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Introduction by the Organizers

The workshop brought together experts in several fields with interest in functions
from the Laguerre-Pólya class. Problems and techniques discussed during the
workshop came from complex analysis, algebraic and enumerative combinatorics,
commutative algebra, continued fractions, and structured matrices and operators.
The workshop extended and strengthened collaborative networks around the cen-
tral topic of the Laguerre-Pólya class. A more detailed account of the workshop
was written by Thu Hien Nguyen as included below.

The course of the workshop

Thu Hien Nguyen

The workshopThe Laguerre-Pólya Class and Combinatorics in OberwolfachMath-
ematical Research Institute, organized by Kathy Driver (University of Cape Town),
Olga Holtz (University of California-Berkeley), and Alan Sokal (University College
London) was attended with over 20 participants from different countries. Unfor-
tunately, due to the Corona pandemic and the political conflict between Russia
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and Ukraine, namely Russia’s invasion of Ukraine, many intended participants
had no choice but to give talks online. Thus, only one of the organizers could
be present physically (Olga Holtz), overall, 6 participants could attend in person,
including Petter Brändén, James Eldred Pascoe, Thu Hien Nguyen, Dmitry Karp,
and Jonathan Leake.

The talks were given in the format of a 50-minute lecture followed by a 10-
minute questions and discussions session. On average, there were 2 morning and
2 afternoon talks with general discussion sessions in between which gave the extra
time for participants to cover unanswered questions as well as to brainstorm new
ideas for the open problems. The talks were recorded by the VCA Jonathan Leake.

Despite the hybrid meeting format, the workshop brought together experts
in various fields with interest and experience involving entire functions from the
Laguerre-Pólya class which extended and strengthened collaborative networks
around this and related subjects. The talks covered a wide variety of topics which
showed an interesting approach to the Laguerre-Pólya class from the perspective
of analysis and combinatorics and the surprising interrelation between these areas.
During the discussions, the participants found many interesting relations, in prob-
lems and in methods, between zero localization and zero finding of polynomials.

Among the techniques used to tackle questions of zero localization are geometric
methods in complex analysis, algebraic methods from commutative algebra, the
theory of continued fractions, and the theory of associated structured matrices and
operators. The last approach, albeit classical, is currently gaining new attention
and providing new insights into zero distribution of functions.

Total positivity is a property that is closely related to stability but also plays
an important role in other domains of mathematics, mechanics, statistics, and
operations research, viz., in problems involving convexity and moment spaces,
approximation theory, in the study of vibrating coupled mechanical systems, and
many others. Many talks and discussions were around total positivity, along with
the associated topics of variation diminution and Pólya frequency functions.

The organizers as well as the participants would like to thank the MFO for
making the workshop happen during the difficult times. In particular, we were very
impressed by the excellent organization of the hybrid format, which allowed both
in-person and remote participants to interact smoothly. Despite the exceptional
situation, the participants spent a productive week in an inspiring atmosphere
which led to some progress in a few problems. Everyone pointed out that they
enjoyed the experience and felt very welcomed thanks to the staff of the Institute
who made the stay comfortable and pleasant.
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Abstracts

Combinatorics and geometry of polynomials

Petter Brändén

In the past 20 years several connections between the geometry of polynomials and
combinatorics have been made. I will talk about some of these connections, with
a focus on stable polynomials, Lorentzian polynomials and M-convexity.

Total-positivity characterization of the Laguerre–Pólya class LP
+

Alexander Dyachenko

(joint work with Alan Sokal)

A nontrivial polynomial is called standard if its leading coefficient is positive. The
Laguerre–Pólya class LP+ comprises all entire functions which can be approxi-
mated by standard negative-real-rooted polynomials in the topology of uniform
convergence. Laguerre [7] showed that f ∈ LP+ if and only if it can be expressed
in the form

f(t) = Ceγttm
∞∏

i=1

(1 + αit)

with m ∈ N, C, γ, αi ≥ 0 and
∑

i αi <∞.
This talk is devoted to various characterizations of the class LP+ via total

positivity (i.e. nonnegativity of all minors) of certain related matrices. The basic
result of this type is the Aissen–Edrei–Whitney–Schoenberg theorem [1, 3]:
An infinite Toeplitz matrix is totally positive if and only if the corresponding gen-

erating function has the form
f(t)

g(−t)
, where both f(t) and g(t) are in LP+.

(An intriguing open question: may the complex analytic techniques of [3, 4] be re-
placed with something more straightforward? What about Okounkov’s proof [8]?).

In particular, a power series f(t) =
∑

k≥0 akt
k converges to an LP+ function

precisely when the corresponding infinite Toeplitz matrix T (f) = (an−k)
∞
n,k=0 is

totally positive and lim
k→∞

ak−1

ak
= ∞. Our talk aims at other characterisations of

this type.
Recall Grommer’s theorem [6]: let f(t) be an entire function, then f ∈ LP+ if

and only if the infinite Hankel matrix (sn+k)
∞
n,k=0 built from the Taylor coefficients

of
f ′(−t)

f(−t)
=
∑

k≥0 skt
k is positive semidefinite. In this particular setting, posi-

tive semidefiniteness of the Hankel matrix equates to its total positivity, c.f. [5].
The related work [2] shows that f ∈ LP+ is equivalent to total positivity of the
Hurwitz-type matrix H(f ′, f) consisting of the alternating rows of T (f ′) and T (f).

Recently we obtained another fact of the same type. Let us call a real sequence
(an)n≥0 an LP+ sequence if the corresponding power series f(t) =

∑
n≥0 ant

n
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converges to an LP+ function. Let ϑ = t d
dt , that is (ϑf) (t) = tf ′(t). Then, given

a power series f(t) =
∑

n≥0 ant
n, the following conditions are equivalent:

(a) (an)n≥0 is an LP+ sequence;

(b) T (αf + ϑf) is totally positive for some set of α → +∞;

(b′) ((α+ n)an)n≥0 is an LP+ sequence for some set of α → +∞;

(c) T (αf + βϑf) is totally positive for all α, β ≥ 0;
(c′) ((α+ βn)an)n≥0 is an LP+ sequence for all α, β ≥ 0;

(d) T
(∏N

i=1(αi + βiϑ)f
)
is totally positive for all N and all αi, βi ≥ 0;

(d′)
(∏N

i=1(αi + βin)an

)
n≥0

is an LP+ sequence all N and for all αi, βi ≥ 0;

(e) T (g(ϑ)f) is totally positive for all g ∈ LP+;

(e′) (g(n)an)n≥0 is an LP+ function for all g ∈ LP+.

Laguerre showed that (a) =⇒ (e′), and the implications

(e′) =⇒ (d′) =⇒ (c′) =⇒ (b′)
⇓ ⇓ ⇓ ⇓
(e) =⇒ (d) =⇒ (c) =⇒ (b)

are obvious. So, our contribution here is the proof of (b) =⇒ (a), which we
conduct using methods of real analysis.
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The Laguerre-Pólya class via density criteria

Dimitar Dimitrov

We survey some recent progress towards long-standing open questions concerning
the Laguerre-Pólya class. Among those are the results of M. Griffin, K. Ono,
L. Rolen, and D. Zagier about hyperbolicity of the Jensen polynomials associated
with the Riemann ξ-function and B. Rogers and T. Tao’s proof of the de Bruijn-
Newman conjecture. We discuss a new density criterion for an entire function
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that is represented via a Fourier transform to be in the Laguerre-Pólya class. This
result may be considered the L1 counterpart of the celebrated Nyman-Beurling L2

density criterion for the Riemann hypothesis.

A spectral approach to polytope diameter

Nikhil Srivastava

A classic question in discrete geometry is: what is the maximum possible diameter
of the skeleton of a polytope P = x ∈ Rd : Ax ≤ b in Rd defined by m constraints,
as a function of m and d? We describe a new approach to this problem which uses
the log-concavity of the volume of a polytope to bound the eigenvalues of a certain
weighted adjacency matrix of its skeleton, yielding a good upper bound whenever
A and b have integer entries of bounded height. Joint work with H. Narayanan
and R. Shah.

On the de Bruijn-Newman constant: Kim and Lee’s results on the
zeros of Jensen polynomials

Haseo Ki

1. The de Bruijn-Newman constant (joint work with Jungseob Lee and
Young-One Kim)

Define

Ξλ(t) =

∫ ∞

0

e
λ

4
(log x)2+ it

2
log xϕ(x)

dx

x
=

∫ ∞

−∞

eλu
2

Φ(u)eitudu.

Here

ψ(x) =
∞∑

n=1

e−n2πx, ϕ(x) = x5/4 (2xψ′′(x) + 3ψ′(x)) , Φ(u) = 2ϕ
(
e2u
)
.

The Riemann Ξ-function :

Ξ(t) = Ξ0(t) =
s(s− 1)

2
Γ
(s
2

)
π−s/2ζ(s)

(
s =

1

2
+ it

)
.

Fact.

(1) The zeros of Ξ0(t) lie in {t : |Im t| < 1/2};

(2) The Riemann hypothesis is valid if and only if Ξ0(t) has real zeros only.

By the De Brujin’s idea [1], we have the following.

Proposition A. If λ1 ≤ λ2, ∆ ≥ 0, and the zeros of Ξλ1
(t) lie in {t : |Im t| ≤ ∆},

then those of Ξλ2
(t) lie in {t : |Im t| ≤ ∆̃}, where

∆̃ =
√
max{∆2 − 2(λ2 − λ1), 0}.

In particular, Ξλ has only real zeros when λ ≥ 1/8.
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In the wonderful paper [10], we have

Theorem [Newman]. Ξλ has non-real zeros for some λ < 0. In particular, for

a real constant λ(0) ≤ 1/8, Ξλ has only real zeros when λ(0) ≤ λ but has non-real

zeros when λ < λ(0).

We observe that the Riemann hypothesis is true if and only if λ(0) ≤ 0.

Newman [10] came up with the following.

Conjecture [Newman] . 0 ≤ λ(0).

The de Bruijn-Newman constant. Λ = 4λ(0).

Recently, this conjecture was settled by B. Rodgers and T. Tao [14].

Theorem [Rodgers and Tao]. 0 ≤ Λ.

We recall that the Riemann hypothesis is valid if and only if Λ ≤ 0.

From the Euler product for the Riemann zeta function ζ(s), we can prove that
ζ(s) has no zeros in Re s > 1 and so we have Λ ≤ 0.5. We list the upper bounds
of Λ.

[Euler product]. Λ ≤ 0.5.

[Ki, Kim and Lee, 2009]. Λ < 0.5.

[Polymath, 2018]. Λ < 0.22.

[Platt and Trudgian, 2020]. Λ < 0.2.

See [6], [13] and [12] for these.

Fact.
(1) The zeros of Ξ

(m)
0 (t) lie in the strip {t : |Im t| < 1/2} for every m ≥ 0;

(2) If the Riemann hypothesis were true, then Ξ
(m)
0 (t) would have only real

zeros for every m ≥ 0.

Due to Levinson’s method [8], Conrey [3] justified

Theorem [Conrey]. The “proportion” of real zeros of Ξ
(m)
0 (t) tends to 1 as

m→ ∞.

Define λ(m) = inf
{
λ : Ξ

(m)
λ (t) has only real zeros

}
(m = 0, 1, 2, . . . ).

We have the following in [6].

Theorem 1. The sequence {λ(m)} is non-increasing, and its limit is ≤ 0.

Theorem 2. For every λ > 0 all but a finite number of zeros of Ξλ(t) are real
and simple.

Concerning Theorem 2, we recall

The quasi Riemann hypothesis. For some 0 < ǫ < 1/2, the zeros of the
Riemann zeta function ζ(s) lie in ǫ < Re s < 1− ǫ.
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For instant, this conjecture implies that π(x), the number of primes less than x
(x > 1) satisfies

π(x) =

∫ x

2

1

log t
dt+Oǫ

(
x1−ǫ

)
(x→ ∞)

for some ǫ > 0. We might say that Theorem 2 is like the quasi Riemann hypothesis.
However, Theorem 2 is irrelevant to the quasi Riemann hypothesis, because we
cannot expect any number theoretical consequence from it.

Enumerate the real parts of the zeros of the Riemann Ξ-function in Re t > 0 by

γ1 ≤ γ2 ≤ γ3 ≤ · · · .

From Montgomery’s pair correlation conjecture [9], we expect

Conjecture.

lim inf
n→∞

(γn+1 − γn)
log γn
2π

= 0;

lim sup
n→∞

(γn+1 − γn)
log γn
2π

= ∞;

We recall that we have

N(T ) =
T

2π
log

T

2π
−

T

2π
+O(log T )

where N(T ) is the number of zeros of ζ(s) in 0 < Im s < T . Thus, the average
gap of zeros of the Riemann zeta function in 0 < Im s < T is

2π

logT
.

Therefore, the conjecture above implies that consecutive zeros of the Riemann
zeta function are arbitrarily close to the average gap and arbitrarily far from the
average gap. This phenomenon appears only for genuine zeta functions.

On the other hand, enumerate the zeros of Ξλ(t) in {t : Re t > Tλ} by

γ(λ,1) < γ(λ,2) < γ(λ,3) < · · · .

Set Nλ(T ) = the number of zeros of Ξλ(t) in {t : 0 ≤ Re t ≤ T }.

Theorem 3. If λ > 0, then

Nλ(T ) =
T

2π
log

T

2π
−

T

2π
+
λ

4
log

T

2π
+O(1) (T → ∞).

lim
n→∞

(
γ(λ,n+1) − γ(λ,n)

) log γ(λ,n)
2π

= 1;

This theorem says that zeros of Ξλ(t) behave differently in relation to those of
the Riemann zeta function or the Riemann ξ function. The error term for Nλ(T )
is bounded as T → ∞ and then zeros of Ξλ(t) behave regularly. However, the
error term for N(T ) of the Riemann Ξ function possesses profound arithmetic
information for the Riemann zeta function. This signs that Ξλ(t) would be not
appropriate in investigating the behavior of zeros of the Riemann zeta function.
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We recall that for every λ > 0 all but a finite number of zeros of Ξλ(t) are real
and simple. Also, if we can prove that all zeros of Ξλ(t) are real for any λ > 0, we
get the Riemann hypothesis!

Can we resolve the Riemann hypothesis by the method in this talk, although we

already observed a negative sign for that?

Let {an} and {bn}in R be such that a1 6= 0, 0 < b1 < b2 ≤ b3 ≤ b4 ≤ . . . and for a
fixed A > 0

∞∑

n=1

|an|b
−A
n <∞.

Put

L(s) =

∞∑

n=1

anb
−s
n and ψ(x) =

∞∑

n=1

ane
−bnx.

For some k, c0, . . . , cN ∈ R (cN 6= 0), define

ϕ(x) = xk/2
N∑

n=0

cnx
nψ(n)(x).

Assume that for some δ ∈ {0, 1}

(−1)δϕ(x) = ϕ

(
1

x

)
(Rex > 0).

Put

h(s) =

∫ ∞

0

xs

(
N∑

n=0

cnx
nψ(n)(x)

)
dx

x
.

Then, for some polynomial P (s),

h(s) = (−1)δh(k − s); h(s) = P (s)Γ(s)L(s) (Re s > A).

Define

Hλ(t) = iδ
∫ ∞

0

eλ(log x)2+it log xϕ(x)
dx

x
.

Essentially, we have the following [6].

For λ > 0, all but finitely many zeros of Hλ(t) are real and simple.

Unfortunately, in general, H0(t) violates the analogue of the Riemann hypothesis!

Let χ be a primitive Dirichlet character modulo q(> 2). For the Dirichlet L-
function L(s, χ), define

L(s) = L(s− 1/2, χ)L(s+ 1/2, χ).

We can associate Hλ(t) for L(s). In [6],

Theorem 4. For any λ > 0, all but finitely many zeros of Hλ(t) are real and
simple.
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Obviously, H0(t) violates the Riemann hypothesis (indeed, H0(t) has no real zeros
at all), but still Theorem 4 is valid!! This theorem clearly tells us that by the
methods in this talk, it should be very difficult in resolving the Riemann hypoth-
esis.

2. Kim and Lee’s results on the zeros of Jensen polynomials

Recently, Kim and Lee [7] got interesting results on the zeros of Jensen polynomi-
als. It would be meaningful to introduce briefly their results in this talk.

We say that a real polynomial is hyperbolic if it has real zeros only. Set

S = {z ∈ C : |Im z| < 1/2}.

Define

Jd,n(z) =

d∑

j=0

(
d

j

)
γ(n+ j)zj and P d,n(z) =

d∑

j=0

(
d

j

)
γ(n+ j)Hd−j(z),

where

γ(m) =
(−1)mm!

(2m)!
Ξ(2m)(0) (m = 0, 1, 2, . . .); Hd(z) = d!

[d/2]∑

k=0

(−1)k

k!(d− 2k)!2k
zd−2k.

Also, consider

J̃d,n(z)−

d∑

j=0

(
d

j

)
Ξ(n+ j)zj and P̃ d,n(z) =

d∑

j=0

(
d

j

)
Ξ(n+ j)Hd−j(z),

Due to a theorem of Pólya and Schur, each of the following four statements is
equivalent to the Riemann hypothesis.

(1) All the polynomials Jd,n are hyperbolic.
(2) All the polynomials P d,n are hyperbolic.

(3) All the polynomials J̃d,n are hyperbolic.

(4) All the polynomials P̃ d,n are hyperbolic.

In 2019, Griffin et al. [5] proved that for every positive integer d Jd,n is hyperbolic
for all sufficiently large n. In [4], it is improved that there is a constant c > 0 such
that Jd,n is hyperbolic for d ≥ 1 and n ≥ ced/2. O’Sullivan [11] showed that for

all sufficiently large d, P d,n is hyperbolic for n/ log2 n ≥ d3/4/2. Chasse [2] proved
that if T ≥ 1/2, Ξ has real zeros only in the rectangle {z ∈ S : |Re z| ≤ T } and
d ≤ T 2, then Jd,n is hyperbolic for every n. It is known in [12] that all zeros of Ξ
in z ∈ S and |Re z| ≤ 3 · 1012 is real. Kim and Lee [7] improve all results for the
polynomials as follows.

Theorem 5 [Kim-Lee]. For every c > 1, there is a positive integer d0 such that

Jd,n, P d,n, J̃d,n and P̃ d,n are hyperbolic whenever d ≥ d0 and n ≥ dc/2.

Theorem 6 [Kim-Lee]. If T ≥ 1/2, Ξ has only real zeros in the rectangle

{z ∈ S : |Re z| ≤ T } and d ≤ 1+ 4T 2, then J̃d,n and P̃ d,n are hyperbolic for all n.
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In fact, Kim and Lee [7] justified a general theorem that implies Theorem 5.

Theorem 7 [Kim-Lee]. Suppose that f is a transcendental real entire function,

c is a positive constant, the order of f is strictly less than min{c, 2} and all zeros

of f are in S. Then, there is a positive integer d0 such that J(f (n); d) is hyperbolic
whenever d ≥ d0 and n ≥ dc/2. If f is even, then there is a positive integer d1 such

that J(f
(n)
0 ; d) is hyperbolic whenever d ≥ d1 and n ≥ dc/2, where f(z) = f0

(
z2
)

and for an entire function g

J(g; d) =
d∑

k=0

(
d

k

)
f (k)(0)zk.

In the previous section, we considered L(s) = L(s−1/2, χ)L(s+1/2, χ) and Hλ(t)
for L(s). Set

Ξ̃(z) = H0(4z).

Then, all zeros of Ξ̃(z) are in S. We observe that Ξ̃(z) has no real zeros at all,
because all nontrivial zeros of L(s, χ) are in 0 < Re s < 1 and the critical line

Re s = 1/2 corresponds to the real line when we get Ξ̃(z) from L(s). However,

Theorem 7 implies that Theorem 5 for Ξ̃(z) is valid! Namely, Theorem 7 is too
general to control zeros of genuine zeta functions. Thus, it is better not to expect
that one can prove the Riemann hypothesis due to the methods in this section.
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A generalisation of the Laguerre and Newton inequalities

Mikhail Tyaglov

(joint work with M.J. Atia, O. Katkova, and A. Vishnyakova)

Given a real polynomial p(z) with only real zeroes, we estimate the number of
non-real zeroes of the differential polynomial

Fκ[p](z) = p(z)p′′(z)− κ[p′(z)]2,

where κ is a real number.
A counterexample to a conjecture by B. Shapiro on the number of real zeroes

of the polynomial Fn−1

n

[p](z) in the case when the real polynomial p(z) of degree

n has non-real zeroes is constructed.
We will discuss similar results for functions in the Laguerre-Pólya class and

other generalisations of the Hawaii conjecture. Some ideas for an alternative proof
of the Hawaii conjecture will also be presented.

The talk is based on a joint works with M.J. Atia, O. Katkova, and A. Vish-
nyakova.

Relaxations of the Laguerre-Pólya class and trace inequalities

James Eldred Pascoe

We classify functions f : (a, b) → R which satisfy the inequality

tr(f(A) + f(C)) ≥ tr(f(B) + f(D))

when A ≤ B ≤ C are self-adjoint matrices, D = A + C − B, the so-called trace
minmax functions. (Here A ≤ B if B − A is positive semidefinite, and f is
evaluated via the functional calculus.) A function is trace minmax if and only if
its derivative analytically continues to a self map of the upper half plane. The
negative exponential of a trace minmax function satisfies the inequality

det g(A) det g(C) ≤ det g(B) det g(D)

for A,B,C,D as above. We call such functions determinant isoperimetric. We
show that determinant isoperimetric functions are in the “radical” of the the
Laguerre-Pólya class. We derive an integral representation for such functions which
is essentially a continuous version of the Hadamard factorization for functions in
the Laguerre-Pólya class. We apply our results to give some equivalent formula-
tions of the Riemann hypothesis. Moreover, natural relaxations arising from the
theory of matrix monotonicity in conjunction with certain pair-correlation type
conjectures on the zero distribution give that if the Riemann hypothesis fails, then



670 Oberwolfach Report 13/2022

any zeros witnessing the failure need to be far away from the critical line in some
sense.

Some analytic properties of the partial theta function

Vladimir Kostov

The partial theta function is defined as the sum of the double series

θ(q, x) :=

∞∑

j=1

qj(j+1)/2xj ,

which for each fixed value of the parameter q, |q| < 1, is an entire function in
x. When q is real (i.e. either q ∈ (0, 1) or θ ∈ (−1, 0)), the complex conjugate
pairs of zeros of θ remain within a fixed bounded domain. Its spectral values (i.e.
values of q for which θ has a multiple zero) are sequences {qj} tending to 1 or
−1 respectively. For each spectral value, θ has exactly one multiple zero which
is of multiplicity 2. The spectral values and the corresponding double zeros have
asymptotic expansions in j. When q is complex, the double zeros of θ belong to a
fixed bounded domain, one and the same for all values of q ∈ D1.
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On necessary and sufficient conditions for entire functions to belong to
the Laguerre-Pólya class in terms of their Taylor coefficients

Thu Hien Nguyen

(joint work with Anna Vishnyakova)

We discuss new conditions for the entire functions with positive Taylor coefficients
to belong to the Laguerre–Pólya class. For an entire function f(z) =

∑∞
k=0 akz

k

let us define the second quotients of Taylor coefficients as qn(f) :=
a2

n−1

an−2an
, n ≥ 2.

The partial theta-function, ga(z) =
∑∞

k=0
zk

ak2 , a > 1, was studied by many

authors. In [Katkova, Lobova, Vishnyakova 2003] it is proved that there exists a
constant q∞, q∞ ≈ 3.23363666, such that the partial theta-function (and all its
odd Taylor sections) belongs to the Laguerre-Pólya class if and only if a2 ≥ q∞.

We obtained new necessary and sufficient conditions on the Taylor coefficients
of entire functions to belong to the Laguerre-Pólya class. The following theorem
illustrates a sufficient condition for the case when qn(f) are decreasing in n.

Theorem ([Nguyen, Vishnyakova 2018]). Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all

k, be an entire function. Suppose that qn(f) are decreasing in n, i.e. q2(f) ≥
q3(f) ≥ q4(f) ≥ . . . , and lim

n→∞
qn(f) = b ≥ q∞. Then all the zeros of f are real

and negative, in other words f ∈ L − P.

It is easy to see that, if only the estimation of qn(f) from below is given and
the assumption of monotonicity is omitted, then the Hutchinson’s constant 4 in
qn(f) ≥ 4 is the smallest possible to conclude that f ∈ L − P .

The following result provides a necessary condition for an entire function with
positive coefficients and with the increasing second quotients of Taylor coefficients
to belong to the Laguerre-Pólya class.

arxiv:math/0105002v1[math.QA]
arXiv:1106.1003 [math.CO]
http://dx.doi.org/10.1016/j.aim.2012.01.012
https://webspace.maths.qmul.ac.uk/p.j.cameron/csgnotes/sokal/
https://physics.nyu.edu/faculty/sokal/Queen_Mary_Jul_9_13_talk.pdf


672 Oberwolfach Report 13/2022

Theorem ([Nguyen, Vishnyakova 2019]). Let f(z) =
∑∞

k=0 akz
k, ak > 0 for all

k, be an entire function such that the quotients qn(f) are increasing in n. If f
belongs to the Laguerre-Pólya class, then lim

n→∞
qn(f) ≥ q∞.

We also present other new related necessary and sufficient conditions.
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Determinantal representations and the principal minor map

Cynthia Vinzant

The principal minor map takes an n by n matrix to the vector of its 2n principal
minors. When the matrix is Hermitian, the associated multiaffine generating poly-
nomial is determinantal and real stable. In this talk, I will describe a characteri-
zation of the image of Hermitian matrices under this map based on a connection
with determinantal representations and factorizations of “Rayleigh differences”.
This is based on joint work with Abeer Al Ahmadieh.

Pólya frequency sequences: from Laguerre and Fekete to Jacobi
and Trudi

Apoorva Khare

We discuss the class of Toeplitz bi-infinite “totally nonnegative matrices” (those
with all minors nonnegative). These matrices are called Polya frequency sequences,
and they are connected to the Laguerre-Polya class, with a rich history. We present
several examples: two of them are connected to the Jacobi-Trudi identities, while
a third is connected to an 1883 result of Laguerre, shown in 1912 by Fekete in
correspondence with Polya. We also present a novel characterization of Polya
frequency sequences of order k, via the non-negativity of only the k × k minors.
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Motion of zeros of polynomial solutions of the one-dimensional heat
equation: A first-order Calogero-Moser system

Alan Sokal

I study the motion of zeros of polynomial solutions ϕ(x, t) =

n∏

i=1

[x − xi(t)] of

the one-dimensional heat equation
∂ϕ

∂t
= κ

∂2ϕ

∂x2
; they satisfy the first-order

Calogero–Moser system

dxi
dt

=
∑

j 6=i

−2κ

xi − xj

I am interested in the behavior at complex time t (usually with real initial condi-
tions x◦1, . . . , x

◦
n). My goals are to

(a) Determine the complex times t at which collisions can or cannot occur;
and

(b) Control the location of x1(t), . . . , xn(t) in the complex plane.

I have no nontrivial theorems, but many interesting conjectures.
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Total positivity of combinatorial matrices

Yi Wang

(joint work with Xi Chen)

A finite or infinite matrix is called totally positive if all its minors are nonnegative.
Such matrices have a wide variety of applications across pure and applied mathe-
matics. In this talk, we present several sufficient conditions for the total positivity
of combinatorial matrices, including the Riordan arrays, the Krylov matrices, and
Aigner’s recursive matrices.

Riordan arrays play an important unifying role in enumerative combinatorics. A
proper Riordan array, denoted by (d(t), h(t)), is an infinite lower triangular matrix
whose generating function of the kth column is d(t)hk(t), where d(0) 6= 0, h(0) = 0
and h′(0) 6= 0. An infinite nonnegative sequence (an)n≥0 is called a Pólya frequency

sequence, if its Toeplitz matrix [ai−j ]i,j≥ is totally positive. We show that if the
coefficients of d(t) and h(t) both form Pólya frequency sequences, then the Riordan
array (d(t), h(t)) is totally positive [1].
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In general, a Riordan array can be viewed as a Krylov matrix. Given A ∈ Cn×n

and v ∈ Cn×1, where n is finite or infinite. The Krylov matrix K(v,A) of A
generated by v is an n× n matrix

K(v,A) = [v,Av,A2v, . . . , An−1v].

A row Krylov matrix K̂(u,B) means the transpose of a Krylov matrix, that is,

K̂(u,B) = [K(uT , BT )]T . Krylov matrices play a fundamental role in Krylov
subspace method, which are counted among the “Top 10 Algorithms of the 20th
century” and can be used to develop iterative methods for finding eigenvalues of
large sparse matrices or solving large systems of linear equations. We [2] show
that if the matrix [v,A] is totally positive, the so is the Krylov matrix K(v,A); if

the matrix

[
u
B

]
is totally positive, then so is the row Krylov matrix K̂(u,B).

As applications, we obtain another two criteria for the total positivity of Riordan
arrays. The first one is in [3]. Let d(t) =

∑
n≥0 dnt

n and h(t) =
∑

n≥0 hnt
n, if the

matrix 


d0 h0
d1 h1 h0
d2 h2 h1 h0
...

...
. . .




is totally positive, then so is the Riordan array (d(t), h(t)). A Riordan array R =
[rn,k]n,k≥0 can also be characterized by its A-sequence (an)n≥0 and Z-sequence
(zn)n≥0 such that

rn+1,0 =
∑

j≥0

zjrn,j , rn+1,k+1 =
∑

j≥0

ajrn,k+j

for n, k ≥ 0. The second criterion is presented by menas of A- and Z-sequences
[4]: if the production matrix

P (R) =




z0 a0
z1 a1 a0
z2 a2 a1 a0
...

...
. . .




is totally positive, then so is the Riordan array R.
Another application is the total positivity of Aigner’s recursive matrices A =

[an,k]n,k≥0, which is an infinite lower triangular matrix defined by

a0,0 = 1, an+1,k = an,k−1 + skan,k + tk+1an,k+1,

where (sk)k≥0 and (tk)k≥1 are nonnegative sequences. We [5] show that if

J =




s0 1
t1 s1 1

t2 s2
. . .

. . .
. . .
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is totally positive, then so is Aigner’s recursive matrix A. We also present several
sufficient conditions for the total positivity of the tridiagonal matrix J .
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Electrostatic partners and zeros of orthogonal and multiple
orthogonal polynomials

Andrei Mart́ınez-Finkelshtein

(joint work with R. Orive and J. Sanchez-Lara)

The well-known electrostatic interpretation of the zeros of Hermite, Laguerre or
Jacobi polynomials, which goes back to the 1885 work of Stieltjes, is one of the
most popular models in the theory of orthogonal polynomials. It was picked up and
extended to several contexts, such as orthogonal and quasi-orthogonal polynomials
on the real line and the unit circle, for classical and semiclassical weights. Our
first goal is to generalize the known electrostatic interpretations.

For a given polynomial P with simple zeros, and a given semiclassical weight
w, we present a construction that yields a linear second-order differential equation
(ODE), and in consequence, an electrostatic model for zeros of P . The coefficients
of this ODE are written in terms of a dual polynomial that we call the electrostatic
partner of P . This construction is absolutely general and can be carried out for
any polynomial with simple zeros and any semiclassical weight on the complex
plane. An additional assumption of quasi-orthogonality of P with respect to w
allows us to give more precise bounds on the degree of the electrostatic partner.
In the case of orthogonal and quasi-orthogonal polynomials, we recover some of
the known results and generalize others.

For the Hermite–Padé or multiple orthogonal polynomials of type II, this ap-
proach yields a system of linear second-order differential equations, from which we
derive an electrostatic interpretation of their zeros in terms of a vector equilibrium
(something that was unknown). More detailed results are obtained in the special
cases of Angelesco, Nikishin, and generalized Nikishin systems. We also discuss
the discrete-to-continuous transition of these models in the asymptotic regime, as
the number of zeros tends to infinity, into the known vector equilibrium problems.
If time permits, we will discuss how the system of obtained second-order ODEs
yields a third-order differential equation for these polynomials, well described in
the literature, as well as present several illustrative examples.
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This is a joint work with R. Orive (Universidad de La Laguna, Canary Islands,
Spain) and J. Sanchez-Lara (Granada University, Spain).

Results and conjectures on log-concavity and zeros of hypergeometric
and basic hypergeometric functions

Dmitry Karp

In the talk we will discuss log-concavity for generic power series with coefficients
involving gamma and q-gamma functions with respect to the variable contained in
their arguments. The motivating example of such series are hypergeometric and
basic hypergeometric series for which we can prove more than for the generic case.
We show how log-concavity with respect to the simultaneous shift of all parameters
implies Laguerre inequalities and relate it to the questions of belongingness of the
generalized hypergeometric function to the Laguerre-Pólya class. We further show
the connection to certian classes of polynomials constructed from arbitrary real
sequences in terms of the rising factorials of the argument. We prove a coefficient-
wise positivity statement for one type of such polynomials and propose several
conjectures about their stability and zeros under condition that the initial sequence
is a Pólya frequency sequence of certain order.
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Some recent developments on positivity of combinatorial polynomials
and matrices

Bao-Xuan Zhu

Many important problems have the close relations with certain positivity. There
has been an extensive literature in recent years on positivity in combinatorics. In
this talk, we will introduce some recent results concerning positivity (i.e., Pólya
frequency, q-log-convexity, strong q-log-convexity, Stieltjes moment property and
q-Stieltjes moment property) of combinatorial polynomials and matrices from real-
rooted polynomials, total positivity and continued fractions.

References

[1] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math.
39 (2007), 453–476.
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Total nonnegativity of matrices and zero localization of
entire functions

Olga Holtz

I will review a number of old and new results connecting total nonnegativity of
special matrices with zero localization of polynomials and entire functions.

arXiv:1807.03271
arXiv:2006.14485
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Lorentzian polynomials on cones and the
Heron-Rota-Welsh conjecture

Jonathan Leake

About 5 years ago, the Heron-Rota-Welsh conjecture (log-concavity of the coef-
ficients of the characteristic polynomial of a matroid) was proven by Adiprasito,
Huh, and Katz via the exciting development of a new combinatorial Hodge theory
for matroids. In recent work with Petter Brändén, we have given a new short
”polynomial proof” of the Heron-Rota-Welsh conjecture. Our proof uses an ex-
tension of the theory of Lorentzian polynomials to convex cones, which generalizes
real stable and hyperbolic polynomials. In this talk, I will briefly discuss the basics
of Lorentzian (aka completely log-concave) polynomials, and then I will give an
overview of our new proof of the Heron-Rota-Welsh conjecture.

Reporter: Thu Hien Nguyen
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