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Abstract. From a mathematical perspective, optimization is the science of
proving inequalities. In this sense, computational optimization is a method
for computer-assisted proofs.

Conic (linear) optimization is the problem of minimizing a linear func-
tional over the intersection of a convex cone with an affine subspace of a
topological vector space. For many cones this problem is computationally
tractable, and as a result there is a growing number of computer-assisted
proofs using conic optimization in discrete geometry, (extremal) graph the-
ory, numerical analysis, and other fields, the most famous example perhaps
being the proof of the Kepler Conjecture.

The aim of this workshop was to bring researchers from these diverse fields
together to work towards expanding the current scope of conic optimization
as a method of generating proofs, and to identify problems and challenges to
work on together.

Mathematics Subject Classification (2020): 90Cxx, 90C22, 52-xx, 14Pxx, 65-xx, 05Cxx.

Introduction by the Organizers

The workshop Conic linear optimization for computer-assisted proofs, organized
by Etienne de Klerk, Didier Henrion, Frank Vallentin, and Angelika Wiegele, was
attended by 25 participants, including one online participant. The specializations
of the participants included mathematical optimization, control theory, real alge-
braic geometry, computer algebra, representation theory, and discrete geometry.

Here we give a short overview of the talks given at the workshop, grouped by
area. We first describe the talks on recent developments in conic optimization
and symmetry reduction techniques, followed by applications in the areas of graph
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theory and combinatorial optimization, extremal combinatorics (via flag algebras),
numerical analysis, discrete geometry, and dynamical systems.

Conic optimization. Monique Laurent (CWI Amsterdam) gave a featured (re-
view) talk on Recent developments in polynomial optimization, and discussed lower
and upper bounds for semidefinite programming (SDP) hierarchies using tech-
niques from approximation theory and orthogonal polynomials.

Victor Magron (LAAS-CNRS Toulouse) gave the second featured talk on Conic
programming for certified polynomial optimization, and described algorithms with
good complexity which can be used in formal proof systems.

Georgina Hall (INSEAD Fontainebleau) discussed certificates of nonnegativity
for sums of separable and quadratic polynomials, where the main results are that
deciding nonnegativity of such polynomials is NP-hard, but deciding convexity is
tractable.

Simone Naldi (Univ Limoges) discussed the projective geometry of conic feasi-
bility problems.

Valentin Dannenberg (Univ Rostock) demonstrated algorithms for obtaining
rational certificates of complete positivity of matrices, inspired by the classical
theory of Voronoi of perfect forms (finding all critical points for lattice packings).

Symmetry reduction and representation theory. David de Laat (TU Delft)
gave the featured talk on Exploiting symmetry in conic optimization, and discussed
applications to spherical codes, the Lovász theta function, the Delsarte-Goethals-
Seidel 2-point linear programming bound, and Bochner’s theorem applied to the
Bachoc-Vallentin 3-point SDP bound. He also described a new toolbox for ex-
tracting exact SDP bounds and computer-assisted proofs for the optimality and
uniqueness of point configurations.

Mohab Safey El Din (Sorbonne Univ Paris) described an exact algorithm for
symmetric polynomial optimization problems.

Philippe Moustrou (IMT Univ Toulouse) discussed symmetry reduction tech-
niques in the context of AM/GM optimization.

Dmitrii Pasechnik (Univ Oxford) showed new results in exact computations
with group representations.

Graph theory and combinatorial optimization. Elisabeth Gaar (Johannes
Kepler Univ Linz) gave the talk Towards a Computer-Assisted Proof for a Conjec-
ture from Graph Theory, where an algebraic reformulation of Vizing’s conjecture
on dominating sets in graphs is used to certify Vizing’s conjecture via positivity
of a class of polynomials on a class of varieties.

Renata Sotirov (TilburgUniv) characterized theChvátal-Gomory closure of spec-
trahedra, and applied this theory to a branch-and-cut framework using Chvátal-
Gomory cuts for integer SDP problems.

Konstantin Golubev (ETH Zurich) extended the Hoffman eigenvalue bound
from graphs to hypergraphs and considered applications in extremal combinatorics
(Erdős-Ko-Rado theorem for intersecting families, their p-biased versions, Mantel’s
theorem, and Frankl’s problem on triangle free families).
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Fernando de Oliveira (TU Delft) introduced an extension of the Lovász theta
number from graphs to r-uniform hypergraphs, deriving fundamental properties
of the recursive theta body, relations to the Hoffman eigenvalue bound for hyper-
graphs, and applications in extremal graph theory.

Extremal combinatorics: flag algebras. Fernando de Oliveira (TU Delft)
gave a featured talk on The use of flag algebras in proofs, reviewing Razborov’s
flag algebra approach for problems in extremal graph theory (presented examples:
Caccetta-Häggkvist conjecture, Mantel’s theorem), and relations to Lasserre’s hi-
erarchy and to the theory of graph limits by Lovász and Szegedy.

Daniel Brosch (Tilburg Univ) spoke on the symmetries of flag algebras, and
introduced a different and simplified version of Razborov’s flag algebra.

Numerical analysis. Adrien Taylor (INRIA Paris) gave the featured talk on the
Analysis of worst-case performance of iterative methods via conic optimization.
He reviewed the use of SDPs to prove estimates for performance measures of first-
order methods, and described the development of a toolbox which can be used for
the analysis of many different first-order methods.

Felix Kirschner (Tilburg Univ) spoke about the construction of multivariate
polynomial approximation kernels via semidefinite programming, and showed how
kernels of the Jackson-type may be extended to the multivariate case.

Discrete geometry. Andreas Spomer (Univ Cologne) described semidefinite pro-
gramming bounds for the kissing number problem for regular tetrahedra and for
more general packings of regular n-gons on the unit sphere S2.

Maria Dostert (KTH Stockholm) considered semidefinite programming bounds
for the average kissing number, and described explicit computation of new bounds
by SDP, including rigorous certification by rounding the SDP.

David de Laat (TU Delft) spoke on the computation of three-point bounds for
sphere packings in Euclidean space Rn using SDP, and showed improved bounds in
dimension n = 4, 5, 6, 7, 9. He made a link to recent developments of the conformal
bootstrap program in theoretical physics.

Control and dynamical systems. Jared Miller (Northeastern Univ Boston)
discussed bounding the minimum distance to unsafe sets in control theory using
the moment hierarchy.

Milan Korda (LAAS-CNRS Toulouse) showed how to find Lyapunov functions
(by SDP) to certify stability of dynamical systems controlled by neural networks.

Acknowledgement: The organizers gratefully acknowledge that three participants
received travel support through the Oberwolfach Leibniz Graduate program.
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Abstracts

Recent developments on convergence analysis of sum-of-squares
hierarchies in polynomial optimization

Monique Laurent

We consider polynomial optimization problems of the form

fmin = min{f(x) : x ∈ K}, where K = {x ∈ Rn : gj(x) ≥ 0 (j ∈ [m]}
with f, gj ∈ R[x] multivariate polynomials. Such problems are in general nonlin-
ear, nonconvex hard problems, already for simple sets K like the ball, the unit
sphere, the hypercube or the simplex, since they can capture NP-hard combinato-
rial problems like max-cut and maximum stable set problems in graphs. Hierar-
chies of upper and lower bounds can be constructed using the cone Σ of sums of
squares of polynomials. For an integer r ∈ N define the parameters

f (r) = inf
{∫

K

f(x)σ(x)dµ(x) :

∫

K

σ(x)dµ(x) = 1, σ ∈ Σ, deg(σ) ≤ 2r
}
,(1)

f(r) = sup
{
λ : f − λ =

m∑

j=0

σjgj, σj ∈ Σ, deg(σjgj) ≤ 2r
}
,(2)

f(r),sch = sup
{
λ : f − λ =

∑

J⊆[m]

σJgJ , σJ ∈ Σ, deg(σJgJ) ≤ 2r
}
.(3)

Here µ is a positive Borel measure with supportK and we set g0 = 1, gJ =
∏

j∈J gj.

We have f(r) ≤ f(r),sch ≤ fmin ≤ f (r) and each parameter f (r), f(r), f(r),sch can

be expressed as a semidefinite program. When K is compact the bounds f (r) and
f(r),sch are known to converge asymptotically to fmin, as well as f(r) under an
Archimedean condition [5, 6]. In this lecture we discuss the state-of-the-art results
concerning the quality of the upper and lower bounds, namely how fast the error
ranges f (r)−fmin, fmin−f(r),sch and fmin−f(r) tend to 0 as a function of the order
r of the relaxation. In both cases the results can be divided into two categories:
for general sets K, and for special sets K such as the ball, the unit sphere, the
hypercube or the simplex. Different techniques are used for each category and,
naturally, stronger results can be shown for special sets. In addition there is an
intimate link between the analysis for both upper and lower bounds.

Convergence analysis of the upper bounds. The most general result is when
the set K is a convex body, or a semialgebraic set with a dense interior (selecting

the Lebesgue measure for µ); then one can show f (r) − fmin = O
(
log2 r
r2

)
[10]. The

analysis has two key steps: (1) reduce the search to a univariate sum of squares s
and then set σ(x) = s(f(x)), (2) select the univariate sum of squares s as a tight
approximation of the Dirac delta at an extremity of an interval (using so-called
needle polynomials).
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A stronger analysis in O
(

1
r2

)
can be shown for special sets: for the interval

[−1, 1] (with dµ(x) = (1 − x2)−1/2dx in [3], with dµ(x) = (1 − x2)λ and λ ≥
−1/2 in [10]), for the ball and the simplex in [10], and for the sphere in [4].
The starting point is expressing the parameter f (r) as the smallest eigenvalue of
the matrix Af = (

∫
K f(x)pα(x)pβ(x)dµ(x))|α|,|β|≤r , where {pα} are orthonormal

polynomials with respect to the inner product provided by the measure µ on K.
In the univariate case, when K = [−1, 1] and f(x) = x, the matrix Ax coincides
with the (tridiagonal) Jacobi matrix, whose entries are given by the three-term
recurrence satisfied by the polynomials pk, and whose eigenvalues are the roots
of the polynomial pr+1. Hence, in this case, f (r) coincides with the least root of
pr+1, known to be in the order −1 + Ω

(
1
r2

)
for Jacobi type measures (1 − x2)λ

(λ > −1). This is the key ingredient used in [3] for the analysis in the case when
K = [−1, 1]n. Additional reductions are needed to extend the analysis to other
sets. This includes an integration trick in order to extend the analysis to the
sphere in [4] and looking at the local shape around a global minimizer to extend
the analysis to the ball, the simplex and ‘round’ convex bodies in [10].

Convergence analysis of the lower bounds. The best general result shows
a convergence rate in O

(
1
rc

)
for the bounds f(r) [1], improving an earlier result

in [8] (with a logarithmic dependence on r). The analysis combines a variety of
techniques, including the Lojasiewicz inequality and approximation theory tools,
and a reduction to the analysis for the case of the hypercube [−1, 1]n (in [7]).

For special sets such as the hypercube [−1, 1]n, the ball, the sphere and the
simplex, a better performance analysis in O

(
1
r2

)
can be shown for the bounds

f(r),sch (that involve richer sum of squares decompositions). A key ingredient
here is using the polynomial kernel method to construct suitable sum of squares
representations. Here is a general ‘recipe’. Assume we have an invertible linear
operator Kr : R[x]r → R[x]r that satisfies the following properties:

(P1) Kr preserves the constant polynomial: Kr1 = 1,
(P2) if p ≥ 0 on K and deg(p) ≤ r, then Krp =

∑
J σJgJ , where σJ ∈ Σ and

deg(σJgJ) ≤ 2r,
(P3) ‖K−1

r f − f‖∞ ≤ ǫ.

It is not difficult to see that one can conclude fmin − f(r),sch ≤ ǫ. The chal-
lenge then is constructing a linear operator Kr having these properties. Property
(P3) says (roughly) that Kr should be close to the identity operator when acting
on polynomials of degree at most d = deg(f). Following the polynomial kernel
method, one can select a polynomial kernel Kr(x, y) ∈ R[x, y] and then define
the corresponding linear operator that acts by convolution: for p ∈ R[x]r, define
Krp(x) =

∫
K
p(y)Kr(x, y)dµ(y).

Consider first the case of the hypercubeK = [−1, 1]n, equipped with the Cheby-
shev product measure dµ(x) =

∏n
i=1(1 − x2i )

−1/2dxi. Consider the multivariate
Chebyshev polynomials Tα =

∏n
i=1 Tαi

where Tk are the univariate Chebyshev
polynomials. Then the Tα are orthogonal w.r.t. the inner product given by µ.
Define the multivariate polynomial kernel Kr(x, y) =

∏n
i=1Kr(xi, yi), where the
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univariate kernel is of the formKr(xi, yi) = 1+2
∑r

k=1 λ
r
kTk(xi)Tk(yi) (also known

as the Jackson kernel), and the scalars λrk are selected so that 0 ≤ 1−λrk ≤ π2d2

(r+2)2

for 0 ≤ k ≤ d and Kr(xi, yi) ≥ 0 on [−1, 1]2. By construction, the corresponding
operator Kr satisfies (P1) and, using Markov-Lukacz, it also satisfies (P2). Fi-
nally, the selection of the scalars λrk ensures that (P3) holds with ǫ = O

(
1
r2

)
, thus

giving the analysis in O
(

1
r2

)
(as in [7]).

The same analysis in O
(

1
r2

)
is shown for the sphere in [2], the ball and the sim-

plex in [9]. It however relies on a different class of polynomial kernels, constructed
by exploiting the symmetry structure of the sets under consideration. The idea
(pioneered in [2]) is construct the kernel Kr(x, y) as a suitable perturbation of the
Christoffel-Darboux kernel, as Kr(x, y) =

∑r
k=0 λk

∑
|α|=k pα(x)pα(y), for appro-

priate scalars λk. Setting λ0 = 1 ensures (P1) holds. The key (harmonic analysis)
fact is that the sum

∑
|α|=k pα(x)pα(y) can be expressed in terms of an associated

univariate polynomial, when dealing with the sphere, the ball or the simplex.
In the case of the unit sphere, this univariate polynomial is a Gegenbauer

polynomial Gk evaluated at xT y. Then, one selects Kr(x, y) = s(xT y), where
s(t) =

∑r
k=0 λkGk(t), and one searches for scalars λk so that s is a sum of squares

(which ensures (P2) holds) and (P3) holds. Interestingly, the search for this uni-
variate s boils down to an instance of the upper bounds g(r) for a suitably defined
univariate g on the interval [−1, 1]. As a consequence, it follows from the earlier
results on the upper bounds that a suitable s can be found, which gives a suitable
polynomial kernel Kr(x, y) and thus a suitable kernel operator Kr.

For the ball and the simplex, a similar approach can be followed, however with
more technical details as the summation formulas for

∑
|α|=k pα(x)pα(y) (given in

[11, 12]) are more involved. The full details can be found in [9].
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Conic programming for certified polynomial optimization

Victor Magron

(joint work with Mohab Safey El Din, Markus Schweighofer, Trung-Hieu Vu,
Timo de Wolff, Heining Seidler, Jie Wang)

In general, certified algorithms provide a way to ensure the safety of several sys-
tems in engineering sciences, program analysis as well as cyber-physical critical
components. Since these systems often involve nonlinear functions, such as poly-
nomials, it is highly desirable to design certified polynomial optimization schemes
and to be able to interpret the behaviors of numerical solvers implementing these
schemes.

In this lecture talk, we describe, analyze and compare both from the theo-
retical and practical points of view, several algorithms computing nonnegativity
certificates with rational coefficients.

We start to focus on the case of nonnegative univariate polynomials with ratio-
nal coefficients and provide two algorithms computing weighted sums of squares
(SOS) decompositions. The first algorithm, due to Schweighofer, relies on real
root isolation, quadratic approximations of positive polynomials and square-free
decomposition. We provide bit complexity estimates, both on runtime and output
size of this algorithm. They are exponential in the degree of the input univariate
polynomial and linear in the maximum bitsize of its complexity. This analysis
is obtained using quantifier elimination and root isolation bounds. The second
algorithm, due to Chevillard, Harrison, Joldes and Lauter, relies on complex root
isolation and square-free decomposition and has been introduced for certifying
positiveness of polynomials in the context of computer arithmetics. We provide
bit complexity estimates, both on runtime and output size of this algorithm, which
are polynomial in the degree of the input polynomial and linear in the maximum
bitsize of its complexity. This analysis is obtained using Vieta’s formula and root
isolation bounds. We extend this framework to the case of trigonometric polyno-
mials with Gaussian integer coefficients, i.e., with real and imaginary parts being
integers.

Then, we consider the problem of computing exact SOS decompositions for
certain classes of non-negative multivariate polynomials, relying on semidefinite
programming (SDP) solvers. We provide a hybrid numeric-symbolic algorithm
computing exact rational SOS decompositions with rational coefficients for poly-
nomials lying in the interior of the SOS cone. The first step of this algorithm
computes an approximate SOS decomposition for a perturbation of the input poly-
nomial with an arbitrary-precision SDP solver. Next, an exact SOS decomposition



Conic Linear Optimization for Computer-Assisted Proofs 1049

is obtained thanks to the perturbation terms and a compensation phenomenon.
We prove that bit complexity estimates on output size and runtime are both singly
exponential in the cardinality of the Newton polytope (or doubly exponential in
the number of variables). Next, we apply this algorithm to compute exact Reznick,
Hilbert-Artin’s representation and Putinar’s representations respectively for pos-
itive definite forms and positive polynomials over basic compact semi-algebraic
sets. We also report on practical experiments done with the implementation of
these algorithms and existing alternatives such as the critical point method and
cylindrical algebraic decomposition. Then we extend this framework to nonnega-
tive polynomials with rational coefficients, assuming that they reach their infimum
and have associated gradient ideal being zero-dimensional radical. We prove that,
under these assumptions, nonnegativity is equivalent to be an SOS of rational
polynomials modulo the gradient ideal. We provide exact algorithms to compute
them, and show that their bit complexity is singly exponential in the number of
variables and polynomial in the degree.

Next, we provide two hybrid numeric-symbolic optimization algorithms, com-
puting exact sums of nonnegative circuits (SONC) and sums of arithmetic-geometric-
exponentials (SAGE) decompositions. Moreover, we provide a hybrid numeric-
symbolic decision algorithm for polynomials lying in the interior of the SAGE
cone. Each framework, inspired by previous contributions of Parrilo and Peyrl,
is a rounding-projection procedure. For a polynomial lying in the interior of the
SAGE cone, we prove that the decision algorithm terminates within a number
of arithmetic operations, which is polynomial in the number of terms of the in-
put, and linear in the distance to the boundary of the cone. We also provide
experimental comparisons regarding the implementation of the two optimization
algorithms.

Eventually, we focus on computing SONC decompositions with second-order
cone (SOC) programming. We prove constructively that the cone of sums of non-
negative circuits (SONC) admits a SOC representation. Based on this, we give a
new algorithm for unconstrained polynomial optimization via SOC programming.
We also provide a hybrid numeric-symbolic scheme which combines the numeri-
cal procedure with a rounding-projection algorithm to obtain exact nonnegativity
certificates.

Sums of Separable Plus Quadratic Polynomials

Georgina Hall

(joint work with Amir Ali Ahmadi, Cemil Dibek)

In this talk, we considered separable plus quadratic (SPQ) polynomials, i.e., poly-
nomials that are the sum of univariate polynomials in different variables and a
quadratic polynomial.

Motivated by the fact that nonnegative separable and nonnegative quadratic poly-
nomials are sums of squares, we first study whether nonnegative SPQ polynomials
are the sum of a nonnegative separable and a nonnegative quadratic polynomial,
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which would imply that any nonnegative SPQ polynomial is actually a sum of
squares. We establish that, in fact, the answer to this question is positive for
univariate plus quadratic polynomials and for convex SPQ polynomials only, and
negative already for bivariate quartic SPQ polynomials. We further use our decom-
position result for convex SPQ polynomials to show that convex SPQ polynomial
optimization problems can be solved by semidefinite programs which are much
smaller than those obtained via the first level of the Lasserre hierarchy.

We then investigate whether nonnegative SPQ polynomials are sums of squares
and provide a complete characterization of when this is the case, based on the
degree and number of variables of the SPQ polynomial. Interestingly, the cases
where nonnegative SPQ polynomials are sums of squares are exactly the same as
those established by Hilbert for non-SPQ polynomials. The examples we produce
of SPQ polynomials which are nonnegative but not sum of squares are obtained in
an automated fashion. Furthermore, the proofs that these polynomials are indeed
nonnegative but not sum of squares are computer assisted.

Though nonnegative SPQ polynomials are not sums of squares in general, this does
not necessarily preclude the existence of a polynomial-time algorithm for testing
nonnegativity of SPQ polynomials. We thus investigate this question next and
show that testing nonnegativity of SPQ polynomials is already NP-hard when the
degree is at least four, via a reduction from Partition.

Finally, we conclude with a generalization of Newton’s method which leverages
SPQ polynomials. Rather than approximating the function to minimize by a
quadratic polynomial, we instead approximate the function to minimize by an SPQ
polynomial. This method gives rise experimentally to larger basins of attraction
when compared to Newton’s method.

On the projective geometry of conic feasibility problems

Simone Naldi

(joint work with Rainer Sinn)

This extended abstract is based on the article [7] to which we refer for a more
complete list of contributions on this topic.

Let K ⊂ U be a closed convex pointed cone with non-empty interior in a real
vector space U , and let L ⊂ U be an affine subspace. The conic feasibility problem
is the algorithmic question of deciding whether K ∩ L = ∅ or K ∩ L 6= ∅.

Several classical questions can be cast as instances of conic feasibility problems,
let us briefly mention a few. The existence of solutions to a system of affine
inequalities

ai1x1 + · · ·+ ainxn ≥ bi, i = 1, . . . ,m

is the feasibility problem of linear programming, that is, the question whether
an affine space L ⊂ U = Rn intersects the n-dimensional nonnegative orthant
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K = Rn
+. The solvability of a linear matrix inequality

A0 + x1A1 + · · ·+ xnAn � 0

for given real symmetric matrices A0, . . . , An, is the feasibility problem of semi-
definite programming: in this case K = Sd+, the cone of positive semidefinite real

symmetric matrices, and L is an affine space in U = Sd. Other important classes
arise in combinatorial optimization (e.g. copositive, completely positive matrices),
real algebraic geometry (moment cones, cone of positive polynomials, SOS cone)
and in several other areas.

One classically makes the distinction between different shades, or types, of
feasibility and infeasibility. A feasible conic program is called strongly feasible
(resp. weakly feasible) if the affine space L contains (resp. does not contain) an in-
terior point of K. On the other side, an infeasible conic program is called strongly
infeasible if the Euclidean distance d(K, L) is strictly positive, and it is called
weakly infeasible if d(K, L) = 0.

An example of a weakly feasible set in semidefinite programming is the Gram
spectrahedron of a sum-of-squares polynomial which has no rational Gram matri-
ces, for instance one of the polynomials given by Scheiderer in [9]:

x4 + xy3 + y4 − 3x2yz − 4xy2z + 2x2z2 + xz3 + yz3 + z4.

An example of weakly infeasible semidefinite program (see [8]) is given by the
linear matrix inequality [

0 1
1 x

]
� 0

since the previous inequality has no solutions, but the set
{[

1/n 1
1 n

]
: n ∈ N

}
is in-

cluded in the cone K = S2+ and has distance zero from the line L = {[ 0 1
1 x ] : x ∈ R}.

Let us also mention that such degenerate programs might seem artificial, but ac-
tually can arise quite naturally in concrete situations, for instance in the case of
Lasserre relaxations of the minimization of the Motzkin polynomial [10].

The existence of “weak types” makes the feasibility problem harder, since for
these types, the feasibility is not robust under small perturbations of the input
data: a weakly feasible program will become either strongly feasible or strongly
infeasible after small perturbation, and the same for a weakly infeasible program.
It is a typical behavior of numerical solvers that of giving a wrong answer in these
degenerate situations.

The main contribution of our work [7] is the construction of a general frame-
work for homogenizing a conic program. Indeed, different algorithms for solving
conic (feasibility) problems are based on homogenization of the constraints, see
for instance [11, 4] or [3, Ch. 4] and references therein. The idea at the core of
our method is as follows: the vector space U is seen as an affine hyperplane in a

vector space V , and K is lifted to a cone K̂ ⊂ V , such that K̂ ∩U = K. The idea
of this projective point of view is that the original cone K is now the part of the

homogeneous cone K̂ that can be observed if one sits in the affine chart U of P(V ).
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In this framework, it is possible to get information about the feasibility type

of the original program K ∩ L = K̂ ∩ L and the homogenized conic program K̂ ∩
span(L). One example is the following characterization of infeasibility:

(1) K ∩ L = ∅ and (−K) ∩ L = ∅ ⇔ K̂ ∩ span(L) ⊂ lin(L)

where lin(L) is the direction of L: this tells us that L does not meet neither K
nor (−K) exactly when the homogenized feasible set lies at infinity.

Another interesting caracterization concerns a special subclass of strongly in-
feasible programs. A conic program K∩L is called stably infeasible if there exists
a neighbourhood L of L in the Grasmanniann of affine subspaces of U of the same
dimension as L, such that if L′ ∈ L, then K ∩ L′ = ∅. In other words, stably
infeasible conic programs are strongly infeasible and keep this property after small
perturbations. However it is easy to construct strongly infeasible conic programs
that are not stable, already in the class of linear programming.

A second aspect that has been highlighted in [7] and in the talk at MFO, is to
which extent the infeasibility can be certified over the field of definition of the conic
program. Indeed, the expected output of a decision algorithm is a yes-no answer
and in the case of conic infeasibility, one could also ask for a rational infeasibility
certificate, that is, an element ℓ ∈ K∗ (in the dual cone K∗ ⊂ V ∨), which is
(nonnegative on K and) strictly negative on L, and that can be defined over the
smallest field containing the input. The element ℓ is a separating hyperplane for
K and L and the question is wheter such certificate can be made rational. Let
us remarl that this is a natural question for infeasibility, since the same question
has in general a “no” answer for the feasibility of non-linear conic programs, as
already mentioned for the examples in [9].

In [7], we prove two main results concerning rationality of infeasibility certifi-
cates: first, every stably infeasible conic program admits a rational infeasibility
certificate; second, we construct explicit strongly infeasible semidefinite programs
that do not admit rational infeasibility certificates.

Finally, let us mention two last aspects of our contribution. The first concerns
the property mentioned in (1), which is used in [7] to design a variant of the
classical facial reduction algorithm [2], for the case of infeasible conic programs: if
K is a nice cone, and if K ∩ L = (−K) ∩ L = ∅, then there exists a sequence of
functionals ℓ1, . . . , ℓk ∈ K∗, k ≤ 1 + dimL, that facially reduce the homogenized

program by sending the feasible set K̂ ∩ span(L) to infinity (see [7, Th. 3.4]).
The second concerns the complexity theory of semidefinite programming. The

homogenization we have described allows us to give an alternative proof of the
result by Ramana [6] that feasibility of semidefinite programming is in coNPR

(Blum-Shub-Smale complexity model [1]), see [7, Sec. 4].
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Obtaining Rational CP-Certificates via Perfect (Generalized)
Copositive Matrices

Valentin Dannenberg

An interesting subfield of study in recent years is the cone of completely positive
matrices

CPn =
{
Q ∈ Sn : Q =

k∑

i=1

xix
T
i , k ∈ N, xi ∈ Rn

≥0, i = 1, . . . , k
}
,

which, together with its dual cone

COPn =
{
Q ∈ Sn : xTQx ≥ 0 for all x ≥ 0

}

of completely positive matrices, can be used to reformulate various difficult opti-
mization problems as convex conic ones, see e.g. [1].

One fundamental computational problem in this area is obtaining a rational
factorization of a rational completely positive matrix, if it exists. In other words
for a given rational completely positive matrix Q, we want to compute nonnegative

rational vectors x1, . . . , xk, such that Q =
∑k

i=1 xix
T
i . Since such a factorization

gives a proof that Q is indeed completely positive, it is also called a (rational)
CP-certificate.

Recently a simplex-like algorithm has been proposed by Dutour Sikirić, Schür-
mann and Vallentin in [3], that can compute such a factorization, whenever it
exists.

The talk is centered around explaining and visualizing the key concepts of the
algorithm. The main one is that of perfect copositive matrices. Here we call a
matrix P ∈ intCOPn perfect copositive, if it is the unique solutions to the linear
equation system

xTPx = minCOP(P ), x ∈ MinCOP(P ),
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where minCOP(P ) = min
x∈Zn

≥0
\{0}

xTPx is the copositive minimum of P and

MinCOP(P ) =
{
x ∈ Zn

≥0 \ {0} : xTPx = minCOP(P )
}

is the set of minimal
vectors of P . These definitions essentially mirror the classical case of positive
definite matrices, see also [4]. The copositive perfect matrices (with copositive
minimum 1) form the vertex set of

RCOP =
{
Q ∈ Sn : minCOP(P ) ≥ 1

}
.

It can further be shown that every rational completely positive matrix, which
possesses a rational CP-factorization, lies in the set

⋃

P perfect copositive, minCOP(P ) = 1

cone
{
xxT : x ∈ MinCOP(P )

}
.

Therefore, the simplex-like nature of the algorithm consists in visiting the vertices
of RCOP , and checking whether a given matrix Q factorizes over the minimal
vectors of that vertex.

Using these ideas, we also present an adaption of this algorithm in [3], to solve
the CP-membership problem: Given a rational matrix Q, decide if Q is completely
positive. A nice property of the resulting algorithm is, that it produces rational
certificates for both the cases Q ∈ CPn and Q /∈ CPn.

We conclude by presenting recent new results as well as questions (and partial
answers):

• Does every rational completely positive matrix possess a rational CP-
certificate?

- Yes, for matrices in the interior of CPn, see [2].
- Open, for matrices on the boundary, see [6] for a recent survey on
this topic

• Does the CP-membership algorithm always terminate in finitely many
steps?

- Yes, for n = 2
- Open, for n ≥ 3

• Recently, the speaker was able to obtain a new discretization of CPn,

CPn =
{
Q ∈ Nn : Trace(PQ) ≥ 0 for all perfect copositive matrices P

}
,

which refines a similar one given in [3]. Using it we were able to remove
certain costly copositivity tests in the algorithm

• New rough approaches and ideas for (better) computing the copositive
minimum as well as optimizing other steps in the algorithm

• New results on the topic of perfect copositive matrices, such as infinite
non-equivalent series of perfect copositive matrices, that will also appear
in [5]
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Exploiting symmetry in conic optimization

David de Laat

Conic optimization problems can often be simplified significantly by exploiting
symmetries in the formulation of the problems. In this tutorial two examples are
considered, and connections are made to recent developments.

In the most general situation we consider conic programs of the form

minimize L(x)

subject to x ∈ K,

Ax = b

where V is a locally convex topological vector space, K is a closed, convex cone
in V , and L : V → R is a continuous linear functional. Let Γ be a compact group
with a continuous, linear action on V . The conic program is said to be Γ-invariant
if L(γx) = L(x), γx ∈ K, and Aγx = b for all x ∈ K and γ ∈ Γ. Then it follows
that for feasible x, the vector x given by the weak vector-valued integral

∫
Γ γx dγ

over the Haar measure of Γ, is also feasible and has the same objective value. This
shows we may restrict to invariant vectors without changing the optimal objective
value.

In the first part of the tutorial we consider positive kernels invariant under
the action of a compact group. Here we start by considering positive, continuous
kernels K : Sn−1 × Sn−1 → R on the unit sphere that are invariant under the
action of the orthogonal group O(n). By Schoenberg’s theorem [11] such kernels
K(x, y) can be written as uniformly absolutely converging series with nonnegative
coefficients of Gegenbauer polynomials evaluated in x ·y. This can be used to show
the Lovász theta number for the spherical code problem reduces to the Delsarte-
Goethals-Seidel bound after symmetry reduction [1].

Under the action of O(n) we can decompose the space C(Sn−1) of continuous
functions into irreducible subspaces Hk consisting of the spherical harmonics of
degree k. With bases enk,1(x), . . . , e

n
k,dk

(x) of Hk that are orthonormal with respect
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to an O(n)-invariant inner product, the kernels

(x, y) 7→
dk∑

j=1

enk,j(x)e
n
k,j(y)

are positive and O(n)-invariant. Using Bochner’s characterization it follows each
invariant, positive, continuous kernel is an absolutely uniformly converging series
of such kernels with nonnegative coefficients. Schoenberg’s result is then recov-
ered using the addition formula, which shows the above kernels are exactly the
Gegenbauer polynomials evaluated in x · y.

In general Bochner’s characterization applies for a compact group Γ acting
transitively on X [4]. Then we get a decomposition

C(X) =
⊕

π

mπ⊕

i=1

Hπ,i,

where π ranges over the irreducible representations of Γ, and where Hπ,i and
Hπ′,i′ are equivalent as representations if π = π′. Let eπ,i,1, . . . , eπ,i,dπ

be bases
of Hπ,i which are orthonormal with respect to some Γ-invariant inner product
and symmetry adapted in the sense that any two bases {eπ,i,j}j and {eπ,i′,j}j
transform in the same way under the action of Γ. Then we can construct positive,
Γ-invariant kernels

(x, y) 7→
∑

i,i′

Ai,i′

dπ∑

j=1

eπ,i,j(x)eπ,i′,j(y), A � 0.

If the action of Γ on X is transitive or has finitely many orbits, then each positive,
invariant kernel is an absolutely uniformly converging series of such kernels ([4]
and [5, Theorem 3.4.4]). Otherwise the finite sums of such kernels are uniformly
dense in the cone of positive, invariant kernels [5, Theorem 3.4.5].

For example, under the action of O(n− 1) we get the decomposition

C(Sn−1) =
⊕

k≥0

⊕

i≥0

〈(x · e)i〉 ⊗ 〈en−1
k,j (x− (x · e)e) : j = 1, . . . , dπ〉.

Here the irreducible subspaces for fixed k are all equivalent. For positive semidef-
inite A this then leads to the Bachoc-Vallentin kernels

(x, y) 7→
∑

i,i′

Ai,i′u
ivi

′

(1 − u2)j/2(1− v2)j/2Pn−1
k

(
t− uv√

1− u2
√
1− v2

)
,

which were used in the three-point semidefinite programming bound for the spher-
ical code problem [2].

In [3] Bachoc and Vallentin show this three-point bound, which can be solved
using semidefinite programming, is sharp for the problem of computing the largest
size of a subset of the sphere for which the inner product between each distinct
pair of points is at most (2

√
2 − 1)/7. In [7] a method is given for rounding the

numerical output of a semidefinite programming solver to exact numbers, which is
nontrivial in the common case where the dimension of the optimal face is smaller



Conic Linear Optimization for Computer-Assisted Proofs 1057

than the dimension of the affine space defining the semidefinite program. For the
above example this can be used to round the output to the quadratic number field
Q[

√
2], showing the three-point bound is sharp in this case.

In the second part of this tutorial we consider invariant polynomial inequality
constraints. Suppose we have a constraint of the form

p(x) ≥ 0 for all x ∈ Rn with g1(x) ≥ 0, . . . , gm(x) ≥ 0,

where p is a polynomial whose coefficients depend linearly on other variables in
the optimization problem. Then Putinar’s representation [10] can be used to relax
the problem by instead requiring

(1) p(x) = s0(x) +

m∑

i=1

si(x)gi(x),

where si(x) is a sum-of-squares polynomial of degree d − ⌊deg(gi)⌋. By writing
si(x) = [x]TAi[x], where [x] is a vector whose entries form a basis for the poly-
nomials of degree at most d, and equating coefficients in a common basis these
become semidefinite constraints.

If the polynomials p, g1, . . . , gm are invariant under the action of a group, then
we may assume the sum-of-squares polynomials s1, . . . , sm are invariant as well,
and the techniques by Gatermann and Parrilo [8] can be used to find block-
diagonalized representations of the form

si(x) =
∑

π

〈Aπ , Eπ(x)〉,

where the matrices Aπ are positive semidefinite. In [9], for example, the invariance
of the polynomials in the three-point bound for the action of the symmetric group
S3 is used to simplify the semidefinite programming formulation.

Löfberg and Parrilo suggest to model the identity (1) by sampling at a unisol-
vent set of points, as this leads to rank one constraint matrices in the resulting
semidefinite program, which can be exploited to speed up interior point solvers.
In [6] a new solver is developed that takes advantage of these low rank constraints.
This solver works particularly well for problems such as the three-point bound
discussed above even when symmetry reduction is also used, which increases the
ranks of the constraint matrices.
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Exact algorithm for symmetric polynomial optimization problems
and applications

Mohab Safey El Din

(joint work with Jean-Charles Faugère, George Labahn, Éric Schost,
Thi Xuan Vu)

Computer algebra algorithms allow one to solve polynomial systems exactly by
parametrizing the solution set with the set of roots of some univariate polyno-
mial. Precisely, given a system of polynomial equations f1 = · · · = fs = 0 in
Q[x1, . . . , xn] with finitely many complex solutions, one can compute a sequence
of polynomials w, v1, . . . , vn in Q[t] where t is a new variable and w is monic and
square-free such that the solution set is defined by

{((v1(ϑ), . . . , vn(ϑ))) | ϑ ∈ C w(ϑ) = 0} ⊂ Cn

This appealing output data structure may suffer from the curse of dimension-
ality as it has size which is linear in the number n of variables and in the number
δ of points (this latter quantity may be exponential in n).

Applying this to polynomial optimization problems by computing critical points
of the polynomial map to optimize still allows one to solve exactly polynomial
optimization problems but yields similar issues of scalability. This can be overcome
by improving the computational efficiency of fundamental algebraic algorithms and
by exploiting any structural property of optimization problems.

In this talk, we study how one can bypass these scalability issues for the case of
optimization problems which are invariant by the action of the symmetric group
Sn. We consider the case where input polynomials f1, . . . , fs are invariant by
the action of Sn and a polynomial map ϕ as well. In this setting, the set of
critical points of the restriction of the map z 7→ ϕ(x) to the complex zero set
defined by f1 = · · · = fs = 0 is also invariant by the action of Sn. It is then
relevant to compute one point per orbit to save the computational complexity of
the symmetric group Sn. A classical strategy to do this is to rewrite a system
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defining this set w.r.t. the symmetric elementary functions which are invariant by
the action of Sn.

However, under some classical regularity assumptions, defining critical sets in
the above context leads to the consider the maximal minors of the Jacobian matrix
associated to f1, . . . , fs, ϕ to express that this matrix is rank deficient. Even if each
of these polynomials is invariant by the action of Sn, these minors are not and
then extra ingredients are needed.

A first observation is that since the polynomials f1, . . . , fs, ϕ are invariant by
the action of Sn, they can be expressed as a composition of some polynomials with
the elementary symmetric polynomials e1, . . . , en as follows:

fi = gi(e1, . . . , en), for 1 ≤ i ≤ s and ϕ = ψ(e1, . . . , en)

Using the chain rule formula, this yields a natural factorisation of the Jacobian
matrix associated to f1, . . . , fs, ϕ as the product of the Jacobian matrix associated
to g1, . . . , gs, ψ with the one of e1, . . . , en. The latter one is a Vandermonde matrix
since it has defective rank if and only if xi = xj for i 6= j.

Hence, computing one point per orbot of the critical points set with distinct
coordinates boil down to solving a system written w.r.t. e1, . . . , en which enjoys a
weighted degree (and then some sparsity) structure since the ei’s model a relation
of degree i in the variables x1, . . . , xn.

Computing one point per orbit in the subset of critical points which have
equalled coordinates is done similarly, considering partitions of integers and more
involved group actions by cartesian products of symmetric groups. This also yields
determinantal polynomial systems expressed by elementary symmetric functions
and then enjoying a special sparsity structure.

We then design a dedicated symbolic homotopy algorithm for solving such poly-
nomial systems that exploits both the determinantal and sparsity structure. All in
all, this leads to an algorithm whose complexity is polynomial in E,Ds,

(
n

s+1

)
and(

n+D
n

)
where E is the evaluation complexity of f1, . . . , fs, ϕ and D the maximum

degree of these polynomials. Note that when s and D are fixed, the algorithm
runs in time which is polynomial in n. This constitutes an algebraic proof of the
so-called degree principle which states that Sn invariant polynomial optimization
problems can be solved in polynomial time for D fixed.

Note also that when s is fixed and D ≤ nα with α < 1, the algorithm runs in
time which is subexponential in n, hence extending the degree principle. Practical
experiments show the interest of such approaches and algorithms.

Symmetry reduction in AM/GM-based optimization

Philippe Moustrou

(joint work with H. Naumann, C. Riener, T. Theobald, H. Verdure)

Deciding whether a real function only takes non-negative values is a fundamental
question in real algebraic geometry. Non-negativity certificates and optimization
approaches are tightly related to each other by observing that the infimum f∗ of



1060 Oberwolfach Report 20/2022

a function f : Rn → R can be expressed as the largest λ ∈ R for which f − λ is
non-negative on Rn:

f∗ = inf{f(x) : x ∈ Rn} = sup{λ ∈ R : f − λ is non-negative on Rn}.

Both in the context of polynomials and in the broader context of exponential
sums, the last years have seen strong interest in non-negativity certificates and
optimization techniques based on the arithmetic mean/geometric mean-inequality
(AM/GM inequality). More precisely, an exponential sum (or signomial) sup-
ported on a finite subset T ⊂ Rn is a linear combination

∑
α∈T cα exp(〈α, x〉)

with real coefficients cα. In particular cases, the non-negativity of the real func-
tion defined by an exponential sum can be decided via the arithmetic-geometric
mean inequality. For example, for support points α0, . . . , αm ∈ Rn and coeffi-
cients λ = (λ1, . . . , λm) ∈ Rn

+ satisfying
∑m

i=1 λi = 1 and
∑m

i=1 λiαi = α0, the
exponential sum

m∑

i=1

λi exp(〈αi, x〉)− exp(〈α0, x〉)

is non-negative on Rn as a consequence of the weighted arithmetic-geometric mean
inequality, namely

∑m
i=1 λi exp(〈αi, x〉) ≥

∏m
i=1(exp(〈αi, x〉))λi . Clearly, sums of

such exponential sums are non-negative as well. Note that exponential sums can
be seen as a generalization of polynomials: when T ⊂ Nn, the transformation
xi = ln yi gives polynomial functions y 7→ ∑

α∈T cαy
α on Rn

>0.
These AM/GM-based certificates appear to be particularly useful in sparse

settings. In the specialized situation of polynomials, they can be seen as an alter-
native to non-negativity certificates based on sums of squares. The ideas of these
approaches go back to Reznick [11] and have been recently brought back into the
focus of the developments by Pantea, Koeppl, and Craciun [10], Chandrasekaran
and Shah [1] (“SAGE” cone: sums of arithmetic-geometric exponentials) and Ili-
man and de Wolff [4] (“SONC” cone: sums of non-negative circuit polynomials),
see also [6] for a generalized, uniform framework. The AM/GM certificates can be
effectively obtained by relative entropy programming (see [1, 2]), and in restricted
settings these relative entropy programs become geometric programs [5]. Other
recent approaches to sparse polynomials besides the ones based on the AM/GM
inequality can be found in the sparse moment hierarchies [14, 15] and in the works
exploiting correlative sparsity [7, 13].

From an algebraic point of view, a problem is symmetric when it is invariant
under some group action. Symmetries are ubiquitous in the context of polynomials
and optimization, since they manifest both in the problem formulation and the
solution set. This often allows to reduce the complexity of the corresponding
algorithmic questions: Symmetry reduction has provided essential advances in
many situations, especially in the context of sums of squares (see [3, 12]).

This work deals with the question to which extent symmetries can be exploited in
AM/GM-based optimization assuming that the problem affords symmetries. We
provide a first systematic study of the AM/GM-based approaches in G-invariant
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situations under the action of a group G. Our focus is on symmetry-adapted
representation theorems, and algorithmic symmetry reduction techniques.

First, we prove a symmetry-adapted decomposition theorem and develop a sym-
metry-adapted relative entropy formulation of the cone of SAGE exponentials in
a general G-invariant setting. This adaption reduces the size of the resulting
relative entropy programs or geometric programs, and the gain depends on the
orbit structure of the group action.

In the case of the symmetric group, we use combinatorial aspects of the rep-
resentation theory of the symmetric group in order to measure the size of the
resulting relative entropy program. In particular, we identify situations in which
the size of the symmetry adapted relative entropy program stabilizes with respect
to the number of variables.

These structural results can be evaluated in terms of computations. In situ-
ations with strong symmetry structure, the number of variables and the num-
ber of equations and inequalities becomes substantially smaller. Accordingly,
the interior-point solvers underlying the computation of SAGE bounds then show
strong reductions of computation time. In various cases, the symmetry-adapted
computation succeeds when the conventional SAGE computation fails.
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New results in exact computations with group representations

Dmitrii Pasechnik

Real representations of finite groups play an important role in applications of con-
vex optimisation to extremal combinatorics, quantum physics, etc. Often they
arise while exploiting symmetry in dimension reduction of data for convex opti-
misation, see e.g. [6, 1]. A typical task is decomposing a d-dimensional linear
represenation τ : G→ GLd(R) of a finite group G into real irreducible representa-
tions. Such computations are very sensitive to rounding errors, and therefore are
best done exactly. For such a task, explicit knowledge of real irreducible represen-
tations is crucial.

It is classically known that every complex representation G→ GLd(C) may be

realised over the field Fn of n-th order cyclotomic numbers, Fn := Q(e
2πi
n ), where

n = exp(G), the exponent of G. For real representations, there was empirical
evidence that it suffices to take real cyclotomics of n-th order, i.e. elements of
En := Fn ∩ R. The speaker succeeded to prove this in [4]. Specifically, the
following holds.

Theorem. Let G be a finite group of exponent n, and ρ a G-representation ρ :
G→ GLd(R). Then ρ may be realised over En.

To sketch the proof, consider the decomposition of the character χρ into real
irreducible characters χµ. They are of three types:

• complex, i.e. of the form χτ + χτ with τ a complex representation
• quaternionic, i.e. of the form 2χτ , with τ a quaternionic representation;
• real, i.e. not of the above two types.

In the first two cases it is easy to show that µ may be written over En, by
looking at the underlying half-dimensional representation τ as G ∋ g 7→ Ag + iBg,

with Ag and Bg real, and then forming µ by setting g 7→
(
A B
−B A

)
.

In the latter case, we start with τ : G → GLd(Fn) with χτ = χµ, i.e. τ is not
necessary real, although given by cyclotomics; as τ and µ have the same character,
they are equivalent, i.e. there exists Q such that µ = Q−1τQ = Q−1τQ, thus
QQ−1τ = τQQ−1, and P := QQ−1 transforms τ to τ , i.e. P−1τP = τ . Then we
show that P = Σ−1M , with Σ a Hermitean G-invariant form, and M a symmetric
bilinear G-invariant form; in particular, P ∈ GLd(Fn). Now we have

(1) PQ = Q, detQ 6= 0

implying PPQ = PQ = Q, i.e. PP = I. The latter is an extra restriction: our

construction only guarantees that PP = aI for some a =
∑d

k=1 bkbk, bk ∈ Fn.
Using a result by Serre on induced characters [5], we show that in fact there exists
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P so that a = 1; this means that in practice always a = bb for b ∈ Fn, and so
we can replace P with P/b, if needed. Finally, for a randomly chosen Y ∈Md(F )
setting Q = Y + PY produces a solution to (1) with high probability.

Note that the proof is constructive; the algorithm fits well with the usual com-
putational group theory systems such as GAP [2], which work with cyclotomic
numbers very efficiently. We plan to extend our GAP package [3] to incorporate
it.

Another interesting research direction is to produce a number-theoretic proof of

this result, avoiding [5], and directly showing that a =
∑d

k=1 bkbk can be written

as a = bb, b ∈ Fn.

References

[1] Christine Bachoc, Dion C. Gijswijt, Alexander Schrijver, and Frank Vallentin, Invariant
semidefinite programs,Handbook on semidefinite, conic and polynomial optimization, Inter-
nat. Ser. Oper. Res. Management Sci., vol. 166, Springer, New York, 2012, pp. 219–269.

[2] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021
[3] Kaashif Hymabaccus and Dmitrii V. Pasechnik, RepnDecomp: A GAP package for decom-

posing linear representations of finite groups, Journal of Open Source Software 5 (2020),
no. 50, 1835–1836.

[4] Dmitrii Pasechnik, Splitting fields of real irreducible representations of finite groups, Rep-
resent. Theory 25 (2021), 897–902. MR 4324950

[5] Jean-Pierre Serre, Conducteurs d’Artin des caractères réels, Invent. Math. 14 (1971), 173–
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Towards a computer-assisted proof for a conjecture from graph theory

Elisabeth Gaar

(joint work with Daniel Krenn, Susan Margulies, Melanie Siebenhofer,
Angelika Wiegele)

We consider an open conjecture from Vizing in 1968 [5], namely that the product
of the domination numbers of two graphs G and H is always smaller or equal to
the domination number of the product graph of G and H .

In this talk we present initial steps on the way to a computer-assisted proof
(or counter example) for Vizing’s conjecture and discuss recent results. The foun-
dation of this work is done in Gaar, Krenn, Margulies, and Wiegele [1, 2]. In
particular, we start by considering the graph class G of all graphs with nG vertices
and domination number kG , and the graph class H of all graphs with nH vertices
and domination number kH. Then we continue by building an algebraic model
of the conjecture for each possible tuple (nG , kG , nH, kH) by creating the Vizing
ideal. Then we translate Vizing’s conjecture for each tuple into the question of
whether a specific polynomial fviz is nonnegative over the Vizing ideal. Then we
do another reformulation to the question of whether this specific polynomial fviz
is a sum-of-squares polynomial on a certain level of the sum-of-squares-hierarchy.
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Finally we use semidefinite programming (SDP) to answer these kind of questions.
Unfortunately any (rational) solution of an SDP solver still has to be transformed
into an exact (algebraic) sum-of-squares certificates, which is a challenging task
and can for example be done by cleverly guessing the exact SDP solution.

We give insight in the recent methods that have been used for developing new
sum-of-squares certificates for particular parameters, i.e. tuples. In particular, we
present certificates for the graph classes G andH with the property that nG , kG , nH

and kH satisfy kG = G − 1 ≥ 1 and kH = nH − 1 for nH ∈ {2, 3} and the graph
classes G and H with kG = nG and kH = nH − d for d ≤ 4 which were obtained by
Gaar, Krenn, Margulies, and Wiegele [1, 2].

Furthermore, we present the findings of the master thesis of Siebenhofer [4],
which can also be found in the preprint Gaar and Siebenhofer [3]. The authors
are able to derive the unique reduced Gröbner basis of the Vizing ideal in the case
that kG = kH = 1. This makes it possible for them to obtain the minimum degree
(nG + nH − 1)/2 of a sum-of-squares certificate for Vizing’s conjecture. Moreover,
we present a method to find certificates for nG + nH − 1 = d for general d, where
only a much smaller SDP has to be solved compared to the method of Gaar, Krenn,
Margulies, and Wiegele [1, 2]. Finally, certificates for all graph classes G and H
with kG = kH = 1 and nG + nH ≤ 15 are presented.

Finally, it should be mentioned that for all specifically considered graph classes
it is already known in the literature that the inequality in Vizing’s conjecture is
true. As a result, we do not gain new knowledge on whether Vizing’s conjecture is
true or not for any graph classes. However, obtaining sum-of-squares certificates
via an algebraic method is an important step in the area of using conic linear
optimization for computer-assisted proofs, because it shows that deriving such
proofs is possible for a set of graph classes.
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The Chvátal-Gomory Procedure for Integer Semidefinite Programs

Renata Sotirov

(joint work with Frank de Meijer)

The Chvátal-Gomory (CG) cutting-plane procedure is introduced by Chvátal [1]
and Gomory [2] and it is considered to be among the most celebrated results in
integer programming. We consider the Chvátal-Gomory (CG) procedure for inte-
ger semidefinite programs (ISDPs). We present a formulation of the elementary
closure of spectrahedra that relies on the data matrices of the ISDP and posi-
tive semidefinite matrices. This formulation provides a constructive description of
the elementary closure of spectrahedra rather than the implicit description that is
known for general convex sets. Equivalent to the case of polyhedra, the elementary
closure operation can be repeated, leading to a hierarchy of stronger approxima-
tions of the integer hull of the spectrahedron. Our explicit formulation of the
elementary closure enables us to introduce Chvátal-Gomory cuts and strength-
ened Chvátal-Gomory cuts for ISDPs. We also show how to derive a polyhedral
description of the CG closure for a specific class of spectrahedra based on the SDP
equivalent of total dual integrality.

In the second part of the talk, we show how to exploit (strengthened) CG cuts
in a branch-and-cut framework for ISDPs. Different from existing algorithms for
solving ISDPs, the separation routine in our approach exploits both the semidef-
inite and the integrality constraints. We present separation routines for common
classes of binary SDPs resulting from combinatorial optimization problems.

In the third part of the talk, we apply our approach to the quadratic traveling
salesman problem (QTSP). The QTSP is the problem of finding a Hamiltonian
cycle in a graph that minimizes the total interaction costs among consecutive arcs.
By exploiting the algebraic connectivity of the directed Hamiltonian cycle, we in-
troduce an ISDP model for the QTSP. We show that the CG cuts resulting from
these formulations contain several well-known families of cutting planes. Numer-
ical results illustrate the practical strength of the CG cuts in our branch-and-cut
algorithm, which outperforms alternative ISDP solvers and is able to solve large
QTSP instances to optimality. For details on the CG-cuts for ISDPs see [3].
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High-Dimensional Hoffman Bound and its applications to
extremal combinatorics

Konstantin Golubev

(joint work with Yuval Filmus and Noam Lifshitz)

The celebrated Hoffman bound [10] connects spectral graph theory with extremal
combinatorics, by upper-bounding the independence number of a graph in terms
of the minimal eigenvalue of its adjacency matrix. Hoffman’s original paper only
states a bound on the chromatic number. The corresponding bound on the in-
dependence number appears in works of Haemers [9] and Lovász [11], where it
is attributed to Hoffman. The weighted version of the Hoffman bound, used by
Lovász [11] to compute the Shannon capacity of the pentagon, had appeared ear-
lier in foundational work of Delsarte [2] in coding theory. The Hoffman bound, in
a generalized version due to Lovász [11], has seen many applications in extremal
set theory and theoretical computer science.

Let G = (V, µ) be a graph, that is, V is the set of vertices and µ is a probability
measure on the set of unordered pairs V [2] with repetitions allowed. By edges of
G we mean the support of µ in V [2]. A subset of V is called independent if it does
not contain any edges. By µ1 we denote the induced probability measure on V ,
that is, µ1(v) = µ({v, v}) + 1

2

∑
u6=v µ({u, v}). The normalized adjacency operator

of G can defined by the matrix TG given by

TX(u, v) =

{
µ([u,u])
µ1(u)

if u = v;
µ([u,v])
2µ1(u)

if u 6= v.

The largest eigenvalue of TG is 1, by λ (G) we denote its minimal eigenvalue. In
this terms, the Hoffman bound reads as follows

α (G) ≤ 1− 1

1− λ (G)
.

The Hoffman bound can be used to solve problems in extremal set theory in
which the constraints can be modeled as a graph. As an example, the Hoffman
bound can be used to prove the fundamental Erdős–Ko–Rado theorem on the size
of intersecting families, in which the constraint is that every two sets in the family
have nonempty intersection, as well as many other Erdős–Ko–Rado theorems on
various domains [3, 4, 7]. Other problems involve more complex constraints, and
so are not amenable to this method. A simple example is the s-wise intersecting
Erdős–Ko–Rado theorem, due to Frankl [5], which concerns families in which every
s sets have nonempty intersection. In this case the constraints can be modeled as
a hypergraph rather than as a graph.

Recently, the Hoffman bound has been generalized to hypergraphs [1, 8]. Our
new bound is particularly attractive for upper-bounding independent sets in tensor
powers of hypergraphs. We demonstrate the power of this method by solving
a problem of Frankl on triangle-free families and by giving a spectral proof of
Mantel’s theorem.
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In order to formulate the bound, we set the notations first. This will take about
a page, more details can be found in our paper, [6]. A multiset is an unordered
collection of elements that is allowed to have repetitions, its size is the number of
its elements counting the multiplicity. An i-multiset is a multiset of size i. Let V
be a set. We denote by V [i] the collection of all i-multisets of elements of V , and
elements of V [i] will be denoted by [v1, . . . , vi]. The collection V [0] consists of the
empty set. A weighted k-uniform hypergraph is a pair X = (V, µ) where V is the
vertex set and µ is a probability distribution on V [k]. For 0 ≤ i ≤ k − 1, define a
probability measure µi on V

[i] by the following process. First, choose a multiset
[v1, . . . , vk] according to µ, and then choose an i-submultiset of it uniformly at
random. We write X(i) for the set of elements of V [i] whose µi measure is positive.
The elements ofX(i) are called the i-faces ofX , and the elements ofX(0)∪· · ·∪X(k)

are called the faces of X . Note that if σ2 is a face of X , then σ1 is a face of X for
any σ1 ⊆ σ2. Note that X(0) = {∅}, i.e., the empty set is the one and only 0-face
of X . We assume without loss of generality that X(1) = V , that is, µ1(v) > 0 for
all v ∈ V (otherwise, we can replace V with X(1)).

A set I ⊆ V is said to be independent in a k-uniform hypergraph X if no k-face
of X is contained in I. The largest possible value of µ1 (I) , where I ⊆ V is an
independent set in X , is called the independence number of X and denoted α (X).
A subset I ⊆ V is said to be an extremal independent set of X if µ1 (I) = α (X) .

For an i-face σ ∈ X(i), its link in X is the (k − i)-uniform hypergraph Xσ =
(V, µσ), where µσ is the probability distribution that corresponds to the following
process: sample a random flag according to µ subject to µi = σ, and output
µk \ σ. Note that the link of the empty set is the whole hypergraph X itself. For
an element v ∈ X , the link of v is Xv = X{v}.

The skeleton of X is the graph (X(1), µ2), in other words, its vertex set is X(1),
the edges are X(2), with the weights given by µ2.

By λ(X) we denote the smallest eigenvalue of TX . For all 0 ≤ i ≤ k − 2, we
write

λi(X) = min
{
λ(S(Xσ))

∣∣∣ σ ∈ X(i)
}
.

In other words, λi (X) is the minimal possible value of an eigenvalue of the nor-
malized adjacency matrix of a skeleton of the link of an i-face of X . Note that
λ0(X) is just the smallest eigenvalue of the normalized adjacency operator on the
skeleton of X .

We conclude the notations with the notion of the tensor product X ⊗ X ′ of
two k-uniform hypergraphs X = (V, µ) and X ′ = (V ′, µ′). It is a k-uniform
hypergraph (V × V ′, µ × µ′), where µ × µ′ stands for the following measure on
(V × V ′)[k] ≃ V [k] × V ′[k]: an ordering of an edge (σ, σ′) ∈ V [k] × V ′[k] implies

an ordering on σ and on σ′, we define (µ× µ′)k(σ, σ
′) as the sum of µ̃k(σ)µ̃′

k(σ
′)

over all orderings of (σ, σ′). The measure µ̃k is constructed from µ by choosing
an ordering on an edge uniformly at random. For a k-uniform hypergraph X , we
denote by X⊗n = X ⊗ · · · ⊗X︸ ︷︷ ︸

n

its n-th tensor power.
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We prove a new upper bound for the independence number of a hypergraph,
and its invariance under the tensor power operation.

α (X) ≤ 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.

If in addition λi ≤ 0 for all 0 ≤ i < k − 2, then for any positive integer n the
following inequality holds for X⊗n:

α(X⊗n) ≤ 1− 1

(1− λ0) (1− λ1) · · · (1− λk−2)
.

In particular, if the bound is sharp for X , it remains sharp for its tensor powers,
as α(X⊗n) = α(X).

Furthermore, if λ0 > −1 and I is an independent set attaining the bound, then
I is a dictator (viewed as a subset of V n, membership in I depends on a single
coordinate).

Refer to our paper,[6], for more details.
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Razborov’s Flag Algebras

Fernando Mário de Oliveira Filho

The theory of flag algebras, introduced by Razborov in 2007 [2], has opened the
way to a systematic approach to the development of computer-assisted proofs in
extremal combinatorics. It makes it possible to derive bounds for parameters in
extremal combinatorics with the help of a computer, in a semi-automated manner.
In this talk, based on an expository paper [1] written jointly with M.K. de Carli
Silva and C.M. Sato, I describe the main points of the theory in a complete way,
using Mantel’s theorem as a guiding example.

Mantel’s theorem is perhaps the first result in extremal graph theory. It states
that the maximum number of edges in an n-vertex triangle-free graph is ⌊n2/4⌋, the
maximum being achieved by a complete bipartite graph with parts of size ⌊n/2⌋
and ⌈n/2⌉. This is an example of the prototypical question in extremal graph
theory: given a collection H of forbidden graphs, how many copies of a graph C
can an H-free graph G have?

Let us be more precise. Denote by |G| the number of vertices of a graph G.
Given graphs F and G, let p(F ;G) be the (induced) density of F in G, that is,
if c(F ;G) is the number of times F occurs as an induced subgraph of G, then

p(F ;G) = c(F ;G)

(|G|
|F |

)−1

.

Let H be a collection of graphs. A graph is H-free if no induced subgraph of G
is isomorphic to a graph in H. A fundamental problem in extremal graph theory
is to determine, for a given graph C, the maximum asymptotic density of C in
H-free graphs, namely

(1) ex(C,H) = sup
(Gk)k≥0

lim sup
k→∞

p(C;Gk),

where the supremum is taken over all sequences (Gk)k≥0 of H-free graphs that
are increasing, that is, (|Gk|)k≥0 is strictly increasing. Mantel’s theorem asserts
that ex(e, {T }) = 1/2, where e is the graph consisting of a single edge and T is a
triangle.

Let G be the set of all finite H-free graphs taken up to isomorphism. An
increasing sequence (Gk)k≥0 is convergent if limk→∞ p(F ;Gk) exists for every F ∈
G. Every increasing sequence of H-free graphs has a convergent subsequence, since
densities are numbers in [0, 1] and so for k ≥ 0 the function F 7→ p(F ;Gk) can be
identified with a point in [0, 1]G , which is a compact space by Tychonoff’s theorem.

In (1) we can therefore restrict ourselves to convergent sequences and then
work with their limits. Call φ : G → R a limit functional if there is a convergent
sequence (Gk)k≥0 of H-free graphs such that

φ(F ) = lim
k→∞

p(F ;Gk)
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for all F ∈ G. Let Φ be the set of all limit functionals. Computing ex(C,H) is the
same as solving an optimization problem over Φ, namely

ex(C,H) = sup{φ(C) : φ ∈ Φ }.
This rewording of the original problem makes it clear that the issue is under-

standing Φ; Razborov’s theory of flag algebras is really a study of the set Φ of
limit functionals.

The theory is built around the concept of density defined above, for which the
chain rule holds: if F and G are graphs, if n is an integer such that |F | ≤ n ≤ |G|,
and if Gn is the set of all graphs on n vertices up to isomorphism, then

p(F ;G) =
∑

F ′∈Gn

p(F ;F ′)p(F ′;G).

Now consider the free vector space RG. Given a limit functional φ, we may extend
it to a linear functional of RG, and using the chain rule we may verify that

φ(F ) = φ

( ∑

F ′∈Gn

p(F ;F ′)F ′

)

for any integer n ≥ |F |. (Note: this holds for limit functionals, not for every linear
functional on RG.)

This means that, to limit functionals (which are our objects of interest),

F and
∑

F ′∈Gn

p(F ;F ′)F ′

are the same. Let K be the space spanned by all expressions of the form

F −
∑

F ′∈Gn

p(F ;F ′)F ′

and consider the quotient space A = RG/K. Since K is a subset of the kernel of
every limit functional, every limit functional is a linear functional of A.

On A it is possible to define, again with the help of the chain rule, an associa-
tive and commutative product which turns A into an algebra with identity (given
by the empty graph ∅), called the flag algebra. With respect to this product,
limit functionals are multiplicative: if f , g ∈ A, then φ(f · g) = φ(f)φ(g). More-
over, φ(∅) = 1 for every limit functional φ, and so limit functionals are algebra
homomorphisms from A to R. Since they are defined in terms of densities, limit
functionals are also nonnegative: for every graph F we have φ(F ) ≥ 0. Razborov
shows that Φ is exactly the set of nonnegative algebra homomorphisms from A
to R.

This gives an exact characterization of the set Φ. Building on this, the theory
provides, among other things, a systematic way of computing hierarchies of convex
relaxations of Φ, that is, sequences

[0, 1]G ⊇ Φ1 ⊇ Φ2 ⊇ · · ·
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of convex sets Φk, each containing Φ. Moreover, with appropriate control, opti-
mization over the relaxations Φk can be carried out efficiently, for instance via
semidefinite programming. This allows us to compute upper bounds for ex(C,H).

Many significant results in extremal combinatorics have been obtained via the
theory of flag algebras, for instance: computing the minimal number of triangles
in graphs with given density, computing the maximum number of pentagons in
triangle-free graphs, and obtaining new results regarding the Cacceta-Häggkvist
conjecture (see Carli Silva, Oliveira, and Sato [1] for references). Though presented
here in the context of graphs, the theory is more general, and can be applied also
to digraphs, permutations, and other objects.
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A Recursive Theta Body for Hypergraphs

Fernando Mário de Oliveira Filho

(joint work with D. Castro-Silva, L. Slot, and F. Vallentin)

Let H = (V,E) be an r-uniform hypergraph. A set I ⊆ V is independent if
no edge of H is contained in I. Given a weight function w ∈ RV , the weighted
independence number of H is

α(H,w) = max{w(I) : I ⊆ V is independent },
where w(I) =

∑
x∈I w(x).

The independent-set polytope of H is

IND(H) = conv{χI ∈ RV : I ⊆ V is independent },
where χS ∈ RV is the characteristic function of S ⊆ V . The weighted indepen-
dence number of H can be computed by maximizing wTf over f ∈ IND(H), and
so optimizing over the independent-set polytope is an NP-hard problem.

A clique of H is a set C ⊆ V such that every r-subset of C is an edge. If C
is a clique of H and f ∈ IND(H), then f(C) ≤ r − 1. These valid inequalities
for IND(H) are called clique inequalities ; they give a relaxation of the independent
set polytope, namely

QIND(H) = { f ∈ [0, 1]V : f(C) ≤ r − 1 for every C ⊆ V }.
The integer hull of this relaxation is IND(H). The separation problem over QIND(H)
is NP-hard, and hence optimizing over QIND(H) is also an NP-hard problem.

Grötschel, Lovász, and Schrijver [1] defined the theta body of a graph: a convex
relaxation of IND(H) stronger than QIND(H) over which it is possible to optimize
a linear function in polynomial time. We extend this definition recursively to
hypergraphs with uniformity r ≥ 3.
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We take as our base case r = 1; though 1-uniform hypergraphs are a rather
degenerate case, this allows us to give uniform proofs that recover results for
graphs proved by Grötschel, Lovász, and Schrijver [1]. So we define the theta body
of a 1-uniform hypergraph as TH(H) = IND(H).

Let H = (V,E) be an r-uniform hypergraph for some r ≥ 2. Given x ∈ V , the
link of x in H is the (r − 1)-uniform hypergraph Hx with vertex set

Vx = { y ∈ V : there is e ∈ E containing x and y },

in which an (r − 1)-subset e of Vx is an edge if e ∪ {x} is an edge of H .
Given a matrix A ∈ RV ×V and x ∈ V , let Ax ∈ RV denote the row of A indexed

by x, that is, Ax(y) = A(x, y). If f : V → R is any function and U ⊆ V is any
set, denote by f [U ] the restriction of f to U . The theta body of the r-uniform
hypergraph H = (V,E) for r ≥ 2 is the convex set

TH(H) = { f ∈ RV : there is F ∈ RV×V such that f = diagF ,

Fx[Vx] ∈ F (x, x)TH(Hx) for every x ∈ V , and
(
1 fT

f F

)
is positive semidefinite }.

It is easy to see that IND(H) ⊆ TH(H). Indeed, if I ⊆ V is any independent
set, then for every x ∈ I we have that I ∩ Vx is an independent set of the link Hx

of x. This implies that f = χI and F = χIχ
T

I satisfy the constraints above,
so χI ∈ TH(H). It is also possible to prove that TH(H) ⊆ QIND(H), and so
the theta body is a convex relaxation of the independent-set polytope stronger
than QIND(H).

For every fixed r it is possible to optimize over TH(H) in polynomial time. Many
other properties of the theta body of a graph, such as antiblocking relations, can
also be shown for this recursive extension.

By optimizing over the theta body we obtain upper bounds for the weighted
independence number. These upper bounds can be used to prove results in ex-
tremal combinatorics. For instance, it is possible to reprove Mantel’s theorem by

considering the hypergraph whose vertex set is V =
(
[n]
2

)
, where [n] = {1, . . . , n},

and in which three elements of V are adjacent if they form a triangle of the com-
plete graphKn. Another application is computing upper bounds for the maximum
number of binary words of length n no three of which are mutually at Hamming
distance d from each other for some fixed d.

Finally, Castro-Silva, Oliveira, Slot, and Vallentin [2] consider an extension of
the theta body to infinite geometrical graphs which provides upper bounds for the
maximum measure of sets of points on the sphere or in Euclidean space that avoid
regular simplices of a given side length. These bounds are strong enough to show
that the maximum measure of such sets decays exponentially fast in the dimension
of the space.
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The Symmetries of Flag Algebras

Daniel Brosch

Flag algebras, first introduced by Razborov [1] in 2007, remain one of the most
powerful tools in extremal combinatorics today. Recently, Raymond, Saunderson,
Singh and Thomas [2] discovered a connection to polynomial optimization: we
can recover flag sums-of-squares hierarchies by partially exploiting the symmetries
of a sequence of symmetric polynomial optimization hierarchies, and taking the
limit as the number of variables approaches infinity. We continue from there,
fully exploiting the symmetries of two different hierarchies, one focusing on a low
number of edges, and another focusing on a low number of vertices.

We here optimize over polynomials in binary variables xij , with indices 1 ≤ i <
j ≤ n, which correspond to edges in a graph on n vertices. Each of the polynomials
in the problem is fully symmetric for the simultaneous action of the symmetric
group on the indices:

σ(xij) = xσ(i)σ(j) .

The edge-truncated hierarchy is exactly the Lasserre hierarchy for this problem,
which relaxes the polynomial optimization problem to a convex problem in positive
semidefinite variables. The convexity of the relaxation allows us to exploit the
symmetries, and block-diagonalize the problem using Artin-Wedderburn theory.
We can see the ring of polynomials, truncated to a given degree, as an Sn-module.
To compute the block-diagonalization, we need to decompose this module into
Specht modules, the irreducible modules of Sn. Due to the high dimension of the
spans of orbits of monomials, we needed to come up with an efficient algorithm
to decompose quotients of permutation modules Mλ/G, where G is a group of
permutations acting on the rows of the tabloids in Mλ.

The resulting symmetry reduced hierarchy is equivalent to optimization over
flag sums-of-squares, but our flags are not obtained by labeling certain vertices,
but by grouping vertices together, and is computationally more efficient.

The second, vertex-truncated hierarchy is closer to what Razborov [1] defines.
We generalize the hierarchy, reduce it further, and show how it can be obtained as
a truncation of a high level of the Lasserre hierarchy. This allows us to compare
the Razborov hierarchy to the Lasserre hierarchy in both directions.

We apply the reduced hierarchies to compute outer approximations of graph
profiles, which are the sets of simultaneously achievable subgraph densities of a
given set of graphs.
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Worst-case analyses of simple iterative methods via
semidefinite programming

Adrien Taylor

In this talk, we provide an introductory overview on how simple iterative meth-
ods can be analyzed via semidefinite programming. In short, the idea is that
finding worst-case scenarios (a.k.a. “worst-case analyses”) can be cast as solu-
tions to certain optimization problems, referred to as “performance estimation
problems” (PEPs). In the cases of interest for this talk, we show that those prob-
lems are actually instances of linear semidefinite programs (SDPs). As a result, by
strong duality, any worst-case guarantee on the performance of the method at hand
can be obtained as a feasible point to the dual SDP (to that of finding a worst-
case instance). The PEP framework was originally proposed by Yoel Drori and
Marc Teboulle in [1] for analyzing first-order optimization methods (namely gra-
dient descent, its accelerated variants by Nesterov [2], and the heavy-ball method
by Polyak [3]). In this talk, we follow a principled approach to PEPs by [4, 5],
which shows that PEPs construct non-improvable worst-case guarantees for a large
class of first-order optimization methods. We also mention the possibility of using
this framework for searching for Lyapunov functions and its link with the integral
quadratic constraints [6] for analyzing iterative optimization methods.

In the first part of the presentation, we show how to analyze an instance of
gradient descent for smooth strongly convex minimization, using a few principled
steps. Those stages finally lead us to an equivalence between performing this
worst-case analysis and solving a linear semidefinite program. We further provide
the key elements allowing to generalize the approach to the analysis of oracle-based
first-order methods for composite convex optimization, including those performing
explicit, projected, proximal, conditional and inexact (sub)gradient steps. For
all those methods (and the corresponding problem classes), the PEP framework
allows to simultaneously obtain tight worst-case guarantees and explicit instances
of optimization problems on which the worst-cases are attained, by solving SDPs.

In the second part of the talk, we discuss two recent pieces of software [7, 8],
allowing to perform such analyses (numerically) without going into the SDP mod-
elling details (which are very error-prone). We also discuss a few recent (tight)
analyses that were obtained using those tools: the Halpern-iteration for solving
fixed-point problems [9], the proximal-point algorithm for solving monotone inclu-
sions [10], gradient descent for nonconvex minimization [11, 12], as well as a few
methods that were entirely obtained using PEPs [13, 14, 15, 16]. We conclude this
part by discussing gradient descent with exact line-searches [17].
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Finally, we illustrate that PEPs can be used for designing methods with opti-
mized (and often optimal) worst-case guarantees, using results from [18, 19]. We
finally draw a few vague links with Chebyshev methods, which are optimal for
solving smooth strongly convex quadratic minimization problems [20].
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Construction of multivariate polynomial approximation kernels via
semidefinite programming

Felix Kirschner

(joint work with Etienne de Klerk)

The talk is based on [2]. A classical problem in approximation theory is uniform
approximation of a given function by linear combinations of orthogonal polyno-
mials. We say two functions f, g ∈ C(K) are orthogonal (w.r.t. a positive finite
Borel measure µ on K), if

〈f, g〉µ :=

∫

K

f(x)g(x)dµ(x) = 0.

Let {pα}α∈Nn be a system of orthogonal polynomials with respect to a measure µ,
where pα is of degree |α| = α1+· · ·+αn. Consider a kernelKr(x,y) : R

n×Rn → R

given by

(1) Kr(x,y) :=
∑

α∈Nn
r

gαpα(x)pα(y),

for given constants gα for α ∈ Nn
r , where Nn

r = {α ∈ Nn : α1 + · · · + αn ≤ r}.
Then the convolution operator, defined as

K(r)(f)(x) :=

∫

K

f(y)Kr(x,y)dµ(y),

maps any integrable function f to a polynomial of degree at most r, which will
serve as an approximation of f . More precisely,

K(r)(f)(x) =
∑

α∈Nn
r

bαpα(x) , where bα = 〈pα, f〉µ gα.

The coefficients gα of the kernel Kr determine the approximation.
Let now K = [−1, 1]n and let the system of orthogonal polynomials on K be

given by the multivariate generalization of the well-known Chebyshev polynomials
of the first kind given by Tk(x) := cos(k arccos(x)) for k ∈ N. In other words,
define for α ∈ Nn

r

Tα(x) =

n∏

i=1

Tαi
(xi).

The corresponding measure µ is given by

dµ(x) =

n∏

i=1

1

π
√
1− x2i

dx.
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We associate the following quantity to a given kernel Kr(x,y)

σr :=

(∫

K×K

‖x− y‖2Kr(x,y)dµ(x)dµ(y)

)1/2

,

called the resolution of the kernel Kr(x,y) in [3]. We show how to construct
kernels Kr with minimal resolution such that K(r)(f) converges to f uniformly
on K = [−1, 1]n. One can show that the rate of convergence may be bounded
in terms of σr . For the statement of the main result recall that the modulus of
continuity of f ∈ C(K) is defined as

ωf (δ) := max
x,y∈K

‖x−y‖≤δ

|f(x)− f(y)|.

Now, any kernel satisfying the following four properties may be used to approxi-
mate a continuous function on K:

P1. Kr(x,y) =
∑

α∈Nn
r
gαTα(x)Tα(y), for gα ∈ R for α ∈ Nn

r

P2. Kr(x,y) ≥ 0 for all (x,y) ∈ K×K and all r;
P3.

∫
K
Kr(x,y)dµ(y) = 1 for all x ∈ K for all r;

P4. limr→∞ σr = 0.

Moreover, we have the following result.

Proposition 1. Let K = [−1, 1]n and f : K → R be continuous on K with
modulus of continuity ωf . Under the above conditions P1-P4 on Kr(x,y) one has

K(r)(f) → f as r → ∞, uniformly on K. Moreover,

‖K(r)(f)− f‖∞,K ≤ 2

(
1 +

π√
2

)
ωf (σr).

The difficult property is clearly P2. The strategy is to strengthen the non-
negativity condition to make it more tractable. For this we note that a kernel
Kr(x,y) satisfying property P1 is non non-negative on [−1, 1]n × [−1, 1]n if and
only if the trigonometric polynomial Gr(φ) =

∑
α∈Nn

r
gα

∏n
i=1 cosαiφi is non-

negative on [−π, π]n. Therefore, we can make use of the following result.

Theorem 1. (e.g. Theorem 3.5 in [4]) If p is a positive trigonometric polynomial,
then there exists an r ∈ N and a hermitian positive semidefinite (psd) matrix M
of order

(
n+r
r

)
such that

p(φ) =
[
exp(ıαTφ)

]∗
α∈Nn

r

M
[
exp(ıαTφ)

]
α∈Nn

r

.

One can show that if Gr has a hermitian psd representation as in Theorem 1
then it has a real symmetric psd representation as well. We can therefore solve a
semidefinite program (SDP) to obtain coefficients gα such that the corresponding
kernel Kr will satisfy P1-P4. For a given r ∈ N the SDP is given by

σ2
r = min

n∑

i=1

(1− gei)
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subject to
∑

α∈Nn
r

gα
∏

i∈[n]

cosαiφi =
[
exp(ıαTφ)

]∗
α∈Nn

r

M
[
exp(ıαTφ)

]
α∈Nn

r

g(0,...,0) = 1

M � 0.

Property P3 is enforced by the constraint g(0,...,0) = 1 and the non-negativity,
i.e., P2 follows from Theorem 1. The optimal solution M provide the coefficients
gα leading to a kernel satisfying P1 with minimal resolution σr ensuring P4. We
formulate upper bounds on the optimal values σ2

r of the above SDP in the following
proposition.

Proposition 2 Fix n ∈ N. For r ∈ N we have

σ2
r ≤ n

(
1− cos

nπ

r + n

)
∼ n3π2

2(r + n)2
if r ≫ 0.

In the univariate case there exists a closed form solution for the coefficients of
the kernel Kr with minimal resolution. It is a open question whether it is possible
to find a closed form for the multivariate case as well.
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The kissing number problem for regular tetrahedra

Andreas Spomer

(joint work with Frank Vallentin, Fernando Mário de Oliveira Filho,
Stefan Krupp and Fabŕıcio C. Machado)

What is the maximum number τ3 of pairwise nonoverlapping regular tetrahedra
in R3 that share a vertex? The question has a long history which can be traced
back to Plato. An easy geometric argument shows that the number can not be
bigger than 22. By associating each faced of the Icosaedron with a tetrahedron,
we obtain a configuration of 20 tetrahedra, that share the center of the Icosaedron
as a vertex. This configuration is conjectured to be optimal.

With the help of modern optimization techniques, we are able to improve the
upper bound. The problem can be approached by using semidefinite program-
ming. Nonoverlapping configurations can be considered as independent sets of an
infinite graph. To relax this problem, we can develop an infinite version of Lovàsz
Theta number [1] for this graph.
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Let T be a regular tetrahedron with a vertex at the origin. Assume there exists
a Hermitian kernel K : C(SO(3)× SO(3), C)�0 such that

Re(K(A,A)) = λ− 1 for all A ∈ SO(3) and

Re(K(A,B)) ≤ −1 whenever AT ∩BT = ∅,
then τ3 ≤ λ.

This optimization problems tend to have a lot of symmetries, which can be ex-
ploited to reduce the complexity of the problem. With the help of the representa-
tion theory of the special orthogonal group, we are able to reformulate the bound
as a semidefinite optimization problem, which can be solved numerically

inf 1 + f(0, 0, 0)

s.t. f : [0, 2π)× [0, π)× [0, 2π) → C,

Fℓ � 0 for all ℓ ≥ 0,

f(α, β, γ) =

∞∑

ℓ=0

〈Aℓ(α, β, γ), Fℓ〉

Re(f(A)) ≤ −1,whenever T ∩ AT = ∅.

In my talk, I would like to give an introduction to thee-point bounds and illus-
trate how they can be applied to geometric optimization problems. I will explain
how symmetry reduction and representation theory help to compute these bounds
efficiently. Moreover, I will present some of my numerical results concerning the
kissing number for regular tetrahedra and discuss applications of this framework.

References
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Semidefinite programming bounds for the average kissing number

Maria Dostert

(joint work with Alexander Kolpakov, Fernando Mário de Oliveira Filho)

The average kissing number of Rn is the supremum of the average degree of contact
graphs of packings of finitely many balls (of any radii) in Rn. A packing of balls in
Rn is a finite set of interior-disjoint closed balls. Furthermore, the contact graph
of a packing P is the graph with vertex set P in which two balls are adjacent if
they intersect, that is, if they are tangent to each other.

Contact graphs of packings of disks on the plane are characterized by the Koebe-
Andreev-Thurston theorem [7]: they are precisely the (simple) planar graphs. In
higher dimensions, no such simple characterization is known (see the paper by
Glazyrin [4] for a nice discussion), and therefore research has been focused on
understanding the behavior of some specific parameters of contact graphs.
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In this talk, we consider the average degree of contact graphs. More precisely,
we are interested in the average kissing number of Rn, namely

κn = sup{ δ(G) : G is the contact graph of a packing of balls in Rn },
where δ(G) denotes the average degree of G.

Lower bounds for κn can be obtained by constructions; a simple idea is to
consider lattice packings. Given a lattice Λ ⊆ Rn with shortest vectors of length d,
we consider the set of all balls of radius d/2 centered on the lattice points. These
balls have disjoint interiors and so we have a packing of infinitely many balls.
Each ball in this packing has the same number of tangent balls, called the kissing
number of the lattice Λ. The lattice kissing number of Rn, denoted by τ∗n , is
the largest kissing number of any lattice in Rn; immediately we have κn ≥ τ∗n .
Conway and Sloane [1, Table 1.2] list lower bounds for τ∗n , and hence for κn, for n
up to 128. For n = 3, a construction of Eppstein, Kuperberg, and Ziegler [3]
gives κ3 ≥ 12.612, while τ∗3 = 12.

On the side of upper bounds, it is easy to see that κn ≤ 2τn, where τn is the
kissing number of Rn, that is, the maximum number of interior-disjoint unit balls
that can simultaneously touch a central unit ball. Indeed, say P is a packing of
balls and let r(X) be the radius of the ball X ∈ P ; let G = (P , E) be the contact
graph of P . In G, the number of neighbors of a ball X ∈ P that have radius at
least r(X) is at most the kissing number τn. So

|E| ≤
∑

X∈P

|{ {X,Y } ∈ E : r(X) ≤ r(Y ) }| ≤ τn|P|,

whence the average degree of G is 2|E|/|P| ≤ 2τn. Though simple, this bound is
still the best known for all n ≥ 10.

Dimension Lower bound Previous upper bound New upper bound

3 12.612 13.955 13.606
4 24 34.681 27.439
5 40 77.757 64.022
6 72 156 121.105
7 126 268 223.144
8 240 480 408.386
9 272 726 722.629

Table 1. Lower and upper bounds for the average kissing number.
The lower bound in dimension 3 was given by Eppstein, Kuperberg,
and Ziegler [3]; all other lower are in listed by Conway and Sloane [1,
Table 1.2]. Upper bounds in dimensions 3, . . . , 5 are due to Glazyrin [4];
all other upper bounds are twice the best known upper bound for the
kissing number; see Table 1 in Machado and Oliveira [6].

Kuperberg and Schramm [5] gave the first nontrivial upper bound for the av-

erage kissing number in dimension 3, proving that κ3 ≤ 8 + 4
√
3 = 14.928 . . ..
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Glazyrin [4] refined their approach and showed that κ3 ≤ 13.955; he also ex-
tended their result to higher dimensions and managed to beat the upper bound
of 2τn for n = 4 and 5. In this talk, I will explain how, we use, in [2], semidef-
inite programming to refine Glazyrin’s approach, obtaining better upper bounds
for n = 3, . . . , 9; see Table 1.
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Three-point bounds for sphere packing

David de Laat

The sphere packing problem asks for the densest packing of Euclidean space by
congruent balls. With Bn

r the ball of radius r centered at the origin, the optimal
sphere packing density in Rn can be defined as the maximum of

lim sup
R→∞

vol(Bn
1/2)|P ∩Bn

R|
vol(Bn

R)

over all P ⊆ Rn with distance at least 1 between any two distinct points. This
problem has been solved in dimensions 1, 2, 3, 8, and 24. The 3-dimensional version
of this problem was known as the Kepler conjecture and has been solved by Hales
in what is one of the most well-known computer assisted proofs [8]. Dimensions
8 and 24 have been solved more recently by Viazovka and others [10, 4] using the
Cohn-Elkies linear programming bound [3].

An easy nonconstructive argument shows the sphere packing density in Rn is
at least 2−n, and in [9] Kabatyanskii and Levenshtein give the asymptotic upper
bound

2−(0.59905576+o(1))n.

In [6] it is shown that this upper bound can be recovered by a sequence of feasible
solutions to the Cohn-Elkies linear programming bound. The question then arises
whether the linear programming bound can be used to obtain a better asymptotic
bound. In [1] we compute the linear programming bound for high dimensions and
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based on this we conjecture it can be used to get the asymptotic upper bound
2−(λ+o(1))n with 0.604 < λ < 0.605.

The Cohn-Elkies linear programming bound is not expected to be sharp for
any dimensions other than 1, 2 (for which this is still a conjecture), 8, and 24,
and apart from the small improvements in [7] no improvements on the linear
programming bound for sphere packing are known. We therefore would like to
have better bounds. In [5] we give two three-point bounds to go beyond the linear
programming bounds (which can be called two-point bounds).

For the first bound we show that the Lovász theta prime number, which is a
semidefinite program to upper bound the independence number of a finite graph, is
multiplicative for the disjunctive product of graphs. Since the Cohn-Elkies linear
programming bound can be thought of as the Lovász theta prime number for an
infinite noncompact graph, this gives a new formulation for exactly the same sphere
packing bound. The advantage of this new formulation is that we can strengthen it
when considering the easier problem of finding the optimal lattice packing density.
Based on the computational results we conjecture this new bound is sharp for the
lattice sphere packing problem in dimension 4. This shows three-point bounds
can be very strong for sphere packing problems. Moreover, it might allow for the
use of modular form techniques such as those developed by Viazovska to give an
alternative proof of the classical result by Korkine and Zolotareff that the D4 root
lattice gives the optimal lattice sphere packing in R4.

To get better upper bounds for the sphere packing problem we adapt the
Bachoc-Vallentin three-point bound for the spherical code problem [2], which is
the compact analogue of the sphere packing problem, to a noncompact setting.
The crucial new ingredient that makes the bound work is that we show the con-
straints on the three-point function must be truncated. We use this bound to give
improved upper bounds on the optimal sphere packing density in dimensions 4
through 7, and 9 through 12.
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Bounding the Distance to Unsafe Sets

Jared Miller

(joint work with Mario Sznaier)

This talk presents a method to lower-bound the distance of closest approach be-
tween points on an unsafe set and points along system trajectories [1]. Such a
minimal distance is a quantifiable and interpretable certificate of safety of tra-
jectories, as compared to prior art in barrier which offers a binary indication of
safety/unsafety [2]. As an example, receiving a report that a planned course of
action is safe (car traveling at 60 km/hr does not crash into a tree) yields a dif-
ferent reaction as compared to a report that includes the minimal distance (car
traveling at 60 km/hr passes within a minimum distance of 10 cm to a tree). The
distance estimation problem is converted into a infinite-dimensional Linear Pro-
gram (LP) in occupation measures based on existing work in optimal control [3],
peak estimation [4] and optimal transport [5]. This LP involves an initial measure
(initial state), a peak measure (time and state), an occupation measure (time and
state), and a joint measure (state and point on unsafe set). Under mild conditions
(e.g. Lipschitz dynamics, compact sets) conditions, the LP has the same objective
value as the true distance of closest approach.

The moment-Sum of Squares hierarchy is used to obtain a sequence of lower
bounds obtained through solving Linear Matrix Inequalities (LMIs) in increasing
size [6], and these lower bounds will converge to the true minimal distance as the
degree approaches infinity under an Archimedean assumption. The size of the
largest positive semidefinite matrix constraint (moment matrix) grows as

(
2n+d

d

)

in an n-state d-degree problem. This large matrix of size
(
2n+d

d

)
may be reduced to

n instances of matrices with size
(
n+1+d

d

)
in the case where the distance function is

separable (e.g. squared L2 distance) through the application of correlative sparsity
[7]. Near-optimal trajectories that achieve the minimal distance may be recovered
if the solved moment matrices obey rank constraints [8].

The distance estimation problem can be modified to accommodate dynamics
with uncertainty [9]. Piecewise (norm) distance functions (e.g. L1, L3, and L∞

distances) may be treated using the theory of polyhedral liftings [10]. Safety of
shapes traveling in an evolving orientation along trajectories may be assured by
bounding the set-set distance between points on the shape and points on the un-
safe set with a sequence of LMIs. Such a set-set program involves a coordinate
transformation between the orientation of the shape and local coordinates on the
shape to the global coordinates for which distance is measured. Set-set distance
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estimation adds a new shape measure (orientation and local coordinate) and push-
forward transformations to the LP and LMIs.

References

[1] J. Miller and M. Sznaier, “Bounding the Distance to Unsafe Sets with Convex Optimization,”
2021, arXiv:2110.14047.

[2] S. Prajna and A. Jadbabaie, “Safety Verification of Hybrid Systems Using Barrier Certifi-
cates,” in International Workshop on Hybrid Systems: Computation and Control. Springer,
2004, pp. 477–492.

[3] R. Lewis and R. Vinter, “Relaxation of optimal control problems to equivalent convex pro-
grams,” Journal of Mathematical Analysis and Applications, vol. 74, no. 2, pp. 475–493,
1980.

[4] M. J. Cho and R. H. Stockbridge, “Linear Programming Formulation for Optimal Stopping
Problems,” SIAM J. Control Optim., vol. 40, no. 6, pp. 1965–1982, 2002.

[5] C. Villani, Optimal Transport: Old and New. Springer Science & Business Media, 2008,
vol. 338.

[6] J. B. Lasserre, Moments, Positive Polynomials And Their Applications, ser. Imperial Col-
lege Press Optimization Series. World Scientific Publishing Company, 2009.

[7] H. Waki, S. Kim, M. Kojima, and M. Muramatsu, “Sums of Squares and Semidefinite
Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity,”
SIOPT, vol. 17, no. 1, pp. 218–242, 2006.

[8] J. Miller, D. Henrion, and M. Sznaier, “Peak Estimation Recovery and Safety Analysis,”
IEEE Control Systems Letters, vol. 5, no. 6, pp. 1982–1987, 2020.

[9] J. Miller, D. Henrion, M. Sznaier, and M. Korda, “Peak Estimation for Uncertain and
Switched Systems,” 2021.

[10] M. Yannakakis, “Expressing combinatorial optimization problems by Linear Programs,”
Journal of Computer and System Sciences, vol. 43, no. 3, pp. 441–466, 1991.

Stability and performance verification of dynamical systems controlled
by neural networks: algorithms and complexity

Milan Korda

This talk discussed several contributions to stability and performance verification
of nonlinear dynamical systems controlled by neural networks as depicted in Fig-
ure 1.

u x

x+ = f(x, u)

Figure 1. Nonlinear dynamical system controlled by a neural network.
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First, we show that the stability and performance of a polynomial dynamical
system controlled by a neural network with semialgebraically representable activa-
tion functions (e.g., ReLU) can be certified by convex semidefinite programming.
The result is based on the fact that the semialgebraic representation of the ac-
tivation functions and polynomial dynamics allows one to search for a Lyapunov
function using polynomial sum-of-squares methods. Second, we remark that even
in the case of a linear system controlled by a neural network with ReLU activation
functions, the problem of verifying asymptotic stability is undecidable. Finally,
under additional assumptions, we establish a converse result on the existence of
a polynomial Lyapunov function for this class of systems. Numerical results with
on examples of state-space dimension up to 50 and neural networks with several
hundred neurons and up to 30 layers demonstrate the method. The content of the
talk is based on the work [1] which is itself based on the older work [2] treating
the stability of optimization-based controllers (e.g., model predictive control) by
viewing them as difference inclusions with semialgebraic right-hand side.

Specifically, we consider discrete-time dynamical systems of the form

(1) x+ = f(x, u)

with x ∈ Rn being the state, x+ ∈ Rn the successor state, u ∈ Rm the control
input and f : Rn × Rm → Rn a polynomial transition mapping. The goal is the
verify the closed-loop stability and performance of system (1) when controlled by
a neural network controller u = ψ(x). That is, the object of interest is the system

(2) x+ = f(x,ψ(x)),

where ψ is a neural network of the form

(3) ψ(x) =WN (. . . ρ2(W2ρ1(W1x+ b1) + b2) . . .) + bN

for some weight matrices Wi and bias vectors bi. The activation functions ρi, ap-
plied componentwise on the output of each layer, are assumed to be semialgebraic;
this is satisfied, e.g., for the ReLU, leaky ReLU or the saturation function1. The
semialgebraicity of the activation functions implies that the graph of the function
ψ can be expressed as

graphψ = {(x, u) | ∃λ ∈ Rnλ s.t. g(x, u, λ) ≥ 0,

h(x, u, λ) = 0}(4)

for some vectors of polynomials g and h and lifting variables λ associated to the
semialgebraic functions ρi in ψ. We recall that the graph of a function ψ : Rn →
Rm is a subset of Rn+m defined as

graphψ =
{(
x,ψ(x)

)
| x ∈ Rn

}
.

1The saturation function is typically applied at the output layer in order to enforce sat-
isfaction of bounds on the control. Other activation functions such as tanh or sigmoids are
not semialgebraic and hence cannot be treated using the presented approach without a further
approximation.
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Since for each x, the control input u satisfies u = ψ(x), it follows that (x, u) ∈
graphψ and hence also

(5) u ∈ Kx,

where the set Kx is given by

Kx =
{
u | ∃λ ∈ Rnλ s.t. g(x, u, λ) ≥ 0, h(x, u, λ) = 0

}
.

We note that in this case, the set Kx is a singleton although the approach of [2]
that this work is based on applies to non-singleton sets Kx as well.

Example (ReLU) Consider the single-neuron network with a ReLU activation
function, i.e.,

ψ(x) = ReLU(w⊤x+ b) = max(w⊤x+ b, 0)

for some vector of weights w ∈ Rn and a bias b ∈ R. The graph of the function
y = ReLU(z) = max(0, z) is given by

graphReLU =
{
(z, y) | y ≥ z, y ≥ 0, y(y − z) = 0

}
.

Substituting w⊤x+ b for z and u for y , it follows that the set Kx is given by

Kx = {u | u ≥ w⊤x+ b, u ≥ 0, u(u− w⊤x− b) = 0}.
We note that in this case, no lifting variables λ are needed.
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