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Introduction by the Organizers

The workshop Diophantische Approximationen (Diophantine approximations), or-
ganised by Yann Bugeaud (Strasbourg), Pietro Corvaja (Udine), Laura DeMarco
(Harvard), and Philipp Habegger (Basel) was held April 17th - April 23rd, 2022.
There were 59 participants (29 on site and 30 online) with broad geographic rep-
resentation and a large variety of mathematical backgrounds. Young researchers
were very well represented, including among the speakers. Below we briefly recall
the topics discussed, thus outlining some of the modern lines of investigation in
Diophantine approximation and closely related areas. We refer the reader to the
abstracts for more details. In total we had 30 talks, each lasting 35 minutes. The
majority of talks were in-person.

Diophantine approximation is a branch of Number Theory that can be described
as the study of the solvability of inequalities in integers, though this main theme
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of the subject is often generalized greatly. Classical examples involve rational ap-
proximation to irrational numbers. Topics of current interest in Diophantine ap-
proximation include irrationality and transcendence statements, which have been
discussed in the talks of Hirata-Kohno, Moshchevitin, and Viola. Badziahin and
Poëls described new progress towards a deep understanding of the uniform si-
multaneous rational approximation to a real number and its successive integral
powers. The powerful parametric geometry of numbers, which has been recently
introduced by W. M. Schmidt and Summerer, was at the heart of the talk of Roy.
Among his results was a new advance on uniform simultaneous rational approxi-
mation to real n-tuples. Zudilin spoke of Apéry sequences and their limits, Coons
of regular sequences and associated probability measures.

Metric Diophantine approximation has seen great advances during the last
decade and was present in the talks of Beresnevich, Ghosh, and Breuillard, who
explained an unexpected extension of Schmidt’s Subspace Theorem in the context
of metric Diophantine approximation. This allows him to recover and generalize
the main results of Kleinbock and Margulis on Diophantine exponents of subman-
ifolds. This powerful theorem of W. M. Schmidt was also at the heart of the talks
of Fuchs and Mello.

The conjecture of Zilber-Pink on unlikely intersections encompasses many classi-
cal results and conjectures from Diophantine geometry including the Mordell and
André–Oort Conjectures. These problems have seen spectacular developments
within the last two or three years, and a number of the talks addressed work in
this direction. Application of André’s work on G-functions was at the center of
Daw’s presentation on the Zilber-Pink Conjecture in the modular setting. Orr pre-
sented semi-effective aspects of the Borel Harish-Chandra reduction theory. Gao
presented work on the Manin-Mumford Conjecture in a family of abelian varieties,
and Kühne spoke on the Bogomolov Conjecture variant of the problem in such a
family. Masser explained ramifications of these ideas to elementary integration.
Barroero and Dill spoke on problems in mixed characteristic, the latter motivated
by an application of Bugeaud-Corvaja-Zannier of Schmidt’s Subspace Theorem.
Height upper bounds as in Amoroso’s talk play an important part in understanding
unlikely intersections.

Additional talks illustrated the breadth of disciplines connected to the tradi-
tional Diophantine Approximation themes. Demeio and Wilms spoke on arith-
metic equidistribution, the former in the setting of arithmetic dynamics and the
latter from an Arakelov-geometric point of view. Checcoli and Pazuki each spoke
on intrinsic properties of the Weil height. Ostafe and Stewart studied the count of
multiplicative dependent elements with bounded height. Capuano addressed the
classical continued fraction expansion and how it carries over to the p-adic setting.
Finally, Dimitrov presented a recent breakthrough, together with Calegari and
Tang, towards the unbounded denominators conjecture.

As an indication of the evolution of the field, we remark that interest in Diophan-
tine equations for their own sake seems to be declining, as they were present only
in the talk of Evertse. But the applications of the classical theory to the broader
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areas of arithmetic geometry, arithmetic dynamics, metric geometry, groups, and
dynamical systems show the importance of the topic and its central role in current
mathematical research.
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Abstracts

Apéry sequences and limits: new perspectives

Wadim Zudilin

Apéry’s proof of the irrationality of ζ(3) in 1978 displayed two particular phenom-
ena. To be specific, consider the recurrence equation

(n+ 1)3vn+1 − (2n+ 1)(17n2 + 17n+ 5)vn + n3vn−1 = 0 for n = 1, 2, . . . .

Then starting from u0 = 1, u1 = 5, the generated solution {un}∞n=0, a pri-
ori a sequence of rational numbers, is in fact integer-valued. Thus, the first—
integrality—phenomenon is about existence of non-trivial solution {un}∞n=0 ⊂ Z.
As the equation above has order 2, there is another linearly independent solution
{vn}∞n=0 ⊂ Q, which starts from v0 = 0, v1 = 6 (the choice of 6 is for ‘cosmetic pur-
poses’). This solution is not any more integer-valued but the denominators grow
exponentially, lcm(1, 2, . . . , n)3vn ∈ Z (rather than n!3vn ∈ Z, which is also true
but is much weaker). The second phenomenon is now related to the fact that the
quotient vn/un tends to a meaningful number, ζ(3), and it does at a very good rate!
Namely, unζ(3)− vn → 0 as n→∞ (and even lcm(1, 2, . . . , n)3(unζ(3)− vn)→ 0
as n → ∞). This limiting value, which is ζ(3) in our case, is called the Apéry
limit, and its meaningfulness is precisely the Apéry-limit phenomenon.

In general, the integrality can be replaced with the global boundedness of a
solution (meaning that we can scale the equation to get an integer-valued solution),
and there are more Apéry limits when the order is more than 2. These Apéry
limits, of course, depend on the initial data but in an easily controlable way; in
the example above, the switch to a different pair of linearly independent (but
rational-valued!) solutions will produce (aζ(3)+ b)/(cζ(3)+ d) in place of ζ(3) for
some

(
a b
c d

)
∈ GL2(Q).

My first theme is a general result about properties of recursions for the so-
called generalized Franel numbers u(s)(n) =

∑n
k=0

(
n
k

)s
, where s = 1, 2, . . . is

fixed. Note that u(1)(n) = 2n and u(2)(n) =
(
2n
n

)
, which manifests that each

of the sequences satisfies a first-order difference equation. Franel gave explicitly
Apéry-type recursions for s = 3, 4 in 1894 and 1895. He also conjectured that the
recursion has order ⌊(s + 1)/2⌋ in general but it took almost a century for the
next entry for s = 5 to be written up. Finally, a recursion (with polynomial in
n coefficients) was algorithmically constructed in the 1990s, and this construction
indeed leads to order at most ⌊(s+ 1)/2⌋.

What about bounds on the order from below? In 2008, it was shown that
the order is at least 2 for s ≥ 3. In our recent work [1] with Armin Straub
we demonstrate that any recursion constructed for u(n) = u(s)(n) by creative

telescoping for the term
(
n
k

)s
, that is,

P (n,N)

(
n

k

)s
= b(n, k + 1)− b(n, k) for all n, k,
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where N : f(n) 7→ f(n + 1) is the shift operator, P (n,N) ∈ Z[n,N ], has order
(= degree in N) at least ⌊(s + 1)/2⌋. One should take into account that the al-
gorithm of creative telescoping guarantees the existence of a difference operator
P (n,N) and b(n, k) = C(n, k)

(
n
k

)s
with some rational function C(n, k), a cer-

tificate. Our proof with Straub constructs explicitly ⌊(s + 1)/2⌋ solutions, say
u0(n), u1(n), . . . , u⌊(s−1)/2⌋(n), to the same recurrence equation P (n,N)u(n) = 0
and computes the Apéry limits

lim
n→∞

uj(n)

u(n)
∈ Qζ(2j) for j = 0, 1, . . . ,

⌊
s− 1

2

⌋
.

The minimality of the order is then a consequence of the linear independence of
the solutions constructed, in turn implied by the linear independence of the powers
of π2 over Q.

My second theme is a far-going variation on Apéry’s original work and its
extension to the values of the dilogarithmic function Li2(z). In joint work [2] with
Christoph Koutschan we construct an Apéry-type recursion for the integrals

Ln(z) =

∫ 1

0

∫ 1

0

xn−1/2(1− x)2n−1/2(1− xz)1/2yn(1− y)n−1/2

(x(1 − y) + y/z)n+1
dxdy (z−1 ∈ Z×),

which are linear combinations (with coefficients in Q(z−1)) of

ρ1(z) =

∫ 1

0

dx√
x(1 − x)(1 − xz)

, ρ2(z) =

∫ 1

0

√
1− xz dx√
x(1− x)

, σ1(z) = L0(z)

and

σ2(z) =

∫ 1

0

∫ 1

0

x−1/2(1− x)1/2(1− xz)1/2(1− y)1/2
x(1 − y) + y/z

dxdy.

The construction allows us to isolate any two of the four quantities and realise, for
example, σ1/ρ1 as an Apéry limit (though with no irrationality implications).

Why would one care about such strange looking numbers? It happens that ρ1(z)
is a period of the corresponding z-member E : y2 = x(1−x)(1− zx) of Legendre’s
family of elliptic curves, hence related to its (twisted) L-value at 1. The value of
σ1(z) when z

−1 ∈ Z× is related to the L-value of the same curve at 2 (for most of
such z conjecturally, based on Boyd’s famous observations for two-variable Mahler
measures). In this way our construction leads to rational approximations to the
Apéry limit L(E, 2)/(πL(E,χ, 1)) (where the choice of an odd quadratic character
χ is arbitrary).

My third (and final) theme is about a particular generating function of the Leg-

endre polynomials (themselves generated by
∑∞

n=0 Pn(y)z
n = 1/

√
1− 2yz + z2),

namely, about

F (y, z) =

∞∑

n=0

(
2n

n

)
Pn(y)

2zn.

What is special about it? The function satisfies a fourth-order linear differential
equation, viewed as a function of either y or z, and both equations have (the
Zariski closure of) the monodromy group O4. In similar situations we always get
such a function represented as a product of solutions of second-order differential
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equations, with each solution realised as a hypergeometric 2F1 function (or as a
period of an elliptic curve). Here we obtain in joint work [3] with Mark van Hoeij
and Duco van Straten the following decomposition:

F (y, z) = w I+(4z, w
2) I−(4z, w

2),

where w =
√
(1 + 4z)2 − 16y2z + 4y

√−z and

I±(u, x) =
1

π

∫ 1

0

1− uv ± v
√
2u2 − 2u√

v(1− v)((1 − v)(1 − u2v)(1 + uv)2 + x v(1 − uv)2)
dv

are generically hyperelliptic integrals. Furthermore, for each u ∈ C, the func-
tion I±(u, x) satisfies a second-order differential equation with coefficients from

Q(u,
√
2u2 − 2u)[x]. Surprisingly enough, such second-order equations (and there

are infinitely many of them because of the extra parameter u), not reducible to
elliptic integrals, were not recorded in the literature; they are reasonably simple
counterexamples to a 1990 conjecture of Dwork (which is already disproven finitely
many times through examples based on Shimura and Teichmüller curves defined
over quadratic extensions of Q).

As an outcome of our proof, the following infinite family of Apéry-type recur-
sions shows up: Define degree 4n polynomials un = un(t) by un = 0 for n < 0,
u0 = 1 and

(n+ 1)2un+1

− 22(16(t4 − 6t3 − 4t2 + 6t− 1)(n2 + n) + 4t4 − 24t3 − 12t2 + 20t− 3)un

− 211t(t− 1)3(t+ 1)(8(t2 + 2t− 1)n2 − 2t2 − 6t+ 3)un−1

+ 218t2(t− 1)6(t+ 1)2(2n+ 1)(2n− 3)un−2 = 0 for n = 0, 1, 2, . . . .

Then un ∈ Z[t].
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Rational approximations to Catalan’s constant

Carlo Viola

(joint work with Raffaele Marcovecchio)

About 150 years ago, E. Catalan considered the constant

G =

∞∑

n=0

(−1)n
(2n+ 1)2

.

G is supposed to be transcendental, but even the irrationality of G is a famous open
problem. In recent years, this problem has been studied by several mathematicians.
Yu. V. Nesterenko [1] defined the double integral

J =

1∫

0

1∫

0

xa1−
1
2 (1− x)b1−a1 ya2(1 − y)b2−a2− 1

2

(1− xy)a3+1
dxdy

for positive integer parameters a1, a2, a3, b1, b2 satisfying

b1 ≥ b2 ≥ a1 ≥ a2 ≥ a3, a1 + a2 + a3 ≤ b1 + b2.

He proved that J is a linear form in 1 and G with rational coefficients having
controlled denominators. Choosing, in the integral J , a1 = a2 = a3 = n, b1 =
b2 = 2n, and defining pn, qn through

42nd22nJ = qnG− pn
where dν denotes the least common multiple of 1, 2, . . . , ν, Nesterenko proved that
pn, qn ∈ Z and

(1) 0 <

∣∣∣∣G−
pn
qn

∣∣∣∣ < q−0.5242...
n for all sufficiently large n.

Nesterenko’s sequence (pn/qn) is the best sequence of effective rational approxi-
mations to G available in the literature, but of course it does not suffice to prove
the irrationality of G.

Using a different choice of the parameters in the integral J , Nesterenko [1] also
found a sequence un ∈ Q and a sequence vn ∈ Z such that

(2) 0 <

∣∣∣∣G−
un
vn

∣∣∣∣ < v
− 11

20
n .

Computer analysis shows that un ∈ Z for all n ≤ 350. Since −11/20 = −0.55 <
−0.5242 . . . , if the conjectural inclusion un ∈ Z holds for all n, the sequences un
and vn would yield an improvement upon the above estimate (1).

In joint work with R. Marcovecchio (to appear) we apply the Rhin–Viola per-
mutation group method [2] to give new effective sequences of integers rn and sn
satisfying

(3) 0 <

∣∣∣∣G−
rn
sn

∣∣∣∣ < s−0.6293...
n .
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Since −0.6293 . . . < −11/20 < −0.5242 . . . , our sequences rn and sn improve both
Nesterenko’s result (1) and his conjectural estimate (2).

As I remarked in my talk during the conference in Moscow (June 10-14, 2019)
dedicated to the 100th anniversary of N. I. Feldman’s birth, if we write Nesterenko’s
integral J in the form

J(h, j, k, l,m) =

1∫

0

1∫

0

xh(1 − x)j yl(1 − y)k
(1− xy)j+k−m

dxdy√
x
√
1− y (1 − xy)

where h, j, k, l, m are any nonnegative integers, it is plain that J(h, j, k, l,m) is
analogous with the Rhin–Viola double integral related to ζ(2) (see [2]), except for
the crucial difference arising from the square roots in the measure

(4)
dxdy√

x
√
1− y (1− xy)

compared with the measure dxdy/(1− xy) for ζ(2). In order to prove (3) we use
Cauchy’s theorem to express sn in terms of double contour integrals associated
with J(h, j, k, l,m), by suitably getting rid of the two-valued square roots in C.
One may try to employ as extensively as possible the methods in [2] leading to
irrationality measures of ζ(2), by writing J(h, j, k, l,m) and the related contour
integrals as periods, i.e., by means of substitutions (such as, e.g., x = u2, y = 1−v2)
transforming them into integrals of rational functions with rational coefficients over
domains defined by polynomial inequalities with rational coefficients. To achieve
this, it is essential to use one of the 10 birational transformations occurring in the
Rhin–Viola group for ζ(2), namely the involution (x, y)←→ (X,Y ) defined by

(5)





X = 1− xy

Y =
1− x
1− xy ,

since the measure (4) is easily seen to be an invariant (up to sign) of the involution
(5). Accordingly, we get

J(h, j, k, l,m) = J(m, l, k, j, h)

for all h, j, k, l, m. In order to generate the relevant permutation group acting
on the integers h, j, k, l, m, k + l− h, l+m− j, m+ h− k, h+ j − l, j + k −m,
one has to combine the involution (5) with the Euler integral representation of the
hypergeometric function 2F1.

For h = j = k = l = m = 0 Nielsen’s formula (see [1], p. 155) yields

J(0, 0, 0, 0, 0) = 8G.

References
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On sets of exact approximation order

Anish Ghosh

(joint work with Prasuna Bandi, Debanjan Nandi)

The set of exactly approximable numbers, Eψ, is the set of real numbers x such
that

|x− p/q| ≤ ψ(q) infinitely often

and

|x− p/q| ≥ cψ(q) for any c < 1 and any q ≥ q0(c, x).

In [2] Bugeaud, resolving a conjecture of Beresnevich, Dickinson and Velani
from [1] proved that dim(Eψ) = 2/λ. Here λ denotes the lower order at infinity
of 1/ψ. We develop a general framework to investigate exactly approximable
sets. Our results apply in particular to actions of discrete groups of isometries
on boundaries of hyperbolic spaces for which there is a well developed theory of
Diophantine approximation [3]. In fact we calculate the Hausdorff dimension of
exactly approximable sets for any well-distributed set of points in a proper metric
space which has a measure satisfying some natural metric properties. Our results
also apply to Diophantine approximation on the Heisenberg group, and provide a
new proof of Bugeaud’s theorem.

Our main result is the following. Let (X, d, µ) be an (α, β)-regular metric measure
space. Let Q ⊂ X be well distributed with respect to the radius function R.

Let ψ : (0,∞)→ (0,∞) be a non-decreasing function such that
∑
ξ∈Q

(
ψ(R(ξ))
R(ξ)

)α

converges. Then

dimEψ(Q,R) =
α

λ(ψ)
.

The notion of an (α, β)-regular metric measure space is a natural variation of
the notion of Ahlfors regular metric spaces, namely one imposes an additional
regularity condition for annuli.

References
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Measures associated to regular sequences and their characterisation

Michael Coons

(joint work with Michael Baake, James Evans, Neil Mañibo)

A sequence f is k-automatic if and only if its k-kernel,

kerk(f) :=
{
(f(kℓn+ r))n>0 : ℓ > 0, 0 6 r < kℓ

}
,

is finite. An automatic sequence takes only a finite number of values. A natural
generalisation to sequences that can be unbounded was given in the early nineties
by Allouche and Shallit [2]; a real sequence f is called k-regular if the R-vector
space Vk(f) := 〈kerk(f)〉R generated by the k-kernel of f is finite-dimensional.

The study of automatic sequences is rich from both number-theoretical and
dynamical viewpoints. Much of the number-theoretic literature on automatic se-
quences mirrors that of the rational-transcendental dichotomies of integer power
series proved in the first third of the twentieth century, such as those of Fatou,
Carlson and Szegő, and the more recent celebrated result by Adamczewski and
Bugeaud [1]. The dynamical literature has focussed on the study of automatic
sequences through their related substitution systems [4, 8].

Transitioning to regular sequences, the number-theoretic story is much the same
as automatic sequences, mirroring that of rational-transcendental dichotomies.
The generalisation of the Cobham–Loxton–van der Poorten Conjecture for regu-
lar sequences was proved by Bell, Bugeaud and Coons [5]. But, in contrast to
automatic sequences, the study of the long-range order of unbounded regular se-
quences f , and so also the related spaces Vk(f), is not so straight-forward; neither
diffraction nor spectral measures can be associated with them in a natural way.

As a first step of addressing the long-range order of such objects, we [3] intro-
duced a natural probability measure associated with Stern’s diatomic sequence.
Recently, we generalised this result to apply to a large class of regular sequences
[6, 7]. Note that for a regular sequence, there are vectors u,v ∈ Rd×1, and ma-
trices A0, . . . ,Ak−1 ∈ Rd×d such that f(n) = uTA(n)kv for all n > 0, where
(n)k = is · · · i1i0 is the base-k expansion of n and A(n)k := Ais · · ·Ai1Ai0 .We call
the tuple f = (u,A0, . . . ,Ak−1,v) a linear representation of f ; note that, here,
one can reduce to a minimal representation. Set

Σf (N) :=
kN+1−1∑

m=kN

f(m) and µN :=
1

Σf (N)

kN+1−kN−1∑

m=0

f(kN +m) δm/kN (k−1),

where δx denotes the unit Dirac measure at x. We can view (µN )N∈N0
as a

sequence of probability measures on the 1-torus, the latter written as T = [0, 1)
with addition modulo 1. If the (weak) limit µf := limN→∞ µN exists, we call µf
the ghost measure of the regular sequence f .

Theorem 1. Let f be a nonnegative real-valued k-regular sequence with reduced
representation g = (w,B0, . . . ,Bk−1,x). If the spectral radius ρ(B) is the unique
simple maximal eigenvalue of B and there is a linear cone K fixed by each Bi,
then µf = µg exists.
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Recall that any finite real Borel measure µ on T has a Lebesgue decomposition;
that is, µ is the sum of three mutually singular measures µpp, µsc and µac, where,
with respect to Lebesgue measure λ, µpp is pure point (the so-called Bragg part),
µsc is singular continuous and µac is absolutely continuous.

Theorem 2. The measure µf provided by Theorem 1 is spectrally pure. That is,
µf is either pure point, or singular continuous, or absolutely continuous.

Moreover, one can determine this spectral type by inspecting properties of the
underlying finite set of matrices. Recall that the joint spectral radius of a finite
set of matrices is defined by

ρ∗ = ρ∗({B0, . . . ,Bk−1}) := lim
n→∞

max
06i1,i2,...,in6k−1

∥∥Bi1Bi2 · · ·Bin

∥∥1/n,

where ‖ · ‖ is any (submultiplicative) matrix norm.

Theorem 3. If B0, . . . ,Bk−1 is a finite set of matrices associated to a ghost
measure that exists via Theorem 1, then the measure µf is pure point if and only
if ρ∗ = ρ, the measure µf is singular continuous if ρ/k < ρ∗ < ρ, and if ρ∗ = ρ/k
and there is a d > 0 such that max16i1,i2,...,in6ℓ

∥∥Bi1Bi2 · · ·Bin

∥∥ 6 d(ρ∗)n, for
each n > 1, then µf is absolutely continuous.

As a final remark, we note that in the standard number-theoretic way of under-
standing regular sequences—via their generating functions subsequent classifica-
tion in the diffeo-algebraic hierarchy—one usually proves a transcendence result.
Here, if one is interested in the structure of regular sequences and more specific
questions, a transcendence result is not extremely helpful; it is a negative result and
does not provide a structural classification. The upshot in the context we present
here is that the trichotomy of spectral type offers a way to view regular sequences
which provides an actual structural result. We hope that this added structure can
aid in the future understanding of regular sequences, especially regarding questions
related to properties of finitely generated semigroups of matrices.
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[6] M. Coons, J. Evans and N. Mañibo, Spectral theory of regular sequences, Documenta Math-

ematica, 24 pages, to appear.
[7] M. Coons, J. Evans and N. Mañibo, Spectral theory of regular sequences II: ergodicity and

spectral classification, preprint.
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Effective equidistribution of torsion parameters in elliptic fibrations

Julian L. Demeio

(joint work with Myrto Mavraki)

The work presented here is still in progress. Theorem 1 below should also have
an analogue for small points and for non-archimedean valuations, but for the sake
of simplicity we expose here only the case of torsion parameters and archimedean
valuations.

Let K be a number field with a fixed embedding in C, and π : E → P1
K be a

nice elliptic surface over P1
K , i.e. E is a nice K-variety, and the smooth fibers of π

are elliptic curves (in particular we assume the existence of a zero-section O). Let
P be a non-torsion section of π. We aim at understanding the torsion parameters
T (P ) ⊆ P1(K), i.e. the parameters t ∈ P1(K) such that Pt is torsion in Et, and
their Galois equidistribution.

Through the so-called Betti map, one may define a positive (1, 1)-form µ =
dβ1 ∧ dβ2 on P1(C) associated to the section P . This (1, 1)-form is smooth away
from the singular parameters of π. An equidistribution result of DeMarco and
Mavraki [6, Corollary 1.2] gives as a special case that, for any ψ ∈ C0(P1(C)) and
sequence of torsion parameters tn ∈ P1(K) of degree dn →∞:

(6)
1

dn

∑

tσconjugate of t

ψ(tσ)→
∫
ψ · µ.

(Actually in [6] the limit measure is described through other means, better
suited to the context. However it is proven in [4, Section 4] that the limit measure
that they have is precisely µ for archimedean valuations.)

The proof of their result employs the equidistribution results of Chambert-Loir,
Thuillier or Yuan [3, 13, 14] on a well-constructed adelic line bundle on the base
(in our case P1

K) arising from the relative setting. To obtain “the continuity of
potentials” of the measure dβ1 ∧ dβ2 (an essential hypothesis in all of the cited
works) DeMarco and Mavraki employ some careful computations that rely on
Silverman’s results for the variation of local heights [10, 11, 12] in elliptic fibrations
(see [6, Theorem 1.1]).

Mavraki and I give an explicit error term as follows:

Theorem 1. The error term in (6) is ≤ C · d−1/4
n · Lip(ψ), where Lip(ψ) is the

Lipschitz constant of ψ, and C is a constant depending on E and P .

To prove Theorem 1, we adapt the proof of [6, Corollary 1.2]. Namely, we
use a modification of the “quantitive” equidistribution result [7] instead of the
“qualitative” equidistribution results [3, 13, 14] used by DeMarco and Mavraki.
The need to modify [7] arises because Favre and Rivera-Latelier’s result requires
that the potentials of the limit measure are Hölder-continuous, while one can show,
relying on Silverman’s work [10, 11, 12], that the potentials of µ are not. Through
Silverman’s work one still manages to deduce, however, that they have a modulus
of continuity proportional to 1

log d(x,y) , where d denotes the distance with respect
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to a smooth metric on P1(C). One can still make Favre and Rivera-Latelier’s proof
work even in this less controlled case (with the necessary modifications), at the

price of the exponent with which dn appears: the factor d
−1/2
n that would come

up in the Hölder case is instead substituted by d
−1/4
n .

As an application of Theorem 1 we prove:

Theorem 2. Fix a finite set of places S of K. Let α ∈ P1(K) \ T (P ) be of good
reduction for π. Then there are only finitely many torsion parameters λ ∈ T (P )
that are S-integral with respect to α.

Analogous theorems in the constant setting of Gm and of an elliptic curve were
already proven by Baker, Ih and Rumely in [2]. Their main ingredient, as is ours,
is “logarithmic equidistribution”, i.e. an equidistribution result (in the sense of
(6)) of Galois orbits of torsion points (or parameters, in our case) where the test
function ψ is allowed to have finitely many singularities of logarithmic growth.
To prove this logarithmic equidistribution one main obstacle is to make sure that
torsion points do not approximate too well any given algebraic point in any given
completion. To prove this in the archimedean case, Baker, Ih and Rumely use
linear forms in logarithms: Baker’s theorem [1, Theorem 3.1, p.22] for Gm, and
[5] for elliptic curves. In the non-archimedean case, they just use the discreteness
of torsion points. In our setting, for the archimedean places we use the Betti map
to translate the problem of bounding accumulation of torsion parameters near α
to bounding accumulation of torsion points near Pα on the elliptic curve Eα, and
there we use [5] as in [2]. For the non-archimedean places we use the discreteness
of torsion parameters on the smooth reduction locus (proven by Lawrence and
Zannier [9]). Once the obstacle is overcome, Baker, Ih and Rumely use Serre’s
open image theorem and the classical “non-singular” equidistribution to deduce
the “logarithmic equidistribution”. In our relative setting, Theorem 1 plays the
role played by Serre’s open image theorem in [2].
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On the distribution of algebraic numbers

Robert Wilms

A natural approach to the study of the distribution of algebraic numbers is to
consider increasing sequences of finite sets of integer polynomials with bounded
degree and bounded norm. We do this for the Bombieri norm by defining

Pn,r =





n∑

k=0

akX
k ∈ Z[X ]

∣∣∣∣∣ max
0≤k≤n

|ak|√(
n
k

) ≤ r



 .

for any positive integer n ∈ Z>0 and any positive real r ∈ R>0. We obtain the
following equidistribution result for the zeros of the polynomials in these sets.

Theorem 1 ([5]). For any continuous function f : C → C with compact support
and any sequence (rn)n∈Z>0 of positive real numbers satisfying

1 < lim inf
n→∞

r1/nn ≤ lim sup
n→∞

r1/nn <∞

it holds

lim
n→∞

1

#Pn,rn
∑

P∈Pn,rn\{0}

∣∣∣∣∣∣∣
1

n

∑

z∈C

P(z)=0

f(z)− i

2π

∫

C

f(z)
dzdz

(1 + |z|2)2

∣∣∣∣∣∣∣
= 0.

The study of the distribution of algebraic numbers has a long history and there
are several equidistribution results for example by Erdős–Turán [3], Bilu [2] and
Pritsker [4]. Let us point out the main differences of Theorem 1 to these results.

• Theorem 1 does not require that a height of the zeros tends to 0. For
example, Bilu considered the Mahler measure M(P ) of a polynomial P
instead of its Bombieri norm and his result is restricted to sequences with
limn→∞M(Pn)

1/n = 1. If Pn is the minimal polynomial of an algebraic
number αn of degree n, its height is given by h(αn) =

1
n logM(Pn).

• The distribution of the zeros tends to the Fubini–Study measure instead
of the uniform measure on S1 ⊂ C as in all other results mentioned.
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• Theorem 1 only states that for almost all sequences (Pn)n∈Z>0 of poly-
nomials Pn ∈ Pn,rn the distribution of the zero set of Pn tends to the
Fubini–Study measure on C. But we do not know a good criterion for an
individual sequence (Pn)n∈Z>0 to satisfy this equidistribution property.

We can formulate and proof Theorem 1 in a much broader setting using Arakelov
theory. For this purpose, let f : X → Spec(Z) be a projective arithmetic variety.
That means X is an integral scheme, f is projective, flat, separated and of finite
type and the generic fiber XQ is smooth. Let L be a line bundle on X . By a
hermitian metric on L we mean a family of hermitian metrics h = (hx)x∈X (C)

on the fibers (Lx)x∈X (C) such that |s(x)|2 = hx(s(x), s(x)) is a smooth function

on any open subvariety U ⊆ XC and for all sections s ∈ H0(U,LC). Moreover,
we assume that h is compatible with complex conjugation. We call L = (L, h) a
hermitian line bundle.

For all s ∈ H0(X (C),L(C)) \ {0} the Poincaré–Lelong formula states

∂∂
2πi log |s|2 = [c1(L)]− δdiv(s)

as currents. For every positive real number r ∈ R>0 we define the finite set

Ĥ0
≤r

(
X ,L

)
=

{
s ∈ H0(X ,L)

∣∣∣∣∣ sup
x∈X (C)

|s(x)| ≤ r
}

and analogously Ĥ0
<r

(
X ,L

)
. We call L arithmetically ample if c1(L) > 0, L is

ample and H0(X ,L⊗p) is generated by Ĥ0
<1(X ,L

⊗p
) for infinitely many p ∈ Z>0.

Theorem 2 ([5]). Let X be a projective arithmetic variety of dimension d ≥ 2.
Let L andM be any arithmetically ample hermitian line bundles on X , (rp)p∈Z>0

any sequence of positive real numbers and Φ any (d− 2, d− 2) C0-form on X (C).
(1) If limp→∞ r

1/p
p = 1, then it holds

lim
p→∞

1

#Ĥ0
≤rp

(
X ,L⊗p)

∑

s∈Ĥ0
≤rp

(
X ,L⊗p

)
\{0}

1

p

∫

X (C)

|log |s|| c1(M)d−1 = 0.

(2) If 1 ≤ lim infp→∞ r
1/p
p ≤ lim supp→∞ r

1/p
p <∞, then it holds

lim
p→∞

1

#Ĥ0
≤rp

(
X ,L⊗p

)
∑

s∈Ĥ0
≤rp

(
X ,L⊗p

)
\{0}

∣∣∣∣∣
1

p

∫

div(s)(C)

Φ−
∫

X (C)

Φ ∧ c1(L)
∣∣∣∣∣ = 0.

We get Theorem 1 from Theorem 2 (2) by setting X = P1
Z and L =M = O(1)

equipped with the Fubini–Study metric multiplied by e−ǫ for a sufficiently small
ǫ > 0. In Theorem 2 we can deduce (2) from (1) by Stokes theorem. To apply

(1) one may restrict to a subsequence such that r
1/p
p converges to some τ ≥ 1 and

multiply the metric of L with 1
τ to get limp→∞ r

1/p
p = 1.

The proof of Theorem 2 (1) is based on a distribution result of sections in
complex analysis by Bayraktar, Coman and Marinescu [1]. It allows us to deduce
a similar result for the sections in convex sets Kp ⊆ H0(X ,L⊗p)R. To get from
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Kp to the lattice points Kp ∩ H0(X ,L⊗p) we use geometry of numbers. One of
the main difficulties is to prove: If two sequences of sections sp, s

′
p ∈ H0(X ,L⊗p)C

satisfy limp→∞ supx∈X (C) |sp − s′p|1/p < 1, then the vanishing of the limit of the

integral in Theorem 2 (1) is equivalent for the sequences (sp)p∈Z>0 and (s′p)p∈Z>0 .
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Padé approximation for hypergeometric functions
and S-unit equations

Noriko Hirata-Kohno

(joint work with Sinnou David and Makoto Kawashima)

We study values of the generalized hypergeometric G-functions, by Padé approxi-
mations of Type II. We provide a new general linear independence criterion for the
values of these functions at several distinct points, over a given algebraic number
field of any degree. Our criterion shows the linear independence of values at alge-
braic points of contiguous hypergeometric functions [5], as was previously proven
for values at algebraic numbers of generalized Lerch functions with different shifts
[3] [4]. Kawashima and A. Poëls [8] applied these Padé approximants to obtain
new precise irrational exponents by combining with an effective version of the
Poincaré-Perron theorem and relying on parametric geometry of numbers. Their
sharp estimates for cubic binomial functions give an improvement for the number
of the solutions to the S-unit equation [7].

Let K be an algebraic number field of any degree over Q. Let r be an integer with
r ≥ 2 and a1, . . . , ar, b1, . . . , br−1 ∈ Q\{0}, not being negative integers. We define
the generalized hypergeometric function by

rFr−1

(
a1, . . . , ar
b1, . . . , br−1

∣∣∣∣ z
)

=

∞∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (br−1)k

zk

k!

where (a)k is the Pochhammer symbol: (a)0 = 1, (a)k = a(a + 1) · · · (a + k − 1).
For a rational number x, let us define

µ(x) =
∏

q:prime
q|den(x)

qq/(q−1) .
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Suppose neither ai nor ai+1− bj be strictly positive integers for 1 ≤ i ≤ r and
1 ≤ j ≤ r − 1. Under the assumption, it is proven essentially by Yu. Nesterenko,
that these functions are linearly independent over the function field.

Consider now α1, . . . , αm ∈ K \{0} pairwise distinct and put α = (α1, . . . , αm).
Let v0 be a place of K and define a real number

Vv(α, β) = log |β|v0 − rmh(α, β)− (rm+ 1) log ‖α‖v0 + rm log ‖(α, β)‖v0

−
(
rm log(2) + r

(
log(rm+ 1) + rm log

(
rm+ 1

rm

)))

−
r∑

j=1

(
logµ(aj) + 2 logµ(bj) +

den(aj)den(bj)

ϕ(den(aj))ϕ(den(bj))

)
,

where ϕ is the Euler’s totient function, the norm ‖·‖v denotes that of the supremum
and h is the logarithmic absolute height.

Theorem 1 (contiguous hypergeometric function). Assume Vv0(α, β) > 0. Then
the rm+ 1 numbers :

rFr−1

(
a1, . . . , ar
b1, . . . , br−1

∣∣∣∣
αi
β

)
, rFr−1

(
a1 + 1, . . . , . . . , . . . , ar + 1

b1 + 1, . . . , br−s + 1, br−s+1, . . . , br−1

∣∣∣∣
αi
β

)
,

for 1 ≤ i ≤ m, 1 ≤ s ≤ r − 1 and 1 are linearly independent over K.

The assumption Vv0(α, β) > 0 requires the points
αi
β

are sufficiently closed to

the origin, with respect to the metric v0 (then it depends on K). The ingredient
relies on our term-wise formal construction of Padé approximants with a new
non-vanishing property for the generalized Wronskian of Hermite-type.

In [8], Kawashima and Poëls show the irrationality exponent of the values of certain
hypergeometric functions containing bothG-functions andE-functions, using Padé
approximants constructed above, together with an effective version of the Poincaré-
Perron theorem. Consider for instance the binomial function:

f(z) =

∞∑

k=0

(−ω)k
k!

1

zk+1
=

1

z
· 2F1

(
−ω, 1
1

∣∣∣∣
1

z

)
=

1

z

(
1− 1

z

)ω
.

For a given z ∈ C with |z| > |α|, denote by ρ1(α, z) ≤ ρ2(α, z) the moduli of the

two roots 2z − α± 2
√
z2 − zα of the characteristic polynomial

P (X) = X2 − 2(2z − α)X + α2.

The condition |z| > |α| implies that ρ1(α, z) 6= ρ2(α, z). Let ω ∈ Q \ Z and β ∈ Q

with |β| > 1. For n ∈ Z, n ≥ 0, put

νn(ω) =
∏

q:prime
q|den(ω)

qn+⌊n/(q−1)⌋,

Gn(ω) = GCD

(

νn(ω)
(n+ k − 1

k

)(n− ω − 1

n− k

)

, νn(ω)
(n+ k′

k′

)( n+ ω

n− 1− k′

)

)

0≤k≤n

0≤k′≤n−1

,
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∆ = ∆(ω, β) = ν(ω) · den(β) · lim sup
n→∞

Gn(ω)
−1/n,

Q = ρ2(1, β) ·∆, and E = ρ2(1, β) ·∆−1.

They obtain the following result.

Theorem 2 (binomial function). Assume E > 1. The number (1 − 1/β)ω /∈ Q

has the irrationality exponent µeff ≤ 1 +
log(Q)

log(E)
. In particular,

µeff((1− 1/β)ω) ≤ 1 +
log ρ2(1, β) + log ν(ω) + log den(β)

log ρ2(1, β)− log ν(ω)− log den(β)
.

We then apply their Padé approximations for the cubic binomial function in
the non-archimedean and algebraic case, to give an improvement for the number
of the solutions due to J. -H. Evertse in 1984 [6], by adapting a refined estimate
for Gn(1/3), recently obtained by M. A. Bennett [2], instead of that in [1].
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Bost’s slopes method and arithmetic holonomy bounds

Vesselin Dimitrov

(joint work with Frank Calegari, Yunqing Tang)

Let D(0, 1) := {|z| < 1} denote the open unit complex disc. We introduce a
Diophantine problem based on the following datum:

• A nonnegative integer σ ∈ N0.

• A meromorphic mapping ϕ : D(0, 1)→ CP
1 taking ϕ(0) = 0.

• A formal power series x(t) ∈ t+ t2Q[[t]].
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We consider a formal power series p ∈ Q[[x]] which we assume to combine an
integrality property

(7) x∗p ∈ Z[[t]]

and an analytic continuation property

ϕ∗p ∈ M(D(0, 1)) is meromorphic on the closed unit disc.

Then we define a Z[p]-module H(σ, ϕ, x(t)) to consist of those formal functions
f ∈ Q[[x]] that combine—similarly to p—a relaxed integrality property

x∗f =
∞∑

n=0

an
tn

[1, . . . , n]σ
, an ∈ Z, ∀n ∈ N,

and again an analytic continuation property

ϕ∗f ∈ M(D(0, 1)) is meromorphic on the closed unit disc.

It turns out that H(σ, ϕ, x(t)) has cardinality the continuum if |ϕ′(0)| ≤ eσ; there
is not much else that can be said in this case, and we are not interested in it. In
contrast, when |ϕ′(0)| > eσ, the Z[p]-module H(σ, ϕ, x(t)) has a finite rank, and
more precisely:

Theorem 1. Suppose |ϕ′(0)| > eσ. Then H(σ, ϕ, x(t)) has Z[p]-rank at most

inf
λ∈R

{2T (e−λ ϕ∗p) + λ

log |ϕ′(0)| − σ
}
,

where

T (g) = T (1, g) :=

∫ 1

0

log+ |g(e2πit)| dt+
∑

ρ∈D(0,1)

ord+ρ (1/g) · log(1/|ρ|)

is the Nevanlinna characteristic function of a meromorphic function g : D(0, 1)→
C at the limiting radius r = 1.

In my talk, I outlined a simple approach to this basic holonomy bound whose
applications simultaneously cover:

(a) With the parameter choice λ = 0, and then the setting σ := 0, t := q1/N =
eπiτ/N , p(x) := xN , ϕ : D(0, 1)→ C\ 16−1/NµN a (suitable restriction of)

the universal covering map, and x(t) = N
√
λ(tN )/16) with

λ(q) :=
( ∑

n odd

qn
2
/ ∑

n even

qn
2
)4

the modular lambda function, this result recovers the holonomy bound

by O
( ∫ 1

0
log+ |ϕN (e2πit)| dt

/
log |ϕ′(0)|

)
which suffices as a substitute for

our § 2 in our recent paper [1] proving the “unbounded denominators
conjecture.”
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(b) With x(t) := t, p(x) := x, and the parameter choice λ := supD(0,1) log |ϕ|,
this Z[x]-rank bound reduces to

≤
supD(0,1) log |ϕ|
log |ϕ′(0)| − σ ,

which in turn with σ = 5 and with ϕ equal to the restriction of the X0(2)
Hauptmodul q

∏∞
n=1(1+q

n)24 to the q-disc of diameter [−1, 1/7] turns out
sufficient for an irrationality proof of the 2-adic avatar of ζ(5) ∈ Q2.

The proof of the theorem follows the line of Bost’s slopes inequality

(8) d̂eg(ED) ≤
∞∑

n=0

rank(E
(n)
D /E

(n+1)
D )

(
µmax(F (n)/F (n+1)) + h(ψ

(n)
D )

)

attached to the injective linear ψD : E•
D →֒ F • of (split) filtered hermitian vec-

tor bundles over SpecZ, where F := Q[[t]] is the polynomial ring graded by
the t = 0 order of vanishing and given the trivial metric ‖tn‖ := 1 to its one-
dimensional graded quotient pieces, and ED is the free Z-module y1 Z[p(x)]<D +
· · ·+ ym Z[p(x)]<D of rank r = mD, metricized by the positive-definite quadratic
form 〈yi p(x)k, yj p(x)l〉 := δi,jδk,l · eλ(k+l) (using here the Kronecker delta nota-
tion). Finally, ψD is the evaluation map sending yi 7→ fi(x) for an m-tuple of
presumed Q(p(x))-linearly independent elements f1(x), . . . , fm(x) ∈ H(σ, ϕ, x(t)).

Here the µmax (maximal slope) terms are zero, and the rank filtration terms

r
(n)
D := rank(E

(n)
D /E

(n+1)
D ) ∈ {0, 1} are constrained by

∑∞
n=0 r

(n)
D = r = mD and,

hence,
∑∞
n=0 n r

(n)
D ≥

(
mD
2

)
. The proof of the theorem then falls out from (8) in

the D → ∞ asymptotic by computing d̂eg(ED) = −mλD2/2 + o(D2) and the
respective finite and Archimedean evaluation height pieces as follows:

hfin(ψ
(n)
D ) ≤ σ log [1, . . . , n] = σn+ o(n),

h∞(ψ
(n)
D ) ≤ DT (e−λ ϕ∗p)− n log |ϕ′(0)|+ o(D).
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Some unlikely intersection problems over finite fields

Fabrizio Barroero

(joint work with Laura Capuano, László Mérai, Alina Ostafe, Min Sha)

Multiplicative dependence of algebraic numbers and of rational functions has been
extensively studied in recent years from various points of view. In particular, a
result of Bombieri, Masser and Zannier [1] in the context of unlikely intersections
in tori says that, given ϕ1, . . . , ϕm ∈ Q(X) multiplicatively independent modulo
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constants, there are at most finitely many α ∈ Q such that ϕ1(α), . . . , ϕm(α)
satisfy two independent multiplicative relations, i.e., the set

S1 =

{
α ∈ Q :

m∏

i=1

ϕi(α)
ki =

m∏

i=1

ϕi(α)
ℓi = 1 for some linearly independent

(k1, . . . , km), (ℓ1, . . . , ℓm) ∈ Zm

}

is finite. In defining S1, we implicitly exclude the poles and zeros of ϕ1, . . . , ϕm.
The independence modulo constants condition has been replaced by the neces-

sary hypothesis that ϕ1, . . . , ϕm are multiplicatively independent by Maurin [4].
An effective proof of this result has been obtained by Bombieri, Habegger, Masser
and Zannier [2].

For a prime p, we note that any element of F
∗
p has finite order, so Maurin’s

finiteness result in characteristic 0 does not hold in full generality in positive
characteristic. In this context, Masser proposed some conjecture in positive char-
acteristic putting more restrictive hypotheses on the rational functions in order to
recover Maurin’s finiteness result [4], and proved it for n = 3 [3, Theorem 1.1].

For positive integers K,L ≥ 1 and a prime number p, we define the set

Aϕ(p,K,L) =
{
α ∈ Fp :

m∏

i=1

ϕi(α)
ki =

m∏

i=1

ϕi(α)
ℓi = 1 for some linearly

independent (k1, . . . , km), (ℓ1, . . . , ℓm) ∈ Zm, max
i=1,...,m

|ki| ≤ K, max
i=1,...,m

|ℓi| ≤ L
}
.

In defining Aϕ(p,K,L), we implicitly assume that the reductions of the rational
functions ϕ1, . . . , ϕm modulo p are all well-defined, and also we implicitly exclude
the poles and zeros of the reductions of ϕ1, . . . , ϕm modulo p.

We have the following results.

Theorem 1. Let ϕ = (ϕ1, . . . , ϕm) ∈ Q(X)m whose components are non-zero
multiplicatively independent rational functions. Then, there exists an effectively
computable constant c1 depending only on ϕ such that for arbitrary integers K,L ≥
1, and any prime p > exp(c1KL), we have

#Aϕ(p,K,L) ≤ #S1,
where #S1 is effectively upper bounded, and the elements of Aϕ(p,K,L) come from
the reduction modulo p of elements of S1.

Taking m = 2 and K = L =
⌊
c3(log p)

1/2
⌋
for some effectively computable

constant c3 depending only on ϕ = ϕ1 and ̺ = ϕ2, we directly obtain:

Corollary 2. Let ϕ, ̺ ∈ Q(X) be non-zero rational functions such that ϕ, ̺ are
multiplicatively independent. Then, there are three effectively computable constants
c1, c2, c3 depending only on ϕ, ̺ such that for any prime p > c1, for all but c2



Diophantische Approximationen 1115

elements α ∈ Fp we have

max{ordp(ϕ(α)), ordp(̺(α))} ≥ c3(log p)1/2.
We give a brief sketch of the proof of Theorem 1. The set of α ∈ Q such that∏m
i=1 ϕi(α)

ki = 1 is the zero set of some polynomial Pk, therefore the elements of S1
are the union of the solutions of the systems Pk = Pl = 0 for varying independent
k, l ∈ Zm, i.e., the union of the sets of zeroes of the resultants Res(Pk, Pl). On
the other hand, if p divides Res(Pk, Pl) we have an element of Aϕ(p,K,L), for
appropriate K and L. We produce estimates for the degree and the height of the
polynomials Pk and Pl and this gives a bound on |Res(Pk, Pl)| in terms of k and
l. If p is larger than this bound, it cannot divide Res(Pk, Pl) if the latter is not
zero. Thus, for p large compared to K and L, the elements of Aϕ(p,K,L) must
all come from the reduction of elements of S1.

Similar results can be obtained for powers of En and En×Gmm, for some elliptic
curve E defined over Q.
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Yet another application of the Subspace theorem to Diophantine
problems involving power sums

Clemens Fuchs

Roth’s theorem says that for any algebraic number α and arbitrary ε > 0 there is
a positive constant c(α, ε), depending on ε and the approximated number α, such
that for all rational integers p, q with q > 0 and p/q 6= α the lower bound

∣∣∣∣α−
p

q

∣∣∣∣ ≥
c(α, ε)

q2+ε

holds. We are interested in a moving version in which α is replaced by a sequence
depending on an integer n for which we want an explicit constant c depending on
n and ε (at the cost of enlarging the power of q).

To define our α’s, we denote by E the ring of power sums whose characteristic
roots belong to the set of positive integers N and whose coefficients belong to Q,
i.e. functions G : N→ Q given by

G(n) = b1c
n
1 + · · ·+ bhc

n
h

with c1, . . . , ch ∈ N and b1, . . . , bh ∈ Q. We are interested in approximating α :
N→ Q, which is a root of f(G, y) = 0 resp. f(G(0), . . . , G(d), y) = 0 (i.e. for each n
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we choose α(n) such that f(G(n), α(n)) = 0 resp. f(G(0)(n), . . . , G(d)(n), α(n)) =
0), where G,G(0), . . . , G(d) ∈ E .

Using the Subspace theorem Corvaja and Zannier [2] proved that for power sums
G(1) and G(2) a positive constant k exists such that under suitable assumptions
for all but finitely many positive integers n and for integers p, q with q positive
and not too large we have ∣∣∣∣

G(1)(n)

G(2)(n)
− p

q

∣∣∣∣ ≥
1

qk
e−nε.

They used this approximation result to deduce that under the given conditions the
length of the continued fraction for G(1)(n)/G(2)(n) tends to infinity. A similar
approximation statement for the square root of a power sum was given shortly
afterwards by Bugeaud and Luca [1] in order to prove, again under suitable as-
sumptions, that the length of the period of the continued fraction expansion of√
G(n) tends to infinity. Scremin [4] combined these two approximation results

and showed, giving a final answer, that under assumptions which are very similar
to those below for three power sums G(1), G(2), G(3) the lower bound

∣∣∣∣∣

√
G(1)(n) +G(2)(n)

G(3)(n)
− p

q

∣∣∣∣∣ ≥
1

qk
e−nε

holds with finitely many exceptions. By another application of the Subspace the-
orem we get:

Theorem (F.-Heintze [3]). Let f ∈ Q[x, y] be absolutely irreducible and G ∈ E
with G(n) = b1c

n
1 + · · · + bhc

n
h, where c1 > c2 > · · · > ch > 0 and c1 > 1.

Moreover, let α be a root of f(G, y) = 0. Then there exists a positive integer s
such that for each fixed r ∈ {0, 1, . . . , s − 1} we get the subsequent approximation
result. There exists an integer k ≥ 2 such that for any ε > 0 satisfying ε <
min{1/(2(s+ 2)), 1/(2k)} we have the following: If there is no power sum η ∈ E
such that

|α(sm+ r) − η(m)| ≤ e−(sm+r)ε

for infinitely many values of m, then for all but finitely many values of m and for
p, q ∈ Z with 0 < q < e(sm+r)ε it holds

∣∣∣∣α(sm+ r) − p

q

∣∣∣∣ >
1

qk
e−(sm+r)ε.

We remark that the integer s does only depend on the polynomial f . The integer
k depends on the power sum G, the polynomial f as well as on the integers s and
r, but it is independent of n. In general k will be much larger than 2, but since
we get the (weaker) lower bound q−ke−(sm+r)ε > e−(sm+r)(k+1)ε = e−(sm+r)ε′ the
concrete value of k is not that important. The theorem does only say something
about small values of q, which is not that restrictive since the bound in the theorem
is not significant for large values of q.

A similar theorem holds if α is assumed to be a root of f(G(0), . . . , G(d),
y) = 0 or, more precisely (and equivalently under the conditions we work in),
F (gn1 , . . . , g

n
h , α(n)) = 0, where F (x1, . . . , xh, y) = ld(x1, . . . , xh)y

d+· · ·+l0(x1, . . . ,
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xh) for linear polynomials l0, . . . , ld ∈ Q[x1, . . . , xh] and where g1, . . . , gh are ra-
tional numbers satisfying 1 > g1 > · · · > gh > 0, where we now (additionally)
assume that ld(0, . . . , 0) 6= 0 and that F (0, . . . , 0, y) has neither a multiple nor a
rational zero (which automatically excludes the existence of η in this setup) as a
polynomial in y.

This gives results in the direction of the Final remark (b) in the paper of Corvaja
and Zannier [2]. However, our original motivation was to consider families of Thue
equations f(x, y) = c with an irreducible form f ∈ E [x, y] of degree ≥ 3 and with
c ∈ Z, c 6= 0 and to show that under suitable conditions if there are infinitely many
(n, xn, yn) ∈ N× Z2 such that f(n)(xn, yn) = c, then there are power sums G and
H and an arithmetic progression P such that (n, xn, yn) = (n,G(n), H(n)) for all
n ∈ P. Unfortunately, the bound from the theorem above is not strong enough to
get the proof.

This work was supported by Austrian Science Fund (FWF): I4406.
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Multiplicatively dependent vectors of algebraic numbers

Cameron L. Stewart

Let n be a positive integer, G be a multiplicative group and let ννν = (ν1, . . . , νn)
be in Gn. We say that ννν is multiplicatively dependent if there is a non-zero vector
k = (k1, . . . , kn) ∈ Zn for which

(9) νννk = νk11 · · · νknn = 1.

We denote by Mn(G) the set of multiplicatively dependent vectors in Gn.

For instance, the set Mn(C
∗) of multiplicatively dependent vectors in (C∗)n is

of Lebesgue measure zero, since it is a countable union of sets of measure zero.
Further, if we fix an exponent vector k the subvariety of (C∗)n determined by (9)
is an algebraic subgroup of (C∗)n.

We shall be interested in counting the number of multiplicatively dependent n-
tuples whose coordinates are algebraic numbers of fixed degree, or within a fixed
number field, and bounded height.

Equivalently we shall count n-tuples of algebraic numbers in a fixed algebraic
number field, or of fixed degree, and given height which occur in some proper
algebraic subgroup of the algebraic group Gnm, where Gm is the multiplicative
group of an algebraic closure of Q.
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For any positive integer n, we denote by Ln,K(H) the number of multiplicatively
dependent n-tuples whose coordinates are algebraic integers of height at most H ,
and we denote by L∗

n,K(H) the number of multiplicatively dependent n-tuples
whose coordinates are algebraic numbers of height at most H .

With Pappalardi, Sha, and Shparlinski, we proved in 2018 that if K is a num-
ber field of degree d over Q and n is an integer with n ≥ 2 then Ln,K(H) is

asymptotic to C(n,K)Hd(n−1)(logH)r(n−1) where C(n,K) is an explicitly given
positive number which depends on n and K and r is the rank of the group of units
in the ring of algebraic integers of K. We also proved that L∗

n,K(H) is asymptotic

to C1(n,K)H2d(n−1)(logH)r(n−1) where C1(n,K) is an explicitly given positive
number which depends on n and K.

It is natural to ask how the multipicatively dependent n-tuples are distributed in
Rn or in Cn.

With Konyagin, Sha and Shparlinski we have recently proved the following result.
Suppose that n ≥ 2 and let K be a number field. If the ring of algebraic integers
of K is different from Z then the set of multiplicatively dependent vectors in Rn

whose coordinates are from the elements of the ring of algebraic integers of K in
R is dense in Rn.

Let ‖x‖ be the Euclidean norm of x = (x1, . . . ,xn) ∈ Rn, that is,

‖x‖ =
√
x2
1
+ . . .+ x2

n
.

In order to study the distribution of multiplicatively dependent vectors with integer
coordinates we define , for H > 1,

ρn(H ;Z) = sup
x∈Rn

‖x‖≤H

inf
v∈Mn(Z)

‖x− v‖.

With Konyagin, Sha and Shparlinski we have recently proved the following result.
For n ≥ 3

H/(logH)C0(n) ≪ ρn(H ;Z)≪ H
(log logH)n−1

(logH)n−2
,

where C0(n) is a positive number which is effectively computable in terms of n.

Integer matrices with a given characteristic polynomial and
multiplicative dependence of matrices

Alina Ostafe

(joint work with Igor Shparlinski)

For a positive integer n letMn(Z) denote the set of all n×nmatrices. Furthermore,
for a real H ≥ 1 we useMn(Z;H) to denote the set of matrices

A = (aij)
n
i,j=1 ∈Mn(Z)

with integer entries of size |aij | ≤ H .
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We say that an s-tuple of matrices (A1, . . . , As) is multiplicatively dependent if
there is a non-zero vector (k1, . . . , ks) ∈ Zs such that

(10) Ak11 . . . Akss = In,

where In is the n× n identity matrix.
In particular, our motivation to study multiplicatively dependent matrices comes

from recent work on multiplicatively dependent integers (and also algebraic inte-
gers), see [5, 4, 9]. The matrix version of this problem is however of very different
spirit and requires different methods. The most obvious distinction between the
matrix and scalar cases is of course the non-commutativity of matrix multiplica-
tion. In particular, the property of multiplicatively dependence may change if the
entries of (A1, . . . , As) are permuted. Another important distinction is the lack of
one of the main tools of [5], namely the existence and uniqueness of prime number
factorisation.

We note that the notion of multiplicative dependence given by (10) is also
motivated by the notion of bounded generation. Namely, we says that a subgroup
Γ ⊆ GLn(Z) is boundedly generated if for some A1, . . . , As ∈ GLn(Z) we have

Γ = {Ak11 . . . Akss : k1, . . . , ks ∈ Z},
see [1] and references therein.

In this work in progress we use a different approach to establish nontrivial
upper and lower bounds on the cardinality of the set Nn,s(H) of multiplicatively
dependent s-tuples (A1, . . . , As) ∈Mn(Z;H)s.

Furthermore, the non-commutativity of matrices suggests yet another variation
of the above questions. Namely, we say that an s-tuple (A1, . . . , As) ∈Mn(Z;H)s

is free if

A±1
i1
· · ·A±1

iL
6= In

for any nontrivial word in A±1
1 , . . . , A±1

s , that is, a word without occurrences of the

form AiA
−1
i , of any length L ≥ 1. Unfortunately we do not have nontrivial upper

bounds on the number of non-free s-tuples (A1, . . . , As) ∈ Mn(Z;H)s. However
we can estimate the number of such s-tuples with the additional condition that if

(11) A±1
i1
· · ·A±1

iL
= In, i1, . . . , iL ∈ {1, . . . , s},

then for at least one i = 1, . . . , s the ±1 exponents of Ai in (11) do not sum up to
zero.

Some of our estimates depend on the quality of an upper bound on the number
Rn(H ; f) of matrices A ∈ Mn(Z;H) with a given characteristic polynomial f ∈
Z[X ], which is of course a question of independent interest.

If f ∈ Z[X ] is a monic irreducible polynomial, Eskin, Mozes and Shah [2] give

an asymptotic formula for a variant R̃n(H ; f) of Rn(H ; f), where the matrices
are ordered by the L2-norm rather than by the L∞-norm, but this should not be
very essential and plays no role in our context as we are only interested in upper
bounds for Rn(H ; f). Namely, by [2, Theorem 1.3],

(12) R̃n(H ; f) = (C(f) + o(1))Hn(n−1)/2.
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with some constant C(f) > 0 depending on f , when a monic irreducible polynomial
f ∈ Z[X ] is fixed. Unfortunately, this result of [2] as well as its variants obtained
via different approaches in [6, 10] (see also the result of [7] in the case when f
splits completely over Q) are not sufficient for our purposes because we need an
upper bound which:

• holds for arbitrary f ∈ Z[X ], which is not necessary irreducible;
• is uniform with respect to the coefficients of f .

The results of [2, 6, 10] lead us towards the following conjecture.

Conjecture 1. Uniformly over polynomials f we have

Rn(H ; f) ≤ Hn(n−1)/2+o(1),

as H →∞.

Unconditionally, only counting matrices with a given determinant and apply-
ing [8, Theorem 4], we instantly obtain

(13) Rn(H ; f) ≤ Hn2−n+o(1).

Furthermore, we also show that Conjecture 1 holds for n = 2. This motivates us
formulating our results conditionally up on the following.

Assumption 2. There is some γn ≥ 0 such that uniformly over polynomials f
we have

Rn(H ; f) ≤ Hn2−n−γn+o(1),

as H →∞.

Clearly the value γn = n(n− 1)/2 corresponds to Conjecture 1 while by (13) it
always holds with γn = 0.

In particular, we are able to prove that Assumption 2 holds with some explicit
sequence γn > 0 (with γ3 = γ4=1). In fact, for n ≥ 4 we bound the cardinality of
the following set,

Sn(H ; d, t) = {A ∈Mn(Z;H) : detA = d and TrA = t}.
We denote Sn(H ; d, t) = #Sn(H ; d, t), and obviously one has

Rn(H ; f) ≤ Sn(H ; d, t),

where d = (−1)nf(0) and −t is the coefficient of Xn−1 in f .

Theorem 3. For n ≥ 4, uniformly over d and t we have

Sn(H ; d, t)≪
{
H11+o(1), if n = 4,

Hn2−n−γn , if n ≥ 5,

where γn = 2n−4
(n−3)3 .

The proof of this result is based on some techniques from the geometry of num-
bers and relies on some ideas which we have borrowed from the work of Katznel-
son [3] and then adjusted to our settings.
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We can state now one of our main result, which gives nontrivial upper and lower
bounds on the cardinality of the set Nn,s(H). For this we define

w(n) = max





h∑

j=1

ϕ(kj)
2 : n =

h∑

j=1

ϕ(kj)



 ,

where ϕ is the Euler function and the maximum is taken over all such representa-
tions of all possible lengths h ≥ 1.

Theorem 4. Under Assumption 2, we have

Hsn2−n−min{n,γn}+o(1) ≥ #Nn,s(H)≫ H(s−1)n2+w(n)/2−n/2.
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Parametric geometry of numbers over a number field and extension
of scalars

Damien Roy

(joint work with Anthony Poëls)

1. Parametric geometry of numbers. We fix an integer n ≥ 2, a number field
K and a non-trivial place w of K. Let d = [K : Q] denote the degree of K over Q.
For each non-trivial place v of K, we normalize the absolute value | |v so that it
extends one of the usual absolute values on Q. We denote by Kv the completion
of K with respect to that absolute value and by dv = [Kv : Qv] its local degree.
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Then the product formula reads
∏
v |a|dvv = 1 for each non-zero a ∈ K, and the

(absolute) Weil height of a non-zero point x = (x1, . . . , xn) ∈ Kn is given by

H(x) =
∏

v

‖ x‖dv/dv where ‖ x‖v =
{(∑ |xi|2v

)1/2
if v | ∞,

max |xi|v else.

For a non-zero point ξ ∈ Kn
w, we further set

Dξ(x) := | x · ξ |dw/dw

∏

v 6=w
‖ x‖dv/dv and D∗

ξ(x) := ‖ x ∧ ξ‖dw/dw

∏

v 6=w
‖ x‖dv/dv ,

where the dot represents the standard bilinear form on Kn
w. In view of the product

formula, the three numbers H(x), Dξ(x) and D∗
ξ(x) depend only on the class of

x in the projective space P(Kn).
For each j = 1, . . . , n and each q ≥ 0, define Lξ,j(q) to be the smallest t ≥ 0 for

which the conditions

H(x) ≤ et and Dξ(x) ≤ et−q

admit at least j solutions x ∈ Kn that are linearly independent over K. Then,
essentially all the information that we would like to know about approximation
over K to the point ξ is encoded by the map Lξ : [0,∞)→ Rn given by

Lξ(q) = (Lξ,1(q), . . . , Lξ,n(q)).

We extend to this setting the theory initiated by Schmidt and Summerer in [5].

Theorem A. Modulo the additive group of bounded function from [0,∞) to Rn,
the set of maps Lξ attached to points ξ ∈ Kn

w having linearly independent coordi-
nates over Kcoincides with the set of proper n-systems defined as follows.

A proper n-system is a continous map P : [0,∞) → Rn that has components
P(q) = (P1(q), . . . , Pn(q)) satisfying the following properties:

(S1) 0 ≤ P1(q) ≤ · · · ≤ Pn(q) and P1(q) + · · ·+ Pn(q) = q for each q ≥ 0;
(S2) there is an unbounded sequence 0 = q0 < q1 < q2 < · · · in [0,∞) such

that, over each subinterval [qi−1, qi] with i ≥ 1, the union of the graphs of
P1, . . . , Pn decomposes into horizontal line segments and one line segment
Γi of slope 1 which all project down to [qi−1, qi];

(S3) for each i ≥ 1, the line segment Γi ends strictly above the point where
Γi+1 starts, on the vertical line q = qi;

(S4) P1 is unbounded.

As the reader will observe from the picture
of a 6-system on the right, the graphs of
the individual components P1, . . . , Pn of a
proper n-system are more complicated than
their union.

qi−1 qi

Γi−1

Γi Γi+1
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When K = Q and ξ ∈ Rn, Theorem A reduces to the main result of [4]. This
is because any non-zero point of Qn is proportional to a primitive integer point x
of Zn. For such a point, we have H(x) = ‖ x‖ and Dξ(x) = |x · ξ| and so Lξ,j(q)
is simply the logarithm of the j-th minimum of the symmetric convex body Cξ(q)
of Rn consisting of the points x ∈ Rn with ‖ x‖ ≤ 1 and | x · ξ | ≤ e−q.

In the general case, the components of Lξ differ by a bounded function from the
logarithms of the successice minima of a similarly defined one-parameter family of
adelic convex bodies of Kn

A where KA denotes the ring of adèles of K. Following
[4, 5], our proof in [2] uses the adelic version of Minkowski’s convex body theorem
due to MacFeat and Bombieri-Vaaler, the adelic version of Mahler’s theory of
compound bodies due to Burger, and constructions over the ring of S-integers of
K where S consists of w and all the archimedean places of K.

2. Exponents of approximation. For each non-zero ξ ∈ Kn
w, we define ω(ξ)

(resp. ω̂(ξ)) to be the supremum of all ω for which the conditions

H(x) ≤ Q and Dξ(x) ≤ Q−ω

have a non-zero solution x ∈ Kn for arbitrarily large values of Q (resp. for each

large enough Q). We also define the dual exponents λ(ξ) (resp. λ̂(ξ)) to be the
supremum of all λ for which the conditions

H(x) ≤ Q and D∗
ξ(x) ≤ Q−λ

have a non-zero solution x ∈ Kn for arbitrarily large values of Q (resp. for each
large enough Q). When K = Q and ξ ∈ Rn, we may restrict to primitive points
x ∈ Zn and we recover the usual exponents of approximation.

For an n-system P = (P1, . . . , Pn) whose difference with Lξ is bounded, we have

lim inf
q→∞

P1(q)

q
= lim inf

q→∞
Lξ,1(q)

q
=

1

ω(ξ) + 1
,

with similar formulas for the other three exponents, hence the following result.

Corollary. The spectrum of the four exponents (λ, λ̂, ω, ω̂), namely the set of

quadruples (λ(ξ), λ̂(ξ), ω(ξ), ω̂(ξ)) attached to points ξ ∈ Kn
w with K-linearly in-

dependent coordinates is the same for any choice of K and w.

In particular, Jarńık’s identity 1/λ̂(ξ) − 1 = 1/(ω̂(ξ) − 1) holds for any triple
ξ ∈ K3

w with linearly independent coordinates over K.

3. Extension of scalars. Suppose that the place w of K has relative degree
one over Q, namely that Kw = Qℓ for the place ℓ of Q induced by w. Choose a
basis α = (α1, . . . , αd) of K over Q. For any ξ ∈ Kn

w with linearly independent
coordinates over K, the point

Ξ = α⊗ ξ = (α1ξ, . . . , αdξ) ∈ Kdn
w = Qdnℓ

has linearly independent coordinates over Q. We say that it is obtained from ξ by
extending scalars from Q to K. Then the maps Lξ and LΞ are linked as follows.
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Theorem B. With the above notation and hypotheses, we have

sup
q≥0
|LΞ,d(i−1)+j(dq) − Lξ,i(q)| <∞ for i = 1, . . . , n and j = 1, . . . , d.

This is obtained by applying the underlying principle behind the alternative
proof by Jeff Thunder of the adelic version of Minkowski’s theorem based on the
usual Minkowski’s theorem in [6]. As a corollary, this yields formulas relating the
various exponents of approximation of ξ ∈ Kn

w to those of Ξ ∈ Qdnℓ . In particular,
we find that

(14) d
( 1

λ̂(ξ)
+ 1

)
=

1

λ̂(Ξ)
+ 1.

In [1], Bel showed that the supremum of the numbers λ̂(1, ξ, ξ2) where ξ runs
through the elements of Kw that are transcendental over K is 1/γ ≃ 0.618 > 1/2,

where γ = (1 +
√
5)/2 denotes the golden ratio. Combining this with (14) yields

the first examples of very singular points on algebraic curves defined over Q of
degree greater than 2.

Theorem C. sup
{
λ̂
(
(α, ξα, ξ2α),Q, ℓ

)
; ξ ∈ Qℓ \Q

}
=

1

dγ2 − 1
>

1

3d− 1
.

For example, if we takeK = Q(
√
2) ⊂ R andα = (1,

√
2), then the supremum of

the numbers λ̂
(
1,
√
2, ξ,
√
2ξ, ξ2,

√
2ξ2

)
with ξ ∈ R\Q is 1/(2γ2−1) ≃ 0.236 > 1/5.

Note that, for the same values of ξ, the supremum of λ̂
(
1,
√
2, ξ) is 1/γ > 1/2 by

[3]. So, we wonder if the supremum of λ̂
(
1,
√
2, ξ, ξ2

)
is greater than 1/3.
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Diophantine exponents and Khintchine’s theorem

Victor Beresnevich

(joint work with Lei Yang)

Let ψ : (0,+∞)→ (0, 1) be decreasing. The point y = (y1, . . . , yn) ∈ Rn is said to
be ψ-approximable if there exist infinitely many (q, p1, . . . , pn) ∈ N×Zn such that

max
1≤i≤n

|qyi − pi| < ψ(q) .
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Let Sn(ψ) be the set of ψ-approximable points in Rn. If ψ(q) = q−v for some
v ∈ R, we write Sn(v) for Sn(ψ). Given y ∈ Rn, vn(y) := sup{v > 0 : y ∈ Sn(v)}
is called the exponent of simultaneous Diophantine approximations of y.

The talk presented at the workshop described the main results of the paper [1]
which addresses the problem of generalising Khintchine’s theorem and the Jarńık-
Besicovitch theorem to submanifolds in Rn.

The Jarńık-Besicovitch theorem:

dimH Sn(v) =
n+ 1

v + 1
if v ≥ 1/n ,

where dimH denotes Hausdorff dimension.

Khintchine’s theorem: Given any monotonic ψ,

Ln
(
Sn(ψ) ∩ [0, 1]n

)
=

{
0 if

∑∞
q=1 ψ(q)

n <∞ ,

1 if
∑∞

q=1 ψ(q)
n =∞ ,

where Ln stands for n-dimensional Lebesgue measure.

Given a smooth map f = (f1, . . . , fn) : U → Rn defined on an open ball U ⊂ Rd,
let

Sf (ψ) := f−1
(
Sn(ψ)

)
:=

{
(x1, . . . , xd) ∈ U : f(x1, . . . , xd) ∈ Sn(ψ)

}
.

Main problem: Generalise Khintchine’s theorem and the Jarńık-Besicovitch the-
orem to smooth submanifolds in Rn. In other words, replace Sn(ψ) and Sn(v) in
the above two theorems by Sf (ψ) and Sf (v) for suitably chosen smooth maps f .

We will be interested in non-degenerate maps f . For simplicity we will assume
that f is analytic. In this case f is non-degenerate if and only if 1, f1, . . . , fn
are linearly independent over R. Recall that Kleinbock and Margulis proved in
1998 that for any nondegenerate map f : U → Rn, Ld

(
Sf (v)

)
= 0 if v > 1/n.

Thus the above problem aims to refine this celebrated result to a Khintchine-
type theorem and a Jarńık-Besicovitch type theorem. One of the main results in
[1] is a full Khintchine type theorem for convergence for arbitrary nondegenerate
submanifolds of Rn. Note that the divergence case was known earlier for analytic
manifolds and more generally. Regarding a Jarńık-Besicovitch type theorem, we
obtain the following refitment of the Khintchine type theorem for Hausdorff s-
measures (the Khintchine case corresponds to s = d).

Theorem 1 (Theorem 2.8 in [1]). Let n > d ≥ 1 be integers, m = n − d, s > 0,
l ∈ N, ψ : N → R≥0 be monotonic, U ⊂ Rd be an open ball and f : U → Rn be
nondegenerate such that Hs ({x ∈ U : f is l–degenerate at x}) = 0. Suppose that

(15)

∞∑

q=1

qn
(ψ(q)

q

)s+m
<∞

and

(16)

∞∑

t=1

(
ψ(et)

e
t
2

)s−d
(ψ(et)ne

3t
2 )−

1
d(2l−1)(n+1) <∞ .
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Then

(17) Hs(Sf (ψ)) = 0 ,

where Hs is s-dimensional Hausdorff measure.

Amongst various consequences of this result is the following corollary regarding
the spectrum of the exponent of simultaneous approximations to x, x2, . . . , xn:

λn(x) := vn(x, . . . , x
n) = sup{v > 0 : (x, x2, . . . , xn) ∈ Sn(v)} .

Corollary 2. For every n ≥ 3 there is an explicitly computable number δn satis-
fying

1

2n2 + 6n
< δn <

1

2n2 + 5n

such that for any λ ∈
[
1
n ,

1
n + δn

n

]
we have that

dimH{x ∈ R : λn(x) = λ} = n+ 1

λ+ 1
− n+ 1 .

This contributes to resolving two problems: one by Bugeaud and Laurent (2007)
and the other by Bugeaud (2010) on the spectrum of the exponent λn.

The key ingredient in the proof of Theorem 1 is a new technique of ‘major and
minor arcs’ based on geometric and dynamical ideas. In particular, we establish
sharp upper bounds for the number of rational points of bounded height lying
near ‘major arcs’ and give explicit exponentially small bounds for the measure of
‘minor arcs’. The latter uses a result of Bernik, Kleinbock and Margulis.
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Finiteness conditions for P-adic continued fractions over number fields

Laura Capuano

(joint work with Nadir Murru and Lea Terracini)

The classical continued fraction algorithm provides an integer sequence [a0, a1, . . .]
that represents a real number α0 by means of the following recursive algorithm:

(18)




an = ⌊αn⌋

αn+1 =
1

αn − an
if αn − an 6= 0,

for all n ≥ 0, where ⌊·⌋ denotes the integral part of a real number. The Euclidean
algorithm ensures that, for classical continued fractions, the procedure eventually
stops if and only if α0 is a rational number.

Motivated by this property, Rosen [8] posed the problem of finding more gen-
eral definitions of continued fraction expansions characterizing all the elements of
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an algebraic number field K by means of finite expansions and providing approx-
imations of elements not in the field by means of elements in K, giving explicit
constructions in the case K = Q(

√
5). This question has been then studied more

deeply in [7], where the authors studied the number fields of the form Q(β) where
β is a Perron number.

The problem of Rosen can be naturally translated into the context of p–adic
numbers. In this context, however, there is no natural definition of a p–adic
continued fraction, since there is no canonical definition for a p-adic floor function.
The two main definitions of a p–adic continued fraction algorithm are due to
Browkin [1] and Ruban [9]; they are both based on the definition of a p–adic floor
function

s(α) =

0∑

n=k

xnp
n ∈ Q, where α =

∞∑

n=k

xnp
n ∈ Qp,

where the xn’s are the representatives modulo p in the interval (−p/2, p/2) for
Browkin definition and in the interval [0, p− 1] for Ruban definition. It has been
proved that rational numbers have always finite Browkin continued fraction ex-
pansion [2] and finite or eventually periodic Ruban continued fraction expansion
[6].

We are interested here in the p-adic analogue of Rosen question. Given a number
field K and a prime ideal P in its ring of integers OK , lying over an odd prime p.
LetMK be a set of representatives for the places of K. For every rational prime
q and every v ∈ MK above q let Kv be the completion of K w.r.t. the v-adic
valuation and Ov be its valuation ring; we put dv = [Kv : Qq], and let | · |v denote
the unique extension of | · |q to Kv.

Let v0 ∈ MK be the place corresponding to P. We define

OK,{v0} = {α ∈ K | |α|v ≤ 1 for every non archimedean v 6= v0 inMK}.
Definition 1. A P-adic floor function for K is a function s : Kv0 → K such that

a) |α− s(α)|v0 < 1 for every α ∈ Kv0 ;
b) |s(α)|v ≤ 1 for every non archimedean v ∈MK \ {v0};
c) s(0) = 0;
d) s(α) = s(β) if |α− β|v0 < 1.

The choice of a P-adic floor function amounts to choose a set Ys of representa-
tives of the cosets of POv0 in Kv0 containing 0 and contained in OK,{v0}.

We shall call the data τ = (K,P, s) (or (K,P,Ys)) a type.
In the case where P is principal, there is a more natural way of defining a

floor function associated to P. Indeed, let π ∈ OK be generator and let R be a
complete set of representatives of OK/P containing 0. Then, every α ∈ Kv0 can
be expressed uniquely as a Laurent series α =

∑∞
j=−n cjπ

j , where cj ∈ R for every
j. It is possible to define a P-adic floor function by

s(α) =

0∑

j=−n
cjπ

j ∈ K.
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We shall denote the types τ = (K,P, s) obtained in this way by τ = (K,π,R),
and we will call them special types.

Given a type τ = (K,P, s), we can consider the continued fractions associated
to τ . Namely, given α ∈ Kv0 , we can apply the classical algorithm (18) with s
in place of the classical floor function. Notice that, for every n ≥ 0, an ∈ Ys,
and |an|v0 > 1 for every n ≥ 1. As proved in [3], this is a well posed definition
of continued fractions; indeed, if we consider the sequence of truncated fractions

Qn = a0 +
1

.. . +
1

an

, this converges P-adically to α ∈ Kv0 .

We are interested in giving necessary and sufficient conditions on τ in order to
ensure that every element of K have finite continued fraction expansion of type
τ . In this case, say that the type τ satisifes the Finiteness Condition Property
(CFF). Moreover, we say thatK satisfies theP-adic Continued Fraction Finiteness
Property (CFF) if there is a type τ = (K,P, s) satisfying the CFF property.

Firstly, we have a strong necessary condition for CFF:

Proposition 2. [3, Proposition 7.1 and Corollary 7.2] Assume that the field K
satisfies the P-adic CFF property. Then, the ideal class group of K is cyclic
generated by [P]. In particular:

• if P is principal, then OK is a PID;
• if K satisfies the P-adic CFF property for all but finitely many prime
ideals P, then OK is a PID.

Moreover, in [3] we proved a sufficient condition for a type τ to satisfy the CFF
involving the P-adic absolute values of θ on the elements in the image of s and on
their conjugates, where for x ∈ C we define

θ(x) =
1

2

(
|x|∞ +

√
|x|∞ + 4

)
.

The result is the following.

Theorem 3. [3, Theorem 4.5] Let τ = (K,P, s) be a type. Let Σ be the set of
embeddings of K in C, and let us denote by

ντ = sup

{∏
σ∈Σ θ(a

σ)

|a|dv0v0

| a ∈ Y1
s

}
.

If ντ < 1, then τ satisfies the CFF.

This result allows us to study the P-adic CFF property when the field is norm
Euclidean field; in particular, we prove that a norm Euclidean field with Euclidean
minimum < 1 satisfies the P-adic CFF property for all but finitely many prime
ideals P, by applying a result of Cerri [4]. Furthermore, for certain Euclidean
quadratic fields K we provide some more effective constructions by exploiting the
form of unitary neighborhoods covering a fundamental domain of OK as done in
[5].
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Simultaneous rational approximation to successive powers of
a real number

Anthony Poëls

(joint work with Damien Roy)

For each ξ ∈ R and each integer n ≥ 1, let λ̂n(ξ) denote the supremum of all λ ≥ 0
such that the system

|x0| ≤ X and max
1≤k≤n

|x0ξk − xk| ≤ X−λ

admits a non-zero integer solution x = (x0, . . . , xn) ∈ Zn+1 for each sufficiently
large X . Further, let τn+1(ξ) denote the supremum of all τ ≥ 0 for which there
exist infinitely many algebraic integers α of degree at most n+ 1 with

|ξ − α| ≤ H(α)−τ ,

where H(α) stands for the height of α, namely the largest absolute value of the
coefficients of its irreducible polynomial over Z. Dirichlet’s theorem ensures that

λ̂n(ξ) ≥ 1/n. In their seminal 1969 paper [3], Davenport and Schmidt proved the
following transference inequality

τn+1(ξ) ≥ 1 + 1/λ̂n(ξ).

Thus any upper bound on λ̂n(ξ) yields a lower bound on τn+1(ξ). Assuming that
ξ is not itself an algebraic number of degree at most n, they further show that
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λ̂1(ξ) = 1 and

λ̂n(ξ) ≤





(−1 +
√
5)/2 = 0.618 · · · if n = 2

1/2 if n = 3

1/⌊n/2⌋ if n ≥ 4.

In the special case n = 2, the upper bound λ̂2(ξ) ≤ (−1+
√
5)/2 is best possible

by [9, Theorem 1.1], and the corresponding lower bound τ3(ξ) ≥ (3+
√
5)/2 ∼= 2.618

is also best possible by [10, Theorem 1.1]. Furthermore, by [11, Corollary] the

values λ̂2(ξ) with ξ real and transcendental form a dense subset of the interval

[1/2, (−1+
√
5)/2]. We know large families of transcendental real numbers ξ with

λ̂2(ξ) > 1/2. In chronological order, they are the extremal numbers ξ of [9], the
Sturmian continued fractions of [2], Fischler’s numbers from [4], the Fibonacci type
numbers of [11] and the Sturmian type numbers of [6], all contained in the very
general class of numbers studied in [7]. By contrast, for each n ≥ 3 the existence

of transcendental real numbers ξ satisfying λ̂n(ξ) > 1/n is still conjectural.

Question. Given an integer n ≥ 3, does it exist a transcendental real number ξ

such that λ̂n(ξ) > 1/n ?

Since the paper of Davenport and Schmidt [3], refined upper bounds for λ̂n
have also been established by Laurent [5] (for n odd), by Roy [12] (for n = 3), by
Schleischitz [13, 14] and by Badziahin [1] (both for n even), all of the form

λ̂n(ξ) ≤
1

n/2 + cn
, with 0 < cn < 1.

Our main result [8] below improves significantly on this when n is large.

Theorem. For any integer n ≥ 2 and any real number ξ satisfying [Q(ξ) : Q] > n,
we have

λ̂n(ξ) ≤
1

n/2 + a
√
n+ 1/3

, where a =
1− log 2

2
∼= 0.1534.

Note that the multiplicative constant a in the denominator is not optimal and
could be improved with additional work. The same applies to the additive con-
stant 1/3 given the actual choice of a. In view of the Davenport and Schmidt’s
transference inequality, this gives

τn+1(ξ) ≥ n/2 + a
√
n+ 4/3

for the same n and ξ, which improves the prior bound τn+1(ξ) ≥ n/2 +O(1).
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On λ̂n(x)

Dzmitry Badziahin

Given ξ ∈ R, a simultaneous Diophantine exponent λn(ξ) (respectively, λ̂n(ξ)) is
defined as the supremum of values λ such that the following inequalities

max
1≤i≤n

||qξi|| < Q−λ; 1 ≤ q ≤ Q,

have solutions in integer q for some (respectively, all) arbitrarily large values of Q.
In a similar way, a dual Diophantine exponent wn(ξ) (resp., ŵn(ξ)) is defined

as the supremum of w such that the inequalities

P (ξ) ≤ H−w, H(P ) ≤ H
have solutions in integer polynomials P (x), deg(P ) ≤ n, P (x) 6≡ 0 for some (resp.,
all) arbitrarily large value of H .

In this report we will mostly concentrate on the exponent λ̂n(ξ). That is because
it is one of the most mysterious Diophantine exponents. We know very little

about it. For n ≥ 3 we even do not know if λ̂n(ξ) can take any values apart
from the generic 1/n. On the other hand, this exponent is closely related with
some questions about the distribution of algebraic numbers. For example, if one

shows that for transcendental ξ, λ̂n(ξ) can not any values apart from 1/n then the
famous Wirsing conjecture is true.

From the classical Dirichlet and Minkowski theorems we know that

1

n
≤ λ̂n(ξ) ≤ λn(ξ).
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In 1969, Sprindzhuk [5] verified that the bounds above are in fact equalities for
almost all ξ ∈ R in terms of Lebesgue measure.

The only case when we know something about the spectrum of λ̂n(ξ) is when

n = 2. It was initially proven in 1969 by Davenport and Schmidt [2] that λ̂2(ξ) ≤√
5+1
2 . In 2003, Roy showed [4] that this upper bound is sharp and provided

a family of numbers ξ ∈ R with λ̂2(x) =
√
5+1
2 . Later, various authors (Roy,

Bugeaud, Laurent and others) showed that the spectrum of λ̂2(ξ) contains many

numbers between 1
2 and

√
5+1
2 .

In further discussion, we will always assume that ξ is transcendental. The values

of λ̂n(ξ) are well understood, due to the Schmidt Subspace Theorem, and therefore
are not interesting to us.

One of the standard ways to investigate the simultaneous Diophantine ex-
ponents is through the set of the so called minimal points xi. They satisfy
the following conditions: ||x1‖ < ||x2|| < ||x3|| < · · · and for Li = L(xi) :=
max1≤j≤n |xi,0ξj − xi,j | one has L1 > L2 > L3 > · · · . Finally, for any x with
||x|| ≤ ||xi+1||, ||x|| 6= ||xi||, one has L(x) > Li. One can easily verify that the

condition λ̂n(ξ) > λ is equivalent to Li > ||xi+1||−λ for all large enough i.

The first non-trivial upper bound for λ̂n(ξ) was provided by Davenport and

Schmidt in 1969 [2]. They consider multivectors of the form x
(0,k)
i ∧ x

(2,k)
i ∧ · · · ∧

x
(n−k−1,k)
i , where x

(j,k)
i = (xi,j , xi,j+1, . . . , xi,j+k). For example, one can show

that the norm of such a multivector does not exceed CXiL
n−k
i and therefore for λ

large enough it must be zero, which gives us a bunch of linearly dependent vectors.
By exploring this idea, Davenport and Schmidt manage to show that

λ̂n(ξ) ≤
1

⌈n/2⌉ .

The next incremental improvement of the upper bound for λ̂n(ξ) is due to

Laurent in 2003 [3]. He showed that λ̂n(ξ) ≤ 1
⌊n/2⌋ . Many other people improved

the upper bound since then (Schleischitz, B., Roy and Poëls) but asymptotically,
the best upper bound is still of the form

λ̂n(ξ) ≤
2

n
− o(n−1).

In the last couple of years, several groups of Mathematicians, including myself,
actively worked on this problem. One of the surprising results, which was achieved

by me in 2021 [1], relates λ̂n(ξ) and wk(ξ) where k is much smaller than n. In

particular, it was shown that if λ̂n(ξ) is far enough from its generic value 1/n then
wk(ξ) must also be far enough from its generic value k. more exactly, one of my
results is

Theorem 1. Assume that ξ is transcendental and for a given k ∈ N,

(19) δk :=
k

wk(ξ) + 1− k ≥ 1.
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Then one has

λ̂n(ξ) ≤





1

n− k
for 2k + 1 ≤ n < 2k + 1 + δk,

min







1

n−

⌈

n−δk−1

2

⌉ ,
1

⌊

n−δk−1

2

⌋

+ 1 + δk







for n ≥ 2k + 1 + δk.

In particular, this result shows that if wk(ξ) = k, which is satisfied for almost

all ξ, then λ̂3k+1
1

2k+1 ≍ 3
2n , which is essentially better than the best unconditional

upper bound of 2/n− o(n−1).
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Irrationality measure functions for several real numbers

Nikolay Moshchevitin

Let α be real irrational number. By || · || we denote the distance to the nearest
integer. We consider irrationality measure function

ψα(t) = min
1≤q≤t, q∈Z

||qα||, t ≥ 1.

By Lagrange’s theorem if we consider the representation of α as an ordinary con-
tinued fraction

α = [a0; a1, a2, ..., an, ...]

and its convergents and approximations
pn
qn

= [a0; a1, a2, ..., an], ξn = |qnα− pn|,

we see that
ψα(t) = ξn for qn ≤ t < qn+1.

It is clear that for any t we have ψα(t) < t−1.

In 2010 I.D. Kan and N. Moshchevitin [1] proved the following result.

Theorem 1. Suppose α, β ∈ R \ Q such that α ± β 6∈ Z. Then the difference
function

ψα(t)− ψβ(t)
changes its sign infinitely many times as t→ +∞.
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Here we introduce two recent results which generalise Theorem 1. For n-tuple
ααα = (α1, ..., αn) of pairwise incommensurable numbers (that is ψαi

(t) 6= ψαj
(t) for

all t large enough) consider permutation

σσσ(t) : {1, 2, 3, ..., n} 7→ {σ1, σ2, σ3, ..., σn}

with

ψασ1
(t) > ψασ2

(t) > ψασ3
(t) > ... > ψασn

(t).

We define k-index k(ααα) = k(α1, ..., αn) as

k(ααα) = max{k : there exist different pemutations σσσ1, ...,σσσk

with the following property : ∀ j ∀t0 > 0 ∃ t > t0 such that σσσ(t) = σσσj}

In particular, Kan-Moshchevitin’s Theorem 1 states that k(α1, α2) = 2 if α1±α2 6∈
Z.

Very recently a progress was obtained in determining the set of admissible valued of
k-index. The following result was proven by V.O. Manturov and N. Moshchevitin
[2].

Theorem 2. Let k ≥ 3 and n = k(k+1)
2 . Then there exists a pairwise incommen-

surable n-tuple ααα with

k(ααα) = k.

The following result was very recently obtained by V. Rudykh [3].

Theorem 3. The size of an n-tuple ααα = (α1, ..., αn) of pairwise independent
numbers with k(ααα) = k is

n ≤ k(k + 1)

2
.
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[2] Manturov V., Moshchevitin N., Über Approximationen n reeller Zahlen, preprint available
at arXiv:2108.08778 (2021).

[3] Rudykh V., On irrationality measure functions for several real numbers, preprint available
at arXiv:2204.05769 (2022).



Diophantische Approximationen 1135

Around the support problem for Hilbert class polynomials

Gabriel A. Dill

(joint work with Francesco Campagna)

The starting point of our collaboration is the following theorem by Bugeaud, Cor-
vaja, and Zannier.

Theorem 1 (Theorem 1 in [1]). Let a, b be multiplicatively independent integers
≥ 2, and let ε > 0. Then, provided n is sufficiently large, we have

gcd(an − 1, bn − 1) < exp(εn).

Here, the left-hand side measures the size of the intersection of the Zariski
closure in G2

m,Z of the singleton {(a, b)} ⊆ G2
m,Q(Q) with the kernel of the raising-

to-the-n-th-power morphism. This is an intersection of two 1-dimensional schemes
inside a 3-dimensional scheme. Thus, Theorem 1 fits into the framework of “un-
likely intersections”. As remarked by Zannier, Theorem 1 can be regarded as an
arithmetical analogue of results about unlikely intersections over fields of charac-
teristic 0.

In our joint work, we replace Gm by the coarse moduli space of elliptic curves
Y (1) = A1 and we study the analogue of Theorem 1 and related questions in this
context. This venture is inspired by the well-known fact that there is a notion
of special subvarieties in both the realm of semiabelian varieties and the realm
of mixed Shimura varieties. Let F be a field. A special subvariety of Gnm,F is
an irreducible component of an algebraic subgroup of Gnm,F . If X1, . . . , Xn are

affine coordinates on Y (1)nF , then a special subvariety of Y (1)nF is an irreducible
component of the intersection of the zero loci of finitely many modular polynomials
ΦNk

(Xik , Xjk) (k = 1, . . . ,K). In particular, a special point of Gm,C is a root of
unity and a special point of Y (1)C is a singular modulus, i.e., the j-invariant of an
elliptic curve with complex multiplication.

Theorem 1 is about values of the polynomials T n − 1 (n ∈ N = {1, 2, . . .}).
These have the property that their zeroes are all special points of Gm,C. Using the
dictionary above, the analogue of this family (or more accurately: of the family
of cyclotomic polynomials) in the Y (1) case is precisely the family of Hilbert class
polynomials HD(T ) with D ∈ D, where D = {−3,−4, . . .} is the set of negative
integers ≡ 0, 1 mod 4 and HD(T ) ∈ Z[T ] is the minimal polynomial over Q of
any j-invariant of an elliptic curve with complex multiplication by the imaginary
quadratic order of discriminant D. Thus, we are led to studying how large the
greatest common divisor of HD(a) and HD(b) can be, where a, b ∈ Z.

This question as well as more general divisibility questions also make sense
with rings of S-integers in a number field in place of Z. The following is a modular
counterpart of Theorem 1 and its generalization to arbitrary number fields by
Corvaja and Zannier:

Theorem 2. Let K be a number field and let S be a finite set of maximal ideals
of OK . Consider two elliptic curves E1/K , E2/K such that the j-invariant j(Ei)
belongs to the ring of S-integers OK,S ⊆ K for i = 1, 2. Suppose that there exists
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a prime ideal p of OK,S at which both E1 and E2 have potential good supersingular
reduction. Let p denote the rational prime lying under p. Then

lim sup
D∈D, |D|→∞

(degHD)
−1 logN(HD(j(E1))OK,S +HD(j(E2))OK,S) ≥

log p

p− 1
> 0,

where N(·) denotes the ideal norm in OK,S.
In particular, Theorem 2 shows that the naive analogue of Theorem 1 over

number fields is false. Namely, the condition in Theorem 1 that a and b are
multiplicatively independent is equivalent to demanding that the point (a, b) ∈
G2
m,C(C) is not contained in any proper special subvariety of G2

m,C. In the modular
setting, this translates into the condition that a and b are both not singular moduli
and that ΦN (a, b) 6= 0 for all N ∈ N. However, there are infinitely many such pairs
(a, b) ∈ O2

K,S such that a and b are the j-invariants of elliptic curves with a fixed
common prime ideal of potential good supersingular reduction.

When trying to understand the size of the greatest common divisor of HD(a)
and HD(b) for a and b in some Dedekind domain R, we were led to consider the
extreme case where every prime dividing HD(a) also divides HD(b) for all but
finitely many D ∈ D. For which a and b is this possible? This is the modular
instance of the so-called support problem. If we again replace the polynomials
HD(T ) (D ∈ D) by the polynomials T n−1 (n ∈ N), this becomes the multiplicative
support problem. In the case where R is the ring of S-integers in some number field,
Corrales-Rodrigáñez and Schoof have solved this problem in [2]. Concerning the
modular support problem in the number field case, we prove the following theorem:

Theorem 3. Let K be a number field and let S be a finite set of maximal ideals
of OK . Let a, b ∈ OK,S . Suppose that there exists D0 ∈ N such that every prime
ideal of OK,S dividing HD(a) also divides HD(b) for every D ∈ D with |D| > D0.

Then either a = b or there exists D̃ ∈ D such that HD̃(a) = HD̃(b) = 0.

We do not know whether the conclusion of Theorem 3 can be strengthened to
saying that a = b always. However, this strengthened conclusion is certainly false
if we assume that p | HD(a)⇒ p | HD(b) holds just for infinitely many D (and all
p) instead of holding for all but finitely many D (and all p). For instance, if a and
b are the two zeroes of H−15(T ) in C, we can show that p | HD(a) if and only if
p | HD(b) for all prime ideals p in the ring of integers of Q(a) = Q(b) and for all
D ∈ D such that D ≡ 1 mod 8.
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The relative Bogomolov conjecture for fibered products of
elliptic families

Lars Kühne

In my talk, I summarized the progress made in [10] on the relative Bogomolov
conjecture in the setting of fibered products of families of elliptic curves, exposing
some of the new ideas.

For reasons of comparison, let me first state the classical version of the

Bogomolov conjecture. Let A be an abelian variety defined over Q, X an ir-

reducible subvariety of A, and ĥ : A(Q) → R≥0 the Néron-Tate height associated
with an ample symmetric line bundle on A. Then,

(1) there exists some ε(X) > 0 such that the set

{x ∈ X(Q) | ĥ(x) < ε(X)}
is not Zariski-dense, or

(2) X is a torsion coset (i.e., of the form B + t where B ⊆ A is an abelian
subvariety and t ∈ A is a torsion point).

In this form, the conjecture is a theorem due to Ullmo [11] and Zhang [12],
later reproven by David and Philippon [3]. The setting of the relative Bogomolov
conjecture is a straightforward generalization: Instead of a single abelian variety
we consider a family π : A → S of abelian varieties over an irreducible Q-variety
S and irreducible subvarieties X ⊆ A. In this situation, the fiberwise Néron-Tate

heights can be chosen such that they combine to a global height ĥ : A(Q)→ R≥0.
The assertion then becomes the

relative Bogomolov conjecture (RBC). For each irreducible subvariety X ⊂ A
such that π(X) = S, either

(1) there exists some ε(X) > 0 such that the set

{x ∈ X(Q) | ĥ(x) < ε(X)}
is not Zariski-dense, or

(2) there exists a horizontal torsion coset Y ⊂ A such that X is a subvariety
of codimension ≤ dim(S) in Y .

Up to pulling back by a generically finite map S′ → S and projecting down
again, a horizontal torsion coset Y ⊆ A is just the spreading out of a torsion coset
Bη + tη in the generic fiber Aη.

The new feature in the relative Bogomolov conjecture is that the second alter-
native does no longer assert that a subvariety X with a Zariski-dense set of points
of small height – or even torsion points – is actually a (horizontal) torsion coset.
Already for a non-isotrivial family of elliptic curves π : E → C over a base curve
C, the image of a section σ : C → E contains infinitely many torsion points even
if it is not a torsion section itself (by Manin’s theorem of the kernel [2, 9]).

As it seems, the relative Bogomolov conjecture is still widely open, though a
proof of the relative Manin-Mumford conjecture has been announced at this very
same workshop by Gao and Habegger [8]. As the title suggests, I will concentrate
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on the case where the generic fiber is just a product of elliptic curves. The first
Bogomolov-type result in this direction that I am aware of is due to DeMarco and
Mavraki [5], and their work was indeed my main motivation.

Theorem. (K. [10]) Let S be an irreducible (possibly non-proper) algebraic variety
over Q and let each πi : Ei → S, 1 ≤ i ≤ g, be an elliptic curve over S. Writing
A for the total space of the fibered product

π = π1 × · · · × πg : E1 ×S · · · ×S Eg −→ S,
the relative Bogomolov conjecture is true for every irreducible subvariety X ⊂ A.

My other motivation for working on this result was that it also implies (as
pointed out by Dimitrov, Gao, and Habegger [6]) uniform results of Bogomolov-
type, giving for example another proof of the main result in [4].

Finally, let me conclude by sketching some aspects of the proof. Equidistri-
bution techniques from Arakelov theory and the (fibered) product structure im-
ply easily that any irreducible subvariety containing a Zariski-generic sequence of
points of sufficiently small height has to satisfy a (rather weird) set of real-analytic
differential equations. Even worse, these equations are totally invariant under
monodromy since they are derived from the monodromy-invariant Betti forms.
However, they are also far from being holomorphic so that a separation argument
that I learned from André, Corvaja, and Zannier [1, Subsection 5.2] yields another
set of equations on which the monodromy group acts non-trivially. Exploiting
monodromy for these and Gao’s version of the mixed Ax-Schanuel conjecture [7]
completes the proof.
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Quantitative reduction theory

Martin Orr

(joint work with Christopher Daw)

Let H be a reductive Q-algebraic group and let ΓH ⊂ H(Q) be an arithmetic
subgroup. Borel and Harish-Chandra [1] constructed a fundamental set for the
action of ΓH on H(R) by translations. These fundamental sets have the form
BSu−1∩H(R) where S is a Siegel set in GLn(R), B is a finite subset of GLn(Z)
and u ∈ GLn(R). This construction can be used to prove that ΓH is finitely
generated. The finite generating set for ΓH is closely related to the finite set B
appearing in the construction of the fundamental set. This gives one motivation
for seeking quantitative information about the set B. A further motivation, which
was responsible for our interest in the problem, comes from applications to the
Zilber–Pink conjecture for Shimura varieties, in particular the parameterisation of
special subvarieties step in the Pila–Zannier strategy.

The proof of Borel and Harish-Chandra relies on “soft” topological arguments
and therefore is not well adapted to obtaining such quantitative information. Ide-
ally (and somewhat vaguely) one would like to bound the heights of elements of the
finite set B by a polynomial with respect to “arithmetic invariants” of the group
H. For example, in the case where H is an orthogonal group, Li and Margulis [4]
obtained an effective version of the construction of fundamental sets, in which the
heights of elements of B are polynomially bounded in terms of the coefficients of
the quadratic form stabilised by the orthogonal group.

In order to describe the situation in which we seek bounded construction of
fundamental sets, we fix an ambient reductive group G and consider Q-algebraic
subgroups H ⊂ G which lie in a single G(R)-conjugacy class. For example, the
units of any order in any quaternion algebra over Q can be embedded as a Q-
algebraic subgroup of GL4, and these all lie in a single GL4(R)-conjugacy class,
but not in a single GL4(Q)-conjugacy class. In fact, these quaternion unit groups
are contained in GSp4 and lie in a single GSp4(R)-conjugacy class, which is
important for our application to parameterising quaternionic Shimura curves inside
the moduli space of principally polarised abelian surfaces. In this case, the relevant
“arithmetic invariant” of H is the discriminant of the quaternion order.

Daw and I [2] have obtained a version of Borel and Harish-Chandra’s construc-
tion of fundamental sets which gives some quantitative control of the finite set B
as H varies through Q-algebraic subgroups in a G(R)-conjugacy class of reductive
subgroups of G. The bound in our theorem involves an auxiliary representation
ρ : G → GL(V ) of a type used in the construction of Borel and Harish-Chandra.
In particular, the representation must contain a vector v whose stabiliser is H and
whose G(R)-orbit is closed in V ⊗Q R.

Theorem 1. Let G and H be reductive Q-algebraic groups with H ⊂ G. Let
ρ : G → GL(V ) be a representation containing a vector v with the properties
specified above. Let S be a Siegel set in G(R). Let Γ ⊂ G(Q) be an arithmetic
subgroup.
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For every u ∈ G(R) such that Hu := uHRu
−1 is defined over Q, choose a vector

vu ∈ V ⊗Q R satisfying certain technical conditions linking vu to the group Hu.
Then there is a finite set Bu ⊂ Γ such that BuSu

−1∩Hu(R) is a fundamental set
for Γ ∩Hu(R) in Hu(R), and every element b ∈ Bu satisfies

|ρ(b−1u)vu| ≤ C1|vu|C2

where C1 and C2 are independent of u (and ineffective).

The conclusion of the theorem is a polynomial bound, but both sides of this
inequality require some explanation. On the right hand side, in special cases of
interest [2, 3], we can relate |vu| to arithmetic invariants ofH. This requires careful
construction of the representation ρ and a lengthy calculation and can probably
be carried out for a wide range of G and H.

The quantity on the left hand side of the inequality, |ρ(b−1u)vu|, should be
thought of as a poor substitute for the height of b. It seems rather artificial but
it is sufficient for our applications to the Zilber–Pink conjecture, as well as for
obtaining a polynomial bound on the number of elements of Bu. It should be
noted that the vector ρ(b−1u)vu has integer coordinates, so a bound on its length
also bounds its height, and its stabiliser is b−1Hub, that is, a Γ-conjugate of Hu.
In the application, we form a definable set in which vectors of the form ρ(b−1u)vu
occur as rational points, then use the Pila–Wilkie theorem to control the number
of rational vectors in this definable set.

One would like to improve this theorem to obtain polynomial bounds for the
heights of elements of Bu themselves. This might be possible by combining the
proof of this theorem with the methods used to prove Li and Margulis’s theorem
for orthogonal groups, namely homogeneous dynamics and spectral gaps for auto-
morphic representations. I would be interested to hear from anyone knowledgeable
in homogeneous dynamics who would like to work on this question.
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A subspace theorem for manifolds

Emmanuel Breuillard

(joint work with Nicolas de Saxcé)

We revisit Schmidt’s subspace theorem in terms of the dynamics of diagonal flows
on homogeneous spaces and describe how the exceptional subspaces arise from
certain rational Schubert varieties associated to the family of linear forms through
the notion of Harder-Narasimhan filtration and an associated slope formalism.

This geometric understanding opens the way to a natural generalization of
Schmidt’s theorem to the setting of diophantine approximation on submanifolds
of GLd, which is our main result. In turn this allows us to recover and generalize
the main results of Kleinbock and Margulis regarding diophantine exponents of
submanifolds.

The above-mentioned slopes correspond to the rates of exponential growth of
the successive minimas of the dilated lattice atLZ

d, where L ∈ GLd(R) and at is a
diagonal one-parameter subgroup. Starting with a connected analytic submanifold
M of GLd(R) we show:

Theorem 1. [1] If the Zariski-closure of M is defined over Q, then for almost
every L in M , the lattices atLZ

d assume a fixed asymptotic shape as t tends to
+∞.

This means that the slopes are well-defined. When M is reduced to a point,
this statement is equivalent to Schmidt’s parametric subspace theorem. When M
is contained in a certain unipotent subgroup, this allows to recover the main result
of [2] and some of its generalizations to matrices and Lie groups.
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[1] E. Breuillard and N. de Saxcé, A subspace theorem for manifolds, to appear in J. Europ.
Math Soc.

[2] D. Kleinbock and G. Margulis, Flows on homogeneous spaces and Diophantine approxima-
tion on manifolds, Ann. of Math. (2) 148 (1998), no. 1, 339–360.

Zilber–Pink in Y (1)n

Christopher Daw

(joint work with Martin Orr)

By Y (1) we denote the modular curve SL2(Z)\H and (by abuse of notation) the
underlying algebraic variety, the affine line over Q. As such, Y (1) (and, therefore,
Y (1)n) is a Shimura variety and, hence, the subject of the Zilber–Pink conjecture.

In 2012, Habegger and Pila obtained a major result in the direction of the
Zilber–Pink conjecture for Y (1)n [5]. Indeed, they showed that, if C ⊂ Y (1)n is
an irreducible curve defined over Q, not contained in any proper special subvariety
(that is, Hodge generic), then the Zilber–Pink conjecture holds for C provided C
is asymmetric (more on the latter momentarily). In particular (and this is the
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statement for which asymmetry is needed), for any two distinct pairs (i1, i2), (i3, i4)
of distinct coordinates, the union over all M,N ∈ N of the sets

ΘM,N = {(s1, . . . , sn) ∈ C(Q) : ΦM (si1 , si2) = ΦN (si3 , si4) = 0}
is finite. (As usual, ΦN (X,Y ) ∈ Z[X,Y ] denotes the classicalmodular polynomial.)

The asymmetry condition can be described as follows: let πi : Y (1)n → Y (1)
denote the natural i-th projection map and let πi|C denote its restriction to C; in
this way, we obtain a set of integers D = {deg πi|C : i = 1, . . . , n} (where we define
deg πi|C = 0 if πi|C is constant) and we say that C is asymmetric if |D| ≥ n− 1.

This condition is used to obtain the following height bound: there exists c =
c(C) > 0 such that, for any s = (s1, . . . , sn) ∈ ΘM,N , the logarithmic height of the
sij (j = 1, . . . , 4) is at most cmax{logM, logN}. Via isogeny estimates, this yields
Galois lower bounds (that is, lower bounds for [Q(s) : Q]), and then Zilber–Pink
follows from the now famous Pila–Zannier strategy.

Unfortunately, the assumption of asymmetry appears essential to the method.
Moreover, the method is apparently limited to the “product situation”.

In light of this, we have pursued other techniques with the potential to yield
suitable height bounds. One such technique was originally devised by André [1].
Consider an abelian scheme f : A → C of relative dimension n > 1 over a curve,
all defined over a number field K ⊂ C. One obtains two associated gadgets: the
algebraic relative de Rham cohomology WdR = H1

dR(A/C) (which we assume to
be free), and the local system W = R1f

an
C∗QAan

C
(which becomes constant over an

open subset U ⊂ Can
C ). Choosing a basis {ωi} for WdR and a frame {γj} for W |U ,

we obtain holomorphic “period” functions

pij : U → C, s 7→ 1

2πi

∫

γj(s)

ωi(s).

André highlighted that, at “nice” points s0 ∈ C(Q) (or possibly C′(Q) for C′ a
curve over which A extends to a semiabelian scheme), the Taylor series of some of
the pij (with respect to a local parameter x ∈ K(C)) are, in fact, “G–functions”.
That is, they are elements of K[[X ]], satisfying a linear differential equation over
K[X ], whose first n coefficients have height at most cn for some constant c. Such
functions are susceptible to the following theorem of Bombieri: let g1, . . . , gm ∈
K[[X ]] denote G–functions and, for d ∈ N, define Σd to be the set of ξ ∈ Q such
that g1(ξ), . . . , gm(ξ) satisfy a “global, nontrivial relation of degree d”. Then, any
ξ ∈ Σd has logarithmic height at most c1d

c2 for constants c1, c2 independent of
d. (A global relation is a homogeneous polynomial P ∈ K[X1, . . . , Xm] such that,
for all places ν of K, and each corresponding embedding ιν : K →֒ Kν such that
ιν(gi)(ιν(ξ)) converges for all i = 1, . . . ,m,

ιν(P )(ιν (g1)(ιν(ξ)), . . . , ιν(gm)(ιν(ξ))) = 0.

A relation is non-trivial if it is not the specialization at ξ of a homogeneous relation
over K[X ] of the same degree between the gi.)

André’s suggestion was to choose s0 to be a point of purely multiplication
degeneration of A (that is, a point at which the fiber degenerates to Gnm). This
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has two important consequences: first, half of the pij provably give rise to G–
functions (indeed, this is the case whenever γj is “locally invariant”); second, for

points s ∈ C(Q) such that End(As) has no ring embedding into Mn(Q), one can
ignore all finite places of K in the construction of global relations. Then, using the
action of End(As) on WdR and W , one can construct linear or quadratic relations
between the “locally invariant periods” at all archimedean places. Multiplying
these relations together yields a global, non-trivial relation of degree polynomially
bounded in terms of [K(s) : K] and, hence, height bounds for s as above. Our
generalization of André’s result [4], in combination with our work on “Quantitative
Reduction Theory” [2, 3] and the Pila–Zannier strategy, has allowed us to prove
various instances of the Zilber–Pink conjecture in Ag for curves intersecting the
0-dimensional stratum of the Baily–Borel compactification.

However, height bounds for the sets ΘM,N lie outside the scope of this method,
at least as described above. The problem, of course, is the condition that End(As)
has no ring embedding into Mn(Q). In order to circumvent this problem, one is
forced to construct relations at finite places. In our forthcoming work, we show,
using p-adic Tate uniformizations, that there exists a global relation of degree
polynomially bounded in terms of [K(s) : K] and max{logN, logM}. This is
sufficient to prove the Zilber–Pink conjecture for irreducible, Hodge generic Q–
curves C ⊂ Y (1)n containing the point (∞,∞, . . . ,∞) in their closure.
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Torsion points in families of abelian varieties

Ziyang Gao

(joint work with Philipp Habegger)

Let S be an irreducible quasi-projective variety defined over Q̄, and let π : A → S
be an abelian scheme of relative dimension g ≥ 1. Let η be the generic point of
S and fix an algebraic closure of the function field of S. For any subvariety X of
A, denote by Xη the geometric generic fiber of X . In particular, Aη is an abelian
variety.

Let Ator denote the set {P ∈ A(Q̄) : [N ]P is in the zero section for some N ∈
Z}; this is the set of fiberwise torsion points in A.
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The goal of this talk is to report a recent work in progress joint with Philipp
Habegger, known as the relative Manin–Mumford conjecture.

Theorem 1. Let X be an irreducible subvariety of A that dominates S. Assume
that Xη is irreducible and not contained in any proper algebraic subgroup of Aη.
If X ∩ Ator is Zariski dense in X, then dimX ≥ g.

This conjecture was proposed by Pink [15, Conj.6.2] and Zannier [18], which
is proved when dimX = 1 in a series of papers of Corvaja, Masser, and Zannier
[11, 12, 13, 1, 14]. If we allow fiberwise small points instead of only torsion points,
then the same result is proved by DeMarco–Mavraki [4] for sections in a fiber
product of elliptic surfaces and by Kühne [10] for arbitrary X in a fiber product
of elliptic surfaces.

It is worth pointing out that the conclusion of this theorem is the realm of
algebraic geometry. Indeed, Let Y (2) = P1 \ {0, 1,∞} and let E → Y (2) be the
Legendre family, which is an abelian scheme defined over Q̄ with g = 1. Consider
a non-torsion section σ : Y (2)→ E , and let X be its image. By Manin’s Theorem
of the Kernel, X contains a dense subset of torsion points. So X satisfies the
assumption of the theorem above, and dimX = 1.

As a consequence, we reprove the following Uniform Manin–Mumford Conjec-
ture for curves embedded in their Jacobians which is recently proved by Kühne [9,
Thm.1.2].

Corollary 2. For each integer g ≥ 2, there exists a constant c = c(g) > 0 with the
following property. Let C be a geometrically irreducible, smooth, projective curve
of genus g defined over Q̄. Let P0 ∈ C(Q̄), and let C − P0 be the image of the
Abel–Jacobi embedding based at P0. Then

(20) (C(Q̄)− P0) ∩ Jac(C)tor ≤ c.
Before Kühne proved the full Uniform Manin–Mumford Conjecture for curves,

the case of genus 2 bi-elliptic curves was proved by DeMarco–Krieger–Ye [3]. An-
other proof of this result is recently given by Yuan [16] based on the theory of adelic
line bundles over quasi-projective varieties recently developed by Yuan–Zhang [17].
In all these proofs, equidistribution is used in a serious way.

Our approach does not use equidistribution. We prove Corollary 2 as an easy
consequence of Theorem 1, and our proof of Theorem 1 is in spirit of the Pila–
Zannier method to solve special point problems, which roughly speaking can be
divided into four steps.

(i) Large Galois Orbit (LGO) of the “special points” in question.
(ii) A suitable version of the Pila–Wilkie counting theorem (semi-variant ver-

sion by Habegger–Pila [8, Cor.7.2] in our case).
(iii) A suitable functional transcendence result (mixed Ax–Schanuel by Gao [7]

in our case).
(iv) Study the corresponding weakly special or weakly anomalous locus.

Let us start with the LGO step to see what happens. The type of result in need
is of the following form:
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Claim: There exist c = c(X) > 0 and δ = δ(X) > 0 such that for any x ∈
X(Q̄) ∩ Ator, we have |Gal(Q̄/K)x| ≥ cN(x)δ. Here N(x) is the order of the
torsion point x.

In practice, it often suffices to prove this bound for x coming from a fixed Zariski
open dense subset U . We start with a result of David [2].

Theorem 3 (S.David). Let A be an abelian variety of dimension g defined over
K and P ∈ A(Q̄)tor. Then

|Gal(Q̄/K)P | ≥ cN(P )δ/h(A)δ
′

for some constants c, δ, δ′ depending only on g. Here N(P ) is the order of P and
h(A) is a suitable height of A (for example, the stable Faltings height or a theta
height or the moduli height).

It is clear that in order to get the desired LGO result from David’s theorem,
one needs some tools to assure uniformity in all fibers. The tool we use is the
height inequality of Dimitrov–Gao–Habegger. An adapted version to the current
situation is as follows.

Theorem 4 ([5, Thm.1.6 and Thm.B.1]). Assume X is non-degenerate. Then
there exist a constant c > 0 and a Zariski open dense subset U of X such that

(21) h(Aπ(x)) < c(ĥ(x) + 1) for all x ∈ U(Q̄).

One equivalent way (as an application of mixed Ax–Schanuel) to define non-
degenerate subvarieties is that X 6= Xdeg for a certain (intrinsically defined) de-
generacy locus Xdeg ⊆ X .

From these two results, it is immediately clear that we obtain the desired LGO
result if X is non-degenerate. However, determining when a given subvariety X
is non-degenerate or not is a highly non-trivial task. In previously applications
of this height inequality [5, 9], one started with constructing a non-degenerate
subvariety using results of [6].

In the current work, we apply [6] in a different way. Instead of constructing
a non-degenerate subvariety to start with, we do part (iv) of the Pila–Zannier
method more carefully to prove our theorem when X is degenerate and when X
is non-degenerate. The key idea here is to introduce another degeneracy locus
Xdeg(1) ⊆ X which by definition contains Xdeg, and reduce Theorem 1 to the
following statement.

Theorem 5. Under the assumptions of Theorem 1, we have Xdeg(1) = X.

Now ifX is degenerate, i.e. X = Xdeg, then we can conclude becauseXdeg(1) ⊇
Xdeg. If X is non-degenerate, then we follow the Pila–Zannier method described
above to prove Xdeg(1) = X . Hence we are done.
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Northcott numbers and applications

Fabien Pazuki

(joint work with Niclas Technau, Martin Widmer)

We start by recalling the definition of Northcott numbers. We then state a Bertini
theorem involving Northcott numbers, obtained in earlier collaboration between
the author and Widmer. We also state an undecidability criterion of Julia Robin-
son, based on Northcott numbers for totally real numbers. These two applications
are used as motivation for the Northcott number inverse problem, and we con-
clude by stating recent results on this inverse problem, obtained in collaboration
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between the author, Technau, and Widmer. For α ∈ Q, we denote by α the house
of α and we denote by h(α) the logarithmic Weil height of α.

Definition 1. Let f : Q → [0,∞[ be a function on Q. Let S ⊂ Q. For any real
number t, we pose St = {s ∈ S | f(s) ≤ t}. Then the Northcott number Nf (S) of
S, with respect to f , is defined by

Nf (S) = inf{t ≥ 0 |St infinite}.
In the case of the logarithmic Weil height, we get Nh(Q) = 0 and Nh(Q) = +∞.

Motivation 1: Bertini and Northcott.

To draw a curve on a projective variety with a control on its genus, degree, and
height, one may use the following result.

Theorem 2 (P. and Widmer, [4]). Let k be a number field and S ⊂ Q with
Nh(S) < +∞. Let X be a smooth closed subvariety in PNk , with dimX ≥ 2.There
exists a finite set s ⊂ S and a curve C/k(s) on X which is smooth, geometrically
irreducible, and such that

• g(C) ≤ (degX)2 + degX,
• degC ≤ degX,

• hPN (C) ≤ hPN (X) + (dimX)2(degX)
(
Nh(S) + 1 + 1

2 log(N + 1)
)
, where

hPN is a projective height.

The proof of Theorem 2 relies on previous work of Philippon, Rémond, Cadoret,
Tamagawa. The explicit dependance in S is new. It is very useful in the case where
X is an abelian variety, as can be seen in [3, 4]. Being able to construct sets S
with nice properties and bounded Northcott number Nh(S) is thus desirable.

Motivation 2: Undecidability after Julia Robinson.

Julia Robinson showed a deep link between undecidability questions and the
Northcott numbers with respect to the house. More precisely, if O is a ring
of algebraic integers of a subfield of the totally real algebraic numbers, write
Ot = {r ∈ O | 0 < σ(r) < t, ∀σ ∈ Gal(Q/Q)}. Define

A(O) = {t ∈ R ∪ {+∞} | Ot is infinite}.
Define the Julia Robinson number by JR(O) = inf A(O). We say that O has the
JR property if

JR(O) ∈ A(O).
Theorem 3 (Robinson, [6]). Let O be a ring of algebraic integers of a subfield of
the field of totally real algebraic numbers. If O has the JR property, then the semi-
ring (N, 0, 1,+, ·) is first order definable in O. In particular O has undecidable full
theory.

To progress on these undecidability questions, a possible path is thus to study
Northcott numbers restricted to totally real algebraic numbers.
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Northcott numbers: solution to the inverse problem.

Motivated by the preceding facts, we were interested in studying a question of
Videaux and Videla in [7], namely: which real numbers can be realized as North-
cott numbers? We obtain the following theorem.

Theorem 4 (P., Technau, Widmer, [5]). The following three properties are satis-
fied.

(i) Every t ≥ 1 is the Northcott number of a ring of integers of a field, with
respect to the house · .

(ii) For each t ≥ 0 there exists a field with Northcott number in [t, 2t], with
respect to the logarithmic Weil height h(·).

(iii) For any γ > 0, let hγ be defined by hγ(α) = deg(α)γh(α), for all α ∈ Q.
For all 0 < γ ≤ 1 and 0 < γ′ < γ there exists a field K with Nhγ′ (K) = 0 and

Nhγ
(K) =∞.

The proof of Theorem 4 uses sequences ((pi)
1/di)i≥1, where pi and di are care-

fully chosen primes. This is reminiscent of previous work of Widmer [8].
In a recent preprint [2], Okazaki and Sano extend our result (ii) and completely

solve the inverse problem for the logarithmic Weil height as well. They use se-
quences of the form ((pi/qi)

1/di)i≥1, where pi, qi, di are primes as well. These
constructions are also linked with the study of Corps de Siegel by Gaudron and
Rémond [1].
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Bounded Height in Pencils of Subgroups of finite rank

Francesco Amoroso

(joint work with David Masser and Umberto Zannier)

Let C ⊆ Pn be an absolutely irreducible curve with function field F := Q(C). We
fix a height on Pn(Q). Recently, we non-trivially extend the main result of [5],
which corresponds to the special case r = 1, V = {1} of the result below.



Diophantische Approximationen 1149

Theorem ([1], AMZ’17). Let Γ ⊂ Grm(F) be a finitely generated constant-free
subgroup1 and let V be a subvariety of Grm defined over F. Then the height of the
points t0 ∈ C(Q), such that for some γ ∈ Γ \ V the value γt0 is defined and lies in
Vt0 , is bounded above.

In 1997 Beukers [4] proved that the solutions t0 ∈ Q of the equation

tn + (1− t)n = 1 (Beukers)

with n integer > 1, has uniformly bounded height, h(t0) ≤ log(216). This is a
special case of AMZ’17: take F = Q(t), r = 2, Γ = 〈(t, 1 − t)〉 and V the line in
G2

m of equation x+ y = 1. It was the started point of our investigation.
As a new example, we find that the solutions t0 ∈ Q of the equation

tn + (1− t)n + (1 + t)n = 1 (Denz)

has uniformly bounded height (take F = Q(t), r = 3, Γ = 〈(t, 1− t, 1 + t)〉 and V
of equation x+y+z = 1). Denz [6] provides and explicit bound, h(t0) ≤ 856 log 2.

AMZ’17 allows also to solve some family of diophantine equations, see [2].

Here we deal with similar questions for the division group of a constant-free, finitely
generated subgroup Γ of Grm(F ). The trivial equation tλ = 2 already shows some

new phenomena. Since h( λ
√
2) = 1

λ log 2, we don’t have bounded height for a

rational λ close to 0. Consider now Beukers’ equation tλ + (1 − t)λ = 1 with
a rational exponent2λ Again, we could not expect uniformly bounded height for
λ→ 0. Indeed, if tλ0 + (1− t0)λ = 1 and t0 is not a root of unity,

h(t0) ≥
1

4λ
log

(1 +
√
5

2

)
− 1

2
log 2.

This follows from Zagier’s lower bound [7] for the height on x+ y = 1. Moreover,
we obviously don’t have bounded height when λ = 1 (since the equation becomes
trivial). Our first result extends Beukers’ result to a rational λ.

Theorem. Let λ be a positive rational λ 6= 1. Then the solutions t0 ∈ Q of
tλ + (1− t)λ = 1 satisfy:

h(t0) ≤ 100max(1, λ−1).

We generalise this result for specialisation of elements in the division group

of a finitely generated group of rational functions. Let C, F, Γ and V be as
at the beginning (with now V defined over Q). For n ∈ N, let Γ1/n = {γ ∈
Grm(F) | γn ∈ Γ} and Γdiv =

⋃
n Γ

1/n (division group). For f ∈ F, let hgeo(f) =∑
P max(−ordP (f), 0) (geometric height). We define a distance on Grm(F)/tors by

dist(γ1,γ2) = hgeo(γ1/γ2).

1That is, the image Γ′ by any surjective homomorphism Gr
m → Gm satisfies Γ′ ∩ Q

∗
= Γ′

tors
2If λ = p/q with p, q ∈ N, we say that t0 is a solution of tλ + (1 − t)λ = 1 if ∃u, v such that

t0 = uq, 1− t0 = vq and up + vp = 1.
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Theorem ([3]). Let ε ∈ (0, 1). Then the points t0 ∈ C(Q) such that for some
γ ∈ Γdiv the value γt0 is defined, non-zero, and lies in V , have h(t0) ≤ Cε, except
possibly for (γ, t0) with hgeo(γ) ≤ C such that

(γ/η)t0 · η ∈ V (F)

for some η ∈ Γ1/n with dist(γ,η) < ε. The constants

Cε = C(Γ, V, ε), C = C(Γ, V ) and n = n(Γ, V ) ∈ N

are effective.

When γ ∈ Γ and ε is sufficiently small, we have dist(γ,η) < ε⇒ η = γ. Thus
(γ/η)t0 · η = γ. We recover AMZ’17.

As an example, consider again Denz’s equation with now a rational exponent.
Then, the solutions tλ0+(1−t0)λ+(1+t0)

λ = 1 with λ ∈ Q have height h(t0) ≤ Cε,
except possibly for (λ, t0) for which |λ| ≤ C and

tλ−a0 ta + (1 − t0)λ−a(1− t)a + (1 + t0)
λ−a(1 + t)a = 1 (⋆)

for some integer a with |a − λ| < ε (which correspond to γ = (t, 1 − t, 1 + t)λ,
η = (t, 1 − t, 1 + t)a in the theorem, with “denominator” n = 1). Note that the
equation (⋆) has solutions only if a = 0 or 1. A close analysis of the solutions
of (⋆) corresponding to a = 1 shows that they have still bounded height. Thus

Corollary. Let ε ∈ (0, 1) and λ ∈ Q with |λ| > ε. Then the solutions t0 ∈ Q of

tλ0 + (1− t0)λ + (1 + t0)
λ = 1

satisfy h(t0) ≤ Cε.

References

[1] F. Amoroso, D. Masser and U. Zannier, “Bounded Height Problems and Silverman Special-
ization Theorem” , Duke Math J., 166, no. 13 (2017), 2599–2642.

[2] F. Amoroso, D. Masser and U. Zannier, “Pencils of norm form equations and a conjecture
of Thomas”. Mathematika, 67 (2021), 897–916 .

[3] F. Amoroso, D. Masser and U. Zannier, “Bounded Height in Pencils of Subgroups of Finite
Rank”. Work in progress.

[4] F. Beukers, “On a sequence of polynomials.” J. Pure Appl. Algebra 117-118 (1997), 97–103.
[5] E. Bombieri, D. Masser, and U. Zannier, “Intersecting a curve with algebraic subgroups of

multiplicative groups”, Internat. Math. Res. Notices 1999, no. 20, 1119–1140.
[6] A. Denz, “Bounding the height of certain algebraic numbers”, Master Thesis, University of

Basel 2016.
[7] D. Zagier, “Algebraic numbers close to both 0 and 1”, Math. Computation 61 (1993), 485–

491



Diophantische Approximationen 1151

Small height and local degrees

Sara Checcoli

(joint work with Arno Fehm)

Let h be the absolute logarithmic Weil height on a fixed algebraic closure Q of Q.
This is a non-negative function which, by Kronecker’s theorem, takes value zero
precisely at zero and at the roots of unity. While points of minimal height are well
understood, there are nevertheless many interesting questions concerning points
of non-zero small height.

A first result in this setting is Northcott’s theorem, which states that any set
of algebraic numbers having bounded degree and bounded height is finite (and, in
principle, can be explicitly described), making the height and its generalizations a
very important tool in diophantine geometry. A second inescapable statement is
that of Lehmer’s conjecture, asserting that there is a constant c > 0 such that, for
any α ∈ Q, the product h(α)[Q(α) : Q] is either zero or bigger than c. Lehmer’s
conjecture has been proven to be true for several classes of algebraic numbers, but
stands open in general.

One can now ask whether there are sets of algebraic numbers for which the above
statements hold without conditions on the degree. Such sets are precisely those
satisfying the properties of Northcott and Bogomolov introduced by Bombieri and
Zannier [4]: a set of algebraic numbers A has the Northcott property (N) if it
contains finitely many elements of bounded height, while it has the Bogomolov
property (B) if there exists some constant C > 0 such that, for all α ∈ A, h(α) is
either 0 or at least C.

It is easy to see that property (N) implies property (B), while the proof that
the converse is false is non trivial. The simplest counterexample is the field Qab,
the maximal abelian extension of Q, which has property (B) by [1] and which
clearly fails to have property (N) as it contains infinitely many roots of unity. By
Northcott’s theorem, both properties hold for number fields. On the other hand
none of the properties hold for Q, as for instance h( n

√
2) tends to 0 as n increases.

An interesting (and in general hard) problem is then, given an infinite algebraic
extension of Q, to decide whether it satisfies property (N) or (B).

In recent decades there has been a lot of activity around property (B) and we
now know many examples of fields that satisfy this property. It holds, for instance,
as evoked earlier, for Qab (by [1]), for Kab, the maximal abelian extension of a
number field K (by [2], [3]) and for the field Q(Etor) obtained by adding to Q all
coordinates of the torsion points of an elliptic curve E defined over Q (by [6]).
All these examples are fields obtained by adding torsion to a base field. A second
class of examples comes from field satisfying some local conditions: property (B)
holds, for instance, for the field Qtr of totally real numbers (by [7]) and for any
Galois extension L/Q having bounded local degrees at some prime p i.e., that can
be embedded in a finite extension of Qp (by [4]). In particular, it holds for the

field of totally p-adic numbers Qtp and for the field K(d), the compositum of all
extensions of a number field K of degree at most d.
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Concerning property (N), results continue to be relatively rare. A first result,

proved by Bombieri and Zannier ([4, Theorem 1]), is that it is satisfied by K
(d)
ab ,

the maximal subextension of K(d) being abelian over K, for all d and number
fields K. A second result due to Widmer ([8, Theorem 3]) is that it holds for
unions of infinite towers of number fields where, at each step, the discriminants
grow enough. It is natural to ask if there are other examples of fields with (N).

Before stating our result, we need to take a step back to Property (B): in [4,
Theorem 2] it is proved that it holds for Galois extensions of Q with bounded local
degree at some prime and, more precisely, that if L/Q is Galois and S(L) 6= ∅ is
the set of primes at which L has bounded local degrees, then

lim inf
α∈L

h(α) ≥ β(L) = 1

2

∑

p∈S(L)

log p

ep(pfp + 1)

where ep and fp are, respectively, the ramification index and inertial degree of L
at p. The authors of [4] remark also that if β(L) = ∞ then L has also (N) and
that β(L) = ∞ if L is a number field. They then ask whether there are infinite
extensions L/Q for which β(L) is divergent. One can further ask whether there
are infinite extensions L/Q for which β(L) is divergent and that are not covered
by the results of Bombieri-Zannier and Widmer.

In a joint work with Arno Fehm [5] we positively answer this question proving
that there exist infinite Galois extensions L/Q such that β(L) = ∞, L is not

contained in Q
(d)
ab and L does not satisfy Widmer’s criterion. We also show that, if

one is only interested in the divergence of β(L), there is some freedom in choosing
the Galois group i.e., that given any infinite product G =

∏∞
i=1Gi of finite solvable

groups Gi, there exists L/Q Galois such that Gal(L/Q) = G and β(L) =∞.
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Hermite equivalence of polynomials

Jan-Hendrik Evertse

(joint work with Manjul Bhargava, Kálmán Győry, László Remete,
Ashvin Swaminathan)

In 1857, Hermite [11] introduced an equivalence relation for univariate polynomials
in Z[X ], which has remained rather unnoticed. In our work, mostly contained in
[4], we compare this with the much better known GL2(Z)-equivalence.

Let us first consider decomposable forms of degree n ≥ 2 in n variables F (X) =
F (X1, . . . , Xn) = c

∏n
i=1(αi,1X1 + · · ·+ αi,nXn), where the coefficients of F itself

are in Z and the coefficients of its linear factors are algebraic numbers. The
discriminant of F is D(F ) = c2(det(αi,j))

2. Call two decomposable forms F,G
as above GLn(Z)-equivalent if there is a matrix U ∈ GLn(Z) such that G(X) =
±F (UX). Then F,G have the same discriminant. Hermite proved [9, 10] that
the decomposable forms with integer coefficients in n variables of degree n ≥ 2
and discriminant D 6= 0 lie in finitely many GLn(Z)-equivalence classes. To a
polynomial f = c(X − α1) · · · (X − αn) of degree n we associate a decomposable
form [f ](X) = cn−1

∏n
i=1(X1 + αiX2 + α2

iX3 + · · · + αn−1
i Xn). If f has integer

coefficients then so does [f ]. Further, by Vandermonde’s identity for determinants,
D([f ]) = c2n−2

∏
1≤i<j≤n(αi−αj)2, which is precisely the discriminant D(f) of f .

In accordance with Hermite’s definition from 1857, we call two polynomials f, g ∈
Z[X ] Hermite equivalent if [f ] and [g] are GLn(Z)-equivalent. Then, as observed
by Hermite, the polynomials in Z[X ] of given degree n ≥ 2 and discriminant D 6= 0
lie in finitely many Hermite equivalence classes.

A much better known equivalence relation for univariate polynomials is GL2(Z)-
equivalence. We call two polynomials f, g ∈ Z[X ] of degree n GL2(Z)-equivalent if
there is

(
a b
c d

)
∈ GL2(Z) such that g(X) = ±(cX + d)nf((aX + b)/(cX + d)). It is

not hard to show that two GL2(Z)-equivalent polynomials are Hermite equivalent.
In 1972, Birch and Merriman [5] proved that for any n ≥ 2 and D 6= 0 there are

only finitely many GL2(Z)-equivalence classes of polynomials in Z[X ] of degree n
and discriminant D; their proof is ineffective. Evertse and Győry [7] gave in 1991
an effective proof, allowing in principle to determine a full system of representatives
for the GL2(Z)-equivalence classes. While in his work Hermite used reduction
theory of positive quadratic forms, Birch and Merriman and Evertse and Győry
had to use much deeper tools such as finiteness results for unit equations and
Bakeer type estimates for logarithmic forms.

In what follows we restrict ourselves to polynomials in Z[X ] that are primitive,
i.e., whose coefficients have no common factor, and irreducible. Let PI(n) denote
the set of these polynomials of degree n. Taking a root α of some f ∈ PI(n), we
define the so-called invariant order of f , Zα := Z[α] ∩ Z[α−1]. This is an order
in the number field Q(α), which is up to isomorphism uniquely determined by f .
We define the invariant ideal of f to be the fractional ideal Iα := Zα + αZα. We
are now ready to state some of our results.
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It follows from famous work of Delone and Faddeev [6] from 1940 that two
polynomials f, g ∈ PI(3) are GL2(Z)-equivalent, if and only if they are Hermite
equivalent, if and only if they have isomorphic invariant orders. We now mention
some results for polynomials of degree n ≥ 4.

Theorem 1 ([4]). Let n ≥ 4 and f, g ∈ PI(n). Then f, g are Hermite equivalent
if and only if f has a root α and g a root β such that Zα = Zβ and Iα and Iβ are
in the same ideal class of Zα.

For n = 4 we provide examples of polynomials f, g that have the same in-
variant order, but with invariant ideals from different ideal classes. Hence these
polynomials are not Hermite equivalent.

From work of Bérczes, Evertse and Győry [1], it follows that if K is any number
field of degree n ≥ 4 and O any order in K, then the polynomials f ∈ PI(n) with
invariant order isomorphic to O lie in at most C(n) GL2(Z)-equivalence classes.
Recently, Bhargava [3] obtained the bound C(4) = 10, and Evertse and Győry

[8] the bound C(n) = 25n
2

for n ≥ 5. Of course this implies that any Hermite
equivalence class of polynomials in PI(n) falls apart into at most C(n) GL2(Z)-
equivalence classes.

As for lower bounds, at the moment we can do no better than the following.

Theorem 2 ([4]). Let n ≥ 4. Then PI(n) contains infinitely many Hermite
equivalence classes that are the union of at least two GL2(Z)-equivalence classes.

We would like to pose the following problem. For a number field K, let PI(K)
denote the set of primitive, irreducible polynomials in Z[X ] having a root that
generates K. Is it true that PI(K) has only finitely many Hermite equivalence
classes that fall apart into more than one GL2(Z)-equivalence class?

From the work of Delone and Faddeev mentioned above, for cubic polynomials
Hermite equivalence and GL2(Z)-equivalence coincide. It follows from work of
Bérczes, Evertse and Győry [2] that if K is a number field of degree n ≥ 5 whose
Galois closure has as Galois group the full symmetric group Sn, then PI(K)
contains only finitely many Hermite equivalence classes that are represented by
a monic polynomial and fall apart into at least two GL2(Z)-equivalence classes.
Further, they showed that there are number fields K of degree 4 for which this is
false.

As for now (unpublished work in progress by JHE) we can prove only the
following. Let K be a number field of degree n. Call two Hermite equivalence
classes H1 and H2 in PI(K) GL2(Q)-equivalent if there are f ∈ H1 and g ∈ H2

such that g(X) = λ(cX + d)nf((aX + b)/(cX + d)) for some λ ∈ Q∗ and
(
a b
c d

)
∈

GL2(Q).

Theorem 3. Let K be a number field of degree n ≥ 5. Suppose that the Galois
closure of K has Galois group Sn. Then the Hermite equivalence classes in PI(K)
that fall apart into more than one GL2(Z)-equivalence class lie in finitely many
GL2(Q)-equivalence classes.
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47 (1854), 313–342.

[11] C. Hermite, Extrait d’une lettre de M. C. Hermite à M. Borchardt sur le nombre limitè
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Integral points in orbits under finitely many morphisms

Jorge Mello

(joint work with Yu Yasufuku)

A famous theorem of Siegel says that any nonsingular curve of genus 1 defined
by a polynomial equation f(x, y) = 0 with rational coefficients has only finitely
many solutions (x, y) ∈ Z2. Siegel’s proof relies on diophantine approximation
results, namely on versions of a celebrated theorem of Roth. We are interested in
dynamical analogues of Siegel’s results.

Let k be a number field, S be a finite set of places ( including all archimedean
ones) RS be the ring of S-integers, X be an algebraic variety (smooth) over k,
and φ : X → X be a morphism defined over k. We denote the n-iterate of φ by
φ◦n = φ ◦ · · · ◦ φ︸ ︷︷ ︸

n times

and the orbit of P ∈ X by Oφ(P ) = {φ◦n(P ) : n ≥ 0}.

In a dynamical analogue of Siegel’s problem, one can ask how big can the set
of integral points in Oφ(P ) be.

On X = P1, finiteness will fail for polynomial mappings, and these form the
main set of exceptions for having such sparsity according to the following

Theorem 1. ([5] Silverman 1993) Let φ(x) ∈ k(x) of degree d ≥ 2 with φ◦2(x) /∈
k[x]. Then #(Oφ(P ) ∩RS) is finite for all P ∈ P1(k).
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For any divisor D of X defined over k and each place v of k, one can associate
local heights λv(D, ·) : X(k)\|D| → R and a global Weil height h(D, ·) : X(k)→ R

such that
∑

v λv(D,P ) = h(D,P ) +O(1) for every P ∈ X(k) \ |D|.
Extending Silverman’s result, Hsia and Silverman proved ([3]), under similar

conditions, a quantitative upper bound for the size of the set

{φ◦n(P ) :
∑

v/∈S
λv((∞), φ◦n(P )) ≤ (1− ǫ)h((∞), φ◦n(P ))}

of ǫ-quasiintegral points in the orbit of a rational map φ on P1 and 0 < ǫ < 1.
Among other applications, this result is useful to prove finiteness of points whose
orbits have multiplicative dependent iterates [1].

In [4], finiteness of quasiintegral points in orbits on P1 was established in the
context of semigroup dynamics. Namely, given φ1, . . . , φℓ : P1 → P1 morphisms
defined over k, F = 〈φ1, ...φℓ〉 the semigroup generated by φ1, . . . , φℓ via com-
position, and OF(P ) = {φ(P ) : φ ∈ F} the semigroup orbit of P ∈ P1, if we
suppose that deg φi ≥ 2 and φi is not totally ramified at any point of OF(∞),
then {φ(P ) : φ ∈ F ,∑v/∈S λv((∞), φ(P )) ≤ (1− ǫ)h((∞), φ(P ))} is finite for each
0 < ǫ < 1. An ingredient to prove such results is a quantitative version of Roth’s
Theorem. In higher dimension, we have the following deep conjecture.

Conjecture 2. (Vojta) Let X be a smooth projective variety, D be a reduced
normal-crossing (NC) divisor, K be a canonical divisor, and A be an ample divisor,
all def. over k. Then for all ǫ > 0, there exists a Zariski-closed Zǫ 6= X such that
for all P ∈ X(k)\Zǫ,∑

v∈S
λv(D,P ) + h(K,P ) < ǫh(A,P ) +O(1).

When X = Pn and D is a NC union of hyperplanes, this conjecture becomes
Schmidt’s subspace theorem. It also provides the context for generalizations to
higher dimension. The one below recovers Theorem 1 in dimension 1.

Theorem 3. ([6] Yasufuku 2015) Let φ : PN (k)→ PN (k) be a morphism of degree
d ≥ 2. Let D be a divisor on PN def. over k and D◦n

nc be the red. normal-crossings

part of (φ◦n)∗(D). Let cn =
degD◦n

nc − (N + 1)

deg(D)dn
. Let P ∈ PN (k) and ǫ > 0.

Then, assuming Conjecture 2 for D◦n
nc , the following set is Zariski-non-dense:

{
φ◦m(P ) :

∑

v/∈S
λv(D,φ

◦m(P )) ≤ (cn − ǫ)h(D,φ◦m(P ))

}
.

For projective varieties and semigroups, we obtain the following

Theorem 4. (Mello, Yasufuku) Let X be a smooth projective variety, K a canon-
ical divisor, A an ample divisor, φ1, . . . , φℓ endomorphisms of X, all def. over k,
and F = 〈φ1, . . . , φℓ〉. Suppose there exist ψ1, . . . , ψm ∈ F and an effective divisor
D def. over k such that

(i) ψ∗
i (D) = D

(nc)
i +D′

i, D
(nc)
i is NC, and D

(nc)
i +K is big for all i
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(ii) F \
m⋃

i=1

(ψi ◦ F) is finite.

Then, assuming Conjecture 2 for (X,D
(nc)
i ), there exists ǫ > 0 such that for all

P ∈ X(k), the set below is not Zariski-dense:
{
φ(P ) : φ ∈ F ,

∑

v/∈S
λv(D,φ(P )) ≤ ǫh(A, φ(P ))

}
.

We also use a quantitative generalization of Schmidt’s subspace theorem due to
Evertse and Ferretti ([2]) to prove unconditional results.

Theorem 5. (Mello, Yasufuku) Let φ1, . . . , φℓ be endomorphisms of PN def. over
k and F = 〈φ1, . . . , φℓ〉. Suppose there exist ψ1, . . . , ψm ∈ F and an effective
divisor D of PN def. over k such that

(i) ψ∗
i (D) = Di1 + Di2 + · · · + Di,qi + D′

i is effective, Di1, . . . , Di,qi are in
general position, and qi > N + 1 for all i

(ii) F \
m⋃

i=1

(ψi ◦ F) is finite.

Then there exists ǫ ∈ (0, 1) such that for any P ∈ PN(k), the following set is not
Zariski-dense: {

φ(P ) : φ ∈ F ,
∑

v/∈S
λv(D,φ(P )) ≤ ǫh(φ(P ))

}
.

Example 6. Let φ1 = [L1L2 : L3L4 : XY ], and φ2 = [G0 : G1 : L5L6L7L8] on
P2(k), where each Li is a line, X = 0, Y = 0, L1, . . . , L8 are in general position, Gi
is a homogeneous polynomial of degree 4, L5, . . . , L8 do not go through any points
of (G0 = 0)∩ (G1 = 0), and G0G1 = 0 contains at least 4 lines in general position.
If D = (Z = 0), then φ∗2(D) = (L5L6L7L8 = 0), (φ◦21 )∗(D) = (L1L2L3L4 = 0),
and (φ1 ◦φ2)∗(D) = (G0G1 = 0). Each of these divisors contains a NC subdivisor
consisting of lines of degree at least 4. In this case, theorems 4 and 5 reduce to
Schmidt subspace theorem, and since F\(φ◦21 ◦F)∪(φ2◦F)∪((φ1◦φ2)◦F) = {φ1},
we unconditionally obtain that OF (P ) ∩ {[a : b : 1] : a, b ∈ RS} is contained in a
finite union of curves for any P ∈ P2.
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Some new elliptic integrals

David Masser

(joint work with Umberto Zannier)

In 1981 James Davenport published his Ph.D. thesis [2] about the computer-
assisted integration of algebraic functions of a single variable. Most of the book
concerned specific integrals like

(22)

∫
dx

x− τ ,
∫

dx

(x2 − τ2)
√
x3 − x

.

The focus was on the possibility of doing the integration by elementary means; that
is, by using functions built up from the field C(x) through taking algebraic exten-

sions like C(x,
√
x3 − x) or logarithmic extensions like C(x, log x) or exponential

extensions like C(x, exp x). Or all three:

C(x,
3
√
x4 − 1, 5

√
log log x, exp( 6

√
log(1 + exp(x7)))).

However Davenport did make some speculations about one-parameter families
like

(23)

∫
dx

x− t ,
∫

dx

(x2 − t2)
√
x3 − x

.

where now t is an independent variable. For a general
∫
f(x, t)dx, where the

integrand is algebraic over C(x, t), he surmised that there are at most finitely
many complex values τ of t such that

∫
f(x, τ)dx can be done by elementary means

unless there is the obvious obstruction. Namely that
∫
f(x, t)dx itself cannot be

done by elementary means using extensions as above but starting with C(x, t)
instead of C(x), as for example in the first of (23), which is of course log(x − t)
and so gives log(x− τ) in the first of (22).

In 2020 Zannier and I [4] obtained two counterexamples to Davenport’s surmise
(and in principle we could characterize them all, at least over the algebraic closure
of Q(x, t) - they are somewhat rare), namely

(24)

∫
xdx

(x2 − t2)
√
x3 − x

,

∫
xdx

(x2 + tx+ t2)
√
x3 − 1

,

the first not quite as in the second of (23) - indeed that is not a counterexample,
so that there are indeed at most finitely many τ such that the second of (22) can
be done by elementary means. Originally we had included

(25)
((5t2 + 40t+ 62)x+ t3 + 8t2 + 70t+ 144)dx

(x− t)((2t+ 8)x+ t2 + 4t+ 18)
√
x3 − 30x− 56
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as a third counterexample, but Detmar Welz expressed scepticism and then we
found a mistake in our calculations. Going further we could show that there are
at most 138 complex τ for (25).

Now (24) involves elliptic curves with complex multiplication by
√
−1 and (−1+√

−3)/2, while (25) has
√
−2. In [4] we then expressed the opinion that there are

no counterexamples with
√
−2.

Recently in trying to streamline our argument for (25) we saw how to use the
Weierstrass zeta function ζ(z) to reduce 138 to 0 (so no τ at all). At the same
time we could then after all construct a counterexample simply by adding 1 to the
rational part of the integrand, leading to

(26)
(x2 + (2t+ 10)x+ 2t+ 18)dx

(x− t)((2t+ 8)x+ t2 + 4t+ 18)
√
x3 − 30x− 56

.

We could even construct similar counterexamples for any (imaginary)
√
−d and

show that they are essentially unique. That for
√
−43 has degree 105 in t and

coefficients with about 170 digits.
The relevant fact for ζ in (26) is

(27) ζ(
√
−2z) +

√
−2ζ(z) = 2

√
−2z −

√
−2
4

℘′(z)

℘(z) + 4

where of course ℘′(z)2 = 4(℘(z)3−30℘(z)−56). Such things can already be found
in my own Ph.D. thesis [3]. And there Lemma 3.2 hints why we got stuck at (24).

Analogues of (27) for the Weierstrass sigma function appear to be related to
the phenomenon of Ribet curves discovered by Daniel Bertrand [1].
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Université de Bordeaux
351, cours de la Libération
33405 Talence
FRANCE

Prof. Dr. Emmanuel Breuillard

Department of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
UNITED KINGDOM



Diophantische Approximationen 1161

Prof. Dr. Yann Bugeaud

I R M A
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Pascal, University Clermont Auvergne
Campus Universitaire des Cézeaux
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