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Introduction by the Organizers

The workshop Toric Geometry had 34 in-person participants, and 21 further vir-
tual participants. Toric geometry is the rich interplay between algebraic and con-
vex geometry relating varieties with almost transitive torus action to combinatorial
and polyhedral data. The field continues to develop, with lots of recent activity
connecting toric geometry to deformation theory, K-stability, birational geometry,
resolution of singularities, among other topics.

A major theme of the workshop was degenerations to, and deformations of,
toric varieties, including relations to K-stability. Petracci discussed the use of
deformation theory of toric varieties to study the local geometry of the moduli
space of K-stable Fano varieties. Blum reported on recent work that constructs
a canonical two-step degeneration of any klt Fano variety to a klt Fano admit-
ting a Kähler-Ricci soliton. Filip presented work-in-progress on the connection
between mutations of Laurent polynomials and deformations of toric Gorenstein
3-folds with non-isolated singularities. Mutations of polytopes returned in the
talk of Mohammadi, who described new techniques to obtain toric degenerations
of Grassmannians. A major source of toric degenerations in recent years has come
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from finitely generated semigroups arising in Newton-Okounkov theory. Haase pre-
sented work showing the subtleties of this approach, giving a characterization of
when these semigroups are finitely generated for non-toric flags on a toric variety.

Another theme was toric methods in resolution of singularities. Temkin gave
an overview of the recent much improved algorithm, joint with Abramovich and
W lodarczyk, for functorial resolution of singularities. In a second, example-oriented
talk, W lodarczyk presented further improvements that exploit torus actions. Sa-
triano proposed a framework for computing stringy Hodge numbers of singular
varieties using resolutions via Artin stacks, and verified this framework for toric
varieties.

The study of birational geometry and singularities played a prominent role in
the talks of Batyrev, Wrobel, Süß, and Laface. Batyrev discussed how to construct
minimal models of nondegenerate hypersurfaces in toric varieties via the Fine in-
terior of Newton polytopes. Wrobel considered complete intersections in toric va-
rieties, describing the various types of singularities of the minimal model program
in terms of the anticanonical complex, and giving applications to classification of
certain terminal Fano 3-folds. Süß bounded the possibilities for toric singularities
via the normalized volume. Laface presented the recent breakthrough, joint with
Castravet, Tevelev, and Ugaglia, on exhibiting toric surfaces whose blow-ups have
non-polyhedral effective cones. This shows that M0,n has non-polyhedral effective
cone for n ≥ 10.

Higher-complexity torus actions continue to play a prominent role in the subject.
Using the geometry of C∗-actions, Romano presented a detailed study of certain
Picard-rank three Mori Dream Spaces. Monin described the cohomology ring of
fiber bundles whose fibers are toric varieties. Kaveh extended the theory of toric
vector bundles to equivariant vector bundles on toric schemes.

Other speakers developed core tools in toric geometry and made connections to
other fields. Altmann continued the Oberwolfach tradition of progress on under-
standing the derived category of toric varieties by giving a description of all full
exceptional collections of line bundles on Picard-rank two toric varieties. Bruce
described a connection between multigraded regularity on products of projective
spaces and quasilinear resolutions, generalizing the classical case. Machine learn-
ing starred in the talk of Hofscheier, who discussed his experiments with lattice
polytopes. Sottile closed the conference by challenging us to return to underap-
preciated connections of toric geometry to mathematical physics.

On Tuesday evening there was lively session of five minute talks by both junior
and senior participants. Speakers were:

(1) Jarek Wisniewski Birational maps, C∗-actions and Mori Dream Spaces
(2) Oliver Clarke Toric Degenerations via combinatorial mutations
(3) Leonid Monin Multi-polytopes and quasitoric manifolds
(4) Julius Giesler The plurigenera of minimal models of toric hypersurfaces
(5) Juliette Bruce Top weight cohomology of Ag
(6) Marie Brandenburg A problem from economics and lattice polytopes
(7) Benjamin Nill Thin polytopes
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(8) Andreas Bäuerle Classification of some Fano 3-folds with torus action
(9) Marti Salat Molti Monomial ideals via Klyachko filtrations

(10) Johannes Hofscheier Generalised flatness constants
(11) Fatemeh Mohammadi Double Schubert polynomials
(12) Kiumars Kaveh An extension of Brianchon-Gram theorem and toric vari-

eties

In-person participants were happy to meet again for intense mathematical dis-
cussions after the pandemic pause, and many informal connections were created.
We are grateful to Oberwolfach for hosting this workshop, and providing such
excellent working conditions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

The structure of exceptional sequences on toric varieties of Picard

rank two

Klaus Altmann

(joint work with Frederik Witt)

We report on results obtained jointly with Frederik Witt, cf. [AW21].

1. Picard rank two

Smooth toric varieties X of Picard rank two provide the most basic class of
projective toric varieties beyond projective spaces. According to Kleinschmidt’s
classification [Kle88] they are completely determined by integers ℓ1, ℓ2 ≥ 2 and
0 = c1 ≥ c2 ≥ . . . ≥ cℓ2 arising in the class map

π :=

(
1 . . . 1 c1 . . . cℓ2

0 . . . 0 1 . . . 1

)
: Zℓ1+ℓ2 = DivT (X)→ Pic(X) = Z2.

The usual toric lattices M and N occur as M = kerπ and N = cokerπ∗. In other
words, N is the quotient by the two rows of π, which leads to vectors u1, . . . , uℓ1

and v1, . . . , vℓ2 ∈ N as the images of the unit vectors of Zℓ1+ℓ2 . The fan Σ ⊆ NR

for X arises from the maximal cones σi,j being generated by all rays except ui and
vj . The classes of the divisors associated to the rays u1 and v1 generate the nef
cone and identify the Picard lattice with Z2. The dimension of X is d = ℓ1+ℓ2−2.

Actually, beyond ℓ1, ℓ2, only the invariants

α := −cℓ2 ≥ 0 and β := −
∑
i c
i ≥ α

will be important for us. The case α = β = 0 means X = Pℓ1−1 × Pℓ2−1 and will
be refered to as the product case; in the remaining twisted case we merely have a
fibration X → Pℓ1−1 with fiber Pℓ2−1.

2. Exceptional sequences

Assume that X is a smooth, projective variety with H≥1(X,OX) = 0. This applies,
in particular, to all toric varieties.

Definition 1. A sequence s = (L1, . . . ,LN ) of line bundles on X is called excep-
tional if Ext•(Lj ,Li) = 0 whenever i < j. Moreover, it is called full (abreviated
by FES), if L1, . . . ,LN generate the entire derived category D(X).

If, instead of line bundles, we allow arbitrary elements of D(X) it was shown
in [Kaw06, Kaw13, Kaw16] that for toric varieties X FESs always exist. For the
stronger version of the previous definition, however, this fails even for toric Fano
varieties, cf. [Efi14].

On the other hand, for toric varieties of Picard rank two FESs of line bundles
always exist. This is a well-known fact and follows, for instance, from the projective
bundle structure. Indeed, one lifts a FES from the base Pℓ1−1 and defines a
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sequence from the union of several twists of this lifted FES. We shall refer to this
sequence as being of Orlov type.

Hence, the goal of the present note is not to discuss existence questions but to
shed light on the structure of all possible FESs.

3. The immaculate locus

What makes this goal accessible for the Picard rank two case is the explicit knowl-
edge of the immaculate locus

I(X) := {[L] ∈ PicX | H•(X,L−1) = 0} ⊂ PicX = Z2.

By [ABKW20], it consists of the interior lattice points of the horizontal strip

H = [0 ≤ y ≤ ℓ2] ⊂ R2

and of the parallelogram

P = {(x, y) | − β ≤ x ≤ ℓ1, 0 ≤ 〈(1, α), (x, y)〉 ≤ ℓ1 + αℓ2 − β} ⊂ R2

as sketched in Figure 1. Now, setting si := [Li] the sequence s = (s1, . . . , sN ) is

H

P

(ℓ1 − β, ℓ2)

0

Figure 1. The sets R (dark), B (medium), and G (light) for
ℓ1 = 4, ℓ2 = 3, α = 1, and β = 2.

contained in Z2 and the condition for exceptionality turns into sj − si ∈ I(X).
In particular, it becomes purely combinatorial. On algebro-geometric grounds
|s| = N is bounded by |Σ(d)| = ℓ1ℓ2.

4. The results

We call an exceptional sequence s maximal if |s| = ℓ1ℓ2. Using this terminology,
we obtained the following results:

4.1. Fullness. For the present special case of toric varieties with Picard rank two,
we can confirm Kuznetsov’s conjecture that if there exists a FES at all, then every
exceptional sequence of maximal length is full.
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4.2. Spatial constraints. In the twisted case, FESs have a height of at most
2ℓ2. In the product case we can guarantee this for either the height or the width.
Interestingly (and almost strangely) enough, this fails if the exceptional sequence
is not of maximal length. On (P1)3 (which of course is of Picard rank three), this
even fails for FES: Indeed, we present examples in [AA] spreading arbirarily far
into all three directions.

4.3. Lexicographic ordering. In the twisted case, imposing a vertical lexico-
graphic order preserves exceptionality. In the product case either the vertical or
the horizontal order works. Again, this fails for non-maximal exceptional sequences
or for FES on (P1)3.

4.4. Classification. We produce FESs of height ≤ 2ℓ2 as follows:

(i) Start with some so-called admissible set R ⊂ P ∩ Z2 sitting in the strip H′ :=
[ℓ2 ≤ y ≤ 2ℓ2 − 1]. Admissibility is explained in [AW21] – it does mainly say that
R narrows with height, cf. Figure 1.

(ii) Inside H′ supplement R with B such that at every height h the sets Bh :=
B ∩ [y = h] and Rh := R ∩ [y = h] arranged in this order consist of ℓ1 consecutive
points.

(iii) Define G := B− (−β, ℓ2). Then s := R∪G together with lexicographic order
defines a FES. Furthermore, any FES arises this way up to shifts and reordering,
cf. Figure 1. Finally, the FESs of Orlov type correspond to the case of R = ∅.

4.5. Exceptional posets. By definition, FESs come with a particular total order.
We can switch our viewpoint though and consider subsets s ⊂ Z2 of size ℓ1ℓ2 with a
so-called exceptional partial order P (s) such that a total ordering of s is exceptional
if and only if it refines P (s). This poset P (s) can be explicitely determined out of
the data in (4.4). It always contains ≤eff defined by A ≤eff B if and only if B−A
lies in the effective cone. To completely determine P (s), however, we also need to
take into account the relative positions of those layers Bh with Rh = ∅.

4.6. Strongly exceptional sequences. In connection with tilting bundles one
looks for exceptional sequences which are strong, that is, they also satisfy

Ext≥1(si, sj) = 0

for 0 ≤ i, j ≤ n. It turns out that s is strong if and only if P (s) equals the smallest
possible choice, i.e., P (s) =≤eff .
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Multigraded Castelnuovo–Mumford Regularity on Products of

Projective Space

Juliette Bruce

(joint work with Lauren Cranton Heller, Mahrud Sayrafi)

1. Castelnuovo–Mumford regularity on Projective Spaces

Before discussing multigraded Castelnuovo–Mumford regularity on products of
projective spaces and our new work, we begin by briefly recalling the standard
graded story of Castelnuovo–Mumford regularity on a single projective space. In-
troduced by Mumford in the mid-1960’s Castelnuovo–Mumford regularity is de-
fined in terms of cohomological vanishing.

Definition 1.1. A coherent sheaf F on Pn is d-regular if and only if:

Hi(Pn,F(d− i)) = 0 for all i > 0.

The Castelnuovo–Mumford regularity of F is then

reg(F) := min
{
d ∈ Z

∣∣ F is d-regular
}
.

Roughly speaking one should think about Castelnuovo–Mumford regularity as be-
ing a measure of geometric complexity. Mumford was interested in such a measure
as it plays a key role in constructing Hilbert and Quot schemes. In particular, being
d-regular implies that F(d) is globally generated. However, in the 1980’s Eisen-
bud and Goto showed that being d-regular was also closely connected to interesting
homological properties.

Theorem 1.2. [4] Let F be a coherent sheaf on Pn and M =
⊕

e∈ZH
0(Pn,F(e))

the corresponding section ring. The following are equivalent:

• M is d-regular;
• βi,j(M) := dimK Tori(M,K)j = 0 for all i ≥ 0 and j > d+ i;
• M≥d has a linear resolution.

The goal of our work is to try and understand how this theorem may be gener-
alized to the multigraded setting, i.e. from coherent sheaves on a single projective
space to sheaves on a product of projective spaces.
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2. Multigraded Setting: Products of Projective Spaces

Shifting to the multgraded setting, we fix a dimension vector n = (n1, n2, . . . , nr) ∈
Nr and let Pn := Pn1×Pn2×· · ·×Pnr . We then let S = K[xi,j | 1 ≤ i ≤ r, 0 ≤ j ≤
ni] be the Cox ring of Pn with the Pic(X) ∼= Zr-grading given by deg xi,j = ei ∈ Zr,
where ei is the i-th standard basis vector in Zr.

Maclagan and Smith generalized Castelnuovo–Mumford regularity to this set-
ting in terms of certain cohomology vanishing. Before we can state their definition
of multigraded regularity we need to fix some useful notation to described the
regions in which we will require cohomology to vanish.

Notation 2.1. Given d ∈ Zr and i ∈ Z≥0 we let:

Li(d) :=
⋃

v∈N
|v|=i

(d− v) + Nr.

In order to get a sense for what these regions look like note when r = 2 the
region Li(d) looks like a staircase with (i + 1)-corners. Below we’ve plotted the
regions L1(0, 0), L2(0, 0), and L3(0, 0). Roughly speaking we are going to define
regularity by require Hi to vanish on Li.

With this notation in hand we recall the notion of multigraded Castelnuovo–
Mumford regularity as introduced by Maclagan and Smith.

Definition 2.2. [5, Definition 6.1] A coherent sheaf F on Pn is d-regular if and
only if

Hi (Pn,F(e)) = 0 for all e ∈ Li(d).

The multigraded Castelnuovo–Mumford regularity of F is then the set:

reg(F) :=
{
d ∈ Zr

∣∣ F is d-regular
}
⊂ Zr.

Even for relatively simple examples the multigraded Castelnuovo–Mumford reg-
ularity does not necessarily have a unique minimal element (see Figure 1). That
said reg(F) does have the structure of a module over the semi-group Nef(Pn) ∼= Nr,
i.e. if d ∈ reg(F) then d + e ∈ reg(F) for all e ∈ Nr.

The obvious approaches to generalize Theorem 1.2 to a product of projective
spaces turn out not to work. For example, the multigraded Betti numbers do not
determine multigraded Castelnuovo–Mumford regularity [2, Example 5.1] With
this in mind we focus on generalizing part (3) of Theorem 1.2.



872 Oberwolfach Report 17/2022

Figure 1. The multigraded Castelnuovo–Mumford regularity of
OX where X ⊂ P1 × P1 is the subscheme consisting of three
distinct points ([1 : 1], [1 : 4]), ([1 : 2], [1 : 5]), and ([1 : 3], [1 : 6]).

Definition 2.3. [2] Let F• be a complex of Zr-graded free S-modules.

(1) We say that F• is d-linear if and only if F0 is generated in degree d and
each twist of Fi is contained in Li(d).

(2) We say that F• is d-quasilinear if and only if F0 is generated in degree d

and each twist of Fi is contained in Li−1(d− 1).

In order to see the difference between linear and quasilinear resolutions we note
that on a product of projective spaces the irrelevant ideal generally will have a
quasilinear resolution, not a linear resolution. For example, if we consider P1×P2

so that S = K[x0, x1, y0, y1, y2] and B = 〈x0, x1〉 ∩ 〈y0, y1, y2〉 then the minimal
graded free resolution of S/B is:

S S(−1,−1)6
S(−1,−2)6

⊕
S(−2,−1)3

S(−1,−3)2

⊕
S(−2,−2)3

S(−2,−3) 0.

In particular, we see that the minimal graded free resolution S/B is not (0, 0)-linear
since (−1,−1) 6∈ L1(0, 0), however, it is (0, 0)-quasilinear.

It is not the case that M being d-regular implies M≥d has a linear resolution
[2, Example 4.2], however, we can characterize being d-regular in terms of M≥d

having a quasilinear resolution.

Theorem 2.4. [2, Theorem A] Let M be a finitely generated Zr-graded S-module
with H0

B(M) = 0 then:

M is d-regular ⇐⇒ M≥d has a d-quasilinear resolution

We briefly sketching the proof of the above theorem:

(1) Using a Fourier-Mukai argument we construct a complex G• of free Zr-
graded S-modules whose multigraded Betti numbers are given (in some
range) as follows:

βi,a (G•) = dimH |a|−i
(
Pn, M̃ ⊗ Ωa

Pn(a)
)
.
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(2) Making use of a spectral sequence argument we show that even though G•

is not a priori a resolution of M≥d we have that:

βi,a (M≥d) = βi,a (G•) .

(3) Finally, we characterize M being d-regular in terms of the vanishing of
the cohomology in (1) above.

Note the complex G• constructed in part (1) of the proof sketch above is a
priori not a resolution of M≥d, but instead is a virtual resolution of M [1]. That
said as noted above it does have the same Betti numbers as M≥d, and in all the
examples we have done it turns out to be a resolution.

Conjecture 2.5. [2, Conjecture 6.7] The complex G• is the minimal free resolu-
tion of M≥d.

3. Further Questions

Since computing the minimal graded free resolution of M≥d can be effectively
done via Gröbner basis methods, Theorem 2.4 provides an efficient algorithm for
checking whether a module is d-regular for a particular d ∈ Zr. It would be
interesting to know whether such an algorithm could be extended to computing
all of the minimal elements of reg(M).

Question 3.1. Is there an effective algorithm for computing the multigraded
Castelnuovo–Mumford regularity of a coherent sheaf or module on Pn?

This is equivalent to finding a finite box in Zr that contains all of the minimal
elements of reg(M). If such a finite box does exist, it is very special to the case of
a product of projective spaces.

In particular, one may consider multigraded Castelnuovo–Mumford regularity
of sheaves and modules on other toric varieties [5]. It turns out that there are
examples of finitely generated modules on Hirzebruch surfaces whose multigraded
Castelnuovo–Mumford regularity does not lie in finite a box [3]. This naturally
leads one to ask what assumptions one needs to avoid such potential issues.

Question 3.2. Let X be a smooth projective toric variety, and M a finitely
generated Pic(X)-graded Cox(X)-module. Under what assumptions is reg(M)
finitely generated as a module over the semi-group Nef(X)?
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Resolution of singularities in characteristic zero: new tools

and methods

Michael Temkin

(joint work with Dan Abramovich, Jaros law W lodarczyk)

1. Intoduction

In a series of joint projects with Abramovich and W lodarczyk, we discovered log-
arithmic and stack-theoretic versions of the classical embedded desingularization
algorithm. These methods are simpler, faster, possess better functorial properties
and apply to morphisms too. They are based on extending the pool of geometric
objects one works with by log schemes and stacks. As a result more basic bira-
tional operations are available for the new algorithms, including various versions
of log blow ups and weighted blow ups.

1.1. Classical desingularization. All canonical (or functorial) resolution meth-
ods known so far are embedded: to desingularize a space X (variety, scheme, ana-
lytic space, etc.) of characteristic zero one (locally) embeds it into a smooth or reg-
ular space M , that will be called an ambient manifold, and principalizes the ideal
IX ⊂ OM of X by finding a sequence of smooth blow ups Mn → · · · → M0 = M
such that In = IOMn is invertible and supported on the exceptional divisor. In
the classical situation smooth blow ups are blow ups with smooth centers. This
guarantees that each Mi is a manifold and the last non-empty strict transform
Xl →֒Ml of X is a component of the l-th center, and hence is a resolution of X .
Usage of more general centers is not possible because they usually produce non-
smooth modifications of M and, excluding the case of smooth blow ups, there is
no simple criterion which guarantees that the blown up space is again smooth.

The recent progress is related to the discovery that one can realize analogous
principalization algorithms in wider settings of log smooth log schemes or their
morphisms, smooth stacks or log smooth log stacks. In this case, the pool of
basic admissible blow ups increases, and one can use this to construct better
algorithms. To simplify notation we will only discuss the case of varieties over
a field k of characteristic zero, though everything works when the schemes have
enough derivations in an appropriate sense.

2. Log methods

2.1. Relative log manifolds. Relative principalization takes place in the follow-
ing situation: M → B is an exact log smooth morphism of DM log stacks over
k. We call such a morphism a B-manifold. In our paper [2] we only consider
the case, when B is log smooth over k (or log regular). So, this is also assumed

in the sequel. Étale locally a B-manifold can be modelled on charts of the form
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Spec(AP [Q][t1, . . . ,tn])→ Spec(A), where P and Q give rise to the log structures
and AP [Q] = A ⊗k[P ] k[Q]. Any B-submanifold can be modelled by V (t1, . . . ,tr)
in an appropriate chart.

2.2. Kummer blow ups. By a Kummer submonomial center we mean a Kummer
monomial ideal on a submanifold. Étale locally it can be described as the vanishing

locus of J = (t1, . . . ,tr,m
1/d
1 , . . . ,m

1/d
s ) for appropriate coordinates t1, . . . ,tn and

monomials m1, . . . ,ms. One can think about this as a weighted generalization of
ideal with weights (1, . . . ,1, d, . . . ,d). Formally, this is an ideal in the Kummer
étale topology of M , that is, an ideal J ⊂ OMket

. We introduce the Kummer
blow up M ′ = [BlJ (M)] → M along such a center. Its source is a stack which
can be described as follows: find a Kummer G-cover M → M such that JOMket

is a usual ideal on M , blow up JOMket
and divide the obtained log scheme by

G stack-theoretically. Then M ′ is a partial coarsening of the quotient (we will
describe more general weighted blow ups later). It turns out that M ′ is again a B-
manifold and in this setting one can extend the classical principalization algorithm
to morphisms and log schemes.

2.3. Main results. Our main principalization result is as follows:

Theorem 2.3.1 ([2]). There exists a relative principalization method P which
obtains as an input a relative log manifold f : M → B with a log smooth B and an
ideal I ⊂ OM , and outputs either the empty set (fails) or a sequence of Kummer
blow ups Mn → · · · → M0 = M such that the ideal Jn = JOMn is monomial.
This P satisfies the following properties:

(i) Non-failure up to refining the base: for any input there exists a modification
B′ → B such that P does not fail for X ′ = X ×B B′ → B′ and J ′ = JOX′ .

(ii) Log smooth functoriality: if P(f,J ) is non-empty and g : M ′ → M is log
smooth, then P(f ◦ g, g−1J ) = P(f,J )×M M ′.

(iii) Base change functoriality: if P(f,J ) is non-empty, then P(f ′,JOM ′) =
P(f,J ) ×M M ′. for any base change g : B′ → B with a log smooth B′ and the
base change f ′ : M ′ = M ×B B′ → B′.

As in the classical case, principalization implies desingularization:

Theorem 2.3.2 ([2]). There is a method F which assigns to a dominant morphism
f : X → B of integral log varieties (or log DM stacks) over k with a log smooth
B either a non-representable modification Xres → X or a ”fail output” Xres = ∅
such that Xres → B is log smooth and

(i) Non-failure up to refining the base: for any f there exists a modification
B′ → B with a log smooth B′ such that (X ×B B′)res is non-empty.

(ii) Log smooth functoriality: if Xres is non-empty and X ′ → X is log smooth,
then X ′

res = Xres ×X X ′.
(iii) Base change functoriality: if Xres 6= ∅, then (X×BB

′)res = Xres×BB
′ for

any base change B′ → B with a log smooth source.
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Remark 2.3.3. (i) This theorem is the first canonical semistable reduction for
any dimension of X and B (a non-canonical version was obtained by Abramovich-
Karu). Even when B is a trait this provides the first known version of semistable
reduction compatible with ramified extensions of the base. Log smooth functori-
ality is new even when B is the spectrum of a field (see [1]).

(ii) The choice of the modification B′ → B in the non-failure claims of the
above results can also be done canonically (and even smooth-functorially), but
this is still a work in progress.

(iii) The algorithm outputs a stack-theoretic modification, but one can then
find a further modification which is representable over the initial M or X . This is
achieved by a destackification operation, which is smooth-functorial, but not log
smooth-functorial.

3. The dream algorithm

Using stacks and certain weighted blow ups seems inevitable already for the sake
of constructing log smooth-functorial methods. The weights used in these case
are of a special form and the centers can be interpreted as relatively classical
object – Kummer ideals. However, it is very natural as a next step to try to use
arbitrary centers like (xd11 , . . . ,x

dn
n ), especially, because it was known for decades

that such weighted blow ups provide the fastest way to resolve quasi-homogeneous
singularities. For example, the minimal resolution of the elliptic singularity X =
V (x2 + y3 + z6) ⊂M = A3

k is obtained by the weighted blow up along (x2, y3, z6).
To make this idea a working tool for resolution we should formalize the notion of
weighted centers and define corresponding blow ups.

3.1. h-ideals. We introduce generalized ideals of the form I = (t
1/w1

1 , . . . ,t
1/wn
n )l

as ideals for the h-topology, or simply ideals on fine enough alterations of Y (an
alternative approach is to define them using the Zariski-Riemann space ofX). This
idea resembles Kummer ideals, but there is one difference which is not essential
for our applications: different ideals can become equivalent after h-localization,

in particular, (t
1/w1

1 , . . . ,t
1/wn
n )l = (t

l/w1

1 , . . . ,t
l/wn
n ) as h-ideals. In addition, any

ideal on Y is invertible as an h-ideal since it becomes invertible on an appropriate
modification.

3.2. Weighted blow ups. Given a weighted ideal I = (t
1/w1

1 , . . . ,t
1/wn
n ) on M

we consider the associated Rees algebra RI = ⊕lI [l], where I [l] is generated by all
monomials

∏
i t
mi

i with
∑n

i=1 wimi ≤ l. Then define the stack-theoretic weighted
blow up [BlI(M)] to be the stack-theoretic proj

ProjM (RI) = [(SpecM (RI) \ V )/Gm],

where V is the vanishing locus of the ideal ⊕l>0I [l] and the quotient is stack-
theoretic. The coarse moduli space is the classical blow up of t1, . . . ,tn with weights
w1, . . . ,wn.
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3.3. J -admissible centers. By a J -admissible center we mean an h-ideal I
locally given by (td11 , . . . ,t

dn
n ) with d1 ≤ d2 ≤ . . . ≤ dn and such that J ⊆ I. The

associated weighted blow up is along J 1/N = (t
1/w1

1 , . . . ,t
1/wn
n ), where N is such

that wi = N/di are integral and (w1, . . . ,wn) = 1.

3.4. The dream algorithm. Using the new tools we obtained in [3] a simplest
possible principalization algorithm, which is arguably impossible in the classical
setting. It was independently discovered by McQuillan in [4] using a bit different
language.

Theorem 3.4.1. Let Y be a smooth stack of finite type over k and J ⊆ OY an
ideal, then

(i) There exists a unique J -admissible center I = (td11 , . . . ,t
dn
n ) such that

inv(I) := (d1, . . . ,dn) is maximal possible with respect to the lexicographic
order. In particular, the invariant inv(J ) := inv(I) is well defined.

(ii) Consider the weighted blow up Y ′ = BlI(Y ) and the transform J ′ =
(JOY ′)(IOY ′)−1. Then inv(J ′) < inv(J ). In particular, iteratively blow-
ing up such centers one obtains a principalization sequence Yn → · · · → Y
for J .

(iii) The above construction is smooth-functorial.

Once again, this implies existence of a non-embedded resolution algorithm,
which has no history.

4. Future research

4.1. Logarithmic dream algorithm. Weighted log blow ups with arbitrary
weights should give rise to a relative analog of the dream algorithm. In the abso-
lute case this algorithm has been constructed by Quek in [5], and a similar method
should apply to morphisms.

4.2. Arbitrary bases. It seems probable that similar algorithms work over arbi-
trary base log schemes, including log points or their thickenings. This is a topic
of current research.

4.3. Factorization. It is natural to expect that similarly to the classical case, the
new desingularization algorithms can be used to obtain factorization results for
modifications of log smooth schemes or stacks which possess stronger factorization
properties. It is an interesting question if using the new blow ups one can even
obtain a strong factorization, which is still open in the classical case.
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K-moduli spaces of Fano varieties and toric geometry

Andrea Petracci

(joint work with Anne-Sophie Kaloghiros)

We work over an algebraically closed field of characteristic zero, denoted by C.
If X is a projective reduced variety with mild singularities, one can consider its
canonical divisor KX , which is a Q-Cartier divisor. If, in addition, X is smooth,
then KX is the divisor associated to the canonical sheaf ωX = det Ω1

X . One can
also consider the anticanonical divisor which is −KX . If X has pure dimension
n, then its canonical (resp. anticanonical) volume (also called degree) is the self-
intersection Kn

X (resp. (−KX)n). X is called canonically polarised if KX is ample,
whereas it is called Fano if −KX is ample.

The most nagging obsession of algebraic geometers is to construct moduli spaces,
in particular moduli spaces of varieties. One usually considers the set of projective
varieties with fixed dimension, with fixed sign of the canonical divisor (i.e. ample
or antiample), with fixed (anti)canonical volume and with certain classes of sin-
gularities and hopes to get a well-behaved moduli stack. (One can also consider
moduli of varieties with trivial canonical divisor, but we avoid to discuss this in
this note.)

In dimension 1, the Fano case is obvious thanks to Riemann’s uniformisation,
which says that P1 is the unique smooth projective curve of genus 0, hence the
moduli space is just a point. The situation of canonically polarised curves has
been clarified by Deligne and Mumford:

Theorem 1 (Deligne–Mumford [14]). For each integer g ≥ 2, smooth projective
curves of genus g form a smooth Deligne–Mumford stack denoted by Mg. This

stack Mg has a compactification Mg which is a smooth proper Deligne–Mumford
stack and parametrises projective curves with at most nodes and with arithmetic
genus g. Moreover, Mg (resp. Mg) admits a coarse moduli space Mg (resp. Mg)
which is a normal quasi-projective (resp. projective) variety with finite quotient
singularities.

Moduli of canonically polarised surfaces has been studied by Gieseker [16]. This
was generalised in any dimension by Viehweg [35]. The analogue of Theorem 1 for
canonically polarised varieties of dimension ≥ 2 is:

Theorem 2 (Kollár–Shepherd-Barron [22], Alexeev [2]). For every n ∈ Z≥1 and

v ∈ Q>0, there is a proper Deligne–Mumford stack M
KSBA

n,v which parametrises
canonically polarised n-dimensional projective varieties with canonical volume v
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and with at most semi-log-canonical1 singularities. Moreover, M
KSBA

n,v admits a

coarse moduli space M
KSBA

n,v which is projective.

We refer the reader to the book [23] for a thorough and updated account. Note

that M
KSBA

1,2g−2 =Mg for every g ∈ Z≥2.
The case of Fano varieties of dimension ≥ 2 has been elusive for decades, since

moduli of Fanos are very non-separated. The most easy example that shows this
is the family {x20 + x21 + x22 + tx23 = 0} ⊂ P3 over A1, where the central fibre is
the quadric cone P(1, 1, 2) and all the other fibres are the smooth quadric surface
P1 × P1. One can consider many more examples, e.g. degenerations of P2 [17, 29]
or toric degenerations of toric Fano varieties [19].

One recent and spectacular discovery is that K-stability [15, 33], i.e. the study
of Kähler–Einstein metrics on Fano varieties [12, 32], exactly selects a class of
Fano varieties with well-behaved moduli. We will not even try to write down the
definition of K-stability — we refer the reader to [38]; we just mention that one
can define the notions of K-stable, K-polystable, and K-semistable for a normal
Fano variety. The following implications hold:

K-stable⇒ K-polystable⇒ K-semistable⇒ klt.

So, if one throws away the Fano varieties which are not K-semistable, one gets
reasonable moduli. More precisely:

Theorem 3 (K-moduli [4,9–11,20,25,28,36,37]). For every n ∈ Z≥1 and v ∈ Q>0,
there exists an Artin stack of finite type MKss

n,v which parametrises K-semistable
n-dimensional Fano varieties with anticanonical volume v and which admits a
good moduli space2, denoted by MKps

n,v . Moreover, MKps
n,v is a projective scheme

whose closed points are in a natural 1-to-1 correspondence with K-polystable n-
dimensional Fano varieties with anticanonical volume v.

MKss
n,v is called the K-moduli stack and MKps

n,v is called the K-moduli space.

In dimension 1 we get MKss
1,2 = B PGL2 (i.e. this is the point with isotropy

group Aut(P1) = PGL2) and MKps
1,2 = SpecC.

It is a very interesting (and quite open) question to study the geometry of
MKss

n,v and of MKps
n,v . The first problem is to understand whether a Fano variety

is K-(poly/semi)stable (Calabi problem). Pn (and more generally a product of
projective spaces) is K-polystable, but not K-stable. The Calabi problem for
smooth Fano varieties of dimension 2 is completely solved [33]. The Calabi problem
for smooth Fano 3-folds is almost completely solved [6]. There is an easy criterion
to understand the K-stability of toric varieties [8]: a toric Fano variety is K-
polystable if and only if the polytope of its toric boundary has barycentre in the
origin. Similar results exist for complexity-1 Fano T-varieties [18] and for spherical
Fano varieties [13].

1Semi-log-canonical (slc, for short) singularities are defined in [24, Chapter 5]. Varieties with
slc singularities can be reducible.

2The notion of good moduli space is a generalisation of coarse moduli space [3].
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In general, the global geometry of K-moduli are understood for very few vari-
eties, e.g. smooth(able) Fano varieties of dimension 2 [30], cubic 3-folds [26], cubic
4-folds [27], double covers of P3 branched in quartic surfaces [7].

In the rest of this note we concentrate on the local properties of moduli. Let

M be one ofMg,Mg, M
KSBA

n,v ,MKss
n,v and let M denote the good moduli space of

M. Let X be a variety which corresponds to a closed point [X ] ofM. Let Def(X)
denote the base of miniversal deformation of X : this is the formal spectrum of
a local noetherian C-algebra with residue field C — one can also work in the
analytic category. The automorphism group Aut(X) acts on Def(X). Then the
quotient stack [Def(X)/Aut(X)] gives an étale neighbourhood of [X ] in M, and
the quotient scheme Def(X)/Aut(X) gives an étale neighbourhood of [X ] in M .
Therefore the local geometry ofM and of M is clear once understands the action
of Aut(X) on Def(X).

If X is a nodal curve, then Def(X) is smooth; if, in addition, the arithmetic
genus of X is g ≥ 2, then Aut(X) is finite, henceMg is smooth and Mg is normal
with finite quotient singularities. Therefore, for nodal curves, the moduli spaces
are “almost smooth”. This is completely false for canonically polarised varieties
of dimension ≥ 2:

Theorem 4 (Murphy’s law by Vakil [34]). Let S be an analytic germ whose equa-
tions are polynomials with coefficients in Z. Then, for every integer n ≥ 2, there
exists a smooth projective canonically polarised n-fold X such that Def(X) and S
have the same singularity type, i.e. either there exists a smooth map Def(X)→ S
or a smooth map S → Def(X).

This implies that the moduli space/stack of canonically polarised can be very
singular!

Now the question is: what happens for K-moduli of Fano varieties? A very
easy consequence of deformation theory says that if X is a smooth Fano variety
then Def(X) is smooth. The same is true also for singular Fano varieties of di-
mension 2 [1]. This implies thatMKss

n,v (resp. MKps
n,v ) is smooth (resp. normal) in a

neighbourhood of every point corresponding to a K-polystable Fano variety that
is either smooth or 2-dimensional. It was natural to ask whether the K-moduli
stack is always smooth and the K-moduli space is always normal. In joint work
with Kaloghiros, we have shown that this is not the case:

Theorem 5 (Kaloghiros–P. [21]). For every integer n ≥ 3, there exist v ∈ Q>0

and a K-polystable toric Fano variety X such that at least one of the following
statements holds:

(1) MKss
n,v and MKps

n,v have ≥ 2 local branches at [X ],

(2) MKss
n,v and MKps

n,v are non-reduced at [X ].

In [31] we show that K-moduli of Fano varieties can be quite singular (but we
don’t know if Murphy’s law in the sense of Vakil holds). In particular, we show
that the number of local branches can be arbitrarily high:
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Theorem 6 (P. [31]). For every integer n ≥ 3 and for every integer m ≥ 0, there
exist a number v ∈ Q>0 and a K-polystable n-dimensional toric Fano variety X
such that (−KX)n = v and the number of local branches of Def(X), of MKss

n,v at

[X ], and of MKps
n,v at [X ] is ≥ m.

The proof of this has the following three ingredients.

• We make use of Altmann’s description of the deformation theory of iso-
lated Gorenstein toric 3-fold singularities [5]. In particular, we construct
a sequence of lattice polygons Fm such the deformation space of UFm

(which is the isolated Gorenstein toric 3-fold singularity associated to Fm)
has ≥ m local branches.
• We pick a 3-dimensional polytope Pm which is quite symmetric (this im-

plies that the corresponding toric Fano 3-fold XPm is K-polystable) and
has some facets isomorphic to Fm.
• Since UFm is an open affine subscheme of XPm we consider the restriction

map Def(XPm)→ Def(UFm) and we show that is surjective.
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We provide a combinatorial criterion for the finite generation for valuation semi-
groups associated with an ample divisor on a smooth toric surface and certain
non-toric valuations of maximal rank.
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The main idea behind Newton–Okounkov theory is to attach combinatorial/con-
vex-geometric objects to situations in algebraic geometry in order to facilitate their
analysis [KK12,LM09]. In other words, one tries to partially replicate the setup of
toric geometry in settings without any useful group action. By now applications
of Newton–Okounkov theory range from combinatorics and representation theory
through birational geometry [KL17a,KL17b,KL19,KL18a] to mirror symmetry [9]
and geometric quantization in mathematical physics.

The question of finite generation of the involved valuation semigroups appears
to be difficult in general, with little progress beyond the completely toric situation,
but potentially great benefits such as the existence of toric degenerations [And13]
and completely integrable systems [HK15] to name but a few. In this talk, we take
a few steps away from the situation where every participant is toric: we consider
valuation semigroups associated to torus-invariant divisors on toric surfaces with
respect to a slightliy non-toric valuation.

Setup. We are concerned with a polarized toric surface (X,D) given by a polytope
P in a 2-dimensional latticeM with normal fan Σ in the dual latticeN . A primitive
v ∈ N determines a toric morphism ι : P1 → X . For our flag, we choose Y1 = ι(P1)
and Y2 = ι(1 ∈ P1). (If we chose Y2 = ι(0) or Y2 = ι(∞) instead, we would be in
the situation of [IM19] and finite generation would follow.) For ℓ ∈ Z≥0 and any
non-trivial section s ∈ Γ(X,OX(ℓD)) we define

valY•
(s) := (ℓ, val1(s), val2(s))

where val1(s) = ordY1(s) and val2(s) = ordY2(s̃|Y1), with s̃ := s/fval1(s) for a
local equation f of Y1 around Y2. The valuation semigroup SY•

(D) is then

SY•
(D) := {valY•

(s) | s ∈ Γ(X,OX(ℓD)) \ {0}} ⊆ N3.

v

Σ

(a) Σ, v in NR

P

(b) P in MR

Main Result. Given the combinatorial data P and v, we define two cones, σ±
based on the longest segment in P perpendicular to v.

They are unions of cones in Σ with ±v ∈ int(σ±).

Theorem. The following are equivalent.

(1) The semigroup SY•
(D) is finitely generated.

(2) ±v lies on the boundary of conv(int σ± ∩N), respectively.
(3) If X ′ is the toric variety with fan generated by σ±, the morphism P1 → X ′

given by v is a smooth embedding.
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P

(a) The longest segment in P perpen-
dicular to v.

v

σ+

−v
σ−

Σ

(b) The cones σ± are dual to the edge
directions adjacent to the longest seg-
ment.

We leave it as an exercise to the reader to convince herself that in our first
example, SY•

(D) is not finitely generated while in our second example (taken
from [CLTU20]) SY•

(D) will be finitely generated for any choice of D.
We close with an example of a polarized toric surface (X,D) for which no v ∈ N

yields a finitely generated semigroup.
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Toric vector bundles over a discrete valuation ring and affine buildings

Kiumars Kaveh

(joint work with Christopher Manon, Boris Tsvelikhovsky)

Let T be an n-dimensional split algebraic torus over a field k with cocharacter
lattice N ∼= Zn. Let X = XΣ be a T -toric variety associated to a fan Σ in
NR = N ⊗ R ∼= Rn. A torus equivariant vector bundle (or toric vector bundle for
short) on X is a vector bundle E on X together with a linear action of T that lifts
that of X . Toric vector bundles have been classified by Kaneyama [Kan75] and
by Klyachko [Kly89]. In the talk we discussed extending Klyachko’s classification
to toric schemes over a discrete valuation ring O. Our classification, on the other
hand, extends the known classification of toric line bundles on toric schemes (see
[KKMS73, §IV.3(e)], [BPS14, Section 3.6]). The classification is in terms of the
piecewise affine maps to Bruhat-Tits buildings (also called affine buildings) of
general linear groups.

The present result can be considered as a continuation of ideas in [KM] where
classifying torus equivariant principal bundles on toric varieties over a field k (or
toric principal bundles for short) is connected with the theory of Tits buildings of
algebraic groups. The main result in [KM] states that for a reductive group G,
toric principal G-bundles on XΣ are classified by piecewise linear maps from the
fan Σ to the (cone over the) Tits building of G.

Let O be a discrete valuation ring with field of fractions K and residue field k.
We let val : K → Z ∪ {∞} be the corresponding discrete valuation. The scheme
Spec(O) has two points: the generic point η corresponding to the prime ideal {0}
and the special point o corresponding to the unique maximal ideal m. For a scheme
X over Spec(O), we let Xη and Xo denote the fibers of X over η and o respectively.

Let T be a split torus over Spec(O). A toric scheme over Spec(O) is a normal
integral separated scheme of finite type X over Spec(O) equipped with a dense
open embedding TK →֒ Xη and an action of T on X over Spec(O) which extends
the translation action of TK on itself.

While toric varieties are classified by fans in NR
∼= Rn, toric schemes are clas-

sified by fans Σ̃ in NR × R≥0 (see [KKMS73, §IV.3] and [BPS14, Section 3.5]). If
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we intersect the fan Σ̃ with the hyperplane NR×{1} we get a polyhedral complex

Σ. The fan Σ̃ can be recovered from Σ by taking cones over the polyhedra in Σ.
The insight from [KM] is that the right gadgets for classification of toric prin-

cipal bundles are buildings of algebraic groups. Buildings are special kind of
simplicial complexes arising in the classification theory of algebraic groups over
arbitrary fields. Abstractly speaking, a building is an (infinite) simplicial complex
together with certain distinguished subcomplexes called apartments that satisfy a
list of axioms.

Buildings come in two flavors: spherical buildings and affine buildings. In a
spherical building each apartment is a triangulation of a sphere while in an affine
building each apartment is a triangulation of an affine (or Euclidean) space. To a
reductive algebraic group over a field one associates its Tits building which is the
typical example of a spherical building. Moreover, to a reductive algebraic group
over a discretely valued field K one associates its Bruhat-Tits building which is
the typical example of an affine building.

There is a nice descriptions of the Bruhat-Tits building of SL(r) and GL(r) as
we briefly recall. Let E ∼= Kr be an r-dimensional vector space over a discretely
valued field K.

Recall that an additive norm on E is a function v : E → R∪ {∞} that satisfies
the following axioms.

(a) v(e1 + e2) ≥ min{v(e1), v(e2)}, for all e1, e2 ∈ E
(b) v(λe) = val(λ) + v(e), for all e ∈ E and λ ∈ K
(c) v(e) =∞ if and only if e = 0.

We say that v is adapted to a basis B = {b1, . . . , br} for E if for any e =
∑
i λibi

we have:

v(e) = min{val(λi) + v(bi)}.

An additive norm is integral if it attains values in Z∪{∞}. The integral additive
norms on E are in one-to-one correspondence with O-lattices in E, that is, the full
rank O-submodules in E.

Two prevaluations are said to be equivalent if their difference is a constant.
The set of all equivalence classes of additive norms on E can be identified with
the Bruhat-Tits building of GL(E). An apartment in the building consists of
equivalence classes of additive norms adapted to a basis B. Each apartment is
naturally an affine space.

We denote the set of all additive norms on E by B̃aff(E) and call it the extended
Bruhat-Tits building of GL(E). We also denote the set of additive norms adapted

to a basis B by ÃB call it the extended apartment associated to B.

Definition 1 (Piecewise affine map to a Bruhat-Tits building). Let Σ be a (ra-

tional) polyhedral complex in NR. We say that a map Φ : |Σ| → B̃aff(E) is a
piecewise affine map if the following holds:

(a) for every polyhedron ∆ ∈ Σ, there is an extended apartment Ã∆ in B̃aff(E)

such that Φ(∆) lands in Ã∆.
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(b) The map Φ|∆ : ∆→ Ã∆ is the restriction of an affine map from NR to the

affine space Ã∆.

We say that Φ is integral if, for every ∆ ∈ Σ, Φ|∆ is the restriction of an integral

affine map from NR to Ã∆.

Our main result is the following:

Theorem 2. Let X = XΣ be a toric scheme over Spec(O) associated to a polyhe-
dral complex Σ in NR. There is a one-to-one correspondence between the isomor-
phism classes of toric vector bundles on XΣ and the integral piecewise affine maps

from |Σ| to B̃aff(E), where E is the fiber over the distinguished point 1 ∈ Tη →֒ Xη.
This correspondence in fact, gives an equivalence of categories.

Moreover, the linear part Φ0 of the piecewise affine map Φ is a piecewise linear
map from the recession fan of Σ to the cone over the Tits building of GL(E). This
is equivalent to the Klyachko data of the toric vector bundle over the generic fiber
of Xη. This fits nicely with the general construction in building theory that the
“boundary at infinity” of an affine building is a spherical building.

The morale of Theorem 2 is that the simplicial complex B̃aff(E) can be con-
sidered as a kind of classifying space for rank r toric vector bundles over toric
schemes.

Remark 3. The theory of complexity-one T -varieties has similarities with the the-
ory of toric schemes on a discrete valuation ring. During the workshop the speaker
and N. Ilten and H. Süss had fruitful conversations and discussed connections with
the results in [IS15].

It was mentioned to the speaker by Michel Brion that, in light of recent re-
sults of V. Balaji and Y. Pandey [BP], it might be possible to extend the above
classification result to valuation rings of higher rank.
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Degenerations of unstable Fano varieties and Kahler-Ricci soliton

Harold Blum

(joint work with Yuchen Liu, Chenyang Xu, and Ziquan Zhuang)

A central problem in complex geometry is to find canonical metrics on complex
projective varieties. On a smooth Fano variety X , the natural metrics to consider
are Kähler-Einstein metrics, which are Kähler metrics ω ∈ c1(X) such that

Ric(ω) = ω.

While such a metric does not always exist, the Yau-Tian-Donaldson Conjecture,
which is a theorem by [4, 15], states that a Fano variety admits a Kähler-Einstein
metric if and only if it is K-polystable. The latter notion is an algebraic criterion
introduced by Tian and Donaldson to characterize the existence of such metrics.
More recently, K-stability has received interest from algebraic geometers due to
its use in constructing compact moduli spaces of Fano varieties.

To understand Fano varieties that are K-unstable and hence, do not admit
Kähler-Einstein metrics, it is necessary to look at more general metrics. One class
of metric to consider are Kähler-Ricci solition, which are the data of a Kähler
metric ω ∈ c1(X) and a vector field ξ ∈ H0(TX) such that

Ric(ω) = ω + Lξω,

where Lξ denotes the Lie derivative. Similar to the case of Kähler-Einstein metrics,
the existence of a Kähler-Ricci solition is equivalent to a version of K-stability for
Fano varieties with vector fields (X, ξ) [5, 8].

To produce Kähler-Ricci soliton, one can fix an initial metric ω0 ∈ c1(X) and
study the long term behavior of the normalized Kähler-Ricci flow

∂ωt
∂t

= −Ric(ωt) + ωt.

The Tian-Hamilton Conjecture, now a theorem by [1,6], states that, up to taking
a subsequence, the Gromov-Hausdorff limit of (X,ωt) as t→∞ is naturally a klt
Fano variety with a Kähler-Ricci soliton (Y, ωY ). Chen, Sun, and Wang observed
that the degeneration X  Y can be achieved in two steps

X  (Z, ξZ) (Y, ξY ),

and conjectured that this degeneration process is uniquely determined by X , and
independent of the choice of initial metric [5]. The latter was recently confirmed
in [11].

A natural problem is to try to construct the two step degeneration algebraically
and for all singular Fano varieties. This is achieved in recent joint work with Liu,
Xu, and Zhuang that builds on work of Han and Li.

Main Theorem. [2, 11] Any klt Fano variety X admits a canonical two step
degeneration

X  (Z, ξZ) (Y, ξY )

Furthermore, (Y, ξY ) admits a Kähler-Ricci soliton.
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The first degeneration in the above theorem is the unique R-degeneration min-
imizing the H-functional of Dervan and Szekelyhidi and the pair (Z, ξZ) is K-
semistable. The pair (Y, ξY ) is the unique K-polystable degeneration of (Z, ξZ).

The approach to proving this theorem is through valuations and their relation
to degenerations, which has been particularly effective in the algebraic study of
K-stability, see e.g. [3, 10, 12]. In particular, Han and Li defined a function

H : ValX → R ∪ {+∞},

where ValX is the space of real valuations of X [11]. Constructing the first degen-
eration X  (Z, ξZ) and proving it is canonical amounts to showing

(1) There exists a valuation v minimizing H [11],
(2) The minimizer v is unique [2, 11], and
(3) the associated graded ring of grvR of the ring R := ⊕m∈NH

0(X,−mKX)
is finitely generated[2].

Step (3) relies on using recent powerful finite generation results of Liu, Xu, and
Zhuang in [13]. With these steps complete, Z := Proj(grvR) and there is a natural
torus action T on Z and vector field ξ ∈ NR := Hom(Gm,T)⊗Z R.

A deficiency in the above theory is that it is entirely theoretical. While there
do exist Fano varieties where the first degeneration is non-trivial and X 6= Z
(e.g. this will happen if X is a K-unstable Fano variety and Aut(X) does not
contain Gm) very few interesting examples have been explicitly computed. An
important problem is to explicitly describe non-trivial examples and, hopefully,
find one where the valuation v is not divisorial.
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The anticanonical complex for non-degenerate toric

complete intersections

Milena Wrobel

(joint work with Jürgen Hausen, Christian Mauz)

The idea behind anticanonical complexes is to extend the correspondence between
the toric Fano varieties and the Fano polytopes to wider classes of varieties. After
introducing their general construction, in this talk, we work out the case of non-
degenerate toric complete intersections.

For an n-dimensional toric Fano variety Z, one defines the Fano polytope to
be the convex hull A ⊆ Qn over the primitive ray generators of the describing
fan of Z. For any toric resolution of singularities π : Z ′ → Z, the exceptional
divisors E̺ are given by rays of the fan of Z ′ and one obtains the discrepancies as

discZ(E̺) =
‖v̺‖

‖v′̺‖
− 1,

where v̺ ∈ ̺ is the shortest non-zero lattice vector and v′̺ ∈ ̺ is the intersection
point of ̺ with the boundary ∂A of the Fano polytope. In particular, the toric
Fano polytope encodes the singularity type of a toric Fano variety in terms of
lattice points; see for example [1, 6, 7, 9] for work making use of this fact.

This principle has been extended to Q-Gorenstein varieties X with sufficiently
nice toric embedding X ⊆ Z by replacing the Fano polytope with a suitable
starshaped region, named the anticanonical region, which is supported on the
tropical variety of X ⊆ Z; see [4]. Such an anticanonical region is called an
anticanonical complex if it can be endowed with the structure of a polyhedral
complex, and in this case, it encodes the singularity type in full analogy to the
toric Fano polytope. For instance, all Q-Gorenstein (not necessarily Fano) toric
varieties have anticanonical complexes. One obtains for example the following
ones, corresponding to a log terminal, canonical and terminal (hence smooth) Q-
Gorenstein toric variety, defined by the complete fan having the bullets different
from the origin as its primitive ray generators:
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Further classes of varieties with torus action having anticanonical complexes can
be found in [2, 4, 5].

Leaving the setting of varieties with torus action, in [3], we investigate the
case of non-degenerate toric complete intersections. In this talk, we restrict our-
selves to the following construction, delivering general members of this class of
varieties; see [3, Def. 3.4] for the precise definition. Let B1, . . . , Bs ⊆ Qn be inte-
gral polytopes and let fi ∈ K[T±1

1 , . . . , T±1
n ] be Laurent polynomials with Newton

polytopes B(fi) = Bi and general coefficients. Then F := (f1, . . . , fs) forms a
non-degenerate system of Laurent polynomials in the sense of Khovanskii; see [8].
Let Σ be any fan in Zn refining the normal fan of the Minkowski sum B1+ . . .+Bs
and let Z denote the toric variety associated with Σ. The non-degenerate toric
complete intersection defined by F and Σ is the subvariety

X := V (f1, . . . , fs) ⊆ Z.

All varieties X arising this way are normal, and smoothness of the variety Z
implies smoothness of X . As a first step towards describing the structure of the
anticanonical region in this case, we have a look at the tropical variety of X ⊆ Z.
For this, we denote by Tn the dense open torus in Z and by zσ the distinguished
point in the torus orbit defined by σ ∈ Σ.

Proposition. Let X ⊆ Z be an irreducible non-degenerate toric complete inter-
section and set

ΣX := {σ ∈ Σ; X ∩ Tn · zσ 6= ∅} .

Then we have Supp(ΣX) = trop(X).

We denote with ZX the toric variety associated to ΣX . Then the toric variety
ZX is Q-Gorenstein, if and only if X is so. Moreover, one obtains the following
connection between the anticanonical complexes of X and ZX :

Theorem 1. Let X ⊆ Z be a Q-Gorenstein, irreducible non-degenerate toric
complete intersection. Then X has an anticanonical complex

AX = AZX ,

where AZX denotes the anticanonical complex of the Q-Gorenstein toric vari-
ety ZX .

We observe, that in this setting each vertex of AX is a primitive ray generator
of the fan Σ. In particular, all vertices of the anticanonical complex are integral
vectors; this does not necessarily hold for anticanonical complexes in general, see [2,
4]. Regarding the singularity types, we obtain the following result:
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Corollary. Let X ⊆ Z be a Q-Gorenstein irreducible non-degenerate toric com-
plete intersection.

(i) X has at most log-terminal singularities.
(ii) X has at most terminal (canonical) singularities if and only if ZX has at

most terminal (canonical) singularities.

As an application of our concrete description of the anticanonical complex, we
gain the following classification result in the terminal setting.

Theorem 2. There are 42 families of non-toric terminal Fano general non-
degenerate toric complete intersection threefolds in fake weighted projective spaces.
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Bounding toric singularities via normalized volume

Hendrik Süß

(joint work with Joaqúın Moraga)

We study the normalized volume of toric singularities. As it turns out, there
is a close relation to the notion of Mahler volume from convex geometry. This
observation allows us to use standard tools from convex geometry, such as the
Blaschke-Santaló inequality to prove non-trivial facts about the normalized volume
in the toric setting.

For a normal singularity (X, x) and a valuation v on X with centre in x ∈ X
the volume was defined in [2] as

vol(v) := lim
m→∞

ℓ(OX,x/am(v))

mn/n!
.

Here, am(v) := {f ∈ OX,x | v(f) ≥ m} and ℓ denotes the Artinian length of
the module. For a log terminal singularity Li in [5] then defined its normalised

volume v̂ol(X, x) to be the infimum taken over all volumes of valuation with log
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discrepancy equal to 1. From results in [1] we know that the infimum in the
definition of the normalised volume is actually a minimum.

The normalised volume plays an important role in the context of K-stability,
see [5]. In particular, K-semistability can be seen as an algebraic version and
far-reaching generalisation of the principle of volume minimisation known from
Sasaki-Einstein geometry [6].

We now turn to the case of a toric Gorenstein singularity (X, x) corresponding
to a cone R≥0(P ×{1}) ⊂ NR×R, where P is a lattice polytope in the real vector
space NR. In this case the (torus invariant) valuation centred at the singularity
correspond to interior elements of the cone and the ones with log discrepancy equal
to 1 are exactly those which lie in the interior of the polytope P ×{1}. Hence, we
may identify any such valuation with an interior element v ∈ P . Now, the volume
of such a valutation can be expressed in terms of the dual polytope

P v := (P − v)∗ = {u ∈ N∗
R | ∀w∈P−v : 〈u,w〉 ≥ −1}.

Namely, we have vol(v) = (dimP + 1)! volP v and the normalised volume of (X, x)
is given by minv∈P vol(v). The unique element v ∈ P realising this minimum is
known as Santaló point in convex geometry, see [7]. The minimal dual volume
gives also rise to the notion of the Mahler volume of a context body, which is
defined as volP · volP v, where v ∈ P is the Santaló point. The Mahler volume
of a convex body is known to be invariant under affine transformations and to
be bounded from above by the square of the volume of unit ball of the same
dimension. The latter result is known as the Blaschke-Santaló Inequality, see [7].
On the other hand, the conjectural lower bound is (n + 1)n+1/(n!)2, the Mahler
volume of the simplex. This inequality is known as the Mahler Conjecture which
plays a prominent role in convex geometry.

As a consequence of the Blaschke-Santaló inequality we see that every lower
bound for the normalised volume of the toric singularity implies an upper bound
for the volume of P . On the other hand, there are (up to unimodular equivalence)
only finitely many polytopes for every upper bound on the volume [4]. Hence, we
obtain the following result.

Theorem. In each dimension and for any ǫ > 0 there are only finitely many toric

Q-Gorenstein singularities with v̂ol(X) > ǫ.

This can be seen as a boundedness result for toric singularities in terms of the
normalised volume. Such a boundedness statement had been conjectured more
generally for log terminal singularities in [3]. For an alternative proof for the case
of toric singularities see [8].

Note, that also the conjectural lower bound for the Mahler volume has an
interpretation in terms of the normalised volume. The Mahler conjecture would
imply that the inequality

(1) v̂ol(X) ≥
dd

χ(X̃)
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holds, where χ(X̃) denotes the number of fixed points in a (toric) crepant resolution

X̃ of the toric Gorenstein singularity X . It would be interesting to know whether
there is an interpretation of that number which leads to a reasonable generalisation
of the conjectured inequality (1) to the non-toric case.
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Laurent polynomials and deformations of toric Gorenstein varieties

Matej Filip

Mirror symmetry suggests that there is a relationship between Fano manifolds and
certain Laurent polynomials, cf. [2]. More precisely, if a Laurent polynomial f is
mirror to a Fano manifold Y , it is expected that a Fano manifold Y admits a Q-
Gorenstein degeneration to a singular toric variety, whose fan is the spanning fan of
the Newton polytope ∆(f). In [3] the above conjectural relationship was extended
to Q-factorial terminal Fano varieties and their mirrors called rigid maximally
mutable Laurent polynomials, see also [5, Conjecture 29].

An affine Gorenstein toric variety X is given by a cone

σ = cone{P} ⊂ N ⊕ Z,

where P is a polytope in the lattice N , lying on height one. We want to understand
deformation theory of X . By comparison theorem it is enough to understand
deformation theory of affine toric varieties in order to understand deformations of
projective toric varieties.

In the case of isolated singularities the miniversal deformation was constructed
by Altmann [1]. We are going to try to understand deformation theory of non-
isolated Gorenstein toric varieties using mutations of Laurent polynomials which
have Newton polytope equal to P .

A combinatorial mutation of a Laurent polynomial f with ∆(f) = P is for us
a pair (m, g), where m ∈ M ⊕ Z is an affine function on N defined by m(n) :=
〈m,n+ e〉, where e = (0, 1), and g is a Laurent polynomial such that we can write

f =
∑

i∈Z fi with fi ∈ C[(m = i)] ⊂ C[N ] and that fi
gi is a Laurent polynomial;
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Figure 1. Rigid maximally mutable Laurent polynomials

here (m = i) is the set of elements n ∈ N with m(n) = i. If the above is the case we

say that f is (m, g)-mutable and denote its mutation by mutgm f :=
∑

i∈Z
fi
gi , which

is a Laurent polynomial. We denote its Newton polytope by P(m,g) := ∆(mutgm f).
The following result of Ilten [4] shows that X and TV(cone{P(m,g)}), which is a

toric affine Gorenstein variety defined by the polytope P(m,g), lie in the same defor-
mation component: let f be (m, g)-mutable with ±m 6∈ σ∨∩ (M ⊕Z). Then there

exists a flat family π : X̃ → P1 with π−1(0) = X and π−1(∞) ∼= TV(cone{P(m,g)}).
Note that there is a correspondence between mutations of f and one-parameter

deformation of X . This correspondence is obtained by observing that ∆(g) is a
Minkowski summand of the cross-cut

σ ∩ {v ∈ N ⊕ Z | 〈v,m〉 = 1}.

This is a one-parameter deformation of X over A1 = SpecC[t(m,g)], where t(m,g)
is an element of T 1

X obtained by restricting the one parameter deformation to
SpecC[t(m,g)]/(t

2
(m,g)).

The subspace

T (f) := {t(m,g) | f is (m, g)-mutable} ⊂ T 1
X ,

build from a Laurent polynomial f is crucial for understanding deformation theory
of X .

Conjecture: Affine toric Gorenstein variety X is unobstructed in T (f), i.e. there
exists a flat family over C[[T (f)]] ⊂ C[[T 1

X ]] with the fiber over zero equal to X .
Moreover, if f is rigid maximally mutable, then the generic fiber is terminal.

We provide some evidence in the three-dimensional case and state that f being
rigid maximally mutable roughly means that f is uniquely determined by its mu-
tations up to a scalar (see also [3]). We conclude the talk by describing all rigid
maximally mutable polynomials on the following polytope (see Figure 1).
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Blown-up toric surfaces with non-polyhedral effective cone

Antonio Laface

(joint work with Ana-Maria Castravet, Jenia Tevelev, Luca Ugaglia)

Let X be a normal projective variety defined over an algebraically closed field. The
effective cone of X is the cone Eff(X) ⊆ N1(X)R generated by classes of effective
divisors. Its closure in the euclidean topology is the pseudoeffective cone of X ,
denoted by Eff(X). A cone is polyhedral if it is generated by finitely many vectors.
The main application of our results is the following.

Theorem 1 ([4]). The cone Eff(M0,n) is not polyhedral for n ≥ 10 in any char-
acteristic.

Proof. Recall that a rational contraction is a dominant rational map X 99K Y of
projective varieties that can be decomposed into a sequence of small Q-factorial
modifications and surjective morphisms. There exist rational contractions and
surjections [1]

(1) BleLMn+1 99KM0,n → BleLMn 99K BleP,

where LMn is the toric variety named Losev-Manin space, P is a (not unique)
toric surface and e ∈ P is a point in the big torus orbit. When n = 10 the surface
P can be chosen so that Eff(BleP) is not polyhedral, as shown in Theorem 3. This
can be done for any characteristic. Then one uses the fact that given a surjective
morphism of normal projective varieties f : X → Y if Eff(X) is polyhedral then

Eff(Y ) is also polyhedral. Indeed Eff(X) is dual to the cone of moving curves
Mov1(X) and proper pushforward of the latter cone is Mov1(Y ), by [3]. �

Using (1) it is possible to show that M0,n is not a Mori dream space by pro-
ducing a nef class in BleP which is not semiample. This has been done in [6–8]
producing each time a better lower bound for n until reaching n = 10. Concerning
effective cones the main criterion is the following.

Proposition 2. Let X be a normal Q-factorial projective surface with ̺(X) ≥ 3.
If Eff(X) is polyhedral then the following hold.

(1) Eff(X) is generated by finitely many classes of negative curves [9].
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(2) If C ∈ Pic(X) is a nef class with C2 = 0, then [C] is in the relative interior

of a maximal face of Eff(X). In particular nC ∼
∑

i aiCi with n, ai ∈ Z>0

for any i where each curve Ci is irreducible with Ci ∩ C = ∅.

Before stating the next theorem, let us recall that a lattice polygon ∆ ⊆ Q2 is a
polygon with integer vertices. Any such polygon defines a pair (P∆, H∆) consisting
of a normal toric variety P∆ whose fan Σ(P) is the normal fan to ∆ and an ample
divisor H∆ := −

∑
ρ∈Σ(P) minu∈∆〈u, ρ〉Dρ on P∆.

Theorem 3 ([4]). There exists a lattice polygon ∆ ⊆ Q2 such that Eff(BleP∆) is
non-polyhedral for all but a finite number of positive characteristics.

Proof. (Char. = 0). Let ∆ ⊆ Q2 be a lattice polygon with at least 4 sides,
Vol(∆) = m2 and |∂∆ ∩ Z2| = m, like e.g.

Let X := Ble(P∆) and let C ⊆ X be the strict transform of a curve of the linear
system |H∆| which has multiplicity m at e. Such a curve exists because by Pick’s

formula #(∆ ∩ Z2) =
(
m+1
2

)
+ 1. In the example a defining equation for this

curve in the torus is given by (underlined monomials correspond to vertices of the
polygon)

−u5v − 3u4v4 + 6u4v3 − 4u4v2 + 6u4v − u3v5 + 8u3v4 − 10u3v3+

4u3v2 − 11u3v − 6u2v3 + 6u2v2 + 10u2v + 4uv2 − 9uv + 1 = 0.

The numerical conditions on ∆ are equivalent to C2 = C · KX = 0. So, if C is
smooth and the Newton polygon of its defining Laurent polynomial is ∆, then C is
a Cartier divisor and it has genus one. In the previous example a minimal equation
for C is y2 + y = x3 − x2 − 2x + 2. This is the curve 57.a1 from the LMFDB
database of elliptic curves with Mordell-Weil group Pic0(C)(Q) ≃ Z. Since

res(C) := OC(C) ∈ Pic0(C)(Q)

it follows that, in the example, either res(C) is trivial or it is not torsion. On the
other hand, from the long exact cohomology sequence of

0 // OX((n− 1)C) // OX(nC) // OC(nC) // 0

one deduces that res(C) has order n if and only if dimH0(X,nC) > 1. Thus in the
example res(C) cannot be trivial because one easily computes that dimH0(X,C) =
1. So res(C) must be non-torsion, or equivalently dimH0(X,nC) = 1 for any
n > 0 and one concludes that C cannot be linearly equivalent to

∑
i aiCi with

all the curves Ci disjoint from C. By Proposition 2 we deduce that Eff(X) is not
polyhedral. �

https://www.lmfdb.org/EllipticCurve/Q/57/a/1
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Proof. (Char. > 0). Let ∆ ⊆ Q2 be the following lattice polygon.

One can show that the corresponding curve C ⊆ Ble(P∆) is irreducible, smooth
and with Newton polygon ∆ for all characteristics p 6= 2, 3, 5, 7, 11, 19, 71. In
characteristic 0 a minimal equation for C is y2 + xy + y = x3 + x2 − 520x+ 4745.
This is the curve labelled 2130.j4 in the LMFDB database. The Mordell-Weil
group is Z×Z/4Z and one can show that res(C) is 4-torsion. The divisor KX +C
is linearly equivalent to an effective divisor by the long exact cohomology sequence
of

0 //OX(KX) //OX(KX + C) //OC(KX + C) //0

and the fact that h0(X,KX) = h1(X,KX) = 0. A direct calculation shows that
the Zariski decomposition of KX + C has no positive part. Then, by running the
(KX + C)-MMP, one gets a sequence of contractions:

X = X0 → X1 → · · · → Xs = Y,

where all the exceptional loci consist of irreducible curves disjoint from C because
C · (KX +C) = 0. Thus, with abuse of notation, we will denote by the same letter
C the image of the curve C in Y . Observe that −KY ∼ C is Cartier so that Y
has at most du Val singularities. Since −KY is effective, the same holds for the
anticanonical class of the minimal resolution Z of Y . Summarizing we have the
following diagram

Z

  
❅❅

❅❅
❅ X

~~⑥⑥
⑥⑥
⑥

Y

where Z is a smooth rational surface of Picard rank 10 with nef anticanonical class
and each of the three surfaces contains a copy of C as a Cartier divisor disjoint
from the exceptional locus. Being Y an anticanonical rational surface with nef
Cartier anticanonical class, by Mori theory it follows that Eff(Y ) is polyhedral if
and only if K⊥

Y is generated by classes of (−2)-curves and the same statement holds

for Z. Since the map Z → Y only contracts (−2)-curves, one deduces that Eff(Y )
is polyhedral if and only if Eff(Z) is polyhedral and both conditions are equivalent
to the fact that K⊥

Z = C⊥ ⊆ Pic(Z) is generated by classes of (−2)-curves. It is
not difficult to show that a class R ∈ Pic(Z) such that

R2 = −2, R ·KZ = 0, res(R) = 0

https://www.lmfdb.org/EllipticCurve/Q/2130/j/4
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is effective and it is union of (−2)-curves. On the other hand any class of (−2)-

curve satisfies the above equalities. Thus Eff(Z) is polyhedral if and only if K⊥
Z is

generated by classes satisfying the above condition. By changing R with R + nC
we get a class with the same numerical properties, so the third condition can be
replaced by res(R) ∈ 〈res(C)〉. One can show that, when res(C) is torsion, the
latter condition is equivalent to ask that the kernel of the following surjection

E8 ≃
K⊥
Z

〈C〉
res

//
res(K⊥

Z )

〈res(C)〉

is generated by roots. In the example E8 is not generated by roots in ker(res)
for any p 6= 2, 3, 5, 7, 11, 19, 71. So for these primes Eff(Z) and Eff(Y ) are not

polyhedral and thus Eff(X) is not polyhedral as well. The remaining prime char-
acteristics are analyzed by means of a similar argument applied to other lattice
polygons. �
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Exploring lattice polytopes through machine learning

Johannes Hofscheier

(joint work with Jiakang Bao, Yang-Hui He, Edward Hirst, Alexander Kasprzyk,
Suvajit Majumder)

Algebraic geometers and combinatorialists have a long-established culture of pro-
ducing and interrogating classification datasets. These datasets can be at the limit
of current computing resources. For example, the list of 4-dimensional Gorenstein
toric Fano varieties in terms of the 473 800 776 reflexive 4-polytopes [9] can be a

https://arxiv.org/pdf/2009.14298
https://arxiv.org/abs/2110.13333
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challenge to work with using modern (consumer) hardware. Another example is
the ongoing Fanosearch programme [6], a ground-breaking new approach to the
classification of Fano varieties via Mirror Symmetry, that has already produced
over 2 petabytes1 of data, and is still rapidly growing.

With this “explosion” of mathematical classification datasets, the time is ripe
to look for suitable tools to investigate such “big data”. Here, we explore to what
extent tools from data science (more precisely, from machine learning (ML)) can:

• efficiently (i.e., performantly with only a small error) predict invariants of
mathematical objects,
• “find” new mathematical results and theorems, and
• generate or approximate examples with prescribed properties.

The ML tools that have been used in the explorations [2, 3] include principal
component analysis (PCA), random forests, support vector machines, and artificial
neural networks (NNs). We refer the interested reader to [8] for further details and
references on ML. The book [7] gives a hands-on introduction to some industry-
leading software libraries [1, 5, 10] that implement the aforementioned tools.

To get a better idea about the potential of ML, consider the following question:
if P ⊆ Rd is a lattice polytope, can ML predict the dimension of P from its
Ehrhart sequence (ehrP (k))k∈Z≥0

(recall that ehrP (k) = |kP ∩ Zd| for k ∈ Z≥0)?
Clearly, in practice a truncation of the Ehrhart sequence to finitely many terms
will be used as input. Depending on the maximum dimension of lattice polytopes
in the investigated dataset, relatively few entries of the Ehrhart sequence suffice.
In our experiments we used (ehrP (0), . . . , ehrP (30)) but could reduce the number
of entries further. Any of the above ML algorithms predict the dimension to an
accuracy of ≥ 99.8% when trained on a relatively small dataset, i.e., the training
set is 10% of the whole set (in this case study a total of ∼ 6 000 samples). Indeed,
the high performance of ML on this task has a simple mathematical explanation.
Recall the n-th forward differences ∆nehrP (k) that are inductively defined:

∆nehrP (k) =

{
ehrP (k) if n = 0,

∆n−1ehrP (k + 1)−∆n−1ehrP (k) otherwise.

Since the degree of ehrP (t) coincides with dim(P ), the dimension can be recov-
ered form the Ehrhart sequence (ehrP (k))k∈Z≥0

(respectively from the forward
differences (∆nehrP (0))n∈Z≥0

). More precisely, by [4, Theorem 1.1], we get that
(

dim(P )

n

)
< ∆nehrP (0) for 0 ≤ n ≤ dim(P ),

and ∆nehrP (0) = 0 for n > dim(P ). By using the fundamental idea of data
science to consider samples of the input as points in space, we consider Ehrhart
sequences (ehrP (k))k∈Z≥0

as points in the vector space ℓ∞ of bounded sequences.

For (xk)k∈Z≥0
∈ ℓ∞, the n-th forward differences ∆nx0 =

∑n
j=0(−1)j

(
n
j

)
xn−j

give linear forms on ℓ∞. Then the linear subspaces Vi :=
⋂∞
n=i ker(∆nx0) ⊆ ℓ∞

1According to Wikipedia this is the same as roughly 4 000 years of MP3 encoded music at a
constant bitrate of 128 kbit/s.
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yield a filtration of ℓ∞, i.e., V0 ⊆ V1 ⊆ V2 ⊆ . . . It follows that, given an Ehrhart
sequence x = (ehrP (k))k∈Z≥0

, the dimension of the corresponding polytope P is the
smallest n ∈ Z≥0 such that x ∈ Vn+1. Hence, the Ehrhart sequences of different
dimensions are separated by hyperplanes. The idea to separate input sample
points by hyperplanes is at the heart of most (state-of-the-art) ML algorithms
which explains the high performance of ML on this task.

On the flip side, we want to argue that whenever ML performs well on a task,
a mathematical argument is very likely to be found explaining the phenomenon.
To illustrate this idea consider the following second question: can ML predict
the normalised volume when polytopes themselves are used as input for the ML?
This raises the question of how to represent polytopes appropriately for use in
ML. Possible solutions include vertex or facet normal representations. Those rep-
resentations have the downside that the input can no longer be considered as a
“homogeneous” point in space. For example, when considering the representation
of a polytope in terms of its vertices, the input is a matrix whose columns consist
of the vertices of the polytope. Clearly, the matrix can be considered as a point
in space, however, then distinct coordinates might correspond to distinct vertices,
and thus the vector isn’t “homogeneous” any more (this can be partly mitigated
by using convolutional NN layers which regard the input as a matrix).

We suggest to use another more homogeneous approach as follows. For sim-
plicity, let us assume that the vertices of the polytope span the ambient lattice,
i.e., if P ⊆ Rd is a lattice polytope with vertices V ⊆ Zd then spanZV = Zd. By
ordering the vertices of P , say V = {vi}, we obtain an exact sequence

0→ Z|V |−d → Z|V | ϕ
−→ Zd → 0

where the linear map ϕ is uniquely determined by assigning the i-th standard
basis vector of Z|V | to the i-th vertex vi ∈ V . Then the map on the left-hand side
is the integer kernel of ϕ. Notice that, since the vertices of V span the ambient
lattice Zd, it follows that kerϕ ⊆ Rd uniquely describes P . Indeed, P is equivalent
to the image of the standard simplex in Z|V | under the natural projection map
Z|V |/(kerϕ ∩ Z|V |). By classical algebraic geometry, the linear subspace kerϕ

is uniquely given by its Plücker coordinates in PN−1 where N =
( |V |
|V |−d

)
. The

advantage of this approach is that the Plücker coordinates can be regarded as
“homogeneous”, i.e., no obvious distinction of coordinates is given.

We use this approach to study ML’s efficiency in predicting invariants of poly-
topes. To our surprise, ML predicted the volume of 3-dimensional polytopes from
their Plücker coordinates to a high accuracy (see [2, Section 4.3]). In forthcom-
ing work, we will give a mathematical explanation for this phenomenon (for any
dimensions). We also let ML predict the normalised volume of the polar dual
polytope from the Plücker coordinates of the original polytope which, however,
turned out to be not as successful (see [2, Section 4.3.2] for further details).

In conclusion, the availability of big datasets of mathematical objects is worth
to be further explored for new invariants and relations between objects. Here,
ML can be a valuable tool to observe new phenomena. However, it’s important
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to keep in mind that those tools have their limitations and there is an upfront
investment in developing representations of the mathematical objects suitable for
ML. Ultimately, the dream would be to reverse the above approach, i.e., instead of
predicting invariants, build an “oracle” that can suggest (approximate) examples
that have a given set of properties/invariants.
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Resolution of singularities by torus actions

Jaros law W lodarczyk

We show a simple and fast embedded desingularization of varieties and principal-
ization of ideals in the language of torus actions on ambient smooth schemes with
or without SNC divisors. The canonical functorial resolution of varieties in char-
acteristic zero is given by, the introduced here, operations of cobordant blow-ups
of smooth weighted centers.

Recall that a functorial resolution without SNC divisors by stack-theoretic
weighted blow-ups in characteristic zero was given first in the paper by McQuillan
[2], and the joint work of the author with Abramovich and Temkin [1].
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I will discuss a variant of this construction which uses slightly different approach.
The idea is to represent a weighted blow-up by a birational cobordism that means
a smooth scheme with the torus action. The geometric quotient of this space
defines a usual weighted blow-up. The stack-theoretic quotient determines the
stack-theoretic weighted blow-up.

As the result of the resolution procedure we obtain a smooth variety with a
torus action and the exceptional divisor having simple normal crossings. Moreover,
its geometric quotient is birational to the resolved variety, has abelian quotient
singularities, and can be desingularized directly by combinatorial methods.

As an application of the method we show the resolution of a certain class of
isolated singularities in positive and mixed characteristic. In fact, the operation
of coborodant blow-up does not require the use the Artin stacks in nonzero char-
acteristic which makes it a very convenient resolution tool in this case. Moreover
it carries additional information which can be used for resolving some classes of
varieties.

The results are written in the very recent paper of the author [3].
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Motivic Integration and Toric Stacks

Matthew Satriano

(joint work with Jeremy Usatine)

In 1995, Kontsevich [3] introduced Motivic Integration and applied his theory to
prove that birational Calabi-Yau manifolds have equal Hodge numbers. An essen-
tial ingredient in his proof is a motivic change of variables formula, which relates
the motivic measures of smooth projective varieties X and Y under a birational
modification π : X → Y . Building off of Kontsevich’s theory as well as work of
Denef–Loeser [2], Batyrev [1] introduced the stringy Hodge numbers hp,qst (Y ) of any
log-terminal scheme Y with Q-Gorenstein singularities. His motivation came from
Mirror Symmetry: one wants a mirror pair (Y, Y ∗) of d-dimensional Calabi-Yau
manifolds to satisfy hp,q(Y ) = hd−p,q(Y ∗), however if Y ∗ is singular, one must
replace the Hodge numbers by the stringy Hodge numbers. It is important to note
that these stringy Hodge numbers are not defined as dimensions of cohomology
groups but rather the coefficients of a certain polynomial build from a resolution
of singularities; in particular, it is not clear that the stringy Hodge numbers are
non-negative. In the case where Y admits a crepant resolution π : X → Y , we
have hp,qst (Y ) = hp,q(X) ≥ 0. Although crepant resolutions do not exist in general,
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Batyrev conjectured [1, Conjecture 3.10] that the stringy Hodge numbers always
satisfy hp,qst (Y ) ≥ 0.

Yasuda [7] proved Batyrev’s conjecture when Y has finite quotient singulari-
ties. He did so by extending the theory of motivic integration to include smooth
Deligne–Mumford stacks and establishing a change of variables formula for the
coarse space map π : X → Y , where X is the canonical smooth Deligne–Mumford
stack of Y ; since X is smooth and the π is a proper coarse space map which is an
isomorphism over the smooth locus Y sm, one may think of π as a stacky crepant
resolution of singularities. Using his motivic change of variables formula, Yasuda
showed that hp,qst (Y ) agrees with the orbifold Hodge numbers hp,qorb(X ) of X .

For varieties Y with worse than finite quotient singularities (e.g. many GIT
quotients including non-simplicial toric varieties), there is never a smooth Deligne–
Mumford stack with coarse space Y . As a result, one cannot apply Yasuda’s results
in this setting. One may still hope to study Y through a stacky resolution π : X →
Y , however, one is forced to consider smooth Artin stacks. In characteristic 0, such
stacks are non-separated, and so arcs of Y may have many lifts to arcs of X .

In [5, 6], we defined motivic integration for smooth Artin stacks and proved a
general motivic change of variables formula. Much of our initial intuition came
from developing motivic integration for toric stacks. Like toric varieties, toric
stacks [4] are a concrete class of objects where one can form intuition and test
conjectures. We first state our general motivic change of variables formula and
then focus on the toric setting.

Theorem 1 ([6, Theorem 1.3]). Let k be an algebraically closed field of charac-
teristic 0. Let X be a smooth irreducible finite type Artin stack over k with affine
geometric stabilizers and separated diagonal, let Y be an irreducible finite type
scheme over k with dimY = dimX , let π : X → Y be a morphism, and let U be an
open substack of X such that U →֒ X → Y is an open immersion. Let σ : X → IX
be the identity section of the inertia stack IX → X .

Let C ⊂ |L (X )| \ |L (X \ U)| ⊂ |L (X )| and D ⊂ L (Y ) be cylinders such that,
for all field extensions k′ of k, the map C(k′)→ D(k′) is a bijection. Then

µY (D) =

∫

C

L
ht

(0)

Lσ∗LIX /X
− ht

(0)
LX/Y dµX .

The relative canonical bundle plays a key role in Kontsevich’s change of vari-
ables formula. In Theorem 1, the relative canonical bundle is replaced by the
relative cotangent complexes LX/Y and LIX/X . Our formula also involves a new
function that we call a height function: given a complex F• of coherent sheaves

on X , to every arc ϕ : Spec(k′[[t]]) → X , the height function ht
(i)
F•(ϕ) is defined

as dimk′ L
iϕ∗F•. Furthermore, it is worth mentioning that Lσ∗LIX/X is a novel

contribution that only appears when X is an Artin stack that is not Deligne–
Mumford.

The remainder of this article focuses on the toric case. In this setting, we
proved:
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Theorem 2 ([5, Proposition 1.5, Theorem 1.7, and Theorem 1.11]). Let X be a
Q-Gorenstein toric variety, let π : X → X be its canonical smooth Artin stack,
and assume X has connected stabilizers. Then

µGor
X (L (X)) =

∫

L (X )

sepX dµX

From the quantity µGor
X (L (X)), one may read off the stringy Hodge numbers.

Thus, Theorem 2 encodes the stringy Hodge numbers of X as a motivic integral on
the arc stack of X . The formula makes use of a new function sepX which measures
the degree of non-separatedness of an arc: if ψ is an arc of X , then sepX (ψ) = n−1

ψ ,
where nψ is the number of isomorphism classes of arcs lifting π ◦ ψ.

Let us sketch the main ideas that go into the proof of Theorem 2. To prove the
toric motivic change of variables, we must understand the fibers of the map

Ln(π) : Ln(X )→ Ln(X)

on n-th order jet stacks. As a starting point, we begin with the easier problem of
understanding the fibers of the map

L (π) : L (X )→ L (X)

of arc stacks. Since this is a local problem, we may assume X = Spec k[P ] where
P = σ∨ ∩M and σ is a pointed cone. We have the following tropicalization map

trop : L (Xσ)(k′)→ Hom(σ∨ ∩M,N ∪ {∞})

defined by trop(ϕ)(p) := ordt ϕ
∗(χp), where ϕ : Spec k′[[t]]→ X and ordt denotes

the order of vanishing at t. Since we may discard sets of measure zero, we may
concentrate on arcs ϕ whose generic point lands in the torus T ⊂ X . For such ϕ,
we have

trop(ϕ) ∈ Hom(σ∨ ∩M,N) = σ ∩N.

In a similar manner, we have a tropicalization map for X given by

trop : L (X )(k′)→ Hom(σ̃∨ ∩ M̃,N ∪ {∞}),

where X = [Spec k[F ]/Grm], L (X ) denotes isomorphism classes of arcs, F =

σ̃∨∩M̃ is a free monoid, σ̃ is a smooth pointed cone on a lattice Ñ , and M̃ = Ñ∗.
We have an induced map

β : σ̃ ∩ Ñ → σ ∩N.

We proved that if ϕ ∈ L (X)(k′) with trop(ϕ) = w ∈ σ ∩N , then

trop: L (π)−1(ϕ)→ β−1(w)

defines a canonical bijection between β−1(w) and the isomorphism classes of arcs
ψ ∈ L (X )(k′) lifting ϕ.

Having now understood the fibers of the map of arc stacks, we turn to the fibers
of the map of jet stacks. Let ϕ ∈ L (X)(k′) and suppose trop(ϕ) = w ∈ σ ∩ N .
For each n ≥ 0, let ϕn ∈ Ln(X)(k′) denote the n-th truncation of ϕ. We proved
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that for n sufficiently large, the fiber of Ln(π) over ϕn has connected components
Fw̃ indexed by w̃ ∈ β−1(w). Furthermore,

(Fw̃)red ≃ [Arw/Gsw̃a ],

where (Fw̃)red denotes the reduced structure. This is the key local computation
that goes into proving Theorem 2. From this, one can see how the function sepX

shows up: the fiber of Ln(π) over ϕn has connected components indexed by β−1(w)
and |β−1(w)| is precisely the number of isomorphism classes of arcs lifting ϕ.
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Toric bundles

Leonid Monin

(joint work with Johannes Hofscheier, Askold Khovanskii, Hendrik Süß, and
Milena Wrobel)

Toric bundles are certain equivariant compactifications of torus principle bundles.
More precisely, let p : E → B be a T -principal bundle over a topological space B
where T ≃ (C∗)n is an algebraic torus. Let also XΣ be a T -toric variety given by a
fan Σ. The associated toric bundle is given as the quotient E×TXΣ := (E×XΣ)/T .
It is a fiber bundle over B with fiber XΣ. We will denote E ×T XΣ by EΣ.
One of the main examples of toric bundles are toric bundles over generalized flag
varieties which are also called toroidal horospherical varieties. We are interested
in topological and geometric properties of toric bundles. Another familiar class of
toric bundles are toric bundles over toric varieties [7]. They have a structure of
toric varieties themselves, thus they form a special class of toric varieties which
for instance include Bott towers [2].

First, let me explain a computation of cohomology ring of a toric bundle. A gen-
eralization of the Stanley-Reisner description for the cohomology ring H∗(EΣ,R)
was obtained by Sankaran and Uma [9]. Like in the classical toric case, the descrip-
tion by Sankaran and Uma implicitly contains an algorithm to compute products
of cohomology classes in the top degree. In [3] we studied such top degree products
and obtained a generalization of the BKK theorem. Moreover, using a version of

https://arxiv.org/pdf/2109.09800.pdf
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Macaulay inverse system theorem for graded-commutative algebras with Poincaré
duality we obtained a Pukhlikov-Khovanskii presentation of cohomology ring of
toric bundles. Let me talk about these results in more detail.

Similar to the case of classical toric variety, every virtual polytope whose nor-
mal fan coarsens Σ defines a class in H2(EΣ,R). Moreover, by Leray-Hirsch the-
orem every class in H∗(EΣ,R) can be written as a combination of classes of type:
p∗(γ)∆1 . . .∆r, where γ ∈ H∗(B,R) and ∆i is a polytope.

We reduce the computation of intersection numbers on the toric bundle to
intersection numbers on the base. This provides a BKK-type theorem for any
choice of a cohomology class in the base γ ∈ H∗(B,R).

Theorem 1 ([3]). Let E → B be a T ≃ (C∗)n-principal bundle with dimRB = k.
Let Σ be a smooth projective fan and p : EΣ → B be the corresponding toric bundle.
Finally, let ∆ be a polytope whose normal fan coarsens Σ and γ ∈ Hk−2i(B,R).
Then the intersection index p∗(γ) ·∆n+i can be computed as

p∗(γ) ·∆n+i =
(n+ i)!

i!

∫

∆

γ · c(x)idx.

Here c : MR → H2(B,R) is a linear map which depends on principle bundle
E → B only.

It should be mentioned that as in a classical toric case Theorem 1 admits a polar-
ized version. Also our statements above are true not only in the algebraic category,
but more generally hold for smooth manifolds.

To obtain a computation of cohomology ring of toric bundles using Theorem 1,
one needs to have a convenient description of graded commutative algebras with
Poincaré duality. Such description was obtained in [3]. It turns out that the above
description has a much nicer formulation if we focus on the even cohomology rings,
let us focus on this slightly restrictive case. Even cohomology rings are examples
of commutative algebras with Gorenstein duality. In [6] we provide an explicit
form of Macauley inverse system for algebras with Gorenstein duality over field of
characteristic 0. Our description is very general and is applicable to not-necessarily
Artinian algebras.

Let A be a commutative algebra over field k of characteristic 0 with Gorenstein
duality given by linear function ℓ : A → k. Let V ⊂ A be a (possibly infinite
dimensional) vector subspace which generates A as an algebra. Let us define Expℓ
to be the formal sum of polynomials on V via

Expℓ(x) = ℓ(1) + ℓ (x) + ℓ

(
x2

2!

)
+ ℓ

(
x3

3!

)
+ . . . .

The symmetric algebra Sym(V ) can be identified with an algebra Diff(V ) dif-
ferential operators with constant coefficients on V by sending a vector v to the
Gateaux derivative in direction of v. We extend the action of Diff(V ) on poly-
nomial functions to the action on formal sums of polynomial such as Expℓ via
termwise action.
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Theorem 2 ([6]). Let A be an algebra with Gorenstein duality as before, then

A ≃ Sym(V )/Ann(Expℓ),

where Ann(Expℓ) = {D ∈ Diff(V ) |D · Expℓ ≡ 0}. In other words, Expℓ is the
inverse system of A.

In the case of graded algebras generated in degree 1 and satisfying Poincaré
duality, Theorem 2 specializes to the statement used in [5,8] to obtain descriptions
of cohomology ring of toric varieties and full flag varieties respectively.

Example. Let A =
⊕n

i=0Ai be a commutative algebra generated in degree 1 and

satisfying Poincaré duality. Then the potential Exp∗ℓ̃ of A on A1 is given by

Exp∗ℓ̃(v) = ℓ̃

(
vn

n!

)
.

In particular algebra A can be constructed as

A ≃ Diff(A1)/Ann

(
ℓ̃

(
vn

n!

))
.

Now we combine Theorems 1 and 2 to give a description of cohomology ring of
a toric bundle EΣ in case when dimRB is even. Let us denote by ExpEΣ

and ExpB
the inverse systems of even cohomology rings H2∗(EΣ) and H2∗(B,R) respectively.

Theorem 3 ([6]). Let EΣ → B be a toric bundle with dimRB = 2k. Let ∆ be a
polytope those normal fan coarsens Σ and γ ∈ H∗(X,R), then we have

ExpEΣ
(γ,∆) =

∫

∆

ExpB(c(λ) + γ)dx,

where c : MR → H2(B,R) is as before.

Our description of cohomology rings is well suited to compute cohomology rings
of toric bundles over a fixed base manifold B. In particular, a computation of the
ring of conditions of horospherical homogeneous spaces naturally follows. Recall
that the ring of conditions is an intersection ring for (not necessarily complete)
homogeneous spaces [1]. Furthermore, for a connected complex reductive group G
a homogeneous space G/H is called horospherical if H is a closed subgroup in G
containing a maximal unipotent subgroup.

Finally, in a work in progress [4] we study further geometric properties of toric
bundles. We first obtain a combinatorial criterion for a line bundle on EΣ to be
ample. We also use it to give a combinatorial description of Fano toric bundles.
Let c : M → Pic(B) be the homomorphism of lattices defining the T -principal
bundle E → B.

Theorem 4 ([4]). Let p : EΣ → B be a toric bundle defined by a homomorphism
c : M → Pic(B) and a fan Σ. Then EΣ is Fano if and only if

• Σ is a Fano fan;
• for every λ ∈ ∆−KΣ ∩MQ the divisor c(λ)−KB on B is Q-ample, where

∆−KΣ is the anticanonical polytope of XΣ.
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C∗-actions and Mori dream spaces

Eleonora A. Romano

(joint work with Gianluca Occhetta, Luis E. Solá Conde,
Jaros law A. Wísniewski)

The relation of birational geometry with the theory of quotients of C∗-actions has
been acknowledged since the early days of the Minimal Model Program. In this
context, we recall for instance the contributions by Thaddeus and Reid [4,10] which
focused on describing birational transformations in terms of variation of stability
conditions yielding geometric quotients. This concept gave rise to the notions
of Mori Dream Space (MDS) introduced by Hu and Keel in [5], and Cox ring,
whose spectrum gives, as GIT quotients, small Q-factorial modifications (SQM
for short) of an MDS. Furthermore, W lodarczyk in [12] used C∗-actions to prove
the Weak Factorization Conjecture, which asserts that a birational map of smooth
projective varieties can be factored as a sequence of blowups and blowdowns in
smooth centers. The key tool in his work was the notion of birational cobordism,
constructed by Morelli in the toric case.

We deal with C∗-actions from the viewpoint of birational geometry, and we
introduce here some recent results contained in [8]; we refer to this paper for de-
tailed proofs and examples, and to [6, 7] and references therein for an account
on torus actions and some applications. Our purpose is to investigate equivariant
birational modifications of smooth projective varieties with a C∗-action. More pre-
cisely, when the action is equalized, which means that no point has finite isotropy,
after blowing up the extremal fixed components we obtain a variety which admits
a system of small Q-factorial C∗-equivariant modifications (see Theorem 3). We
link these SQM with the GIT quotients of the C∗-varieties. Each of these modifi-
cations is a projective version of a cobordism associated to the natural birational
map between a pair of GIT quotients.
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Let X be a complex smooth projective variety admitting a non-trivial C∗-
action. We denote by Y the set of irreducible fixed point components. Among
these components there are two distinguished ones, called sink and source of the
action, defined by the property of containing, respectively, the limiting points
limt→0t

−1x, limt→0tx where x ∈ X is a general point.
Moreover, we take an ample line bundle L on X , and a linearization µL of the

C∗-action on it, so that for every Y ∈ Y, C∗ acts on L|Y by multiplication with
a character m ∈ M(C∗) = Hom(C∗,C∗), that we call weight of the linearization
on Y . By fixing an isomorphism M(C∗) ≃ Z, this linearization defines a map
µ : Y → Z, sending every fixed point component to its weight. Considering all
the weights µL(Y ), Y ∈ Y, in an increasing order, we obtain a chain of integers
a0 < a1 < . . . < ar. We then define the criticality of the C∗-action on the polarized
pair (X,L) as the integer r. See [6, 9] for explicit examples of C∗-actions on
polarized pairs, and [4,7] for some applications of classification results of varieties
admitting C∗-actions of small criticality in the context of the LeBrun-Salamon
conjecture.

For every Y ∈ Y we consider the Bia lynicki-Birula cells of the action (cf. [2]):

X+(Y ) := {x ∈ X | lim
t→0

tx ∈ Y }, X−(Y ) := {x ∈ X | lim
t→∞

tx ∈ Y }.

Following Mumford’s Geometric Invariant Theory (GIT), given a reductive
group G acting on a variety X , one may consider the problem of describing all the
possible proper geometric and semi-geometric quotients of G-invariant open sub-
sets of X . In the case in which X is normal and proper, and G = C∗ the problem
was treated in [3]; the solution was written in terms of the ordered set of fixed
point components of X by means of sections and semi-sections of C∗-actions. We
recall the description introduced there by means of linearizations of the C∗-action
on (X,L), since it provides a very clear geometric insight on the construction of
the quotients we will work with. Moreover, we will consider only a certain type of
sections and semi-sections, whose quotients will not only be proper, but projective,
since they will be standard GIT quotients of X . The construction is the following.

Construction 1. Let (X,L) be a polarized pair with a nontrivial C∗-action, and
denote by a0 < · · · < ar the weights of the linearization on the fixed point com-
ponents. We obtain a semi-section (respectively a section) of the action choosing
an index i ∈ {0, . . . , r} (resp. i ∈ {0, . . . , r − 1}), and setting

Y− := {Y ∈ Y| µL(Y ) ≤ ai−1}, Y0 := {Y ∈ Y| µL(Y ) = ai},

Y+ := {Y ∈ Y| µL(Y ) ≥ ai+1},

(resp. Y− := {Y ∈ Y| µL(Y ) ≤ ai}, Y+ := {Y ∈ Y| µL(Y ) ≥ ai+1}). Let
us denote by Xss(i, i) (resp. Xss(i, i + 1)) the open set X \

(⋃
Y ∈Y−

X+(Y ) ∪⋃
Y ∈Y+

X−(Y )
)
, and by GX (i, i) (resp. GX (i, i + 1)) the corresponding proper

semi-geometric (resp. geometric) quotients. See Figure 1 below.

Remark 2. Let us keep the above notation. Given a semi-section Y = Y− ⊔Y0 ⊔
Y+, then for every possible index i, the quotient of Xss(i, i) by the induced action
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Figure 1. Weight representation of the semi-geometric and geo-
metric GIT quotients of X .

of C∗ is semi-geometric. Furthermore, if the semi-section is a section, then the
quotient of Xss(i, i+ 1) by C∗ is geometric (see also [3, Theorem 2.1]).

We summarize our main result as follows. For clarity of exposition, we state it
only in the case in which the sink and the source are positive dimensional. Our
arguments work also in the remaining cases; a complete description, examples and
proofs can be found in [8, Sections 4–5].

Theorem 3. Let X be a complex smooth projective variety of Picard number one
admitting a nontrivial C∗-action. Assume that the action is equalized of critical-
ity r, and that its extremal fixed point components Y0, Yr are not isolated points.
Denote by GX (i, i + 1), i = 0, . . . , r − 1, the corresponding geometric quotients.
Then:

(1) The varieties GX (i, i + 1) are smooth and the natural birational maps

GX (0, 1) //❴❴❴ GX (1, 2) //❴❴❴ . . . //❴❴❴ GX (r − 1, r) are flips.

(2) The blowup X♭ of X along Y0, Yr is a Mori dream space.
(3) Given a pair (i, j) of indices i, j ∈ {0, . . . , r}, i ≤ j, there exists a unique

small Q-factorial modification X(i, j) of X♭ that is smooth and admits a
C∗-action with extremal fixed point components GX (i, i+ 1), GX (j− 1, j).

(4) Every small Q-factorial modification of X♭ is constructed as above.

The case of non-equalized actions is going to be investigated in [1], where we
are studying torus actions in a more general setting, by allowing some mild sin-
gularities for the C∗-varieties. Our next purpose is to establish a correspondence
between Mori dream regions and certain C∗-actions which are called bordisms.
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Minimal models of non-degenerate toric hypersurfaces

Victor V. Batyrev

1. Introduction

Let

f(t) =
∑

m∈M

amtm ∈ C[M ] ∼= C[t±1
1 , . . . , t±1

d ] = C[M ]

be a non-invertible Laurent polynomial. Denote by Zf := {f = 0} the affine toric
hypersurface in d-dimensional algebraic torus Td ∼= (C∗)d with the character lattice
M . Any primitive lattice vector ν ∈ N = Hom(M,Z) defines an elementary affine
torus embedding Td →֒ Xν

∼= Cd−1 ×C consisting of exactly two torus orbits: Td

and the closed torus invariant divisor Dν
∼= Td−1.

Definition 1.1. A Laurent polynomial f ∈ C[M ] and the affine toric hypersurface
Zf ⊂ Td are called non-degenerate if for any primitive lattice vector ν ∈ N the

Zariski closure Zf,ν ⊂ Xν is smooth and the intersection two divisors Dν ∩ Zf,ν
is either emply or transversal.

Another equivalent characterization of non-degenerate toric hypersurfaces Zf
can be more explicitly expressed via the Newton polytope P of f :

P := Conv{m ∈M | am 6= 0}.

One can show that the property of the Laurent polynomialf tobe non-degenerate
is a Zariski open condition on the set of its coefficients {am}. It means that the
Zariski closure of Zf in the projective toric variety VP associated with the normal
fan of P is transversal to all torus orbits in VP [1, 2].



Toric Geometry 913

The talk is devoted to a very explicit algorithmic combinatorial construction
of minimal projective birational models of non-degenerate toric hypersurfaces Zf .
The proposed construction runs in the opposite way if one compares it with
the traditional Mori program based on ”extremal contractions” and ”flips”.
We show that if a non-degenerate toric hypersurface Zf admits a minimal model

then such a model Ẑf can be obtained by a crepant partial desingularization

of a uniquely determined projective birational model Z̃f , so called canonical

model, having at worst canonical singularities [8]. The canonical model Z̃f is
the Zariski closure of Zf in some projective Q-Gorenstein canonical toric variety

Ṽ associated with a d-dimensional rational polytope P̃ that depends only on the
Newton polytope P .

2. The canonical toric variety Ṽ

Let P ⊂ MR
∼= Rd be a d-dimensional lattice polytope. We consider below P as

Newton polytope of a non-degenerate Laurent polynomial f(t).
Consider the dual lattice N := Hom(M,Z) ⊂ NR := Hom(M,R) and the

piecewise linear function ordP : NR → R, y 7→ ordP (y) := minx∈P 〈x, y〉, where
〈∗, ∗〉 denotes the canonical pairing between M and N . We will use the function
ordQ also for some rational polytopes Q ⊂MR.

Definition 2.1 ([3, 4]). The convex set

F (P ) := {x ∈MR | 〈x, n〉 ≥ ordP (n) + 1 ∀n ∈ N \ {0}} ⊂ P ⊂MR

is called the Fine interior of P .

Remark 2.2. One can show that F (P ) is a convex hull of finitely many rational
points in Int(P ) ∩MQ := M ⊗ Q, where Int(P ) := P \ ∂P denotes the usual
interior of P . Note that the Fine interior F (P ) ⊂ P may happen to be empty.

Definition 2.3. [6, 8] Assume that F (P ) 6= ∅. Then we call the set

SF (P ) := {n ∈ N | ordF (P )(n) = ordP (n) + 1} ⊂ N \ {0}

the support of F (P ).

Remark 2.4. The set SF (P ) consists of finitely many primitive lattice vectors
in N such that R≥0SF (P ) = NR. We will use below the SF (P ) as generating set

Σ̂[1] of 1-dimensional cones in a complete simplicial fan Σ̂ defining a projective

simplicial toric variety V̂ that contains a minimal model Ẑf of Zf .

Definition 2.5 ([8]). Assume that F (P ) 6= ∅. Then we call the d-dimensional
rational polytope

C(P ) := {x ∈MR | 〈x, n〉 ≥ ordP (n) ∀n ∈ SF (P )}

the canonical hull of P . It is clear that P ⊆ C(P ).
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Theorem 2.6 ([8]). Assume that F (P ) 6= ∅. Consider the Minkowski sum

P̃ := C(P ) + F (P ).

Then 1-dimensional cones in the normal fan Σ̃ to the full-dimensional polytope

P̃ are spanned by elements of SF (P ), i.e., Σ̃[1] ⊆ SF (P ). The normal fan Σ̃

defines a projective toric variety Ṽ = V (Σ̃) with at worst Q-Gorenstein canonical
singularities.

Proposition 2.7 ([8]). There exists a maximal projective simplicial refinement Σ̂

of the complete fan Σ̃ such that Σ̂[1] = SF (P ). The corresponding birational toric

morphism V̂ → Ṽ is crepant, i.e., V̂ is a maximal projective partial desingulariza-

tion of the canonical toric variety Ṽ .

3. The canonical model Z̃f and minimal models Ẑf

The following result is due to S. Ishii:

Theorem 3.1 ([6]). A nondegenerate toric hypersurface Zf has a minimal model

if and only if F (P ) 6= ∅. Moreover, if F (P ) 6= ∅, then a minimal model of Ẑf can
be obtained as Zariski closure of Zf in some projective simplicial torus embedding

Td ⊂ V̂ having at worst terminal singularities whose defining simplical fan Σ̂

satisfies the condition Σ̂[1] = SF (P ).

Definition 3.2 ([8]). We call the Zariski closure Z̃f of Zf in the toric variety Ṽ
the canonical model of Zf .

The canonical model Z̃f is our new main tool. We construct minimal models

Ẑf via the canonical model Z̃f .

Theorem 3.3 ([8]). The canonical model Z̃f has at worst canonical singularities.

Moreover, the Zariski closure Ẑf of Zf in a maximal projective partial desingular-

ization V̂ := V (Σ̂) of Ṽ is a minimal model of Zf which is a maximal projective

crepant partial desingularization of the canonical model Z̃f .

Remark 3.4. A refinement Σ̂ of Σ̃ with Σ̂[1] = SF (P ) in Proposition 2.7 is not

unique in general. Therefore, there exist possibly many minimal models Ẑf of the

canonical model Z̃f .

Theorem 3.5 ([8]). Let κ(Ẑf ) be the Kodaira dimension of the minimal model

Ẑf . Then κ(Ẑf ) = min{d− 1, dimF (P )}.

Remark 3.6. On can show that a lattice polytope P ⊂ MR is reflexive if and

only if F (P ) = {0} and C(P ) = P . In the latter case, we have P̃ = P and
SF (P ) = ∂P ∗ ∩N , where

P ∗ := {y ∈ NR | 〈x, y〉 ≥ −1 ∀x ∈ P} ⊂ NR

is the polar dual reflexive polytope. Moreover, Ṽ is the Gorenstein toric Fano
variety VP , and the above general construction of minimal models gives rise to
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already known minimal Calabi-Yau hypersurfaces Ẑf used in the combinatorial
Mirror Symmetry based on the polar duality P ←→ P ∗ for reflexive polytopes [5].

Remark 3.7. Recently (see [9]), the proposed method was applied to all 674, 688
three-dimensional canonical lattice polytopes classified by Kasprzyk [7].
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Computing toric degenerations of varieties

Fatemeh Mohammadi

(joint work with Oliver Clarke, Francesca Zaffalon)

In this note, we focus on toric degenerations of Grassmannians, however, the given
constructions also apply to the case of (partial) flag varieties [8].

A toric degeneration of an algebraic projective variety X is a flat family F → A1

whose fibers Ft over all points t ∈ A1\{0} are isomorphic to X and whose fiber
over 0 is a toric variety X0 := F0. Toric degenerations are particularly useful
because many important algebraic and geometric invariants of X , such as the
Hilbert polynomial and degree, coincide with those of X0. It is often practical to
study these invariants using the toric variety X0 because toric varieties are rich in
combinatorial structure. This is due to a well-established dichotomy between toric
varieties and discrete geometric objects, such as polyhedral fans and polytopes.

The study of toric degenerations is motivated by two natural questions:

(1) How do we compute toric degenerations of X?
(2) What is the relationship between two different toric degenerations of a

fixed algebraic variety X?

To answer the first question, one general approach is through Gröbner degener-
ations [3, 11, 12]. Such toric degenerations of a closed subvariety V (I) of a large
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space are produced by toric (binomial and prime) initial ideals of I. This is nat-
urally linked to tropical geometry. More precisely, given a variety X as above,
realized as Proj(A) ∼= Proj(C[x1, . . . , xn]/I) where A is its homogeneous coordi-
nate ring and C[x1, . . . , xn]/I a choice of presentation of A, the tropicalization of
X , denoted by trop(X) is a subset of Rn consisting of those weight vectors whose
corresponding initial ideals inw(I) contain no monomials. In particular, trop(X) is
a subfan of the Gröbner fan, hence carrying a lot of combinatorial structure. Given
that primality is impossible if inw(I) contains a monomial, the top-dimensional
cones of the tropicalization provide a good search space for the weight vectors
for which the initial ideal inw(I) is toric. Hence, the first question boils down
to computing the tropicalization of varieties, however, such computations are very
challenging. For example for the Grassmannians, on the computational side [3,10],
we currently only have the description for Gr(2, n), Gr(3, 6), and Gr(3, 7). For flag
varieties, such computations are only available for FL4 and Fl5.

In the case of Gr(2, n), i.e. the tropical Grassmannian of 2-planes in n-space, it
is shown by Speyer and Sturmfels that all the top-dimensional cones lead to toric
degenerations, however, this is no longer true for higher Grassmannian. In [12],
we used the correspondence between tropical line arrangements and the so-called
coherent matching fields from [14] to provide a combinatorial characterization of
the maximal cones in the case of Gr(3, n) which yields toric degenerations.

Extending this work, in [8] we study the tropicalization of Gr(k, n) and produce
families of points in its top-dimensional cones. We prove that the associated initial
ideal of every such point is binomial and prime, hence leading to toric degeneration.

The class of weight vectors that we study arises from matching fields. In the
case of Grassmannians, the idea is the following. Consider the Plücker embedding,
induced by the following polynomial map: φ : C[PI ] → C[xi,j ] : PI 7→ det(XI),
where X = (xi,j) is a k × n matrix of variables and XI is the submatrix on the
columns indexed by I for each k-subset I of {1, . . . , n}. A good candidate for
a Gröbner degeneration of Gr(k, n) is given by deforming φ to a monomial map
φΛ. This is done by sending each Plücker variable PI to one of the summands of
det(XI). A matching field Λ is a combinatorial object which encodes this data.

Matching fields were originally introduced by Sturmfels and Zelevinsky to study
Newton polytopes of products of maximal minors. A matching field is defined as a
map that sends each variable PI to a permutation. In particular, this gives a nat-
ural monomial map that corresponds to a toric subvariety of the projective space.
In order for a matching field Λ to give rise to a toric degeneration of Gr(k, n), it
is necessary for Λ to be coherent, i.e. induced by a weight matrix. Toric degen-
erations arising from matching fields have been studied in great detail in [5, 7, 8].
Such degenerations correspond to top-dimensional cones of trop(Gr(k, n)) as in
[11]. There remain many open questions in this area. Notably, which matching
fields produce toric degenerations? In studying this question, we use combinato-
rial mutations introduced in [1]. A combinatorial mutation is a special kind of
piecewise linear map between polytopes. We say that two polytopes are mutation
equivalent if there exists a sequence of combinatorial mutations between them.
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For the second question above, we need to understand the properties of algebraic
varieties that are preserved under toric degeneration. We do this by looking into
the associated polytopes of the resulted toric varieties. Recall that each mono-
mial map obtained from a coherent matching field Λ gives rise to a projective
toric variety V (ker(φΛ)). In general, this is not a toric degeneration of Gr(k, n).
We associate to Λ the matching field polytope PΛ which is the toric polytope of
V (ker(φΛ)). We prove in [8] that a matching field Λ inherits the property of giving
rise to a toric degeneration from another matching field Λ′ whenever PΛ and PΛ′

are mutation equivalent.

Theorem ([8]). Let Λ be a matching field for the Grassmannian Gr(k, n). If the
matching field polytope PΛ is combinatorial mutation equivalent to the Gelfand-
Tsetlin polytope, then Λ gives rise to a toric degeneration of Gr(k, n).

We then construct a family of matching fields {Λσ} indexed by permutations
and show that:

Theorem ([8]). For each permutation σ ∈ Sn, the matching field polytope PΛσ is a
combinatorial mutation equivalent to the Gelfand-Tsetlin polytope. In particular,
each Λσ gives rise to a toric degeneration of Gr(k, n).

Following up on the known results for the tropical Grassmannian, one may ask a
more general question for arbitrary projective varieties X : what is the relationship
between the different toric degenerations which arise from different maximal cones
in trop(X)? In [9], Escobar and Harada have studied this problem and showed
that the toric degenerations of adjacent maximal cones are related by certain flip
maps. In the case of Gr(2, n) the combinatorial mutation above is equivalent to
the cluster mutation, and the flip map. The natural question is to understand
such mutations for higher Grassmannians.

The connection between cluster mutation and Escobar–Harada’s flip map was
first observed in a discussion with Lara Bossinger and Megumi Harada during the
MFO-Workshop on Toric geometry in 2019, see [2] and [4].
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Toric Geometry and Discrete Periodic Operators

Frank Sottile

(joint work with Matthew Faust)

For background, see [2] and its references, including [5]. A fundamental problem
in mathematical physics is to understand the spectrum σ(L) of a Schrödinger
operator L. For a function f : Rd → C, we have

Lf = L(f) := −∆f + V f ,

where ∆ =
∑
i
∂2

∂x2
i

is the Laplacian and V : Rd → R is a potential. As L is a

self-adjoint operator on an appropriate Hilbert space, its spectrum σ(L) consists
of a union of intervals in R, giving the familiar spectral bands and gaps.

Solid-state physics studies the Schrödinger operator in a crystalline material,
with the Laplacian altered due to a periodic anisotropy and V periodic.

We consider a discrete version. Let Γ be a graph equipped with a free action
of Zd having finitely many orbits on its edges, E(Γ), and vertices, V(Γ). Fix
parameters, functions c : E(Γ)→ R and V : V(Γ)→ R that are Zd-periodic. For a
function f : V(Γ)→ C, our Schrödinger operator L is

Lf(v) := V (v)f(v) +
∑

(u,v)∈E(Γ)

c(u,v)(f(v)− f(u)) .

Then L is an operator on the space ℓ2(Γ) of square-summable functions on V(Γ).
Fourier transform (called Floquet transform) reveals more structure of the spec-

trum σ(L). Let T ⊂ C be the unit complex numbers. For x ∈ T, x = x−1. Then
Td := Hom(Zd,T) is the space of unitary characters of Zd. The evaluation of
z ∈ Td at γ ∈ Zd is a monomial, z(γ) = zγ11 · · · z

γd
d =: zγ . Fourier transform of

f : V(Γ)→ C is a function f̂(z, v) on Td ×V(Γ) satisfying f̂(z, γ + v) = zγ f̂(z, v).
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If W ⊂ V(Γ) is a fundamental domain for the Zd-action, then Fourier trans-
form is a linear isometry between ℓ2(Γ) and L2(Td)W , the space of functions

f̂ : W → L2(Td). The action of the operator L on such functions f̂ becomes

(1) Lf̂(v) := V (v)f̂(v) +
∑

(γ+u,v)∈E(Γ)

c(γ+u,v)(f̂(v)− zγ f̂(u)) .

u u

u

vv

v

x

y

p

r

r

q q

Figure 1. Graphene and Z2-periodic edge parameters

Example. On the left in Figure 1 is graphene, a Z2-periodic graph. Its funda-
mental domain W has two vertices, and there are three orbits of edges. Fix edge
parameters p, q, r, as on the right. The operator L is

Lf̂(u) = V (u)f̂(u) + p(f̂(u)− f̂(v)) + q(f̂(u)− x−1f̂(v)) + r(f̂ (u)− y−1f̂(v)) ,

Lf̂(v) = V (v)f̂ (v) + p(f̂(v)− f̂(u)) + q(f̂(v) − xf̂(u)) + r(f̂ (v)− yf̂(u)) .

Collecting coefficients of f̂(u), f̂(v), we represent L by the 2× 2-matrix,

L =

(
V (u) + p+ q + r −p− qx−1 − ry−1

−p− qx− ry V (v) + p+ q + r

)
,

whose entries are Laurent polynomials in x, y. Observe that for (x, y) ∈ T2,
LT = L, so that L is Hermitian. ⋄

This holds in general. After Fourier transform, L is multiplication by a W ×W
matrix L(z) of Laurent polynomials in z. As z ∈ Td, we have L(z)T = L(z), so
that L(z) is Hermitian and hence has |W | real eigenvalues.

These eigenvalues are the roots of D(z, λ) := det(L(z)−λI). As a polynomial in
z, λ, it is the dispersion relation which defines the Bloch variety, {(z, λ) | D(z, λ) =
0} ⊂ Td×R. Figure 2 shows two Bloch varieties for graphene with zero potential.
On the left the edge parameters are 6, 3, 2, and on the right they are 1, 1, 1, giving
the graph Laplacian. The spectrum σ(L) is the image of the Bloch variety under
projection to the vertical λ-axis. On the left there are two spectral bands with a
gap in between, while there is one spectral band on the right.

Since Bloch varieties are defined by Laurent polynomials, we may complexify,
allowing complex parameters c and V , z ∈ (C×)d, and λ ∈ C. This gives complex
Bloch varieties in (C×)d × C.
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Figure 2. Bloch varieties with edge parameters 6,3,2 and 1,1,1

Several fundamental questions from physics may be understood in terms of the
algebraic geometry of the Bloch variety. The spectral edges conjecture [5]*Conj.
5.25 posits that for L sufficiently general (e.g. c, V general), all extrema of the
function λ on the real Bloch variety are nondegenerate. Important notions, such
as effective masses in solid state physics, the Liouville property, etc., depend upon
this conjecture. This is discussed in [2, Sect. 1.4].

This holds for the Bloch varieties in Figure 2. On the left, λ is a Morse function,
and all critical points are nondegenerate. The critical value from the singularities
on the Bloch variety of the Laplacian lies in the interior of the spectrum and the
extrema are nondegenerate. A first step towards the spectral edges conjecture is
to understand the critical points of λ. This was the approach in [2] to prove the
spectral edges conjecture for the graph on the left of Figure 4.

Classical work. In 12992, Gieseker, Knörrer, and Trubowicz [4] settled a number
of questions in the following situation. Let Γ be the grid graph, with vertices Z2

where α, β ∈ Z2 adjacent if ‖α− β‖ = 1. If we let the standard generators e1, e2
of Z2 act respectively as translation by ae1 and be2, for a, b coprime integers, then
Γ is Z2-periodic with fundamental domain the integer points in any a× b box.

The Schrödinger operator with the graph Laplacian depends upon the ab values
of the potential V on a fundamental domain. Gieseker, Knörrer, and Trubowicz [4]
prove identifiability: if V and V ′ are general and give the same Bloch variety, then
V and V ′ differ only by obvious symmetries of relabeling the fundamental domain.

They also show that there is a dense open set of Cab consisting of potentials V
such that the number of critical values of the function λ on the Bloch variety is

(2) 2a2b2 + 6ab(a+ b) + 12ab− 12(a2 + b2) = 2(a+ b)− 12

For potentials in this open set, the Bloch variety is smooth and irreducible.
These and other results were obtained by compactifying the Bloch variety in a

natural toric variety, followed by a toric resolution of singularities.

Current work. We describe some work with Faust [3]. The dispersion rela-
tion D(z, λ) is a Laurent polynomial which is an ordinary polynomial in λ. Let
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PΓ ⊂ Rd+1 be its Newton polytope—the convex hull of the exponent vectors of all
monomials in z, λ occurring in D(z, λ). Figure 3 shows typical Newton polytopes
for graphene and for the two graphs of Figure 4.

Figure 3. Three Newton Polytopes

Let X◦ = (C×)d × C, the domain of the dispersion relation D(z, λ) and the
ambient space of the Bloch variety. This has a compactification given by the
projective toric variety XΓ corresponding to the polytope PΓ, and the closure of
the Bloch variety in XΓ compactifies the Bloch variety.

Our main result is a generalization of the enumeration (2) of critical values.
Implicit differentiation of 0 = D(z, λ) gives 0 = ∂

∂zi
D(z, λ)+ ∂

∂λD(z, λ) · ∂λ∂zi . Thus

(z, λ) ∈ X◦ is a critical point of λ if it is a common zero of the polynomials

(3) D(z, λ) , z1
∂

∂z1
D(z, λ) , . . . , zd

∂

∂zd
D(z, λ) .

Each polynomial has Newton polytope a subset of PΓ. Consequently, the critical
points are the common zeroes on X◦ of d+1 sections of the line bundle O(PΓ) on
XΓ. We have the following bound.

Theorem A. The number of critical points of the function λ on the Bloch variety
is at most the degree of the toric variety XΓ, which is (d+1)!vol(PΓ).

An application of Bernstein’s Theorem B [1] informs us that if the number of
critical points of λ on the Bloch variety is less than the degree of XΓ, then the
critical point equations (3) have solutions in ∂XΓ := XΓ \X◦.

We obtain XΓ from X◦ by adding divisors for each facet of PΓ, except its base
(as {λ = 0} ⊂ X◦). Each face F of PΓ corresponds to a torus orbit X◦

F on XΓ. The
intersection of X◦

F with the compactified Bloch variety is defined by the restriction
D(z, λ)|F of D(z, λ) to the monomials whose exponent vectors lie in F .

Theorem B. If the critical point equations (3) have a solution in X◦
F , for F a

face of PΓ that is not its base, then either F is vertical or the hypersurface in X◦
F

defined by D(z, λ)|F is singular at that point.

A periodic graph Γ is dense if it has all possible edges given its structure: if
there is one edge between translates β+W and γ+W of the fundamental domain
W then it has all edges between vertices in (β+W )∪ (γ +W ). Of the two graphs
in Figure 4, the one on the left is dense.
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Figure 4. More periodic graphs

Given a graph Γ, let A(Γ) be the set of γ ∈ Zd such that Γ has an edge between
W and γ + W . Let P be the convex hull of A(Γ) and the point (0, 1), which is a
pyramid over the convex hull Q of A(Γ) with apex (0, 1). It has no vertical faces.

Theorem C. Suppose that Γ is dense. Then there is a dense open subset U of
the space of parameters consisting of parameters c, V in U such that the Newton
polytope PΓ of the dispersion relation D(z, λ) is |W | · P .

When d = 2, 3, we may choose U such that for parameters c, V from U and all
faces F of PΓ, the hypersurface in X◦

F defined by D(z, λ)|F is smooth.

Using the formula for the volume of a pyramid, we obtain the following result.

Corollary. Suppose that Γ is dense and d = 2, 3. Then there is a dense open
subset U of the space of parameters consisting of parameters c, V such that the
function λ on the complex variety has exactly |W |d+1d!vol(Q) critical points.
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