems and duality with Markov process describing the genealogy of
the population. Bifurcations of the solution are associated with tipping points in
the evolution of the population.

Attendance and discussions: The workshop was attended by 37 participants on
location and 19 participants online, with a broad geographic representation. A
total of 33 talks were given, by both junior and senior participants. On Wednesday
evening a discussion session was organised, called Trends and Challenges, which
led to a lively and fruitful discussion on future targets in the field.
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Apart from recent research questions in the various topics of the workshop, such
as dormancy, multilayer systems and duality, which were elucidated in a number
of workshop talks, there also was emphasis on other questions that need further
mathematical research. Among them were heterogeneity, either in space or type
space. A particular trend is towards dynamics in a random background. Especially
challenging are systems for which the random background is influenced by the
dynamics, in a mutual feedback setting. So far, there are only rare mathematical
results in this direction.

It was further pointed out that in population genetics there is a large body of
mathematical literature that considers purely deterministic models, even though
the underlying processes are naturally random, and the connection between the
stochastic models and their deterministic counterparts is of great interest. There
is also a need for doing proper statistics on these models, in order to connect them
to data analysis.

In statistical physics there is particular interest in non-equilibrium systems, in
non-Markovian processes and in hidden background states that cause switching
in the system. For many of these systems general techniques such as duality
still need to be fully explored, and the question is whether these can again lead
to new tools for population genetic models. For most of the dynamics that are
being considered, the passage from a microscopic scale to a macroscopic scale and
associated emergent critical behaviour has been an important focus. However, the
mesoscopic scales that lie in between also deserve further attention, as does the
inverse problem of deriving the microscopic interaction laws from the macroscopic
emergent behaviour.
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Abstracts

Phylogeny and population genetics: the mutation process on the
ancestral line

Ellen Baake

(joint work with Fernando Cordero and Enrico Di Gaspero)

We address a well-known observation at the interface of phylogeny and population
genetics: mutation rates estimated via phylogenetic methods tend to be signifi-
cantly different from direct estimates from pedigree studies [6, 7, 8]. To understand
this, we consider the Wright–Fisher diffusion with two types (0 and 1), selection
parameter σ ≥ 0, beneficial mutation rate θ0 > 0, and deleterious mutation rate
θ1 > 0. We investigate the line of descent of a randomly-sampled individual from a
contemporary population. We trace this ancestral line back into the distant past,
far beyond the most recent common ancestor of the population (thus connecting
population genetics to phylogeny) and analyse the mutation process along this
line.

To this end, we work with the ordered and pruned ancestral selection graph
[2, 5], which consists of the set of potential ancestors of the sampled individual at
any given time, arranged according to the pecking order ; that is, the hierarchy that
determines which line will be the true ancestor once types have been assigned to the
lines. A crucial observation is that a mutation on the ancestral line requires that
this line occupies the top position in the graph just ‘before’ the event (in forward
time). The average beneficial mutation rate µ0 and the average deleterious rate
µ1 on the ancestral line in the distant past are given by

µ0 = θ0

∑
n>0 an−1bn∑

m>0(am−1 − am)bm
and µ1 = θ1

∑
n>0(an−1 − an)(bn−1 − bn)∑

m>0 am−1(bm−1 − bm)
,

where an := P(L̃ > n) with L̃ the (random) number of lines in the ordered and

pruned ancestral selection graph at stationary, and bn := E
(
Ỹ n

)
with Ỹ the pro-

portion of the deleterious type in the stationary Wright–Fisher diffusion (so bn is
the probability that a sample of size n consists of deleterious individuals only).
Notably, the mutation process is not a Markov process on {0, 1}.

Relative to the neutral case (that is, relative to σ = 0), positive σ produces a
general bias towards beneficial mutations on the ancestral line, that is, µ0 > θ0
and µ1 < θ1. In contrast, both an increase and a decrease of the total mutation
flux on the ancestral line is possible, depending on the choice of parameters. The
results shed new light on previous analytical findings of Fearnhead [3].

While it is clear that the total beneficial mutation flux must balance the total
deleterious flux, that is,

θ0
∑

n>0

an−1bn = θ1
∑

n>0

(an−1 − an)(bn − bn−1),
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this is not true at the level of the individual fluxes; that is, in general,

θ0an−1bn 6= θ1(an−1 − an)(bn − bn−1), n > 0.

Rather, we have

θ0an−1bn +
∑

i>n

(ai−1 − ai)(bi−1 − bi) =
(
θ1 + (n− 1)

)
(an−1 − an)(bn−1 − bn)

for any n > 0; this can be proved by a combination of Fearnhead’s recursions [3]

(n+ 1 + σ + θ0 + θ1)an = σan−1 + (n+ 1 + θ1)an+1, n > 0,

a0 = 1, lim
n→∞

an = 0,

and sampling recursions

(n− 1 + σ + ϑ)bn = σbn+1 + (n− 1 + ϑν1)bn−1, n > 0,

b0 = 1, lim
n→∞

bn = 0;

the latter are obtained via diffusion theory [4] or via the killed ancestral selection
graph [1, 2].

In this context, we also establish the following connections between Fearnhead’s
recursions and the sampling recursions:

σan(bn+2 − bn+3) = (n+ 1 + ϑν1)an+1(bn+1 − bn+2), n ≥ 0,

σbn(an−3 − an−2) = (n− 1 + ϑν1)(an−2 − an−1)bn−1, n > 2,

which may be proved with the help of connections between the ordered and pruned
ancestral selection graph on the one hand, and the killed ancestral selection graph
on the other.
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Scaling limits for a class of regular exchangeable coalescents

Martin Möhle

(joint work with Benedict Vetter)

1. Introduction

Exchangeable coalescents are Markovian processes taking values in the space of
partitions of N := {1, 2, . . .}. They are characterized by a finite measure Ξ on the
infinite simplex ∆ := {u = (ui)i∈N : u1 ≥ u2 ≥ · · · ≥ 0, |u| := ∑

i≥1 ui ≤ 1} and
therefore also called Ξ-coalescents. During each transition, blocks merge together
to form larger blocks. The infinitesimal rates at which such simultaneous multiple
merger events happen can be expressed in terms of certain integrals with respect
to the measure Ξ. We refer the reader to [15] for fundamental information on
Ξ-coalescents and to [12, 13] for the subclass of Λ-coalescents allowing only for
multiple collisions of ancestral lineages.

For t ≥ 0 and n ∈ N let N
(n)
t denote the number of blocks at time t of the

coalescent restricted to a sample of size n. The asymptotics of the block counting

process (N
(n)
t )t≥0 as the initial state n tends to infinity is of interest in math-

ematical population genetics. Theorem 1 below clarifies this asymptotics for a
certain class of Ξ-coalescents. We also provide the analog result for the Siegmund
dual process of the block counting process, called the fixation line. The results
presented in this report extend those provided in [11] to Ξ-coalescents. In the fol-
lowing B(R) denotes the space of measurable bounded real-valued functions on R

and Ĉ(R) the space of real-valued continuous functions on R vanishing at infinity.

2. Results

As in [15] let us decompose the measure Ξ in the form Ξ = aδ0 + Ξ0, where a :=
Ξ({0}) and Ξ0 has no atom at 0 ∈ ∆. We furthermore use the notation (u, u) :=∑

i≥1 u
2
i for u = (ui)i∈N ∈ ∆ and define the measure ν(du) := Ξ0(du)/(u, u). The

function γ : [0,∞) → R, defined via

(1) γ(x) := a

(
x

2

)
+

∫

∆

∑

i≥1

(
(1− ui)

x − 1 + xui
)
ν(du), x ≥ 0,

has been proven to be of great significance to the study of coalescents (see [6, 8]
for Ξ-coalescents and [2, 3, 9] for Λ-coalescents). If the coalescent is in a state
with k ∈ N blocks, then γ(k) is the expected rate of decrease of the block counting
process. Define two scaling functions v, w : [1,∞)× [0,∞) → [1,∞) implicitly via

(2)

∫ x

v(x,t)

du

γ(u)
= t =

∫ w(x,t)

x

du

γ(u)
, x > 1,

and v(1, t) := w(1, t) := 1 for t ≥ 0. Our main assumption is the following. There
exists a constant κ ∈ [0,∞) such that

(3) lim
x→∞

xγ′′(x) = κ.
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For Λ-coalescents, a Tauberian argument shows that (3) holds if and only if
limε→0+ ε

−1Λ([0, ε]) = κ. For example, (3) holds for the Bolthausen–Sznitman
coalescent with κ = 1. Note that (3) excludes several Ξ-coalescents, in par-
ticular those coming down from infinity. In the following it is assumed that
Ξ(∆∗) = 0, where ∆∗ := {u ∈ ∆ : |u| = 1} and that the Ξ-coalescent is reg-
ular, i.e.,

∫
∆ |u|2 ν(du) <∞. Define the characteristic exponent ψ : R → C via

(4) ψ(x) :=

∫

∆

(
(1− |u|)ix − 1 + ix|u|

)
ν(du), x ∈ R.

Theorem 1. Suppose that Ξ(∆∗) = 0 and that the Ξ-coalescent is regular. If (3)

holds, then, as n → ∞, the Markov process X(n) := (X
(n)
t )t≥0 := (logN

(n)
t −

log v(n, t))t≥0 converges in DR[0,∞) to the Markov process X = (Xt)t≥0 with
initial state X0 = 0 and Mehler semigroup (TX

t )t≥0 given by

TX
t f(x) := E(f(Xs+t) |Xs = x) = E(f(e−κtx+St)), x ∈ R, f ∈ B(R), s, t ≥ 0,

where St has characteristic function φt given by

(5) φt(x) = exp

(∫ t

0

ψ(e−κsx) ds

)
, x ∈ R, t ≥ 0,

and ψ is given by (4).

A convergence result analogous to Theorem 1 holds for the fixation line (L
(n)
t )t≥0

of the coalescent. For information on the fixation line we refer the reader to [4]
and [5]. Note that the block counting process is Siegmund dual to the fixation

line, i.e. (see [4, Theorem 2.9]), P(N
(n)
t ≤ m) = P(L

(m)
t ≥ n), m,n ∈ N, t ≥ 0.

Theorem 2. Under the assumptions of Theorem 1, as n → ∞, the Markov pro-

cess Y (n) := (Y
(n)
t )t≥0 := (logL

(n)
t − logw(n, t))t≥0 converges in DR[0,∞) to

the Markov process Y = (Yt)t≥0 with initial state Y0 = 0 and Mehler semigroup
(T Y

t )t≥0 given by

T Y
t g(y) := E(g(Ys+t) |Ys = y) = E(g(eκty−eκtSt)), y ∈ R, g ∈ B(R), s, t ≥ 0,

where St has characteristic function φt given by (5).

Remark 1. The processes X and Y arising in Theorems 1 and 2 are Ornstein–
Uhlenbeck type processes [14]. Their infinitesimal generators AX and AY satisfy

(6) AXf(x) = −κxf ′(x) +
∫

∆

(
f(x+ log(1− |u|))− f(x) + |u|f ′(x)

)
ν(du)

for all x ∈ R and f ∈ D and

(7) AY g(y) = κyg′(y) +

∫

∆

(
g(y − log(1− |u|))− g(y)− |u|g′(y)

)
ν(du)

for all y ∈ R and g ∈ D, where D denotes the space of all twice differentiable
functions f : R → R such that f, f ′, f ′′ and the map x 7→ xf ′(x), x ∈ R, belong

to Ĉ(R). Note that D is a core for both generators, AX and AY .
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Remark 2. Theorems 1 and 2 can be easily stated in non-logarithmic form. The
arising limiting process (eXt)t≥0 is Siegmund dual to (eYt)t≥0.

Remark 3. For coalescents with dust, κ = 0 and Theorems 1 and 2 are logarithmic
versions of [4, Theorem 2.13]. For the Bolthausen–Sznitman coalescent, κ = 1 and
Theorems 1 and 2 are logarithmic versions of Theorem 2.1 of [7] (see also [10,
Theorem 1.1]), stating that the scaled block counting process weakly converges to
the Mittag–Leffler process and that the scaled fixation line weakly converges to
Neveu’s continuous-state branching process. We refer the reader to [1] for related
results on the Bolthausen–Sznitman case.

Examples. Theorems 1 and 2 are applicable to the Λ-coalescent where Λ =
β(a, b) is the beta distribution with parameters a ≥ 1 and b > 0, extending the
Bolthausen–Sznitman case. Assume now that Λ = NLG(α, ̺) is the negative
logarithmic gamma distribution with parameters α, ̺ ∈ (0,∞) having density
u 7→ α̺uα−1(− log u)̺−1/Γ(̺), u ∈ (0, 1). In this case, Theorems 1 and 2 are
applicable if and only if κ < ∞, which holds if and only if α > 1 (dust case) or
α = 1 and ̺ ∈ (0, 1], again extending the Bolthausen–Sznitman case α = ̺ = 1.
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Parametrised Galton-Watson trees: a functional version of Kesten and
Stigum’s theorem

Cécile Mailler

(joint work with Jean-François Marckert)

1. Definition of the model

Let I ⊆ [0,∞) and let X = (X(λ))λ∈I be an integer-valued, almost-surely non-
decreasing process such that, for all λ ∈ I, EX(λ) = λ. For all λ ∈ I, we let
Z0(λ) = 1 and, for all n ≥ 0,

Zn+1(λ) =

Zn(λ)∑

i=1

Xn,i(λ),

where (Xn,i)n≥0,i≥1 is a sequence of i.i.d. copies ofX. We say that Z=(Zn(λ))n≥0,λ∈I
is the random field of Galton-Watson trees of reproduction process X .

Note that, for fixed λ ∈ I, (Zn(λ))n≥0 is the classical Galton-Watson tree of
offspring distribution X(λ). Thus, almost surely as n→ +∞,

(1) Wn(λ) :=
Zn(λ)

λn
→W (λ),

where W (λ) is an almost-surely finite random variable. By Kesten and Stigum’s
theorem [3] (see also [1]), we also have that P(W (λ) > 0) > 0 if and only if λ > 1,
and in this case, EW (λ) = 1. Therefore, W is contant equal to zero on [0, 1], and
its expectation is constant equal to 1 on (1,∞). In the following, we assume that
I ⊆ (1,∞), i.e. we focus on the supercritical part of the process.

The aim of this work is to show that the pointwise convergence of (1) also holds
in D(I, [0,∞)), the set of càdlàg processes from I to [0,∞) equipped with the
Skorokhod topology.

2. Statement of the result

Our assumption on the offspring process X is the following: there exists κ ∈ (12 , 1],
such that for all [a, b] ⊂ I, there exists C > 0 such that, for all a ≤ λ1 < λ2 <
λ3 ≤ b,

(H)

{
E
[(
X(λ3)−X(λ2)

)2(
X(λ2)−X(λ1)

)2] ≤ C(λ3 − λ1)
2κ

E
[(
X(λ3)−X(λ2)

)
X(λ3)

3
]
≤ C(λ3 − λ2)

κ

Theorem 1 ([4]). Under Assumption (H), in probability as n→ +∞, (Wn(λ))λ∈I
→ (W (λ))λ∈I , in D(I, [0,∞)) equipped with the Skorokhod topology.

The proof of this main results relies on (a) the almost sure convergence pointwise
of Equation (1) and (b) a tightness argument (we use a moment condition for
tightness from Billingsley [2]).
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3. A motivational example

This project was motivated by the fact that, if the offspring process X is a simple
Poisson process on [0,∞), then Z is the local limit of the coupled Erdős-Rényi
graph (G(n, λ/n))λ≥0 as n→ +∞. We define this coupling of Erdős-Rényi graphs
as follows: let V = {1, . . . , n} and E be the set of all possible edges between these
n vertices. Let (Xe)e∈E be a sequence of i.i.d. random variables, uniform on [0, 1].
Finally, for all p ∈ [0, 1], let G(n, p) be the graph of vertex set V and edge set
{e ∈ E : Xe < p}.

It is well-known that, as n → +∞, the local limit around node 1 in G(n, λ/n)
as n→ +∞ is a Galton-Watson process of offspring distribution Poisson(λ). With
the coupling above, Z(λ) is the local limit of node 1 in G(n, λ/n), jointly for all
λ ≥ 0.

One can easily check thatX satisfies our assumptions: X is by definition almost-
surely non-decreasing, integer-valued, and such that EX(λ) = λ (because X(λ)
is Poisson-distributed with parameter λ). Checking that (H) holds with κ = 1
is straightforward: the first inequality, for example, follows directly from the fact
that X(λ3)−X(λ2) and X(λ2)−X(λ1) are independent and Poisson-distributed,
of respective parameters λ3 − λ2 and λ2 − λ1.

4. Open problems

This work raises several open problems:

(i) Can we relax assumption (H) to, e.g., an X logX condition, and still get
Theorem 1?

(ii) Can we describe the distribution of the limiting processW? It is straight-
forward to see that W satisfies the fixed-point distributional equation

W (λ) = 1
λ

∑X(λ)
i=1 W (i)(λ), where (W (i)(λ))i≥1 is a sequence of i.i.d. copies

ofW , independent of X . Can this fixed-point equation help characterising
the distribution of W?
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Convergence of genealogies through spinal decomposition with an
application to population genetics.

Emmanuel Schertzer

(joint work with Felix Foutel–Rodier)

In this talk, I consider a branching Markov process introduced in [1] and that
further investigated by Felix Foutel Rodier (Université de Montreal au Quebec)
and myself in a recent pre-print [3].

The model. From a biological standpoint, our process corresponds to a branching
approximation of a more complicated model of population genetics, named the
biparental Wright–Fisher model with recombination [6]. It can be formulated as
a branching process in discrete time where each individual carries a subinterval of
(0, R), for some fixed parameter R > 0. At generation t = 0, the population is
made of a single individual carrying the full interval (0, R). At each subsequent
generation, individuals reproduce independently and an individual carrying an
interval I with length |I| gives birth to K(I) children, where

K(I) ∼ Poisson
(
1 + |I|N

)
,

and N ≥ R is another fixed parameter. Each of these K(I) children inherits inde-
pendently an interval which is either the full parental interval I, or a fragmented
version of it. More precisely, with probability

rN (I) = 2
|I|
N

(
1 + oN (1)

)

we say that a recombination occurs: a random point is sampled uniformly on I
which breaks I into two subintervals. The child inherits either the left or the right
subinterval with equal probability. With probability 1 − rN no recombination
occurs and the child inherits the full parental interval I. We refer to this process
as the branching process with recombination.

One of the most interesting aspect of the present model is a self-organized crit-
icality property. While the process is “locally” supercritical, since E[K(I)] > 1,
intervals are broken via recombination and the process is naturally driven to crit-
icality. Under the regime N ≫ R ≫ 1, we will prove that some features are
reminiscent of a critical branching process (for instance, it satisfies a type of Ya-
glom’s law) but also bears similarities to supercritical branching processes. In
particular, one striking feature is related to the genealogy of the process condi-
tioned on survival at a large time horizon. In the natural time scale, the genealogy
of the extant population is indistinguishable from the supercritical case, that is, it
converges to a star tree. However, if we zoom in on the root by rescaling time in a
logarithmic way, the genealogy converges to the celebrated Brownian Coalescent
Point Process and becomes indistinguishable from a critical branching process.

In order to analyse the previous model, we introduce a general framework and
provide simple criteria for the convergence of random genealogies. Although the
branching process that we consider is interesting in its own right, our study aims



Population Dynamics and Statistical Physics in Synergy 595

at giving a concrete illustration of a general approach that could presumably be
relevant in many other settings.

Convergence of genealogies. It is quite common that individuals in a branching
process are endowed with a “type”, which is heritable and can in turn influence
the reproductive success of individuals. Let us denote by E the set of types. For
instance, in our work E is the set of subintervals of (0, R), for branching random
walks E = Rd. In the absence of types or when the reproduction law does not
depend on types (as for standard branching random walks in Rd), the scaling
limits of the tree structure and of the distribution of types have received quite a
lot of attention. In this particular setting, one can make use of an encoding of
the tree as the excursion of a stochastic process, the so-called contour process, or
height process. Convergence is then obtained by showing that the corresponding
excursion converges.

When the reproduction law may depend on the types, some attempts to extend
the excursion approach exist in the literature but as far we know a systematic and
amenable approach is still missing. In this work we follow a different approach, and
extend the seminal work of [4] to prove convergence in the Gromov-weak topology.
Proving convergence in distribution for this setting is very similar in spirit to
the method of moments for real random variables, where one proves convergence
in distribution by showing that all moments of the tree structure converge. In
the context of trees and metric spaces, the moments of order k are obtained by
summing over all k-tuples of individuals at some generation, and considering a
functional of the subtree spanned by these k individuals. Informally, this amounts
to picking k individuals at random in a size biased population, and then proving
convergence of the genealogy of the sample. One contribution of our work is that,
analogously to the method of moments in the real setting, we only need to prove
convergence of the moments with no need to identify the limit. This relies on a
de Finetti-like representation of exchangeable coalescents that was developed in
[2].

k-spines. To compute the moments of branching process, we make use of a
second set of tools called spinal decompositions [7, 5]. One of the main insight of
the present manuscript lies in the observation that an ingenious random change
of measure allows us to reduce the computation of a polynomial of order k to a
computation on a single tree with k leaves, called the k-spine tree.

We believe that our approach could be useful to analyse the large scale behavior
of other types of branching Markov processes.
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Stochastic evolutions of genealogies: the example of Feller’s
diffusion model

Andreas Greven

(joint work with Andrej Depperschmidt)

We define the evolution of the genealogy in Feller’s diffusion model via a well-posed
martingale problem, represent the evolution as combination of Fellers diffusion
giving the population size and a genealogy valued Fleming-Viot process giving the
evolution of the genealogies and present a Feynman-Kac and conditional duality.
A genealogy valued Levy-Khintchine formula provides us with a representation
of the genealogical structure of the depth-h subfamilies of the population in an
explicit way. Further results concern the genealogy under the condition of longterm
survival, where on the way we correct some classical ”results”. These results can
be obtained also in the spatial model of super random walk.
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Limit theorems for ancestral lineages in locally regulated
population models

Andrej Depperschmidt

(joint work with S.A. Bethuelsen, M. Birkner, J. Černý, N. Gantert, T. Schlüter)

Locally regulated population models, specific examples we think of are the (discrete
time) contact process on Zd (see e.g. [3] for the precise definition) and the logistic
branching random walk (see [5] and the description below), are known to have
unique nontrivial invariant distributions in certain parameter regions. One can
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thus consider stationary versions of these processes so that at any time n ∈ Z the
distribution is given by the nontrivial invariant distribution.

Conditioned on the event that the space-time origin is occupied by at least
one individual one can draw one of those individuals at random and consider the
positions of its ancestors in the past. Let Xn be the position of the ancestors n
generation ago, then (Xn)n=0,1,... is a random walk in a dynamic random envi-
ronment which is given by the time reversal of the contact process respectively
the logistic branching random walk. By abstract arguments the evolution of the
time reversal, i.e. of the environment, is Markovian, but it is very complex and
cannot be described by some local rules. Random walks in such (dynamic) random
environments are not covered by the ’standard’ literature on this topic.

For the ancestral lineages of the supercritical discrete time contact process we
have annealed and quenched law of large numbers as well as central limit theorem
for any spatial dimension d ≥ 1; see [3]. The proofs rely on arguments familiar
in the world of random walks in random environments: (i) construction of regen-
eration times with enough control of the moments for the laws of large numbers
and the annealed central limit theorem, (ii) considering two independent random
walks in the same environment to obtain suitable bounds on the variance of one
random walk and using Markov inequality for quenched central limit theorem.

Furthermore, we have the annealed and quenched local limit theorems in spatial
dimension d ≥ 3; see [2]. Here, even though several assumptions are violated in
our case, we can adapt the arguments from [1] for the proofs.

Let us describe the logistic branching random walk η = (ηn)n∈Z:

• Particles live in Zd in discrete generations and

ηn(x) = # particles in x ∈ Zd in generation n.

• Given ηn, each individual at x has independent Poisson distributed number
of offspring with mean

(
m−

∑

z∈Zd

λz−xηn(z)
)+

,

where m > 1 and λz ≥ 0, λ0 > 0 is symmetric and finite range (competi-
tion) function.

• Children take independently a step from x to y with probability py−x =
pxy, where p is a symmetric and aperiodic finite range random walk kernel.

Let N
(y)
n , y ∈ Zd, n ∈ Z+ be independent standard Poisson processes then (using

thinning and superposition properties of Poisson distriburtion) given ηn, we can
generate ηn+1 via

ηn+1(y) := N (y)
n

(∑

x

py−xηn(x)
(
m−

∑

z

λz−xηn(z)
)+)

.

In [5] it is shown that if m ∈ (1, 3), 0 < λ0 ≪ 1, λz ≪ λ0 for z 6= 0,
then (ηn)n=0,1,... survives with positive probability for any nontrivial condition
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η0, where nontrivial means here that η1 is not identically 0 with positive proba-
bility. Furthermore, conditioned on survival, ηn converges in distribution to its
unique nontrivial equilibrium.

If η = (ηn)n∈Z be the stationary version of the process, then conditioned on
η0(0) > 0 we can pick an individual from space-time origin (0, 0) at random and let
Xn be the position of its ancestor n generations ago. Using the fact that a Poisson
vector conditioned on its total sum is multinomial it follows that the transition
probability of Xn conditioned on η is given by

P

(
Xn+1 = y|Xn = x, η

)
=

px−yη−n−1(y)(m−∑
z λz−yη−n−1(z))

+

∑
y′ px−y′η−n−1(y′)(m−∑

z λz−y′η−n−1(z))+
.

For this random walk in dynamic random environment we have the annealed and
quenched law of large numbers (which are equivalent) and the annealed central
limit theorem. Via an auxiliary model based on the discrete time contact process
the proof relies again on a construction of regeneration times with suitable control
of their moments. This is carried out in [4]. In a work in progress with M. Birkner
and T. Schlüter the ideas from [3] and [4] are combined to prove the quenched
central limit theorem for the ancestral lineages of the logistic branching random
walk.

In the case of the logistic branching random walk the proofs rely to great extent
on comparison with oriented percolation and therefore the results are concerned
only with high-density regime.

Furthermore, in the above described models we have considered so far the be-
haviour of one ancestral line (or two independent random walks for the quenched
CLT). An interesting open question from the modelling and population genetics
point of view in such models is studying the behaviour of two or more ancestral
lineages which coalesce upon meeting. In particular having some information on
the coalescence time of two random walks, i.e. on the time to the most recent com-
mon ancestor of two randomly sampled individuals allows to consider probabilities
of identity by descent or identity by type, which are important quantities in the
mathematical population genetics.
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Joint fluctuations of the branch lengths of Beta(2 − α,α)-coalescents

Matthias Birkner

(joint work with Iulia Dahmer, Christina Diehl and Götz Kersting)

Beta(2− α, α)-coalescents are random trees which arise as limiting genealogies of
samples from population models with highly skewed offspring distributions. The
length of order r is the sum of the lengths of all branches that carry a subtree
with r leaves; these lengths play an important role in describing the law of neutral
mutations visible in the sample. We consider the case 1 < α < 2 and show that
for any s the vector of suitably centered and rescaled lengths of orders 1 ≤ r ≤
s converges (as the number of leaves tends to infinity) to a multivariate stable
distribution.
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Probabilistic patterns emerging from dormancy – Results
and Perspectives

Jochen Blath

Dormancy is a complex trait that has independently evolved many times across
the tree of life. It can be found in one form or another eg. among bacteria,
fungi, plants, and invertebrates [18]. In particular, many micro-organisms can
enter a reversible state of vanishing metabolic activity [1, 17]. The corresponding
dormancy times can range from a few hours to potentially thousands of years.
Further, also the dormancy transitioning mechanisms are highly diverse, including
spontaneous dormancy initiation and resuscitation, responsive switching due to
environmental cues, and competition-induced dormancy initiation.

In general, dormancy allows a population to maintain a reservoir of genotypic
and phenotypic diversity (that is, a seed bank) that can contribute to its long-
term survival and coexistence. Here, we briefly review recent progress and future
perspectives for research on stochastic individual based models incorporating dor-
mancy in several frameworks.

In population genetics, dormancy influences the evolutionary forces of genetic
drift,mutation, selection and recombination. Significant progress has been achieved
in recent years, including the identification of several coalescent models “with
switching” that arise naturally from population genetic models with seed banks
[16, 3, 7, 4, 5, 10]. While these models have mostly been derived in the neutral,
single locus case, they can be used to attack questions regarding the interplay of
seed banks with various forms of selection and/or recombination in multi-locus
set-ups, and many, even basic, questions are still open.

In spatial set-ups, seed banks have been incorporated both in structured models
on discrete spaces (such as Zd or the hierachical group ΩN ) as well as on R. When
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combined with multi-layered seed banks, allowing for heavy-tailed wake-up times,
discrete spatial models exhibit shifts in the so-called clustering - vs - coexistence
dichotomy, and even lead to the emergence of new universal behaviour [15, 14]. On
R, seed banks have been incorporated for example in F-KPP type models, where
they lead to a quantifiable reduction of the speed of travelling wave solutions,
thus preserving variability [9, 6]. In this area, a potentially very fruitful field for
further research is given by incorprating seed bank models into spatial models on
R2 (and higher dimensions), e.g. by introducing dormancy into the spatial Lambda
Fleming Viot process [2].

In population dynamics and adaptive dynamics, so-called ‘competition induced
dormancy’ has recently been incorporated into stochastic individual based models.
A basic result shows that a dormancy trait may invade and fixate in a resident pop-
ulation even in the presence of a reproductive trade-off due to the high maintenance
costs of dormancy. Indeed, a lower reproductive rate of the dormancy-featuring in-
vader can be compensated by its increased resilience against competitive pressure
[8]. Further lines of research include the interplay of dormancy with horizontal
gene transfer, both in the absence and presence of mutations. In adaptive dynam-
ics, dormancy has recently been included in the ‘moderately high mutation rate
regime’ considered eg. in [12, 11]. Here, dormancy can lead to new patterns of
coexistence, and may prevent evolutionary suicide. Research in progress in the
more classical ‘rare mutation regime’ indicates that dormancy may support evo-
lutionary branching, due to its increased tolerance to competitive pressure. It can
be expected that dormancy will also affect the structure of evolutionary pathways
and evolutionary walks on (dynamic) fitness landscapes, but this is again a field
open to future research.

In general, the emerging picture is that dormancy introduces memory and re-
silience into stochastic interacting systems and increases diversity. The variety of
observed effects strongly motivates the incorporation of dormancy-inspired switch-
ing mechanisms into classical interacting particle systems (not necessarily with
biological interpretation), and random networks. Indeed, recent results for the ef-
fects of switching in interacting systems shows for example that classical transport
laws can fail [13]. Again, this is an area which invites future research.
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(Asymmetric) Λ-Wright–Fisher Processes arising in a population
with dormancy

Fernando Cordero

(joint work with Adrián González Casanova, Jason Schweinsberg,
Arno Siri-Jégousse, Charline Smadi, Maite Wilke-Berenguer)

1. Λ-coalescents arising from dormancy.

Consider a population evolving as follows. We begin every year with a population
consisting of N dormant individuals. Years have length TN and consists of three
phases:

• Activation phase (Spring): This phase has length tN ≤ TN . Each
individual wakes up at some random time before tN . Once an individual
is awake, it reproduces at rate λN .

• Active phase (Summer): This phase has length TN − tN , and during
this phase all individuals are awake and reproducing at rate λN .
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• Sampling phase (Winter): At time TN , we choose N individuals uni-
formly at random from the population to go to sleep until the start of the
next year, and all other individuals die.

For i ∈ [N ] := {1, . . . , N} and g ∈ Z, let τ
(g)
i,N denote the activation time of the ith

individual starting year g. Activation times are assumed to be independent and
equally distributed across individuals and generations.

The genealogy of the population is represented as follows. Let us assume that
we sample n ∈ [N ] individuals at random on year 0. We define a discrete-time
Markov chain (Ψn,N (g))∞g=0 taking its values on the set of partitions Pn of [n], by
letting Ψn,N(g) be the partition of [n] such that i and j are in the same block if
and only if the ith and jth individuals in the sample have the same ancestor on
year −g. We will be interested in the asymptotic behaviour as N → ∞ of this
ancestral process. To do this, we let cN be the probability that two individuals
chosen uniformly at random from one generation have the same ancestor in the
previous generation. This quantity establishes the appropriate time scale on which
to study the process because after scaling time by 1/cN , the expected time for two
randomly chosen individuals to trace their lineages back to a common ancestor
will equal 1.

This model belongs to the well-known class of Cannings models; tools for study-
ing their limiting genealogies have been developed in [4, 3, 5]. It is well-known
that when the distribution of the family sizes is highly skewed, the genealogy can
sometimes be described by a Λ-coalescent. Whenever Λ is a finite measure on
[0, 1], the Λ-coalescent is a Pn-valued Markov process having the property that
whenever there are b blocks, each possible transition that involves k of the blocks
merging into one happens at rate

λb,k :=

∫ 1

0

yk−2(1− y)b−k Λ(dy).

To state our first result, let us consider a simple instance of the model introduced
above in which there is no summer, meaning that TN = tN , and the random
variables τi,N can take only the two values 0 and TN . We write

P(τi,N = 0) = ωN = 1− (τi,N = TN ).

Let us assume that

lim
N→∞

NωN = 0 and λNTN = β log(κN), for some κ, β > 0.

Under these assumptions, we proved in [1, Thm. 1.1] that

(1) If β > 1, the processes (Ψn,N(⌊t/cN⌋))t≥0 converge as N → ∞ to the
star-shaped coalescent (i.e. Λ = δ1).

(2) If β = 1, the processes (Ψn,N (⌊t/cN⌋))t≥0 converge as N → ∞ to the Λκ-

coalescent, with Λκ(dy) := y2

E[Y 2
κ ]P(Yκ ∈ dy), where Yκ is a (0, 1)-valued

random variable whose distribution is determined by

P(Yκ > x) := e−
x

κ(1−x) , x ∈ (0, 1).
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(3) If β < 1, the processes (Ψn,N (⌊t/cN⌋))t≥0 converge as N → ∞ to King-
man’s coalescent (i.e. Λ = δ0).

Moreover, these three scenarios constitute the building blocks of any possible lim-
iting genealogy in our setting. More precisely, we proved in [1, Thm. 1.7] that
it is possible for the Λ-coalescent to arise as the limit of the rescaled ancestral
processes (Ψn,N (⌊ρN t⌋))t≥0 in our population model with dormancy if and only if
Λ = b0δ0 + b1δ1 + Λ′, where b0, b1 ≥ 0 and Λ′ is a measure on (0, 1) with density
h with respect to Lebesgue measure of the form

h(y) =

∫ ∞

0

1

κ

(
y

1− y

)2

e−
y

κ(1−y) η(dκ), y ∈ (0, 1),

for some measure η in (0,∞) with
∫∞
0 (1 ∧ κ2) η(dκ) < ∞. In particular, for all

a ∈ (0, 2), the Beta(2− a, a)-coalescent can be obtained as the limiting genealogy
of our model with dormancy (e.g. choose η(dκ) = κ−1−adκ).

2. Incorporating selection.

Let us now consider the following variant of the model with two-point activation
times described above. The population evolves from year to year through two
phases, activation and sampling (no summer), but now we have two types of
individuals, say 0 and 1. Type 0 (resp. 1) individuals wake up at time 0 (resp. t⋆ >
0) with probability ωN or remain dormant until time TN , otherwise. Moreover,
we assume that λN = λ > 0 and that

lim
N→∞

NωN = 0, λTN = log(κ0N), and λ(TN − t⋆) = log(κ1N),

for some κ0 > κ1 > 0. In particular, t⋆ = log(κ0/κ1)/λ. Now, let XN
g denote the

proportion of individuals of type 1 on year g and set cN := NωNE[Y 2
κ1
]. In joint

work (in progress) with A. González Casanova, A. Siri-Jégousse, C. Smadi and M.
Wilke-Berenguer, we have shown that, if XN

0 → x0 ∈ [0, 1] as N → ∞, then the
process (XN

⌊t/cN⌋
)t≥0 converges in distribution as N → ∞ to the unique strong

solution of the stochastic differential equation

dXt =

∫

(0,1)2

(
1{u<Xt−}y(1−Xt−)− (y + z)1{u≥Xt−}Xt−

)
N(dy, dz, du, dt),

with X0 = x, where N(dy, dz, du, dt) is a Poisson random measure with intensity
µ(dy, dz) du dt and the measure µ is defined via

µ(dy, dz) :=
1

E[Y 2
κ1
]
P

((
e1

e1 + 1
,

e1 + e0b

e1 + e0b + 1
− e1
e1 + 1

)
∈ (dy, dz)

)
,

where e0 and e1 are independent exponential random variables with parameters
1/κ0 and 1/κ1, respectively; b is a Bernoulli random variable with parameter
1 − κ1/κ0 independent of e0 and e1. The process X is a particular case of the
Λ-asymmetric frequency processes introduced in [2]. To better understand the
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meaning of the measure µ, consider the map T : {(y, z) ∈ [0, 1]2 : y+z ≤ 1} → [0, 1]
defined via T (y, z) = y + z and note that

µ(dy, [0, 1]) =
Λκ1(dy)

y2
, and µ ◦ T−1(dr) = E[Y 2

κ0
]

E[Y 2
κ1
]

Λκ0(dr)

r2
.

Therefore, the first coordinate of µ accounts for the neutral part and the second
one for the selective advantage of type 0 individuals. The next step would be to
characterize the set of Λ-asymmetric frequency processes that can be obtained as
the limit of our population models with dormancy with two types of individuals,
each one with its own activation mechanism. Moreover, we plan to generalize those
results to a broad class of Cannings models with selection.
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Spatially inhomogeneous populations with seed bank

Shubhamoy Nandan

(joint work with Frank den Hollander)

We construct an interacting particle system (IPS) that describes the genetic evo-
lution over time of populations with seed-banks. The colonies are spatially located
on the integer lattice Zd, d ≥ 1 and each colony consists of two populations: active
and dormant (seed-bank). The sizes of the active and the dormant populations
(seed-banks) are finite, vary across different colonies and remain fixed throughout
the evolution of the IPS over time. Individuals carry one of the two genetic types:
A and B, and change type via resampling as long as they are active. Active indi-
viduals in each colony can also exchange type with individuals in the constituent
seed-bank. Active individuals resample not only from their own (active) popula-
tion, but also from active population of other colonies according to a random walk
transition kernel. The latter is referred to as migration.

We show that under a mild condition on the sizes of the active populations, the
IPS is well-defined and has a dual. The dual consists of a system of interacting
coalescing random walks in an inhomogeneous environment that switch between
an active state and a dormant state. The IPS converges to a unique equilibrium
that depends on the initial density of types, and exhibits a dichotomy between
clustering (monotype equilibrium) and coexistence (multi-type equilibrium). This
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dichotomy is determined by a clustering criterion: clustering occurs if and only
if two random walks in the dual starting from arbitrary states eventually coalesce
with probability one. Further, we show that if the relative strengths of the seed-
banks in different colonies are uniformly bound, then the latter is equivalent to
the symmetrized migration kernel being recurrent.
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Switching interacting particle systems: scaling limits, uphill diffusion
and boundary layer

Simone Floreani

(joint work with Cristian Giardinà, Frank den Hollander, Shubhamoy Nandan,
Frank Redig)

We consider three classes of interacting particle systems on Z: independent random
walks, the exclusion process, and the inclusion process. Particles are allowed to
switch their jump rate (the rate identifies the type of particle) between 1 (fast
particles) and ǫ ∈ [0, 1] (slow particles). The switch between the two jump rates
happens at rate γ ∈ (0,∞). In the exclusion process, the interaction is such that
each site can be occupied by at most one particle of each type. In the inclusion
process, the interaction takes places between particles of the same type at different
sites and between particles of different type at the same site.

We derive the macroscopic limit equations for the three systems, obtained after
scaling space by N−1, time by N2, the switching rate by N−2, and letting N → ∞.
The limit equations for the macroscopic densities associated to the fast and slow
particles is the well-studied double diffusivity model, i.e.

{
∂tρ0 = ∆ρ0 +Υ(ρ1 − ρ0),

∂tρ1 = ǫ∆ρ1 +Υ(ρ0 − ρ1)

where ρi, i ∈ {0, 1}, are the macroscopic densities of the two types of particles, and
Υ ∈ (0,∞) is the scaled switching rate. The above system was introduced in [1]
to model polycrystal diffusion (more generally, diffusion in inhomogeneous porous
media) and dislocation pipe diffusion, with the goal to overcome the restrictions
imposed by Fick’s law. Non-Fick behaviour is immediate from the fact that the
total density ρ = ρ0 + ρ1 does not satisfy the classical diffusion equation, but the
thermal telegrapher equation, i.e.

∂t (∂tρ+ 2Υρ) = −ǫ∆(∆ρ) + (1 + ǫ)∆ (∂tρ+Υρ) .

In order to investigate the microscopic out-of-equilibrium properties, we analyse
the system on [N ] = {1, . . . , N}, adding boundary reservoirs at sites 1 and N of
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fast and slow particles, respectively. Inside [N ] particles move as before, but now
particles are injected and absorbed at sites 1 and N with prescribed rates that
depend on the particle type. We compute the steady-state density profile and the
steady-state current. It turns out that uphill diffusion is possible, i.e., the total
flow can be in the direction of increasing total density. This phenomenon, which
cannot occur in a single-type particle system, is a violation of Fick’s law made
possible by the switching between types. We rescale the microscopic steady-state
density profile and steady-state current and obtain the steady-state solution of a
boundary-value problem for the double diffusivity model.
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Duality relations among particle systems, diffusions and redistribution
models with an open boundary

Chiara Franceschini

(joint work with Rouven Frassek, Cristian Giardinà)

In this talk, after reviewing the concept of duality for Markov processes, I will
show how the same algebraic approach, which relies on the su(1, 1) Lie algebra,
can be used to construct two duality results. Duality is a useful, but quite rare,
tool to deal with Markov processes. The idea behind it is that one relies on the
dual process - which can be thought of an auxiliary simpler process to deal with
- to gather information on the initial model of interest. The main point of the
algebraic approach is to describe the Markov generators of the two processes of
interest using the algebra generators as building blocks. Generators of the Lie
algebra su(1, 1) are K0, K+ and K− and they satisfy the following Lie brackets
relations:

[K0,K±] = ±K± and [K+,K−] = −2K0 .

The Casimir element of the algebra - which is central and self-adjoint - turns out
to be, once its co-product is consider, a Markov generator and thus telling us
which is the right combination to look at. Decomposing the Markov generators
into smaller pieces allows us to look for intertwining functions just for the building
blocks, which is in general a simpler task. In particular, the claim is that using
the two representations below the following object is the Markov generator of an
interacting particle systems and an interacting diffusion, for any s > 0

L = K
+
1 K
−
2 + K

−
1 K

+
2 − 2K0

1K
0
2 + 2s2 .



Population Dynamics and Statistical Physics in Synergy 607

We start with the interacting diffusion. The representation




K+ := z

K− := z∂2z + 2k∂z

K0 := z∂z + k

for z ∈ R+ satisfies the su(1, 1) algebra give rise to the bulk part of the Brownian
Energy Process (BEP) once the sum all over the lattice site is considered, i.e.

LBEP =

N∑

x=1

Lx,x+1 where Lx,x+1 = zxzx+1

(
∂zx − ∂zx+1

)2

− 2s(zx − zx+1)
(
∂zx − ∂zx+1

)

The BEP is a family of Markov diffusion labeled by the parameter s > 0 in the
drift which describes the infinitesimal exchange of energy among nearest neighbor
sites. On the other hand, also the representation





(K+f) (n) := (2s+ n)f(n+ 1)

(K−f) (n) := nf(n− 1)(
K0f

)
(n) := (n+ s)f(n)

where f(−1) = 0 satisfies the su(1, 1) algebra and give rise to the bulk part of
the Symmetric Inclusion Process (SIP) once the sum all over the lattice site is
considered, i.e.

LSIP =

N∑

x=1

Lx,x+1 where Lx,x+1f(ξ) = ξx(2s+ ξx+1)
[
f(ξx,x+1)− f(ξ)

]

+ ξx+1(2s+ ξx)
[
f(ξx+1,x)− f(ξ)

]

The SIP is a family of interacting particle system labeled by the parameter s > 0,
it is considered the bosonic analog of the well known exclusion process because
here particles have a preference in occupying those sites with a bigger number of
particles. Their duality relation was proved for the first time in [5] to study a
model of heat conduction. Indeed, the two representations above are intertwined
by a duality function in product form

D(z, ξ) =
N∏

x=1

d(zx, ξx) where d(y, n) =
yn

Γ(2s+ n)

Considering following representation for the SIP




(K+f) (n) := −(n+ 2s)f(n+ 1) + 2(n+ s)f(n)− nf(n− 1)

(K−f) (n) := −nf(n− 1)(
K0f

)
(n) := (n+ s)f(n)− nf(n− 1)
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leads to another duality function, always in product form but of orthogonal poly-
nomials instead of the monomial. In particular, in this case

d(y, n) = L(2s−1)
n (y) = 1F1

( −n
2s

∣∣∣∣ y
)

where L
(2s−1)
n (y) is the Laguerre polynomials of variable y, degree n and parameter

2s− 1, [1] and [2].
The second duality relation is a new result which involves a particle system of zero
range type, called harmonic process, and a redistribution model similar to the
Kipnis-Marchioro-Presutti model [6]. Despite the similarity, it turns out that the
second relation involves integrable models and thus duality can be pushed further.
In particular, its construction relies on the quantum inverse scattering method and
the realization of non-compact quantum spin chain as integrable stochastic Markov
processes, [4]. As a consequence, all moments in the stationary non-equilibrium
state can be explicitly computed. The added value of having an explicit closed
formula for the correlations influence the study of scaling limits as the decay
of correlations can be immediately verified. Macroscopically only the SIP with
a slow boundary has been studied in [3] where depending on the value of the
parameter tuning the interaction rate of the bulk of the system with the boundary,
we obtain the heat equation with diffusive coefficient 2s with either Dirichlet,
Robin or Neumann boundary conditions as hydrodynamic equation. As future
work it will be natural to consider the fluctuations around the hydrodynamic limit
and the large deviations.
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Exactly Solvable Non-Equilibrium Steady States

Cristian Giardinà

(joint work with C. Franceschini, R. Frassek)

We discuss two models of boundary driven systems that can be full be fully solved,
i.e. correlation functions in the non-equilibrium steady state can be written in
closed-form.
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The two models have been introduced in the work [1]. They emerge from
two different representations of the sl(2) Lie algebra. The solution arises from a
combination of i) duality and ii) integrability. The first model was solved in [2],
the second model is an on-going work in progress with Rouven Frassek and Chiara
Franceschini.

1. The “harmonic” process

The harmonic process is the Markov process {η(t), t ≥ 0} taking values on ΩN =
{0, 1, 2, . . .}N with generator

L = L1 +
N−1∑

i=1

(
L→i,i+1 + L←i,i+1

)
+ LN

where the ‘bulk’ generators are given by

(L→i,i+1f)(η) =

ηi∑

k=1

ϕs(k, ηi)
[
f(η − kδi + kδi+1)− f(η)

]

(L←i,i+1f)(η) =

ηi+1∑

k=1

ϕs(k, ηi+1)
[
f(η + kδi − kδi+1)− f(η)

]

with ϕs(k, n) =
1
k
Γ(n+1)Γ(n−k+2s)
Γ(n−k+1)Γ(n+2s) and the boundary generators are

(L1f)(η) =

ηi∑

k=1

ϕs(k, η1)
[
f(η − kδ1)− f(η)

]
+
∞∑

k=1

βk
L

k

[
f(η + kδ1)− f(η)

]

(LNf)(η) =

ηi∑

k=1

ϕs(k, ηN )
[
f(η − kδN)− f(η)

]
+
∞∑

k=1

βk
R

k

[
f(η + kδN )− f(η)

]

In its simplest version, which is obtained by choosing s = 1/2, the harmonic
process is an interacting particle systems where k particles in the bulk are moved
with rate 1/k, either to the left or to the right neighbor with the same probability.
At the boundaries particles are injected/removed. Provided that the boundary
parameters 0 < βL, βR < 1, in the case s = 1/2, the holding time in a configuration

η is an exponential random variable with parameter
∑N

i=1 2h(ηi)− log(1− βL)−
log(1−βR), where h(n) =

∑n
k=1

1
k is the nth harmonic number, which explains the

name of the model. The harmonic process is similar to other models introduced in
the context of statistical physics such as the Kipnsi-Marchioro-Presutti model [4]
or the inclusion process [3]. It has the additional feature of being exactly solvable
due to its algebraic structure.

The following result has been proved in Theorem 2.7 of [2]. For ξ = (ξ1, . . . , ξN )
∈ NN , let G(ξ) be stationary (scaled) multivariate factorial moments of order ξ,
i.e.

G(ξ) =

〈
N∏

i=1

ηi
2s

(ηi − 1)

2s+ 1
· · · (ηi − ξi + 1)

(2s+ ξi − 1)

〉
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where 〈·〉 denotes expectation in the stationary state of the harmonic process
{η(t)}. If we identify ξ = (ξ1, ..., ξN ) with the the ordered set x = (x1, x2, ..., x|ξ|),

where 1 ≤ x1 ≤ x2 ≤ . . . ≤ x|ξ| ≤ N and |ξ| = ∑L
i=1 ξi, then

G(ξ) =

|ξ|∑

n=0

ρ
|ξ|−n
R (ρL − ρR)

ngx(n)

with

gx(n) =
∑

1≤i1<...<in≤|ξ|

n∏

α=1

n− α+ 2s(N + 1− xiα)

n− α+ 2s(N + 1)

In the formula above ρL = βL

1−βL
and ρR = βR

1−βR
are the two reservoirs densities.

The expression for all moments uniquely characterize the stationary distribution.
The result has been proved thanks to a ‘duality’ relation with an absorbing dual
process, the variables 1 ≤ x1 ≤ x2 ≤ . . . ≤ x|ξ| ≤ N have to interpreted as
the initial positions of |ξ| dual particles. The computation of the moments then
amounts to the computation of the absorption probabilities of the dual particles.

2. A Levy process

We are currently trying to extend the results obtained for the harmonic process to
models of ‘energy redistribution’. As shown in [1] the harmonic process is related
to the integrable XXX spin chain with non-compact spins. More precisely the
generator the harmonic process arise from the Hamiltonian of the XXX spin chain
in a discrete representation. By going to a representation in terms of pseudo-
differential operators one finds instead a Levy process {z(t), t ≥ 0} taking values
on ΩN = RN

+ . The ith component zi(t) can be interpreted as the energy at site
i ∈ {1, 2, . . .N} at time t ≥ 0. The generator of the process is given by

L = L1 +

N−1∑

i=1

(
L→i,i+1 + L←i,i+1

)
+ LN

where the bulk generators read

(L→i,i+1f)(z) =

∫ zi

0

dα

α

(
1− α

zi

)2s−1 [
f(z − αδi + αδi+1)− f(z)

]

(L←i,i+1f)(z) =

∫ zi+1

0

dα

α

(
1− α

zi

)2s−1 [
f(z + αδi − αδi+1)− f(z)

]

and the boundary generators are given by

Lif(z) =

∫ zi

0

dα

α

(
1− α

zi

)2s−1 [
f(z−αδi)−f(z)

]
+

∫ ∞

0

dα
e−λiα

α

[
f(z+αδi)−f(z)

]
.

At equilibrium (λL = λR = λ) a product of Gamma distributions with rate λ > 0
and shape parameter 2s > 0 is reversible. By proving duality with an absorbing
dual process we aim to computing all moments, as we did for the harmonic process.
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Orthogonal polynomial duality and fluctuation fields

Frank Redig

(joint work with Mario Ayala, Gioia Carinci)

Duality is an important tool in the study of interacting particle systems. It allows
to connect a complex interacting system to a simpler dual system via a so-called
duality function. In the case of self-duality, the process and the dual are the same,
and the simplification derives from the fact that the dual process starts with a
finite number of particles (“from many to few”). We consider a setting where the
duality functions are orthogonal polynomials, including the classical interacting
particle systems SEP (symmetric exclusion process) and SIP (symmetric inclusion
process). We then consider the fluctuation fields of these polynomials, i.e., the
fields

Xǫ(n;φ, η(ǫ
−2t) = ǫ−nd/2

∑

x1,...,xn

φ(ǫx1, . . . , ǫxn)D(x1, . . . , xn; η(ǫ
−2t))

where D(x1, . . . , xn; η(ǫ
−2t)) denotes the orthogonal duality polynomial with n

dual particles at locations x1, . . . , xn, and φ : Rn → R is a smooth test function.
This leads to a family of “higher order” fluctuation fields whose limiting dynam-

ics (in the diffusive rescaling of space and time, i.e., in the limit ǫ→ 0) converges
to the solution of a recursively defined martingale problem, generalizing the classi-
cal infinite dimensional Ornstein Uhlenbeck process (which is the limit for n = 1).
Another application of the fields associated to orthogonal duality polynomials is
the Boltzmann-Gibbs principle which in this setting can be viewed as a projection
result: fluctuation fields of general observables are in leading order equal to their
projection on the fluctuation fields of orthogonal polynomials of degree one. This
in turn leads to a quantification of the Boltzmann-Gibbs principle and to a family
of higher order Boltzmann Gibbs principles [2].
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Modeling populations undergoing selection using branching Brownian
motion with an inhomogeneous branching rate

Jason Schweinsberg

(joint work with Matthew I. Roberts, Jiaqi Liu)

An important question in evolutionary biology is understanding how populations
evolve when they are undergoing selection. Consider the following population
model. Suppose there are N individuals at all times. Each individual acquires
beneficial mutations at times of a rate µN Poisson process. An individual with k
mutations has fitness max{0, 1+ sN (k−M(t))}, where M(t) is the mean number
of mutations carried by the N individuals at time t. Each individual lives for an
exponentially distributed time with mean one. When an individual dies, a new
individual is born. We choose an individual at random from the population, with
probability proportional to the individual’s fitness, to be the parent of the new
individual. The new individual inherits the parent’s mutations.

This model is simple to analyze when beneficial mutations are rare enough that
typically only one appears in the population at a time. This will happen, for exam-
ple, if sN = s > 0 and µN ≪ 1/(N logN). Then each beneficial mutation spreads
to the entire population with probability approximately sN , an event known as
a selective sweep. The analysis of this model becomes much more complicated,
however, when beneficial mutations occur rapidly enough that multiple beneficial
mutations are present in the population at any given time. Durrett and Mayberry
[6] studied a similar model sN = s is constant and µN ∼ N−β for 0 < β < 1. Desai
and Fisher [5] and Schweinsberg [14, 15] carried out a thorough study of this model
when the mutation rates are slightly faster than those considered by Durrett and
Mayberry [6]. Nevertheless, in this setting, mutations are still sufficiently rare that
at a typical time, a high fraction of the individuals in the population have exactly
the same number of mutations.

One can also consider what happens when the mutation rate is very fast, but
the selective advantage conferred by each individual mutation is small. In this
case, one can describe the evolution of the fitness distribution of the population
over time by a traveling wave, an idea which goes back to the work of Tsimring,
Levine, and Kessler [16]. Other work in the biology and physics literature focusing
on this traveling wave behavior includes [1, 3, 4, 8, 11, 13]. It was emphasized,
in particular, in [1] that the bulk of the traveling wave has a Gaussian shape.
That is, the empirical distribution of the fitness levels of the individuals in the
population at a given time is approximately Gaussian. On the other hand, as
noted in [16, 11], the full shape of the traveling wave from the left edge to the
right edge is best described by an expression involving the Airy function. We also
note that Fisher [7] and Melissa, Good, Fisher, and Desai [10] gave a detailed
analysis of the intermediate case when mutation rate is faster than what was
considered in [5, 14, 15], but slower than what was considered in [11].

We aim to provide a mathematically rigorous analysis of this population model
when the mutation rate is fast and the selective advantage resulting from each
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mutation is small. In particular, we aim to achieve a rigorous understanding
of the traveling wave behavior. While a long-term goal is to carry out a rigorous
analysis for the discrete population model in which there are exactly N individuals
at all times, for now we will consider an alternative model which is easier to
analyze because the population size is not exactly fixed and the descendants of
different individuals evolve independently. This model, which was studied by
Roberts and Schweinsberg [12] and Liu and Schweinsberg [9] involves branching
Brownian motion with a spatially dependent branching rate.

We begin with some configuration of particles at time zero. Each particle moves
according to one-dimensional Brownian motion with drift −ρn. A particle located
at x dies at rate dn(x) and splits into two particles at rate bn(x), where the birth
and death rates satisfy bn(x) − dn(x) = βnx for all x ∈ R. We assume that
the function dn is bounded below by a positive constant, and bn(x) is bounded
above by a positive constant for x ≤ 1/βn. For some of our results, we will also
assume that bn is an increasing function and dn is a decreasing function. We
think of particles as representing individuals in a population. The position of the
particle corresponds to the fitness of the individual. Because individuals acquire
mutations over time, the fitness of an individual changes over time like a random
walk, which when there are many mutations each having only a small effect on
fitness, should be well approximated by Brownian motion. The assumption that
bn(x)− dn(x) = βnx implies that the difference between the birth and death rates
is a linearly increasing function of the individual’s fitness.

Roberts and Schweinsberg [12] proved that in this model, the empirical distri-
bution of the locations of the particles converges to a Gaussian distribution, under
suitable conditions. More precisely, suppose ρn and βn satisfy

(1) lim
n→∞

ρ3n
βn

= ∞, lim
n→∞

ρn = 0.

Let Nn(t) be the number of particles alive at time t, and let X1,n(t) ≥ · · · ≥
XNn(t),n(t) denote the positions of the particles at time t. Also, let δx denote the
unit mass at x, and let

ζn(t) =
1

Nn(t)

Nn(t)∑

i=1

δ
Xi,n(t)

√
βn/ρn

,

which represents the empirical distribution of the locations of the particles at
time t, scaled in space by

√
βn/ρn. Let µ be the standard normal distribution.

Roberts and Schweinsberg [12] showed that if the initial configuration of the par-
ticles satisfies some technical conditions, and if tn ∼ cρn/βn for some c > 1, then
ζn(tn) ⇒ µ as n → ∞. That is, the empirical distribution of particles at time
tn is approximately normal with mean zero and variance ρn/βn. This result is
consistent with predictions, for example, in [1] that the fitness distribution of the
population evolves like a Gaussian traveling wave. Roberts and Schweinsberg [12]
also proved a result which describes the configuration of the particles with the

highest fitness levels, which are located within O(β
−1/3
n ) of ρ2n/2βn.
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Liu and Schweinsberg [9] extended the results in [12] by giving more precise
results about the configuration of particles in this process. Roughly speaking,
they showed that nearly all particles are located between −5ρ2n/8βn and ρ2n/2βn,
and that for y in this range, the density of particles near y is proportional to

gn(y) = ρn

(
ρ2n
β

− y

)
− 2

√
2βn
3

(
ρ2n
3

− y

)3/2

.

This result can be predicted from large deviations heuristics in [2], but the proof
requires technical second moment estimates. Because the formula for gn matches
the asymptotics of the Airy function, this result is consistent with the nonrigorous
predictions in [16, 11] for the shape of the traveling wave.
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Convergence Essentials of Random Graph Sequences to Graphons

Siva Athreya

In this talk we discussed various sampling methods of constructing finite graph
sequences from graphons. The basic elements of dense graph theory was explained.
Then we discussed various ways in which one could sample vertices from the dense
networks and then detailed the essentials of convergences of these random graph
sequences to the respective Graphon. We also provided some partial insights of
these methods in the space of coloured graphons.
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[1] S. Athreya and A. Röllin, Dense graph limits under respondent-driven sampling, Ann. Appl.
Probab. 44 (2016), 2193–2210.
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Graphon-valued Stochastic Processes

Adrian Röllin

(joint work with Siva Arthreya, Frank den Hollander, Zhuosong Zhang)

Constructing graph-valued stochastic processes is in principle straightforward since
the state spaces that have to be dealt with are finite. The matter becomes, how-
ever, more intricate when considering large-graph limits. A first attempt to un-
derstand such limits was made a few years ago by H. Crane [3], who used the
framework of dense graph limits and graphons [5] in connection with the theory of
exchangeable arrays of Aldous and Hoover [1, 4] as a starting point. Crane showed
that any Markov process on exchangeable arrays leads to a graphon-valued process
with bounded variation, which excludes diffusion-like processes.

Using the space of graphons directly as a starting point, rather than the space
of exchangeable arrays, we were able to construct diffusion-like Markov processes
on the graphon space, and arguably more importantly, show that they can occur
as limits of graph-valued stochastic processes — in our particular case arising from
population genetics [2].

We consider finite populations where individuals carry one of finitely many ge-
netic types and change type according to Fisher-Wright resampling. At any time,
each pair of individuals is linked by an edge with a probability that is given by
a type-connection matrix, whose entries depend on the current types of the two
individuals and on the current empirical type distribution of the entire population
via a fitness function. We show that, in the large-population-size limit and with an
appropriate scaling of time, the evolution of the associated adjacency matrix con-
verges to a random process in the space of graphons, driven by the type-connection
matrix and the underlying Fisher-Wright diffusion on the multi-type simplex. Our
approach carries over to dense multigraphs arising from the configuration model,
with dynamics given by adding, removing, and switching edges [6].
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Consensus time in the voter model on the Erdős-Rény random graph:
A spectral approach

Anton Klimovsky

(joint work with Thomas van Belle)

Consider a finite non-oriented graph G = (V,E). Let V := [n], n ∈ N be the set of
vertices or agents. Each agent has an opinion from the set of opinions S := V .
Assume for definiteness that at time t = 0 all agents have different opinions, e.g.,
ηi(0) = i, i ∈ V .

Voter model (discrete time). At each time, all agents adopt the opinion of a
random neighbor simultaneously. Denote by ηi(t) ∈ S the state of the i-th agent
at time t ∈ Z+.

Voter model (continuous time). Each agent adopts the opinion of a random
neighbor at rate 1.

Notation. Denote by Vi(t) := {j ∈ V : ηj(t) = i} the set of agents having opinion
i ∈ S at time t ∈ Z+.

Question. How long does it take the voter model to reach consensus?

τcons := inf{t ≥ 0: ∃i ∈ S : Vi(t) = V }.
The answer to the above quantitative question clearly depends on the set of

edges E of the graph.
In this report, we focus on the Erdős-Rény random graph, i.e., G ∼ G(n, pn/

n), where pn > 0, n ∈ N. Recall that in the edge set E of such random graph, the
edges {i, j}, i, j ∈ V , i 6= j are present independently with probability pn/n.

Theorem 1 (Expected consensus time in the connected regime). Let pn := logα n,
α > 1. Then, the consensus time in the voter model (in discrete and continuous
time) on the Erdős-Rény random graph satisfies

E[τcons] = Θlog
P

(n) w.h.p.(1)

where E denotes the expectation w.r.t. the voting dynamics.
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In words: the expected consensus time is of order n (upto polylogarithmic fac-
tors) with high probability w.r.t. the Erdős-Rény randomness.

The proof is based on the well known duality of the voter model with the system
of coalescing random walks. Furthermore, we employ the following reduction to
the meeting time of a pair of random walks on G.

Notation. Denote the meeting time of a pair of independent random

walks (Xt, Yt)t∈Z+ on G by

τi,j := inf{t ≥ 0: Xt = Yt, X0 := i, Y0 := j}, i, j ∈ V,

mi,j := E[τi,j ].

E[τπmeet] := (π ⊗ π)M,

where ⊗ denotes the Kronecker product.

Proposition 1. It holds that

E[τcons] = O(E[τπmeet]).

In discrete time, to compute the meeting time from stationarity, we rely on the
following lemmata.

Lemma 1. Let M = (mi,j)
n
i,j=1. Then,

vec(M) = (In2 − (P ⊗ P )E)−11n2 ,(2)

where In2 is the unit n2 × n2-matrix, 1n2 is the n2-dimensional vector with 1 at
all coordinates,

En2 := 1{i = j}1{i /∈ B}, i, j ∈ [n2],

B := {1, n+ 2, 2n+ 3, . . .}.
Lemma 2 (Spectral formula for the expected meeting time). Let λ1, λ2, . . . , λn2

be the eigenvalues of the substochastic matrix (P ⊗ P )E with

1 > λ1 > λ2 > . . . > λn2 > −1,

and let xky
t
k be the corresponding eigenprojectors. Then,

E[tπmeet] =

n2∑

k=1

1

1− λk
(π ⊗ π)xky

t
k1n2 .(3)

Finally, to compute (3), we represent (P⊗P )E as a small perturbation of P⊗P
and apply perturbation theory to the mentioned eigenvalues and eigenprojectors.
By careful analysis of the terms in (3), we obtain the following.

Proposition 2 (Expected meeting time from stationarity). Under the assump-
tions of the Theorem, it holds that

E[tπmeet] = Olog
P

(n) w.h.p.(4)
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The inhomogeneous contact process on Galton-Watson trees

Natalia Cardona-Tobón, Marcel Ortgiese

The contact process is a simple model for the spread of an infection in a structured
population. The model is described informally as follows. The vertices of the graph
represent individuals that are susceptible to the infection and the edges depict the
connections between them. Each infected vertex passes on the infection to each
neighbour at rate λ and recovers at rate 1.

The behaviour of the contact process depends on the infection parameter λ.
Therefore it is natural to ask when there is a phase transition in this parameter.
For an infinite rooted graph, there are two critical values of interest 0 ≤ λ1 ≤ λ2,
which determine different regimes where the contact process exhibits extinction,
weak survival or strong survival. More precisely, in the extinction phase, for
λ ∈ (0, λ1), the infection becomes extinct in finite time almost surely. In the
weak survival phase, when λ ∈ (λ1, λ2), the infection survives forever with positive
probability, but the root is infected only finitely many times almost surely. Finally,
in the strong survival phase, for λ ∈ (λ2,∞), the infection also survives forever
with positive probability, however in this regime the root is infected infinitely many
times with positive probability.

Recently, Huang and Durret [3] studied the contact process on a (supercritical)
Galton-Watson tree. They showed that for the contact process on Galton-Watson
trees where the root is initially infected, the critical value for local survival is
λ2 = 0 if the offspring number ξ is subexponential, i.e., if E[ecξ] <∞ for all c > 0.
Shortly afterwards, Bhamidi et al. [1] proved that on Galton-Watson trees, λ1 > 0
if the offspring distribution of ξ has an exponential tail, i.e., if E[ecξ] = ∞ for
some c > 0. These two results completely characterize when the contact process
on Galton-Watson trees exhibits a phase transition.

A natural generalization of the contact process is to introduce inhomogeneity
into the model by associating a random fitness to each vertex that influences
how likely the vertex is to receive and to pass on the infection. More precisely,
following [5], we equip each vertex v of the tree with a random initial fitness
Fv. Here, we assume that the family (Fv)v is a sequence of i.i.d. copies of a non-
negative random variable F taking values in [1,∞). In this inhomogeneous contact
process, the infection is passed along an edge with rate given by λ multiplied by
the product of the fitness values of the vertices on either end. We are interested
in understanding the interplay between the inhomogeneous contact process with
the structure of the graph given by the Galton-Watson tree T . We focus on
(supercritical) Galton-Watson trees, since these can be often used to describe
the local geometry of random graphs and standard techniques should apply to
translate our results to random graphs. A natural interest is then to study the
phase diagram of this model and to understand how the extra randomness changes
the characterisation of whether a phase transition occurs or not.

In this talk, we give sufficient conditions on the offspring and fitness distribution
for the inhomogeneous contact process on Galton-Watson trees that either guar-
antee that there is a phase transition or that the process is always supercritical.
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More precisely, we prove that if the root of the tree is initially infected and

(1) E[(1 + cF)ξ] <∞ for some c > 0,

then λ1 > 0, i.e. the process dies out a.s. for λ sufficiently small. On the other
hand, if we assume that ξ and F have unbounded support and

(2) E[(1 + F)cξ] = ∞ for all c > 0,

then λ1 = λ2 = 0, i.e., the process survives strongly for any λ > 0. In particular, we
can see that the fitness of the vertices can have a strong influence on the dynamics:
if heavy-tailed enough the fitness can lead to the loss of a phase transition even if
the standard model would have one.

The proof of the first result showing there is a subcritical phase is based on two
main ideas which we adapt from [1]. First, we use the self-similarity of Galton-
Watson trees to control the expected survival times. To this end, we consider
the contact process on the finite tree TL which corresponds to the restriction of
T to the first L generations. The first goal is to show that, for small enough λ,
the expected survival time of the contact process in this finite tree is bounded
from above uniformly in L. We use a coupling, where we add an extra vertex
only adjoined to the root that is always infected. In this way, the process on
the subtrees rooted in the children of the root can by independence be compared
to the full process on a tree (with extra root) restricted to L − 1 vertices. For
the second part, we prove that the probability that the infection travels deeper
than a given height decays exponentially. The main tool is here to investigate the
stationary distribution of a slowed-down version of the original contact process in
finite Galton-Watson trees and relate it to the extinction time.

For the proof of the non-existence of a phase transition, we follow the general
idea of [4, 3] and first study the contact process on stars, which are vertices with
very high degree and fitness. If such a vertex is infected, then it has a good chance
to remain infected for a long period of time. The strategy to control the probability
that the root is infected at a large time t is to show that there are many stars
sufficiently far enough from the root. Then one has to show that we can push the
infection to these stars quickly. The infection then has a good chance to survive in
one of the subtrees rooted at these stars such that the respective root is infected
at a time just before t. In the final step, we show that these infected stars then
can infect the root again.

Note that there are cases not captured by either of the two conditions (1)
and (2). So a natural question is: can we close the gap? In addition, the as-
sumption that the fitness is bounded from below by 1 allows us to compare our
model with the contact process with constant fitness. This, together with the
monotonicity property is used at various places in the proofs. We believe that it
should be possible to weaken this assumption. Moreover, we are assuming that
E[ξ] < ∞ throughout, which guarantees that the set of infected vertices at every
time is finite a.s. Can we get an explosion if E[ξ] = ∞? Another interesting open
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question is: given a bounded offspring distribution, can we choose the fitness dis-
tribution heavy-tailed enough to not have a phase transition? Finally, is it possible
to extend our results to finite random graphs with a general degree distribution?
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Large deviations for coupled slow-fast systems and
Hamilton-Jacobi-Bellman equations

Richard Kraaij

(joint work with Mikola Schlottke)

We will consider the large deviations of coupled Markovian systems with two-
time scales. The large deviations can arise from two sources: deviations of the
slow process itself, or fluctuations of the large time averages of the fast process,
effectively leading to a competition of two deviation effects.

Arguing via the non-linear analogue of the ”martingale problem approach” that
applies for large deviations of Markov processes, we arrive at a uniqueness problem
for a Hamilton-Jacobi-Bellman equation. We establish a new uniqueness result in
this context, and obtain new large deviation principles as a consequence.
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Links between individual-based models and Hamilton Jacobi
equations in adaptive dynamics

Nicolas Champagnat

(joint work with Sylvie Méléard, Sepideh Mirrahimi, Viet Chi Tran)

Long-term ecological or evolutionary dynamics may be strongly influenced by small
populations and local extinction in particular areas of (physical or phenotypical)
space. Examples are given by spatial invasions and selective sweeps. Another
example was observed in [2] for evolutionary dynamics of bacterial populations
involving horizontal transfer, where the individual-based dynamics appears to be
very sensitive to random survival of small populations, which may either drive the
population to evolutionary suicide or to cyclic dynamics. Our goal is to present
macroscopic population models taking into account the dynamics of negligible
subpopulations and local extinction.

1. Hamilton-Jacobi equation

The model we present here is taken from [1]. We consider the PDE model for the
populations density uε(t, x) for (t, x) ∈ R+ × R

(1) ∂tuε(t, x)=
1

ε

(
r(x)−C

∫

R

uε(t, y)dy

)
uε(t, x)+

1

ε

∫

R

1

ε
G

(
y − x

ε

)
p(y)uε(t, y)dy.

In this model, x may be interpreted as a spatial position or a phenotypic trait.
We shall refer to traits in the sequel. We assume that r(x) = b(x) − d(x) > 0,
where b(x) (resp. d(x), resp. p(x) > 0) is the rate of clonal birth (resp. death,
resp. birth with mutation) of an individual with trait x, G is the mutation kernel,
assumed centered Gaussian, and C is the competition rate. The parameter ε > 0
introduces a time scaling of 1/ε and small mutations of the order of ε.

The Hamilton-Jacobi (HJ) equation is obtained in the limit ε → 0 using the
Hopf-Cole transformation βε(t, x) = ε log uε(t, x): assuming βε(0, x) → β0(x), it
is proved thatβε(t, x) → β(t, x) satisfying

(2) ∂tβ(t, x) = r(x) − CI(t) + p(x)

∫

R

ez·∇β(t,x)G(z)dz,

and I(t) is the limit of
∫
uε(t, y)dy. This convergence is proved in [1] under the

assumption that
∫
uε(0, y)dy is bounded and bounded away from 0. This implies

that
∫
uε(t, y)dy remains bounded and bounded away from 0, uniformly w.r.t. t

and ε, so that, for all t ≥ 0,

max{β(t, x), x ∈ R} = 0.

Together with (2), this property allows to characterize uniquely I(t) in some situ-
ations, for example when argmaxβ(t, ·) = {x∗}, where I(t) = (r(x∗)− p(x∗))/C.

The Hamilton-Jacobi model (2) takes into account negligible population sizes
(when β(t, x) < 0) but not local extinction of populations, since traits with very
small values of β(t, x) can still influence the future dynamics of β. This so called
tail problem also introduce artifacts on the speed of evolutionary branching [8].
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2. Hamilton-Jacobi equation with cutoff

To solve the tail problem, a Hamilton-Jacobi equation with cutoff at a given thresh-
old β < 0 was introduced in [7]:

{
∂tβ(t, x) = r(x) + |∇β(t, x)|2 for all x ∈ Ωt := {x : β(t, x) > β},
β(t, x) = −∞ for all x ∈ Ωc

t ,

where Ωt is the set of living traits at time t. This equation was derived assum-
ing no competition and local mutations ∆uε(t, x) in (1). The analysis of this free
boundary problem is difficult and was only done in specific cases in [7]. In particu-
lar, boundary conditions need to be defined carefully, as a combination of Dirichlet
and state constraint boundary conditions.

The HJ model with cutoff combines negligible populations and local extinction,
but its derivation is not clear from the biological point of view. In particular, the
biological interpretation of the threshold β is unclear.

3. Individual-based model in discrete trait space

To solve the problems of these HJ models, we look for a microscopic, individual-
based justification. The scaling introduced in [6] for directional selection, that
we used later for models with horizontal transfer [5] and that was used in [3] for
models with valleys of negative fitness, is a first step in this direction.

We consider a discretization of the trait space [0, 1] with mesh δ such that
1/δ ∈ N: set X = {iδ, 0 ≤ i ≤ 1/δ}. The population state is described by the
process (NK

0 (t), . . . , NK
1/δ(t)), where NK

i (t) is integer-valued and represents the

number of individuals with trait iδ, and K is a scaling parameter. We define
NK(t) = NK

0 (t) + . . .+NK
1/δ(t). At time t, an individual with trait ℓδ gives birth

to a clone at rate b(ℓδ), dies at rate d(ℓδ) + C
NN

K(t), and gives birth to a mutant
individual with trait (ℓ±1)δ (with probability 1/2, except at the boundary, where
mutation is possible in only one direction) at rate K−α, for α ∈ (0, 1).

Let i0 ∈ {0, ..., 1/δ} and assume NK
i0
(0) = ⌊ r(i0δ)

C K⌋ and NK
i (0) = ⌊K1−|i−i0|α⌋

for all i 6= i0. We define the fitness function S(i; ℓ) = r(iδ) − r(ℓδ) and

βK
i (t) =

log(1 +NK
i (t logK))

logK
, i.e. NK

i (t logK) = KβK
i (t) − 1.

The next result gives the asymptotic behavior of βK
i . It is based on lemmas on the

convergence of βK for branching processes with time varying immigration, and it
can be proved by adapting the proof of [5].

Theorem 1. (βK
i )0≤i≤1/δ converges in probability in L∞

loc
(R+) to a piecewise

affine function (βi)0≤i≤1/δ such that βi(0) = (1− |i− i0|α) ∨ 0 and

β̇ℓ(t)=











0 if ℓ=ℓ∗(t),

max{S(i; ℓ∗(t)), i : βj(t) = βℓ(t) + |ℓ− j|α, ∀ℓ ∧ i ≤ j ≤ ℓ ∨ i} ifβℓ(t)>0,

max{S(i; ℓ∗(t)), i 6= ℓ : βj(t) = βℓ(t) + |ℓ− j|α, ∀ℓ ∧ i ≤ j ≤ ℓ ∨ i} ifβℓ(t)=0,
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where the càdlàg function ℓ∗(t) ∈ {0, . . . , 1/δ} is defined by ℓ∗(0) = i0 and ℓ
∗(t) = j

for all j and t such that j 6= ℓ∗(t−) and βj(t−) = 1.

In the last result, the function ℓ∗(t)δ gives the resident trait at time t in the
limit K → +∞. A jump in ℓ∗(t) corresponds to a change of resident trait. This
result has the same restrictions as the main result of [5]: it actually holds up to
the first time of change of slope in β where there is an ambiguity on the next
slope (see [5]). Changes of slopes either correspond to a change of resident trait
(i.e. a new exponent hits 1), extinction of a trait (i.e. a new exponent hits 0) or
non-negligible mutations coming from a new trait.

In this model, local extinction is possible (when an exponent βj hits 0) and
populations of negligible size are taken into account (they correspond to exponents
βj ∈ (0, 1)). Comparing this model with the HJ equations above, we see that
population and time scalings are the same with ε = 1/ logK, but a scaling of rare
mutations is applied in place of small mutations. The maximum of β is 1, and the
threshold is β = 0. This suggests to introduce a new scaling with small mutations.

4. Individual-based model with vanishing grid mesh

This is work in progress. The next result is obtained in [4]. We modify the previous
individual-based model by removing competition, assuming that the trait space
[0, 1] has periodic boundary conditions, i.e. is the one-dimensional torus T, and the
grid mesh δK converges to 0 when K → ∞, so XK = {iδK : 0 ≤ i ≤ 1/δK−1}. We
define hK = δK logK and assume that an individual with trait ℓδK gives birth to
a clone at rate b(ℓδK), dies at rate d(ℓδK), and gives birth to a mutant individual
with trait jδK at rate p(ℓδK)hKG(hK(j− ℓ)) (assuming without loss of generality
that δK |j − ℓ| ≤ 1/2 by considering jδK as an element of the torus T). We also
assume that b, d and p are Lipschitz functions, that NK

i (0) ≥ Ka for some a > 0

and that K−a/4+ε ≤ δK for some ε > 0 and hK → 0 when K → ∞. For all x ∈ T

and t ≥ 0, setting iK as the integer such that x ∈ [iKδK , (iK + 1)δK), we define

β̃(t, x) = βK
i (t)

(
1− x

δK
+ iK

)
+ βK

iK+1(t)

(
x

δK
− iK

)
.

We finally assume that |βK
i (0) − βK

j (0)| ≤ CδK |i − j| for all i, j,K and that

β̃K(0, x) → β0 for the uniform norm.

Theorem 2. Under the previous assumptions, for all T > 0, β̃ converges to the
unique viscosity solution of (2) (with C ≡ 0) such that β(0, x) = β0(x), for the
Skorohod topology on D([0, T ], C(T)), where C(T) is the set of real, continuous
functions on T.

The proof of this result makes use of uniform Lipschitz bounds on the finite vari-

ation part of β̃K , obtained using an almost sure maximum principle. The identi-
fication of the limit is done by checking that it is almost surely viscosity solution
of (2). We expect, when introducing competition in the model, that local extinc-
tion will occur as in the previous section, leading to versions of the HJ equation
with cutoff with clearer biological interpretation.



624 Oberwolfach Report 12/2022

References

[1] G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or
integral equations: a general convergence result, Methods and Applications of Analysis
16(3) (2009), 321–340.

[2] S. Billiard, P. Collet, R. Ferrière, S. Méléard and V.C. Tran, Stochastic dynamics for adap-
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Random walks on simplicial complexes for exploring networks

Viet Chi Tran

(joint work with Thomas Bonis, Laurent Decreusefond, Zhihan Zhang)

Understanding complex structures such as random graphs is a difficult and rich
problem that has motivated an abundant literature in the last years. A first natural
step when facing large graphs is to look for clusters or community structures, that
is a partition where the connectivity inside a class is higher than the connectivity
between classes (this is illustrated in Fig. 1(a-b)). There are several ways of
doing this, among them spectral clustering [7, 8], which exploits the link between
the topology of the graph and nearest neighbor random walks on it, i.e. Markov
processes that visit the vertices by jumping from their current position v to a
neighbor chosen uniformly at random. Exploring networks by random walkers is
an old and successful idea: think of the PageRank algorithm [4] that uses invariant
measures of random walks to highlight central nodes of graphs, or of the commute
distance between nodes that correspond to the expected time for a random walker
to travel between these nodes and that has been used e.g. for graph embeddings,
semi-supervised learning or clustering (see the introduction of [9]).

The reason why random walks on graphs are so tightly linked to the connectiv-
ity structure of the graph can be found in their generators. Consider a finite
non-oriented graph G = (V,E) consisting of the set of vertices V and edges E
determining the pairs of vertices that are connected. In all this note, we will con-
sider V as a set of finite (possibly large) cardinality. The adjacency matrix A of
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G is defined as the matrix whose entry at line u and column v is 1 if and only if
{u, v} is a edge of G, which we will denote by u ∼ v. For any u ∈ V and for any
function f from V to R, the generator L of the random walk is

(1) L0f(u) =
∑

v∼u

(
f(v)− f(u)

)
= −

(
D −A

)
f(u) = −L0f(u),

where D is the diagonal matrix containing the degrees of the vertices and where
L0 = D − A is the graph Laplacian. This Laplacian contains information on
the connectivity structure of the graph: for instance, the dimension of its kernel
is equal to the number of connected components of the graph and spectral clus-
tering has exploited the fact that small eigenvalues indicate almost disconnected
components.

(a) (b) (c)

Figure 1. (a)-(b): Clustering of the graph of sexual connections

among seropositive HIV individuals in Cuba from [2]. (a) represents

the raw data and (b) the same data where vertices are grouped by clus-

ters. (c): Data with a circular structure.

But connectivity is only a fraction of the topological information contained in
complex structures: for the circular-like graph presented in Figure 1(c), it is not
clear how to highlight the circular structure of the graph automatically. Edges
represent pairs of vertices that are connected, but to account for other clique
sizes, it is natural to add higher dimensional objects in the structure: triangles
for triplets of connected vertices, tetrahedrons for cliques of order 4 etc. This
gives rise to the Rips-Vietoris simplicial complex associated to the graph. More
generally, a simplicial complex C is a collection of k-simplices (unordered subsets
{v0, . . . vk} of k+1 vertices, edges being 1-simplices and triangles 2-simplices) with
a hierarchical constraint: if a k-simplex {v0, . . . vk} belongs to C, so do all its faces
(the ℓ-simplices with ℓ ≤ k and composed of ℓ+1 vertices of {v0, . . . vk}). To keep
things clear in this short note, we will focus on simplicial complexes containing
only simplices up to the dimension 2: vertices, edges and triangles. If a triangle
belongs to C, so do all its edges and vertices.

It is already known that the graph Laplacian L0 is a specific instance of the more
general combinatorial Laplacian, introduced by Eckmann [3], and given below for
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the dimension 1. In a similar way that the graph Laplacian contains information
regarding the connectivity of the graph, these combinatorial Laplacians describe
the structure of the homology groups of the simplicial complex and are related
to the concepts of homology classes and Betti numbers (no notion of homology is
needed for the reader here). Since the generator of random walks on G is equal to
the opposite graph Laplacian, it was proposed in [5, 6] to define random walks on
C with generator equal to the opposite of the combinatorial Laplacian. However,
since the combinatorial Laplacian is defined as a sum of two operators, called
up-Laplacian and down-Laplacian, these authors propose two different random
walks. But then it is not clear how to generalize algorithms for graph analyses. For
instance, since each of the two random walks is associated with a different invariant
measure, which one should be preferred to obtain an equivalent of PageRank for
simplicial complexes?

In a work in progress [1], we propose to define a random walk on a simplicial
complex in a totally different way. Since both up- and down-Laplacian have the
same spectrum with eigenvectors that are related, we focus on the up-Laplacian.
Recall that we consider here a simplicial complex C of dimension 2 for the sake
of simplicity, in which case our random walk is a cycle-valued random walk, that
we denote in the sequel (Xt)t∈R+ . For u, v, w ∈ V , we define by [u, v] the oriented
edge from u to v and by [u, v, w] the oriented triangle, whose orientation is defined
by the orientation of its edges ([u, v], [v, w] and [w, u]). The set of oriented edges
(resp. of triangles) is denoted by E+ (resp. T ). We defined the space of chains as
the span of E+:

C1 =
{ ∑

[u,v]∈E+

λ[u,v] × [u, v], with ∀[u, v] ∈ E+, λ[u,v] ∈ R

}
.

Because the number of edges is here finite, the space C1 inherits of a natural Hilbert
structure. Its dual C1 is the space of linear forms on C1 and both spaces can be
identified, so that for f ∈ C

1 and σ ∈ C1, we can use the notation f(σ) = 〈f, σ〉.
The boundary map ∂ is defined for edges by ∂[u, v] = v − u, and for triangles by
∂[u, v, w] = [v, w] − [u,w] + [u, v]. The latter map can be extended into a linear
application to chains. The adjoint application ∂∗ is the co-boundary map.

Our random walk (Xt)t∈R+ is a continuous time Markov chain whose state space
consists of oriented cycles of the graph (i.e. chains σ ∈ C1, such that ∂σ = 0). The
dynamics is as follows. Given the current state σ, we consider all the triangles that
are adjacent to σ (i.e. that share at least an edge with the cycle). The jump rate
is the number of these triangles, weighted by the number of their edges common to
σ. When there is a jump, say at time t, we chose randomly one of these triangles,
say τ , with a probability proportional to the number of their edges common with
σ and the Markov chain jumps from Xt− = σ to Xt = σ − ∂τ . Heuristically this
deletes the common edges and replaces them with the other edges of the triangle.
For example in Fig. 1(c), starting from the circle, we delete the edge adjacent to
the triangle and replace it with the two other edges. The state remains a cycle.

More precisely the generator of this random walk is:
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(2) L1f(σ) =
∑

τ∈T

(
f(σ − ∂τ)− f(σ)

)
〈∂τ, σ〉+,

where x+ denotes the positive part of x and 〈∂τ, σ〉 corresponds to the number of
edges that τ and σ have in common (with a sign corresponding to the orientation).
When f is a linear function,

(3) L1f(σ) =
∑

τ∈T

−f(∂τ)〈∂τ, σ〉+ = −
〈
∂∗f,

∑

τ∈T

τ〈∂τ, σ〉+
〉

= −
〈
∂∗f,

∑

τ∈T

τ〈τ, ∂∗σ〉+
〉
= −〈∂∗f, ∂∗σ〉 = −〈∂ ◦ ∂∗f, σ〉 = −L↑1f(σ),

where L↑1 = ∂ ◦ ∂∗ is the up-Laplacian of order 1 of C that acts on C
1. We have

thus defined a continuous time Markov chain (Xt)t∈R+ whose generator on linear

forms coincide with the up-Laplacian −L↑1. Now a classical question is whether
this Markov chain is transient or recurrent. A difficulty is that the cycle can have
loops: even if the number of vertices is finite, the state space C1 is infinite.

Theorem 1 (see [1]).
(i) The number of recurrence classes of (Xt)t∈R+ is equal to the Betti number β1
that counts the number of holes in the simplicial complex C.
(ii) Given any initial condition X0 =

∑
e∈E+ λe × e in C1 such that ∂X0 = 0 (X0

is a cycle) and ‖X0‖2 :=
∑

e∈E+ λ2e < +∞, the Markov chain (Xt)t∈R+ is positive
recurrent on the communicating class of X0 and admits an invariant measure π
such that

∫
C1

‖σ‖2 dπ(σ) < +∞. �

The first point results from the construction of (Xt)t∈R+ whose state space
consists of 1-dimensional objects in the kernel of the boundary map ∂ (cycles) and
which uses images of 2-dimensional objects (triangle) by the boundary map to
move. By this construction, recurrent classes correspond to equivalence classes of
the first homology vector space H1 and thus their number is the Betti number β1.
The proof of (ii) uses the fact that σ ∈ C1 7→ ‖σ‖2 defines a Lyapunov function for
L1. For the usual random walk that jumps from vertices to neighboring vertices,
the invariant measure puts weights on vertices u ∈ V that are proportional to their
degrees. Such result is not true any more for higher dimensions.

Further properties of (Xt)t∈R+ , in particular diffusive limit theorems in the case of
geometric graphs, are investigated in [1], with the purpose of giving a probabilistic
foundation, via random walks, of combinatorial Laplacian operators and of the
Betti numbers.
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Peierls bounds from Toom contours

Jan M. Swart

(joint work with Réka Szabó and Cristina Toninelli)

In 1980, Andrei Toom [3] proved his celebrated stability theorem, which says that
the upper invariant law of a cellular automaton on the d-dimensional integer lattice
is stable under small random perturbations if and only if the automaton is an
eroder, which means that the unperturbed system started with finitely many zeros
returns to the all-one state after a finite number of steps. In 1999, Lawrence Gray
[1] proved sufficient, but not necessary conditions for the stability of the upper
invariant law of monotone interacting particle systems. At the heart of Toom’s
proof lies an intricate Peierls argument. In the talk, I explained a reformulated
and extended version of this argument that can be used to derive lower bounds on
the density of the upper invariant law for a variety of systems, including systems
with intrinsic randomness and some interacting particle systems.
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Modeling the dynamics of transposable elements

Peter Pfaffelhuber

(joint work with Anton Wakolbinger)

Transposable elements were discovered in the 1940s and are today known to be
responsible for a variety of phenotypes [1]. However, only today, sequencing ca-
pacities are capable to find TEs in whole genomes, and modeling the dynamics of
TEs is lagging behind some 40 years. In this talk, I present two new models for the
evolution of TEs. This abstract covers one of these two, which is mathematically
novel and interesting.

Consider a population of size N , where each individual carries k = 0, 1, 2, ...
TEs. We follow the bi-parental Moran model (see e.g. [2]) for reproduction. This
means that every individual dies at rate N/2, and is replaced by a child of two
randomly chosen parents. If they have k and l TEs, each TE is inherited with
probability 1/2 to the child. Denoting by XN

k (t) the frequency of individuals
carrying k TEs at time t, we aim at a weak limit for XN = (XN

k )k=0,1,2,... as
N → ∞. Let us introduce some notation and then formulate the result.

For probability measure x ∈ P(N0), the expectation is given by

v(x) :=

∞∑

k=0

kxk.

In addition, for x ∈ D(P(N0)) (where D(.) is the set of cadlag paths), the occupa-
tion measure is given by

Γx([0, t]×A) :=

∫ t

0

1x(s)∈Ads.

Theorem 1 (P., Wakolbinger, 2022+). Let v(XN(0)) ⇒ z < ∞ as N → ∞ and
assume that the second moments of XN (0) are bounded. Then,

(v(XN ),ΓXN ) ⇒ (Z,Γ),

where

dZ =
√
ZdW, Z0 = z,

and Γ is concentrated on Poisson distributions.

In order to get an idea why this should be true, note that the Poisson distribu-
tion is the unique fixed point to the operation of taking two independent copies
and subsequently thinning with probability 1/2. Here are two more ideas:

(1) Every TE in the population at time t originates from some TE at time 0.
However, there is a multitude of individuals where the TE might have come
from, all of which have a small probability of having inherited the focal
TE. This already gives a heuristic of the Poisson distribution at time t.

(2) Consider a single TE in any individual at time 0. If its host dies, it dies
as well. However, if its host reproduces (which happens at rate N , it has
a chance of 1/2 to be inherited to the offspring, i.e. splits in two at rate
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N/2. So, every TE performs a critical branching process, and since there
are many TEs at time 0, all of which are approximately independent, the
rescaled sum of TEs converges to a Feller branching diffusion.
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Convergence of multitype Bienaymé-Galton-Watson processes
conditioned on the sizes by types

Osvaldo Angtuncio–Hernández

(joint work with Sandra Palau Calderón)

Multitype Bienaymé-Galton-Watson forests (MGW forests) serve to model the
genealogical evolution of random populations, whenever there are different types
of individuals coexisting. Such forests have plenty of applications, for example
in biology, demography, genetics, medicine, epidemics, and language theory (see
[8, 9, 7]). Multitype random forests also give rise to a rich probability theory, for
example in the field of continuum random forests. When the progeny distribution
has a finite variance, Miermont [10] proved its convergence to the Continuum Ran-
dom Tree constructed by Aldous (see also [2]). This convergence unveils natural
questions, as well as poses open problems regarding the convergence of the forests:

Conjecture. There exists the limit of a multitype Bienaymé-Galton-Watson for-
est conditioned with the number of sizes of each type, under certain conditions on
the offspring distribution.

We propose to call such object as the multitype Lévy forest, and we also con-
jecture that this limit can be described as a marked metric measure space. Even
that we do not define such limit, in this work we obtain several quantities related
to it.

Conditioning a MGW forests also provides us with many theoretical applica-
tions. There are several ways to condition such a forest leading to a generalization
of the so-called Kesten’s infinite tree [11], as well as the Q-process. Pénisson [12]
proved that critical MGW forests conditioned on a special proportion of its total
progeny converges locally to a MGW forest under some moment condition. An-
other conditionings (differently to non-extinction in the near future) were given in
[12], like the process reaching a positive threshold or a non-absorbing state. This
also has applications to random maps.

We describe the asymptotic behavior of the generation sizes of MGW, condi-
tioned on the number of sizes of each type. The model is described as follows.
Consider d ∈ N, which represents the number of different types in the multitype
forest. The offspring distribution is given by a set of measures νi on Z

d
+ such that

νi(k1, . . . , kd) describes the probability of an individual type i to have kj children
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of type j. Fix r = (r1, . . . , rd) and n = (n1, . . . , nd) in Z+, which are the num-
ber of roots of each type and the number of vertices of each type in our forest.
The conditioned multitype Bienaymé-Galton-Watson forest F (CMGW, for short)
with roots r and sizes by types n, is a multitype Bienaymé-Galton-Watson forest
conditioned on having ni individuals of type i. We consider the following three
quantities of interest.

(1) The total population by sizes of a MGW forest, which is the random vector
representing the total size of each type.

(2) The breadth-first walk X of the forest F , which codes the complete geneal-
ogy of the whole population.

(3) The profile and cumulative profile of the forests, which code the number
of individuals for each type in each generation.

In the discrete case, he first was obtained in [1], the second in [6] and the last one
in [4]. We consider a sequence of CMGW forests such that the number of roots and
sizes of each generation goes to infinity, and completely describe the above three
random quantities in the limit. Our result generalizes the Otter-Dwass formula,
the paper [5] about the convergence of the breadth-first walk in the unitype case,
and the convergence given in [3]. It is important to remark that, even thou we do
not characterize the limit of the forests, we can still describe its size for each type,
breath-first walk, profile and cumulative profile. Another point to emphasize of
our approach, is that even that one can characterize the convergence of the discrete
forests, this does not imply the convergence of the profile or cumulative profile.
Hence, our result its important in its own. Finally, using our results, we conjecture
the following.

Conjecture. The limit of the profile of a uniform multitype forest with a given
degree sequence exists, and can be described as a solution to the Lamperti trans-
form, as in [3].
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[4] L. Chaumont, Breadth first search coding of multitype forests with application to Lamperti

representation, In memoriam Marc Yor—Séminaire de Probabilités XLVII (2015).
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Coalescent point process for branching trees in varying environment

Airam Blancas

(joint work with Sandra Palau)

Let Q := (qm,m ≥ 1) be a sequence of probability measures on N0. A Galton
Watson process (Zm,m ≥ 0) in varying environment Q, for short GWVE, is a
discrete time Markov chain starting at Z0 = 1 such that

Zm+1 =

Zm∑

i=1

ξ
(m)
i , m ≥ 0,

where (ξ
(m)
i , i ≥ 1) is a sequence of i.i.i.d. random variables such that

P(ξ(m) = k) = qm+1(k), k ≥ 1.

GWVE have been used to model a population of individuals evolving in discrete
time generations such that individuals at the same generation reproduce inde-
pendently and according with a distribution characterized by the environment.
Similar to the study of constant environment Galton Watson process, the prob-
ability generating function of the offspring distribution plays an important role.
Let denote by fm, the probability generating function of ξ(m) and

fm,n(s) := fm+1 ◦ · · · ◦ fn(s), 0 ≤ m < n, s ∈ [0, 1]

with the convention of fn,n(s) := s. By the branching property (see [1]), it is
possible to prove that

E(sZm | Z1 = 1) = f1,m(s), | s |≤ 1, m ≥ 1.

Therefore, if we have one individual at generation 1, the survival probability up
to generation m is

P(Zm = 0 | Z1 = 1) = f1,m(0).

This implies that 1−f1,m(0) is the probability that an individual from generation 1

has alive descendants at generationm. Hence ζ(m), the total number of individuals
from generation 1 with alive descendants at generation m is distributed as follows

(1) ζ(m) L=

ξ(0)∑

i=1

ǫi,

where ǫi are i.i.d.r.v. Bernoulli(1−f1,m(0)) and independent of ξ(0). In the follow-

ing we are interested in the random variable η(m) defined as ζ(m) − 1 conditional
on {ζ(m) 6= 0}.
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We now take a sample of individuals at the present generation of a GWVE.
In the same spirit of [2], our aim is to describe its genealogical tree, backwards
in time. In this direction, we are viewing the population from the present to the
past, so that, individuals are labeled with a pair (m, i) ∈ Z− ×N. By convention,
individuals at present are labeled with (0, i), or simply by i. To be precise, we
consider a Galton Watson tree in varying environment, say E = (e0, e−1, e−2, . . . ),
such that edges do not cross. See Figure 1.

The straightforward manner to reconstruct backwards in time the genealogy of
individuals is by considering Ai, the coalescent time of individuals i and i+1. See
Figure 1. The problem is that the distribution of A := (An, n ≥ 1) is difficult to
characterized and in general is not Markovian.

i Ai Di(n) Bi

1 1 {1, 2, 0, 1, 1, . . .} (1)
2 2 {0, 2, 0, 1, 1, . . .} (0, 2)
3 1 {1, 1, 0, 1, 1, . . .} (1, 1)
4 2 {0, 1, 0, 1, 1, . . .} (0, 1)
5 1 {2, 0, 0, 1, 1, . . .} (2, 0)
6 1 {1, 0, 0, 1, 1, . . .} (1, 0)
7 4 {0, 0, 0, 1, 1, . . .} (0, 0, 0, 1)
8 3 {0, 0, 1, 0, 1, . . .} (0, 0, 1, 0)
9 5 {0, 0, 0, 0, 1, . . .} (0, 0, 0, 0, 1)
10 1 {1, 0, 0, 1, 0, . . .} (1, 0, 0, 1, 0)
11 4 {0, 0, 0, 1, 0, . . .} (0, 0, 0, 1, 0)

Figure 1. A Galton-Watson tree in varying environment and its pro-
cesses (Ai, i ≥ 1), (Di, i ≥ 1) and (Bi, i ≥ 1). The spine of individual
1 is represented with the dotted line. We use a solid line to highlight
the subtrees attached to the 1-spine, whose descendants are alive at
the present generation. The length of the vector Bi is the height of the
subtree attached to the 1-th spine that contains individual i+ 1.

Then, for every i ≥ 1, we define an auxiliary process D := (Di(n), n ≥ 1),
taking values in the sequences such that Di(n) is the number of children beget
by the ancestor of individual i at generation −n, with descendants living at the
present and located at the right hand side of its ancestral line. It follows that

Ai = min{n ≥ 1 : Di(n) 6= 0}.
and D reconstructs the individuals genealogical tree. However, it has a lot of
repetitive information, see Figure 1.

We propose to define a vector-valued process B := (Bi(n), n ≥ 1) by taking
only li entries on the sequence Di. To be precise, we recursively define the length
of the vectors in Bi, by l0 = 0 and

(2) li = li−1 ∨min{n ≥ 1 : Di(n) 6= 0}.
Then,

(3) Bi(k) := Di(k), 1 ≤ k ≤ li,

with the convention of B0 = ∅.
Observe that li = A1 ∨ · · · ∨ Ai. Hence li = n if and only if, i + 1 is a

descendant of the ancestor of individual (0, 1), at generation −n. Let us now
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turn to determine the transition probability from Bi = (b(1), . . . , b(ℓ)), to Bi+1 =
(Bi+1(1), Bi+1(2), . . . , Bi+1(li+1)).

Due to individual i+1 is not located at the right hand side of its ancestral line,
our first observation is that

Bi+1(m) = Bi(m)− 1, m = Ai.

Besides, individuals i and i + 1 coalesce at generation −Ai. Thus the ancestral
line of individual i and i+ 1 is the same for m > Ai. This implies

Bi+1(m) = Bi(m), Ai < m ≤ ℓ.

It remains to analyze the case 1 ≤ m < Ai. Observe that individuals i + 2, i +
3, . . . could coalesce with i + 1, at generation −m ∈ {−1, . . . ,−Ai + 1}. In this
case, the subtree starting at the ancestor of individual i + 1 at generation −m
is a GWVE tree with environment (e−m+1, e−m+2, . . . , e0) conditioned to survive
m generations. By recalling the definition of Bi+1(m) and (1), we obtain that
Bi+1(m) is distributed as η(m) with environment (e−m+1, e−m+2, . . . , e0).

An important observation is the following. If i is the last individual at the
right hand side of the subtree with root the ancestor of the 1-spine at generation
−ℓ. Then Bi+1(n) = 0 for n = 1, . . . , ℓ. This means that individuals 1 and i + 2
coalesce at m > ℓ. According with (2) and (3), m is exactly li+1. Moreover, with
environment (e−m+1, e−m+2, . . . , e0)

Bi+1(m) = η(m), ℓ ≤ m < li+1.

Roughly speaking we have proved the following result.

Theorem 1. The vector-valued process (Bi, i ≥ 0) is a Markov chain with B0 = ∅.
Conditionally on the event {Bi = (b(1), . . . , b(ℓ))}, the law of the vector Bi+1 =
(Bi+1(1), Bi+1(2), . . . , Bi+1(li+1)) is given by the following transition probabilities

Bi+1(m) :=





η(m) if 1 ≤ m < Ai or ℓ < m ≤ li+1

b(m)− 1 if m = Ai

b(m) if Ai < m ≤ ℓ,

where (η(m),m ≥ 1) is a sequence of independent random variables each of them
as in (1) with environment (e−m+1, e−m+2, . . . , e0), and

(4) li+1 = ℓ 1{B∗

i
6=0} + (ℓ ∨ ℓ†)1{B∗

i
6=0},

where 0 is the vector zero with ℓ-coordinates,

B∗i (j) = Bi(j)− 1{j=Ai}, j ≤ ℓ,

and

ℓ† = min{k ∈ {1, 2, . . . , Ai − 1} ∪ {ℓ+ 1, ℓ+ 2, . . . } : η(k) 6= 0}.
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Interacting particles diffusing in spatially heterogeneous system

Lea Popovic

(joint work with Amandine Véber)

There are many applications (in biology and physics) where particles of differ-
ent types interact and move in a heterogeneous space. Models combining spatial
dynamics and interactions can be made at different levels of detail using both
deterministic and stochastic objects. We propose to analyze a novel measure val-
ued process which models the behaviour of interacting particles in a continuous
space that captures the heterogeneous aspect of both the reaction dynamics and
the movement in space. Our framework is motivated by the need to model com-
plex intra-cellular reaction networks in spatially heterogeneous systems, but can
be used to model other biological processes, such as ecological competitions, epi-
demic dynamics, and some population genetic processes. In recent years, tractable
continuous space stochastic models of movement and interaction of different types
of individuals in a heterogeneous environment have been developed in evolution
and ecology (e.g. [1, 2, 3]), and our framework [4] includes and extends such mod-
els to more general interaction rates as we allow any finite number of source and
product species.

Specifically, our framework models interaction dynamics between different
molecular species and continuous movement of molecules in space as follows: inter-
action rates at a spatial location are proportional to the mass of different species
present locally and to a location specific interaction rate, which may be a function
of the local or global species mass as well; movement of species is independent of
each other following Markovian evolution (e.g. a diffusion reflected at the bound-
ary) and may be a function of the type of species. The distribution of the overall
species population in type and space is represented by a random measure, and
allows us to consider its scaling limits under various scenarios of different species
abundances, and different movement speeds.

In this talk we explained how we can obtain asymptotic limits for the pro-
cess, with appropriate rescaling depending on the abundance of different molecular
types. When the mass of all species scales the same way we get a deterministic
limit, whose long-term behaviour depends on the mobility of types and localization
of reactions. On the other hand, when the mass of some species in the scaling limit
is discrete while the mass of the others is continuous, we obtain a new type of spa-
tial random evolution process. This process can be shown, in some situations, to
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correspond to a measure-valued piecewise deterministic Markov process in which
the discrete mass of the process evolves stochastically, and the continuous mass
evolves in a deterministic way between consecutive jump times of the discrete part.

We highlighted the novelty of the multi-scale measure-valued limit objects, and
illustrated how they can capture dynamical phenomena not captured by other
limits of the same systems (e.g. stochastic oscillations in a simplified version of the
self-regulated protein transcription-translation system). We also mentioned the
connection with multi-type branching process with diffusion, as plans to quantify
error rates in the obtained asymptotic limits.
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Invasion of cooperative parasites in moderately structured
host populations

Cornelia Pokalyuk

(joint work with Vianney Brouard)

My talk was mainly based on results elaborated in the preprint [4] and concern
invasion probabilities of cooperative parasites in moderately structured host pop-
ulations. The primary motivation of this study stems from observations of phage
populations. Phages are viruses infecting bacteria. They are the most abundant
biological entity. In particular, there exist plenty of phages attacking bacteria
which are pathogenic for humans or farm animals. The interest in phages has
been growing in recent years, as multi-drug resistance bacteria prevail over more
and more. As an alternative to antibiotics at phage therapy the infected host
is inoculated with a population of phages to eliminate the pathogenic bacterial
population [8].

Bacteria own various defense mechanisms against phages, one of these is
CRISPR-Cas. Some phages can block CRISPR-Cas with mechanisms called anti-
CRISPR (ACR). Phages can only profit from ACR when cooperating [6]. Indeed,
when a CRISPR-resistant bacterium is attacked by a single ACR-phage, the phage
often dies, whereas when several phages attack a bacterium simultaneously or sub-
sequently, they have a good chance to replicate [2], [6].

The models that have been investigated so far to understand the underlying
growth dynamics of ACR-phages and CRISPR-resistant bacterial populations are
deterministic models that map the behavior of well-mixed phage and bacterial
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populations [6]. In these models one starts with a relatively large phage population,
for which simultaneous or rapid subsequent attacks of phages are likely.

Here we consider the situation when an ACR-phage just enters a CRISPR-
resistant bacterial population and ask if the phage manages to invade the bacterial
population, in the sense that a non-trivial proportion of the bacterial population
gets infected and subsequently killed by the phages. In this setting stochastic
effects cannot be ignored.

Even though the motivations of this project come from phages, we think that our
results might be also relevant in other contexts. For example it is believed that the
infection of cancer cells with oncolytic viruses, that is viruses that attack cancer
cells, is more effective, if cancer cells are hit by several viruses simultaneously,
because in this manner the virus can cope better with the (interferon-based) anti-
viral response of the host, see [7]. Also in the context of opinion dynamics similar
scenarios have been analyzed, when one assumes that people are more likely to
adopt and spread an opinion after repeated exposure [5]. In order to put our study
into a general context in the following we will consider instead of a population of
phages and bacteria a population of cooperative parasites and hosts.

To model the infection dynamics we assume that hosts occupy the vertices of
a random graph that is build according to the configuration model, and offspring
parasites attach to neighboring hosts. If the host population is well-mixed, off-
spring numbers of parasites need to be very large for simultaneous infections of
neighboring hosts to be likely. However, many host populations are spatially struc-
tured, e.g. bacteria in biofilms, see [9]. In this case hosts are only adjacent to a
relatively small part of the host population and co-infections of hosts are common
even when offspring numbers of parasites are moderate. Consequently, invasion
of parasites should be more likely in spatially structured host populations than in
well-mixed populations. We assume that each host is neighbored by dN hosts with
dN ∼ Nβ for some 0 < β < 1, in particular this implies that from any host many
other, but not all hosts are reachable (in contrast to the well-mixed setting).

Initially a single host gets infected by a parasite and vN offspring parasites are
produced. Thereafter the populations evolve in discrete generations. At the begin-
ning of each generation parasites move randomly to neighboring hosts. Whenever
a host gets attacked by at least two parasites the parasites reproduce. If a host
gets infected only by a single parasite, the infection is successful only with some
small probability ρN . At parasite reproduction vN parasites are generated. For
0 < u ≤ 1 denote by Eu

N the event that at least a proportion u of the host popu-
lation (of size N) gets successfully infected by a parasite. We have the following
classification of the invasion probability.

Theorem 1. Let 0 < u ≤ 1 and assume limN→∞ ρNvN = x for some 0 ≤
x ≤ 1. Denote by ppois the survival probability of a Galton-Watson process with
Pois(c2/2 + x)-offspring distribution.

• Assume vN ∼ c
√
dN for some c > 0. Then

lim
N→∞

P(Eu
N ) = ppois.
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• Assume vN ∈ o(
√
N)

lim
N→∞

P(Eu
N ) = ppois.

• Assume
√
dN ∈ o(vN )

lim
N→∞

P(Eu
N ) = 1.

To proof this theorem we explore the spread of the parasite population within
the host population (guided by the analysis of epidemics on random graphs, see [3],
Part III, as well as [1]) with couplings with (truncated) Galton-Watson processes
until Nα hosts get infected for some α > 0 sufficiently large. In this phase the
invasion process is essentially driven by pairs of parasites originating from the same
vertex and attacking neighboring hosts simultaneously as well as single parasite
successfully attacking a host alone (in the case x > 0). Once the number of infected
hosts per generation exceeds the level Nα, with high probability in a finite number
of generations the remaining hosts get infected due to parasites attacking hosts
simultaneously from different edges. Hence, the invasion probability of the parasite
population, that is the probability that the host population eventually gets killed,
is in the critical scale vN ∼ c

√
dN asymptotically equal to the survival probability

of a Galton-Watson process with an offspring distribution that is given by the sum
of independent Pois(c2/2) and Pois(x)-distributed random variables.

We suggest that also under certain relaxed assumptions our results still hold,
see [4], Remark 2.4 for details. However, the genuine spatial setting, in which
the host population is distributed over a 2- or 3-dimensional space, is still largely
open.
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Stochastic models coupling the evolution of genomes and species

Amaury Lambert

(joint work with Emmanuel Schertzer, Félix Foutel–Rodier, Anton Crombach,
Julie Marin, Hélène Morlon)

The phylogeny of a group of species is a tree summarizing the evolutionary re-
lationships between these species. The phylogeny, also called species tree, is not
always uniquely defined due to occasional hybridization between species (evolu-
tionary relationships between species can be described by a network which is not
really tree-like) and to the protracted character of speciation (splitting events
corresponding to the nodes of the phylogeny are not really instantaneous). On
the contrary, the DNA sequences of a (small chunk of) gene sampled in each of
these species have a unique, well-defined genealogy. However, the genealogies of
genes, even sampled from distantly related species, are usually different at differ-
ent genes, and (so) distinct from the phylogeny. Gene genealogies can differ both
in terms of edge lengths and in terms of shape, sometimes called ‘topology’ in
the phylogenetic literature. This well documented phenomenon is notably due to
recombination (different genes have different histories), to deep coalescences (gene
lineages in species with large or spatially spread out populations take time to co-
alesce) and to hybridization (genes can have a different history from the species’).
Of course, there is a limit to the discrepancy between gene trees, because if their
evolutionary histories were too different, they would have diverged too much to
find themselves in the same genome today. From a mathematical viewpoint, this
begs the question of characterizing exchangeable, but not i.i.d., vectors of random
trees.

A popular model coupling gene trees with a species tree is the ‘multispecies
coalescent’ where the species tree is given (and sometimes the unknown to be
inferred) and conditional on the species tree, gene trees are independent and follow
the same distribution. This distribution is that of the coalescent confined in the
species tree. In words, following the lineages ancestral to a present-day gene
backwards in time, these lineages remain included in the ancestral edges of the
species tree and each pair of lineages independently coalesces at constant rate while
in the same edge of the species tree. This model is widely used in phylogenetic
reconstruction, e.g. to infer the species tree from the gene trees. The underlying
consideration of this approach is that the discrepancy between gene trees is a
nuisance and that evolutionary relationships between species can be summarized
by one single tree, erasing the additional information carried by the disagreeing
genes. On the contrary, I believe that this information contains a lot of statistical
signal about the entangled history of the diversification process. In recent years, I
have started a research program seeking to devise innovative models coupling gene
trees and capable of retrieving this signal.

As a first step (and for the sake of beautiful mathematics rather than to advance
the previous question), my collaborators and I have characterized nested random
trees (one gene tree inside a species tree) [3, 5] and studied some of their properties,
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like the behavior of the nested trees with infinitely many leaves in the species
tree [4, 7]. We have also investigated individual-based models of speciation in
order to understand how the spontaneous differentiation of populations and their
homogenization by gene flow/colonization shape the turnover of species and genes,
notably in the following three models. In each of these models, we consider a
dynamic metapopulation, that is, a collection of populations, that can become
extinct or replicate into a new population (extinction-recolonization), their total
number growing steadily or remaining constant (to some large integer N):

(1) The split-and-drift random graph [2] is the stationary state of the dynamic
graph where edges between populations embody their ability to interbreed:
these edges vanish at constant rate and upon a recolonization event, the
daughter population draws an edge to its mother and to its mother’s neigh-
bors.

(2) Each population (assumed monomorphic) contains a genome of n genes
that is replicated upon recolonization; gene flow between populations is
modeled by introgression events whereby one single gene of the donor
genome replicates and replaces its homologous copy in the target genome.
Then in the large N limit, the history of one single genome sampled at
present time, as time goes backward, is an exchangeable fragmentation-
coalescence process sensu Berestycki [1], called Kingman’s coalescent with
erosion. We have studied its stationary state in great detail [6].

(3) Because in the previous model, the number of ancestral species harboring
at least one ancestral gene to the sampled genome (number of blocks in
the coalescent with erosion) grows rapidly with the number n of genes (like√
n), we have devised an alternative model where introgression is only al-

lowed if the donor and target genomes have not diverged too long ago. To
do that, we have defined a notion of coadaptation between non-homologous
genes; the degree of coadaptation drives the rate of introgression. In back-
ward time, it proved convenient to assume that two non-homologous lin-
eages are coadapted if they share a common genome in their respective
descendances at the present. This yields a model, called the gene-based
diversification model, for the evolutionary history of genomes sampled from
several distinct species which has good mathematical properties (sampling
consistency in n, number of ancestral species growing logarithmically with
n...) and nicely fits the data. Whether it is the dual to a simple forward-
in-time process remains open.

These models are meant to pave the way for approaches of diversification using
the richer signal contained in genomic evolutionary histories rather than in the
mere species tree.
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Algebraic two-level measure trees

Josué Nussbaumer

(joint work with Viet Chi Tran, Anita Winter)

In probability theory, many random tree structures have been introduced to model
genealogical or phylogenetic trees (e.g. the beta-splitting model of Aldous [2] and
the alpha model of Ford [5]) and their evolution over time (e.g. the Aldous chain
[3]). The simplest of these models are defined on state spaces of trees with a
finite number of vertices. However, the size of the space of all trees with a given
number of vertices grows exponentially, and it becomes hard to study qualitative
statistics of the structures. To overcome this issue, it seems reasonable to consider
continuum limits of tree models and study their properties. For this, one needs a
state space of (possibly) uncountable trees with a notion of global convergence.

A common approach by now is to encode trees as metric spaces. For cladograms,
this is done by equipping them with the graph distance. But more recently, a new
notion of potentially continuum trees was introduced in [9] with the algebraic trees.
The focus is now shifted from the metric to the tree structure given by the so-
called branch point map which assigns to each triple of points their branch point.
An algebraic tree is a non-empty set T together with a symmetric map c : T 3 → T
satisfying the following: for all x1, x2, x3, x4 ∈ T ,

(2pc) c(x1, x2, x2) = x2.
(3pc) c(x1, x2, c(x1, x2, x3)) = c(x1, x2, x3).
(4pc) c(x1, x2, x3) ∈ {c(x1, x2, x4), c(x1, x3, x4), c(x2, x3, x4)}.

These conditions ensure that T has a tree structure as there should only be one
possible shape for the subtree spanned by four points (see Figure 1).

In order to sample leaves from an algebraic tree, we equip it with a measure. An
algebraic measure tree (T, c, µ) consists of a separable algebraic tree (T, c) together
with a probability measure µ on the Borel σ-algebra B(T, c). Associating each
algebraic measure tree to the metric measure space given by the distance arising
from the distribution of branch points, we can use the Gromov-weak topology
(introduced in [7]) to define a metrizable topology on the set T of (equivalence
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Figure 1. The only possible tree shape spanned by four points
separates them into two pairs. Here, c1 = c(x1, x2, x3) =
c(x1, x2, x4) and c2 = c(x1, x3, x4) = c(x2, x3, x4).

classes of) algebraic measure trees. The main result of [9] states that this topology
is compact on the subspace

(1) T2 :=
{
(T, c, µ) ∈ T : degrees at most 3, atoms of µ only at leaves

}

of binary algebraic measure trees with no atoms on the skeleton. Furthermore,
this topology is equivalent on T2 to the sample shape convergence which is based
on the weak convergence of all random tree shapes spanned by finite samples.

This state space has served to construct and study the Aldous diffusion in [8],
and more generally the α-Ford diffusion in [11], which are Markov processes on
binary trees without edge lengths. The compactness of T2 allows to get around
tightness issues in these constructions. Moreover, the sample shape convergence
gives rise to a family of convergence determining classes of functions which are
very useful when one wants to study tree-valued stochastic processes.

Our goal is to replace the sampling measure µ by a two-level measure representing
a population with hierarchical structure (see e.g. [4, 6]). This is motivated by the
study of two-level systems in biology, such as host-parasite or cell-virus systems,
where individuals of the first level are grouped together to form the second level
and both levels are subject to resampling mechanisms.

An algebraic two-level measure tree (T, c, ν) is thus defined as a separable alge-
braic tree (T, c) together with a two-level measure ν ∈ M1(M1(T, c)), i.e. a Borel
probability measure on the set of Borel probability measures on (T, c). In particu-

lar, we are interested in extended the results in [9] to the space T
(2)
2 of (equivalence

classes of) algebraic two-level measure trees. For this, a crucial ingredient for us
is the intensity measure Mν of a two-level measure ν. If (T, c, ν) is an algebraic
two-level measure tree, (T, c,Mν) is an algebraic measure tree and it is then quite
straigthforward to adapt most of the results in [9]. However, this method does not
apply to the main result, namely the compactness of the subspace of binary trees.

A key ingredient to prove the compactness of T2 in [9] is the coding of binary
algebraic measure trees by sub-triangulations of the circle (see also [1]), where a
sub-triangulation of the circle S is defined as a closed, non-empty subset C of the
disc such that:

(1) The complement of the convex hull of C consists of open interiors of tri-
angles.
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Figure 2. A sub-triangulation of the circle and the correspond-
ing tree.

(2) C is the union of non-crossing (non-intersecting except at endpoints), pos-
sibly degenerate closed straight line segments with endpoints in S.

In this coding, branch points correspond to empty triangles, leaves carrying atoms
to empty circular segments, and line segments with non-atomic mass to “filled
areas” (see Figure 2). Moreover, the Lebesgue lengths of the arcs play an important
role as they encode the way the mass is distributed in the algebraic measure tree.

We extend this coding in the two-level case. For that, we replace the Lebesgue
measure by a two-level measure K ∈ M1(M1(S)) on the circle and we formally
construct the coding map that associates an algebraic two-level measure tree in

T
(2)
2 to a pair (C,K) where C is a sub-triangulation of the circle, and K is a

two-level measure on the circle line.
We showed that the coding map is continuous and surjective when the set of

sub-triangulations is equipped with the Hausdorff metric topology and the set of
two-level measures on the circle line with the weak topology. Using that both of

these topologies are compact, the space T
(2)
2 can be shown to be compact. One can

apply this theory to the construction of the Kingman algebraic two-level measure
tree, which is the nested Kingman coalescent measure tree without branch length
(see [10]).

References

[1] David Aldous, Recursive self-similarity for random trees, random triangulations and Brow-
nian excursion, Ann. Probab., 22(2):527–545, 1994.

[2] David Aldous, Probability distributions on cladograms, Random and Discrete Structures,
76:1-18, 1996.

[3] David Aldous, Mixing time for a Markov chain on cladograms, Combinatorics, Probability
and Computing, 9:191-204, 2000.

[4] Donald Dawson, K.J. Hochberg, and Y. Wu, White Noise Analysis: Mathematics and Ap-
plications, chapter Multilevel branching systems, World Scientific Publ., 1990.

[5] Daniel Ford, Probabilities on cladograms: introduction to the alpha model, arXiv:0511246.
[6] Luis G. Gorostiza, Kenneth J. Hochberg, and Anton Wakolbinger, Persistence of a critical

super-2 process, Journal of Applied Probability, 32(2):534–540, 1995.
[7] Andreas Greven, Peter Pfaffelhuber, and Anita Winter, Convergence in distribution of

random metric measure spaces (Λ-coalescent measure trees), Probab. Theo. Rel. Fields,
145:285–322, 2009.



644 Oberwolfach Report 12/2022
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On the contact process in an evolving random environment

Marco Seiler

(joint work with Anja Sturm)

Recently, there has been an increasing interest in interacting particle systems on
evolving random graphs, respectively in time evolving random environments. We
are particularly interested in the contact process in an evolving (edge) random
environment on (infinite) connected and transitive graphs. We call the process
that describes the evolving environment the background process. It determines
which edges are open or closed for infections. In this talk we assume that the
background process is described by an autonomous ergodic spin systems with
finite range. The simplest example is a dynamical percolation for which all edges
are updated independently of each other. This particular background is typically
parametrized by the edge update speed v and the probability p that an edge is
open after being updated.

Most contribution to this class of models are very recent. Thus, we give an
introduction and overview of the current state of research in this field including our
own recent results. To the best of our knowledge the first to explicitly consider a
contact process in a dynamical random environment was Broman [2]. In the model
he considered the recovery rates of individuals are varying independently over time.
The first to study a contact process on an infinite dynamical random graph were
Linker and Remenik [3]. To be precise they studied the phase transition of survival
for a contact process on a dynamical percolation. They found out that there exists
a so called immunization phase, i.e. for update speed v and opening probability p
low enough the infection always goes extinct regardless of the infection rate. They
also characterized the asymptotic behaviour for fast edge update speed, i.e. v → ∞,
on fairly general graphs and for slow update speed, i.e. v → 0, on Z. Hilario et
al. [4] extended the results in the slow speed regime to Zd.

The above mentioned models all assume that their dynamical random environ-
ment are already stationary from the beginning. Thus, naturally the question of
dependence of the associated critical infection rate on the random environment
and on the initial configuration of the system arises. For our results regarding
this question the key idea is to consider the permanently coupled region Ψ′t of the
background process for every t ≥ 0: If an edge e ∈ Ψ′t then the state of e, open
or closed, does not depend on the initial configuration of the background process
for all times s ≥ t, and thus from t on it does not matter for e how we started the
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background process. We state sufficient conditions such that the contact process
will almost surely be contained in the permanently coupled region for large times
t and use this to show that the initial configuration of the system has no influence
on the phase transition between extinction and survival. We also show that this
phase transition coincides with the phase transition between ergodicity and non-
ergodicity by a duality argument and discuss conditions for complete convergences.
With these results we deduce that the contact process on a dynamical percolation
on Zd satisfies complete convergence for every parameter configuration and also
goes extinct almost surely at criticality by adapting the techniques developed by
Bezuidenhout and Grimmet [1]. Furthermore, we derive a comparison result be-
tween dynamical percolation and finite range spin systems, which enables us to
obtain partial results on survival and complete convergences if the background
process is a general spin system. At the end of the talk we touch upon considering
the contact process on dynamical long range percolation and briefly discuss the
phase transition for survival of this model. Finally we discuss some open problems,
conjectures and further research directions, which we now briefly outline.

• On exponential growth graphs there is a certain parameter regime for
which our techniques are not applicable. We conjecture that our results
should also extend to this regime.

• We mainly focus on the supercritical parameter regime. Thus, a next step
would be to study the subcritical regime for this model.

• In order to model the spread of an infection more realistically the next step
is to introduce feedback from the contact process to the graph dynamics
of the background process.

• We only obtained partial results concerning the phase transition of survival
of the contact process on a dynamical long range percolation. Further
research is necessary to provide a more complete picture of this process.
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Weaves, Webs and Flows

Nic Freeman

(joint work with Jan Swart)

Since the work of [4] and [2], an extensive theory of Brownian web has been
developed, by many authors. Loosely, the Brownian web describes a system of
infinitely many Brownian motions, started at all points of space-time R×R, with
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the property that particles are independent until they meet, at which point they
instantaneously coalesce. Through its role as a universal scaling limit, connections
are now known to genealogical trees in population genetics, aggregation processes
and drainage networks, as well as to objects of key theoretical interest such as
orientated percolation. A detailed internal fractal structure that describes how
the paths interact is well understood, primarily via the pathwise self-duality of
the web and some remarkable properties of Brownian motion. Further, the web
has now led to the discovery of several related objects, such as the Brownian net
(which incorporates infinite rate branching alongside coalescence) and the α-stable
web (which replaces coalescing Brownian motions with coalescing α-stable Lévy
processes).

The Brownian web has its roots in a much earlier period, in the stochastic flow
described by [1]. Stochastic flows, represented as random functions Xst : R → R

where s < t, developed out of (initially deterministic) work on incompressible
fluid flows, and gave rise to the theory described by [3] in which particles may
not coalesce, but do follow quite general real valued semimartingales. Here, the
movement x 7→ Xst(x) represents that a particle at location x at time s, moves
to a location Xst(x) at time t. By contrast, the Brownian web is a set of random
paths, where each path is a Brownian motion.

It is useful to compare this situation to stochastic processes that feature only
a single path, moving within R. Originally, such real valued stochastic processes
were viewed as infinite families of R valued random variables, (Xt)t≥0, where Xt

represents the value of the process (the position of the particle) at time t. It
was soon discovered that such a representation is entirely unhelpful when taking
limits. The now ubiquitous theory of weak convergence was developed to solve
this issue, relying crucially on the Skorohod space D([0,∞);R) in which an R

valued stochastic process is viewed as a single random path. Stochastic flows,
however, still continued to be represented as infinite sets of random functions
(Xst) and (we argue, consequently) have never given rise to a viable theory of
weak convergence. In fact, the theory of the Brownian web, which is in some sense
a pathwise representation of the Arratia flow, provided the first (and, to the best
of our knowledge, only) viable way of taking weak limits of a random ‘flow-like’
system of coalescing particles.

The aims of the talk can be viewed in two different ways, as follows. Firstly, we
seek to describe a natural class of random geometric objects in which the Brownian
web is a canonical example, just as Brownian motion is the canonical example
of a stochastic process i.e. of a single random path. Secondly, and essentially
equivalently, we seek to find a way to represent stochastic flows (and, as it turns
out, more general objects too) in such a way that they have an accessible and
elegant theory of weak convergence.

The talk introduces weaves. Loosely, a weave is a (possibly random) set of non-
crossing càdlàg R-valued paths in which each point of space-time R×R is touched
by at least one path. Here, each càdlàg path is of the form f : [a,∞) → R for
some a ∈ R, or is defined for all time f : R → R. We stress that we do not specify
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any particular distribution for the particle motions, nor do we require that they
coalesce upon meeting.

We equip the space of weaves with a natural topology, based on Skorohod’s M1
topology. We remark that, whilst Skorohod’s J1 topology is well suited to single
random paths, when dealing with infinite sets of random paths the M1 topology
appears to be a better choice. The key difference may be seen with the sequence
fn(t) = 1[ 1

n
,∞)(t). As n → ∞, there is no oscillation, no divergence, and yet

in the classical sense (i.e. in D([0,∞),R)) the sequence (fn) has no limit. Any
such limit would have to make a jump at time 0, which is the initial time of the
paths, and no càdlàg function f : [0,∞) → R exists with that property. When
dealing with real valued stochastic process this problem never arises – because we
assume conditions, often based on time-homogeneity, under which almost surely
our process does not jump at time zero! However, when dealing with infinitely
many particles at once, some of them (perhaps, in some sense, a null set of them)
may need to jump at their initial times, in order to represent the desired global
behaviour. A minor extension of the M1 topology, in combination with a minor
extension of the concept of a càdlàg path, offers an elegant way to resolve these
difficulties – but it seems that the J1 topology does not.

Let us now describe the results, concerning weaves, detailed within the talk.
Broadly, we outline a theory of weak convergence of weaves, based on taking
limits of finite sets of particle motions. Here, if z = (x, t) is a space-time point,
then the particle motion from z is the path obtained by taking a path that passes
though z and looking at its motion during [t,∞) (chopping off the segment before
time t). Of course, this is well defined if and only if all paths passing through z
are equal on [t,∞); one of the key early steps in the proofs is to establish that,
for a weave, a well defined particle motion exists from Lebesgue almost all points
of space-time. Other points may exhibit more complex path behaviours, such as
branching and/or coalescing. For example, recall the (1, 2) ‘special’ points of the
Brownian web. The m-particle motions of a weave, is the (joint distributions of
the) particle motions obtained from a given set of m ∈ N space-time points.

It turns out that the (distribution of a) weave is uniquely specified by the distri-
bution of its m-particle motions. Moreover, there is a natural partition of weaves
into equivalence classes under which, at the level of equivalence classes, conver-
gence of weaves is equivalent to convergence of the m-particle motions. Thus, one
can prove weak convergence of (equivalence classes of) weaves simply via weak
convergence of Rm valued càdlàg processes in the classical sense. We remark that
obtaining such results relies on the right choice of underlying state space and
topology.

The partition of weaves into equivalence classes can be described, at first glance,
in quite straightforward terms. Two weaves A and B satisfy A ∼ B if and only if
(there exists a coupling under which) for any paths f ∈ A and g ∈ B, f and g do
not cross. An alternative description of the relation ∼, which plays a key role in
the weak convergence theory, comes via a particular partial order �. The relation
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A � B on weaves means, heuristically, that B covers space-time more efficiently
than A i.e. with fewer and longer paths.

It turns out that each ∼ equivalence class of weaves has a unique maximal
element, and a unique minimal element, under �. We remind the reader that, in
a general partial order, a given set of elements may have multiple (non-unique)
maxima and minima. It turns out that, for weaves, maximality is preserved under
taking limits, whilst minimality is not, which leads to an interesting role for � in
weak convergence.

Within each equivalence class, the maximal element consists only of bi-infinite
paths that are defined for all time (i.e. f : R → R) whereas the minimal ele-
ment may also contain half-infinite paths (i.e. f : [a,∞) → R). In fact, for each
equivalence class, the maximal object is a pathwise representation of an associated
stochastic ‘flow’, which might feature branching as well as coalescence. The prop-
erty of minimality under � turns out to be equivalent to the standard definition
of the Brownian web minus the specification of the distribution of the particle
motions. Thus, we argue that the following general definitions are natural: a
�-maximal weave is a flow and a �-minimal weave is a web.

References

[1] R. Arratia, Coalescing Brownian motions on the line, University of Wisconsin–Madison
(1979).

[2] L. R. G. Fontes, M. Isopi, C. M. Newman, and K. Ravishankar, The Brownian web: char-
acterization and convergence, Annal. Probab 32 (2004), 2857–2883.

[3] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge university press
24 (1997).
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A fresh look on Hammond and Sheffield’s power law Pólya’s urn

Anton Wakolbinger

(joint work with Jan Lukas Igelbrink)

1. Introduction

In the power law Pólya’s urn of Hammond and Sheffield [3] (which we briefly call
the HS urn), every integer is populated by one individual. Each individual has
one “parent” sitting a random distance to its left, and these distances are i.i.d.
with a power tail of exponent α. This gives rise to ancestral lineages which are
coalescing renewal processes, and to a random partition of Z which is nontrivial
if α < 1/2. Hammond and Sheffield showed by Tauberian arguments and a mar-
tingale CLT that the renormalised sum of random ±1-colourings of this random
partition converges to fractional Brownian motion with Hurst parameter 1/2+ α.

In the regime of the strong renewal theorem [2] we analyse the asymptotic depth
of pairwise most recent common ancestors and are able to control the coalescence
probabilities of two, three and four individuals that are randomly sampled from [n]
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with n large. This allows us to obtain a new, conceptual proof of the asymptotic
Gaussianity of the renormalised sums of independent colourings of families in the
HS urn, and thus to prove an invariance principle for functional convergence to-
wards fractional Brownian motion also beyond the ±1-colourings considered in [3].
A key ingredient in our approach is a sufficient criterion for the asymptotic Gaus-
sianity of the renormalised sums in randomly coloured random partitions of [n],
based on Stein’s method.

In the last part we improve a statement on the asymptotics of the coalescence
probabilities in the long-range seedbank model of Blath, González Casanova, Kurt,
and Spanò [1]. The talk is based on results of [4].

2. The random partition P on Z induced by the HS urn

Following [3], fix α > 0 and let R be an N-valued random variable with

(1) P(R ≥ n) = n−αL(n), n ∈ N,

where α > 0, L is a slowly varying function, and the g.c.d. of the support of the
distribution of R is 1.

Put one individual at each integer, and think of the individual at i ∈ Z as
being a “child” of the individual at i − R(i), where the R(i), i ∈ Z, are i.i.d.

copies of R. The ancestral lineage A(i) := {A(i)
0 , A

(i)
1 , A

(i)
2 , . . .} of individual i ∈ Z

consists of A
(i)
0 := i (the individual i itself), A

(i)
1 := i − R(i) (the parent of i),

A
(i)
2 := A

(i)
1 − R

(
A

(i)
1

)
(the grandparent of i), etc. The A(i), i ∈ Z thus can be

seen as a sequence of coalescing renewal processes running backwards in time; they
form the genealogy in the HS urn. The smaller α, the larger are the jumps in the
renewal process, and depending on α, the genealogy forms either a.s. a single tree
or a.s. a forest consisting of infinitely many trees.

Let qn, n ∈ N0, be the renewal function, i.e.

qn := P(R1 + · · ·+Rℓ = n for some ℓ ∈ N0),

where R1, R2, . . . are i.i.d. copies of R. In [3] it is proved by Fourier analysis that

(2)
∑

n≥1

q2n

{
<∞ if α < 1

2 ,

= ∞ if α > 1
2 .

Hence in the HS urn, for α < 1
2 , two individuals i 6= j with positive probability

do not have a common ancestor. Caravenna and Doney [2] give conditions which
together with (1) are equivalent to the“strong renewal property”

(3) qn ∼ C
nα−1

L(n)
.

In this case the dichotomy (2) is obvious.

For i, j ∈ Z we write i
A∼ j if A(i) ∩A(j) 6= ∅, i.e. if the individuals i and j have

a common ancestor. The set Ci := {j ∈ Z : i
A∼ j} is then the set of relatives of
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i, and P := {Ci : i ∈ Z} is the random partition of Z into
A∼-equivalence classes

(i.e. into the clans of mutually related individuals).

3. From a random colouring of P to fractional Brownian motion

Throughout we assume (1) and let the random partition P on Z be as in the
previous section. We now “colour” the elements of P (i.e. the clans in the HS
urn) at random. To this end, let Z be a centered real-valued random variable.
Given P, let ZC , C ∈ P, be i.i.d. copies of Z and put

Sn :=

n∑

i=1

ZCi
, n = 0, 1, . . .

Theorem 1. Assume one of the following two conditions (A) or (B) is valid:
(A) Z is binary (B) 0 < E[Z4] <∞ and (3) holds.

Then n−(
1
2+α)L(n)S⌊nt⌋, t ≥ 0, converges as n → ∞ to a centered Gaussian

process (Bt) with continuous paths, stationary increments and Var[Bt] = c t1+2α,
i.e. to a fractional Brownian motion with Hurst parameter 1

2 + α.

A proof under assumption (A) is given in [3], using Fourier analysis and a
martingale CLT, and making use of the assumed binarity of the colouring. In
contrast, [4] works under assumption (B) and presents a series of arguments which
constitute a new “genealogical” proof of the main result of [3]. We note that
asumption (B) imposes (3) as a (mild) additional condition on R but relaxes the
assumptions on Z, thus providing an invariance principle for the convergence to
fractional Brownian motion. A core element in the proof of Theorem 1, whose
details are given in [4], is a result which goes beyond the framework of [3] and
which we present as Theorem 2 in the next section.

4. Asymptotic Gaussianity in randomly coloured random partitions

For n ∈ N let P(n) be a random partition of [n], and
n∼ be the corresponding equiv-

alence relation on [n]. For i ∈ [n] put M
(n)
i := {j ∈ [n] : i

n∼ j} and Yi := Z
M

(n)
i

,

where Zm, m ⊂ [n], are i.i.d. copies of a real-valued centered random variable
Z with 0 < E[Z4] < ∞. We then consider Sn :=

∑n
i=1 Yi, n = 0, 1, . . .. Let

I ,J ,K and L be independent and uniformly distributed on [n], and indepen-

dent of P(n).

Theorem 2. The Sn are asymptotically Gaussian as n→ ∞ provided the follow-
ing three conditions are satisfied:

P(I ∼ J ∼ K ) = o
(
(P(I ∼ J ))3/2

)
as n→ ∞,

P(I ∼ J ∼ K ∼ L ) = o
(
(P(I ∼ J ))2

)
as n→ ∞,

and for all n ∈ N and i, j, k, ℓ ∈ [n]

Cov[I{i∼j}, I{k∼ℓ}] ≤ P(i ∼ j ∼ k ∼ ℓ).
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5. Fractional BM in the power law seedbank model of Blath et al.

As in the HS model, the set of time points is Z. Now, at any time point g there are
N individuals, denoted by (g, k), k ∈ [N ]. The parent of the individual i = (g, k)
is (g − R(i), U (i)), where the random variables R(i) are independent copies of R
and the random variables U (i) are i.i.d. uniform picks from [N ]. In words, each
individual chooses its parent uniformly from the population at a previous time with
delay (or dormancy) distribution L (R). This gives rise to (potentially coalescing)
ancestral lineages of the individuals in Z × [N ]. Again we colour the connected
components of Z× [N ] by i.i.d. copies of the centered real-valued r.v. Z, and write

Yi for the colour of the component to which i belongs. Put S
(N)
n :=

∑
i∈[n]×[N ] Yi.

In close analogy to Theorem 1 we obtain, again using Theorem 2:

Theorem 3. Assume (1) and Condition (B) of Theorem 1. Then

n−(
1
2+α)L(n)N−

1
2 S

(N)
⌊nt⌋, t ≥ 0,

converges as (n,N) → (∞,∞) to fractional Brownian motion with Hurst parame-
ter 1

2 + α.
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Mathematisches Institut
Universität Tübingen
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