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Introduction by the Organizers

The MFO-RIMS Tandem Workshop: Nonlocality in Analysis, Probability and Sta-
tistics (20/March/2022–26/March/2022) was the second joint workshop of the
MFO (Mathematisches Forschungsinstitut Oberwolfach) and RIMS (Research In-
stitute for Mathematical Sciences, Kyoto University, Kyoto, Japan), organized by
K. Bogdan (Wroc law), A. Kohatsu-Higa (Kyoto), X. Ros-Oton (Barcelona) and
R.L. Schilling (Dresden). It took place within the newly created Tandem format:
two separate events at MFO and RIMS share a common Zoom session. Due to the
restrictive Covid policy of Japan, the RIMS part was fully online while the MFO
part took place as a hybrid workshop. In total we had 41 regular participants and
7 students (2 Leibniz fellows, 5 further PhD students) with a broad geographic
representation from all over the world. At Oberwolfach there were 19 invited re-
searchers (of those: 7 online), 4 organizers (of those: 2 online), 2 Leibniz fellows
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and 5 PhD-students (online), RIMS hosted 18 invited researchers, 1 organizer and
2 students 3 all online.

On the technical side, there was a live joint session, broadcast via Zoom and
taking place simultaneously in the morning at MFO and in the late afternoon
at RIMS, respectively (time diûerence being 8 hrs). All other activities, the af-
ternoon session at MFO, and the morning/early afternoon events at RIMS were
both broadcast and recorded, so that all participants could follow these activities
either live or asynchronously. The slides of all talks were available on an internet
repository (cloud). There were 18 joint talks, 9 talks at RIMS and 10 talks at
MFO, 37 talks in total. All talks were of about 40 min duration, with ample time
for discussion and further joint activities. Some of the joint talks were surveys; all
survey speakers were oûered a further opportunity to talk in case they wanted to
report on recent progress.

The participants had various mathematical backgrounds, spanning the theory
of partial diûerential equations, fractional calculus, stochastic analysis, the theory
of stochastic processes and mathematical statistics, but they had one common
interest: nonlocal operators. In order to address the diûerent mathematical back-
grounds and to overcome problems in terminology, some of the participants were
asked to contribute survey talks so that the talks containing the latest results in the
respective ûelds would be more accessible to all participants. These presentations
took place on Monday and Tuesday in the joint live session.

The topics discussed in the workshop can be summarized as follows:

" Boundary value problems for non-local operators: If L is a non-local opera-
tor on a domainD ¢ Rn the equation Lu = f onD has to be supplemented
by a <boundary= condition Bu = g on Rn \ D (rather than the familiar
Bu = g on "D for partial diûerential operators). Already the formulation
and the choice of the operator L 3 e.g. fractional Laplacian vs. regional
fractional Laplacian 3 is a problem, and the concrete identiûcation of the
boundary operator is still open. While the Dirichlet problem (u = 0 in
Rn \D) is relatively straightforward, already the non-local counterpart for
the Neumann problem allows for several choices, and general Wentzell-
type conditions are only understood for very few operators L. Apart from
the statement of the problem, the regularity theory for the solution is still
in its infancy. In the workshop these problems were addressed and inter-
esting new approaches for a regularity theory for a wider class of non-local
operators were discussed. On the probabilistic side, stochastic representa-
tions for the solutions and the behaviour of the associated processes were
discussed.

" Stochastic analysis: The key connection between probability (Markov pro-
cesses) and analysis is the Kolmogorov equation "tu(t, x) = Lxu(t, x) with
initial datum u(0, ·) = ·0. For jump processes, L is a non-local operator
of Courrège3von Waldenfels form, e.g. a fractional Laplace operator or
a pseudo-diûerential operator with negative deûnite symbol. Important
questions are the existence and regularity of fundamental solutions. The
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probabilistic counterpart is the existence and properties of well-behaved
(Feller) processes with jumps. Several approaches to the construction and
uniqueness were discussed, including methods from harmonic analysis and
singular integral operators, quadratic form methods, the parametrix con-
struction and the martingale problem.

" Statistics of Stochastic Processes and other applications: A central theme
was the calibration of stochastic diûerential equations (SDE) driven by
jump processes. In particular questions relating to the model selection and
the estimation of the parameters were addressed. A key tool are transition
density estimates for the (perturbed) SDEs and their non-local inûnites-
imal generators. Some of the talks in this direction discussed rigorous
numerical simulations of the Markov processes solving the SDE, as well as
novel statistical tools for estimating parameters of Markovian models, and
theoretical optimality properties such as the local asymptotic normality
property.

The interaction between the PDE community and probability community turned
out to be very lively. Some of topics that stirred much activity and exchange of
knowledge were the Liouville property and the unique continuation property for
harmonic functions of nonlocal operators, and evolutionary phenomena related to
minimization of the nonlocal perimeter.
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Abstracts

Higher-order fractional Laplacians, maximum principles, and

related issues

Nicola Abatangelo

(joint work with Sven Jarohs, Alberto SaldaÞna)

The higher-order fractional Laplacian (2&)s, s > 1, is a nonlocal operator of (in
most cases, non-integer) order 2s, obtained by abstractly computing a positive
power of the Laplace operator. The term higher-order is intended to stress the
fact that the power s is greater than 1, opposed to the family of operators obtained
by considering

(1) (2&)
s
u(x) := cn,s

∫

Rn

2u(x) 2 u(x+ y) 2 u(x2 y)

|y|n+2s dy,

where cn,s =
22s21�(n/2 + s)

Ãn/2|�(2s)| and s * (0, 1).

Mind that the limitation s < 1 in (1) is due to the singularity of the kernel |x 2
y|2n22s and that, therefore, the same formula does not carry over to s > 1. One
possibility to extend the deûnition of the operator [3] is to consider

(2) (2&)
s
u(x) := cn,m,s

∫

Rn

m
∑

j=2m
(21)

j

(

2m

m2 j

)

u(x+ jy)

|y|n+2s dy,

for m * N and s * (0,m).

The constant cn,m,s is a necessary normalization in order to have a Fourier symbol
equal to |¿|2s, which gives that (2) is actually independent of the parameter m * N

as a byproduct.
It is possible to naturally associate a bilinear form to (2). This can be introduced

in the following or other equivalent diûerent ways

Es(u, v) =

∫

Rn

|¿|2sFu(¿)Fv(¿) d¿.

With this, if u, v * Hs(Rn) with uv c 0 in Rn, then [5, 11]

Es(u, v) =
22s21�(n/2 + s)

Ãn/2�(2s)

∫

Rn

∫

Rn

u(x) v(y)

|x2 y|n+2s dx dy.

As a consequence,

if u, v g 0, uv c 0 in Rn, then Es(u, v)

{

f 0 if +s+ * 2N,

g 0 if +s+ * 2N2 1,
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where the inequalities are strict if both u and v are non-trivial, and

(3) if u, v g 0, uv c 0 in Rn,

then Es(u+ v, u+ v)

{

f Es(u 2 v, u2 v) if +s+ * 2N,

g Es(u 2 v, u2 v) if +s+ * 2N2 1.

The last obtained inequality is roughly saying that, in some particular situations
and for +s+ * 2N 2 1, it could be energetically more convenient to consider a
positive-negative oscillating function rather than one with ûxed sign. Indeed,
manipulations on (3) show that the weak maximum principle fails on disconnected
domains for +s+ * 2N2 1 and, in particular, for s * (1, 2). Another almost direct
consequence is the sign of the nonlocal Poisson kernel for the ball B1, which
amounts to be

Ps(x, y)

{

g 0 if +s+ * 2N,

f 0 if +s+ * 2N2 1.
for x * B1, y * Rn \B1.

A more precise information to this regard is given by its explicit expression [6]

Ps(x, y) = (21)+s+
³(n, s2 +s+)

|x2 y|n
(

1 2 |x|2

|y|2 2 1

)s

for x * B1, y * Rn \B1,

which is entailed by the Boggio9s formula for the Green function [4, 9, 10]

Gs(x, y) = kn,s|x2 y|2s2n
∫ Ã(x,y)

0

vs21

(v + 1)n/2
dv for x, y * Rn, x 6= y,

where

Ã(x, y) =
(1 2 |x|2)+(1 2 |y|2)+

|x2 y|2 , kn,s =
1

n|B1|
2122s

�(s)2
.

Counterexamples to the validity of the weak maximum principle for (2&)
s

in
the range s * (2, 3) can be built in terms of polynomial-like functions on ellip-
soidal domains [7]: these require the ability of performing explicit computations
of fractional Laplacians at least on a good set of examples, and this constitutes a
non-trivial technical challenge.

Given the general absence of weak maximum principles, and the oscillatory
behaviour of energy minimizing functions, it is also interesting to study the shape
of the ûrst eigenfunction. It turns out that, for example, on the domain deûned
as the union of two disjoint balls (recall that this is the prototypical domain
not complying with a positivity preserving property, as recalled above) the ûrst
eigenvalue is simple and the ûrst eigenfunction is of ûxed sign for +s+ * 2N, whereas
it is positive on one ball and negative on the other for +s+ * 2N2 1. A number of
shape optimization questions now arise, especially considering that rearrangement
inequalities are no longer available.
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Fractional-Order Operators on Nonsmooth Domains

Helmut Abels

(joint work with Gerd Grubb)

We consider the following nonlocal elliptic boundary value problem:

Pu = f in ',(1)

u = 0 in Rn \ ',(2)

where ' ¦ Rn is a bounded domain and P is a suitable (nonlocal) elliptic operator
of order 2a, a * (0, 1), as e.g.

Pu(x) = (2&)au(x) = F21[|¿|2aÆu(¿)] = ca,n lim
·³0

∫

Rn\B·(x)

u(x) 2 u(y)

|x2 y|n+2a
dy

for suitable u : Rn ³ C, where F denotes the Fourier transformation and ca,n is a
suitable constant.

We note that usual statements on elliptic regularity in general fail for nonlocal
elliptic boundary value problems of fractional order as in (1)-(2)! 3 In particular,
u is not smooth in general even if f * C>(') and "' * C>. Some selected known
results on regularity for (1)-(2) are:
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" Ros-Oton and Serra [6, 7] showed: If "' * C1,1, then

f * Cs(') ó u/da * Cs+a(')

for suûciently small s > 0, where d(x) = dist(x, "').
" Grubb [4, 5] proved: If "' * C> and s > 0, then

f * Cs(') ó u/da * Cs+a(')

" Abatangelo and Ros-Oton [1] obtained: If "' * C1+s+a, then

f * Cs(') ó u/da * Cs+a(')

It is the goal of our work to extend the results in [4, 5] to nonsmooth domains and
operators and the results in [1] to a wider class of operators. For the following we
denote by

Hs
q (Rn) = {u * S 2(Rn) : (1 2 &)s/2u * Lq(Rn)}

the standard Lp-Bessel potential space on Rn and

Hs
q (') = {u * D2(') : u = v|Ωfor some v * Hs

q (Rn)},
ÛHs
q (') = {u * Hs

q (') : suppu ¦ '},
where 1 < q < > and s * R. Moreover, let CÇSm1,0(Rn × Rn), m * R, Ç > 0, be
the set of all continuous p : Rn × Rn ³ C : (x, ¿) 7³ p(x, ¿) that are smooth with
respect to the second variable ¿ * Rn, in the Hölder space CÇ (Rn) with respect to
the ûrst variable x * Rn and satisfy

‖"³¿ p(., ¿)‖CÇ (Rn) f C³〈¿〉m2|³|

for all ³ * Nn0 , ¿ * Rn, where C³ is independent of ¿. Here 〈¿〉 = (1 + |¿|2)
1
2 .

p * CÇSm1,0(Rn×Rn) are symbols of nonsmooth pseudodiûerential operators, which
are deûned by

p(x,Dx)u(x) c (OP(p)u))(x) :=
1

(2Ã)n

∫

Rn

eix·¿p(x, ¿)Æu(¿) d¿

e.g. for u * S(Rn). Our main result is:

Theorem 1 (A. & Grubb [3]). Let ' ¦ Rn be a bounded domain with C1+Ç -
boundary, a * (0, 1), Ç > 2a, 1 < q < >, and p * CÇS2a

1,0(Rn × Rn) be an even

and elliptic symbol, P = OP(p). Let u * ÛHa
q (') be a solution of

Pu = f in '

for some f * Hs
q (') with s * [0, Ç 2 2a) and s+ a2 1

q 6* Z. Then

u = dav + w for some v * Hs+a
q ('), w * ÛHs+2a

q (').

The idea of the proof is:By localization and scaling we reduce the statement to
the case that

' = Rn³ = {x * Rn : xn > ³(x1, . . . , xn21)}
for some suûciently small ³ * C1+Ç (Rn21). One proves the result in the latter
case by perturbing the case ' = Rn+ = Rn21 × (0,>) (with smooth boundary)
and <freezing of coeûcients=, i.e., one considers (x, ¿) 7³ p(x0, ¿) for a ûxed x0 *



Nonlocality in Analysis, Probability and Statistics 721

Rn. In order to perform the pertubation result it is important to use the precise
information on the regularity of solution in the case ' = Rn+: If p * CÇS2a

1,0(Rn ×
Rn) is independent of x, even, elliptic and p(¿) 6= 0 for all ¿ * Rn, then

r+ OP(p) : Ha(s+2a)
q (R

n

+) ³ Hs
q (Rn+)

is invertible for every 1 < q <> and s > 0, where

Ha(s+2a)
q (R

n

+) := OP((〈¿2〉 + i¿n)2a)e+H
s+a
q (Rn+)

is the so-called transmission spaces, 〈¿2〉 = (1 + |¿2|2)
1
2 , ¿2 = (¿1, . . . , ¿n21), and

e+f is the extension by zero of f : Rn+ ³ C to Rn and r+g = g|Rn
+

. To understand

the deûnition better we note that:

(1) For every f * C>
(0)(R

n
+)

suppF21[(〈¿2〉 + i¿n)2âe+f(¿)] ¦ Rn+

since ¿n 7³ (〈¿2〉 + i¿n)2âe+f(¿) has an analytic extension to C2 = {z *
C : Im z < 0} (Paley-Wiener Theorem).

(2) x 7³ F21[(〈¿2〉 + i¿n)2âe+f(¿)] is smooth in Rn+, but has a singularity at
xn = 0. Larger a give higher regularity close to xn = 0.

(3) If u * H
a(s+2a)
q (R

n

+) and s+ a > 1
q and s+ a2 1

q 6* N, then

u(x) = xanv(x) + w(x),

where v * Hs+a
q (Rn+) and w * ÛHs+2a

q (Rn+) due to Grubb [5].

In order to prove the regularity result for ' = Rn³ = {x*Rn : xn > ³(x1, ..., xn21)}
let F³ : Rn ³ Rn be a C1+Ç -diûeomorphism such that F³(Rn³ ) = Rn+ and

(P³u)(x) = (P (u ç F21
³ ))(F³(x))

for some ³ * C1+Ç (Rn21). Then for any 0 f s < Ç 2 2a

r+P³ : Ha(s+2a)
q (R

n

+) ³ Hs
q (Rn+)

is bounded and invertible if ‖³‖C1+Ç is suûciently small since

r+ OP(p) : Ha(s+2a)
q (R

n

+) ³ Hs
q (Rn+)

is invertible. To prove the boundedness of r+P³ : H
a(s+2a)
q (R

n

+) ³ Hs
q (Rn+) one

uses that

r+P³ : Ha(s+2a)
q (R

n

+) ³ Hs
q (Rn+)

is bounded. To show the latte one uses that

P³u(x) =
1

(2Ã)n
Os2

∫

Rn

∫

Rn

ei(x2y)·¿q³(x, y, ¿)u(y) dy d¿,

where q³ * CÇS2a
1,0(R2n × Rn) is even. Moreover, for any 3 * N with 3 < Ç

q³(x, y, ¿) =
∑

|³|f3
p³(x, ¿) +

∑

|³|=3
D³
¿ r³(x, y, ¿),
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where p³(x, ¿) = 1
³!"

³
yD

³
¿ q³(x, y, ¿)|y=x * CÇ2|³|Sm2|³|

1,0 (Rn × Rn) and D³
¿ r³ *

CÇ23Sm23
1,0 (R2n × Rn) for all |³| = 3, and one shows for |s| < Ç

p³(x,Dx) : Ha(s2|³|+2a)
q (R

n

+) ³ Hs
q (Rn+)

with the aid of nonsmooth Green operators using that p³(x, ¿)(i¿n + 〈¿2〉)2a sat-
isûes the transmission condition, cf. A. [2].
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On the fractional Yamabe problem: nonlocal ODE method

Weiwei Ao

(joint work with Hardy Chan, Azahara DelaTorre, Marco A. Fontelos,
Maŕ1a del Mar González, Juncheng Wei)

Let ³ * (0, 1). We introduce some new method to deal with nonlocal ODE in the
study of fractional singular Yamabe problem:

(2&)³u = cu
n+2³

n22³ in Rn, u³ > as x³ £

for c > 0, and £ is a k dimensional submanifold for k < n22³
2 arising from the

study of conformal geometry. The result of this talk basically come from the
references [1, 2, 3, 4].

We use gluing method to construct singular solution, i.e., we ûnd solution of the
form u(x) = u7(x) + Ç around a good approximate solution u7 with perturbation
Ç. Then the equation for Ç becomes

LÇ = E +N(Ç),

with

LÇ = (2&)³Ç2 pup21
7 Ç, E = (2&)³u7 2 up7,

and the higher order term:

N(Ç) = (u7 + Ç)p 2 up7 2 pup21
7 Ç.
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Basically there are two key problems in the construction:

" Existence of the building blocks u7;
" Mapping property of the building blocks: the linearized operator LÇ.

We are led to consider radially symmetric solutions of the fractional Laplacian
equation

(1) (2&)³u = Aup in Rn \ {0},
with an isolated singularity at the origin and the corresponding linearized operator.

Here p * ( n
n22³ ,

n+2³
n22³ ], and the constant A is chosen so that u0(r) = r2

2³

p21 is a

singular solution to the equation. Note that this is the exact growth rate around
the origin of any other solution with non-removable singularity.

In this talk we take the analytical point of view and study several nonlocal
ODE that are related to problem (1). A nonlocal equation such as (1) for radially
symmetric solutions u = u(r), r = |x|, requires diûerent techniques than regular
ODE. For instance, existence and uniqueness theorems are not available in general,
so one cannot reduce it to the study of a phase portrait. Moreover, the asymptotic
behavior as r ³ 0 or r ³ > is not clear either.

We developed some nonlocal ODE method to study this nonlocal ODE. The
main underlying idea, is to write problem (1) as an inûnite dimensional ODE sys-
tem. Each equation in the system is a standard second order ODE, the nonlocality
appears in the coupling of the right hand sides. The advantage of this formulation
comes from the fact that, even though we started with a nonlocal ODE, we can
still use a number of the standard results, such as the indicial roots for the system
and a Wrońskian-type quantity which is useful in the uniqueness proof.

More precisely, we ûrst consider existence theorems for (1), both in the critical
and subcritical case. We show that the change of variable

(2) r = e2t, u(r) = r2
2³

p21 v(2 log r)

transforms (1) into the nonlocal equation of the form

(3)

∫

R

ÞK(t2 t2)[v(t) 2 v(t2)] dt2 +Av(t) = Av(t)p, v = v(t), t * R,

for some singular kernel satisfying ÞK(t) > |t|2122³ as |t| ³ 0. The advantage
of (3) over the original (1) is that in the new variables the problem becomes
autonomous in some sense. We use some idea from conformal geometry. We
give an interpretation of the change of variable (2) in terms of the conformal
fractional Laplacian on the cylinder. In the local case, the corresponds to a second
order ODE for which we can get the classiûcation of solutions by analyzing the
Hamiltonian level, i.e., the solutions is either homoclinic or periodic. But in the
nonlocal case, there is no Hamiltonian, but anyhow, we use variational method to
prove the existence of the periodic solution. But up to today, the classiûcation
result for nonlocal ODE (3) is still unknown and it is an open question.

For p subcritical, p * ( n
n22³ ,

n+2³
n22³ ), we study the existence of radial fast decay-

ing solution u7 and the mapping property of the linearized problem around u7.
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For the existence of solutions for the nonlocal ODE, we use method from PDE to
deal with it. We basically combine variational method, bifurcation method and
blow up analysis to show the existence of radial solution. For the linear problem,
the resulting equation may be written as

(2&)³Ç2 pAup21
7 Ç = 0, Ç = Ç(r).

Deûning the radially symmetric potential V7(r) := pAr2³up21
7 , this equation is

equivalent to

(4) L7Ç := (2&)³Ç2 V7(r)

r2³
Ç = 0, Ç = Ç(r).

Note that V7(r) ³ » as r ³ 0 for some positive constant. Therefore to understand
operators with critical Hardy potentials such as L7 we consider ûrst the constant
coeûcient operator

L» := (2&)³ 2 »

r2³
.

The fractional Hardy inequality asserts the non-negativity of such operator up to
» = �n,³ .

Using conformal change of variables, we can write Green9s function for the con-
stant coeûcient operator L» in suitable weighted spaces. We calculate the indicial
roots of the problem to characterize invertibility. This is done by writing a vari-
ation of constants formula to produce solutions to L»Ç = h from elements in the
kernel L»Ç = 0. Such Ç is governed by the indicial roots of the equation. How-
ever, in contrast to the local case where a second order ODE only has two indicial
roots, for the nonlocal operator, we ûnd an inûnite number of them and, moreover,
the solution is not just a combination of two linearly independent solutions of the
homogeneous problem, but an inûnite sum.

We obtain, as a consequence, a Frobenius type theorem which yields a precise
asymptotic expansion for solutions to (4) in terms of the asymptotics of the po-
tential as r ³ 0. We can use what we know about L» in to obtain information
about L7. In particular, we ûnd the indicial roots of L7 both as r ³ 0 and as
r ³ >.

We introduce a new Wrońskian quantity for a nonlocal ODE such as (4), which
allows to compare any two solutions and plays the role of the usual Wrońskian
W = w2

1w2 2 w1w
2
2 for the second order linear ODEs. Using similar techniques

as for the non-linear second order ODE, we give full account of non-degeneracy of
equation (1) for the particular solution u7.
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Liouville theorems for non-local operators

David Berger

(joint work with René L. Schilling)

The talk is based on the work [2]. In this paper we anaylzed the Liouville the-
orem for generators of Lévy processes: Let f : Rd ³ R be a bounded function
and let L = (Lt)tg0 be a Lévy process on Rd with symbol Ë. We say that L
has the Liouville property, if Ë(D)f = 0 weakly implies that f is constant a.e.
This question was ûrst solved in [1], which presented the result in terms of the
characteristic triplet of the Lévy process. We proved in two completely diûerent
ways an equivalent theorem, which describes the condition found in [1] in terms
of the zero-set of the symbol.

Theorem 1. Let Ë(D) be the generator of a Lévy process with characteristic
exponent Ë. The operator Ë(D) has the Liouville property if, and only if, the
zero-set of the characteristic exponent satisfies {Ë = 0} = {0}.

The ûrst proof uses a method based on ideas in distributional theories, which
works in the case of C>-symbols, symbols with Lévy processes with every poly-
nomial moment. Our second proof uses a result of convolution equation and ûxed
points from Choquet and Deny [3].

Theorem 2. Let µ be a probability measure on Rd and h a bounded and continuous
function. One has h = h 7 µ if, and only if, every point of the support of µ is a
period of h.

One can now show that the condition Ë(D)f = 0 is equivalent to the fact that
Ef(Xt+x) = f(x) for every x * Rd, which can then be described as a convolution
equation. By applying the above theorem and by using some results on probability
measures on lattices, one obtains our main theorem. We can apply this result on
Subordinators to show that for a Lévy process L the Liouville property holds if,
and only if, the Liouville property for the subordinated process LS = (LSt)tg0

holds for every subordinator S. By using a further result of Choquet and Deny [3]
one can show an extension of the Liouville property for functions growing at most
like a submultiplicative function:

Theorem 3. Let Ë(D) be the generator of a Lévy process with characteristic
exponent Ë. Assume that there exists a locally bounded, submultiplicative function
g : Rd ³ [1,>) satisfying

∫

|y|g1 g(y)¿(dy) < >. The following assertions are

equivalent:

(1) every measurable, positive and g-bounded function 0 f f f g such that
Ë(D)f = 0 weakly is constant.

(2) {¿ * Rd | Ë(¿) = 0} = {· * Rd | Ë(2i·) = 0} = {0}.
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Blowing-up solutions for a nonlocal mean-field equation in

a union of intervals

Matteo Cozzi

(joint work with Antonio J. Fernández)

In [6], DelaTorre, Hyder, Martinazzi, and Sire considered the Dirichlet problem
ù

ü

ú

ü

û

(2&)
1
2 u = »

eu
∫ 1

21
eu dx

in (21, 1),

u = 0 in R \ (21, 1),

for a nonlocal mean ûeld equation driven by the half-Laplacian

(2&)
1
2u(x) :=

1

2Ã

∫

R

2u(x) 2 u(x+ z) 2 u(x2 z)

z2
dz.

They showed that this problem has a solution u» if and only if » * (0, 2Ã). These
solutions are even, positive in (21, 1), decreasing in [0, 1], and, as a family, they
blow-up at the origin as »� 2Ã, meaning that lim»�2Ã u»(0) = 0. It also follows
from their analysis that

(1) lim
»�2Ã

1

»

∫ 1

21

eu» dx = +>.

Due to the nonlocality of the half-Laplacian, it makes sense to study this
problem even in more general (disconnected) subsets of the real line, such as

the union I =
⋃d
k=1 Ik of d g 2 open intervals Ik with pairwise disjoint clo-

sures. If one is merely interested in detecting families of blowing-up solutions,

setting · := »
(∫

I e
u dx

)21
and recalling (1) this problem can be equivalent recast

as the Liouville type equation

(2)

{

(2&)
1
2u = ·»(x)eu in I,

u = 0 in R \ I,

in the regime ·� 0, for » c 1.
Problem (2) has an interesting geometric interpretation. Understanding the

half-Laplacian as a Dirichlet-to-Neumann operator, (2) is equivalent to the local
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mixed boundary value problem

(3)

ù

ü

ú

ü

û

2&U = 0 in R2
+ := R× (0,+>),

"¿U = ·»(x)eU in I ¢ "R2
+,

U = 0 in "R2
+ \ I,

for the harmonic extension U of u to the half-plane R2
+. This is in turn equivalent

to ûnding a metric g = e2Ugeu in R2
+, conformally equivalent to the Euclidean

one geu, with respect to which R2
+ has Gaussian curvature identically equal to 0,

the intervals I have geodesic curvature equal to ·», and such that the two metrics
induced by g and geu on the boundary of R2

+ coincide outside of I. See [2, 4, 8, 9]
for related geometric problems.

Problem (2) can also be regarded as the one-dimensional analogue of

(4)

{

2&u = ·2»(x)eu in ',

u = 0 on "',

where ' ¢ R2 is a bounded domain with smooth boundary. Notice that the
Laplacian in the plane shares many similarities with the one-dimensional half-
Laplacian, such as fundamental solutions and criticality of the Sobolev embed-
ding. Blowing-up families of solutions of (4) have been largely investigated, most
prominently in [1, 5, 7]. In particular, in [5] del Pino, Kowalczyk, and Musso have
shown that, given any non-simply connected domain ', any m * N, and any func-
tion » * C2(') with infΩ » > 0, there is a family of solutions {u·} to (4) which
blows-up at m points of ' as ·� 0 and satisûes

lim
·�0

·2
∫

Ω

»(x)eu·(x) dx = 8mÃ.

In [3] we establish a somewhat analogous result for the nonlocal problem (2).
Note that in 1D we lack the topological richness already present in the plane. In
a sense, the non-simply connectedness is replaced by the disconnectedness of our
union of intervals I. The precise statement of our result reads as follows.

Theorem 1. For any integer m * [1, d] and · sufficiently small, there exists a
solution u· of problem (2) satisfying

lim
·�0

·

∫

I

»(x)eu·(x) dx = 2mÃ.

Moreover, there exist m distinct points ¿1, . . . , ¿m * I such that, given any infini-
tesimal sequence {·n} and any · > 0, the following holds true up to a subsequence:

" {u·n} is uniformly bounded in I \
m
⋃

j=1

(¿j 2 ·, ¿j + ·);

" sup
(¿j2·,¿j+·)

u·n ³ +> as n³ +>, for all j = 1, . . . ,m.

We stress that » is a general function of class C2(I) satisfying infI » > 0.
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Our proof of Theorem 1 is perturbative and based on a Lyapunov-Schmidt
reduction close in spirit to that pioneered in [5]. This approach naturally produces
a rather precise description of the blow-up behavior of the family of solutions {u·}
nearby the points ¿j 9s. Indeed, focusing for simplicity on the case » c 1, the
solution u = u· has the form u = U + Ë, with

U (x) =
m
∑

j=1

(

log
( 2µj
µ2
j·

2 + (x2 ¿j)2

)

+Hj(x)

)

,

for some appropriately chosen parameters µ1, . . . , µm * (0,+>), suitable correc-
tor functions Hj 9s, and a remainder term Ë having small-in-· L> norm. The proof
proceeds by linearizing the equation in (2) around U and showing that the cor-
responding problem for Ë admits a solution which is small in ·. It turns out that
this is possible if the vector (¿1, . . . , ¿m) is a critical point of a functional involving
the Green function of the half-Laplacian in I and the trace of its regular part,
often called Robin function. We are able to ûnd such a critical point (actually, a
minimizer) if m f d and each ¿j lies in a diûerent interval Ik.

Our analysis leaves a few questions open.

" Is it possible to construct blowing-up solutions at m > d points? Or even
at m f d points, but with two or more points lying in the same interval?
We have a partial non-negative answer in the case of d = 2 intervals and a
suûciently large number m of blow-up points4see [3].

" Are there blowing-up solutions for the generalization of the geometric prob-
lem (3) in which one prescribes a non-trivial Gaussian curvature in R2

+? This
amounts to introducing an exponential nonlinearity in the ûrst equation in (3)
and, as a result, it would require techniques which are not (solely) based on
the analysis of the trace problem for the half-Laplacian.
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Nonlocal minimal surfaces

Serena Dipierro

(joint work with Ovidiu Savin, Enrico Valdinoci)

The theory of nonlocal minimal surfaces deals with an energy functional account-
ing for <pointwise interactions= between a given set and its complement. These
contributions from <far-away= can have a signiûcant inûuence on the local struc-
ture of these new objects and produce unexpected phenomena. In particular,
diûerently from classical minimal surfaces, the nonlocal minimal surfaces have the
strong tendency to <stick at the boundary=, as discovered in [3].

More speciûcally, following Caûarelli-Roquejoûre-Savin, given s * (0, 1) and a
smooth, bounded, open set ' ¢ Rn, the s-perimeter Pers(E; ') of a (measurable)
set E ¦ Rn in ' is deûned as

L(E + ', (CE) + ') + L(E + ', (CE) + (C')) + L(E + (C'), (CE) + '),

where

L(A,B) :=

∫

A

∫

B

1

|x2 y|n+s dx dy

and CE := Rn \ E.

Minimizers of Pers are called nonlocal minimal sets and they exhibit several
boundary stickiness phenomena (see [3]). For instance: if K· :=

(

B1+· \ B1

)

+
{xn < 0} and E· is the nonlocal minimal set among all the sets E such that E \
B1 = K·, then E· = K·, provided that · > 0 is suûciently small.

Also, given a suûciently large M > 1, the nonlocal minimal set EM in (21, 1)×
R with datum outside (21, 1)×R given by the jump

(

(2>,21]× (2>,2M)
)

*
(

[1,+>) × (2>,M)
)

satisûes, for some constant C,

[21, 1) × [CM
1+s

2+s , M ] ¦ EcM and (21, 1] × [2M, 2CM 1+s

2+s ] ¦ EM .

Interestingly, halfspaces are nonlocal minimal sets, but arbitrarily small pertur-
bations of their data are suûcient to produce stickiness.

After [3] (among many others) three foundational questions remained open: How
regular are the nonlocal minimal surfaces coming from inside the domain? Is the
nonlocal mean curvature equation satisûed up to the boundary? How typical is
the stickiness phenomenon?

These questions have been addressed in [4] for nonlocal minimal sets in the plane
with graphical structure. In this framework, we have that at the boundary <conti-
nuity implies diûerentiability=, namely: if a nonlocal minimal graph u in (0, 1)×R
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is discontinuous at 0 with respect to the external datum, then its derivatives
blows up at 0; if instead u is continuous at 0 then it is automatically of class at

least C1, 1+s
2 .

We note that this dichotomy is a purely nonlinear, or geometric, eûect, since
the boundary behavior of linear equation is of Hölder type.

Furthermore, as a curve, the nonlocal minimal graph turns out to be alwaysC1, 1+s
2 :

namely, it is either the graph of a C1, 1+s
2 -function (when it is continuous at the

boundary), or it is discontinuous and sticks vertically detaching in a C1, 1+s
2 fashion

(but then the inverse function is a C1, 1+s
2 function).

Since the nonlocal mean curvature can be understood as a <C1,s operator=, the
fact that 1+s

2 > s allows us to <pass the equation to the limit= and obtain that
the nonlocal mean curvature equation is satisûed up to the boundary.

This in turn implies that the stickiness phenomenon is <generic=: namely, either
a nonlocal minimal graph in the plane is boundary discontinuous, or there is an
arbitrarily small perturbation of its exterior datum which produces a boundary
discontinuous nonlocal minimal graph. The proof of this genericity result leverages
the fact that the nonlocal mean curvature equation holds true up to the boundary,
since one can take any conûguration, add an arbitrarily small bump and use the
unperturbed conûguration as a barrier.

These results entail a <butterûy eûect=, since an arbitrarily small perturbation
produces a boundary discontinuity and an inûnite derivative at the boundary (that
is, an arbitrarily small perturbation suddenly changes the boundary derivative
from zero to inûnity).

Higher dimensional situations are addressed in [5]. For further examples of sticki-
ness phenomena, see [1, 2].
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Stable cones in the fractional Alt–Caffarelli problem

Xavier Fernández-Real

(joint work with X. Ros-Oton)

Consider the energy functional

(1) J (u) = [u]2H1(B1)
+
∣

∣{u > 0} +B1

∣

∣ =

∫

B1

(

|'u|2 + Ç{u>0}
)

where ÇA is the characteristic function of the set A.
The study of the critical points and minimizers of (1) is known as the (classical)

one-phase free boundary problem (or Bernoulli free boundary problem), which is
a typical model for ûame propagation and jet ûows. From a mathematical point of
view, it was originally studied by Alt and Caûarelli in [3], and since then multiple
contributions have been made.

In this talk, we deal with the fractional analogue of (1), in which the Dirichlet
energy in the functional is replaced by the Hs fractional semi-norm of order s *
(0, 1),

(2) Js(u) = [u]2Hs(B1)
+
∣

∣{u > 0} +B1

∣

∣,

(see (4) below) which corresponds to the case in which turbulence or long-range
interactions are present, and appears in particular in ûame propagation; see [5, 8]
and references therein.

This problem was ûrst studied by Caûarelli, Roquejoûre, and Sire in [5], where
they obtained the optimal Cs regularity for minimizers, the free boundary condi-
tion on "{u > 0}, and showed that Lipschitz free boundaries are C1 in dimension
n = 2. More recently, further regularity results for the free boundary have been
obtained in [7, 2, 6, 10, 9, 8, 11] among others. These results imply that free bound-
aries are regular outside a certain set of singular points £, with dimH(£) f n2k7s
and k7s g 3. The value of k7s is the lowest dimension in which there are sta-
ble/minimal cones.

The non-local energy functional. Let us consider the energy functional,

(3) JΛ(v,Rn) = [v]2Hs(Rn) + �2
∣

∣{v > 0}
∣

∣,

depending on the parameter � * R, with the fractional semi-norm
(4)

[v]2Hs(Rn) =
cn,s
2

∫∫

Rn×Rn

(v(x) 2 v(y))2

|x2 y|n+2s
dx dy, where cn,s =

s22s�
(

n+2s
2

)

Ãn/2�(1 2 s)

is the constant appearing in the fractional Laplacian,

(2&)su(x) = cn,sPV

∫

Rn

u(x) 2 u(y)

|x2 y|n+2s
dy.

Obtaining local minimizers to JΛ is the fractional one-phase free boundary
problem. When s = 1

2 this is equivalent to the thin one-phase free boundary
problem. It is a free boundary problem because, a priori, the zero-level set of
the minimizer is unknown, and its boundary is called the <free boundary=. After
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understanding the optimal regularity of minimizers, the study of the free boundary
constitutes the main topic of research for this type of problem.

Let u be a local minimizer (or critical point) to (3) in a ball B. Let ' = {u > 0},
and let us suppose ' is smooth enough. Let

d(x) = dist(x, "').

Then, by standard variational arguments we have that (2&)su = 0 in ' + B.
Moreover, we have that u solves the following problem involving a condition on
the fractional derivative on "',

(5)

ù

ü

ú

ü

û

(2&)su = 0 in ' +B
u = 0 in 'c +B

�(1 + s)
u

ds
= � on "' +B.

This is the ûrst variation of the energy functional.

The stability condition. Our main goal is to obtain the second variation of the
energy functional. Namely, we will ûnd the stability condition for (3).

In order to state the result, we need the following deûnition:

Definition 1. Let ' be a C1,³ domain outside the origin, and let GΩ,s(x, y) be
the Green function of the operator (2&)s for the domain '. Then, we deûne the
kernel KΩ,s : "' × "' ³ R as

(6) KΩ,s(x, y) = lim
Ω+x̄³x
Ω+ȳ³y

GΩ,s(x̄, ȳ)

ds(x̄)ds(ȳ)
.

By well-known boundary regularity estimates for the fractional Laplacian ([14,
15]), (6) is well-deûned as soon as the boundary is C1,³.

Furthermore, we also deûne the following curvature-type term

HΩ,s(x) :=

∫

"Ω

|¿(x) 2 ¿(y)|2KΩ,s(x, y)dÃ(y)

for x * "', and where ¿ : "' ³ Sn21 denotes the unit inward normal vector on
"', and Ã denotes the area measure on "'.

We can now state the second-variation condition for the energy functional (3).
In the local case, this result was obtained in [4, 13].

Theorem 2. Let s * (0, 1) and let u * Cs(Rn) be a global s-homogeneous stable
solution to (5). Assume that ' := {u > 0} is a C2,³ domain outside the origin.

Let KΩ,s and HΩ,s be given by Definition 1. Then, we have

(7)

∫

"Ω

∫

"Ω

(

f(x) 2 f(y)
)2KΩ,s(x, y) dÃ(x) dÃ(y) g

∫

"Ω

HΩ,sf
2 dÃ(x)

for all f * C>
c ("' \ {0}).

Furthermore, KΩ,s is (2n)-homogeneous and

(8) KΩ,s(x, y) o 1

|x2 y|n for all x, y * "',
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while HΩ,s is (21)-homogeneous, and

HΩ,s(x) o 1

|x| for all x * "',

if ' is not a half space.

Here, we have denoted g1(x) o g2(x) if C21g2(x) f g1(x) f Cg2(x) for some
positive constant C independent of x.

The result stated here is for s-homogeneous solutions since we are mainly in-
terested in blow-ups at free boundary points. A more general result is stated in
the body of the paper.

The stability condition (7) has an equivalent formulation in terms of large solu-
tions for the fractional Laplacian (which were introduced and studied in [1, 12]).
More precisely, (7) turns out to be equivalent to

(9)

∫

"Ω

f TΩ,sf dÃ g »s

∫

"Ω

U1f
2 dÃ

for all f * C>
c ("' \ {0}), where

U1 := 2 1

�
"¿

( u

ds

)

, TΩ,sf := 2"¿
(

F

ds21

)

,

and F is the unique solution of
ù

ü

ú

ü

û

(2&)sF = 0 in '
F = 0 in 'c

F

ds21
= f on "'

satisfying F ³ 0 for |x| ³ >. (Notice that F blows-up on the free boundary "'.)
Such equivalence is not trivial, and actually U1 is related, but not equal, to

HΩ,s.
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A heat equation approach to some boundary value problems in

analysis and geometry

Nicola Garofalo

In this talk I report on some parts of the following joint works with Giulio Tralli
[6], [7] and [8]. Consider the following parabolic version of the Caûarelli-Silvestre
extension problem [2]. Little known to most people, this problem was ûrst intro-
duced by Frank Jones in 1968 [11]. He also constructed the Poisson kernel and
solved the case s = 1/2: given a * (21, 1) and a function u * C>

0 (Rnx × Rt) ûnd
a function U * C>(Rnx × Rt × R+

y ) such that

(1)

{

"yyU + a
y"yU + &xU 2 "tU = 0

U(x, t, 0) = u(x, t).

The solution U((x, t), y) to (1) possesses the fundamental property

("t 2 &x)su(x, t) = 222a
�(12a2 )

�(1+a2 )
lim
y³0+

ya
"U

"y
((x, t), y),

where s = 12a
2 * (0, 1). It turns out that the conformal invariances of (2&)s are

hidden in the heat kernel

(2) q(s)(x, y, t) = (4Ãt)2
(

n

2
+(12s)

)

e2
|x|

2+y2

4t .

of the extension PDE in (1)

(3) "yyU +
1 2 2s

y
"yU + &xU 2 "tU = 0.

An important (beautiful) property enclosed in (2) is that

(4)

∫ >

0

q(±s)(x, y, t)dt =
�(n32s

2 )

Ã
n

2
3s (|x|2 + y2)2

n32s

2 ,

which gives the Talenti-Aubin-Lieb extremals for the Sobolev embedding, and their
intertwined functions obtained by changing s into 2s.

The starting point of my talk is a parabolic extension problem, inspired to (1),
and yet completely diûerent from the Caûarelli-Silvestre one. Such problem arises
in conformal geometry and complex hyperbolic scattering. The relevant geometric
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framework is that of Lie groups of Heisenberg type, a special class of the so-
called stratiûed, nilpotent Lie groups, aka Carnot groups. These ambients model
physical systems with constrained dynamics, in which motion is only possible
in a prescribed set of directions in the tangent space (sub-Riemannian [3], versus
Riemannian geometry). Every Carnot group is endowed with an important second
order partial diûerential operator called horizontal Laplacian

L =

m
∑

j=1

X2
j .

The idea goes back to the visionary address of Eli Stein [14]. The operator L fails
to be elliptic at every point of the ambient space G, unless the group is Abelian,
in which case G = Rm and L = &, the standard Laplacian. I will focus on the
simplest genuinely non-Abelian setting: Carnot groups of step two. This means
that the Lie algebra of the group admits a representation g = g1 · g2, where
[g1, g1] = g2 and [g1, g2] = {0}. The most important of these Lie groups is the
ubiquitous 2n+ 1-dimensional Heisenberg group Hn, ûrst introduced by H. Weyl
in his group representation theory approach to quantum mechanics [15, 16]. In
the Heisenberg group Hn, with horizontal Laplacian L , I consider the following
parabolic extension problem: given a number s * (0, 1), and a function u *
C>

0 (Hn × R), ûnd U * C>(Hn × R× R+
y ) such that

(5)

{

"yyU + 122s
y "yU + y2

4 "ÃÃU + LU 2 "tU = 0,

U(g, t, 0) = u(g, t), (g, t) * Hn × R.

I stress that, without the term y2

4 "ÃÃU , the problem (5) would simply be similar
to the extension problem (1), but for the fractional powers of the heat operator
("t 2 L )s on Hn! In such case the relevant PDE would decouple, which means
that its heat kernel would simply be the product of the heat kernels of "yy +
122s
y "y 2 "t and L 2 "t, i.e. q(s)(z, Ã), y, t) = (4Ãt)12se2

y
2

4t p(z, Ã, t), where p is

the Gaveau-Hulanicki [9, 10] heat kernel on Hn. The additional term y2

4 "ÃÃU
makes the problem (5) completely diûerent, and much harder, than (1). One
critical obstruction is that the operator L involves diûerentiation in the variable

Ã. One has in fact, in the real coordinates (z, Ã) * Hn, L = &z + |z|2
4 "ÃÃ +

"Ã(
∑n

i=1 xi"yi2yi"xi). Concerning the extension problem (5) the following is one
of our main results.

Theorem 1. Let G be a group of Heisenberg type [5], with Lie algebra g = g1·g2,
and let m = dim g1, k = dim g2. For every 0 < s < 1 the heat kernel with pole in
the origin of the operator in (5) is given by

q(s)((z, Ã), t, y) =
2k

(4Ãt)
m

2
+k+12s

∫

Rk

e2
i

t
〈Ã,»〉

( |»|
sinh |»|

)
m

2
+12s

e2
|z|

2+y2

4t

|»|

tanh |»| d».

(6)

It is notable that, in the limiting cases when s� 1 and y ³ 0+, we recover from
(6) the heat kernel of "t2L of Gaveau and Hulanicki! In our works mentioned in
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the opening we use the heat kernels (6), and its intertwined counterpart obtained
by changing s into 2s, to develop in groups of Heisenberg type an extensive anal-
ysis of the fractional powers Ls of the so-called conformal horizontal Laplacian.
We have also constructed the inverses of the pseudodiûerential operators L(±s),
and computed their fundamental solutions e(s) and e(2s).

Additional literature:

" the operators Ls were ûrst introduced in [1] via the spectral formula

(7) Ls = 2s|T |s�(2 1
2L |T |21 + 1+s

2 )

�(2 1
2L |T |21 + 12s

2 )
, 0 < s < 1,

where T = "Ã is the diûerentiation in the vertical direction.
" in Hn the time-independent version of (5) was ûrst introduced in [4]. Us-

ing scattering theory the authors proved that its solution U satisûes the
following fundamental weighted Dirichlet-to-Neumann mapping

(8) 222s21�(s)

�(1 2 s)
lim
y³0+

y122s "U

"y
((z, Ã), y) = Lsu(z, Ã).

" in their papers [12] and [13] the authors considered the problem (5), and
proved that the representation (7) of Ls is equivalent to the following
formula:

(9) Lsu(g) = 2 s

�(1 2 s)

∫ >

0

1

t1+s
[

P(2s),tu(g) 2 u(g)
]

dt.

For an explanation of the operators P(2s),t, and their intertwined P(+s),t, see
the slides of my talk. It is important to keep in mind that these operators
do not generate semigroups! Therefore, the standard theory does not apply.
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The Dirichlet problem for fractional-order operators; transmission

spaces; a local Dirichlet boundary value

Gerd Grubb

1. The homogeneous Dirichlet problem

The talk deals with the fractional Laplacian (2&)a, 0 < a < 1, and suitable pseu-
dodiûerential operators (ps.d.o.s) P of order 2a. Recall that the Fourier transform
Fu = Æu(¿) =

∫

Rn
e2ix·¿u(x) dx serves to deûne the ps.d.o. P with symbol p(x, ¿)

by:
Pu(x) = F21

¿³x

(

p(x, ¿)Æu(¿)
)

= Op(p)u.

Then (2&)au = Op(|¿|2a)u. (2&)a can also be described in real terms as a
singular integral operator, the convolution with cn,a|y|2n22a = F21|¿|2a.

Let ' ¢ Rn be either Rn+ or a bounded open subset with C1+Ç -boundary,
some Ç * R+. By r+ we denote restriction from Rn to ', and by e+ extension
by 0 from ' to Rn. Together with the Sobolev space Hs(Rn) = {u * S 2(Rn) |
F21((1+|¿|)sÆu) * L2(Rn)}, s * R, we use the restricted space H

s
(') = r+Hs(Rn)

and the supported space ÛHs(') = {u * Hs(Rn) | suppu ¢ '}; there are similar
spaces Hs

q for Lq, 1 < q <>.
Let P = (2&)a on Rn, 0 < a < 1, or a pseudodiûerential generalization (see

later). The homogeneous Dirichlet problem for P on ' is:

(1) r+Pu = f on ', u = 0 on Rn \ '.

Assume ' bounded. Since P is of order 2a, r+P maps ÛHa(') to H
2a

('). Ap-
plying the Lax-Milgram lemma to the sequilinear form Q(u, v) =

∫

Ω Pu v̄ dx, we
ûnd that the realization PD with domain

D(PD) = {u * ÛHa(') | r+Pu * L2(')},
is bijective from D(PD) onto L2('). We now ask about the regularity of solutions.
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It follows from Vishik and Eskin [3] that D(PD) = ÛH2a(') if a < 1
2 , and

D(PD) ¢ ÛHa+ 1
2
2·(') if a g 1

2 . More recent results:

f * L>(') =ó u * daC
t
('), for t up to a ,(2)

f * H
s

q(') ñó u * Ha(s+2a)
q ('), when s g 0,(3)

f * C>(') ñó u * e+daC>(') c Ea('),(4)

where d(x) = dist(x, "') near "' (extended > 0 to '). In (3), H
a(s+2a)
q (') is the

socalled a-transmission space, it satisûes

Ha(s+2a)
q (') ¢ ÛHs+2a

q (') + dae+H
s+a

q ('), when s+ a > 1
q .

(2) is shown in Ros-Oton and Serra [6] for C1,1-domains, (3), (4) in G. [4] for C>-
domains, (3) in Abels-G. [2] for C1+Ç -domains, Ç > 2a. The theory initiated in an
unpublished lecture note by Hörmander 1966. There are estimates for Lipschitz
domains e.g. by Borthagaray and Nochetto.

2. Transmission spaces

A simple example. Let P = (1 2 &)a, 0 < a < 1, with symbol p(¿) = (1 + |¿|2)a.
The Lax-Milgram method applies straightforwardly to P = (1 2 &)a, showing
unique solvability of the homogeneous Dirichlet problem on Rn+. Now

(1 + |¿|2)a = (〈¿2〉2 + ¿2n)a = (〈¿2〉 2 i¿n)a(〈¿2〉 + i¿n)a.

Deûne for general t * R the order-reducing operators:

�t± = Op((〈¿2〉 ± i¿n)t),

then P has the factorization (12&)a = �a2 �a+, with inverse (12&)2a = �2a
+ �2a

2 .
Relative to Rn+, the operators �t± map as follows for all s * R:

�t+ : ÛHs(R
n

+)
>³ ÛHs2t(R

n

+), r+�t2e
+ : H

s
(Rn+)

>³ H
s2t

(Rn+),

with inverses (�t+)21 = �2t
+ , (r+�t2e

+)21 = r+�2t
2 e+. The map r+P : ÛHa(R

n

+)
>³

H
2a

(Rn+) can be factored as r+Pu = (r+�a2e
+) �a+u. Hence the solution operator

to the Dirichlet problem for (1 2 &)a over Rn+ maps with bijective factors:

H
2a

(Rn+)
r+Ξ2a

2
e+

2³ L2(R
n
+)

Ξ2a

+2³ ÛHa(R
n

+).

When we lift these bijections to higher-order Sobolev spaces, the range space at
the right end will be an a-transmission space:

H
s
(Rn+)

r+Ξ2a

2
e+

2³ H
s+a

(Rn+)
Ξ2a

+2³ �2a
+ e+H

s+a
(Rn+) c Ha(s+2a)(R

n

+).

More generally, we deûne for 1 < q < >, H
a(t)
q (R

n

+) = �2a
+ e+H

t2a
q (Rn+). The

deûnition extends to bounded C1+Ç -domains ' by use of local coordinates, when
a2 1

q2 < t < 1 + Ç .

The general ps.d.o.s P are taken with the symbol being CÇ in x, classical
(expanded in homogeneous term p > ∑

j*N0
pj, pj of degree 2a 2 j), strongly
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elliptic: Re p0(x, ¿) g c > 0, and even: pj(x,2¿) = (21)jpj(x, ¿), all j, |¿| g 1.
The idea is that for such P on Rn+ one writes P = �a2Q�a+ and applies the Boutet
de Monvel calculus to Q.

Theorem 1 [2] For P and ' with Ç > 2a, 0 f s < Ç 2 2a, the solutions of the
homogeneous Dirichlet problem (1) satisfy (3).

3. A nonzero Dirichlet boundary value

For motivation, consider the C>-results in (4). P maps forwardly [4]:

r+P : Ea+k(') ³ C>(') for all integer k g 21.

Observe the Taylor expansions at the boundary, in local coordinates where ' is
replaced by Rn+ = {x = (x2, xn) | xn > 0} so that d(x) = xn:

" In E0: u(x) > v0(x2) + v1(x2)xn + v2(x2)x2n + . . . .
" In E1: u(x) > v0(x2)xn + v1(x2)x2n + v2(x2)x3n + . . . .
" In Ea: u(x) > v0(x2)xan + v1(x2)xa+1

n + v2(x2)xa+2
n + . . . .

" In Ea21: u(x) > v0(x2)xa21
n + v1(x2)xan + v2(x2)xa+1

n + . . . .

Denoting u|"Ω = ³0u, we observe that for all a > 0,

Ea is the subset of Ea21 where ³0(u/da21) = 0.

Let f * C>('), × * C>("'). Compare boundary value problems for & and
(2&)a. Old fact: The nonhomogeneous Dirichlet problem for &:

&u = f on ', ³0u = × on "',

is uniquely solvable in C>(') c E0('). In particular, the homogeneous Dirich-

let problem for & (with × = 0) is uniquely solvable in E1(').
New result from [4]: The homogeneous Dirichlet problem (1) for (2&)a

is uniquely solvable in Ea('). Here Ea(') has a role like E1(') for &. It is then
natural to deûne a nonhomogeneous Dirichlet problem for (2&)a by going
out to the larger space Ea21('). The problem

(5) (2&)au = f on ', ³0(u/da21) = × on "', suppu ¢ ',

is uniquely solvable in Ea21(') [4]. The proof is done by subtracting a function
w * Ea21 with ³0(w/da21) = ×.

Abatangelo [1] approached the problem from a diûerent angle, starting with a
Green9s function GΩ(x, y) for the homogeneous Dirichlet problem for (2&)a and
developing integral representation formulas imitating the formulas known for &.
This led to a boundary operator u 7³ Eu, known to be proportional to ³0(u/da21)
(cf. [5]). It enters also e.g. in recent works of Chan, Gomez-Castro and Vazquez;
Fernandez-Real and Ros-Oton. The solutions are called <blow-up solutions=, since
they behave like da21 near "'. They are in Lq(') for 1 < q < (1 2 a)21.

More generally, the roles of Ea and Ea21 are taken over by the a- and (a 2 1)-

transmission spaces, such as H
(a21)(t)
q (R

n

+) = �2a+1
+ e+H

t2a+1

q (Rn+).
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For C1+Ç -domains, the boundary map u 7³ ³0(u/da21) is continuous and sur-

jective from H
(a21)(t)
q (') to B

t2a+ 1

q
2

q ("') when a2 1
q2 < t < Ç + a2 1.

Theorem 2 [5] When f * H
s

q('), × * B
s+a+1/q2

q ("'), 0 f s < Ç 2 2a 2 1, the
nonhomogeneous Dirichlet problem (5) for P is uniquely solvable with a solution

u * H
(a21)(s+2a)
q (') (Fredholm solvable if 0 is a Dirichlet eigenvalue).
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Morrey smoothness spaces: A new approach

Dorothee D. Haroske

(joint work with Hans Triebel)

In the recent years so-called Morrey smoothness spaces attracted a lot of interest.
They can (also) be understood as generalisations of the classical spaces of Besov
and Triebel-Lizorkin type,

(1) Asp,q(R
n) with A * {B,F}, s * R and 0 < p, q f >,

where the parameters satisfy s * R (smoothness), 0 < p f > (integrability) and
0 < q f > (summability). They have been extended in several directions, most
notably into two types of Morrey smoothness spaces,

(2) N s
u,p,q(R

n) and Esu,p,q(Rn) with p f u <>,

and

(3) As,Çp,q(R
n), A * {B,F}, with 0 f Ç <>.

When p = u in (2), and Ç = 0, p < > in (3), one re-obtains the corresponding
spaces in (1). In our opinion, among the various approaches to Morrey type spaces,
these two scales (2), (3) enjoy special attention, also in view of possible applications
to PDEs. This was already the case for the 8basic9 Morrey spaces extending Lp, cf.
[8]. Later, one of the milestones in this direction, was the famous paper [4] where
they used spaces of type (2) to study Navier-Stokes equations; we also refer in this
context to the papers [7, 1, 13, 5, 6], as well as to the monographs [9, 10, 14, 11, 12].
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Our intention is to reorganise these two prominent types of Morrey smooth-
ness spaces. The classical parameters (s, p, q) in (1), but also in (2) and (3), are
untouchable. Now we add the so3called slope parameter ;, preferably (but not
exclusively) with 2n f ; < 0, that is, we replace u in (2) and Ç in (3) by the
common parameter ; (appropriately chosen). The corresponding spaces

(4) ;-Asp,q(R
n) =

{

�;Asp,q(R
n),�;A

s
p,q(R

n) : A * {B,F}
}

,

cover all spaces in (2) and (3), in particular, with

(5) �2nAsp,q(R
n) = �2nA

s
p,q(R

n) = Asp,q(R
n).

We call ; the slope parameter because |;| quite often takes over the rÆole of the
slope n, and min(|;|, 1) replaces 1 in slopes of (broken) lines in the typical

(

1
p , s
)

3

diagram characterising distinguished properties of the spaces Asp,q(R
n), where any

space of type Asp,q is indicated by its smoothness parameters s and the integrability
p, neglecting the ûne index q for the moment.

Let us illustrate this approach by a few examples, like embeddings in L>(Rn)
and in Lloc

1 (Rn) (regular distributions) or traces on hyper3planes. Moreover, one
may ask to which spaces the ·3distribution or the characteristic function ÇQ of the
unit cube Q = (0, 1)n, n * N, belong. Some ûnal answers in the setting of Morrey
smoothness spaces have been obtained recently. But the related conditions for
the above questions are often not very appealing, producing, for instance, curved
lines in the well3known

(

1
p , s
)

3diagram; we refer to [2] for such examples. This

suggested to search for a re3parametrisation of the spaces in (2), (3) such that the
outcome produces natural and transparent conditions for distinguished properties
of these spaces. It turns out that the previous, separately obtained results, based
on independent arguments, can thus not only be understood in a better way,
detached from the (sometimes quite involved) technical requirements. But one
might also observe more intrinsic reasons for common phenomena. This will also
constitute some basis for uniûed results and, occasionally, lead to appropriate
conjectures. In particular, the sharp embedding

(6) Asp,q(R
n) �³ C(Rn) if s >

n

p
, 0 < p <>,

as far as the breaking line is concerned, has now the sharp counterpart

(7) ;-Asp,q(R
n) �³ C(Rn) if s >

|;|
p
, 0 < p <>.

The sharp inclusion

(8) Asp,q(R
n) ¢ Lloc

1 (Rn) if s > Ãnp , 0 < p <>,

as far as the breaking line is concerned, has now the sharp counterpart

(9) ;-Asp,q(R
n) ¢ Lloc

1 (Rn) if s > Ã|;|
p , 0 < p <>,

where we use the notation

(10) Ãtp = t
(

max

(

1

p
, 1

)

2 1
)

, t g 0, 0 < p <>.
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For the characteristic function ÇQ of the cube Q = (0, 1)n the sharp assertion

(11) ÇQ * Asp,q(R
n) if s <

1

p
, 0 < p <>,

as far the breaking line is concerned, has now the sharp counterpart

(12) ÇQ * ;-Asp,q(R
n) if s <

1

p
min(|;|, 1), 0 < p <>.

The generalisation of the slope n in (6), (8) by |;| in (7), (9) obeys the so3called
Slope–n–Rule, whereas the replacement of 1 in (11) by min(|;|, 1) in (12) is a
typical example of the so3called Slope–1–Rule.

Our aim in the paper [3] is two3fold: we reformulate some assertions already
available in the literature (many of them quite recently), and we establish on this
basis new properties, a few of them became visible only in the context of the
oûered new approach.

References

[1] L.C.F. Ferreira and M. Postigo. Global well-posedness and asymptotic behavior in Besov-
Morrey spaces for chemotaxis-Navier-Stokes ûuids. J. Math. Phys., 60(6):061502, 19, 2019.

[2] D.D. Haroske, S.D. Moura, and L. Skrzypczak. Smoothness Morrey spaces of regular distri-
butions, and some unboundedness property. Nonlinear Anal., 139:2183244, 2016.

[3] D.D. Haroske and H. Triebel. Morrey smoothness spaces: A new approach. Sci. China
Math., to appear.

[4] H. Kozono and M. Yamazaki. The stability of small stationary solutions in Morrey spaces
of the Navier-Stokes equation. Indiana Univ. Math. J., 44(4):130731336, 1995.
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Pseudodifferential Operators with Negative Definite Symbols. The

Balayage Dirichlet Problem and the geometry of Transition Functions

Niels Jacob

In this survey we ûrst recall the notion of a pseudo-diûerential operator with a
negative deûnite symbol, that is a pseudo-diûerential operator q(x,D) with symbol
q(x, ¿) which is with respect to the covariable ¿ a continuous negative deûnite
function; i.e. ¿ 7³ q(x, ¿) admits a Lévy-Khinchin representation. We then discuss
for certain of such operators the balayage Dirichlet problem: q(x,D)u = 0 in a
bounded open set G ¢ Rn and u|Gc = f . The results are contained in [2] and
we discuss them in relation to problems related to the fractional Laplacian, an
operator of much interest since the work of Caûarelli and Sylvestre.
The second and larger part of this survey discusses a programme initiated in [3]
by V. Knopova, S. Landwehr, R. Schilling and NJ in order to obtain a geometric
understanding of transition densities of Lévy or Lévy-type processes. The ûrst
basic observation in [3] is that if Ë is a continuous negative deûnite function,

hence 2Ë(D) generates a Feller semigroup (TËt )tg0, then the condition Ë(¿) = 0

if and only if ¿ = 0 implies that dË(¿, ·) :=
√

|Ë(¿ 2 ·)| is a metric on Rn which
generates the Euclidean topology if and only if lim inf |¿|³> Ë(¿) > 0. In this case
we have

‖TËt ‖L12L> = pËt (0) = (2Ã)2ntL(VË(
:
r))(t)(1)

where L is the Laplace transform, »(n) the Lebesgue measure in Rn and VË(Ã) =

»(n)(BdË(0, Ã)). Moreover, if the metric measure space (Rn, dË, »
(n)) has the dou-

bling property, we have pËt (0) o VË( 1:
t
). Note that (1) implies that pËt (0) has in

general not a power-type decay and that therefore Nash-type inequalities are not

the most suitable tool to handle the transition density pËt of a Lévy or Lévy-type

process. We suggest in [2] to assume for pËt the structure

pËt (x2 y) = pËt (0)e2·
2
Ë,t

(x,y)(2)

where ·Ë,t is a further metric on Rn. For many examples this can be veriûed
however there is still no general result. We now consider following [1] two explicit
examples given by the negative deûnite symbols with at least Cb3coeûcients ak
and bk, respectively, as:

L(x, ¿) :=

n
∑

k=1

ak(x)|¿k|, ¿ = (¿1, . . . , ¿n) * Rn, 0 < ¿0 f ak(x) f ¿1,(3)

and

�(x, ¿) :=

(

n
∑

k=1

(bk(x)¿2k)

)
1
2

, ¿ = (¿1, . . . , ¿n) * Rn, 0 < µ0 f bk(x) f µ1,(4)
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and we freeze the coeûcients at x0 * Rn. For p
L(x0,·)
t and p

Λ(x0,·)
t we obtain now

p
L(x0,·)
t (x2 y) =

1

tn

n
∏

k=1

1

Ãak(x0)
e
2

n∑

k=1

ln

(
|x
k
2y
k
|
2+a2

k
(x0)t2

t
2

)

(5)

and

p
Λ(x0,·)
t (x2 y) =

1

tn
�
(

n+1
2

)

Ã
n21

2

1
(

n
∏

k=1

bk(x0)

)1/2
e
2n+1

2
ln

(
1

t
2

(
n∑

k=1

|x
k
2y
k
|
2

b
k
(x0)

+t2
))

.(6)

The two sets of corresponding metrics are

dL(x0,·)(¿, ·) :=

(

n
∑

k=1

ak(x0)|¿k 2 ·k|
)

1
2

,

·L(x0,·),t(x, y) :=

(

n
∑

k=1

ln

( |xk 2 yk|2 + a2k(x0)t2

t2

)

)1/2

and

dΛ(x0,·)(¿, ·) :=

(

n
∑

k=1

bk(x0)(¿k 2 ·k)2

)
1
2

,

·Λ(x0,·),t :=

√

n+ 1

2

(

ln

(

1

t2

(

n
∑

k=1

|xk 2 yk|2
bk(x0)

+ t2

)))
1
2

.

We observe that the metrics dL(x0,·) and dΛ(x0,·), hence p
L(x0,·)
t (0) and p

Λ(x0,·)
t (0),

are comparable, even for diûerent points x0 and x1, however the metrics ·L(x0,·)

and ·Λ(x0,·) are not comparable as p
L(x0,·)
t (x2y) and p

Λ(x0,·)
t (x2y) are not compa-

rable, although the symbols L(x0, ¿) and �(x0, ¿) are comparable. Both examples
are discussed further to obtain (under further conditions) estimates for (Tt)tg0, the
semigroup generated by 2L(x,D) (2�(x,D)) in terms of (St)tg0, the semigroup
generated by 2L(x0, D) (2�(x0, D)). For example we may ûnd for t³ 0

(Tt×)(x) g 2»0(×)t+ ³0VL(x0,·)

(

1:
t

)

inf
y*G1

e2·
2
L(x0,·),t

(x,y)»(n)(G1)

and

(Tt×)(x) f »0(×)(t) + ³2VL(x0,·)

(

1:
t

)

sup
y*G2

e2·
2
L(x0,·),t

(x,y)»(n)(G2),

where G1 ¢ G2 are bounded open sets, × * C>
0 (Rn) such that XG1

f × f
XG2

where XG denotes the characteristic function of G, and »0(×) is a constant
depending on ×, whereas ³0 and ³1 are further constants. These two bounds
should be sharpened by taking on the right hand side of the ûrst estimate the
maximum with 0, and in the second estimate the minimum with the kernel of Tt
on the diagonal at the point x.
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These results make it evident that we are still far away of a full understanding
of the transition densities of Lévy and Lévy-type processes and new, for example
geometric ideas are needed.

References

[1] K. Evans, N. Jacob, Some geometric Observations on Heat Kernels of Markov Semigroups
with Non-local generators, (submitted)

[2] W. Hoh, N. Jacob, On the Dirichlet problem for pseudo-differential operators generating
Feller semigroups, J. Funct. Anal. 137 (1996), 19348.

[3] N. Jacob, V. Knopova, S. Landwehr, R. Schilling, A geometric interpretation of the transi-
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A Sobolev inequality and a Faber-Krahn inequality for the regional

fractional Laplacian

Tianling Jin

(joint work with Rupert L. Frank, Dennis Kriventsov, Jingang Xiong)

Let n g 1, Ã * (0, 1) and ' ¢ Rn be an open set. There are two natural fractional
Sobolev norms which may be deûned for u * C>

c ('):

In,Ã,Rn [u] :=

∫∫

Rn×Rn

(u(x) 2 u(y))2

|x2 y|n+2Ã
dx dy

and

In,Ã,Ω[u] :=

∫∫

Ω×Ω

(u(x) 2 u(y))2

|x2 y|n+2Ã
dx dy.

Depending on the choices of n, Ã and ', these two norms may or may not be
equivalent. Even when they are equivalent, there are still subtle diûerences in how
they depend on the domain '.

One signiûcant diûerence is the behavior of their corresponding best Sobolev
constants:

Sn,Ã(') := inf

{

In,Ã,Ω[u] : u * C>
c ('),

∫

Ω

|u| 2n
n22Ã dx = 1

}

and

˜Sn,Ã(') := inf

{

In,Ã,Rn [u] : u * C>
c ('),

∫

Ω

|u| 2n
n22Ã dx = 1

}

.

Using the dilation or translation invariance of ˜Sn,Ã(Rn), it is not diûcult to see
that

˜Sn,Ã(') = ˜Sn,Ã(Rn) = Sn,Ã(Rn) .

Moreover, a result of Lieb classiûes all minimizers for ˜Sn,Ã(Rn) and shows that they

do not vanish anywhere on Rn. Therefore, the inûmum ˜Sn,Ã(') is not attained
unless ' = Rn.
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However, in [1], we discovered that the minimization problem for Sn,Ã(') be-

haves diûerently from ˜Sn,Ã('), due to a Brézis-Nirenberg eûect.

Theorem 1 ([1]). Suppose n g 4Ã. Then

" If the complement 'c has an interior point, then

Sn,Ã(') < Sn,Ã(Rn).

" If Ã 6= 1/2, then Sn,Ã(Rn+) is achieved (this half space case was also proved
by Musina-Nazarov independently around the same time).

" If Ã > 1/2, ' is a bounded domain such that B+
1 ¢ ' ¢ Rn+, then

Sn,Ã(') < Sn,Ã(Rn+).

Moreover, if "' is smooth then Sn,Ã(') is achieved.

In probability, In,Ã,Ω is called the Dirichlet form of the censored 2Ã-stable pro-
cess in '. Its generator,

(1) (2&)ÃΩu := 2 lim
·³0

∫

{y*Ω: |y2x|g·}

u(x) 2 u(y)

|x2 y|n+2Ã
dy,

is usually called the regional fractional Laplacian operator. Next, we would like to
study the Faber-Krahn inequality for the regional fractional Laplacian operator.

Let us recall the Faber-Krahn inequality for the classical Laplacian: Let »1(')
be the ûrst Dirichlet eigenvalue of & on the bounded open set '. Then

»1(') g »1(B),

where B is a ball having the same measure as '. Moreover, if the above inequality
holds, then ' must be a ball.

Let ÚHÃ(') be the completion of C1
c (') with respect to In,Ã,Ω. Consider the

ûrst eigenvalue

»1,Ã(') = min{In,Ã,Ω[u] : u * ÚHÃ('), ‖u‖L2(Ω) = 1},
which solves

(2)

{

(2&)ÃΩu = »1u in ',

u = 0 on "'.

We are interested in

inf{»1,Ã(') : ' ¢ Rn a bounded open set such that |'| = |B1|}.
This shape optimization problem is equivalent to (up to scaling):

inf

{

In,Ã,{u>0}[u]

‖u‖2L2(Rn)

+ |{u > 0}| : u * ÚHÃ(Rn), u 6c 0, u g 0 in Rn

}

.

One diûculty is that radially symmetric rearrangement does not reduce the
In,Ã,Ω[u] norm.

Theorem 2 ([2]). Let n g 2 and Ã * (12 , 1). There exists u0 * ÚHÃ(Rn), u0 6c 0,
u0 g 0 in Rn such that the set {u0 > 0} is bounded, and
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inf

{

In,Ã,{u>0}[u]

‖u‖2L2(Rn)

+ |{u > 0}| : u * ÚHÃ(Rn), u 6c 0, u g 0 in Rn

}

is achieved by u0.

Open Question: Is there a minimizer that is continuous in Rn?
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Energy methods for nonlocal operators

Moritz Kaßmann

(joint work with Guy Foghem)

Short summary: Within the framework of Hilbert spaces, we solve nonlocal
problems in bounded domains with prescribed conditions on the complement of the
domain. Our main focus is on the inhomogeneous Neumann problem in a rather
general setting. We also study the transition from complement value problems
to local boundary value problems. Several results are new even for the fractional
Laplace operator. The setting also covers relevant models in the framework of
peridynamics. The talk is based on [FG20].

Over the last years, there have been several studies of nonlocal Neumann problems
of the following type: Given a bounded open set ' ¢ Rd, one is interested in well-
posedness for

Lu = f in ', Nu = g on Rd \ ' ,(N)

where L is an integro-diûerential operator and N is a related integral operator,
which plays the role of some kind of normal derivative on Rd \ '. Here, the main
goal is to prove well-posedness results for (N) in a general setting. We assume:

Lu(x) = pv.

∫

Rd

(

u(x) 2 u(y)
)

k(x, y)dy (x * Rd) ,

Nu(y) =

∫

Ω

(u(y) 2 u(x))k(x, y)dx (y * 'c) .

Here, k : Rd × Rd \ diag ³ [0,>) is measurable and satisûes

�21¿(y 2 x) f k(x, y) f �¿(y 2 x) (x, y * Rd) ,(E)

where ¿ : Rd \ {0} ³ [0,>) is the density of a symmetric Lévy measure,

¿(h) = ¿(2h) for all h 6= 0 and

∫

Rd

(

1 ' |h|2
)

¿(h)dh <> .(L)
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In short, in [FG20] we provide a general framework that includes integrable
and singular kernels at the same time. Extending previous results, e.g. from
[DROV17], [MPL19], [DTZ22], we study the inhomogeneous problem for natural
choices of data g. Note that some of the results are new even for the fractional
Laplace Operator.

Let us explain condition (E). Note that, in the case k(x, y) = ¿(y 2 x) with ¿ as
above, the operator L is translation invariant and generates a symmetric Lévy pro-
cess. The density ¿ deûnes the <order= of the operator L, which becomes apparent
in the case of ¿(h) = Cd,³|h|2d2³ for h 6= 0 where ³ * (0, 2) is ûxed and Cd,³ is
an appropriate constant. The resulting operator is the so called fractional Laplace
operator (2&)³/2. For details about the fractional Laplace operator (2&)³/2 and
the constant Cd,³ we refer to [NPV12, FG20]. It is worth mentioning that the
nonlocal operator N was initially introduced by [DROV17]. Another type of such
an operator appeared earlier in the literature, see for instance [DGLZ12].

Let us quickly review the classical Neumann problem. Let ' ¢ Rd be a bounded
open subset whose boundary "' is suûciently regular. Given f : ' ³ R and
g : "' ³ R measurable, the classical inhomogeneous Neumann problem consists
in ûnding a function u : ' ³ R satisfying

2&u = f in ' and
"u

"n
= g on "'.(1)

Here "u
"n denotes the outward normal derivative of u on "'. It is interesting to

note that the Neumann boundary problem has received considerably less attention
in the literature when compared with the Dirichlet boundary problems.

Following [FKV15, SV14] we introduce a bilinear form E by

E(u, v) =
1

2

∫ ∫

(Ωc×Ωc)c

(

u(x) 2 u(y)
)(

v(x) 2 v(y)
)

¿(x2y)dxdy(2)

for all smooth functions with compact support. As in the local case, a main tool in
the study of Neumann problems, is a Gauss-Green type formula for u, v * C>

c (Rd):
∫

Ω

Lu(x)v(x)dx = E(u, v) 2
∫

Ωc
Nu(y)v(y)dy.(3)

Relation (3) motivates us to introduce an energy space V¿('|Rd) as the vector
space of all measurable functions u : Rd ³ R such that the restriction u|Ω belongs
to L2(') and E(u, u) is ûnite. The energy space V¿('|Rd) can be seen as a nonlocal
analog of H1(').

Let us summarize the main results:

(1) The ûrst step is to deûne a base space L2(Rd; ¿̃), in which we can deûne
the complement value problems. We deûne ¿̃ and two altervative options
¿, ¿7. We study embedding results of corresponding function spaces.

(2) The next step is to introduce T¿('c) as the trace space of V¿('|Rd). We
provide equivalent norms on the trace space and a density result. We show
that the trace spaces introduced in [DK20] and [BGPR20] coincide.
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(3) An important tool in the proof of well-posedness results is the compact
embedding V¿('|Rd) �³ L2('), which is a core result.

(4) We focus on the Neumann problem but we also discuss a more general
Robin-type complement value problem.

(5) We propose a Dirichlet form for the study of reûected jump processes,
which is diûerent from the one in [Von21].

(6) The setup allows to deûne a fully nonlocal Dirichlet-to-Neumann map with
the help of the nonlocal Neumann-type derivative N . For ' ¢ Rd, the
Dirichlet data are given on 'c and mapped to Nu on 'c, where u satisûes
the nonlocal equation in '. Thus, this map is a nonlocal analog of the
well-known Dirichlet-to-Neumann operator given in [CS07].

(7) The analogy between the classical Neumann problem and problem (N)
leads to a convergence result when considering a sequence of complement
value problems for the fractional Laplace operator (2&)

³n

2 where ³n ³ 2.
We establish the convergence of the corresponding sequence of solutions
u³n .
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Sharp heat kernel estimates for Markov process with singular jump

Kyung-Youn Kim

(joint work with Lidan Wang)

Let Z = (Z1, . . . , Zd) be d-dimensional Lévy processes, where Zi9s are independent
1-dimensional Lévy processes with jump kernel ¿1(u,w) = |u2 w|21Ç(|u 2 w|)21

for u,w * R. Here Ç is an increasing function satisfying that for ³, ³ * (0, 2),
there exists a positive constant c > 1 such that

(WS) c21

(

R

r

)³

f Ç(R)

Ç(r)
f c

(

R

r

)³

for 0 < r < R.

For x, y * Rd, deûne

¿(x, y) :=

{

¿1(xi, yi) if xi 6= yi for some i and xj = yj for all j 6= i,

0 if xi 6= yi for more than one index i.

Since Zi9s are independent, the transition density pZ(t, x, y) of Z has the following
estimates: there exists a positive constant c1 > 1 such that for any t > 0, x, y * Rd,

c21
1

d
∏

i=1

(

[Ç21(t)]21 ' t¿1(|xi 2 yi|)
)

f pZ(t, x, y) f c1
d
∏

i=1

(

[Ç21(t)]21 ' t¿1(|xi 2 yi|)
)

.

The following conjecture is formulated in [7]:
Conjecture: Let Lt be a Lévy process (a non-degenerate ³-stable process) in Rd

with Lévy measure µ. Let Mt be a symmetric Markov process whose Dirichlet form
has a symmetric jump intensity j(x, dy) that is comparable to the one of Lt, i.e.,
j(x, dy) o µ(x2 dy). Then the heat kernel of Mt is comparable to the one of Lt.

Denote f o g if f/g is comparable to some positive constants in the domains of
f and g. Let J(x, y) be a symmetric measurable function comparable to ¿(x, y),
and deûne a symmetric bilinear form E(·, ·) on L2(Rd) that

E(u, v) :=

∫

Rd

(

d
∑

i=1

∫

R

(

u(x+ eih) 2 u(x)
)(

v(x+ eih) 2 v(x)
)

J(x, x+ eih)dh
)

dx ;

D := {u * L2(Rd)| E(u, u) <>}.
We prove the existence of a conservative Feller process X = (X1, . . . , Xd) associ-
ated to the (non-isotropic) regular Dirichlet form (E ,D). Furthermore, X has a
jointly continuous transition density function p(t, x, y) on R+ × Rd × Rd, which
enjoys the following estimates: there exists a positive constant c2 > 1 such that
for any t > 0, x, y * Rd,

c21
2 [Ç21(t)]2d

d
∏

i=1

(

1 ' tÇ21(t)

|xi 2 yi|Ç(|xi 2 yi|)

)

f p(t, x, y) f c2[Ç21(t)]2d
d
∏

i=1

(

1 ' tÇ21(t)

|xi 2 yi|Ç(|xi 2 yi|)

)

.
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The above gives the answer the conjecture for the general Lévy process Z since
p(t, x, y) o pZ(t, x, y). Also we prove that bounded harmonic functions of X is
Hölder continuous.
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Elliptic (non-local) PDEs with singular data - the method of

orthogonal projection

Tomasz Klimsiak

(joint work with A. Rozkosz)

We are concerned with the following Dirichlet type problem (see [2, 3, 4])

(1) 2Au = f(·, u) + µ in D, u = ³ on "hD.

Here

" D is an open subset of E and "hD is the harmonic boundary of D;
" E is a locally compact separable metric space;
" m is a Radon measure on E with full support;
" (2A,D(A)) is a self-adjoint operator on L2(E;m) that generates a

strongly continuous Markov semigroup (Tt)tg0:

0 f g f 1 =ó 0 f Ttg f 1;
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" f : E × R ³ R is a Carathéodory function that is non-increasing with
respect to the second variable;

" µ is a Borel measure on E and ³ : Dc ³ R is a Borel measurable function.

We deal with two basic problems: deûnition of a solution to (1), and the existence
and uniqueness problem for (1). As to the problem of right deûnition of a solution
to (1), we propose the method of orthogonal projection used for the ûrst time in
context of the Dirichlet problem by S. Zaremba, O.M. Nikodym and H. Weyl (see
[5, 6, 7]). The basic tool in the method is a Dirichlet form (E ,D(E)), associated
with (2A,D(A)), given by the following formula

D(E) := D(
:
2A), E(u, v) := (

:
2Au,

:
2Av)L2(E;m), u, v * D(E).

We assume that (E ,D(E)) is regular:

(A1) D(E) + Cc(E) is dense in Cc(E) and in D(E),

and that (E ,D(E)) is transient:

(A2) there exists a strictly positive function g on E and a constant c > 0
satisfying

∫

E

ug dm f c
√

E(u, u), u * D(E).

The last condition implies that (E ,D(E)) may be completed to a Hilbert space.
We denote this completion by De(E). It is well known that De(E) ¢ L1(E; g ·m).

Potential theory

Consider a Choquet capacity Cap : 2E ³ R+*{>}, which for open U ¢ E admits
the form

Cap(U) := inf{E(u, u) : u * D(E), u g 1U a.e.}.
We say that a relation holds q.e. if it holds outside a set N ¢ E that satisûes
Cap(N) = 0. A set V ¢ E is called quasi-open if for any · > 0 there exists an
open set G· containing V with Cap(G· \ V ) < ·. Let Oq denote the family of all
quasi-open subsets of E. A function u : E ³ R*{±>} is called quasi-continuous
if u is ûnite q.e. and u21(I) * Oq for any open set I ¢ R. Any function u * De(E)
has a quasi-continuous m-version (we always consider such versions). A function
u : E ³ R * {±>} is called nearly Borel if it equals a Borel function q.e.

Orthogonal projection

We let F := De(E) and for any quasi-open V ¢ E we let F (V ) := De(E|V ), which
is a closed linear subspace of F - here E|V is the restriction of the form E to V .
Consequently,

F = F (V ) · F (V )§.

We let

£V : F ³ F (V )
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denote the orthogonal projection onto F (V ), and HV := IdF 2 £V . By [1] there
exists a family of sub-stochastic kernels {PV (x, dy), x * E, V * Oq} on E such
that

(2) HV (³)(x) =

∫

V c
³(y)PV (x, dy), q.e.

for any ³ * F and quasi-open V ¢ E. We introduce the following notions (har-
monic boundary "h and harmonic closure clh): for any V * Oq

S(V ) :=
⋃

x*V
supp[PV (x, dy)], "hV := S(V ) \ V, clhV := V * "hV.

Two crucial spaces connected with problem (1)

Definition 1. Let W * Oq. We say that a family Q ¢ Oq is W -total if

(i)
⋃

V *Q V = W q.e.,
(ii) V1, V2 * Oq, V1 ¢ V2, V2 * Q implies V1 * Q,

(iii) if V1, V2 * Q, then V1 * V2 * Q.

We let

Fq.loc(W ) := {u * Bn(E) : #W -total family Q ¢ Oq : £V (u) * F (V ), V * Q}.
For any u * Fq.loc(W ) we denote by QW [u] the class of all W -total families Q
such that £V (u) * F (V ), V * Q.

For given strictly positive function Ã : E ³ R, satisfying ‖Ã‖L1 = 1, and nearly
Borel function u : E ³ R, we denote

‖u‖D1
Ã

:= sup
V *Oq

‖HV (|u|)‖L1
Ã

.

We let D1
Ã denote the space of all nearly Borel functions u : E ³ R such that

‖(|u| 2 n)+‖D1
Ã

³ 0, n³ >,

and we let D1 :=
⋃

D1
Ã, where the sum is over all Ã as in the foregoing.

Smooth measures

Definition 2. A Borel measure µ is called smooth if

(i) µj Cap,
(ii) there exists a strictly positive quasi-continuous function u : E ³ R such

that
∫

E
u d|µ| <>.

It is well known that for any smooth measure µ there exists a total family Q
such that 1V ·µ * F 7, V * Q. We let RD[µ] denote the class of all D-total families
Q such that 1V ·µ * F 7, V * Q. Observe that for any positive smooth measure µ,
we may deûne RDµ :=± limn³>RD(1Vn · µ), where RD is the potential operator
of the form E|D, i.e. RD : [F (D)]7 ³ F (D),

E|D(RD·, v) = 〈·, v〉[F (D)]7,F (D), v * F (D).
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Here (Vn) is an increasing sequence of Vn * Q (* RD[µ]) such that
⋃

ng1 Vn = D
q.e.

Main results

Definition 3. A quasi-continuous function u : E ³ R is a solution to (1) if

(i) u * Fq.loc(D) +D1,
(ii) RD|f(·, u)| <> m-a.e.,

(iii) for some Q * QD[u] +RD[f(·, u)] +RD[µ] and any V * Q,

E(£V (u), · 2 £V (u)) g 〈1V f(·, u), · 2 £V (u)〉F7,F

+ 〈1V · µ, · 2 £V (u)〉F7,F , · * F (V ),

(iv) u = ³ q.e. on "hD.

Theorem 4. There exists at most one solution to (1).

Theorem 5. Assume that

(1) µ is a smooth measure such that RD|µ| <> m-a.e.,
(2) ³ * D1 is quasi-continuous,
(3) for any y * R, the function x 7³ f(x, y) belongs to L1(E;m),
(4) RD|f(·, 0)| <> m-a.e.

Then there exists a solution to (1).
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Generalized couplings for stochastic systems with delays and

non-localities

Oleksii Kulyk

We develop a new technique which makes it possible to study stochastic diûerential
equations whose coeûcients are assumed to be only Hölder continuous, and which
does not rely on analytical results from the PDE theory. The analytic approach
to the study of diûusion processes dates back to Kolmogorov, and nowadays is
a common tool for the analysis of SDEs with low regularity of coeûcients; e.g.
[15]. For stochastic systems of more complicated structure, e.g. those described
by stochastic equations with delay, this approach is not realistic because of the
necessity to study PDEs in (inûnite-dimensional) functional spaces. For such sys-
tems, the ItÆo-Lévy stochastic approach is typically used which requires (one-sided
local) Lipschitz continuity of the coeûcients; e.g. [13] or [14]. It appears that the
range of application of the standard stochastic analysis tools can be substantially
extended, including delay equations with low regularity of the coeûcients and
stochastic diûerential equations with jumps.

Our approach is based on the concept of generalized coupling, which extends
the classical notion of coupling in the following way. By deûnition, a coupling is
a probability measure on a product space with prescribed marginal distributions.
For a generalized coupling the marginals satisfy instead milder deviation bounds
from the prescribed distributions. The class of generalized couplings is much
wider than of classical couplings, and it is typically much easier to construct for a
given system a generalized coupling with desired properties than a true one. This
makes generalized couplings quite an eûcient tool in the ergodic theory of Markov
processes, see the recent paper [4] where they were used as a key ingredient in the
construction of contracting/nonexpanding distance-like functions for complicated
SPDE models.

In [4], generalized couplings were ûrst constructed using stochastic control ar-
guments, and then used for the construction of true couplings; in this last step
the change of the marginal laws caused by the control terms was in a sense reim-
bursed. We call this type of argument a Control-and-Reimburse (C-n-R) strategy.
The same general idea 4 to apply a stochastic control in order to improve the
system, and then to take into account the impact of the control 4 is scattered in
the literature; e.g. it is used in [9, Section 5.2] in a construction of of contract-
ing/nonexpaning distance-like function d(x, y) for delay equations, in [8] in an
approach to the study of weak ergodicity of SPDEs, in [1] in the proof of ergodic-
ity in total variation for degenerate diûusions, and in [3] in the proof of ergodicity
in total variation for solutions to Lévy driven SDEs. Related ideas were used to
establish the Harnack inequality for SDEs and SFDEs [16, 7].

In [12], in the framework of stochastic delay equations, this general idea was
further developed in the following two directions. First, it was shown that the
C-n-R trategy is well applicable under just Hölder continuity assumptions on the
coeûcients (actually, one-sided Hölder continuity for the drift). This makes it pos-
sible to establish ergodic rates for delay equations with non-Lipschitz coeûcients.
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Moreover, essentially the same generalized coupling construction allows one to
prove well-posedness of the system, i.e. that the weak solution to the equation is
uniquely deûned and the corresponding segment process is a time-homogeneous
Markov process with the Feller property. Second, stabilization rates for sensitiv-
ities for the model(that is, for the derivatives of the semigroup rather than for
the semigroup itself) were obtained. The natural and commonly adopted way to
get such rates in a ûnite-dimensional setting is based on the Bismut-Elworthy-Li
type formulae ([2], [6]) which give integral representations of sensitivities based
on the integration-by-parts formulae. Such a regularization eûect in an inûnite-
dimensional setting becomes much more structure demanding, since the random
noise (which is the source of the integration-by-parts formula) needs to be non-
degenerate in the entire space; for one result of such type and a detailed discussion
see [5], where reaction-diûusion equations with a cylindrical noise are considered.
In the delay case the noise is ûnite-dimensional and thus is strongly degenerate;
hence the Bismut-Elworthy-Li type formula for the (Fréchet) derivatives of the
semigroup is hardly available. Nevertheless, the C-n-R strategy allows one to
derive a family of representation formulae for these derivatives, which can be un-
derstood as 8poor man9s Bismut-Elworthy-Li type formulae9, see (2.21) and (6.27)
in [12]. These formulae are not completely free from gradient terms like 'f , but
the weights in the corresponding integral expressions can be forced to decay expo-
nentially fast at an arbitrarily large rate. Using these representation formulae one
can manage to establish stabilization rates for sensitivities (derivatives) of arbi-
trary order; note that the (full) regularization eûect now has no reason to appear,
and thus for these results certain smoothness of the coeûcients is to be assumed.

The C-n-R strategy can also provide a considerable help in a study of general
Lévy driven stochastic equations diûerential equations. Analytically, the diûer-
ential Kolmogorov equations for such stochastic models involve non-local integro-
diûerential operators, and the heat kernels of the associated Markov processes are
identiûed as the fundamental solutions to corresponding Cauchy problems. How-
ever, a close study of the matter reveals that, for complicated Lévy-driven models,
the heat kernel properties may become substantially complicated and the associ-
ated analytical methods may require structural limitations on the underlying Lévy
structure, e.g. [10], [11]. The stochastic calculus approach, based on the gener-
alized couplings, is free from any such limitations and allows one both to prove
well-posedness and to establish ergodic rates for general Lévy-driven stochastic
equations with non-Lipschitz coeûcients.
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Estimation and selection of ergodic Lévy driven SDE: an overview of

some recent developments

Hiroki Masuda

(joint work with Shoichi Eguchi)

Setup and objective. Suppose that we observe an equally spaced high-frequency
sample X(n) = (Xtn

j

)nj=0 for tnj = tj = jh, where X = (Xt)t*R+
is a solution to

the d-dimensional stochastic diûerential equation (SDE):

dXt = A(Xt)dt+ C(Xt2)dZt,(1)

where A : Rd ³ Rd and C : Rd ³ Rd · Rr, and Z = (Zt)t*Rp is a non-Gaussian
r-dimensional Lévy process independent of the initial variable X0. We suppose
that E[Z1] = 0 and cov[Z1] = Ir (the r-dimensional identity matrix), and that
E[|Z1|q] < > for every q > 0. The sampling stepsize h = hn > 0 is a known real
number such that Tn := nh ³ > and nh2 ³ 0 as n ³ >. We wish to infer the
coeûcients A and C from X(n), without specifying the distribution L(Z).

Suppose that we are given the following statistical (candidate) models for the
data generating process (1):

" c1(x, ³1), . . . , cM1
(x, ³M1

) for the scale C(x);
" a1(x, ³1), . . . , aM2

(x, ³M2
) for the drift A(x).
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Then, each candidate model Mm1,m2
is described by

(2) dXt = am2
(Xt, ³m2

)dt+ cm1
(Xt2, ³m1

)dZt,

where ³m1
* �³m1

¢ R
p³m1 (m1 = 1, . . . ,M1) and ³m2

* �³m2
¢ R

p³m2 (m2 =

1, . . . ,M2) are ûnite-dimensional unknown parameters. We assume that each
model Mm1,m2

is correctly speciûed: cm1
(·, ³m1,0) = C(·) and am2

(·, ³m2,0) = A(·)
for some ³m1,0 * �³m1

and ³m2,0 * �³m2
.

With this setup, we are interested which coeûcient is relatively the best one
among the candidates {Mm1,m2

}m1,m2
. We have shown how Akaike9s AIC and

Schwarz9s BIC, the classic twin jewels for relative model assessment, can apply.

Two-stage Gaussian quasi-likelihood function. For notational brevity, re-
moving the model indices we look at a single model

(3) dXt = a(Xt, ³)dt+ c(Xt2, ³)dZt,

where ³ = (³k) * �³ ¢ Rp³ and ³ = (³l) * �³ ¢ Rp³ , both parameter spaces
being bounded convex domains. The Euler approximation for (3) under P» (image
measure of X assciated with » := (³, ³)) is given by

Xtj j Xtj21
+ aj21(³)h+ cj21(³)&jZ.(4)

Taking the small-time (fake) Gaussian approximation (S(x, ³) := c(x, ³)·2)

L(Xtj |Xtj21
= x) j Nd (x+ a(x, ³)h, hS(x, ³))

into account, we introduce the joint Gaussian quasi-likelihood (GQLF, [4])

Hn(») = Hn(»;X(n)) :=

n
∑

j=1

logÇd
(

Xtj ; Xtj21
+ aj21(³)h, hSj21(³)

)

(5)

with Çd(·;µ,£) denoting the d-dimensional Nd(µ,£)-density. We can write Hn(»)
= H1,n(³) + H2,n(») where, with the multilinear-form notation,

H1,n(³) :=

n
∑

j=1

log Çd
(

Xtj ; Xtj21
, hSj21(³)

)

,

H2,n(») :=

n
∑

j=1

(

S21
j21(³) [&jX, aj21(³)] 2 h

2
S21
j21(³)

[

a·2
j21(³)

]

)

.

The joint GQLF Hn(») has two distinct <resolutions=, which occurs since the last
term cj21(³)&jZ in the right-hand side of (4) is stochastically dominant compared
with the second one aj21(³)h. As in [5], it can be seen under suitable conditions
that both n21H1,n(³) and T21

n H2,n(³, ³) have non-trivial limits (of the ergodic
theorem) for each », the former limits depending on ³ only.
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Estimation. We suggested the following two-stage estimation strategy:

" First, we estimate ³ by Æ³n * argmax³H1,n(³);
" Next, for H2,n(³) := H2,n(³, Æ³n), we estimate ³ by Æ³n * argmax³H2,n(³).

Our regularity conditions include suûcient smoothness of the coeûcients and
the uniform non-degeneracy of the scale matrix S(x, ³), the exponential ergodic-
ity and certain moment boundedness, and the parameter-identiûability condition.
Then, we can deduce the following convergence of the scaled Gaussian quasi-MLE

(GQMLE) Æun :=
:
Tn(Æ»n 2 »0): for some explicitly given V (»0), we have

(6) lim
n
E [f(Æun)] =

∫

f(u)Ç(u; 0, V (»0))du

for any continuous function f : Rp ³ R of at most polynomial growth; in partic-
ular, we have E(Æun) ³ 0 and E(Æu·2

n ) ³ V (»0). The mighty mode of convergence
(6) of the GQMLE is important in many situations in theoretical statistics. Indeed,
it is the basis for developing the information criteria given below.

Selection. We consider both AIC- and BIC-type statistics through the GQLFs
H1,n and H2,n in this order. The two ICs are based on the diûerent philosophies:

" AIC for prediction purpose: AIC is designed to pick up the best predictive
model for an independent data set with the same distribution;

" BIC for model-description purpose: BIC is based on the marginal likeli-
hood in the Bayesian setup with a prior distribution of » and designed to
pick the most simple true (descriptive) model.

They may select diûerent models, and neither one is universally better than the
other; we refer to [1] for a historical and systematic account.

Recall our model setup (2). In [3], it turned out that stepwise procedures do
eûciently work for both AIC and BIC. The speciûc formulae of the proposed infor-
mation criteria are given as follows; we keep omitting the model indices (m1,m2).

For the AIC-type, ûrst we select a scale-coeûcient model as a minimizer of

(7) GQAIC1,n := 22H1,n(Æ³n) +
2

h
trace

(

Æ�21
³,n

ÆW³,n

)

over the candidates c1(x, ³1), . . . , cM1
(x, ³M1

), and then, building on the selected
(and estimated) scale coeûcient, we select a drift-coeûcient model by minimizing

(8) GQAIC2,n := 22H2,n(Æ³n) + 2p³.

over the candidates a1(x, ³1), . . . , aM2
(x, ³M2

); the second stage GQAIC is of the
standard form in the correctly speciûed setting, see [1].

For the BIC-type, we follow the same way, with replacing (7) and (8) by

(9) GQBIC1,n = 22H1,n(Æ³n) +
p³
h

logTn

and

(10) GQBIC2,n = 22H2,n(Æ³n) + p³ log Tn,

respectively; (10) is the same as in the diûusion case [2], while (9) is essentially
diûerent. All the details can be found in [3].
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Remark. Notably, our studies revealed some non-standard features.

" Although the model is regular (smooth in the parameters), concerned
with the selection of the scale coeûcients we must partly employ the non-
standard forms for both AIC and BIC statistics.

" Especially for the BIC-type methodology, it turned out that, to execute
consistent model selection, we cannot follow the classic route where we
show stochastic expansion of the marginal (quasi-)likelihood; instead, ap-
proximating the <heated up= free energy seems to be the right way.

These annoying features are essentially due to the mixed-rates structure in the
sense of [6] of the joint GQLF (5), which does not emerge for the case of diûusions
where Z is a standard Wiener process. The features can be sidestepped through
the stepwise procedure introduced above.
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arXiv:2203.04039v1, 2022.
[4] H. Masuda. Convergence of Gaussian quasi-likelihood random ûelds for ergodic Lévy driven

SDE observed at high frequency. Ann. Statist., 41(3):159331641, 2013.
[5] H. Masuda and Y. Uehara. On stepwise estimation of Lévy driven stochastic diûerential
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On the optimality of refraction–reflection strategies for Lévy processes

Kei Noba

1. Introduction

This talk is based on [3], where we deal with optimal dividend problem with capital
injections for Lévy processes. We assume that the assets of an enterprise behave as
a Lévy process X = {Xt : t g 0}. This enterprise pays dividends to shareholders
when it can aûord the assets. On the other hand, when the enterprise does not
have much in the way of assets, it receives capital injections from shareholders to
avoid bankruptcy. In this setting, the enterprise wants to know the strategy to
pay larger dividends and receive smaller capital injections. The optimal dividend
problem when X is a spectrally negative Lévy process was studied by [1]. Since
then, a number of researchers have studied the problem when X is a spectrally
negative process. On the other hand, a method for solving the optimal dividend
problem dealing with general Lévy processes, which may have both positive and
negative jumps, has been developed in [2].

In [3] we deal in particular with the case where the stochastic process for the cu-
mulative amount of dividends is absolutely continuous with respect to the Lebesgue
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measure and its density is suppressed by ³ > 0. The optimal dividend problem
with capital injections under such condition was solved by [4] when X is a spec-
trally positive Lévy process and by [5] when X is a spectrally negative Lévy pro-
cess. In [3], I extended the main results of [4] and [5] to general Lévy processes.
Here we summarise the setting of the problem and the main result.

2. Preliminaries

2.1. Lévy processes. Let X = {Xt : t g 0} be a real-valued Lévy process deûned
on a probability space (',F ,P). For all x * R, we denote Px the law of X when
it starts from x. We write « for the characteristic exponent of X , which satisûes

e2tΨ(») = E0

[

ei»Xt
]

, » * R, t g 0.

The characteristic exponent « has the form

«(») = 2i³»+
1

2
Ã2»2 +

∫

R\{0}
(1 2 ei»x + i»x1|x|<1})£(dx), » * R,

where ³ * R, Ã g 0, and £ is a Lévy measure on R\{0} satisfying
∫

R\{0}
(1 ' x2)£(dx).

When X has bounded variation paths, we write

· = ³ 2
∫

(21,1)\{0}
x£(dx).

We write F = {Ft : t g 0} for the natural ûltration generated by X .

2.2. Refracted and refracted–reflected Lévy processes. We think about the
following two cases:

Case 1 X has unbounded variation paths or has bounded variation paths with
· 6* [0, ³].

Case 2 X has bounded variation paths and · * [0, ³].

We deûne the function hb with b * R as

hb(y) =

{

³1(b,>)(y) in Case 1,

³1(b,>)(y) + ·1{b}(y) in Case 2,
y * R.

Let Y b = {Y bt : t g 0} be the strong solution of a following stochastic diûerential
equation:

Y bt = Xt 2
∫ t

0

hb(Y bs )ds, t g 0.(1)

The process Y b is called a refracted Lévy process at b.
The refracted3reûected Lévy process Zb = {Zbt : t g 0} at b g 0 is deûned by

reûecting Y b at 0, see [3, Section 2.3] for details.
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2.3. The setting of the problem. We ûx the cost per unit injected capital
³ > 1 and the discount rate q > 0. Let A be the set of a process Ã = (LÃ, RÃ) =
{(LÃt , R

Ã
t ) : t g 0} satisfying the following conditions.

(1) There exists process lÃ = {lÃt : t g 0} that is progressively measurable
with respect to F and satisûes

lÃt * [0, ³], LÃt =

∫ t

0

lÃs ds, t g 0.

(2) The process RÃ is F-adapted, non-decreasing, right-continuous,

Xt 2 LÃt +RÃt g 0, t g 0,

and

Ex

[

∫

[0,>)

e2qtdRÃt

]

<>, x * R.

A process Ã which belongs to A is called a strategy. The expected net present
value of the total dividends and capital injections when we use the strategy Ã is
deûned as

vÃ(x) = Ex

[

∫

[0,>)

e2qtdLÃt 2 ³

∫

[0,>)

e2qtdRÃt

]

.

Our purpose is to ûnd a strategy Ã7 * A which satisûes

vÃ7(x) = sup
Ã*A

vÃ(x), x * R.

Such strategy Ã7 is called an optimal strategy.

2.4. Refraction–reflection strategies. Let Ãb with b g 0 be the strategy which
satisûes the following:

lÃ
b

t = hb(Zbt ), RÃ
b

t = 2 inf
s*[0,t]

((

Xs 2 LÃ
b

s

)

' 0
)

, t g 0.

The strategy Ãb is called the reûection3reûection strategy at b.

3. Main result

Then, we have the following main result.

Theorem 1. We assume the following:

(1) The Lévy measure £ satisfies
∫

(2>,21)

|x|£(dx) <>.

(2) The stochastic differential equation (1) has an unique strong solution.

(3) When X has bounded variation paths, the function x 7³ Ex

[

e2q»
b

0

]

with

b g 0 and »b0 = inf{t > 0 : Y bt < 0} has a locally bounded density ¿2b on
(0,>) with respect to the Lebesgue measure. In addition, the density ¿2b is
continuous a.e. with respect to the Lebesgue measure.
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Then, the refraction–reflection strategy Ãb
7

at b7 is an optimal strategy, where

b7 = inf
{

b g 0 : ³Eb

[

e2q»
b

0

]

< 1
}

.
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negative Lévy process, The Annals of Applied Probability, 17 (2007), 1563180.

[2] K. Noba, On the optimality of double barrier strategies for Lévy processes, Stochastic Pro-
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[5] J. L. Pérez, K. Yamazaki and X. Yu, On the optimality of double barrier strategies for Lévy
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Local asymptotic normality for discretely observed ergodic

jump-diffusion processes

Teppei Ogihara

(joint work with Yuma Uehara)

Let X³
t be a parametrized m-dimensional stochastic process satisfying

(1) X³
t = x0 +

∫ t

0

a(X³
s , »)ds+

∫ t

0

b(X³
s , Ã)dWs +

Nt
∑

j=1

Yi,

where a and b are Rm- and Rm · Rm-valued continuous functions, respectively,
Nt is a Poisson process with intensity »(»), Wt is an m-dimensional standard
Brownian motion, (Yi)

>
i=1 is a sequence of independent, identically distributed

random variable with a density function F», and ³ = (Ã, ») * Rd is a parameter
to be estimated. Let ³0 = (Ã0, »0) be the true value of the parameter, and let
Xt = X³0

t . We observe (Xtk)nk=0, where tk = khn, hn ³ 0 and nhn ³ >
as n ³ >. A quasi-maximum-likelihood estimator (ÆÃn, Æ»n) for the parameter
(Ã0, »0) is studied in Shimizu and Yoshida [4]. They constructed the estimator
by using thresholding techniques that detect jumps, and showed the asymptotic
normality of the estimator:

(2) (
:
n(ÆÃn 2 Ã0),

√

nhn(Æ»n 2 »0))
d³ N(0,�21)

for some positive deûnite matrix � under suitable conditions.
We consider the optimality of estimators. To investigate this, we consider the

local asymptotic normality (LAN) of the statistical model. Let {P³,n}³,n be a
family of probability measures on measurable space (Xn,An) and let ³ be a d-
dimensional parameter. Then, {P³,n}³,n satisûes the LAN property at ³ = ³0 if
there exist a positive deûnite matrix �, a random vector N , and a positive deûnite
matrix ën such that N > N(0, Id) and
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log
dP³0+ënu,n

dP³0,n
³ u¦

:
�N 2 1

2
u¦�u

in P³0,n-probability for any u * Rd.
Under the LAN property, any regular estimator {Vn} satisûes

(3) lim inf
n³>

E³0,n[l(|ë21
n (Vn 2 ³0)|)] g E[l(|�21/2N|)]

for any increasing function l : [0,>) ³ R with l(0) = 0. An estimator which
attains the lower bound of the above inequality is called asymptotically eûcient.

When we try to show the LAN property of jump-diûusion processes, we need
to specify the limit of log(dP³0+ënu,n/dP³0,n). It is diûcult to deal with the
transition density ratio for two diûerent jump-diûusion processes. In the proof of
the LAN property for diûusion processes in Gobet [1], the Aronson estimate

C1G1(x, y) f pk(x, y) f C2G2(x, y)

is used for transition density pk of the diûusion process to control transition den-
sity ratios, where G1, G2 are Gaussian density functions and C1, C2 are positive
constants. However, it is diûcult to obtain an Aronson-type estimate for jump-
diûusion processes.

To avoid this problem, we employ the scheme with the L2 regularity condi-
tion in Jeganathan [2]. Jeganathan [2] studied suûcient conditions for the local
asymptotic mixed normality (LAMN, which is an extension of LAN) including
the following L2 regularity condition. Let pk,³(xk21, xk) be the transition density
function of an Markov process observations. We assume that ³ 7³ pk,³ is a C2

function and the zero points of pk,³ do not depend on the parameter ³. Moreover,
we assume

(4)
n
∑

k=1

E³0

[
∫

(

:
pk,³u 2:

pk,³0
2 u¦ën"»pk,³0

2
:
pk,³0

)2

(xk21, xk)dxk

]

³ 0,

where ën is a scaling matrix, and ³u = ³0 + ënu. This condition is called the 8L2

regularity condition9. The integrand in the left-hand side of the above equation
can be rewritten as follows;

∫ 1

0

(1 2 s)

∫
{

u¦ën

(

"2³pk,³su
2pk,³su

2
"³pk,³su"³p

¦
k,³su

4(pk,³su)2

)

ënu

}2

pk,³sudxkds.

In the last expression, only the transition density at ³su appears, and hence we do
not need Aronson-type estimates for transition density functions. Jeganathan [2]
showed the LAMN property for Markov processes under the L2 regularity condition
and some conditions for "l³ log pk,³0

(l * {1, 2}). This original scheme by [2] cannot
be applied for jump-diûusion processes because the expectation appears in (4) is
unbounded for jump-diûusion due to their fat-tailed behaviors. Therefore, we
extend the scheme using a conditional expectation instead of the expectation so
that it can be applied to jump-diûusion processes.

Another problem to show the LAN property is that the transition probability
for no jump is quite diûerent from that for the presence of jumps. This fact makes
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it diûcult to identify the asymptotic behavior of the likelihood function. To deal
with this problem, we approximate the original likelihood function by using a
thresholding likelihood function that detects the existence of jumps.

As a consequence of these techniques, we obtain the LAN property for jump-
diûusion processes; let {P³,n}³,n be the family of probability measures generated
by observations (X³

tk)nk=0. Then, {P³,n}³,n satisûes LAN at ³ = ³0 with � the
same as the one in Shimizu and Yoshida [4], and

(5) ën =

(

n21/2Id1 0
0 (nhn)21/2Id2

)

,

where d1 and d2 are the dimensions of the parameter Ã and », respectively. More-

over, the quasi-maximum-likelihood estimator (ÆÃn, Æ»n) in [4] is shown to be asymp-
totically eûcient for any bounded, continuous loss function l.
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Nonlocal nonlinear Douglas identity

Katarzyna Pietruska-Pa luba

(joint work with Krzysztof Bogdan, Tomasz Grzywny, Artur Rutkowski)

1. Introduction. Classical Hardy-Stein and Douglas formulas

Let D = {z * R2 : |z| < 1}, "D = S1 > [0, 2Ã) be the unit disc and its boundary,
and let g : S1 ³ R be a measurable function. Let

u(z) =

∫

S1

g(»)PD(z, »)d» if the integral is deûned , where PD(z, ») =
1

2Ã

1 2 |z|2
|z 2 »|2 .

This extension of g from the circle to the unit disc is a harmonic function 3 for g
regular enough one has &u = 0. The following formula holds (J. Douglas [4]):

(1)

∫

D

|'u(z)|2dz =

∫∫

S1×S1

(g(») 2 g(·))2
1

8Ã

1

sin2((» 2 ·)/2)
d»d·.
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We also have (Hardy-Stein identity):

1

2Ã

∫

S1

|g(»)|2d» = |u(0)|2 + 2

∫

D

GD(0, z)|'u(z)|2dz,

where GD(·, ·) is the classical Green function of the unit disc.
We intend to give similar formulas in the nonlocal setting 3 the Laplace oper-

ator & will be replaced by jump unimodal Lévy operators deûned as follows. Let
¿ : [0,>) ³ (0,>] be nonincreasing and d * {1, 2, . . .}. Denote ¿(z) = ¿(|z|),
z * Rd and ¿(x, y) = ¿(|x 2 y|), x, y * Rd. Assume

∫

Rd
¿(z)dz = > and

∫

Rd

(

|z|2 ' 1
)

¿(z)dz <>. For x * Rd and u : Rd ³ R let

Lu(x) = lim
ë³0+

∫

|x2y|>ë
(u(y) 2 u(x))¿(x, y) dy.

The limit exists e.g.for u * C2
c (Rd). An example of such an operator is the frac-

tional Laplacian &³/2 := 2(2&)³/2, ³ * (0, 2). In this case, ¿(z) = Cd,³|z|2d2³,
z * Rd.

2. Nonlocal Sobolev-type spaces

For x * R and » * R we write x<»> = |x|» sgn(x) and

Fp(a, b) = |b|p 2 |a|p 2 pa<p21>(b 2 a), p > 1, a, b * R.

It is nonnegative as the second-order Taylor remainder of a convex function |t|p,
This is an example of a Bregman divergence. For p = 2 we just have F2(a, b) =
(a2 b)2. In general, Fp(a, b) j (a2 b)2(|a| + |b|)p22 j (a2 b)(a〈p21〉 2 b〈p21〉).

Let D ¢ Rd be open, nonempty and Lipschitz. Moreover, we assume that
the Lévy kernel ¿ satisûes: (1) ¿22 * C(0,>), |¿2(r)|, |¿22(r)| f c¿(r) for r > 1;
(2) for certain ³ * (0, 2) it holds ¿(»r) f c»2d2³¿(r), for 0 < », r f 1, and
¿(r) f c¿(r + 1), for r g 1; (3) for certain ³ * (0, 2) ¿(»r) g c»2d2³¿(r), for
0 < », r f 1. With these assumptions, we deûne by GD(·, ·) the Green function
of D relative to the operator L, and the nonlocal Poisson kernel 3 by PD(x, z) :=
∫

D GD(x, y)¿(y, z)dy. Further, we let

³D(w, z) =

∫

D

∫

D

¿(w, x)GD(x, y)¿(y, z) dxdy =

∫

D

¿(w, x)PD(x, z)dx

be the interaction kernel of D.
For p > 1 let we consider the expressions

E(p)
D [u] = 1

2

∫∫

Rd×Rd\Dc×Dc

Fp(u(x), u(y))¿(x, y)dxdy,

H(p)
D [g] = 1

p

∫∫

Dc×Dc
Fp(g(w), g(z))³D(w, z) dwdz.

and the spaces

V p
D := {u| E(p)

D [u] <>}, X p
D := {g| H(p)

D [g] <>}.
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For p = 2 these expressions are quadratic forms, and the resulting spaces were
ûrst considered in [5, 7], where they were used for solving the nonlocal Dirichlet
problem on D (see below).

3. The results

3.1. The Douglas identity.

Theorem 1 (Douglas identity, for p = 2 see [2], for general p > 1 see [3]). Let
p > 1. Assume that the Lévy measure ¿ and the set D ¢ Rd are as above. Then:

(i) Let g : Dc ³ R be such that H(p)
D [g] <>. Then PD[g] is well-deûned and

satisûes
H(p)
D [g] = E(p)

D [PD[g]].

(ii) Furthermore, if u : Rd ³ R satisûes E(p)
D [u] <>, then H(p)

D [u|Dc ] <>.

In particular, for p = 2 the identity reads
∫∫

Rd×Rd\Dc×Dc

(u(x) 2 u(y))2¿(x, y)dxdy =

∫∫

Dc×Dc
(g(w) 2 g(z))2³D(w, z)dwdz

which is easily seen to be the nonlocal counterpart of the Douglas identity (1).

In this case, the Sobolev space V(2)
D is suitable for solving the Dirichlet problem

{

Lu = 0 on D,
u = g on Dc,

and the space X (2)
D is the optimal space for the exterior boundary condition g. See

[5, 6].

In general, we have the following trace and extension theorem (for p > 1).

Corollary 1. Let Ext g = PD[g] be the Poisson extension, and Tru = u|Dc 3 the
restriction to Dc. Then Ext: X p

D ³ V p
D, Tr : V p

D ³ X p
D , and Tr Ext is the identity

operator on X p
D .

3.2. Hardy-Stein identity. Main tool for obtaining the Douglas identity is the
following.

Theorem 2 (Hardy-Stein identity [3]; for &³/2 see [1]). If u = PD[g] and x * D,
then
∫

Dc
|g(z)|p PD(x, z)dz = |u(x)|p +

∫

D

GD(x, y)

∫

Rd

Fp(u(y), u(z))¿(y, z) dzdy.

Moreover, we make use of the following useful relation:

Lemma 1. Let X be a random variable with E|X | <>. Then,

EFp(EX,X) = E|X |p 2 |EX |p g 0,

and
EFp(a,X) = Fp(a,EX) + EFp(EX,X), a * R.

We refer to [2], [3] for further discussion, examples, and an extended list of
references.
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Poisson process and sharp constants in L
p and Schauder estimates for

a class of degenerate Kolmogorov operators

Enrico Priola

(joint work with Lorenzo Marino, Stéphane Menozzi)

Let us start with the two-dimensional Kolmogorov example (cf. [8]). Namely, we
are interested in the following Cauchy problem:

(1)

{

∂tu(t, x, y) = ∂2

xxu(t, x, y) + x∂yu(t, x, y) + f(t, x, y), on [0, T ]× R2;

u(0, x, y) = 0, on R2;

where (x,y) in R2; T > 0 is ûxed and f * C>
0 ((0, T ) × R2). This is a degenerate

parabolic Cauchy problem which has been also considered by Hörmander in [6].
It is not diûcult to prove existence and uniqueness of a classical bounded solu-

tion u. Moreover, according to [2] there exists a constant Cp > 0 independent of
u and f such that

‖"2xxu‖Lp((0,T )×R2) f Cp ‖f‖Lp((0,T )×R2) = Cp‖"tu2 LKolu‖Lp((0,T )×R2),(2)

where p * (1,+>) (we are considering Lp-spaces with respect to the Lebesgue
measure; we set LKolu = "2xxu +x"yu). For related Lp-estimates, also called
Sobolev estimates, concerning kinetic equations we refer to [1], [4], [7] and the
references therein.

In [12] we deal with the more general Cauchy problem:

(3)

{

∂tw(t, x, y) = ∂2

xxw(t, x, y) + x∂yw(t, x, y) + s(t)∂2

yyw(t, x, y) + f(t, x, y),

w(0, x, y) = 0, on R2.

Here s(t) is a continuous and non-negative function deûned on [0, T ]. In [12] we
prove in particular that the unique bounded solution w veriûes

‖"2xxw‖Lp((0,T )×R2) f Cp ‖f‖Lp((0,T )×R2)(4)

with the same constant Cp appearing in (2) (hence, Cp is independent of s(t)).
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Remark 1. In [12] to show the previous stability result for (3) we use a probabilis-
tic approach based on the Poisson process. This approach has been introduced in
[9]. There, it was established in particular that Lp-estimates like (2) for solutions
to the heat equation are valid with constants that are independent of the dimension.

The previous stability result for (3) has two parts:
(i) it shows that there exists Mp > 0 such that the solution w to the perturbed
equation verifies:

‖"2xxw‖Lp((0,T )×R2) fMp ‖f‖Lp((0,T )×R2);

(ii) it shows that actually Mp = Cp.

We do not know analytic methods to get even (i). Thus it remains a challenging
open problem to have a purely analytic proof of our regularity results.

Remark 2. In [12] we also consider related Schauder estimates and Lp-estimates
of different type. In particular, starting from anisotropic Schauder estimates for
solutions u to (1):

(5) sup
0ftfT

‖u(t, ·)‖C2+³

b,d

f C³ sup
0ftfT

‖f(t, ·)‖C³
b,d

,

for ³ * (0, 1) (d is a distance on R2 related to LKol; cf. [5], [10], [11] and the
references therein) we can derive

sup
0ftfT

‖w(t, ·)‖C2+³

b,d

f C³ sup
0ftfT

‖f(t, ·)‖C³
b,d

for the solution w to (3) with the same constant C³ as before.

In the sequel we will only discuss the main result of [12] concerning Lp-estimates
like (4).

We consider RN = Rd0 × Rd1 , d0, d1 are non-negative integers such that d0 +
d1 = N , d0 g 1. We introduce a non-negative symmetric matrix B in RN · RN

given by

B =

(

B0 0
0 0

)

,

where B0 is a symmetric, positive deûnite matrix in Rd0 · Rd0 such that

¿
∑d0
i=1 ¿

2
i f ∑d0

i,j=1(B0)ij¿i¿j f 1
¿

∑d0
i=1 ¿

2
i ,

for all ¿ * Rd0 , for some ¿ > 0. We deûne a possibly degenerate Ornstein-
Uhlenbeck operator which generalizes LKol in (1):

(6) Louf(z) = Tr(BD2f(z)) + 〈Az,Df(z)〉, z = (x, y) * Rd0+d1 = RN ,

for A in RN · RN , where 〈·, ·〉 denote the usual inner product in RN .
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We assume the Kalman condition:
[K] There exists a non-negative integer k, such that the vectors

{e1, . . . , ed0 , Ae1, . . . , Aed0 , . . . , Ake1, . . . , Aked0} generate RN ,(7)

where {ei}i*{1,··· ,d0} are the ûrst d0 vectors of the canonical basis for RN .
Assumption [K] is equivalent to the Hörmander condition on the commutators

(see [6] and [5]) ensuring the hypoellipticity of "t 2 Lou. Note that LKol veriûes

[K] with d0 = 1, N = 2 and A :=

(

0 0
1 0

)

.

First one can prove existence and uniqueness of bounded regular solutions to

(8)

{

"tu(t, z) = Louu(t, z) + f(t, z), on (0, T ) × RN ;

u(0, z) = 0, on RN ,

when f belongs to Bb
(

0, T ;C>
0 (RN )

)

which contains C>
0 ((0, T ) × RN ) (see [12]

for the precise deûnition of such space). Equation (8) is understood in an integral
form.

By [3] for any ûxed p in (1,+>), there exists Cp = Cp(¿,A, d0, d1, T ) such that

(9) ‖D2
xu‖Lp((0,T )×RN ) f Cp‖"tu2 Louu‖Lp((0,T )×RN ) = Cp‖f‖Lp((0,T )×RN );

here D2
xu(t, z) is the Hessian matrix in Rd0 · Rd0 with respect to the variable x.

Fix a continuous map: t 7³ S(t) * RN ·RN such that S(t) is a symmetric and
non-negative definite, t * [0, T ]; consider the following perturbation of Lou :

Lou,S
t f(z) := Tr(BD2f(z)) + Tr(S(t)D2f(z)) + 〈Az,Df(z)〉

= Louf(z) + Tr(S(t)D2f(z)),
(10)

z = (x, y) is in Rd0+d1 = RN . In the next result we denote by uS the regular
bounded solution of the Cauchy problem

(11)

{

"tuS(t, z) = Lou,S
t uS(t, z) + f(t, z), on (0, T ) × RN ;

uS(0, z) = 0, on RN ,

Theorem 1 ([12]). Let us consider (11) with f * Bb
(

0, T ;C>
0 (RN )

)

. Then, the
solution uS veriûes, with the same constant Cp as in (9),

‖D2
xuS ‖Lp((0,T )×RN ) f Cp ‖"tuS 2 Lou,S

t uS‖Lp((0,T )×RN ) = Cp ‖f‖Lp((0,T )×RN ).

Let us mention that our stability results can be useful to investigate the well-
posedness of related martingale problems. We plan to consider this topic in the
future. On this respect see also [13] and the references therein.
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On tree-based methods for (partial) differential equations

Nicolas Privault

(joint work with Guillaume Penent and Jiang Yu Nguwi)

Stochastic branching mechanisms have been used to represent the solutions of
partial diûerential equations in [15], [7], [10], [8], and recently extended in [6] to
the treatment of polynomial nonlinearities in ûrst order gradient terms. This talk
reviews an extension of such tree-based methods to functional nonlinearities with
gradients of arbitrary orders.

Consider the ODE

(1) u2(t) = f(u(t)), u(0) = u0 * Rd, t * R+,

whose solution can be expanded as

u(t) = u0 + tf(u0) +
t2

2
f 2f(u0) +

t3

6
f 2f 2f(u0) +

t3

6
f 22[f, f ](u0) + · · ·

which rewrites as the sum

u(t) = u0 +
∑

T

tr(T )

Ã(r(T ))³(r(T ))
F (T )

over the family of Butcher trees T , see [1], [2], Chapters 4-6 of [4], and [9], based
on early work of [3]. In order to solve (1), we may also write

u(s) = u0 +

∫ s

0

u2(r)dr = u0 +

∫ s

0

f(u(r))dr,
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and more generally we can expand the derivative f (l)(u(r)) as

f (l)(u(r)) = f (l)(u0) +

∫ r

0

f(u(r))f (l+1)(u(v))dv, l g 1.

We note that the above family of equations can be rewritten as

(2) c(u)(t) = c(u)(0) +
∑

Z*M(c)

∫ t

0

∏

z*Z
z(u)(s)ds

where c runs through a set C :=
{

Id, f (l), l g 0
}

, of functions called codes and

M(c) is deûned by letting M(Id) := {f} and M(g) :=
{

(f, g2)
}

for g a smooth
function on R+ × R, see [12].

Next, consider a nonlinear PDE of the form

(3)

ù

ú

û

"tu(t, x) +
1

2
&u(t, x) + f(u(t, x)) = 0

u(T, x) = Ç(x), (t, x) * [0, T ] × R.

Letting v(t, x) := g(u(t, x)), we now have

"tv(t, x) +
1

2
&v(t, x) = g2(u(t, x))

(

"tu(t, x) +
1

2
&u(t, x)

)

+
1

2
("xu(t, x))2g22(u(t, x))

= 2f(u(t, x))g2(u(t, x)) +
1

2
("xu(t, x))2g22(u(t, x)),

which shows that the functions u, "xu, af (k) ç u satisfy the integral equations
ù

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ú

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

ü

û

u(t, x) =

∫ >

2>
×(T 2 t, y 2 x)Ç(y)dy +

∫ T

t

∫ >

2>
×(s2 t, y 2 x)f(u(s, y))dyds

af (k)(u(t, x)) =

∫ >

2>
×(T 2 t, y 2 x)af (k)(Ç(y))dy

+

∫ T

t

∫ >

2>
×(s2 t, y 2 x)

×
(

af(u(s, y))f (k+1)(u(s, y)) 2 a

2
("xu(s, y))2f (k+2)(u(s, y))

)

dyds

"xu(t, x) =

∫ >

2>
×(T 2 t, y 2 x)"xÇ(y)dy

+

∫ T

t

∫ >

2>
×(s2 t, y 2 x)f 2(u(s, y))"xu(x, y)dyds,

a 6= 0, k * N. We note that the above set of equations admits a formulation
identical to (2) provided that we use the codes

C :=
{

Id, "x, af
(k), a 6= 0, k * N

}

and the mechanism deûned as

M(Id) := {f7}, M(g7) :=

{

(f7, (g2)7),

(

"x, "x,2
1

2
(g22)7

)}

,

and M("x) := {((f 2)7, "x)}.
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0 T1 T(1,1)

T(1,1,2)

t

(1, 1, 2, 2)
f 22

t

(1,
1, 2

, 1)

f

(1, 1, 2)
f 2

t

(1,
1, 1

)

f
(1, 1)

f

1

Id

We consider a random coding tree Tt,x,c illustrated by the above sample, started
at (t, x) with a code c * C and partitioned as K" * Kç, where Kç denotes the set
of leaves. In the next result, we use the random functional

H(Tt,x,c) :=
∏

k*Kç

1

qc
k

Ã(Çk)

∏

k*K"

ck(u)
(

T,Xk
T
k

)

F (T 2 Tk2)
.

of the random coding tree Tt,x,c, in which branching at a node k occurs at the

random time Tk, the interjump time Çk = Tk 2 Tk2 has tail CDF F and PDF Ã,

and
(

Xk
t

)

tgT
k2

is an independent Brownian motion started at time Tk2.

Theorem 1. ([13]) Assume that the integral solution of the system (2) is unique
and that there exists a constant K > 0 such that:

|f (k) ç Ç|> f K, k g 0, |Ç|> f K, |Ç2|> f K.

Then, there exists T > 0 such that the solution of (3) admits the probabilistic
representation

u(t, x) = IE
[

H(Tt,x,Id)
]

, (t, x) * [0, T ] × R.

The above method also extends to fully nonlinear PDEs of the form

ù

ú

û

"tu(t, x) +
1

2
&u(t, x) + f

(

u(t, x),'u(t, x), . . . ,'nu(t, x)
)

= 0,

u(T, x) = Ç(x), (t, x) = (t, x1, . . . , xd) * [0, T ] × Rd,

d g 1, see [13], [11]. As an example, we consider a cosine nonlinearity with a
gradient of order four, for which our method appears more accurate than the deep
Galerkin method [14]. Related comparisons can be found in [11] with respect to
the deep BSDE method [5].
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Figure 1. Comparison graphs in dimension d = 5.
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Probabilistic representations for the solutions of nonlinear PDEs with

fractional Laplacians

Nicolas Privault

(joint work with Guillaume Penent)

This talk presents tree-based probabilistic algorithms for the existence of solutions
of nonlinear fractional PDEs with their numerical implementation.

1. Parabolic case

Given · : (0,>) ³ [0,>) a Bernstein function, consider the (nonlocal) semilinear
PDE
ù

ü

ú

ü

û

"u

"t
(t, x) 2 ·(2&/2)u(t, x) + f

(

t, x, u(t, x),
"u

"x1
(t, x), . . . ,

"u

"xm
(t, x)

)

= 0,

u(T, x) = Ç(x), x = (x1, . . . , xd) * Rd,

where f(t, x, y, z1, . . . , zm) is a polynomial nonlinearity given by

f(t, x, y, z1, . . . , zm) =
∑

l=(l0,...,lm)*Lm

cl(t, x)yl0zl11 · · · zlmm ,

and Lm ¢ Nm+1 is ûnite. By choosing ·(») := (2»)³/2, this setting includes the
case of the standard fractional Laplacian &³. We assume that the coeûcients
cl(t, x) are uniformly bounded and that the terminal condition Ç is Lipschitz and
bounded on Rd.

Theorem 1. ([8]) Suppose that
∫>
»0

1:
»·(»)

d» <> for some »0 > 0. Then, there

exists a small enough T > 0 such that the PDE

u(t, x) =

∫

Rd

×(T 2 t, y 2 x)Ç(y)dy

+
∑

l=(l0,...,lm)*Lm

∫ T

t

∫

Rd

×(s2 t, y 2 x)cl(s, y)ul0(s, y)

m
∏

j=1

(

"u

"yj
(s, y)

)lj

dyds,

admits an integral solution on [0, T ].

To prove the above result, for each i = 0, 1, . . . , d we construct a suûciently in-
tegrable functional HÇ(Tt,x,i) of a random tree Tt,x,i driven by a subordinated Lévy
process (Zt)t*R+

:= (BSt)t*R+
, where (Bt)t*R+

is a multidimensional Brownian
motion, such that we have the representations

u(t, x) := E
[

HÇ(Tt,x,0)
]

, (t, x) * [0, T ] × Rd,

and
"u

"xi
(t, x) := E

[

HÇ(Tt,x,i)
]

, (t, x) * [0, T ] × Rd, i = 1, . . . , d.

Dealing with gradient terms requires to perform an integration by parts, which is
made possible using the Gaussian density of Bt in the subordination Zt := BSt , as
done in [7] in the case of stable processes with ·(») := (2»)³/2. Related local and
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global-in-time existence results have been obtained by deterministic arguments
under more technical conditions in e.g. [5], [6]

Corollary 2. ([8]) Taking ·(») := (2»)³/2 with ³ * (1, 2), under the above as-
sumptions there exists a small enough T > 0 such that the PDE
ù

ü

ú

ü

û

"u

"t
(t, x) 2 (2&)³/2u(t, x) + f

(

t, x, u(t, x),
"u

"x1
(t, x), . . . ,

"u

"xm
(t, x)

)

= 0,

u(T, x) = Ç(x), x = (x1, . . . , xd) * Rd,

with ³-fractional Laplacian admits an integral solution on [0, T ].

2. Elliptic case

We consider the class of semilinear elliptic PDEs on the open ball B(0, R) of radius
R > 0 in Rd, of the form

(1)

{

&³u(x) + f
(

x, u(x),'u(x)
)

= 0, x * B(0, R),

u(x) = Ç(x), x * Rd\B(0, R),

where Ç : Rd ³ R is a bounded Lipschitz function on Rd \ B(0, R), &³ denotes
the fractional Laplacian with parameter ³ * (0, 2), and f(x, y, z) is a polynomial
nonlinearity term. Next, we provide existence results and probabilistic represen-
tations for the solution of (1) under boundedness and smoothness conditions on
polynomial coeûcients. Our approach allows us to take into account gradient non-
linearities, which has not been done by deterministic ûnite diûerence methods, see
e.g. [4].

Theorem 3. ([9], [10]) Let d g 2 and ³ * (1, 2), assume that the boundary
condition Ç belongs to H³(Rd) and is bounded on Rd \ B(0, R). Under the above
assumptions, the semilinear elliptic PDE

{

&³u(x) + f
(

x, u(x),'u(x)
)

= 0, x * B(0, R),

u(x) = Ç(x), x * Rd\B(0, R),

admits a viscosity solution in C1(B(0, R))+C0(B(0, R)) provided that R and |cl|>,
l * Lm, are sufficiently small.

Existence of solutions are obtained through a probabilistic representation of the
form u(x) := E[HÇ(Tx,0)], x * B(0, R), where HÇ(Tx,0) is a functional of a random
branching tree Tx,0. For each i = 0, 1, . . . , d we construct a suûciently integrable
functional HÇ(Tx,i) of a random tree Tx,i such that we have the representation

(2) u(x) = E
[

HÇ(Tx,0)
]

, x * Rd.

The main diûculty in the proof is to show the uniform integrability required on
H(Tx,i) for E[H(Tx,i)] to be continuous in x * Rd is satisûed for ³ * (1, 2), as
required in the framework of viscosity solutions. For this, we extend arguments of
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[1] from the standard Laplacian & and Brownian motion to the fractional Lapla-
cian &³ := 2(2&)³/2 and its associated stable process, and use bounds on the
fractional Green and Poisson kernel and stable process hitting times from [3], [2].

As an example, consider the elliptic PDE with nonlinear gradient term

(3) &su(x) + «k,³(x) + (2k + ³)2|x|4(1 2 |x|2)2k+³ + ((1 2 |x|2)x · 'u(x))2 = 0,

x * B(0, 1), with u(x) = 0 for x * Rd \ B(0, R), and explicit solution u(x) =

§k,³(x) = (12|x|2)
k+³/2
+ , x * Rd. Numerical estimates of (2) by the Monte Carlo

method are presented in the ûgure below.

(a) Numerical solution of (3) with k = 0. (b) Numerical solution of (3) with k = 2.

Figure 1. Numerical solutions with d = 10 and ³ = 1.75.
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On (global) unique continuation properties of the fractional

discrete Laplacian

Luz Roncal

(joint work with Aingeru Fernández-Bertolin, Angkana Rüland)

Qualitative and quantitative unique continuation properties (UCP) hold for large
classes of local and nonlocal equations and have been thoroughly studied. However,
for their discrete counterparts only weaker versions of these persist in general. It
is the main objective of this talk to discuss UCP, both for local and nonlocal
equations on the lattice (hZ)d, with correction terms in the discretization error
and describe consequences for associated inverse problems.

For the fractional Laplacian on Rd a remarkable global UCP, which is not avail-
able for local elliptic operators such as the Laplacian, holds:

Theorem 1 (Global UCP, [3]). Let s * (0, 1) and let ' ¢ Rd with d g 1 be open.
Let u * Hr(Rd) for some r * R and assume that u = 0 = (2&)su in '. Then
u c 0 in Rd.

We illustrate that for the fractional discrete Laplacian, the global UCP fails on
the discrete lattice (hZ)d with h * R+. Given a function u : (hZ)d ³ R, we deûne
the discrete Laplacian as

(2&d)u(hj) :=
1

h2

d
∑

i=1

(

u(h(j + ei)) 2 2u(hj) + u(h(j 2 ei))
)

, hj * (hZ)d.

Based on this deûnition, it is possible to deûne the fractional discrete Laplacian
(2&d)s by means of its heat semigroup representation, or its Fourier symbol, or
the associated semi-discrete Caûarelli3Silvestre extension.

Let us write uj := u(hj). We have that, on the lattice, the direct counterpart
of Theorem 1 fails:

Theorem 2. Let X ¢ (hZ)d be a ûnite set of cardinality M * N. Then there
exists a non-zero function u * 3s such that uj = 0 = (2&d)suj for j * X .

Here, for 0 f s f 1, 3s is the function space allowing the deûnition of (2&d)s

under minimal decay conditions.
While the strongest version of the global UCP of Theorem 1 fails for discrete

operators, we highlight that a weaker (still qualitative) counterpart of it persists
in the form of global UCP from the exterior:

Theorem 3. Let d g 1, h * R+ and u * Hr((hZ)d) for some r * R. Let s * (0, 1)
and assume that for some R * R+, R g h, u = 0 = (2&d)su in (hZ)d \BR. Then
u c 0 in (hZ)d.

Here for R > 0, we have set BR = BR(0)+ (hZ)d; the function space Hr((hZ)d)
is the discrete Sobolev space.

While the main focus of the talk is the investigation of the degree of the failure
of the global UCP for the fractional discrete Laplacian, we also brieûy consider
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the weak UCP for fractional discrete Schrödinger equations in slab domains and
we show that in this situation the weak UCP from (thin) slab domains fails.

A class of quantitative results which is strongly related to the UCP of the
fractional Laplacian consists of boundary-bulk inequalities for elliptic equations.
Indeed, the relation between boundary-bulk UCP and unique continuation esti-
mates for the fractional Laplacian follows from the characterization of the frac-
tional Laplacian by means of the Caûarelli3Silvestre extension [1]. In the setting
of the fractional continuous Laplacian for s = 1/2, it is well-known [4] that a
boundary-bulk inequality holds.

We here present the analogous question on the lattice: Consider a function Þu
solving the equation

("2t + &d)Þu = V Þu in (hZ)d × R+,

Þu = u on (hZ)d × {0},
(1)

where V : (hZ)d × R+ ³ R is a bounded potential.
We prove the following theorem, which illustrates that the boundary-bulk

unique continuation estimates only <barely= fail with correction terms that de-
cay exponentially in the lattice size.

Theorem 4. Let u * H1((hZ)d) and Þu : (hZ)d × R+ ³ R be a solution to (1).
Then, there exist h0 > 0, C > 1 (depending on ‖V ‖L>((hZ)d×R+) and d) and
r0, ³ * (0, 1) (depending only on d) such that for all h * (0, h0) it holds that

‖Þu‖L2(B+
r0

) f C max{‖Þu‖L2(B+

1
), ‖u‖H1(B2

1
) + ‖"tÞu‖L2(B2

1
)}12³

× (‖u‖H1(B2

1
) + ‖"tÞu‖L2(B2

1
))
³ + Ce2Ch

21‖Þu‖L2(B+

1
).

Here, we use the notation B+
r := {(x, t) * Rd+1

+ : |(x, t)| < r} and B2
r :=

{(x, 0) * Rd × {0} : |x| < r}.
As an application of the boundary-bulk inequality from above, we prove that

the global UCP from Theorem 1 persists in a certain sense if one is <suûciently
close= to the continuum setting and if global information on the data is present.
To this end, we consider the inverse problem of recovering a function f * C>

c (W )

from partial measurements of its half-Laplacian (2&d)
1
2 f |Ω on the open domain

' which we assume to be disjoint from the open set W .
We can use Theorem 4 to infer a stability estimate for this inverse problem:

Theorem 5. Let W,' ¢ (hZ)d be non-empty, open sets with W + ' = ' and
f * C>

c (W ). Let h0 be the value from Theorem 4. Then there exists ¿ > 0 such
that if

0 < h0 f 1021
∣

∣

∣
log

(‖(2&d)
1
2 f‖L2(Ω)

‖f‖H1(W )

)
∣

∣

∣

21+¿∣
∣

∣

× log
(

2 C log
(‖(2&d)

1
2 f‖L2(Ω)

‖f‖H1(W )

))
∣

∣

∣

21

,
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the following estimate holds, for h * (0, h0):

‖f‖L2(W ) f C‖f‖H1(W )

∣

∣

∣
log

(‖(2&d)
1
2 f‖L2(Ω)

‖f‖H1(W )

)
∣

∣

∣

2¿

+ C exp
(

2 (Ch)21
∣

∣

∣
log

(‖(2&d)
1
2 f‖L2(Ω)

‖f‖H1(W )

)∣

∣

∣

21+¿)

‖f‖H1(W ).

We remark that in particular, for h0 * (0, 1) suûciently small (depending on the

size of the measurement data ‖(2&d)
1
2 f‖L2(Ω) and the oscillation of f measured in

terms of ‖f‖H1(W )), we obtain a stability estimate for the discrete inverse problem

of recovering f * C>
c (W ) from the data ‖(2&d)

1
2 f‖L2(Ω) under a priori oscillation

control for f . We hope that this eventually also allows one to obtain similar
stability estimates for nonlinear discrete inverse problems such as the discrete
fractional Calderón problem. This question is left as a problem for future research.

The results we report in this talk are contained in the preprint [2].
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On the Fractional Calderón Problem – Uniqueness, Stability and

Single Measurement Recovery

Angkana Rüland

(joint work with T. Ghosh, M. Salo, G. Uhlmann)

In this talk I present uniqueness, stability and single measurement recovery results
for a nonlocal inverse problem, the fractional Calderón problem. The fractional
Calderón problem is a nonlocal variant of the celebrated Calderón problem [1, 7]
and had been introduced in [2]. In its study one seeks to recover an unknown
potential q (in a suitable function space) on a domain ' ¢ Rn from the knowl-
edge of the generalized Dirichlet-to-Neumann map �q of the associated fractional
Schrödinger equation. More precisely, let u : Rn ³ R be a solution to

(2&)su+ qu = 0 in ',

u = f on 'e := Rn \ '.

Then, the generalized Dirichlet-to-Neumann map �q takes the form

�q : ÞHs('e) ³ H2s('e), f 7³ (2&)su|Ωe .
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In studying this inverse problem for the fractional Calderón problem, a number of
questions arise:

" Injectivity: Is it true that if q1, q2 are in suitable function spaces and if
�q1 = �q2 , that then q1 = q2?

" Stability: Is it true that under appropriate a priori regularity assump-
tions on the potentials q1, q2 a stability estimate holds, thus quantifying
injectivity?

" Reconstruction: It it possible to algorithmically recover the unknown
potential q from the knowledge of �q?

Presenting some of the results from the articles [2, 5, 4, 3, 6], in this talk I provide
answers to these questions, explaining the following main points:

" Injectivity holds in critical function spaces which are given as certain
multiplier spaces. Moreover, injectivity holds already in the (inûnite mea-
surement) partial data setting in which measurements for the generalized
Dirichlet-to-Neumann operator suûce in certain, possibly very small, pos-
sibly disjoint open subset W1,W2 ¢ 'e, see [5].

" Stability holds under suitable a priori information for the (inûnite mea-
surement) partial data problem. Contrary to the uniqueness properties, in
this context nonlocality does not substantially improve the stability prop-
erties of the inverse problem 3 as the classical Calderón problem also the
fractional Calderón problem remains highly unstable with only logarith-
mic moduli of continuity, see [5]. In particular, the logarithmic modulus
of stability is optimal and cannot be improved, see [4].

" Single measurement uniqueness and reconstruction is possible. In-
stead of the knowledge of the full, inûnite dimensional (partial data) gener-
alized Dirichlet-to-Neumann operator, only a single pair of data (f,�q(f))
with f 6= 0 suûces to uniquely and algorithmically recover the potential
q, if q is suûciently regular, see [3].

" A single measurement stability result proving that also the single
measurement problem is logarithmically stable (under suitable a priori
assumption on the potential and data) quantiûes the single measurement
uniqueness result, see [6].

These results strongly rely on the nonlocality of the fractional Calderón problem
and many of these results are not known in the setting of the classical Calderón
problem. A key ingredient is a qualitative, quantitative and algorithmic duality
between rigidity and ûexibility in the form of global unique continuation results
and Runge approximation properties.
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Nonlinear problems with partially symmetric solutions

Raffaella Servadei

(joint work with Giuseppe Devillanova, Giovanni Molica Bisci)

Several important problems arising in many research ûelds such as physics and
diûerential geometry lead to consider semilinear variational elliptic equations de-
ûned on unbounded domains of the Euclidean space and a great deal of work has
been devoted to their study. From the mathematical point of view, probably the
main interest relies on the fact that often the tools of nonlinear functional analy-
sis, based on compactness arguments, cannot be used, at least in a straightforward
way, and some new techniques have to be developed.

The seminal paper [4] by P.-L. Lions has inspired a (nowadays usual) way to
overcome the lack of compactness by exploiting symmetry. This approach is fruit-
ful in the study of variational elliptic problems in presence of a suitable continuous
action of a topological group on the Sobolev space where the solutions are being
sought.

Along this direction, in the paper [3] we exploit a group theoretical scheme,
raised in the study of problems which are invariant with respect to the action of
orthogonal subgroups, to show the existence of multiple solutions distinguished by
their diûerent symmetry properties. We emphasize that a wide class of nonlin-
ear problems of this kind can be handled by constructing suitable subspaces, of
<partially symmetric= functions, of the ambient Sobolev space, and by applying
an appropriate version of the so-called Principle of Symmetric Criticality proved
in the seminal paper [6] by Palais.

In [3] we are interested in getting existence and multiplicity results of weak
solutions to the following problem

(P»)

{

2&u = »³(x, y)f(u) in Ë × Rd2m

u = 0 on "Ë × Rd2m,

where » is a positive parameter and Ë×Rd2m is an unbounded strip of Rd, being Ë
an open bounded subset of Rm with smooth boundary "Ë and d,m * N, d g m+2.
Moreover, we assume that ³ : Ë × Rd2m ³ R veriûes the following integrability,
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symmetry and sign conditions

(³1) ³ * L1(Ë × Rd2m) + L>(Ë × Rd2m)

(³2) ³(x, y) = ³(x, |y|) a.e. (x, y) * Ë × Rd2m

(³3)
³ g 0 a.e. in Ë × Rd2m and there exist r > 0 and ³0 > 0 such that

essinfË×B(0,r) ³ g ³0 ,

where B(0, r) is the ball in Rd2m centered at 0 with radius r, while on f : R ³ R

we require the next hypotheses

(f1) f is continuous in R

(f2) f(t) = o(|t|) as |t| ³ 0

(f3) there exists Ã > 2 such that 0 < ÃF (t) f tf(t) for any t * R \ {0},
where F is the following antiderivative of the function f

(1) F (t) =

∫ t

0

f(Ç) dÇ , t * R ,

(f4) sup
t*R\{0}

|f(t)|
|t| + |t|q21

< +> for some q * (2, 27),

where 27 is the critical Sobolev exponent given by 27 := 2d/(d 2 2) . Assump-
tion (f3) is the well-known Ambrosetti-Rabinowitz condition, which is a superlin-
ear assumption on the term f , namely a superquadratic one on its antiderivative
F at inûnity.

In [3] we study Problem (P») also under sublinear conditions at inûnity on the
nonlinearity f . More precisely, we also consider the case in which, instead of (f3),
the function f satisûes the following hypotheses

(f5) f(t) = o(|t|) as |t| ³ +>

(f6) there exists t0 * R+ such that F (t0) > 0 and F (t) g 0 on [0, t0] ,

where F is given in (1).
Problem (P») has a clear variational structure, indeed its solutions can be found

as critical points of the following energy functional deûned by setting for all u *
H1

0 (Ë × Rd2m)

I»(u) :=
1

2

∫

Ë×Rd2m

|'u(x, y)|2 dx dy 2 »

∫

Ë×Rd2m

³(x, y)F (u(x, y)) dx dy,

where F is given in (1).
Since the problem is set on the strip-like domain Ë × Rd2m, there is no com-

pactness property which can be used with I» on the whole space. Hence, in order
to ûnd a weak solution to Problem (P»), we need to construct a suitable subspace
of H1

0 (Ë × Rd2m) which allows us, from one side, to recover compactness and
to get, by an application of the Mountain Pass Theorem, a constrained critical
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point for the energy functional I» and, from the other side, to apply the Principle
of Symmetric Criticality got by Palais in [6] to show that the restriction to that
subspace does not play any role.

Finally, when d = m+4 or d g m+6 and the nonlinearity f is odd, by exploiting
a ûower-shape geometric structure in the Sobolev space H1

0 (Ë × Rd2m), we get
a multiplicity result for Problem (P»), using again variational and topological
arguments.

In the superlinear framework our result reads as follows:

Theorem 1. (Superlinear setting). Let Ë × Rd2m be an unbounded strip of Rd,
with Ë open bounded subset of Rm with smooth boundary "Ë, d,m * N, d g m+2,
and let » be a positive parameter. Let ³ satisfy conditions (³1), (³2) and (³3)
and let f satisfy assumptions (f1), (f2), (f3) and (f4).

Then,

(i) Existence: for any » > 0 there exists a nontrivial weak solution u» of
Problem (P») in H1

0 (Ë × Rd2m) with cylindrical symmetry;
(ii) Multiplicity: if, in addition, d = m + 4 or d g m + 6 and f is odd, then

for any » > 0 Problem (P») admits sd,m sequences of nontrivial weak
solutions, with different symmetries, where sd,m is defined as follows

(2) sd,m = (21)d2m +

⌊

d2m2 3

2

⌋

+ 1 .

In the sublinear setting our main result for Problem (P») is stated here below.

Theorem 2. (Sublinear setting). Let Ë×Rd2m be an unbounded strip of Rd, with
Ë open bounded subset of Rm with smooth boundary "Ë, d,m * N, d g m+ 2, and
let » be a positive parameter. Let ³ satisfy conditions (³1), (³2) and (³3) and let
f satisfy (f1), (f2), (f5) and (f6).

Then,

(i) there exists »̄ > 0 such that for any » < »̄ there are no nontrivial weak
solutions for Problem (P»);

(ii) there exists »7E > 0 such that for any » > »7E there exist at least two
nontrivial weak solutions of Problem (P») in H1

0 (Ë×Rd2m) with cylindrical
symmetry;

(iii) if, in addition, d = m+4 or d g m+6 and f is odd, then there exists »7M >
0 such that for any » > »7M Problem (P») admits sd,m pairs of nontrivial
weak solutions, with different symmetries (sd,m is defined by (2)).

The main theorems of [3] may be seen as an extension of existence and mul-
tiplicity results, already appeared in the literature, for nonlinear problems set in
the entire space Rd, as for instance, the ones obtained in the papers [1, 2] due to
Bartsch and Willem (see also [5]).
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Fredholm properties of boundary value problems for the

one-dimensional regional fractional Laplacian

Eugene Shargorodsky

(joint work with Tony Hill)

1. Notation

Let r+ denote the operator of restriction to R+ = (0,>) of functions deûned on
R, and let e+ be the operator of extension to R by 0 of functions deûned on R+.

Let F and F21 denote the direct and the inverse Fourier transforms.

Bessel-potential spaces:

Hs
p(R) :=

{

f * S2(R)|
∥

∥f | Hs
p(R)

∥

∥ =
∥

∥

∥
F21(1 + ¿2)s/2Ff | Lp(R)

∥

∥

∥
<>

}

,

Hs
p(R+) := r+H

s
p(R), s * R, 1 < p <>.

If s > 1 + 1/p, then the following subspace is well deûned

Hs
p,0(R+) :=

{

u * Hs
p(R+) : u2(0) = 0

}

.

We do not require u(0) = 0 here.

2. Auxiliary results

Let B denote the beta function:

B(x, y) :=

∫ 1

0

tx21(1 2 t)y21 dt =
�(x)�(y)

�(x+ y)
, Rex > 0, Re y > 0.

The equation

(1)
sinÃ³

Ã
B(Ç 2 2³+ 1 + i¿, 2³) =

sin
[

Ã(1 2 Ç + ³2 i¿)
]

sin
[

Ã(1 2 Ç + 2³2 i¿)
]

does not have solutions with 0 < ³ < 1/2, 0 < Ç < 1 or with 0 < ³ < 1,
1 < Ç < 2, ¿ 6= 0.
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If ¿ = 0, then (1) is equivalent to

(2) �(2³2 Ç)�(Ç + 1) sinÃ(³ 2 Ç) = �(2³) sinÃ³.

If 0 < ³ < 1/2, equation (2) has no solutions Ç * (0, 1).
If 0 < ³ < 1, equation (2) has a unique solution Ç * (1, 2) of the form Ç = 1 + ³c,
where 0 < ³c < ³.

3. Main results

Let

A := (D2 + 1)³ = F21(¿2 + 1)³F,

1G(x) :=

{

1 if x * G,
0 if x * R \G, G ¢ R,

Au := r+ Ae+u+ u r+A(1R2
).

Theorem 1. Let 0 < ³ < 1
2 , 1 < p < >, and 1/p < s < 1 + 1/p. Then the

operator A : Hs
p(R+) ³ Hs22³

p (R+) is bounded and invertible.

Theorem 2. Let 0 < ³ < 1 and 1 < p <>.
If 1 + 1/p < s < 1 + 1/p+ ³c, then the operator A : Hs

p,0(R+) ³ Hs22³
p (R+) is

bounded and invertible.
If 1 + 1/p + ³c < s < 2 + 1/p, then A has a trivial kernel and is Fredholm with
index equal to 21.

4. Ingredients of the proof

Lemma 1. Let 0 < ³ < 1 and u * C>
0 (R). Additionally, let u2(0) = 0 in the case

1
2 f ³ < 1. Then

x22³(u(x) 2 u(0)) =

∫ >

0

K2³

(

x

y

)

(

C2³
0+u

)

(y)
dy

y
,

where

K2³(t) =
1[1,>)(t)

�(2³)t2³(t2 1)122³
,

and C³0+ denotes the Caputo fractional derivative of order ³ > 0:

(

C³0+f
)

(x) :=
1

�(1 2 {³})

∫ x

0

f ([³]+1)(y)

(x2 y){³}
dy, x > 0,

and {³} = ³ 2 [³] is the fractional part of ³.

Using this lemma, one can reduce the proof of theorems 1 and 2 to the study of
the operator

(3) W (a1) + cM0(b)W (a2) + T : Lp(R+) ³ Lp(R+),
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where T is compact, c * C>
0 (R), W (a) := r+ a(D) e+ is a Wiener-Hopf operator,

M0(b) := M21
p bMp is a Mellin operator, and M±1

p are the direct and the inverse
Mellin tranforms:

(Mpu) (·) :=

∫ >

0

x1/p212i·u(x) dx, · * R,

(

M21
p v

)

(x) :=
1

2Ã

∫ >

2>
x21/p+i·v(·) d·, x * R+,

If 0 < ³ < 1
2 , 1/p < s < 1 + 1/p, then

a1(¿) = (¿2 + 1)³(¿ 2 i)s22³21(¿ + i)12s,

a2(¿) = (2i¿)2³(¿ 2 i)s22³21(¿ + i)12s,

b(¿) = B(s2 2³+ 1 2 1/p+ i¿, 2³)/�(2³),

c(0) = 2�(2³) sinÃ³

Ã
.

If 0 < ³ < 1, 1 + 1/p < s < 2 + 1/p, then

a1(¿) = (¿2 + 1)³(¿ 2 i)s22³22(¿ + i)22s,

a2(¿) = (2i¿)2³(¿ 2 i)s22³22(¿ + i)22s,

and b, c are as above.
Fredholm properties, including the index, of operator (3) can be derived from
Duduchava9s theory ([1], [2]). This operator is Fredholm if and only if equation
(1) with Ç = s2 1/p does not have solutions ¿ * R.
If p = 2, then (Au, u) > 0 for u 6= 0. Hence A has a trivial kernel: KerA = {0}.
A general result on Fredholm operators then implies that the kernel is trivial for
any p 6= 2.

The proofs of the above results can be found in Tony Hill9s PhD thesis [3].
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Non-local operators with critical perturbations

Karol Szczypkowski

(joint work with Jakub Minecki)

An operator L is said to be Lévy-type if it acts on every smooth compactly sup-
ported function f according to the following formula

Lf(x) = c(x)f(x) + b(x) · 'f(x) +
d

∑

i,j=1

aij(x)
"2f

"xi"xj
(x)

+

∫

Rd

(

f(x+ z) 2 f(x) 2 1|z|<1 〈z,'f(x)〉
)

N(x, dz) .

Here c(x), b(x), aij(x) and N(x, dz) are called coeûcients, and need to satisfy
certain natural conditions. The coeûcients model the inûnitesimal behaviour of
a particle at the point x. For instance, the vector b(x) deûnes the drift, while
N(x,B) is the intensity of jumps from x to the set x+B ¢ Rd.

The case of constant coeûcients, i.e., when c(x) c c, b(x) c b, aij(x) c aij and
N(x, dz) c N(dz), leads to convolution semigroups of operators or Lévy processes,
or Lévy ûights, which are prevalent in probability, PDEs, physics, ûnance and
statistics [1], [3]. In this case there is a well established one-to-one correspondence
between the process, the semigroup and the operator L [10].

It is extremely important to understand operators with x-dependent coeûcients.
Due to the Courrège-Waldenfels theorem, the inûnitesimal generator of a Feller
semigroup with a suûciently rich domain is a Lévy-type operator; see [2, Theo-
rem 2.21], [5, Theorem 4.5.21]. However, it is a highly non-trivial task to construct
an operator semigroup for a given Lévy-type operator with rough (non-constant)
coeûcients. To resolve the problem many authors follow a scheme known as the
parametrix method, whose primary role is to provide a candidate for the integral
kernel of the semigroup in question. Each usage of the method brings about dif-
ferent technical diûculties to overcome that depend on the class of coeûcients
under consideration, but most applications follow a characteristic pattern, e.g.,
the decomposition of the candidate kernel into a zero order approximation and a
remainder.

In the paper [9] we provide a general functional analytic framework for the
parametrix method, namely, for the construction of the family of operators {Pt : t *
(0, 1]} for a given choice of the zero order approximation operator P 0

t and the
error term operator Q0

t . The aforementioned remainder corresponds then to an
operator given by P 0

t and multiple compositions of Q0
t . We single out natural

hypotheses on P 0
t and Q0

t that lead to the construction and basic properties of
Pt. We furthermore point out key hypotheses on the approximate solution Pt,·
that validate the semigroup property, non-negativity, etc., of Pt. We also discuss
in a general context integral kernels associated with the constructed operators.
Thus, the success of the parametrix method boils down to verifying the proposed
hypotheses. It should be noted that they may only hold if P 0

t is well chosen. In
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the literature there is enough evidence showing that the ûexibility of the choice of
the zero order approximation is crucial. Our results indeed provide such ûexibility.

As an application of the general developed framework we consider the classical
choice of P 0

t by freezing coefficients at the endpoint. In doing so we focus on the
case when the measure N(x, dz) is non-symmetric in dz. In particular, a non-zero
internal drift

·xr :=

∫

Rd

z
(

1|z|<r 2 1|z|<1

)

N(x, dz) , r > 0,

may be induced by non-symmetric jumps. For example, for c c 0, b c 0, aij c 0,
we get

Lf(x) =

∫

Rd

(

f(x+ z) 2 f(x) 2 1|z|<r 〈z,'f(x)〉
)

N(x, dz)

+

(
∫

Rd

z
(

1|z|<r 2 1|z|<1

)

N(x, dz)

)

· 'f(x) .

The above can be interpreted as a decomposition of the operator into the leading
non-local part and the internal drift part, and we wish to control the latter. As
observed in examples, the internal drift ·xr is more diûcult to handle than the
external drift b(x). To be more speciûc, we study the operator

Lf(x) = b(x) · 'f(x) +

∫

Rd

(

f(x+ z) 2 f(x) 2 1|z|<1 〈z,'f(x)〉
)

»(x, z)J(z)dz .

(1)

Under certain assumptions on b, J, » we prove the uniqueness and existence of a
weak fundamental solution to the equation "t = L. We analyse the semigroup
associated with the solution and discuss properties of its generator, which we
identify as the closure of the operator L in (1) acting on the space of smooth
compactly supported functions. Pointwise estimates of the fundamental solution
are established under additional conditions.

Our main focus is the case when the mapping z 7³ »(x, z)J(z) is non-symmetric.
A surprising fact is that despite extensive study of non-local operators and rapidly
growing literature of the subject, the following fundamental example has not yet
been covered. Let b = 0 and J(z) = |z|2d21 in (1), i.e.,

Lf(x) =

∫

Rd

(

f(x+ z) 2 f(x) 2 1|z|<1 〈z,'f(x)〉
) »(x, z)

|z|d+1
dz ,(2)

and suppose only that c21
» f »(x, z) f c» and |»(x, z) 2 »(y, z)| f c»|x2 y|·» for

some c» > 0, ·» * (0, 1] and all x, y, z * Rd. We note that the results available in
[7], [11], [6], [4], require further assumptions on the coeûcient » to treat (2), which
exclude natural examples. Our results remove those restrictions and we construct
and estimate the semigroup (Pt)t>0. Of course we also cover other interesting
operators. We emphasize that the general functional analytic framework should
apply to other zero order approximations P 0

t [8], but even for the choice of P 0
t

resulting from freezing coeûcients at the endpoint we obtain new results for the
non-symmetric case.
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Numerical schemes for radial Dunkl processes

Dai Taguchi

(joint work with Hoang-Long Ngo)

Let R be a (reduced) root system in Rd, that is, R is a ûnite set of nonzero vectors
in Rd such that (R1) R+{c³ ; c * R} = {³,2³}, for any ³ * R; (R2) Ã³(R) = R
for any ³ * R. Here Ã³ is the orthogonal reûection with respect to ³ * Rd \ {0}
deûned by

Ã³x = x2 2〈³, x〉
|³|2 ³ =

(

Id 2
2

|³|2³³
¦
)

x, x * Rd.

For a total ordering > of Rd, a positive subsystem of the root system R is denoted
by R+. A sub-group W = W (R) of O(d) is called the Weyl group generated
by a root system R, if it is generated by the reûections {Ã³ ; ³ * R}, that is,
W = 〈Ã³ | ³ * R〉.

The Dunkl operator Ti on Rd associated with W are introduced by Dunkl [5]
and are diûerential-diûerence operators given by

Tif(x) :=
"f(x)

"xi
+

∑

³*R+

k³i
f(x) 2 f(Ã³x)

〈³, x〉 .
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Dunkl operators have been widely studied in both mathematics and physics. For
example, there operators play a crucial role to the study special functions associ-
ated with root systems and the Hamiltonian operators of some Calogero-Moser-
Sutherland quantum mechanical systems. Moreover, Rösler [8] studied Dunkl heat
equation (&k 2 "t)u, u(·, 0) = f * Cb(R

d;R) where the Dunkl Laplacian deûned

by &kf(x) :=
∑d

i=1 T
2
i and has the following explicit form

&kf(x) = &f(x) + 2
∑

³*R+

k

{ 〈'f(x), ³〉
〈³, x〉 +

f(Ã³x) 2 f(x)

〈³, x〉2
}

.

Rösler and Voit [9] introduced Dunkl processes Y , which are càdlàg Markov pro-
cesses with inûnitesimal generator &k/2 and are martingales with the scaling prop-
erty. On the other hand, a radial Dunkl process X = (X(t))tg0 is a continuous
Markov process with inûnitesimal generator LWk /2 deûned by

LWk f(x)

2
:=

&f(x)

2
+

∑

³*R+

k
〈'f(x), ³〉

〈³, x〉 ,

and is a W -radial part of the Dunkl process Y , that is, for the canonical projection
Ã : Rd ³ Rd/W , we have X = Ã(Y ), as identifying the space Rd/W to the
(fundamental) Weyl chamber W := {x * Rd ; 〈³, x〉 > 0, ³ * R+} of the root
system R. Demini [3] proved that a radial Dunkl process X satisûes the following
W-valued stochastic diûerential equation (SDE)

dX(t) = dB(t) +
∑

³*R+

k

〈³,X(t)〉³ dt, X(0) = x(0) * W,(1)

where B = (B(t))tg0 is a d-dimensional standard Brownian motion (see also [10]
for the radial Heckman3Opdam process). For example, if R := {±1} then X is a
Bessel process, and if a type Ad21 root system, that is, R := {ei 2 ej * Rd ; i 6=
j} ¢ {x * Rd;

∑d
i=1 xi = 0}, then X is a Dyson9s Brownian motion.

In this talk, we consider the numerical approximation for a class of radial Dunkl
processes corresponding to arbitrary (reduced) root systems. Inspired by [1, 4, 6,
7], we introduce a backward and truncated Euler-Maruyama scheme, which can be
implemented on a computer, and study its rate of convergence in Lp-norm. The
key idea of the proof is to use the change of measure based on Girsanov theorem for
radial Dunkl processes, which was proved in [2] for general radial Dunkl processes,
and in [11] for the Bessel case.
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Functional analytic techniques for Markov processes

Kazuaki Taira

This survey talk is devoted to the functional analytic approach to the problem
of construction of Markov processes in probability theory. It is well known that,
by virtue of the Hille3Yosida theory of semigroups, the problem of construction
of Markov processes can be reduced to the study of boundary value problems for
elliptic integro-diûerential operators of second order. In this talk we introduce a
mathematical crossroads of functional analysis (macroscopic approach), partial dif-
ferential equations (mesoscopic approach), and probability (microscopic approach)
via the mathematics needed for the hard parts of Markov processes. This work
brings these three ûelds of analysis together and provides a profound stochastic
insight (microscopic approach) into the study of elliptic boundary value problems.

Let ' be a bounded domain in Euclidean space Rn, n g 2, with smooth bound-
ary "'. Its closure ' = ' * "' is an n-dimensional, compact smooth manifold
with boundary. Table 1 below gives a bird9s-eye view of strong Markov processes,
Feller semigroups and elliptic Ventcel9 (Wentzell) boundary value problems for
Waldenfels operators, and how these relate to each other (see [1]):

In this talk we consider the following problem:
<Conversely, construct a Feller semigroup {Tt}tg0 on the closure ' with pre-

scribed analytic data (W,L).=
Several recent developments in the theory of partial diûerential equations have

made possible further progress in the study of elliptic boundary value problems and
hence of the problem of construction of Markov processes. This talk focuses on the
relationship between Markov processes and elliptic boundary value problems with
emphasis on the study of maximum principles. The approach here is distinguished
by the extensive use of the theory of partial diûerential equations.

The content of this survey talk is summarized in Table 2 below (see [2], [3]):
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Probability Functional Elliptic Boundary
(Microscopic approach) Analysis Value Problems

(Macroscopic approach) (Mesoscopic approach)

Strong Markov process Feller semigroup Infinitesimal generator

� = (x t ,1 ,1t , Px ) Tt f (x) =
«

pt (x, dy) f (y) Tt = et !
(Kakutani) (Hille3Yosida)

Markov transition Green kernel Resolvent

function G³ (x, y) =
>

0

e3 αt pt (x, dy) dt (³I 3 !)3 1

Px {x t    E} = pt (x, E ) (Riesz3Markov) (Hille3Yosida3Ray)

(Dynkin)

Chapman–Kolmogorov Semigroup property Waldenfels operator

equation Tt+s = Tt · Ts W = A + S
pt+s (x, dz)

= «
pt (x, dy) ps (y, dz)

Absorption, reûection, Function spaces Ventcel’ (Wentzell)
viscosity phenomena, C0(«) [Dirichlet case] boundary condition

two jump phenomena, C(«) [Other cases] L
diûusion along the boundary

(Six phenomena)

$

$

*

Table 1.

Diffusion Lévy Ventcel’ using proved
operator operator condition the theory by

A S L = � δ(x‘)W of

Elliptic Γ = µ( ) ∂

∂n + γ( ) Classical Sato3Ueno

smooth S 0 µ( ) > 0 on ∂« potential (1965)

case theory

Elliptic general case � = µ( ) ∂

∂n +Q + T Classical Bony et al.
smooth (compact Q (elliptic operator) potential (1968)
case perturbations) T (Ventcel93Lévy) theory

µ( ) > 0 on ∂«

Elliptic � = µ( ) ∂

∂n +Q Pseudo- Taira (1979)

smooth S 0 Q (degenerate case) diûerential Taira (1988)

case µ( ) + δ( ) > 0 on ∂« operators Taira (2022)

(transversal case) (hypoelliptic
case)

Elliptic general case � = µ( ) ∂

∂n +Q + T Pseudo- Cancelier
smooth (transmission Q (degenerate case) diûerential (1986)
case property) T (transmission operators Taira (1992)

property) (Boutet de Taira (2014)

µ( ) + δ( ) > 0 on ∂« Monvel Taira (2020)

(transversal case) calculus)

Elliptic general case � = µ( ) ∂

∂n +Q + T Singular My second
discon- (compact Q (ûrst order case) integral talk (2022)
tinuous perturbations) T (ûrst order case) operators

(VMO) µ( ) > 0 on ∂« (Calderón and

case Zygmund)

x‘

x‘

x‘

x‘

x‘

x‘

x‘x‘

x‘ x‘

x‘

x‘

x‘

–

≡

≡

Table 2.
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Singular integrals and Feller semigroups with jump phenomena

Kazuaki Taira

This research talk is devoted to the real analysis methods for the problem of
construction of Markov processes with boundary conditions in probability theory.
Analytically, a Markovian particle in a domain of Euclidean space is governed by an
integro-diûerential operator W , called Waldenfels operator, in the interior ' of the
domain, and it obeys a boundary condition L, called Ventcel9 (Wentzell) bound-
ary condition, on the boundary "' of the domain. Probabilistically, a Markovian
particle moves both by continuous paths and by jumps in the state space and it
obeys the Ventcel9 boundary condition which consists of six terms corresponding
to a diûusion along the boundary, an absorption phenomenon, a reûection phe-
nomenon, a sticking (or viscosity) phenomenon and a jump phenomenon on the
boundary and an inward jump phenomenon from the boundary.

In particular, second order elliptic diûerential operators are called diûusion op-
erators which describe analytically strong Markov processes with continuous paths
in the state space such as Brownian motion. We remark that second order elliptic
diûerential operators with discontinuous coeûcients enter naturally in connection
with the problem of construction of Markov processes in probability theory. Since
second order elliptic diûerential operators are pseudo-diûerential operators only if
the coeûcients are inûnitely diûerentiable, we can not make use of the theory of
pseudo-diûerential operators as in the book [2].

In this talk we consider the following problem:
<Conversely, construct a Feller semigroup {Tt}tg0 on the closure ' = ' * "'

with prescribed analytic data (W,L).=
Our approach here is distinguished by the extensive use of the ideas and tech-

niques characteristic of the recent developments in the Calderón and Zygmund
theory of singular integral operators with non-smooth (i.e., non-inûnitely diûer-
entiable) kernels. It should be emphasized that singular integral operators with
non-smooth kernels provide a powerful tool to deal with smoothness of solutions
of partial diûerential equations, with minimal assumptions of regularity on the
coeûcients. The Calderón3Zygmund theory continues to be one of the most inûu-
ential works in modern history of analysis, and is a very reûned mathematical tool
whose full power is yet to be exploited. Several recent developments in the theory
of singular integrals have made possible further progress in the study of elliptic
boundary value problems with discontinuous coeûcients and hence in the study of
Markov processes ([5]). The approach here is distinguished by the extensive use of
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function spaces such as the BMO (bounded mean oscillation) space due to John
and Nirenberg and the VMO (vanishing mean oscillation) space due to Sarason,
respectively. The presentation of these new results is the main purpose of this
talk.

Main results of this research talk are summarized in Table 3 below.

Boundary conditions Notation Resolvents Feller Semigroups
(various phenomena)

Dirichlet case γ0 G0
³ = (³I 2!D )21 et!D

(absorption)

Oblique derivative case Λ Gλ
³ = (³I 2!Λ)

21 et!Λ

(absorption, reflection, drift)

Ventcel’ case Γ = Λ+ γ0T Gγ
³ = (³I 2!Γ)

21 et!Γ

(absorption, reflection, drift,
inward jump)

General case L = Λ2 δW G³ = (³I 2!)21 et!

(absorption, reflection, drift,
inward jump, viscosity)

Table 3.

More precisely, we prove four generation theorems for Feller semigroups with
Dirichlet boundary condition, oblique derivative boundary condition and ûrst or-
der Ventcel9 boundary condition for second order, uniformly elliptic diûerential
operators with VMO coeûcients, which extend earlier theorems due to Bony3
Courrège3Priouret [1] to the VMO case. In other words, we construct Feller semi-
groups associated with the absorption, reûection, drift and sticking phenomena at
the boundary and the inward jump phenomenon from the boundary.

Our proof is essentially based on various maximum principles for second order
elliptic Waldenfels operators with discontinuous coeûcients in the framework of
Lp Sobolev spaces (see [3], [4]).
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et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du
maximum, Ann. Inst. Fourier (Grenoble) 18 (1968), 3693521.

[2] K. Taira, Boundary value problems and Markov processes, third edition. Lecture Notes in
Mathematics, no. 1499, Springer-Verlag, Berlin Heidelberg New York, 2020.

[3] K. Taira, Dirichlet problems with discontinuous coefficients and Feller semigroups, Rend.
Circ. Mat. Palermo (2) 69 (2020), 2873323.



796 Oberwolfach Report 15/2022

[4] K. Taira, Oblique derivative problems and Feller semigroups with discontinuous coefficients,
Ricerche mat. (2020). https://doi.org/10.1007/s11587-020-00509-5

[5] K. Taira, Singular integrals and Feller semigroups: Real analysis methods for Markov pro-

cesses, https://tsukuba.repo.nii.ac.jp/records/56313 (Tsukuba repository).

Jump-type stochastic differential equations on manifolds

Atsushi Takeuchi

Let T > 0 be a constant, and (M, g) a connected, compact and smooth Riemannian
manifold of dimension d with the Levi-Civita connection. Denote by O(M) the
bundle of orthnormal frames on M , and let Ã : O(M) ³ M be the canonical
projection such that Ã(r) = x for r = (x, e) * O(M). On a probability space
(',F ,P), consider the O(M)-valued process {Rt ; 0 f t f T } determined by the
following stochastic diûerential equation of Stratonovich type:

(1) dRt =
d

∑

i=1

Hi(Rr) ç dW i
t , R0 = r * O(M),

where {(W 1
t , . . . ,W

d
t ) ; 0 f t f T } is a d-dimensional Brownian motion, and

H1, . . . , Hd are the canonical horizontal vector ûelds on O(M). It is well known
that the process R is strong Markovian with inûnitesimal generator

L :=
1

2

d
∑

i=1

HiHi,

which is called the horizontal Laplacian of Bochner. Since the process W is rota-
tionally invariant, the projected process X := Ã(R) of the O(M)-valued process
R determined by the equation (1) is also strong Markovian with the inûnitesimal
generator &M/2, where &M is the Laplace-Beltrami operator on M . The process
X as deûned above is just the Brownian motion on M . Such procedure in which
the M -valued process is constructed as the projected one in O(M) is often called
the Eells-Elworthy-Malliavin approach. See [4] on the detailed explanations.

It seems very natural to consider whether jump processes on M can be con-
structed by the procedure stated above or not. Hunt in [5] constructed Lévy
processes on Lie groups from the viewpoint of functional analysis, and Applebaum
and Kunita in [2] discussed stochastic ûows of diûeomorphisms on Lie groups as
solutions to stochastic diûerential equations driven by Lévy proceeese. One of the
goals in this talk is to construct jump processes on M via the Eells-Elworthy-
Malliavin approach. Before doing it, we shall prepare some notations. Let ¿(dz)
be the Lévy measure on Rd0 := Rd\{0}, and J(ds, dz) the Poisson random measure
over [0, T ] × Rd0 with intensity ds ¿(dz). For simplicity of notations, write

J̄(ds, dz) = I(|z|f1)

{

J(ds, dz) 2 ds ¿(dz)
}

+ I(|z|>1) J(ds, dz).
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For each z * Rd0 and r * O(M), let {�zÃ(r) ; 0 f Ã f 1} be the solution to the
ordinary diûerential equation:

(2)
d

dÃ
�zÃ(r) =

d
∑

i=1

Hi

(

�zÃ(r)
)

zi, �z0(r) = r.

Now, let us consider the O(M)-valued process { ÞRt ; 0 f t f T } determined by the
Marcus-type stochastic diûerential equation with jumps of the form:

(3) d ÞRt =

d
∑

i=1

Hi( ÞRt) ç dW i
t +

∫

Rd
0

{

�z1( ÞRt2) 2 ÞRt2
}

J̄(dt, dz), ÞR0 = r * O(M).

Then, the process ÞR is strong Markovian with inûnitesimal generator

JF (r) = LF (r) +

∫

Rd
0

{

F
(

�z1(r)
)

2 F (r) 2
d

∑

i=1

HiF (r) zi I(|z|f1)

}

¿(dz)

for F * C>(O(M)). But, the Markov property of the M -valued process ÞX :=

Ã( ÞR) is not so clear, because the process ÞX depends on the choice of frames. One
of the suûcient conditions is introduced in this talk, which is the revisited result
obtained by Applebaum and Estrade in [1]. See also [6].

The second interest in this talk is to study the commutativity on the procedures
of the subordination and the projection. Let 0 < ³ < 1 be a constant. When our
situation is in the Euclidean space, it is quite well known that the subordinated
process WÇ of the Brownian motion W by the ³-stable subordinator Ç is just the
2³-stable process. The Lévy-Khintchine representation on the characteristic func-
tions plays a crucial role. Now, let us proceed our position into the manifold M .
Since the Brownian motion X on M can be constructed via the Eells-Elworthy-
Malliavin approach stated above, the subordinated process XÇ of the Brownian
motion X by the stable subordinator Ç is well deûned. On the other hand, we
have already introduced the M -valued process ÞX via the projection of the O(M)-

valued process ÞR determined by the equation (3). Then, we wonder what about

the relationship between the M -valued processes XÇ and ÞX proposed in [3]. In

this talk, the Wasserstein distance of the processes XÇ and ÞX implies that their
probability laws are not always equivalent. The Wasserstein distance on the pro-
cesses determined by stochastic diûerential equations of jump type is studied in
[7], and the topics stated above is mentioned as one of the applications.
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J. Azéma, M. Emery, P. A. Meyer and M. Yor (Eds.), Séminaire de Probabilités XXIX
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On symmetric stable-type processes having singular Lévy densities

Toshihiro Uemura

(joint work with Masayoshi Takeda)

We are concerned with symmetric stable-type processes with singular Lévy densi-
ties:

(7) E(u, v) =

∫∫

x 6=y

(

u(x) 2 u(y)
)(

u(x) 2 u(y)
)

k(x, y)dxdy,

where k(x, y) is a Lévy density given by

k(x, y) = cd,³
(|x|2³ * 1)(|y|2³ * 1)

|x2 y|d+³
for 0 < ³ < 2 and ³ g 0.

When ³ = 0, the (bilnear) functional E is the Dirichlet form of a translation
invariant symmetric ³-stable process on Rd and its domain is a fractional Sobolev
space W³/2,2(Rd). The Lévy density k(x, y) has sigularity at 0 not just on the
diagonal {(x, x) : x * Rd} when ³ > 0. One of our motivations to consider the
form (7) is to know how the (singular) parameter ³ eûects the paths behavior of
the Markov process associated with the form (7).

In the talk, we ûrst introduce a class of test functions of the inûnitesimal generators
of the symmetric Dirichlet form E as a <core= and then show some estimates of
the Markov process, which is called <a symmetric stable-type process=, associated
with the form.

We ûrst show that the symmetric form deûned by (7) produces regular sym-
metric Dirichlet form (E ,F) on L2(Rd) under the conditions 0 < ³ < 2 and
0 f 2³ < d. The Dirichlet form is conservative under the same conditions.

Then, introducing a class of test functions denoted by C>
# (Rd), the set of all

smooth functions f deûned on Rd having compact support such that f is con-
stant on a neighborhood of the origin, we also show that the domain of the L2-
inûnitesimal generator (L,D(L)) of (E ,F) contains the test functions C>

# (Rd) and

that the form Lf for f * C>
# (Rd) can be expressed as follows:

Lf(x) =

∫

h 6=0

(

f(x+ h) 2 f(x) 2 h · 'f(x)Ç(h)
)

k(x, x+ h)dh

+
1

2

∫

h 6=0

h · 'f(x)Ç(h)
(

k(x, x + h) 2 k(x, x 2 h)
)

dh, x * Rd,
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where Ç is a centering function, which is a measurable bounded function deûned
on Rd so that Ç(h) = Ç(2h) for h * Rd and limh³0(Ç(h) 2 1)/|h| = 0.

Using the precise expression of the inûnitesimal generator for the test func-
tion and considering the Fukushima decomposition (or the usual semimartingale
decomposition), we will estimate the exit time of balls.

To this end, recall that, for a rotational invariant symmetric ³-stable process
with ³ < d (i.e., the process is transient), the following estimate are well-known:
there exist positive constants c > 0 such that for any r > 0,

Ez [Çr] = c(r2 2 |z|2)³/2, |z| < r

(e.g., [1, 3]). Here Çr = inf{t > 0 : |Xt| > r} is the exit time ball at 0 with radius
r > 0. This implies that

Ez [Çr] j r³ for |z| < r/2.

Let us return to our process. We will obtain a portion of the above well-known
result as follows: There exist a positive constant c > 0 such that for any 0 < r < 1,

Ez[Çr ] f cr³+2³ for |z| < r/2.
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Nonlocal capillarity theory

Enrico Valdinoci

(joint work with Alessandra De Luca, Serena Dipierro, Francesco Maggi)

We describe recent results motivated by a nonlocal capillarity theory introduced
in [4]. The notion of capillarity, as related to the formation of droplets, is a clas-
sical topic of investigation and, in relation with surface tension, the phenomena
described by this theory are topical in virtually all the branches of science (such
as physics, material sciences, biology, chemistry, etc.). Surface tension is itself a
very complex phenomenon, which can be seen as the macroscopic byproduct of
complicated microscopic features due to molecule attraction, cohesion and adhe-
sion.
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For this, the classical capillarity theory aims at describing surface tension as a
local average of intermolecular forces which in principle possess long-range contri-
butions and, to account for the formation of droplets in a container ' (supposed to
be open and smooth), it prescribes the minimization of a <perimeter-like= energy
functional

E(E) := |("E) + '| + Ã |("E) + ("')|,

under a volume constraint |E| = m.
In this setting, E is the droplet, of a given volume m, and the parameter Ã,

which is called <relative adhesion coeûcient= takes into account, roughly speaking,
the diûerent interfacial tensions between the droplet and the air (say ³DA), the
droplet and the container (say ³DC) and the container and the air (say ³CA; this
would produce that Ã = ³DC2³CA

³DA
).

When Ã = 1, we have that E(E) = |"E| and the minimum of the functional,
for small enough volumes, is a ball (placed wherever in '): this is a <completely
non-wetting= situation and the container does not meet the droplet (or so it does
only at a single point). Instead, when Ã = 21, we have that E(E) = |("E) + '| 2
|("E)+("')| and the minimum of E , for large enough volumes, is a the complement
of a ball (placed wherever in ': this case is <perfectly wetting= and the container
is in full contact with the droplet, possibly except at one single point).

Interesting cases are those which produce a droplet with some contact with the
boundary of the container, and these correspond to the range Ã * (21, 1). The
contact angle is indeed a quantity of physical interest, measured by a <contact
angle goniometer= using high resolution cameras.

The ûrst theoretical determination of the contact angle is due to Thomas Young
(polymath who made notable contributions to the ûelds of vision, light, solid
mechanics, energy, physiology, language, musical harmony, and Egyptology): re-
markably, Young9s Law determines the contact angle Ó in terms of the relative
adhesion coeûcient Ã according to the elegant formula cosÓ = 2Ã. In particular,
when Ã > 0, we have that Ó *

(

Ã
2 , Ã

)

and the material is <hydrophobic=. Instead,

when Ã < 0, we have that Ó *
(

0, Ã2
)

and the material is <hydrophilic=.
The geometry of the droplet in the classical capillarity theory is also quite well-

understood, since volume preserving perturbations of the functional E which do
not touch the container show that the mean curvature of the droplet is necessar-
ily constant: thus, a prototypical example of small classical droplets is that of
spherical regions meeting the container at an angle Ó in accordance with Young9s
Law.

In [4], we introduced a nonlocal capillarity theory in which the energy functional
fully accounts for remote particle interplay in view of an integral kernel K. The
prototypical case for K is that of an interaction kernel which is invariant under
translations and rotations and takes the form Ks(x) := 1

|x|n+s . Point-set interac-

tions (after Caûarelli-Roquejoûre-Savin), for given disjoint sets X , Y ¢ IRn can
be described by the multiple integral I(X,Y ) :=

∫∫

X×Y K(x 2 y) dx dy and the
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corresponding capillarity functional can be thus taken of the form

Es(E) := I(E,' \ E) + Ã I(E, IRn \ ').

The ûrst term mimics the molecular interactions of the droplet with the gas, the
second with the external environment.

It is customary to consider the <regular part RegE of "E=, namely, roughly

speaking, the points of ("E) + ' that are locally of class C1,³ with ³ * (s, 1) and
the nonlocal mean curvature of "E at x * RegE with respect to the kernel K,
deûned as

HK
"E(x) :=

∫

IRn

(

ÇIRn\E(y) 2 ÇE(y)
)

K(x2 y) dy.

This integral converges in the principal value sense as soon as E is C1,³ near x
with ³ * (s, 1). In this setting (see [4]), we have that if E is a critical set for the
nonlocal capillarity functional for the kernel Ks and x * RegE , then

HKs
"E(x) + (Ã 2 1)

∫

IRn\Ω
Ks(x2 y) dy = const.

Diûerently from the classical case, the relative adhesion coeûcient Ã appears in
the above equation (but this dependence vanishes as s� 1).

To determine the nonlocal contact angle, one can perform a blow-up at a regular
boundary point (say, the origin) and obtain (see [4]) the following Nonlocal Young9s
Law: if H and V denote the half-spaces such that the blow-up of ' approaches H
and the blow-up of E approaches V , then, the angle Ó between H and V satisûes,
for every v * ("V ) +H , the identity

HKs
"(H+V )(v) + (Ã 2 1)

∫

IRn\H
Ks(v 2 y) dy = 0.

This equation uniquely identiûes the angle Ó = Ó(s, Ã) between H and V .
Other results in [4, 3] address the interior regularity of the minimizers and

the behavior at the boundary. A detailed asymptotic expansion of the nonlocal
contact angle has been obtained in [2].

In [1], we addressed the case of more general kernels which are not necessarily
invariant under rotations. This setting produces several new features, such as the
inûuence of diûerent scales in the dilation arguments and the lack of cancellations
in singular integrals. In a nutshell, one can consider two kernels K1 and K2 such

that
ÇB; (x)Ksj (x)

» f Kj(x) f »Ksj (x) for some ; > 0 and » g 1, look at the

interactions Ij(X,Y ) :=
∫∫

X×Y Kj(x2 y) dx dy and at the energy functional

E(E) := I1(E,' \ E) + Ã I2(E, IRn \ ').

In this setting, if E is a critical set for the anisotropic nonlocal capillarity functional
and x * RegE , then

HK1

"E(x) 2
∫

IRn\Ω
K1(x2 y) dy + Ã

∫

IRn\Ω
K2(x2 y) dy = const.
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To understand the contact angle in the anisotropic case, one considers the blow-
up limit of the kernels, namely assuming that K7

j (x) := limr�0 r
n+sjKj(x) =

aj(~x)

|x|n+s
j

, for some positive, continuous, even function aj, where ~x := x
|x| .

The determination of the contact angle Ó in this case heavily depends on the
diûerent homogeneity powers s1 and s2 of the kernels (and notice that when Ã = 0
formally we have s2 free for us to choose!). More speciûcally, if s1 < s2, then
the kernel K2 <dominates at small scales=, hence it becomes determinant for the
determination of the contact angle (the kernel K1 becoming <ineûective= and the
system only seeing the interaction of the droplet with the external environment):
thus, when s1 < s2, if Ã < 0 we have that Ó = 0 and if Ã > 0 we have that Ó = Ã.

Instead, when s1 > s2 (or s1 f s2 and Ã = 0) the kernel K1 <dominates at
small scales= (the kernel K2 becoming <ineûective=, and the environment playing
only a marginal role): in this case, Ó * (0, Ã) and, for every v * ("V ) +H ,

HK7

1

"(H+V )(v) 2
∫

IRn\H
K7

1 (v 2 y) dy = 0.

The more interesting case is thus when s1 = s2, since the two kernels have a
perfect scaling balance and one expects that both play a role in the determination
of the contact angle.

To obtain nontrivial contact angles, one also assumes the following bound on
the relative adhesion coeûcient: |Ã|K2(x) f (1 2 ë0)K1(x) for all x * Bë0 \ {0},
for some ë0 * (0, 1). This condition can be seen as the natural counterpart of the
hypothesis that Ã * (21, 1) in the classical capillarity theory. In this framework,
when s1 = s2, it holds that Ó * (0, Ã) and, for every v * ("V ) +H ,

HK7

1

"(H+V )(v) 2
∫

IRn\H
K7

1 (v 2 y) dy + Ã

∫

IRn\H
K7

2 (v 2 y) dy = 0.
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Exponential ergodicity for damping Hamiltonian dynamics with

state-dependent and non-local collisions

Jian Wang

(joint work with Jianhai Bao)

Piecewise deterministic Markov processes (PDMPs for short) constitute a very nat-
ural class of non-diûusive stochastic processes, where the mathematical framework
was built by Mark H. A. Davis in [3]. Roughly speaking, the PDMP is a process
which jumps at some random time and moves continuously between two adjacent
random times; see [4] for more details. According to [3, Section 3], the probabil-
ity law of a PDMP with the state space E is determined by the following three
ingredients: (i) a vector ûeld �, generating a deterministic ûow; (ii) a jump rate
function J : E ³ [0,>), giving the law of the random times between jumps; (iii) a
jump measure Q : E×E ³ (0,>) (i.e., for each ûxed A * B(E), E + x 7³ Q(x,A)
is a measurable function, and, for each ûxed x * E, B(E) + A 7³ Q(x,A) is a
probability measure), giving the transition probability kernel of its jumps.

Here, we consider a special class of PDMPs (Xt, Vt)tg0 on the state space R2d :=
Rd × Rd and associated with the following inûnitesimal generator

(

Lf
)

(x, v) =
(

〈'xf(x, v), v〉 2 〈'vf(x, v), ³v + 'U(x)〉
)

+ J(x, v)

∫

Rd

(

f(x, u) 2 f(x, v)
)

×(u) du

=: (L1,³f)(x, v) + (L2f)(x, v), f * C1
b (R2d),

(1)

where ³ > 0, U : Rd ³ R is smooth, J : R2d ³ (0,>), and ×(·), which is radial
(i.e., ×(x) = ×(|x|) for all x * Rd), is a probability density function on Rd. In
(1), C1

b (R2d) means the collection of bounded real-valued functions f(x, v) on R2d,
which are diûerentiable in x and v, respectively, and 'xf(x, v) and 'vf(x, v)
denote the ûrst order gradients of f(x, v) with respect to the variable x and the
variable v, respectively.

Now, we make some detailed expositions on the quantities involved in (1). More
precisely, (v,2³v2'U(x)) is the vector ûeld generating the damping Hamiltonian
ûow, where ³ means the friction intensity that ensures a damped-driven Hamil-
tonian and 2³v stands for the damping force; J : R2d ³ (0,>) is the jump rate;
×(u) du represents the jump measure. In terminology, L1,³ is called the Liouville
operator associated with the damping Hamiltonian ûow generated by the vector
ûeld (x,2³v 2 'U(x)), and L2 is the so-called non-local collision operator. In
particular, if ×(u) is the density function of the standard normal distribution and
J(x, v) = » for all x, v * Rd, L2 is called the complete momentum randomiza-
tion operator; see, for example, [2]. It is worthy to emphasize that, in statistical
physics, the damping Hamiltonian system has been applied widely to model many
vibration phenomena (e.g., the generalized Duûng oscillator); see e.g. [5, 6].

The purpose of this talk is to study the exponential ergodicity of the PDMP
(Xt, Vt)tg0 whose generator L is given by (1). Before we state our main result, we
ûrst present the assumptions. First of all, we assume that
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(H0) For any ³ * R, there exists a constant K³,U > 0 such that for all x, x2 *
Rd,

|³(x2 x2) + 'U(x2) 2'U(x)| f K³,U |x2 x2|.
In particular, 'U is Lipschitz continuous under (H0).

For the jump rate J and the probability density × of the jump measure, we
assume that

(A1) J : R2d ³ (0,>) is uniformly bounded between two positive constants,
i.e., there exist constants »1, »2 > 0 such that »1 f J(x, v) f »2 for all
(x, v) * R2d. Moreover, J is globally Lipschitz continuous on R2d, i.e.,
there exists a constant »J > 0 such that for all (x, v), (x2, v2) * R2d,

|J(x, v) 2 J(x2, v2)| f »J
(

|x2 x2| + |v 2 v2|
)

.

(A2) For any ³, » > 0, there exist c7(³, »), c7(³, ») > 0 such that for all z * Rd,

c7(³, ») f A³,»(z) :=

∫

Rd

Ë³(z)»(u) du and 1 2A³,»(z) f c7(³, »)|z|,

where for all ¿, u * Rd,

Ë¿(u) := ×(u) ' ×(u+ ¿),

and, for the threshold » > 0, the truncation counterpart of z * Rd is
defined by

(z)» =
(» ' |z|)z

|z| 1{z 6=0} + 01{z=0}.

Since A³,»(0) =
∫

Rd
Ë0(u) du =

∫

Rd
×(u) du = 1, in some sense (A2) indicates the

non-degenerate property and the continuity of the probability density ×.
Besides all the assumptions above, we further need the following Lyapunov

condition:

(B1) There exist a C1-function W : R2d ³ [1,>) and constants c0, C0 > 0 such
that

lim
|x|+|v|³>

W(x, v) = >

and for all (x, v) * R2d,

(LW)(x, v) f 2c0W(x, v) + C0.

(B2) There exists a constant c77 > 0 such that for all x, ¿ * Rd,
∫

Rd

W(x, u)×(u) du f c77 inf
v*Rd

W(x, v),

∫

Rd

W(x, u) «¿(u) du f c77 inf
v*Rd

W(x, v)|¿|,

where for all ¿, u * Rd,

«¿(u) := ×(u) 2 Ë¿(u).



Nonlocality in Analysis, Probability and Statistics 805

Let P(R2d) be the set of probability measures on R2d. For µ, ¿ * P(R2d),
deûne the quasi-Wasserstein distance between µ and ¿ induced by a distance-like
function § : R2d × R2d ³ [0,>) as below

WΦ(µ, ¿) = inf
Π*C(µ,¿)

∫

R2d×R2d

§(x, y) £(dx, dy),

where C(µ, ¿) stands for the collection of all couplings of µ and ¿. In particular,
WΦ goes back to the classical Wasserstein distance when § is a metric function.
Note that WΦ(µ, ¿) = 0 if and only if µ = ¿, since § is a distance-like function.
Moreover, the space

PΦ(R2d) :=
{

µ * P(R2d) :

∫

R2d

§(x,0)µ(dx) <>
}

is complete under WΦ, i.e., each WΦ-Cauchy sequence in PΦ(R2d) converges with
respect to WΦ.

For each t g 0, let Pt
(

(x, v), ·
)

be the transition probability kernel of the Markov
process (Xt, Vt)tg0 with initial value (X0, V0) = (x, v) associated with the gener-
ator L. Furthermore, we shall write µPt to mean the distribution of (Xt, Vt) with
initial distribution µ * P(R2d).

Theorem 1. Assume that (H0), (A1), (A2), (B1) and (B2) hold, and that the
following inequality

³ g 4K³,U

is solvable in the interval (0, ³2/4], where ³ was given in (1) and K³,U was given
in (H0). Then, the PDMP (Xt, Vt)tg0 corresponding to the operator L in (1) is
exponentially ergodic in the sense that there exist a unique invariant probability
measure µ * PΦ(R2d) and a constant »7 > 0 such that for any ¿ * PΦ(R2d) and
t g 0,

WΦ

(

¿Pt, µ
)

f C(µ, ¿)e2»
7t,

where for all (x, v), (x2, v2) * R2d,

§
(

(x, v), (x2, v2)
)

:=
(

(|x2 x2| + |v 2 v2|) ' 1
)(

W(x, v) + W(x2, v2)
)

and C(µ, ¿) is a positive function depending on µ and ¿ (indepedent of t).

To illustrate the eûectiveness of Theorem 1, we consider the following example.

Example 2. Assume that Assumption (A1) holds. Let U(x) = »|x|2 with

³2

8
g » >

(»1 + ³)2(»2 2 »1)2

4(2»1»2 2 »21 + 4»2³ + 3³2)
,

and ×(x) = ×1(x) := cd,³1
(1 + |x|)2d2³1 with ³1 > 0 or ×(x) = ×2(x) :=

cd,³2
exp(2|x|³2) with ³2 > 0. Then, the conclusion of Theorem 1 holds with

W(x, v) = (1 + |x|2 + |v|2) and the previously deûned ×2 or ×1 when ³1 > 2, and
with W(x, v) = (1 + |x|2 + |v|2)(³12·)/2 for any · * (0, ³1) and the foregoing ×1

when ³1 * (0, 2].
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The approach to the main result above is also motivated partly by our pre-
vious work [1] on exponential ergodicity of stochastic Hamiltonian systems with
Lévy noises. However, in contrast to [1], the non-local collision operator in the
present setting is not only highly degenerate but also state-dependent, so much
more delicate work are to be implemented. In particular, we shall adopt a com-
bination of the reûned basic coupling and the reûned reûection coupling (rather
than the reûned basic coupling exploited merely in [1]) in order to include more
general probability measures (e.g., (sup-)Gaussian or (sub-)Gaussian probability
measures and probability measures with heavy tails). So, in a certain sense, The-
orem 1 is a continuation of the corresponding main result in [1] on exponential
ergodicity of stochastic Hamiltonian systems with Lévy noises. Furthermore, we
emphasize that the process under investigation in this paper has some essentially
diûerent properties from stochastic Hamiltonian systems with Lévy noises un-
der consideration in [1]. For example, under some regular conditions the process
associated with stochastic Hamiltonian systems with Lévy noises can possess the
strong Feller property. Nonetheless, since the non-local collision operator L2 in (1)
is a bounded operator on Bb(R

2d) under Assumption (A1), the PDMP (Xt, Vt)tg0

corresponding to the operator L in (1) can never enjoy the strong Feller property.
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systems with Lévy noises, Stochastic Process. Appl. 146 (2022), 1143142.

[2] N. Bou-Rabee, J.M. Sanz-Serna Randomized Hamiltonian Monte Carlo, Ann. Appl. Probab.
27 (2017), 215932194.

[3] M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion
stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), 3533388.

[4] M.H.A. Davis, Markov Models and Optimization, Monographs on Statistics and Applied
Probability, 49, Chapman & Hall, London, 1993.

[5] T. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure
and discretization by the implicit Euler scheme, Markov Process. Related Fields 8 (2002),
1336.

[6] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping
Hamiltonian systems, Stoch. Proc. Appl. 91 (2001), 2053238.

Regularity estimates for nonlocal operators related to

nonsymmetric forms

Marvin Weidner

(joint work with Moritz Kassmann)

The aim of this talk is to prove regularity properties for nonlocal operators related
to nonsymmetric bilinear forms. Such operators are determined by jumping kernels
K : Rd×Rd ³ [0,>] which might be nonsymmetric. The corresponding operators

2LKu(x) = 2 p. v.

∫

Rd

(u(x) 2 u(y))K(x, y)dy

are associated with nonsymmetric bilinear forms
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EK(u, v) = 2

∫

Rd

∫

Rd

(u(x) 2 u(y))v(x)K(x, y)dydx

=: EKs(u, v) + EKa(u, v),

where
EKs(u, v) =

∫

Rd

∫

Rd

(

u(x) 2 u(y)
)(

v(x) 2 v(y)
)

Ks(x, y)dydx,

EKa(u, v) =

∫

Rd

∫

Rd

(

u(x) 2 u(y)
)(

v(x) + v(y)
)

Ka(x, y)dydx,

and Ks, Ka are the symmetric respectively the antisymmetric part of K, i.e.,

Ks(x, y) =
K(x, y) +K(y, x)

2
, Ka(x, y) =

K(x, y) 2K(y, x)

2
.

In the last 15 years, a lot of research has been devoted to the symmetric case, i.e.,
when Ka = 0. Regularity properties such as Hölder regularity, local boundedness
or the validity of weak and full Harnack inequalities for weak solutions to nonlocal
elliptic equations have been investigated via energy form approaches e.g., in [3],
[5], [4], [6]. Weak parabolic Harnack inequalities and Hölder regularity estimates
have been derived in the symmetric case in [2] for weak solutions to

(PDE) "tu2 Lu = f in IR(t0) ×B2R ¢ Rd+1,

where B2R ¢ ' is some ball, IR(t0) := (t0 2 R³, t0 + R³) ¢ R, t0 * R, ' ¢ R
d

is a ûxed open set and f * L>(IR(t0) × B2R). They developed an energy form
approach based on a nonlocal adaptation of Moser iteration under the following
two assumptions on the jumping kernel Ks. Let ³ * (0, 2):

Assumption (Eo). There is � g 1 such that for every ball BR ¢ ', 0 < R < 1:

�21[f ]2H³/2(BR) f EKsBR(f, f) f �[f ]2H³/2(BR), "f * L2(BR).(Eo)

Assumption (tail-est). There is � g 1 such that for every Ã > 0:

sup
x*Ω

∫

Rd\BÃ(x)
Ks(x, y)dy f �Ã2³.(tail-est)

(Eo) can be regarded as a coercivity assumption, guaranteeing the validity of
certain functional inequalities, like a fractional Sobolev-type embedding and a
Poincaré inequality. (tail-est) is an integrated version of a pointwise upper bound.

In this talk, we extend some of the aforementioned approaches to the nonsym-
metric case. The novelty caused by the absence of symmetry lies in the existence
of the second summand EKa which is of diûerent shape compared to EKs . In order
to control EKa , we need to impose suitable conditions on the jumping kernel K.

Assumption (K1). Let J : Rd ×Rd ³ [0,>] be symmetric and » * [ d³ ,>].

" K satisûes (K1loc) if there is C > 0 s.t. for every ball B2r ¢ ' with r f 1:
∥

∥

∥

∥

∫

B2r

|Ka(·, y)|2
J(·, y)

dy

∥

∥

∥

∥

L»(B2r)

f C, EJB2r
(v, v) f CEKsB2r

(v, v), "v * L2(B2r).
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" K satisûes (K1glob) there is C > 0 s.t. for every ball B2r ¢ ' with r f 1:
∥

∥

∥

∥

∫

Rd

|Ka(·, y)|2
J(·, y)

dy

∥

∥

∥

∥

L»(Rd)

f C, EJB2r
(v, v) f CEKsB2r

(v, v), "v * L2(B2r).

Assumption (K2). There exist C > 0, D < 1 and a symmetric j : Rd × Rd ³
[0,>] s.t. for every ball B2r ¢ ' with r f 1:

K(x, y) g (1 2D)j(x, y), "x, y * B2r, EKsB2r
(v, v) f CEjB2r

(v, v), "v * L2(B2r).

Assumption (K1glob) can be interpreted as a sector condition for the nonsym-
metric form EK . Indeed, together with (Eo), we have that (E , V Ks(Rd|Rd))
is a regular lower bounded semi-Dirichlet form in the sense of Oshima, where
V Ks(Rd|Rd) = {v * L2(Rd) : EKs(v, v) < >}. The range of » * [ d³ ,>] ensures

that the antisymmetric part EKa does not have supercritical scaling.
(K1loc) is a localized version of (K1glob), which is suûcient in many cases be-
cause we are interested in interior regularity estimates. (K2) is an additional local
coercivity assumption on K 2 |Ka|.

Example. We have in mind the following two examples of jumping kernels:

(i) Let 0 < » f � < >, V : Rd ³ R
d s.t. |V (x) 2 V (y)| f » for every

x, y * Rd and j : Rd ×Rd ³ [»,�] symmetric. Deûne

K1(x, y) = j(x, y)|x2 y|2d2³ + (V (x) 2 V (y))|x2 y|2d2³.
One can prove that K1 satisûes (K1glob) if V * C0,³(Rd) for some ³ > ³

2 .

The associated operator LK1 is a nonlocal analog to

2 div(ai,j(x)'f(x)) + 2d(x)'f(x).

(ii) Let C ¢ R
d be a single cone and D ¢ R

d be a double cone such that
C +D = '. Let 0 < ³ < ³/2 < ³ < 2. Consider

K2(x, y) = |x2 y|2d2³1D(x2 y) + |x2 y|2d2³1C(x2 y).

The aforementioned examples illustrate that the class of admissible operators
with respect to (Eo), (tail-est), (K1) and (K2) can be seen as symmetric nonlocal
operators with a lower order nonlocal drift term. Now we state our main result:

Theorem 1 (see [1]). Assume (K1loc), (K2), (tail-est), and (Eo) for some ³ *
(0, 2), » * [ d³ ,>]. Then the following hold:

(i) (weak Harnack inequality): There is c > 0 s.t. for every 0 < R f 1, and
every nonnegative, weak supersolution u to (PDE) in IR(t0) ×B2R:

inf
(t0+R³2(R

2
)³,t0+R³)×BR

2

u g cR2d2³
∫

(t02R³,t02R³+(R
2
)³)×BR

2

u2 cR³‖f‖L>.

(ii) (Hölder estimate): There are c > 0 and ³ * (0, 1) s.t. for every 0 < R f 1
and every weak solution u to (PDE) in IR(t0) ×B2R with f c 0:
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|u(t, x) 2 u(s, y)| f c‖u‖L>(IR(t0)×Rd)

( |x2 y| + |t2 s|1/³
R

)³

for almost every (t, x), (s, y) * IR/2(t0) ×BR.

Analogous results are established for weak (super)-solutions u to

"tu2 ̂Lu = f in IR(t0) ×B2R ¢ Rd+1,(P̂DE)

where ̂L is the dual operator of L, given by (2̂Lu, v) = ̂E(u, v) = E(v, u).

Theorem 2 (see [1]). Assume (K1glob), (K2) (tail-est), and (Eo) for some ³ *
(0, 2), » * ( d³ ,>]. Then (i) and (ii) of Theorem 1 hold true for any nonnegative,

weak supersolution u to ( ̂PDE), respectively any weak solution u to ( ̂PDE) in
IR(t0) ×B2R with f c 0.

The aforementioned results can be seen as a nonlocal extension of the De Giorgi-
Nash-Moser-theory for second order divergence form operators with a drift:

Lu = "i(ai,j"ju) + bi"iu, resp. ̂Lu = "i(ai,j"ju2 biu),

which were developed e.g., by Stampacchia (1965), Aronson-Serrin (1967).
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Local time penalizations with various clocks for Lévy processes

Kouji Yano

1. Conditionings and local time penalisations with various clocks

The conditioning of a process Xt to avoid a set C with a clock Ç is the limit

lim
Ç³>

Ex[Ft | TC > Ç ],(1)

TC = inf{t > 0 : Xt * C} is the ûrst hitting time of C, Ft is an arbitrary bounded
FX
t -measurable functional (test functional), and the limit is taken via Ç called

a clock, which is a net of random times. The limit (1) can be interpreted as the
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procedure of preventing the processXt from hitting the set C for all time, whatever
the clock Ç is. However, the limit may vary according to the choice of the clock.

Knight [4] studied two conditionings of a one-dimensional Brownian motion to
stay in an interval (2a, a); one is with the constant time clock:

lim
s³>

Ex[Ft | T(2a,a)c > s];(2)

the other one is with the inverse local time clock:

lim
u³>

Ex[Ft | T(2a,a)c > ·u](3)

with ·u = inf{t > 0 : Lt > u} being the inverse of the local time Lt of zero for
the Brownian motion. He determined the limit processes of the two conditionings,
which turned out to be diûerent.

For a process Xt which admits the local time Lt of zero, the local time penal-
ization of Xt with a clock Ç is the limit

lim
Ç³>

Ex[Ftf(LÇ )]

Ex[f(LÇ )]
(4)

for a given positive function f . The conditioning of Xt to avoid zero (or avoid the
singleton {0}) can be regarded as a special case of local time penalizations if we
take f = 1{0}.

Yano3Yano [12] studied conditionings of one-dimensional diûusions to avoid
zero with various clocks, where the limit processes may vary according to the
choice of the clock. Profeta3Yano3Yano [6] generalized the conditioning results to
local time penalizations.

2. Two kinds of conditionings for Lévy processes

For a one-dimensional Lévy process Xt, we may consider two kinds of condition-
ings, the conditioning to stay positive and that to avoid zero, namely,

lim
Ç³>

Ex[Ft | Ç20 > Ç ] and lim
Ç³>

Ex[Ft | T0 > Ç ],(5)

respectively, where Ç20 = inf{t > 0 : Xt < 0} stands for the ûrst passage time of
level zero and T0 = inf{t > 0 : Xt = 0} for the ûrst hitting time of point zero.
Note that the two kinds of conditionings coincide when Xt is a Brownian motion
starting from a positive point, and the limit process is the three-dimensional Bessel
process:

lim
Ç³>

Ex[Ft | Ç20 > Ç ] = lim
Ç³>

Ex[Ft | T0 > Ç ] = Ex

[

Ft ·
Xt'T0

x

]

.(6)

The two conditionings may diûer when Xt is a Lévy process; see Yano [10] for
comparison between the two kinds of conditionings.

The conditioning of one-dimensional Lévy processes to stay positive with the
exponential clock has been studied by Chaumont [1], Chaumont3Doney [2] and
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Doney [3]. They showed, under some regularity conditions, that

lim
q³0

Ex[Ft | Ç20 > e/q] = Ex

[

Ft ·
h±(Xt'Ç2

0

)

h±(x)

]

,(7)

where h± stands for the invariant function with respect to the stopped process
Xt'Ç2

0

which was introduced by Silverstein [7]. Yano3Yano3Yor [14] studied the

inûmum (supremum) penalisation of one-dimensional Lévy processes with the con-
stant clock, which may be regarded as a generalization of the conditionings to stay
positive.

The conditioning of one-dimensional Lévy processes to avoid zero has been
studied by Yano3Yano3Yor [13] in the symmetric case with the constant clock
and generalized by Pant́1 [5] with the exponential clock. Under some regularity
conditions, it holds that

lim
q³0

Ex[Ft | T0 > e/q] = Ex

[

Ft ·
h×(Xt'T0

)

h×(x)

]

,(8)

where h× stands for an invariant function with respect to the stopped process
Xt'T0

; see also Tsukada [9] and Yano [11].
Recently, Takeda3Yano [8] studied local time penalizations with various clocks.

In particular, they considered the two-point hitting time clock Ç = Ta ' T2b with

(a, b)
³2³ > in the sense that a, b ³ > and a2b

a+b ³ ³ * [21, 1]. Under some
regularity conditions, it holds that

lim
(a,b)

³2³>
Ex[Ft | Ta ' T2b > e/q] = Ex

[

Ft ·
h(³)(Xt'T0

)

h(³)(x)

]

,(9)

where h(³)(x) = h×(x) + ³
m2x with m2 = E0(X1)2 is an invariant function with

respect to the stopped process Xt'T0
.
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50-370 Wroc law

POLAND

Jakub Minecki

Wroclaw University of Science &

Technology

Faculty of Pure and Applied

Mathematics

WybrzeÛze Wyspiańskiego Str. 27
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