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Introduction by the Organizers

The aim of this mini-workshop was to bring together mathematical physicists and
mathematicians with research interests close to specific areas of representation
theory. The meeting provided a format for intense discussions and interactions.
The mini-workshop was attended by 16 in-person participants and another 6 online
participants.

In order to catalyze interactions among participants of diverse backgrounds, the
first half of the workshop began with short, 20-minute talks in which all of the
participants gave an informal overview of their work, highlighting important ideas,
conjectures, theorems, and/or open questions related to mathematical physics and
representation theory. These short talks inspired many further questions and in-
teractions among the participants, which were then taken up in lively, hour-long
open discussion sessions. In the second half of the workshop, several of the most
interesting topics from the first few days were revisited in greater depth during
hour-long research talks.
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One of the main themes discussed was the representation theory of super-
groups and superalgebras, as it appears in mathematics and mathematical physics.
The talks of V. Serganova presented results on volumes of super-Grassmannians;
while the talks of B. Williams discussed the appearance of superalgebras (espe-
cially exceptional superalgebras) in holomorphic twists of superconformal quan-
tum field theories. These subjects turned out to be surprisingly related through
the representation-theoretic techniques used to relate different Grassmannians and
(respectively) analyze twists. This was brought to light during one of the open
discussions.

Another main theme was the role of non-semisimple representation theory in
topological quantum field theory (TQFT). This topic was introduced in N. Resheti-
khin’s overview talk on open problems in TQFT, and further expanded on from
the perspective of vertex operator algebras (VOA’s) in B. Feigin’s overview talk.
D. Reuter then discussed relations between semi-simplicity (or lack thereof) in
TQFT and the strength of its associated topological invariants, while L. Woike
presented new results on derived/dg extensions of TQFT in the non-semisimple
setting. Both the work of D. Reuter and L. Woike was revisited in the second half
of the workshop. L. Rozansky and M. Aganagic discussed the most recent results
on categorification of the TQFT’s related to quantum knot invariants, and their
relation to supersymmetric gauge theory.

Several participants’ talks and discussions connected further to the representa-
tion theory of VOA’s. T. Creutzig presented new results on representation theory
of logarithmic VOA’s, while J. Teschner explained how some of these results (as
well as ideas from N. Reshetikhin’s previous overview) could be used to reinter-
pret and generalize the celebrated AGT (Alday-Gaiotto-Tachikawa) conjecture,
relating conformal blocks of W-algebras with instanton partition functions and
topological string theory. These connections formed the central focus of an open
discussion. D. Gaiotto presented conjectures and open problems in introducing
arithmetic fields other than the complex numbers (commonly used by physicists)
in the correlation functions of VOA’s and conformal field theories. The talks by
E. Mukhin, G. Felder, and B. Vlaar focused on representation theory of quantum
groups and quantum affine algebras, closely related to VOA’s.

Finally, the talks of H. Jockers and A. Klemm presented some very recent
results and advances in enumerative invariants of Calabi-Yau manifolds, related
to representation theory of quantum DQ-modules, and their surprising arithmetic
properties.
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Abstracts

Categories of modules of affine vertex algebras

Thomas Creutzig

There is a very long-term program on understanding categories of modules asso-
ciated to affine vertex algebras at admissible levels. Here, I will summarize recent
progress, highlighting difficulties and open questions.

Let g be a Lie algebra or Lie superalgebra and B : g × g → C an invariant,
supersymmetric bilinear form. Then one can associate to this data a vertex algebra
called the universal affine vertex algebra of g associated to B. If B = kκ for κ the
Killing form on g, then it is called the affine vertex algebra of g at level k. Denote
by Lk(g) its unique graded simple quotient. Known vertex algebras are related to
affine vertex algebras via certain standard constructions, as e.g. cosets, extensions
and cohomologies and so the affine vertex algebras form a very important class of
these algebras. A module of the affine vertex algebra is automatically a smooth
module of the underlying affine Lie algebra. From a representation theory point
of view the important problem is the as complete as possible understanding of
categories of modules of interest, e.g. one would like to

(1) Classify simple modules and find their projective covers and injective hulls;
in particular show that projective objects are of finite length;

(2) Establish existence of a braided tensor structure on the category, enumer-
ate fusion rules and establish rigidity

The difficulty of this problem depends on the choice of category of modules. Spe-
cialize to g a simple Lie algebra or g = osp1|2n and k an admissible level. The
smallest interesting category would be the category of ordinary modules, that is
modules that have finite dimensional conformal weight spaces. This category is a
semisimple [1, 2] braided tensor category [3] and in most cases also rigid [4, 5, 2].
The category of ordinary modules exhausts all possible modules only if k is a
non-negative integer, otherwise there are modules whose weight spaces are not
finite-dimensional and also conformal weight needs not be lower bounded, denote
the category of such modules by Ck(g). This leads to difficulties because classifica-
tion techniques usually restrict to lower bounded modules [6]. Luckily every simple
module is related to a lower bounded module by twisting by an automorphism,
called spectral flow [7]. The main issues in the understanding of such module
categories as abelian categories is the construction of possible projective modules
and then to prove that they are indeed projective. The construction problem has
been solved for the cases sl2, osp1|2 and partially sl3, via embeddings of the ver-

tex algebra in suitable larger structures [8, 9]. Moreover effective criteria for the
vanishing of extensions allowed to find all projectives in the case of sl2 [7]. An
interesting observation is that the principal block then coincides with the principal
block of the unrolled small quantum group of sl2 at associated root of unity. This
is conjecturally no coincidence, but has presently only been further exploited in
the case of sl3 and k = −3/2 and uHi (sl3) [10].
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The existence of braided tensor category is completely open; but at least for
g = sl2 it is within reach now. The main issue is associativity which follows
from analytic properties of correlation function. These analytic properties in turn
hold if correlation functions are solutions to suitable differential equations and the
existence of such differential equations follows from good finiteness conditions: in
fact we need C1-cofiniteness and finite length [11]. A priori this looks hopeless for
affine vertex algebras as then C1-cofinite modules are precisely the ordinary ones.
Luckily there are dualities that can help. Dualities are close relations between
naively unrelated vertex algebras. In the case of the affine vertex algebra of sl2,
this duality is often also called Kazama-Suzuki duality and the dual algebra is the
N = 2 super conformal algebra. This duality is a special case of the ones studied
in [12] and there are good functors between representation categories of the two
algebras. Modules of the N = 2 superconformal algebra are lower bounded and
have finite dimensional conformal weight spaces, i.e. they have a chance to be
C1-cofinite. If one can show that these modules (at the relevant central charges)
are indeed C1-cofinite then Ck(sl2) would inherit braided tensor category structure
via the good functors.

Rigidity and fusion rules are the next problems that lack a general technique.
One such technique for fusion rules would be Verlinde’s formula, that is conjectured
for Ck(sl2) in [13]. This conjecture is however completely open.
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Skew Howe duality and dynamical Weyl group

Giovanni Felder

(joint work with Rea Dalipi and Tommaso Botta)

The symmetric groups play two different roles in the representation theory of the
general linear group GLN (C) of linear automorphisms of V = CN . On one side
the symmetric group SN is the Weyl group of GLN (C) and is identified with
the subgroup of permutation matrices; it therefore acts on all representations of
GLN (C). On the other hand the group SM acts on the tensor product V ⊗M of M
copies of the vector representation V by permutations of the factors. The Schur–
Weyl duality is the statement that the images of the actions of SM and GLN (C)
in EndC(V

⊗M ) are commutants of each other.
An explanation and extension of the relation between this two roles of the

symmetric group is provided by the (GLN ,GLM ) Howe duality [7]. Let V = CN

and W = CM . Then we have commuting GLN and GLM actions on the exterior
algebra

∧
(V ⊗W ) with a multiplicity-free decomposition in irreducibleGLN×GLM

subrepresentations

(1)
∧

(V ⊗W ) = ⊕λV
N
λ ⊗ V

M
λt

Here we denote by V nλ the irreducible representation of GLn with highest weight λ,
which we view as a Young diagram. The sum is over the Young diagrams λ fitting
in an N ×M box and λt denotes the transposed diagram. A similar statement
holds for the symmetric algebra, but here we focus on the skew symmetric version.

By writing V ⊗W as V ⊕ · · · ⊕ V , or as W ⊕ · · · ⊕W , in the ordering given by
the standard bases, we get isomorphisms

(2)
∧
V ⊗ · · · ⊗

∧
V ←

∧
(V ⊗W )→

∧
W ⊗ · · · ⊗

∧
W

On the left we haveM factors and the subspace
∧k1 V ⊗· · ·⊗

∧kM V is the weight
subspace of weight (k1, . . . , kM ) for the GLM -action. In particular V ⊗M appears
as weight subspace of weight (1, . . . , 1), preserved by SM ⊂ GLM , which acts by
permutations of factors. This reproduces the Schur–Weyl duality.

This story has an analogue for the Drinfeld–Jimbo quantum universal envelop-
ing algebra UqglN , see e.g. [3]. Recall that UqglN is a family of Hopf algebras re-
ducing to the universal enveloping algebra of glN at q = 1. It has a presentation by
generators and relations deforming the Chevalley–Serre presentation in the q = 1
case. The exterior powers of the vector representation generalize straightforwardly
to UqglN . The point is that the relations such as [ei, fi] = (qhi − q−hi)/(q − q−1)
between Chevalley generators reduces to the classical relation [ei, fi] = hi in rep-
resentations where the coroots hi act semisimply with eigenvalues in {1, 0,−1}.

The quantum Schur–Weyl duality is due to Jimbo [6] and quantum versions of
Howe duality are known. In the skew case they appear in [1, 2]. In the following
formulation we exploit the fact that tensor products of representations are defined
for bialgebras via the coproduct ∆. But we also use the opposite coproduct ∆′ =
σ ◦∆, defined by composition with the flip σ(a⊗ b) = b⊗ a.
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Theorem Let q be a non-zero complex number. The action of UqglN and of
UqglM on

∧
(V ⊗W ) induced from the action of (UqglN ,∆) on (

∧
V )⊗M and of

(UqglM ,∆
′)) on (

∧
W )⊗N via (2) commute. If q is not a root of unity then

∧
(V ⊗

W ) decomposes into the direct sum (1) of irreducible highest weight representations
of UqglN ⊗ UqglM .

The universal enveloping algebra of the loop algebra LglN = glN ⊗ C[t, t−1] of
glN admits a quantum Hopf algebra deformation UqLglN . It contains UqglN as
a Hopf subalgebra. For z ∈ C× we have an evaluation algebra homomorphism
evz : UqLglN → UqLglN , deforming the evaluation map LglN → glN , a⊗ f(t) 7→
f(z)a. This allows us to define an evaluation representation M(z) of UqLglN for
any representation M of UqglN and nonzero complex number z. In particular

we have exterior powers
∧k

V (z) with evaluation point z. As in the classical
case the tensor products of such representations with generic evaluation points are
irreducible and we have isomorphisms

Řk,k′(z1/z2) :
∧k

V (z1)⊗
∧k′

V (z2)→
∧k′

V (z2)⊗
∧k

V (z1)

unique if we impose that vk⊗ vk′ 7→ (−1)kk
′

vk′ ⊗ vk for tensor products of highest
weight vectors. These braiding matrices Řk,k′ (z) are rational functions of the

spectral parameter z. They (or more precisely the R-matrices P ◦ Ř obtained by
the composition with the permutation of factors) obey the Yang–Baxter equation
expressing the equality of the two isomorphisms obtained by two ways of composing
braiding matrices to go from z1, z2, z3 to z3, z2, z1. Moreover we have the inversion
relation Řk′,k(z

−1)Řk,k′ (z) = id.
The R-matrices for exterior powers of vector representations were computed

by Date and Okado [4]. We offer an alternative “fermionic” formula via Howe
duality, which gives a meaning to the residues at the poles as a function of the
spectral parameter. Our observation is that Řk,k′(z) commutes in particular with
the subalgebra UqglN and can be expressed as the action of some element of Uqgl2,
mapping the weight subspace of weight (k, k′) to the weight subspace of weight
(k′, k). Up to a sign this is an element of the subalgebra Uqsl2 depending only
on k − k′. Let us denote by E,F,K±1 the standard generators of Ussl2 and
use the divided power notation E(k) = Ek/[k]q!, F

(k) = F k/[k]q!, with [k]q! =∏k
j=1(q

j − q−j)/(q − q−1).

Theorem The braiding matrix Rk,k′ (z) is given by (−1)min(k,k′) times the action
of the element Ak−k′ (z) ∈ Uqsl2 defined as

Am(z) =
∑

j≥0

(−q)j
1− q|m|z

1− q2j+|m|z

{
E(j)F (j+m), if m ≥ 0,

E(j+|m|)F (j), if m ≤ 0.

The infinite sum in the definition of Am(z) reduces to a finite sum in any
finite dimensional representation. The Yang–Baxter equation and the inversion
relations translate via Howe duality into properties of Am(z). Let the symmetric
group SM act on CM and on the weight lattice P = ZM/Z(1, . . . , 1) of slM by
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permutations of the coordinates and denote by si the transposition (i, i+ 1). For
µ ∈ P let Ai,µ(z1, . . . , zM ) denote the image of Aµ(hi)(zi/zi+1) by the embedding of
Uqsl2 into UqslM corresponding to the ith simple root. For any finite dimensional
representation U of UqslM with weight spaces U [µ] let Ai,U (z) be the EndU -valued
function of z ∈ (C×)M so that Ai,U (z)|U [µ] = Ai,µ(z) : U [µ]→ U [siµ].

Corollary Let U be any finite dimensional representation of UqslM . Then (sif)(z)
= Ai,U (z)f(siz) defines a representation of SM on U -valued rational functions of
z = (z1, . . . , zM ).

It turns out that this representation is closely related to the dynamical action
of the braid group constructed in [9, 5] from intertwining operators: the action
of generators of the braid group differ from our action by multiplication with a
rational endomorphism-valued function. The more general result is that the dy-
namical action of the Weyl group of [5] defined on zero-weight spaces of integrable
modules of Uqg for semisimple g extends to an action on the whole modules.

Finally, let us mention that our formula for the braiding matrix, being universal
in N , is well-defined in the limit N → ∞, and gives explicit expressions for R-
matrices on Fock spaces for Uqgl∞ and quantum toroidal algebras along the lines
of the paper [8] on the rational Yangian case, which was an inspiration for the
present work. The duality between braiding matrices and dynamical Weyl group
action appears to be an instance of 3D mirror symmetry.
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Quantum K-Theory Rings

Hans Jockers

(joint work with Urmi Ninad, Peter Mayr, Alexander Tabler)

Let X be a smooth projective variety and let K(X) be (the torsion-free part of)
the topological K-theory ring of X . We want to study a quantum deformation of
K(X) referred to as the quantum K-theory ring KQ(X). While the additive group
structure of the rings K(X) and KQ(X) are identical, the multiplicative structure
of K(X) — given by the tensor product of K-theory elements — is deformed in
KQ(X) as

Eα ⊗Q Eβ =
∑

γ

Cγαβ(Q)Eγ = Eα ⊗ Eβ +O(Q) .

Here the set {Eα} generates both K(X) and KQ(X) as a group, and Cγαβ(Q)

are the deformed structure constants of KQ(X) that are formal series in the
Novikov variables Q = (Q1, . . . , Qr) dual to H2(X,Z)/Torsion. The constant

terms Cγαβ(Q)
∣∣∣
Q=0

reproduce the structure constants of K(X), while the correc-

tions O(Q) are encoded in the K-theoretic genus 0 Gromov–Witten invariants
[1, 2, 3]

〈
E1L

k1
1 , . . . , EnL

kn
n

〉X
0,n,d

= χM0,n(X,d)

(
Ovir ⊗ (ev∗1(E1)⊗ L

k1
1 )⊗ . . .⊗ (ev∗n(En)⊗ L

kn
n )

)
∈ Z ,

which are given by the holomorphic Euler characteristics χM0,n(X,d)
over the

moduli space of stable maps M0,n(X, d) of genus 0 with n-marked points of

class d ∈ H2(X,Z). Here Ovir is the virtual structure sheaf of M0,n(X, d) [3],

evℓ : M0,n(X, d) → X denotes the evaluation map and Lℓ is the universal cotan-
gent line at the ℓ-th marked point. There is a further generalization of these
invariants and the associated quantum K-theory rings KQ(X) by including a non-
trivial level structure [4].

In physics, the quantum K-theory rings KQ(X) and their generalizations with
level structure arise from Wilson line algebras of 3d N = 2 gauge theories [5, 6]
with the projective variety X as their target spaces [7] and the level structure
arising from 3d Chern-Simons terms [8].

In the following we consider for X the complex Grassmannians Gr(M,N) (with
1 ≤ M < N). From the gauge theory perspective we determine that for the
canonical choice of Chern–Simons terms the quantum K-theory ring KQ(X) for
X = Gr(M,N) is given by [8, 9]

Z[X1(δa), . . . , XM (δa), Q]/JM,N , JM,N =
〈〈
Oλ(δa)− (−1)MQ

∣∣λ ∈ Λ
〉〉
,

where Xℓ(δa) are the elementary symmetric polynomials and Oλ(δa) are the Gro-
thendieck polynomials in the variables δa, a = 1, . . . ,M , labeled by partitions λ.
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Λ is the set of hook partitions

Λ =
{
(N −M + 1, 1, . . . , 1︸ ︷︷ ︸

k

)
∣∣∣k = 0, 1, . . . ,M − 1

}
.

This universal expression for the quantum K-theory ring KQ(X) is in agreement
with the findings of refs. [10, 11].

Analogously, the quantum K-theory rings for Gr(M,N) with level structure are
determined from 3dN = 2 gauge theories with non-trivial choices of Chern–Simons
terms. In particular, for specific choices the quantum K-theory ring with level
structure becomes isomorphic to the quantum cohomology ring H∗

Q(Gr(M,N))

[12, 13, 14], demonstrating the connection to the Verlinde algebra of refs. [15, 16, 8].
Generalizing the obtained results to more general smooth Fano varietiesX — as

performed on the level of quantum cohomology in ref. [14] — offers an immediate
future research direction.

This talk is based on refs. [8, 9] in collaboration with Urmi Ninad, Peter Mayr,
and Alexander Tabler.
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Calabi-Yau threefolds and modular forms

Albrecht Klemm

We consider the fourteen families W of Calabi-Yau threefolds with one complex
structure parameter and Picard-Fuchs equation of hypergeometric type, like the
mirror of the quintic in P4. Mirror symmetry identifies the masses of even–
dimensional D–branes of the mirror Calabi-Yau M with four periods of the holo-
morphic (3, 0)-form over a symplectic basis ofH3(W,Z). It was discovered by Chad
Schoen that the singular fiber at the conifold of the quintic gives rise to a Hecke
eigenform of weight four under Γ0(25), whose Hecke eigenvalues are determined
by the Hasse-Weil zeta function which can be obtained by counting points of that
fiber over finite fields. Similar features are known for the thirteen other cases.
In two cases we further find special regular points, so called rank two attractor
points, where the Hasse-Weil zeta function gives rise to modular forms of weight
four and two. We numerically identify entries of the period matrix at these special
fibers as periods and quasi periods of the associated modular forms. In one case
we prove this by constructing a correspondence between the conifold fiber and a
Kuga-Sato variety. We also comment on simpler applications to local Calabi-Yau
threefolds. This presentation is based on the preprint [1].
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Algebras behind the deformed W-algebras

Evgeny Mukhin

(joint work with B. Feigin, M. Jimbo)

The generating currents of deformed W-algebras are realized as sums of vertex
operators and satisfy elliptic commutation relations. Introducing an additional
Heisenberg current, one can modify these currents in a natural way so that the com-
mutation relations between currents (and all summands) become rational. Then
one obtains an algebra generated by the Heisenberg and modified current.

In the case of deformedW-algebra of type An this algebra coincides with the Borel
subalgebra of quantum toroidal algebra E1 of type gl1 with level depending on n.

The deformed W-algebras of types Bn, Cn, and Dn all produce the algebra K1

with various levels.
Let q1q2q3 = 1. Let g(z, w) = (z − q1w)(z − q2w)(z − q3w).
The algebra K1 has generators

E(z) =
∑

n∈Z

Enz
−n , K±(z) = exp

( ∑

±r>0

Hrz
−r

)
,
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and a central element C, satisfying the defining relations:

g(z, w)E(z)E(w) + g(w, z)E(w)E(z)

=
1

g(1, 1)

(
g(z, w)δ

(
C2 z

w

)
K(z) + g(w, z)δ

(
C2w

z

)
K(w)

)
,

K±(z)K±(w) = K±(w)K±(z) ,

g(z, w)g(z, C2w)K+(z)K−(w) = g(w, z)g(C2w, z)K−(w)K+(z) ,

g(z, w)K±(z)E(w) = g(w, z)E(w)K±(z) ,

Sym
z1,z2,z3

z2
z3

[E(z1), [E(z2), E(z3)]]

= Sym
z1,z2,z3

(
1−

z21
z2z3

)z1(z1 + z2)(z1 + z3)

g(z2, z1)g(z3, z1)
g(z2, z3)δ

(
C2 z2

z3

)
E(z1)K(z2) ,

where K(z) = K−(z)K+(C2z) , and δ(z) =
∑

i∈Z
zi.

The algebra K1 is a comodule over E1. Namely, there exists an algebra homomor-
phism ∆ : K1 → E1⊗̃K1, where ⊗̃ is an appropriately completed tensor product.
The formulas are reminiscent of quantum symmetric pairs and i-quantum groups.

The algebra K1 possesses a commutative family of integrals of motion.
Let µ = C2q−1

2 . Then {In}∞n=1 commute,

In =

∫
· · ·

∫
E(z1) · · ·E(zn) ·

∏

j<k

ω2(zk/zj)

n∏

j=1

dzj
2πizj

,

where the integral is taken on the unit circle |zj| = 1, j = 1, . . . , n in the region
|q1|, |q3| > 1 and extended by analytic continuation everywhere else.

Here we used the dressed current E(z) = E(z)
∏∞
s=0(K

+(µ−sz))−1 , and the
kernel

ω2(z) =
Θµ(z)Θµ(q

−1
2 z)

Θµ(q1z)Θµ(q3z)
,

where Θµ(z) is the Jacobi theta function given by Θµ(z) = (z, µz−1, µ;µ)∞.
Unlike the quantum toroidal algebras, where the commutative family of inte-

grals of motion stems out from the transfer matrices, the origin of this commutative
family is unclear.

The algebra obtained from the deformed W-algebra of type G2 is described in [1].
The properties of this algebra are not known. The algebras related to other types
have not been computed yet.

In [2] we give the higher rank Kn generalization of the algebra K1 and show that
it has similar properties. In particular, Kn is a comodule over quantum toroidal
algebra of type gln and has a family of integrals of motion.

It is expected that similar K-type algebras exists for types Dn, E6, E7, E8.
Nothing is known about possible higher rank generalizations of the algebras for

other types.
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The main question is: what is the nature of these algebras? Are these examples a
part of one construction?
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Unification of WRT and CGP invariants of 3-manifolds via
BPS q-series

Pavel Putrov

(joint work with Francesco Costantino, Sergei Gukov)

Categorification of quantum invariants of 3-manifolds is an important problem in
low-dimensional topology. One of the reasons is that homological invariants of
3-manifolds that behave functorially with respect to 4-dimensional bordisms in
particular provide numerical invariants of smooth 4-manifolds. A famous (and es-
sentially so far the only known non-trivial) example is Heegaard/Monopole Floer
Homology of 3-manifolds that categorifies numerical invariants of 3-manifolds as-
sociated to gl(1|1) Lie superalgebra, or equivalently Reidemeister-Turaev torsion.
The link counterparts of such invariants is Knot Floer Homology which categori-
fies Alexander-Conway polynomial. The corresponding numerical invariants of
4-manifolds are celebrated Seiberg-Witten invariants.

One natural question is to find a suitable 3-manifold analog of Khovanov ho-
mology which is known to categorify Jones polynomial, a quantum knot invariant
associated to Lie algebra sl(2). The corresponding numerical 3-manifold invari-
ant is known as Witten-Reshetikhin-Turaev (WRT) invariant [9, 7]. Unlike Jones
polynomial, WRT invariant is only defined when q, the deformation parameter in
the quantum group Uq(sl2), is a root of unity and is not a Laurent polynomial (or
series) in q.

However from physics one expects existence of a family of certain q-series Ẑs(Y )
associated to a 3-manifold Y with a spinc structure s and which are closely re-
lated to the WRT invariant WRTr(Y ) [4, 3] defined for the r-th primitive root of

unity1q = e
2πi
r for some positive integer r ≥ 2 (and for concreteness we will as-

sume that r = 2 mod 4 in what follows2). These q-series physically has meaning
of counting BPS stated in a 6d N = (2, 0) theory on Y × C× R. The relation is
then given by a sequence of dualities to Chern-Simons topological quantum field
theory on Y partition function of which physically realizes the WRT invariant of
Y [8].

1The convention is such that the quantum dimension of the representation of the highest

weight n− 1 is [n] = q
n/2−q

−n/2

q1/2−q−1/2 .
2Similar statements can be made for other values of r modulo 4.
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It turns out that it is more natural to extend the relation between these q-series
to the mod-2 cohomological refinement [6] of the WRT invariant WRTr(Y, ω), ω ∈
H1(Y,Z/2Z), and also the invariant of Costantino, Geer, and Patureau-Mirand
(CGP) [1] Nr(Y, ω), defined for a choice of ω ∈ H1(Y,C/2Z) \H1(Y,Z/2Z).

Namely, let T (Y, ω) be the appropriate version of Reidemeister-Turaev torsion
(see [2] for details) and assume that it does not vanish3 unless ω ∈ H1(Y,Z/2Z).
Then define a combined invariant

Ñr(Y, ω) :=





WRTr(Y, ω), ω ∈ H1(Y,Z/2Z)
Nr(Y, ω)

T (Y, ω)
, otherwise.

for arbitrary ω ∈ H1(Y,C/2Z). One can then formulate the following4

Conjecture 1 ([3, 2]). Assume Y is a rational homology sphere, that is5 b1(Y ) =
0. There exists a family of q-series

Ẑs(Y ) ∈ Z[[q]] (s ∈ Spinc(Y ))

convergent for |q| < 1 and such that

(1) Ñr(Y, ω) = lim
q→e

2πi
r

∑

s∈Spinc(Y )

Cs(Y, ω) Ẑs(Y )

where Cs(Y, ω) are universal coefficients depending on r and certain simple homo-
topy-type invariants of Y (see [2] for details).

The conjecture was verified for a certain family of manifolds in [2], where it
was also shown that the conjecture holds if its certain analog for links in a 3-
sphere holds. An analogous conjecture can be made for the sl(2|1) analogs of
CGP invariants [5].

The existence of q-series as formulated in the conjecture above does not imply
their uniqueness, since there exist non-trivial q-series that have zero limits at all
roots of unity. Thus it would not be possible to define Ẑs directly using formula
(1). This issue in principle can be avoided by using elements of Habiro ring instead
of q-series and modify the conjecture as follows:

Conjecture 2. Assume b1(Y ) = 0. There exists a family

Is(Y ) ∈ Ẑ[q] := lim
←−
n

Z[q]∏n
k=1(1 − q

k)
(s ∈ Spinc(Y ))

such that
Ñr(Y, ω) =

∑

s∈Spinc(Y )

Cs(Y, ω) Is(Y )|
q=e

2πi
r

where Cs(Y, ω) are universal coefficients depending on r and certain simple homo-
topy-type invariants of Y (same as in Conjecture 1).

3This holds for a generic 3-manifold. However it would be interesting to see how can one
avoid this assumption.

4The conventions differ slightly from the ones in [2].
5A version of the conjecture can be made for b1(Y ) > 0.
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Taking into account that Cs(Y, ω) defines an invertible transformation between
complex valued functions onH1(Y,C/2Z) and on Spinc(Y ), and also that elements
of the Habiro ring are uniquely fixed by their values on roots of unity, the existence
of Is(Y ) implies their uniqueness for a given 3-manifold Y .
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Semisimple topological quantum field theories and exotic
smooth structure

David Reutter

(joint work with Christopher Schommer-Pries)

Motivated by a wealth of powerful field-theoretically-inspired 4-manifold invari-
ants, a major open problem in quantum topology is the construction of a 4-
dimensional topological quantum field theory (TQFT) in the sense of Atiyah-Segal
which is sensitive to exotic smooth structure. More generally, how much manifold
topology can a TQFT see?

In my talk, I outlined an answer to this question for even-dimensional field
theories having a certain representation-theoretic property. This is based on [3]
and joint work in progress with Christopher Schommer-Pries [4].

From semisimple topological quantum field theories...
A d-dimensional topological quantum field theory [1, 2] is a symmetric monoidal
functor

Z : Bordd,d−1 → Vect

from the category of closed (d−1)-manifolds and diffeomorphism classes of compact
d-dimensional bordisms to the category of k-vector spaces and linear maps1. In
other words, a topological quantum field theory is an assignment of vector spaces

1The results discussed in this extended abstract apply more generally to TQFTs on bordism
categories with more general tangential structures, such as orientation, spin, etc. and super
TQFTs valued in the symmetric monoidal category of super vector spaces.
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to (d − 1)-manifolds and linear maps to d-manifolds, which is compatible with
gluing and taking disjoint union. In particular, topological quantum field theories
lead to diffeomorphism invariants Z(W ) ∈ k for closed d-manifoldsW . How strong
are these invariants?

Associated to a topological quantum field theory is the algebra of point operators
Z(Sd−1) with multiplication and unit given by the bordisms

Dd\(Dd ⊔Dd) : Sd−1 ⊔ Sd−1 → Sd−1 Dd : ∅ → Sd−1.

More generally, for a closed (d − k)-manifold M there is the associated algebra
Z(Sk−1 ×M) with multiplication and unit bordisms

(
Dk\(Dk ⊔Dk)

)
×M Dk ×M.

We refer to this latter algebra as the fusion algebra of M -shaped operators, since
given a closed d-manifold W with a normally framed embedded M →֒ W , and a
vector v ∈ Z(Sk−1 ×M), we may compute the partition function of W with the
operator v inserted along M as the composite

k
v
→ Z(Sk−1 ×M)

Z(W\(Dk×M))
−→ Z(∅) ∼= k

where Dk × M →֒ W is a tubular neihghborhood of M →֒ W with boundary
parametrization determined by the normal framing of M .

Definition. We say that a d = 2n-dimensional TQFT is semisimple if the alge-
bra of point operators Z(S2n−1) and the fusion algebra of Sn−1-shaped operators
Z(Sn × Sn−1) are semisimple.

In dimension strictly greater than 2, all examples of functorial TQFTs we are
aware of are semisimple and hence subject to our results. As shown in [3], this
includes all invertible field theories, unitary field theories and once-extended field
theories (i.e. theories which also assign values to manifolds of dimension d − 2)
valued in the symmetric monoidal bicategory of algebras, bimodules and bimodule
maps, or the symmetric monoidal bicategory of additive and idempotent complete
k-linear categories, linear functors and natural transformations.

... to stable diffeomorphisms. The main premise of our work is to relate
the representation-theoretic property of semisimplicity with the following key no-

tion [5, 6] from surgery theory. Two closed connected 2n-manifoldsW, W̃ are stably
diffeomorphic if there is a positive integer k ≥ 0 and a diffeomorphism between
the connected sums

W#k(Sn × Sn) ∼= W̃#k(Sn × Sn).

Theorem A ([3] in 4 dimensions, [4] in arbitrary even dimensions). Even-dimen-
sional semisimple TQFTs lead to stable diffeomorphism invariants.

An upshot of this theorem is that stable diffeomorphism is a much coarser equiv-
alence relation than diffeomorphism and stable diffeomorphism classes of manifolds
are much better understood than diffeomorphism classes (see e.g. [6]). In partic-
ular, the following result is a direct consequence of the classical result [7].
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Corollary ([3]). Semisimple four-dimensional oriented topological quantum field
theories cannot see exotic smooth structure.

In upcoming work with Christopher Schommer-Pries, we show that this ‘upper
bound’ provided by Theorem A on the sensitivity of topological quantum field
theories is optimal.

Theorem B ([4]). If two closed 4-manifolds with finite fundamental group are
stably diffeomorphic, then they can be distinguished by a semisimple (super) topo-
logical quantum field theory.

Theorem B also generalizes to arbitrary even dimensions subject to a somewhat
more involved finiteness condition. As a corollary of Theorem B, it follows for ex-
ample that there exist semisimple 4-dimensional topological quantum field theo-
ries which can see unoriented exotic smooth structure (i.e. can distinguish certain
unoriented homeomorphic but not diffeomorphic 4-manifolds) and that oriented
semisimple higher-dimensional TQFT can detect certain higher-dimensional exotic
spheres.
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Volumes of supergrassmannians

Vera Serganova

(joint work with Alexander Sherman)

The supergrassmannianGr(r|s,m|n) is the superscheme representating the functor
of (r|s)-dimensional subspaces in Cm|n. If G = GL(m|n), K = GL(r|s) and P ⊂ G
a maximal parabolic subgroup of G containing K then the homogeneous space
G/P is isomorphic to Gr(r|s,m|n). The underlying algebraic variety is a product
of two classical grassmannians Gr(r|m)×Gr(s|n). If p ∈ Gr(r|s,m|n) is the point
with stabilizer P then the tangent space TpGr(r|s,m|n) can be identified with
g/p. That immediately implies the formulas for dimension and superdimension of
Gr(r|s,m|n)

(1) dimGr(r|s,m|n) = (r(m − r) + s(n− s)|r(n− s) + s(m− r)),
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(2) sdimGr(r|s,m|n) = (r − s)((m− r)− (n− s)).

Recall that G has a compact real form U = U(m|n), it is called unitary supergroup.
The Lie algebra u(m|n) is the set of fixed points of antilinear involution θ defined
by

θ

(
A B
C D

)
=

(
−Āt iC̄t

iB̄t −D̄t

)
.

Let K := U ∩K = U ∩ P ≃ U(r|s)× U(m− r|n− s).

Proposition. The unitary supergroup U acts transitively on the supergrassman-
nian Gr(r|s,m|n) and we have an isomorphism of real supermanifolds

Gr(r|s,m|n) ≃ U/K.

Furthermore, Gr(r|s,m|n) has a unique up to normalization U-invariant volume
form.

For many applications in representation theory of supergroups it is important
to understand when the volume ∫

Gr(r|s,m|n)

ω

of Gr(r|s,m|n) is not zero.

Theorem. The volume of the supergrassmannian Gr(r|s,m|n) is not zero if and
only if sdimGr(r|s,m|n) ≥ 0.

The above theorem confirms the conjecture of Voronov, [2].
The proof of the theorem is based on the localization method of Schwarz and

Zaboronsky, [1].
Let M be a compact real supermanifold with underlying manifold M0 and a

volume form ω. We fix an orientation on M0. Let Q be a vector field on M . A
point p ∈M is a zero of Q if for any smooth function f ∈ C∞M we have Q(f) ⊂ Ip
where Ip is the ideal of p. By Z(Q) we denote the set of all zeros of Q. If p ∈ Z(Q)
then Q induces the linear operator in T ∗

pX = Ip/I
2
p . We say that p ∈ Z is isolated

if Q : T ∗
pX → T ∗

PX is an isomorphism. Let us consider an odd vector field Q on
M satisfying the following properties:

(1) Z(Q) is finite and consists of isolated zeros;
(2) Qω = 0;
(3) Q2 is a compact vector field, i.e.,there exists a compact Lie group K acting

on M such that Q ∈ LieK.

Let us note that the above conditions imply dimM = (2n|2n).

Theorem. Let a supermanifold M , a volume form ω and an odd vector field
Q satisfy the above assumptions. Then there exists an odd function σ such that
Q2σ = 0 and Qσ /∈ Ip for any p /∈ Z(Q). Furthermore,

∫

M

ω =
π2n

(2n)!

∑

p∈Z(Q)

α(TpM,Hessp(Qσ), ωp),
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where Hessp(f) is the Hessian of the function f at p which can be considered as an
even symmetric Q-invariant form on TpM and the definition of α is given below.

Let V be a finite-dimensional representation of the Lie superalgebra with basis
Q,Q2 such that Q2 is compact. Let us fix a volume form ω on V and orientation
ω0 on V0. Let B be a Q-invariant even symmetric bilinear form. Choose bases
e1, . . . , e2n ∈ V0 and f1, . . . , f2n ∈ V1 such that

ω(e1, . . . , e2n, f1, . . . , f2n) = 1, ω0(e1, . . . , en) > 0.

Set

α(V,B, ω) := (−1)n exp(
πi(dim V +

0 − dimV −
0 )

4
)

Pf(B1)√
| detB0|

,

where dim V +
0 − dimV −

0 is the signature of B0.
Let Q ∈ u(m|n) be a generic odd element, it induces an odd vector field on

Gr(r|s,m|n). If sdimGr(r|s,m|n) < 0 then Z(Q) = ∅ and hence the volume is
zero. We reduce the case sdimGr(r|s,m|n) ≥ 0 to the case r = s and m = n and
then show that the contributions terms in the Schwarz-Zaboronsky formula are
the same for all p ∈ Z(Q).
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Tau-functions, coset constructions and free fermion conformal blocks

Jörg Teschner

The isomonodromic tau-functions encode solutions to certain nonlinear PDE ap-
pearing in many problems of mathematical physics. More recent developments
have revealed profound connections to representation theory, conformal field theo-
ries (CFTs), and supersymmetric quantum field theories. The goal of my talk has
been to stimulate some discussions at the workshop by pointing out some of these
connections, and by proposing some natural conjectures.

The Gamayun-Iorgov-Lisovyy (GIL) formula conjectured in [GIL],

T (σ, η;m; q) =
∑

n∈Z

e2πinηZ(σ + n,m; q),(1)

relates the isomonodromic tau-functions T (σ, η;m; q) to the conformal blocks
Z(σ,m; q) of the Virasoro algebra with central charge c = 1. The variables σ
and η are certain distinguished coordinates for the monodromy data of a holo-
morphic connection on the the four-punctured sphere with regular singularities at
all four punctures, and singular behaviour at the four punctures parameterised
by m = (m1, . . . ,m4). The variable q denotes the cross-ratio of the positions of
the four punctures. A brief review of the GIL formula and its proof using CFT
methods [ILT] can be found in [Te17].
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Nekrasov’s derivation of the GIL formula [Ne20] starts from the following blow-
up formulae for instanton partition functions of the Nf = 4, SU(2), N = 2 SUSY
gauge theory in the presence of a surface operator:

Ψ(a,m;w, q; ǫ1, ǫ2) =(2)

=
∑

n∈Z

Ψ(a+ ǫ1n,m;w, q; ǫ1, ǫ2 − ǫ1)Z(a+ ǫ2n,m; q; ǫ1 − ǫ2, ǫ2)

The variables have the following meaning in SUSY gauge theory: a is the Coulomb-
branch parameter, m = (m1, . . . ,m4) is the vector of four mass parameters, q is
the exponential of the complexified UV gauge coupling, w is the defect parameter,
and ǫ1, ǫ2 are the parameters of the Ω-deformation. From the blow-up formula
(2) one may derive the GIL-formula (1) in the limit ǫ1 → 0 [Ne20].

The author conjectures that the basis of Nekrasov’s derivation, provided by
equivariant localisation on instanton moduli spaces, can be replaced by identities
between conformal blocks following from the coset construction in CFT. It should
be possible to prove (2) as a consequence of the following identity among vertex
operator algebra (VOA) representations [BFL, Theorem 3.3(b)],

(3) Vh,k ⊗ V0,1 =
⊗

n∈Z

Vh+2n,k+1 ⊗WP+nb,b.

We are using the following notations (similar to [BFL]):

• Vh,k: Representation of affine ŝl2,k with level k and highest weight h.
• WP,b: Representation of the Virasoro algebra with central charge c =
1 + 6Q2, Q = b+ b−1, and highest weight ∆ = Q2/4− P 2.

In (3) we are assuming that the following relations hold1:

b = i

√
k + 3

k + 2
, Q =

1

i

1√
(k + 2)(k + 3)

, P =
1

2i

h+ 1√
(k + 2)(k + 3)

.(4)

We conjecture that it should be possible to derive (2) from (3) if one assumes the
relations ǫ1−ǫ2

ǫ2
= b2 = −k+3

k+2 . In order to derive (2) from the VOA relations (3)
one will need to determine the precise relations between the normalisations of the
conformal blocks involved in (2).

The following observation can be seen as support for this conjecture. A formal
limit k →∞ of (3) for h = 0 would yield the relation of VOAs

(5) V0,1 =
⊗

n∈Z

R2n ⊗Win,i,

where Rj is the representation of sl2 of dimension 2j + 1. On the right side one
identifies an extension of the Virasoro VOA at c = 1. In taking k →∞ of (3) we
find on both sides the same Poisson-VOA representing the classical limit of V0,k

1Note that the parameter b used here is the inverse of the parameter b used in [BFL].
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as a factor. This factor is omitted in (5). Tensoring with a free boson VOA B one
obtains a VOA that has a well-known extension to the free fermion super VOA,

(6) F = B ⊗
⊗

j∈Z

Rj ⊗W i
2
j,i .

The relation between free fermions and Virasoro degenerate fields implied by (6)
is equivalent to the bosonisation formulae used in [ILT, Section 5.1] to identify the
GIL formula (1) as a relation between Virasoro and free fermion conformal blocks.

Twisting conformal blocks by local systems. There is an interesting family
of VOAs having decompositions similar to (5). The members of this family are
called Feigin-Tipunin algebras FT k(g), and they can be represented as2

(7) FT k(g) =
⊕

λ∈Q+

Rλ ⊗W
1/k
λ,0 (g).

An important feature of the conformal blocks of the VOAs FT k emphasised
in [CDGG] is related to the appearance of the finite-dimensional irreducible g-
modules Rλ in (7). This implies that a group G with Lie algebra g represents
a group of continuous automorphisms of FT k, allowing one to define conformal
blocks of FT k twisted by G-local systems.

The picture drawn in [CDGG] and references therein suggests that twisting the
conformal blocks of FT k by local systems will simplify the mapping class group
action on the spaces of conformal blocks considerably by semi-simplifying the
relevant VOA representation categories. Note that the feature of having continuous
groups of automorphisms is shared with the free fermion VOAF . The twisting ofF
by continuous automorphisms is the basis of the relations between isomonodromic
tau functions and free fermion conformal blocks described in [ILT, CPT, CLT]. It
should be interesting to study the dependence of conformal blocks of the algebras
FT k with respect to the choice of the twisting local systems.

It is furthermore intriguing to observe that the key feature of the conformal
blocks of the Virasoro VOA at c = 1 underlying the derivation of the GIL-formula

given in [ILT] is a root-of-unity phenomenon: The parameter q = eπib
2

charac-
terising the braid group representation on Virasoro conformal blocks is equal to

q = e−πi for c = 1. Similar phenomena can be expected to occur for W
1/k
λ,0 . This

suggests that (7) could imply relations between the conformal blocks of the VOAs
appearing in this formula generalising the relations proven in [ILT].
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A universal approach to the spectral reflection equation

Bart Vlaar

(joint work with Andrea Appel)

A key question which led to the discovery of quantum groups by Drinfeld and
Jimbo was the representation-theoretic origin of known matrix-valued formal Lau-
rent series1 RVW (z) ∈ End(V ⊗W )((z)) of the spectral Yang-Baxter equation:

(1) RUV (z1) · RUW (z2) ·RVW (z2/z1) = RVW (z2/z1) · RUW (z2) ·RUV (z1),

in End(U ⊗ V ⊗W )((z1, z2/z1)). Indeed, there is a universal approach to matrix
solutions to (1) and hence to quantum integrable models with closed (periodic)
boundary conditions: if g is a complex simple Lie algebra, then the universal R-
matrix R of the quantum affine algebra Uq g̃ acts on z-shifted tensor products of
finite-dimensional representations of the untwisted quantum loop algebra UqLg.
This yields solutions RVW (z) ∈ End(V ⊗W )((z)) of (1); moreover, if V and W
are both irreducible then RVW (z) essentially depends rationally on z.

It is natural to extend this picture to models with open (reflecting) boundary
conditions. Since the 1980s [Ch84, Sk88] the type-B analogue of the spectral Yang-
Baxter equation, called spectral reflection equation, has been studied, namely the
following equation in End(V ⊗W )((z1, z2/z1)):

(2)
KV (z1)⊗ id ·RWV (z1z2)21 · id⊗KW (z2) · RVW (z2/z1) =

= RWV (z2/z1)21 · id⊗KW (z2) ·RVW (z1z2) ·KV (z1)⊗ id

for the unknowns KV (z1) ∈ End(V )((z1)) and KW (z2) ∈ End(W )((z2)); here
RWV (z)21 := (12) ·RWV (z) · (12). It is a consistency condition for an action of the
Artin-Tits braid group of type Bn on vector-valued formal series (or functions) of
n variables, which combines a “tensor action” and a “function action”, the latter
of which factorizes through the faithful action of the Coxeter group W (Bn) by
permutations and inversions of variables. What is the universal approach that
generates (the many known) solutions of (5)?

1We work over an algebraically closed field F containing C(q) for some formal parameter q.
For finitely many formal parameters z1, z2, . . . and any F-linear space M we use the following
shorthands: M(z1, z2, . . .) := M ⊗ F(z1, z2, . . .) and M((z1, z2, . . .)) := M ⊗ F((z1, z2, . . .)).
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For the constant reflection equation, this is known: let Uq(g
θ) be Letzter’s [Le02]

coideal deformation of the fixed-point subalgebra of any involutive automorphism
θ of g. Balagović and Kolb [BK19] showed that, up to completion with respect to
Modf.d.(Uqg), the centralizer of Uq(g

θ) contains a solution K of

(3) (K ⊗ 1) · R21 · (1 ⊗K) · R = R21 · (1⊗K) · R · (K ⊗ 1).

However, this construction does not directly generalize beyond finite type. Even
if such a solution K existed, given a representation πV,z : UqLg(z) → End(V )(z)
with V finite-dimensional, the equation (3) cannot yield2 (5).

This issue motivated our Kac-Moody generalization of [BK19]. Letzter’s the-
ory of q-deformed symmetric pairs extends to involutive automorphism θ of Kac-
Moody algebras L, see [Ko14], provided dim(θ(L+) ∩ L+) < ∞ where L+ is the
standard nilpotent subalgebra (i.e., θ is of the second kind). In [AV20] pairs (K, ψ)
were constructed where K is an invertible element of the completion of UqL with
respect to Oint (integrable modules in categoryO) and ψ an algebra automorphism
of UqL. They satisfy K· b = ψ(b) ·K for all b ∈ Uq(Lθ) and the ψ-twisted universal
reflection equation:

(4) (K ⊗ 1) · (Rψ)21 · (1 ⊗K) · R = Rψψ21 · (1⊗K) · R
ψ · (K ⊗ 1)

where Rψ := (ψ ⊗ id)(R) and Rψψ := (ψ ⊗ ψ)(R). Such (K, ψ) naturally arise
as “gauge transformations” (u · K0,Ad(u) ◦ ψ0) defined in terms of an invertible
element u of the completion of UqL on a pair (K0, ψ0), where K0 lies in the O-
completion of Uq(L+) and ψ0 is a q-deformation of θ itself. If L is of finite type, u
can be chosen, in terms of Lusztig braid group operators, so that ψ is a bialgebra
automorphism, which recovers the Balagović-Kolb formalism.

In parallel to the story of the Yang-Baxter equation, in recent work [AV22] we
show the following. If L is the untwisted affine Lie algebra g̃ associated to the
finite-dimensional Lie algebra g, then for suitable twists ψ, K acts on any (ap-
propriately z-shifted) finite-dimensional UqLg-module as a matrix-valued formal
series KV (z) ∈ End(V )((z)), satisfying the generalized reflection equation

(5)
KV (z1)⊗ id · Rψ∗(W )V (z1z2)21 · id⊗KW (z2) · RVW (z2/z1) =

= Rψ∗(W )ψ∗(V )(z2/z1)21 · id⊗KW (z2) · Rψ∗(V )W (z1z2) ·KV (z1)⊗ id,

cf. [Ch92]; here ψ∗(V ) indicates the pullback by ψ, i.e. πψ∗(V ) := πV ◦ψ. Building
on the irreducibility result [HJ12, Prop. 3.5], we show that if V is irreducible, then
it is irreducible as a Uq((Lg)

θ)-module. This implies the linear space

{K(z) ∈ End(V )((z)) |K(z)πV,z(b) = πψ∗(V ),1/z(b)K(z) for all b ∈ Uq((Lg)
θ)}

is one-dimensional so that, up to a scalar, KV (z) is a rational function of z.
Hence this universal approach produces known and new “trigonometric” solutions
of generalized reflection equations.

2Instead, it yields a consistency condition for an action of the braid group of Bn on vector-
valued series where the “function” action of W (Bn) is non-faithful, namely the one trivially
extending the permutation action of the symmetric group.
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A holomorphic approach to fivebranes

Brian R. Williams

(joint work with Surya Raghavendran and Ingmar Saberi)

The goal of this talk is to present an approach to characterizing the algebra of local
operators of the infamous six-dimensional superconformal field theory associated to
the Lie algebra g = sl(N). The description is at the level of the holomorphic twist
of this theory which is richer than previous approaches which utilize a further, more
topological, twist of the theory. The notion of a twist of a supersymmetric theory is
like taking the (derived) invariants, or cohomology, with respect to a single square-
zero supercharge inside of the supersymmetry algebra. Though not as popular as
their topological counterparts, holomorphic twists of supersymmetric theories are
much more plentiful [1]. In fact, besides a few low dimensional examples, almost
every supersymmetric Yang–Mills theory admits a holomorphic twist [2]. In this
context, holomorphic refers to the fact that after taking derived invariants with
respect to such a supercharge the theory only depends on the underlying complex
structure of spacetime.1

The crux of the model I use to describe the class of theories uses the theory of
factorization algebras which are perhaps more familiar in the topological situation:

{TFT}
Obs
−−→ {Topological factorization algebras on Rn} ↔ {En − algebras}

or in the one-dimensional holomorphic situation:

{CFT}
Obs
−−→ {Holomorphic factorization algebras on C} ↔ {vertex algebras}.

Because we are working with the holomorphic twist, the factorization algebras
described here are holomorphic in three directions so we can consider them on C3,
or more generally an arbitrary complex three-fold.

1The notion of holomorphic twist needs to be slightly adjusted in the case of odd-dimensional
spacetimes.
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Infinitesimally, a translation invariant QFT is one which has a symmetry by the
abelian Lie algebra of constant vector fields {∂/∂xi}. A theory on Rn is (infinites-
imally) topological if these vector fields act homotopically trivially. A holomorphic
theory on complex affine space Cn is one for which only the anti-holomorphic
translations act homotopically trivially. Globally, on a complex manifold X , a
holomorphic field theory has space of fields Ω0,•(X,V) where V is a graded holo-
morphic vector bundle on X . The axiomatic approach of QFT developed in [3] is
that the observables of a quantum field theory form a factorization algebra. The
space of classical observables of such a holomorphic theory supported on an open
set U ⊂ X is the cochain complex

Obs(U) = Sym
(
Ω0,•(U,V)∗

)
.

Relatedly, the local operators at a point p ∈ X are obtained as the limit Obs(p) =
limU∋pObs(U). In dimension one, the local operators of a holomorphic factoriza-
tion algebra on C have the structure of a vertex algebra [3]. An approach to the
quantization of a holomorphic QFT can be employed at the level of factorization
algebras using the Batalin–Vilkovisky (BV) formalism and has been carried out
quite generally in [4].

There is a six-dimensional superconformal field theory χ(g) associated to any
simply laced Lie algebra g. In the case of g = sl(N) this theory arises in M-
theory as the worldvolume theory on a stack of N > 1 fivebranes. Six-dimensional
N = (2, 0) supersymmetry admits two types of twists: (1) Holomorphic. This
leaves three directions invariant and the stabilizer is a double cover of U(3). In
particular, this theory can be placed on any complex three-fold equipped with
a square-root of its canonical bundle. (2) Partially topological. This leaves five
directions invariant and the stabilizer is SO(4) × U(1). In particular, this theory
can be placed on a product manifold M × Σ where M is a smooth oriented four-
manifold and Σ is a Riemann surface. I will pay particular attention to the first
type, denoted χhol(g) which has the structure of a holomorphic theory in the
sense above. We remark that the partially topological twist can be obtained as a
deformation of this.

The simplest case is the abelian theory associated to the Lie algebra u(1)—in
M-theory this arises from a theory on a single fivebrane. The holomorphic twist

χhol(u(1)) exists on any complex three-fold X , equipped with K
1/2
X . In the BV

formalism, the fields are given by [5]:

ΠΩ0,•(X,K
1/2
X )⊗C2[1]⊕ Ω2,•(X)[1]

0⊕∂
−−−→ Ω3,•(X).

In the ordinary BV formalism the observables are equipped with a bracket which is
non-degenerate as it arises from a shifted symplectic structure on the space of fields.
There is no shifted symplectic structure on the fields above; nevertheless, there is
a BV bracket acting on observables. This endows the factorization algebra χ(u(1))
with the structure of a shifted Poisson algebra, where we note that the bracket
is degenerate (and so cannot arise from a shifted symplectic form). One outcome
of this is that the theory does not admit an action functional in the usual sense.
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It does however admit the following “non local” formulation as 1
2

∫
X
α∂∂−1α +

1
2

∫
X(ψ, ∂ψ) where α is a closed (2, •) form and ψ is the fermion.

OnX = C3 is not hard to see explicitly how the residual superconformal algebra
osp(6|2) acts on χhol(u(1)). In fact, a much larger algebra acts after performing the
holomorphic twist—the infinite-dimensional exceptional super Lie algebra E(3|6)
defined in [6, 7]. As a module for this exceptional algebra we can identify the local
operators with a Verma-type module of the form Sym(I(0, 0; 1;−1)∗), see [7] for a
definition. From this description, we compute the character of local operators as
the plethystic exponential of

f
u(1)(t1, t2, r, q) =

(r + r−1)q3/2 − (t1 + t−1
1 t2 + t−1

2 )q2 + q3

(1− t−1
1 q)(1 − t1t

−1
2 q)(1 − t2q)

By a general argument, one can identify this character with the partition function
of the theory on the Hopf manifold (C3−0)/ ∼ ≃ S5×S1. From this perspective,
our computation above readily agrees with results for the partition function of
five-dimensional supersymmetric Yang–Mills theory on S5.

A Maurer–Cartan element of E(3|6) gives rise to a deformation of χhol(g). A
particular deformation localizes the theory to live on a fixed complex curve Σ ⊂ X
and is related to the famous equivariant localization in the context of the AGT
correspondence.

Our proposal for the theory χhol(sl(N)) on the holomorphic twist of a stack of
N > 1 fivebranes is based off the formulation of twisted holography developed by
Costello, Gaiotto, Li, and Paquette [8, 9, 10]. In [11] we have given a description
of the holomorphic (minimal) twist of eleven-dimensional supergravity in terms
of the exceptional super Lie algebra E(5|10). There is a filtration F • this Lie
algebra whose Nth term we conjecture is related to the theory χhol(sl(N)). The
theory on a stack of N = 2 fivebranes then corresponds to the zeroth associated
graded component of this filtration F 0/F−1 and is precisely the algebra E(3|6) we
found above. We present evidence for this description of χhol(sl(2)) in the form
of character computations and a careful analysis of the localization of this theory
to complex dimension one—where it exactly presents the chiral part of Liouville
theory.
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Differential graded modular functors and the Verlinde formula

Lukas Woike

(joint work with Christoph Schweigert)

A topological field theory is defined as a symmetric monoidal functor from the
category of cobordisms to the category of vector spaces. Especially in dimen-
sion three, topological field theories provide a powerful tool for the investigation
of representation-theoretic objects, such as modular categories, i.e. finite ribbon
categories with a non-degenerate braiding. Examples of modular categories can
be obtained by taking modules over ribbon factorizable Hopf algebras (in partic-
ular quantum groups) or suitable vertex operator algebras. Given a semisimple
modular category, one can apply the Reshetikhin-Turaev construction [1] to ob-
tain a topological field theory. It is not possible to apply the Reshetikhin-Turaev
construction directly to a non-semisimple modular category, but a construction
of Lyubashenko [2] still gives us a modular functor in this case, i.e. a system of
projective representations of mapping class groups of oriented surfaces that is com-
patible with gluing. The mapping class group representation assigned to a specific
surface is also referred to as the conformal block of that surface.

Lyubashenko’s modular functor assigns vector spaces to surfaces; the important
homological quantities of modular categories such as the Hochschild complex or
the Ext algebra of the monoidal unit do not appear. It is therefore a natural
question whether there is a meaningful interaction between the homological algebra
of a modular category and low-dimensional topology. Building on preparations in
[3, 4, 5], this question is answered affirmatively in [6]: Any modular category C
gives naturally rise to a differential graded modular functor FC that assigns chain
complex valued conformal blocks to oriented surfaces. These chain complexes
come with projective actions of the respective mapping class groups up to coherent
homotopy. The gluing of differential graded conformal blocks is implemented via
homotopy coends over projective objects of C. The differential graded conformal
block for the sphere is the (dual of the) Ext algebra of the monoidal unit of C; for
the torus, it is the Hochschild complex of C. In zeroth homology, Lyubashenko’s
construction is recovered.

The differential graded modular functor of a non-semisimple modular category
C provides a topological access to the homological algebra of C. Nonetheless, it
is really unclear whether the key features of modular categories carry over from
the linear to the differential graded setting. One of the most important results
for semisimple modular categories is the Verlinde formula [7], a statement on the
conformal block for the torus equipped with the algebra structure induced by the
monoidal product (this is called the Verlinde algebra). The Verlinde formula, when
phrased topologically, says that the algebra structure coming from the monoidal
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product is transformed into a diagonal multiplication through the action of an

element S =

(
0 −1
1 0

)
∈ SL(2,Z) in the mapping class group of the torus. This

is often summarized in the slogan that the ‘S-matrix diagonalizes the fusion’. In
[8] we prove a homotopy coherent version of the Verlinde formula for differential
graded modular functors: To this end, one first needs a differential graded Verlinde
algebra, i.e. an algebra structure on the differential graded conformal block of the
torus. This algebra structure should be induced by the monoidal product. The
algebras that we construct are E2-algebras, i.e. homotopy commutative differen-
tial graded algebras whose commutativity behavior is controlled by braid groups;
their homology is a Gerstenhaber algebra. In fact, it is easy to see that the torus
conformal block, i.e. the Hochschild complex of C, comes with the structure of a
non-unital E2-algebra induced by the monoidal product [4]. For the differential
graded Verlinde formula, it turns out that the differential graded conformal block
for the torus needs to be treated in tandem with its dual, the Hochschild cochain
complex of C. It also comes with the structure of an E2-algebra induced by the
monoidal product (compared to the dual result, this is much harder). This tells us
that on the differential graded conformal block for the torus and its dual, one has
indeed a multiplicative structure that can be interpreted as a differential graded
analogue of the Verlinde algebra. Now we can state a Verlinde formula, the main
result of [8]: Through the action of the mapping class group element S from above
(we can talk about the action of this mapping class group element because we have
the differential graded modular functor), the Verlinde algebra is transformed into
a different E2-algebra, namely Deligne’s E2-structure, the famous E2-structure
that lifts the standard Gerstenhaber bracket on Hochschild (co)homology. Since
we need here Deligne’s E2-structure on the Hochschild chain and cochain complex
simultaneously, we need the cyclic version of Deligne’s E2-structure that addition-
ally requires a Calabi-Yau structure on the tensor ideal of projective objects of C.
This Calabi-Yau structure turns out to be the one induced by the modified trace,
an important non-semisimple replacement of the quantum trace [9, 10].

In the semisimple case, the differential graded Verlinde formula collapses to
degree zero and recovers the ‘usual’ Verlinde formula. In the cochain version of
the non-semisimple case, the differential graded Verlinde formula recovers in zeroth
cohomology a proposal for a non-semisimple Verlinde formula by Gainutdinov
and Runkel [11]. There is however ‘higher information’ beyond degree zero; the
differential graded Verlinde algebra generally has non-zero Gerstenhaber brackets.
In contrast to that, the chain version of the differential graded Verlinde algebra has
a non-trivial product only in degree zero. The Verlinde formula for this product in
degree zero amounts to a block diagonalization of the fusion product. Interestingly,
the quantum dimensions of simple objects that appear in the semisimple version of
the Verlinde formula (they are part of the diagonal product that the fusion product
in transformed into) are replaced with the modified dimensions coming from the
modified trace. This is not built in, but really a consequence of the differential
graded Verlinde formula.
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Key ingredients in the proof of the differential graded Verlinde formula are

• a new description of Deligne’s E2-structure on the Hochschild cochain
complex of a finite tensor category using the homotopy theory of braided
operads and the canonical end of a finite tensor category [12],
• and the trace field theory of a finite tensor category, an open-closed topo-
logical conformal field theory that helps us relate modified traces and
homological algebra [13].
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