
Mathematisches Forschungsinstitut Oberwolfach

Report No. 26/2022

DOI: 10.4171/OWR/2022/26

Deterministic Dynamics and Randomness in PDE

Organized by
Andrea Nahmod, Amherst

Gigliola Staffilani, Cambridge MA
Hendrik Weber, Bath
Sijue Wu, Ann Arbor

22 May – 28 May 2022

Abstract. Over the last few years there has been spectacular progress in
the study of parabolic SPDE, of nonlinear dispersive and wave equations and
of probabilistic methods in PDE. An important direction connecting these
three fields is the general question of how randomness affects the behavior of
solutions to PDE. Research in recent years has been driven by the study of
randomness in nonlinear evolution equations with a focus on the question of
how to quantify the transport of such randomness under the nonlinear flow.

Mathematics Subject Classification (2020): 35xx, 60xx, 76xx.

Introduction by the Organizers

The workshop titled Deterministic Dynamics and Randomness in PDE, organized
by Andrea Nahmod (University of Massachusetts Amherst), Gigliola Staffilani
(MIT), Hendrik Weber (University of Bath, UK) and Sijue Wu (University of
Michigan) was a great success. It was attended by a total of 53 mathematicians,
of which 37 in person and 16 virtually, eight of them were women. There was
broad geographic representation from most continents and participants’ career
level spanned over all different stages, from graduate students to full professors.
We want to remark that having two graduate students from the start assigned to
handle and manage all of the virtual component of the workshop turned out to be
a fantastic and necessary set up. Everything went smoothly during the talks and
the interactions between the in house and the virtual audience.

When the workshop was proposed we anchored its intellectual merit on the
fruitful interaction across three topics in the general area of Partial Differential
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Equations: Stochastic Parabolic PDE, Dispersive and Wave PDE in a determinis-
tic and probabilistic setting and fluid dynamics. In our proposal in fact we wrote:
We envision the Oberwolfach workshop to be a venue where experts and junior
researchers on nonlinear dispersive and wave equations (deterministic and nonde-
terministic), on nonlinear stochastic parabolic equations, and on the intersections
of these two major fields of research, converge to discuss in a synergistic fashion
recent results and explore the deep connections between approaches and the devel-
opment of new integrative methods to tackle some of the challenging questions that
remain unanswered in these fields. We believe that our workshop fully delivered
along the directions we had set for it, and ultimately the secret to its success can
be captured by two elements: the interdisciplinary character of the talks and the
dynamic atmosphere provided by a great balance of junior and senior participants.

Every day we scheduled five talks, except for Wednesday and Friday, when
only three talks were given in the morning. The speakers were given guidelines in
advance on how to prepare their talks. These included the following five strongly
suggested elements:

(1) A very general overview of the theme of your talk that includes cen-
tral/relevant definitions for non-experts.

(2) An outline of a theory/a strategy/group of ideas, that you think are rele-
vant.

(3) A sketch of a proof that you think is most insightful to present.
(4) A description of some of the most salient open questions related to your

talk.
(5) When possible indicate connections/ideas that are fertile for cross polli-

nation among SPDE/Prob/PDE.

We are happy to report that the speakers in general adhered to our suggestions
and as a result there was a lively engagement by the audience during the talks,
and an eagerness to continue the conversation during the breaks.

We also scheduled two sessions on Tuesday and Wednesday evenings, during
each of which six junior researchers gave short talks (15 min). These short talks
served two purposes: facilitating the communication between junior and senior
researchers and showcasing the wonderful recent work of so many talented junior
people who could not be accommodated in the schedule with a full length talk.
We are aware of at least one case in which a short talk generated great interest
among two senior participants and a collaboration was started.

We highlight some of the scientific aspects of the workshop in the next section.
We would like to mention that a large number of participants, and in particu-
lar the junior ones, specifically mentioned that during the whole workshop one
could enjoy an extremely relaxed, cooperative, fun and stimulating environment.
In this atmosphere conducive to the easy exchange of ideas, new collaborations
started, fresh conjectures were made, horizons were broadened and hopefully a
new generation of researchers was inspired.
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1. Highlights of the workshop

As mentioned above, the 21 talks were all of great quality, well delivered and
mathematically of broad interest. Among them we highlight a few which reported
on new and important results, explained cutting edge ideas and novel techniques.
The order we give below is that found in the section with the extended abstracts,
which in turn reflects the order in which the talks were delivered.

1.1. DiPerna-Lions for dispersive PDEs: quasi-invariance and global wellposed-
ness for fractional NLS in negative regularity, by Leonardo Tolomeo. In this
talk, a proof of global well-posedness for a fractional non-linear Schrödinger equa-
tions using the quasi-invariance of certain Gaussian measures on distributions was
presented. This work connects two different active branches of research, both key
to the workshop, namely: establishing global well-posedness using the exact invari-
ance of a given measure (e.g. the Gibbs measure) and showing quasi-invariance of
Gaussian probability measures. The former is by now a well-established technique
that has been applied to many equations. A limitation of this technique is that the
Gibbs measures in general fixes the regularity or realisations to a specific value,
thereby limiting the scope of situation one can consider. On the other hand, a lot
of recent activity has been dedicated to showing that whole families of Gaussian
measures of different regularities, while not exactly preserved under the flow of a
PDE still remain quasi-invariant. Up to Tolomeo’s work, this was however limited
to high-regularity situations, where global well-posedness was clear by different
(easier) techniques. In his talk, Leonardo provided the first example of a global
well-posedness result which is based on the quasi-invariance and genuinely goes
beyond the deterministic theory.

1.2. Invariant Gibbs measures for the three-dimensional cubic nonlinear wave equa-
tion, parts I and II, by Bjoern Bringmann and Yu Deng. These two talks
presented a highly impressive recent work by Bringmann, Deng, Nahmod and
Yue, which established the invariance of the Euclidean Φ4 measure on the three-
dimensional torus under the dynamics of the cubic non-linear wave equation. Es-
tablishing the invariance of Gibbs measures under the flow of Hamiltonian PDE
is a by-now well-established research direction and as mentioned above, many re-
sults had been obtained previously. The work presented here however, pushes
these results to a completely different level of difficulty. Realisations of the three-
dimensional Φ4 measure are much more irregular than what had been treated in
this context so far. Technically, the talks showcased an impressive way of deal-
ing with multi-linear estimates and cancellations in a large number perturbative
terms, mixed with some ideas from the community of (parabolic) SPDEs, thereby
underlining the potential benefit of collaboration between the communities brought
together in this workshop. At the end of Bringmann’s talk M. Gubinelli pointed
out that a mysterious cancellation that is key in the work presented (named the
1533-cancellation) was reminiscent to a similar phenomenon in the KPZ equation.
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1.3. Stochastic analysis of Euclidean fields via the variational method, by Mas-
similiano Gubinelli. This talk surveyed a series of seminal works by Gubinelli
with Barashkov where a powerful and original variational approach was introduced
to study the construction of Euclidean QFT. This approach was first introduced
as an alternative to stochastic quantization for the Φ4

3 model. This point of view
allowed Barashkov and Gubinelli to construct a novel measure via a random shift
of the Gaussian free field and proving that the Φ4

3 measure can be constructed as
an absolutely continuous perturbation of it. They later studied the infinite vol-
ume limit of the variational description of Euclidean quantum fields. In his talk,
Gubinelli reviewed this method, its uses and conveyed important connections to
renormalisation group approach and studies of transport of measures. His talk
was very well received not only as very instructive but also quite stimulating.

1.4. Renormalization and stochastic estimates without Feynman diagrams, by Fe-
lix Otto. In this talk, Otto presented recent joint work with Linares, Tempelmayr,
and Tsatsoulis where the authors give an innovative approach to construct and
stochastically estimate the renormalized model in the work of Chandra and Hairer
(2016). More precisely under a spectral gap assumption on the noise ensemble, it
provides within regularity structures an inductive mechanism to renormalize and
estimate the centered model while avoiding the use of Feynman diagrams. In his
talk Otto explained this new method and presented how to naturally carry it out
for a class of quasi-linear parabolic PDEs driven by noise in the full singular range.

1.5. On the wave turbulence theory for a stochastic KdV type equation, by Minh-
Binh Tran, and The mathematical theory of wave turbulence, by Zaher Hani.
In these talks the speakers presented the first mathematically rigorous derivation of
the wave kinetic equations (WKE), at the kinetic time, for a KdV type dispersive
equation and for the cubic NLS respectively. In a sense one should view these
derivations as the equivalent of the derivation of the Boltzmann equation, but for
waves instead of particles interactions. The WKE give the effective dynamics for
the energy spectrum of the dispersive equation at hand, when a weak nonlinearity
is considered. In his talk Tran explained his work with Staffilani on the derivation
of the WKE for a multidimensional KdV type equation with an added stochastic
term, which conserves the energy and does not regularize the nonlinear effects.
The stochastic term though is necessary to offset the badly behaved dispersive
relation of the KdV that is defined on a multidimensional lattice. Hani’s talk
was centered also on the derivation of the WKE, but for a continuum cubic NLS
equation, a joint work with Deng. He explained how the Duhamel expansions
translate into decorated trees, and how different type of key cancellations were
necessary to control the combinatorics in the higher order trees. Hani pointed out
that one of these cancellations was similar to the one already mentioned above
in the description of the talks of Bringmann and Deng and remarked upon by
Gubinelli.
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Abstracts

On asymptotic stability of solitons in classical 1D scalar field theories

Jonas Lührmann

(joint work with Wilhelm Schlag, Yongming Li)

We consider the asymptotic stability properties of solitons in classical (1 + 1)-
dimensional scalar field theories

(1) (∂2t − ∂2x)φ+W ′(φ) = 0, (t, x) ∈ R× R,

where W : R → R is a scalar interaction potential. Prime examples include the φ4

model and the sine-Gordon model, as well as the quadratic and cubic 1D Klein-
Gordon equations. The main goal of this talk is to survey recent advances in
the study of the (conditional) asymptotic stability of the solitons in these clas-
sical models, and to explain the role that threshold resonances of the linearized
operators play for the long-time dynamics of perturbations of these solitons.

More specifically, we discuss two types of scalar potentials:

• single-well potentials W (φ) = 1
2φ

2 − 1
p+1 |φ|p+1, p > 1, leading to the 1D

focusing Klein-Gordon equations (KGp),
• double-well potentialsW (φ) featuring two consecutive global minima φ− <
φ+ withW (φ±) = 0. The minima φ± are sometimes referred to as vacuum
states. The classical examples are the sine-Gordon model with W (φ) =
1− cos(φ) and the φ4 model with W (φ) = 1

4 (1− φ2)2.

Both types of models admit non-trivial static solutions −∂2xQ+W ′(Q) = 0, x ∈ R,
satisfying limx→±∞Q(x) = 0 for the single-well potentials and limx→±∞Q(x) =
φ± for the double-well potentials. In the latter case these static solutions are called
kinks since they connect the two distinct vacuum states φ±.

Due to the invariance of the models under translations and Lorentz transfor-
mations, arbitrary perturbations may cause the solitons Q(x) to start moving. To
reduce the complexity of the asymptotic stability problems for them, in a first
step one imposes symmetry assumptions about the perturbations to prevent the
translational mode from entering the dynamics. Then the evolution equation for
a small perturbation u(t, x) := φ(t, x) −Q(x) is of the schematic form

(2) (∂2t − ∂2x + V (x) +m2)u = α(x)u2 + β0u
3, (t, x) ∈ R× R,

where V (x) is a smooth localized potential, m > 0 is a mass parameter, α(x) is a
smooth (bounded, possibly localized) variable coefficient, and β0 ∈ R is a constant
coefficient. Depending on the specific asymptotic stability problem, the linearized
operator −∂2x + V (x) +m2 has additional spectral features such as threshold res-
onances (sG, φ4, KG2, KG3), positive gap eigenvalues (φ4, KG2), and negative
eigenvalues (KG2, KG3). The zero eigenvalue (translational mode) is not relevant
due to the symmetry assumptions on the perturbations.

The (conditional) asymptotic stability problems for the solitons of the φ4 model,
the sine-Gordon model, and for KG2/3 are deeply related by the fact that the
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potentials in the linearized operators all belong to the hierarchy of reflectionless
Pöschl-Teller potentials [20] given by V (x) = ℓ(ℓ+ 1)sech2(x), ℓ ∈ N0 (ℓ = 1: sG;
ℓ = 2: φ4, KG3; ℓ = 3: KG2).

Proving the (conditional) asymptotic stability of Q(x) then consists in proving
the decay to zero of small solutions to (2). Key difficulties in the analysis of the
long-time behavior of small solutions to (2) are the slow dispersive decay of 1D
Klein-Gordon waves, the low power nonlinearities (leading to modified scattering),
and the consequences of threshold resonances or internal modes exhibited by the
linearized operators.

A main goal of this talk is to explain the new phenomena and outstanding
challenges caused by threshold resonances in the analysis of the long-time behavior
of small solutions to (2). Formally, the linearized operator L = −∂2x + V (x) +m2

exhibits a threshold resonance if there exists a bounded non-trivial function ϕ 6= 0
such that Lϕ = m2ϕ. The significance of the presence of a threshold resonance
for the dynamics of perturbations of a soliton is primarily that the corresponding
Klein-Gordon waves only have slow local decay. In fact, the bulk of the Klein-
Gordon waves still have improved local decay, only a projection to the threshold
resonance exhibits the slow local decay, see the refined local decay estimate (2.62)
in [14, Corollary 2.17].

One generally distinguishes the notion of local asymptotic stability, referring to
the convergence to zero of small solutions to (2) locally in the energy space, and
the notion of full asymptotic stability, referring to sharp L∞

x (R) decay estimates
and asymptotics for small solutions to (2).

An approach to proving (conditional) local asymptotic stability via virial-type
(or positive commutator) methods has been pioneered in [9, 11, 12, 8, 10]. See
also [17, 4] for related recent contributions. We highlight that [9, 10] establish the
local asymptotic stability of the φ4 kink under odd perturbations. An outstanding
difficulty for this local asymptotic stability approach is that integrated local energy
decay estimates for the (dispersive part of) perturbations of the soliton do not seem
to be possible due to the failure of L2

t -integrability in time of the contributions
of the threshold resonances to the local decay of the corresponding Klein-Gordon
waves.

Several approaches towards proving full asymptotic stability results have been
put forth over the last few years: using the distorted Fourier transform, see e.g. [6,
7, 3], using the wave operator, see e.g. [5], or using super-symmetric factorization
properties of the linearized operators [18]. The key difficulty that the presence of
a threshold resonance poses for full asymptotic stability results is the formation of
a singular quadratic source term due to the slow local decay of the Klein-Gordon
waves. This type of source term is highly problematic for (distorted) vector field
based methods to derive decay, and can potentially lead to a slow-down of the
decay rate of the perturbations [16, 14].

In [14, 18] a remarkable non-resonance property of the corresponding quadratic
nonlinearity in (2) for perturbations of the sine-Gordon kink was uncovered, which
suppresses the worst effects of the source term. This led to a perturbative proof via
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super-symmetry by the author and W. Schlag [18] of the full asymptotic stability
of the sine-Gordon kink under odd perturbations, for which the proof ideas are
discussed in more detail in this talk. See [2] for a proof using inverse scattering
techniques for the completely integrable sine-Gordon model.

If no favorable cancellation structures are present, further ideas are needed at
this point to deal with the quadratic source term caused by the threshold reso-
nances to obtain full (conditional) asymptotic stability results. This is for instance
the main difficulty to establish the full conditional asymptotic stability of the soli-
ton for KG3 under even perturbations. Interestingly, an internal mode creates a
related (but even worse) source term in the nonlinear Klein-Gordon equation for
the dispersive part of perturbations of the φ4 kink. It is the main challenge towards
establishing a full asymptotic stability result for odd perturbations of the φ4 kink,
which remains a major open problem. See [5] for long-time decay estimates up to
times ε−4+c.

We conclude by referring to the sample of very recent works [6, 5, 2, 8, 14, 18, 1,
4, 19, 13, 10] for further references and perspectives on the study of the asymptotic
stability of solitons, or solitary waves, for 1D wave-type or 1D Schrödinger models.
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DiPerna-Lions for dispersive PDEs: quasi-invariance and global
well-posedness for fractional NLS in negative regularity

Leonardo Tolomeo

(joint work with Justin Forlano)

In this talk, we consider the Cauchy problem for the fractional NLS with cubic
nonlinearity,

(FNLS) iut + (−∆)αu± |u|2u = 0,

posed on the one-dimensional torus T, with a gaussian random initial of the form

u0 =
∑ gn

〈n〉s e
in·x,

where gn are i.i.d. complex-valued normal random variables. In particular, we
focus our attention to the global well-posedness theory when s ≤ 1

2 , which implies

that u0 6∈ L2(T).
The study of Hamiltonian PDEs with random initial data was initiated by

McKean and Vaninsky for the cubic wave equation, and by Bourgain for the
mass-critical Schrödinger equation, both posed on T, in [9, 3]. These works were
concerned with showing the invariance of the Gibbs measure associated to the
Hamiltonian; the measures having been rigorously studied earlier by Lebowitz,
Rose and Speer [8].

In particular, Bourgain in [3] introduced the so-called Bourgain’s invariant mea-
sure argument. The idea is to use the formal invariance of the Gibbs measure, as
a replacement for a conservation law, to obtain almost sure global well-posedness
on the support of the Gibbs measure. This scheme was applied in [3] to the
one-dimensional NLS

i∂tu−∆2u+ |u|p−1u = 0,

where p ∈ 2N+1, for almost every initial data (distributed according to the Gibbs

measure) belonging to the L2-based Sobolev space H
1
2−ε(T), where ε > 0. The
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local-in-time dynamics had been constructed earlier in another seminal paper by
Bourgain [2].

These results by Bourgain generated a lot of interest in the study of disper-
sive/Hamiltonian PDEs with random initial data, especially in the situation where
it is possible to prove invariance of the Gibbs measure. This is typically a very
difficult problem as in many cases of interest, such as in [4], the Gibbs measure
is supported on a space of functions which are too rough for deterministic well-
posedness theory to apply (if it even exists at such regularities). This issue neces-
sitates a probabilistic (local) well-posedness theory, that goes beyond deterministic
results by exploiting cancellations due to random oscillations.

Since the original papers by Bourgain, the field has had a tremendous develop-
ment, and to this day, there is an abundance of probabilistic local well posedness
results for dispersive equations with random initial data, even in situations where
no invariant measure is available. However, the corresponding global well posed-
ness results are particularly lacking. Due to the very low regularity of the solutions,
the standard techniques are often not applicable, and the only technique that has
been applied with some success is showing energy estimates for a smooth part of
the solution, see [5].

In this talk, we present a new approach for the global well posedness theory of
(FNLS) with gaussian initial data. Inspired by the celebrated work of DiPerna-
Lions [6] and subsequently of Ambrosio [1], we focus our attention to the solution
of the Liouville equation

µt = (Φt)#µ0,

where µ0 denotes the law of the initial data u0. By exploiting the formal expression
for the solution of this equation

µt = exp
(ˆ t

0

Q(Φ−t′(u0))
)
µ0,

and exploiting the probabilistic local well posedness theory, we can show that the
Liouville equation is globally well posed in the Orlicz space exp

(
(logLβ)

)
(µ0), for

some appropriate β(s, α) > 1, as long as s > s∗(α). We can then use Bourgain’s
invariant measure argument to extend these bounds to the solution of (FNLS)
emanating from almost every initial data.

When

1 < α < 1
20 (17 + 3

√
21) ≈ 1.537,

this global well posedness holds for initial data which is rougher than what is
allowed by the deterministic local well posedness theory.

The result presented in this talk can be found in [7].
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The Euclidean φ4

2
theory as a limit of an interacting Bose gas

Vedran Sohinger

(joint work with Jürg Fröhlich, Antti Knowles, Benjamin Schlein)

A Euclidean field theory of a scalar field Λ ⊂ Rd is given by a formally-defined
probability measure on the space of fields φ : Λ → RN of the form

(1) µ(dφ) =
1

c
e−S(φ)Dφ ,

where Dφ =
∏
x∈Λ denotes the formal Lebesgue measure on the space of fields, S

is the action and c is a normalisation constant. In the N -component Euclidean φ4d
theory, the action in (2) is given by

(2) S(φ) := −
ˆ
Λ

dxφ(x) · (θ +∆/2)φ(x) +
λ

2

ˆ
Λ

dx |φ(x)|4 .

In (2), θ and λ are constants, ∆ is the Laplacian on Λ with appropriate boundary
conditions, and | · | is the Euclidean norm on RN . We consider throughout the
regime N = 2 and identify R2 ≡ C, in which case (1) is formally invariant under
the flow of the nonlinear Schrödinger equation (NLS)

i∂tφ =
1

2
∇S(φ) = −(θ +∆/2)φ+ λ|φ|2φ .

In this context, one refers to (1) as the Gibbs measure. The study of these measures
and their invariance in the framework of random initial data with low regularity
was pioneered in the work of Bourgain [1, 2], with many subsequent developments.

A difficulty in the analysis that arises when d > 1 is that the interaction term
V (φ) := λ

2

´
Λ dx |φ(x)|4 in (2) is ill-defined due to the roughness of φ. We rewrite

(1) by introducing an R2-valued Gaussian free field on Λ with law P, given by the
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Gaussian measure on the space of fields with mean zero and covariance (2κ−∆)−1

for κ > 0 a constant. For a suitable normalisation constant ζ, we write (1) as

(3) µ(dφ) =
1

ζ
e−V (φ) P(dφ) .

Throughout the sequel, we consider d = 2, in which case to define (3), we need to
Wick-order the interaction as

V (φ) =
λ

2

ˆ
Λ

dx : |φ(x)|4 :

=
λ

2

ˆ
Λ

dx

(
|φ(x)|4 − 4E

[
|φ(x)|2

]
|φ(x)|2 + 2E

[
|φ(x)|2

]2
)
.(4)

The quantity (4) is non-positive, yet is is still possible to show that e−V (φ) ∈ L1(P)
[8, 9].

Our goal is to establish a relationship between Euclidean field theories of the
form (1), (3) and interacting Bose gases with repulsive two-body interactions in
two dimensions. In particular, we show that the Euclidean φ42 theory describes
the limiting behaviour of an interacting Bose gas at positive temperature. The
limiting regime we consider is a high-density limit in a box of fixed size with the
range of the interaction tending to zero in a suitable way.

In the quantum setting, we work on the bosonic Fock space F =
⊕

n H
(n),

where H(n) denotes the symmetric subspace of L2(Λ)⊗n. Given ν, ǫ > 0, we define
the quantum many-body Hamiltonian on F

Hν,ǫ =
⊕

n∈N

H(n)
ν,ǫ ,

where

(5) H(n)
ν,ǫ = ν

n∑

i=1

(
−∆i

2
+ κ
)
+
ν2

2

n∑

i,j=1

vǫ(xi − xj)− aν,ǫn+ bν,ǫ .

In (5), we take the rescaled interaction potential

vǫ(x) =
∑

n∈Z2

1

ǫ2
v
(x− n

ǫ

)
,

where v : Rd → R is an even, smooth, compactly supported function of positive
type (i.e. v̂ ≥ 0) whose integral is equal to one. Moreover, aν,ǫ and bν,ǫ are suitable
mass and energy renormalisations respectively. The grand canonical ensemble is
the sequence (ρn)n given by

(6) ρn ≡ ρν,ǫ,n =
1

Zν,ǫ
e−H

(n)
ν,ǫ , Zν,ǫ :=

∑

n∈N

TrH(n)e−H
(n)
ν,ǫ .

For p ∈ N, one defines the p-particle reduced density matrix γν,ǫ,p by its operator
kernel

(7) (γν,ǫ,p)x1,...,xp;y1,...,yp :=
∑

n≥p

n!

(n− p)!
Trp+1,...,n(ρν,ǫ,n) ,
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where Trp+1,...,n denotes the partial trace in xp+1, . . . , xn. We compare (7) with
the classical p-particle correlation functions

(8) (γp)x1,...,xp;y1,...,yp := Eµ
[
φ(y1) · · ·φ(y1)φ(x1) · · ·φ(xp)

]
.

We then show the following result.

Theorem 1 (Theorem 2.1 in [6]). Suppose that ǫ ≡ ǫ(ν) satisfies

(9) ǫ ≥ exp
(
−(log ν−1)1/2−c

)

for some c > 0. Then, with notation as in (3), (6), (7), (8), as ǫ, ν → 0 satisfying
(9), we have convergence of the partition function

(10) Zν,ǫ :=
Zν,ǫ

Z
(0)
ν

→ ζ

and for all p ∈ N and r ∈ [1,∞)

(11) γν,ǫ,p
Lr

−→ γp .

In (10), Z
(0)
ν denotes the free partition function, which is obtained by setting vǫ = 0

and aν,ǫ, bν,ǫ = 0 in (5). Furthermore, we can improve the convergence in (11)
to that in the L∞ norm under a suitable Wick-ordering procedure of the reduced
density matrices and correlation functions.

In our analysis, we compare the field theory obtained from the interaction (4)
with that obtained from a regularised interaction

(12) V ǫ =
1

2

ˆ
Λ2

dxdy : |φ(x)|2 : vǫ(x − y) : |φ(y)|2 : −τ ǫ
ˆ
Λ

dx : |φ(x)|2 : −Eǫ ,

where : · : denotes Wick ordering with respect to P and τǫ, Eǫ are suitably chosen
diverging counterterms. The proof of the theorem consists of three ingredients.

(1) A quantitative analysis of the convergence of the quantum problem (with
nonlocal interaction) to the classical problem with interaction (12) for
fixed ǫ > 0. This step relies on a precise analysis of the functional integral
formulation we had previously set up in [4]. The details of this step are
given in [6, Section 5].

(2) A comparison of the classical field theory with interaction (12) and (4).
This is based on a version of Nelson’s argument [8] for nonlocal interac-
tions. This comparison is done in [6, Sections 4.1–4.2].

(3) A Gaussian integration by parts that allows us to obtain uniform control
on the Wick-ordered correlation functions. This method is reminiscent of
Malliavin calculus. The details are given in [6, Section 4.3].

The methods applied above allow us to study the defocusing nonlocal cubic NLS
for interaction potentials in optimal Lq classes [6, Theorem 5.23]. We note that
an alternative approach to the results for the nonlocal problem proved in [4] was
independently given by Lewin, Nam, and Rougerie in [7]. A summary of these
related results is given in [5].
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Transport of Gaussian measures with exponential cut-off for
Hamiltonian PDEs

Renato Lucà

(joint work with Giuseppe Genovese, Nikolay Tzvetkov)

1.1. Introduction. The goal here is to study the the transport of Gaussian mea-
sures under the flow of non integrable Hamiltonian PDEs, in particular their quasi-
invariance. The results have been obtained in [5].

The main contribution here is the introduction of a suitable exponential cut-off
that helps to prove quasi-invariance of Gaussian measures for a class of Hamilton-
ian PDEs. As example for the method we consider the fractional Benjamin-Bona-
Mahony (BBM) equation and the one dimensional quintic defocussing nonlinear
Schrödinger equation (NLS), both in the one dimensional periodic setting. For the
BBM equation the situation is particularly simple, as the candidate for a quasi-
invariant measure is simply the Gaussian measure with a cut-off on the energy
(3), while for the NLS equation we consider additional weights based on the mod-
ified energies introduced in [13], [14]. For BBM we also show almost sure global
well-posedness for data in Cα(T) for arbitrarily small α > 0 and invariance of
the Gaussian measure associated with the Hβ/2(T) norm, following the seminal
approach developed by Bourgian in [1].

Definition 1. A measure µ is invariant under a (reversible) flow map {Φt}t∈R if
µ ◦Φt = µ for any t ∈ R and it is quasi-invariant if µ ◦Φt is absolutely continuous
w.r.t. µ.
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1.2. The BBM equation. For β > 1, we consider the fractional BBM equation,
posed on the one dimensional flat torus T := R/2πZ:

(1) ∂tu+ ∂t|Dx|βu+ ∂xu+ ∂x(u
2) = 0, u(0, x) = u0(x) ,

where u is real valued and

|Dx|β(u)(x) :=
∑

n6=0

|n|βû(n)einx .

The parameter β measure the dispersion, the case β = 1 is the dispersionless.
Let {hn}n>0, {ln}n>0 be two independent sequences of independent standard

Gaussian random variables. Let g0 be a standard Gaussian random variable inde-
pendent on anything else and set

gn :=

{
1√
2
(hn + iln) n ∈ N

1√
2
(hn − iln) −n ∈ N .

Let β > 1, s ≥ 0 and denote by γs the Gaussian measure on Hs induced by the
random Fourier series

(2) ϕs(x) =
∑

n∈Z

gn

(1 + |n|2s+β) 1
2

einx .

The measure γ0 is special because we expect that it is invariant under Φt thanks
to the Hβ/2 conservation. More precisely

Theorem 2. [5]. Let β > 1. Equation (1) is globally well-posed for γ0-almost all
initial data. Moreover the measures γ0 is invariant under the resulting flow.

The proof exploits : 1) the standard characterisation of the support of γ0,
namely that

⋂
α< β−1

2
Cα is a full γ0-measure set.; 2) the (simple) fact that equation

(1) is locally wellposed on Cα, for all α ≥ 0. Thus combining Theorem 2 and the
Poincaré recurrence theorem, we have for all β > 1 recurrence of the solutions
with respect to the Cα topology, α < β

2 − 1
2 , almost surely with respect to γ0.

When s > 0 we study the quasi invariance of γs introducing suitable weights.
First, we introduce a rigid cut-off on

(3)

ˆ
|u|2 + |Dβ/2u|2,

namely on the Hβ/2 norm, which is a conserved quantity. Moreover, and this
is the mail novelty of our approach, we introduce an exponential weight the Hs

Sobolev norm. More precisely, given some R > 0, we define

(4) ρs(du) := 1{‖u‖
Hβ/2≤R}(u) exp(−‖u‖2rHs)γs(du) , r > 2.

We focus on the case β ∈ (1, 2], however, the case β > 2 may be deduced by a
classical result of Ramer [15]; see [16].

Theorem 3. [5]. Let β ∈ (1, 2], s > β
2 such that s + β/2 > 3/2. Let also r > 2.

The measures ρs are quasi-invariant along the flow of (1). The densities fs(t, u)
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of the transported measures are in Lp(ρs) for all t ∈ R and p < ∞. Moreover if
s > 3

2

(5) fs(t, u) := exp
(
− ‖Φtu‖2rHs − 1

2
‖Φtu‖2

Hs+
β
2

+ ‖u‖2rHs +
1

2
‖u‖2

Hs+
β
2

)
.

This result extends and refine (at least in some aspect) the one in [16]. We
remark that the difference

(6) −1

2
‖Φtu‖2

Hs+
β
2
+

1

2
‖u‖2

Hs+
β
2

has to be interpreted as a single object, since both terms are a.s. infinite in the
support of γs, while their difference is finite.

The restriction s > β/2 is in order to take advantage of the exponential cut-off,
since it gives no additional help for s ≤ β/2 than the rigid cut-off on the Hβ/2

norm. The assumption s > 3
2 for the densities is technical.

1.3. The NLS equation. We prove similar results for the defocusing quintic NLS
on T:

(7) i∂tu+ ∂2xu = |u|4u, u(0, x) = u0(x).

The L2 norm of the solution ‖u‖L2 and the energy

(8) E1(u) =
1

2
‖u‖2H1 +

1

6
‖u‖6L6

are formally conserved by the flow. In [13], [14] a countable family of modified
energies

E2k := ‖u‖H2k +R2k, k ≥ 1,

has been introduced. The derivative along the flow of the modified energies is not
zero, but it presents however some smoothing, which makes them still useful in
order to control the growth in time of the Sobolev norms of the solutions. We will
not specify here the form of the remainder R2k.

Since here we have complex solutions, we take a sequence of complex standard
Gaussian random variables {gn}n∈Z and for integers k ≥ 2 the Fourier series

(9) ϕ2k(x) =
∑

n∈Z

gn

(1 + |n|4k) 1
2

einx .

We indicate by γ2k the induced measure on H2k− 1
2− :=

⋂
ε>0H

2k− 1
2−ε. We study

the transport of the Gaussian measure γ2k introducing : 1) a rigid cut-off on the
conserved quantities introduced above, i.e. mass and energy, 2) suitable weights
based on the modified energies of [14], 3) an exponential cut-off on the H2k−1

norm. More precisely, given some R > 0

(10) µ2k(du) := 1{‖u‖L2+E1(u)≤R}(u) exp(−R2k(u)− ‖u‖2rH2k−1)γ2k(du) ,

We prove
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Theorem 4. [5]. Let k ≥ 2 be an integer. There exists r(k) > 0 sufficiently large
such that for all r > r(k) the measures µ2k are quasi-invariant along the flow of
(7). For all t ∈ R, there exists p = p(|t|) > 1 such that the densities f2k(t, u) of
the transported measures are in Lp(µ2k). Moreover

(11) f2k(t, u) := exp
(
− ‖Φtu‖2rH2k−1 − E2k(Φtu) + ‖u‖2rH2k−1 + E2k(u)

)
.

This refines the analogous result from [14].

Remark 5. The result of [16] was extended to more involved models in [2, 4, 7,
8, 3, 9, 10, 12, 6]. We believe that, beyond the BBM and NLS equation, the idea
of an exponential cut-off introduced in the present paper may be relevant in the
context of some of these works and, more generally, in the study of quasi-invariant
measures for Hamiltonian PDEs.
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Resonance-based schemes for dispersive equations via decorated trees

Yvain Bruned

(joint work with Katharina Schratz)

We consider nonlinear dispersive equations of the form

(1)
i∂tu(t, x) + Lu(t, x) = p (u(t, x), u(t, x))

u(0, x) = v(x), (t, x) ∈ R+ ×Td

where L is a differential operator and p is a polynomial nonlinearity. We assume
local wellposedness of the problem on the finite time interval ]0, T ], T < ∞ for
v ∈ Hn. Our main aim is to give a numerical approximation of u at low regularity
when n is small. Interesting examples are the cubic nonlinear Schrödinger (NLS)
equation (L = ∆, p(u, u) = |u|2u) and the Korteweg–de Vries (KdV) equation
(L = i∂3x, p(u, u) = i∂xu

2). In [9], a new numerical framework for (1) embeds
the underlying resonance structure into the discretisation. This allows an approx-
imation with high order accuracy under low regularity assumptions that classical
techniques require. The scheme is built using a tailored decorated tree formalism
that takes its inspiration from algebraic structures developed for singular SPDEs
with Regularity Structures (see [14, 6, 3, 7]). We introduce a novel class of deco-
rations encoding the dominant frequencies. In order to construct such a scheme,
one iterates Duhamel’s formula in Fourier space given by:

(2) ûk(τ) = eiτP (k)v̂k + eiτP (k)(−i
ˆ τ

0

e−iξP (k)pk (u(ξ), u(ξ)) dξ)

where P (k) and pk(u, ū) are given for NLS by

P (k) = −k2, pk(u, ū) =
∑

k=−k1+k2+k3

¯̂uk1 ûk2 ûk3 .

Then, one can write a truncated B-series type expansion U rk of the solution ûk:

(3) U rk (τ, v) =
∑

T∈Vr
k

Υp(T )(v)

S(T )
(ΠT ) (τ)

where Vrk is a finite set of decorated trees, S(T ) is the symmetry factor associated
to the tree T , Υp(T )(v) is the coefficient appearing in the iteration of Duhamel’s
formulation and (ΠT )(τ) represents a Fourier iterated integral. The exponent r
in Vrk means that we consider iterated integrals with r + 1 integrals. Then, one
has to replace each (ΠT )(τ) by its resonance approximation (Πr,nT )(τ) where n is
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the regularity assumed a priori on the initial value v. We illustrate this resonance
discretisation on the following integral:

(4) (ΠT )(τ) =

ˆ τ

0

eiξ(k
2+k21−k22−k23)dξ, k = −k1 + k2 + k3

described by an appropriate decorated tree T . One has

k2 + k21 − k22 − k23 = Ldom + Llow, Ldom = 2k21 , Llow = −2(k2 + k3)k1 + 2k2k3.

Then, we Taylor-expand the lower part Llow that asks only one derivative on the
initial value in comparison two derivatives coming from the dominant part Llow.
This dominant part is integrated exactly and mapped back to physical space. For
our example above, one gets:

(5) (ΠT )(τ) = (Πn,rT )(τ) +O
(
τLlow

)
, (Πn,rT )(τ) =

e2iτk
2
1 − 1

2ik21
.

Here, we assumed that n ≤ 1. If n = 2, one can proceed with a full Taylor
expansion. The resonance scheme Un,rk of order r with regularity n is defined by

(6) Un,rk (τ, v) =
∑

T∈Vr
k

Υp(T )(v)

S(T )
(Πn,rT ) (τ).

The main idea of the local error analysis is to single out oscillations. Indeed, the
exact integration of a polynomial P (k) provides two resonances eiτP (k) and 1:

(7)

ˆ τ

0

eiξP (k)dξ =
eiτP (k) − 1

iP (k)

Then, they will interact with other oscillations in a big iterated integrals. The
combinatorial difficulty of the problem can be handled by a deformed Butcher-
Connes-Kreimer coproduct (see [10, 11, 12, 9]) and the use of a Birkhoff factori-
sation (see [9, 5]). This leads to one of the main results in [9], for every T ∈ Vrk
(8) (ΠT −Πn,rT ) (τ) = O

(
τr+2Lrlow(T, n)

)
.

where Lrlow(T, n) involves all lower order frequency interactions. Let us mention
some recent extensions of this scheme as a conclusion. This scheme has been
extended to more general nonlinearities in [1] where it is written directly in physical
space via the use of nested commutators. A discretisation of the second moment of
the solution is performed via this resonance scheme for PDEs with random initial
data in [2]. In the future, one may expect connections between the decorated
trees combinatorial approach of this scheme and some other works presented in
this workshop in Wave turbulence theory (see [13, 15]) and in dispersive equations
with random initial data (see [4]) where the same type of combinatorics is needed.
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On the hard phase fluid with free boundary in relativity

Shuang Miao

(joint work with Sohrab Shahshahani, Sijue Wu)

The hard phase model describes a relativistic barotropic and irrotational fluid with
sound speed equal to the speed of light. In the framework of general relativity,
the fluid, as a matter field, affects the geometry of the background spacetime.
Therefore the motion of the fluid must be coupled to the Einstein equations which
describe the structure of the underlying spacetime. This model is an idealized
model for the physical situation where, during the gravitational collapse of the
degenerate core of a massive star, the mass-energy density exceeds the nuclear
saturation density. See [3, 4, 8, 15, 25, 29].

In [16] we study Einstein’s equations coupled to a hard phase fluid with free
boundary surrounded by vacuum. The fluid domain is a priori unknown and has
to be determined by the boundary conditions. The first boundary condition simply
says that the fluid pressure vanishes on the boundary, which is the analogue of
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the vanishing of surface tension in the Newtonian setting. The second condition
states that a fluid particle on the boundary will remain on the boundary for all
time. The restriction to the hard phase state is both because of the independent
interest of this model as discussed above, and because, as described in [17], this
model captures the important mathematical features of more general barotropic
equations of state.

Following Choquet-Bruhat’s existence theorem in [7] for Einstein’s equations in
vacuum, well-posedness results have been established for the Einstein equations
coupled to many different matter fields. Indeed, much progress has been made
beyond the local theory in the past few decades. Despite all the progress in this
direction, in the presence of isolated bodies, especially with free boundaries, our
understanding of even the local theory is very limited. A well-posedness theory
for isolated bodies is of central importance as it is naturally the first step in
any further analysis of the motion and interaction of gravitating bodies. With
the exception of [2, 14, 22], which consider special solutions under symmetries or
where the motion of the boundary is not tracked, the only work on well-posedness
for isolated bodies in general relativity that we are aware of is [1], which considers
the very different case of solid elastic bodies. The free boundary problem for fluid
bodies is, however, very different and includes many new analytical challenges
even in the Newtonian setting. To the best of our knowledge the current work is
the first to prove well-posedness for a free-boundary fluid equation in the setting
of general relativity. The type of fluid model considered in this work, where the
energy density has a jump across the fluid boundary, is sometimes referred to as a
liquid model. Well-posedness for such free boundary fluid models is already subtle
in the Newtonian case, and the first satisfactory local theory in Sobolev spaces
was developed only in the mid 1990s in [26, 27] for the case of water waves.1 More
recently, well-posedness was established for relativistic liquids with free boundary
in [18, 20, 21, 17], but in the case of a fixed background, that is, without coupling
to Einstein’s equations. See also [19] for the case of two spatial dimensions, [10] for
a priori estimates under smallness assumptions, [24] for an existence results using
Nash-Moser iteration, and [11]. For related developments in the gaseous case
(where the energy density vanishes at the fluid boundary) on a fixed background
see [6, 12, 13].

The work [16] is a continuation of our earlier work [17]. The idea is to use the
general setup developed in [17] to treat the relativistic fluid. However, a main
difficulty is that in the presence of Einstein’s equations one has to guarantee that
geometric quantities do not break the regularity structure necessary to close the
estimates for the fluid quantities. This is achieved by working in a frame that is
parallel transported along the fluid velocity. The idea of using frames to derive
estimates in the study of Einstein’s equations has a long history, and has proved
especially useful in long time analysis of the dynamics. See for instance [5]. Some

1The interested reader is referred to these works and for instance [17, 28] for more on the
history of the well-posedness theory in the Newtonian case.
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of the choices we have made are inspired by the work [9] which studies various
formulations of the Bianchi equations as a first order hyperbolic system. However,
our final formulation is different from the ones considered in [9], especially because
the free boundary fluid is analyzed differently based on [17].
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Paracontrolled calculus and regularity structures

Masato Hoshino

(joint work with Ismael Bailleul)

The two pathwise approaches for the renormalizations of singular stochastic PDEs
have been developed in the last decades: the theory of regularity structures [8]
and paracontrolled calculus [7]. The former is highly general and strong enough to
establish the so-called “black box theorem” by the continuing papers [8, 5, 6, 4].
On the other hand, the paracontrolled calculus developed in [7] is not sufficient
to do the same thing as [8]. Indeed, in some situations (e.g. 3d generalized
parabolic Anderson model), we need more decompositions of the solutions as in
[1]. The first motivation of our work is that whether we can do the same thing as
regularity structures within the paracontrolled calculus. As a first step, we tried
to prove that the deterministic parts of the both approaches are same at least in
the Euclidean space Rd.

The main results of our work consists of two parts: to construct an interpre-
tation map of the languages in the regularity structures to the paracontrolled
counterparts, and to show the existence of the inverse map. In the following, we
describe the statements of [2, 3] roughly. We call a pair (T+, T ) a concrete regu-
larity structure if T+ =

⊕
α∈A+ T+

α is a graded Hopf algebra with the countable

and locally finite index set A+ ⊂ [0,∞) and T =
⊕

β∈A Tβ is a graded linear space
with the countable and locally finite index set A ⊂ R bounded from below and

with the right comodule structure ∆ : T → T ⊗ T+. We assume that each T
(+)
α is

finite dimensional and fix a basis B(+)
α of T

(+)
α . We set B(+) :=

⋃
α∈A(+) B(+)

α . For

any τ, σ ∈ B(+), we can define the element τ/σ ∈ T+ by the expansion formula
∆(+)τ =

∑
σ∈B(+) σ ⊗ (τ/σ) of the coproduct ∆(+)τ , where ∆+ is the coproduct

operator defined on T+. A model (g,Π) is a pair of two objects: g is a continuous
function from Rd to the character group G on T+ with the regularity conditions

gyx(τ) := (gy ⊗ g−1
x )∆+τ = O(|y − x|α)
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for any τ ∈ B+
α . Moreover, Π is a continuous linear operator from T to S ′(Rd)

with the regularity conditions

Πg

xσ := (Π⊗ g−1
x )∆σ = O(|y − x|β)

for any σ ∈ Bβ (this should be understood in a distributional sense). For any given
model (g,Π) and a parameter γ ∈ R, a modelled distribution f of class Dγ(g) is a
function from Rd to T such that the regularity conditions

Qα{f(y)− gyx · f(x)} = O(|y − x|γ−α)
hold, where gyx ∈ G is identified with the linear operator on T by gyx · τ :=
(id⊗ gyx)∆τ , and Qα : T → Tα is the canonical projection map.

The first part of the main results is stated as follows. We fix a Littlewood-
Paley decomposition {∆i} and define the Hölder-Besov space Cα and the Bony’s
paraproduct Pfg :=

∑
i<j−1 ∆if∆jg.

Theorem 1 ([2]). For any given model (g,Π), we define the continuous linear
maps [·] : T+ → C(Rd) and [·] : T → S ′(Rd) by the formulas

(1) g(τ) =
∑

η∈B+

α′
, α′<α

Pg(τ/η)[η] + [τ ], Πσ =
∑

ζ∈Bβ′ , β′<β

Pg(σ/ζ)[ζ] + [σ]

for any τ ∈ B+
α and σ ∈ Bβ. Then [τ ] ∈ Cα for any τ ∈ B(+)

α , and the mapping
from (g,Π) to [·] is continuous.

Moreover, we have similar decompositions for the modelled distributions: for
any f =

∑
σ∈Bβ , β<γ

fσσ ∈ Dγ(g), we define the functions [fσ] by

(2) fσ =
∑

µ∈Bα, β<α

Pfµ [µ/σ] + [fσ]

for any σ ∈ Bβ. Then [fσ] ∈ Cγ−β for any σ ∈ Bβ, and the mapping from Dγ(g)
to [·] is continuous.

The next problem is that, if the remainders [τ ] ∈ Cα and [fσ] ∈ Cγ−β are given,
then whether the formulas (1) and (2) define a model and a modelled distribution,
respectively. We need more inductive assumptions on the base structure (T+, T ),
which are (essentially) satisfied by the specific algebra introduced in [5]. The
second part of the main results is stated as follows. We actually consider Hölder
spaces with polynomial weights in this part.

Theorem 2 ([3]). We assume that B+ (resp. B) is generated from a basis
{Xk}k∈Nd of the polynomial regularity structure and a finite generating set G+

◦
(resp. B•) (see Assumptions (A)-(C) in [3] for the precise meaning). The the sub-
families {[τ ] ; τ ∈ G+

◦ } and {[σ] ; σ ∈ B• ∩ Bβ, β < 0} determine a unique model
(g,Π) by the formulas (1).

Moreover, if we further assume that the expansion of ∆τ for any τ ∈ B• does not
contain the term σ⊗Xk with k 6= 0 (see Assumption (D) in [3]), then the subfamily
{[fσ] ; σ ∈ B•} determine a unique modelled distribution f by the formula (2).
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Codimension one stability of catenoids under the hyperbolic vanishing
mean curvature flow with respect to non-symmetric perturbations

Sohrab Shahshahani

(joint work with Jonas Lührmann and Sung-Jin Oh)

In this talk we discuss the stability of the Lorentzian catenoid as a solution of
the hyperbolic vanishing mean curvature flow (HVMCF), with respect to non-
symmetric perturbations. Solutions of the HVMC flow are embeddings

Φ :M 7→ (R× Rn+1, η),

whereM is an n+1 dimensional manifold and η is the standard Minkowski metric

η =

(
−1 0
0 I(n+1)×(n+1)

)
,

such that Φ∗η is Lorentzian and �Φ∗

η
Φ = 0. Here �Φ∗η denotes the Laplace-

Beltrami operator with respect to the pull back metric Φ∗η, which, since Φ∗η
is Lorentzian, is the wave operator on (M,Φ∗η). The HVMCF is the hyperbolic
analogue of the classical minimal surface equation, or the parabolic mean curvature
flow. Formally, the equation can be viewed as the Euler-Lagrange equation for the
action (area functional)

A =

ˆ
M

√
| detΦ∗η|.

Local well-posedness for this equation for sufficiently regular data was proved in
the late 1970s by Aurilia and Christodoulou [2, 1]. In general, critical points of
the Riemannian area functional for maps

Φ0 :M → (Rn+1, e),
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where e denotes the Euclidean metric and M is an n dimensional manifold, satisfy
the equation

∆Φ∗

0e
Φ0 = 0.

Any such Φ0 gives rise to a solution of the HVMCF from M = R×M defined by

Φ(t, x) = (t,Φ0(x)).

We refer to these solutions as stationary solutions, or solitons of the HVMCF. A
natural question is the stability of such solutions.

The simplest example of such Φ0 is a linear embedding of a hyperplane. In
this case, after a suitable formulation of the equation (that is, a choice of gauge)
the problem reduces to proving decay estimates for solutions to a quasilinear wave
equation with small initial data on Minkowski space. Stability of the hyperplane
solution (in a suitable topology) was proved by Brendle [3] when n ≥ 3 and by
Lindblad [6] for n = 2. Another natural choice for Φ0 is the embedding of a
Riemannian catenoid as a surface of revolution, which gives rise to the Lorentzian
catenoid as a stationary solution of the HVMCF. This amounts to proving the
stability of a non-trivial stationary solution to a quasilinear wave equation. It
is known from the work of Fischer-Colbrie and Schoen [5] that the Catenoid is
an index one minimal surface. This means that the second variation of the area
functional has a growing mode. Consequently, the best result one can hope for
in terms of stability is the codimension one stability in an appropriate topology
for the initial data. Moreover, isometries of the ambient Minkowski space (R ×
Rn+1, η) map the Lorentzian catenoid into other Lorentzian catenoid which are
close to the original one (even in spatially weighted L2 topologies for the metrics).
Therefore, one should consider the stability not of just one Lorentzian catenoid, but
of a 2n dimensional family, F , of Lorentzian catenoids generated by translations
and Lorentz boosts of the ambient space1. For radially symmetric perturbations
Donninger, Krieger, Szeftel, and Wong [4] proved codimension one stability of
the Lorentzian catenoid for2 n = 2. Note that the restriction of radial symmetry
precludes translations and Lorentz boosts, and therefore one does not need to
consider the family F in this case. In this work we consider arbitrary perturbations
without assumption of symmetry. When n is greater than or equal to five, we find
a codimension one set of initial perturbations of the Lorentzian catenoid, for which
the solution converges to a member of the family F . The convergence is tracked
by ODEs (known as modulation equations) for the translation and Lorentz boost
parameters which track which member of F the solution converges to.

Compared to the more classical semilinear case there are a number new diffi-
culties. Some of the key challenges in our context are: (1) the quasilinearity of
the equation, (2) slow (polynomial) decay of the stationary solution at infinity,

1Translations and Lorentz boosts in the direction of the axis of symmetry, as well as scalings,
yield perturbations which are far from the original catenoid at spatial infinity in weighted L2

topologies.
2n = 2 is analytically the most difficult case, and the methods in [4] extends to higher

dimensions.
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and (3) lack of symmetry assumptions. To address these challenges, we introduce
several new ideas, such as a geometric construction of modulated profiles, smooth-
ing of modulation parameters, and a robust framework for proving decay for the
radiation part, which we hope will be useful in the broader context of stability
analysis of stationary solutions of quasilinear wave equations in the presence of
modulation.
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Growth of energy density for the Schrödinger map

Valeria Banica

(joint work with Luis Vega)

We will first introduce a chain of connected equations: the binormal flow, which
is a model for vortex filament dynamics in 3D fluids, the 1D Schrödinger map
with values in the 2D sphere, which is the classical continuous Heisenberg model
in ferromagnetism, and the 1D cubic NLS, which arises in many physical models.

Vortex filaments appear in 3-D fluids when vorticity is large and concentrated in
a thin tube around a curve in R3. The binormal flow (BF) is the oldest, simpler and
richer formally derived model for one vortex filament dynamics. More precisely,
if the vorticity ω(t) is concentrated along an arclength-parametrized curve χ(t) in
R3, its evolution in time, after a time rescaling, is modeled by:

(1) χt = χx × χxx.

This goes back first to Da Rios in 1906 ([9]), by using formal asymptotics starting
from Biot-Savart formula. The latest result concerning the rigorous justification
of the model is due to Jerrard and Smets in 2017 ([14]), which, still under the
hypothesis of persistence of concentration of the vorticity, give a proof driven by
the Hamilton-Poisson structures of Euler and BF.

Considering the tangent vector T (t, x) = ∂xχ(t, x) it is easy to see that it solves
the 1D Schrödinger map to S2:

(2) Tt = T × Txx.
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Moreover, Hasimoto introduced in 1972 ([13]) the construction of a function u in
terms of the curvature and torsion of the curve that satisfies the 1D cubic nonlinear
Schrödinger equation:

(3) iut + uxx + (|u|2 −A(t))u = 0,

for some real space-independent function A. Moreover, T and its complexified
parallel frame normal vector N satisfy

(4) Tx = ℜ(uN), Nx = −uT.
Conversely, from a regular enough solution of (3) Hasimoto’s transform ensures

the existence of a solution of (2) and of (1), and the resulting curves and tangent
vectors are independent of the function A.

This methods allowed first to prove well-posedness for (1) and (2) for regular
enough data. For instance (1) is well-posed when curvature and torsion are in high
Sobolev spaces ([13],[20],[16]). Also, the Schrödinger map was proved to be well-
posed for data in H2 and for some data in H1 ([7],[19]). Recently it has also been
used to study the (1)-evolution of rough data curves with one or several corners
and except at the corners having curvature in weighted space ([12],[10],[1],[2]).

There are also several other completely different methods that have been used
for studying (1) and (2): geometric measure theory methods using integral currents
in the sense of Federer-Fleming 60 ([15]), integrable system methods ([6, 17, 11,
18]), probabilistic methods using geometric rough paths in the sense of Lyons 98
([5]).

We report here on the result in [4] for the Schrödinger map (2), obtained at low
regularity. We consider the following rough situation: T0(x) to be constant except
at x ∈ {−1, 1} where it has a jump of angle θ. It is known from [2] that there exists
a smooth solution of (2) on t ∈ (0, 1) that has T0 as a trace at time t = 0. These
solutions are constructed using Hasimoto’s method explained above, starting from
solutions of (3) constructed at critical regularity, and that are superpositions of
fundamental solutions of the Schrödinger equation:

(5)
∑

j∈Z

Aj(t)
ei

(x−j)2

4t√
t

.

It turns out that the (2) solutions constructed have Schrödinger map interaction
energy

´
|Tx(t, x)|2dx infinite as |Tx(t, x)| is 2πt−periodic. The Schrödinger map

interaction energy
´
|Tx(t, x)|2dx is infinite as |Tx(t, x)| is 2πt−periodic. However

it was proved in [3] that we have a finite energy:

Ξ(t) := lim
n→∞

ˆ n+1

n

|T̂x(t, ξ)|2dξ,

conserved for t > 0 with a discontinuity at t = 0. The result we present here is
that the energy density blows up pointwise, and this (only) at frequencies that go
to infinity:
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• there exists Cθ > 0 such that

sup
ξ∈B(± 1

t ,
√
t)

|T̂x(t, ξ)| = Cθ| log t|.

• for ξ /∈ B(1t ,
3
4t )∪B(− 1

t ,
3
4t ) we have an upper-bound of T̂x(t, ξ) depending

only on θ.

The proof of the growth of T̂x(t, ξ) is done by using the equations (4), the
oscillatory nature of u in (5), and IBP.

We end this report with a few remarks. First, it is notable that the growth is in
term of the critical Fourier-Lebesgue norm FL∞. Also, energy cascade has been
observed previously for non-integrable equations as the linear Schrödinger equation
with potential, 2D cubic Schrödinger equation, systems of 1D cubic Schrödinger
equations (Bourgain 95-97, Kuksin 97, Colliander-Keel-Staffilani-Takaoka-Tao 10,
Carles-Foau 12, Grébert-Paturel -Thomann 13, Delort 14, Hani 14, Hani-Pausader-
Tzvetkov-Visciglia 15, Guardia-Kaloshin 15, Bambusi-Grébert-Maspero-Robert
18, Carles-Gallagher 18, Thomann 20, Faou-Raphaël 20, Bambusi-Langella - Mon-
talto 20,...), or for abstract integrable models as Szëgo’s (Gérard-Grellier 12-
17, Pocovnicu 11-13, Gérard-Lenzmann-Pocovnicu-Raphaël 18,...). Here we have
Fourier modes growth for a 1D integrable equation, that is connected with a tur-
bulent phenomena in fluids. Indeed, aside the fact that the binormal flow is de-
rived from fluids presenting a vortex filament, the vector Tx describes through this
model the variations of the direction of the vorticity, that plays a central role in
Constantin-Fefferman-Majda’s criterium [8].
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Analysis of the Anderson operator

Ismaël Bailleul

(joint work with V.N. Dang & A. Mouzard)

Let S be a two dimensional closed Riemannian manifold with metric g and asso-
ciated volume measure µ. White noise on S is a D′(S)-valued random variable ξ
with Gaussian law with null mean and covariance

E
[
ξ(ϕ1) ξ(ϕ2)

]
=

ˆ
S
ϕ1ϕ2 dµ,

for ϕ1, ϕ2 smooth functions on S. Almost surely it takes values in the Besov
space Bα−2

∞∞(S), for any α < 1, a distribution space, and its law depends only on
the metric g on S. Let h ∈ C∞(S) be a smooth function. Denote by Mhξ the
multiplication operator by hξ, and by ∆ the Laplace-Beltrami operator associated
with the Riemannian metric on S. The Anderson Hamiltonian is the random
operator

(1) H := ∆ +Mhξ,

perturbation of the Laplace-Beltrami operator by a distribution-valued potential.
The smooth function h plays the role of a modulator for the noise, a position
dependent coupling constant. The operator H arises naturally as the scaling limit
of a number of microscopic discrete operators of interest in statistical physics. The
study of the Anderson Hamiltonian presents an additional difficulty compared to
its discrete counterparts. Unlike what happens for the Laplace-Beltrami operator
∆ or its perturbations by smooth potentials, the low regularity of ξ prevents a
straightforward definition of H as a continuous operator from the Sobolev space
H2(S) into L2(S) since

Mhξ(f) = fhξ
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is not an element of L2(S) for a generic f ∈ H2(S). One had to wait for the recent
development of the theory of paracontrolled calculus and regularity structures be-
fore appropriate functional settings were introduced for the study of the Anderson
Hamiltonian – corresponding to h = 1. Let T2 stand for the two dimensional flat
torus. Allez and Chouk [1] first used paracontrolled calculus to define a random
domain for H and proved that one can define H as an unbounded self-adjoint

operator on L2(T2), with discrete spectrum λn(ξ̂ ) tending to +∞ and eigenval-

ues λn(ξ̂ ) that are continuous functions of a measurable functional ξ̂ of ξ taking
values in a Banach space. The basic mechanics at work in [1] was improved in
Gubinelli, Ugurcan & Zachhuber’s recent work [6] in which a similar result on the
three dimensional torus was proved, amongst others. Labbé was also able in [7] to
use the tools of regularity structures to get similar results. We refer to these works
for detailed accounts of related matters and extensive references to the litterature.
All these works are set in the torus. The very recent work of Mouzard [8] used
the tools of the high order paracontrolled calculus developed by Bailleul & Ber-
nicot in [2, 3, 4] to study Anderson Hamiltonian on a two dimensional manifold,
simplifying a number of technical points compared to [1, 6] and proving that the
random spectrum of H satisfies the same Weyl asymptotic law as the spectrum of
the Laplace-Beltrami operator.

◦ Anderson operator. One can give a self-contained functional analytic construc-
tion of the Anderson operator that is different from the previous constructions. It
relies on the direct construction of the resolvent operator via a fixed point equa-
tion where the analytic Fredholm theory can be used efficiently. Given a positive
regularization parameter r let ξr = e−r∆(ξ) stand for the heat regularized white

noise. The family of operators ∆ +Mhξr − |log r|
4π h2 converges in probability as

r goes to 0 to a limit random unbounded self-adjoint operator H which has a
discrete spectrum σ(H) tending to +∞. This random operator is called Anderson
operator.

A detailed description of the solution to the parabolic Anderson equation with
singular initial conditions gives back in particular the heat kernel pt(x, y) of H .
This fine description of pt(x, y) actually contains a lot of information on the oper-
ator H itself. As a direct illustration one can recover Mouzard’s Weyl law for the
spectrum of H from a Tauberian point of view. Information on different norms of
the eigenfunctions or quasi-modes of H can also be recovered from a good control
of the heat semigroup. Denote by (un)n≥0 the sequence of L2 normalized eigen-

functions of H with corresponding eigenvalues λn(ξ̂ ). Recall α − 2 < −1 stands
for the almost sure Hölder regularity of white noise ξ.

Theorem 1. For every β′ > 1 there exists a positive random variable C such that
the following two facts hold true almost surely.

• One has for all n ≥ 0 such that |λn(ξ̂ )| ≥ 1 the n-uniform estimate

(2) ‖un‖C2α−1 ≤ C
∣∣λn(ξ̂ )

∣∣ β
′

2 .
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• For every Λ ∈ R and every u ∈ span
(
un ; λn(ξ̂ ) ≤ Λ

)
with unit L2 norm

one has

‖u‖Hα ≤ CΛ1/2.

We are able to obtain lower and upper Gaussian bounds for pt(x, y), which
imply an interesting parabolic Harnack estimate for (∂t +H)-harmonic functions.
Somewhat independently of the good control on the heat kernel we are also able
to quantify the spectral gap of H in terms of some isoperimetric constant of the
Riemannian manifold (S, g) generalizing Cheeger’s Poincaré inequalities to our
setting and also under the assumption that the Riemannian volume form µ satisfies
a log-Sobolev inequality. The eigenfunction u0 – the ground state, is associated

with the smallest eigenvalue λ0(ξ̂ ) of H .

Theorem 2. One has the following two almost sure estimates on the spectral gap
of H.

• Denote by C(S, g) > 0 the Cheeger constant of the Riemannian manifold
(S, g). Then one has the spectral gap estimate

λ1(ξ̂ )− λ0(ξ̂ ) ≥
(
minu0
maxu0

)4
C(S, g)2

4
> 0.

• Assume that the Riemannian volume measure µ satisfies a log-Sobolev
inequality with constant CLS. Then one has the spectral gap estimate

λ1(ξ̂ )− λ0(ξ̂ ) ≥
(
min u0
max u0

)2 (max u40 +maxu−4
0

)−1

2CLS
> 0.

◦ Anderson Gaussian free field. We introduce and study the Anderson Gaussian
free field. This doubly random field φ on S is defined from the L2 spectral decom-
position of the random operatorH in the same way as Gaussian free field is defined
from the L2 spectral decomposition of ∆. It thus has two layers of randomness.
Like the usual Gaussian free field it is almost surely of regularity 0−. One can
define the Wick square :φ2 : of φ as a doubly random variable; its distribution
L(:φ2:) depends on H so it is random. The following result is a qualitative version
of more precise statements.

Theorem 3. The law of the random spectrum of H is characterized by the law of
L(:φ2:).
◦ The polymer measure. The polymer measure provides a mathematical model
for the random motion of a particle subject to a thermal motion in an extremely
disordered potential modeled by white noise. From Feynman-Kac representation
formula it is the non-negative measure Q formally defined at a generic point w ∈
C([0, 1],S) by its density

exp

(ˆ 1

0

ξ(wt)dt

)

with respect to the Wiener measure PW on path space over S, up to a multiplicative
normalization constant. The pointwise evaluation of the distribution ξ is however
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meaningless, which motivates a definition of the polymer measure Q as a limit as
r > 0 goes to 0 of the measures Q(r) obtained from a regularized noise ξr setting

(3)
dQ(r)

dPW

(w) ∼ exp

(ˆ 1

0

(
ξr +

| log r|
4π

)
(wt)dt

)
.

Note that the measures Q(r) and the limit measure Q are random, as the white
noise environment is random. (Both Q(r) and Q depend implicitly on the starting
point of the path w, that may be fixed or random, possibly independently of the
environment.) This measure was first constructed in the flat setting of the two
dimensional torus by Cannizzaro & Chouk in [5] using the then newly developed
tools of paracontrolled calculus. Their method of proof is not easily adapte to a
manifold setting. We give here the first construction of this measure on a closed
Riemannian manifold. Our construction is different from that of Cannizzaro &
Chouk and we construct the random measure Q as the law of a Markov process

with transition probability e−t(H−λ0(ξ̂ )). The sharp small time asymptotic that
we obtain on the kernel of that operator, or the Gaussian bound proved for that
kernel, allow for a straightforward use of Kolmogorov’s criterion to construct the
polymer measure on a space of Hölder paths. It is singular with respect to Wiener
measure on C([0, 1],S) although it has support in all the spaces Cγ([0, 1],S), for
γ < 1/2 like the law of Brownian motion. Following a long tradition going back
to the work of Symanzik on constructive quantum field theory in the 60’s, we
can relate the distribution of the square of the Anderson Gaussian free field and
the distribution of the renormalized occupation measure O1/2 of a certain Poisson
point process of polymer loops in S.
Theorem 4. The renormalized occupation measure O1/2 has the same distribution

as the Wick square : φ2 : of the Anderson Gaussian free field.

Finally one can prove that the polymer measure on free and fixed endpoints
paths satisfies the same large deviation principle as Wiener measure and the rate
function does not see the effect of the white noise potential.
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Invariant Gibbs measures for the three-dimensional cubic nonlinear
wave equation (I)

Bjoern Bringmann

(joint work with Y. Deng, A. Nahmod, H. Yue)

In this talk, we discuss the invariance of the Gibbs measure for the three dimen-
sional cubic nonlinear wave equation. In the beginning of this talk, we discuss the
connections of this problem with various problems in constructive quantum field
theory, singular SPDEs, and random dispersive equations, which concern different
Φ4
d-models. The starting point of our discussion is the energy

(1) E(φ) =

ˆ
Td

dx

( |φ|2
2

+
|∇φ|2
2

+
|φ|4
4

)
.

In (1), we omit the possible renormalization of the potential energy term, since its
precise form depends on the dimension d. Equipped with (1), we formally define
the Φ4

d-measure as

(2) “dΦ4
d(φ) = Z−1 exp

(
−
ˆ
Td

dx

( |φ|2
2

+
|∇φ|2
2

+
|φ|4
4

))
dφ.”

In addition to the Φ4
d-measure, the energy in (1) induces three different evolution

equations, which are called dynamical Φ4
d-models:

(i) A Langevin equation, which is given by the cubic heat equation with
space-time white noise,

(ii) a real-valued Hamiltonian equation, which is given by the cubic wave equa-
tion,

(iii) and a complex-valued Hamiltonian equation, which is given by the cubic
Schrödinger equation.

The evolution equations described in (i), (ii), and (iii) are also known as the par-
abolic, hyperbolic, and Schrödinger Φ4

d-models, respectively. The main problems
then concern the construction of the Φ4

d-measure, the probabilistic well-posedness
of the three evolution equations, as well as the invariance of (minor variants of)
the Φ4

d-measure under the three evolution equations. The extensive literature on
Φ4
d-models, which spans over six decades, is illustrated in Figure 1.



1468 Oberwolfach Report 26/2022

Dimension Measure Heat Wave Schrödinger

d = 1 [Iwa87] [Zhi94] [Bou94]

d = 2 [Nel66] [DPD03] [Bou99] [Bou96]

d = 3 [GJ73] [Hai14] This talk Open

d = 4 [ADC21]

d ≥ 5 [Aiz81, Fro82]

Figure 1. Existence and invariance of the Gibbs measure for the
cubic stochastic heat, wave, and Schrödinger equations.

We now state the main result of this talk. To this end, let N ≥ 1 be a frequency-
truncation parameter. The frequency-truncated and renormalized three dimen-
sional cubic nonlinear wave equation is given by

(3)

{(
∂2t + 1−∆

)
u≤N = −P≤N

[
:(P≤Nu≤N )3 : + γ≤N · P≤Nu≤N

]

(u≤N , 〈∇〉−1∂tu≤N)
∣∣
t=0

= (φcos, φsin).

Here, P≤N denotes a (sharp) frequency-truncation, the dots : indicate the Wick-
ordering, and γ≤N denotes a (further) renormalization constant. Furthermore,
let µ≤N be the corresponding frequency-truncated Gibbs measure, whose first
marginal is given by a frequency-truncated Φ4

3-measure. It is known that (µ≤N )N
weakly converges to a unique limit, which is denoted by µ.

Theorem 1 (Global well-posedness and invariance, rigorous version). For any

frequency-scale N ≥ 1 and (φcos, φsin) ∈ H
−1/2−ǫ
x (T3), let u≤N be the solution

of the frequency-truncated cubic wave equation (3) with initial data u≤N [0] =
(φcos, φsin). In addition, let µ be the Gibbs measure from above. Then, for µ-
almost every (φcos, φsin) and all T ≥ 1, the limiting dynamics

(4) u[t] = lim
N→∞

u≤N [t]

exists in C0
t H

−1/2−ǫ
x ([−T, T ]×T3). Furthermore, the Gibbs measure is invariant

under the limiting dynamics, i.e.,

(5) Lawµ
(
u[t]
)
= µ

for all t ∈ R.

In later parts of this talk, we discuss the following aspects of our proof: First, we
discuss a caloric representation of the Gibbs measure. This caloric representation
is inspired by Tao’s caloric gauge [Tao04] and obtained using the parabolic Φ4

3-
model, i.e., the three-dimensional cubic stochastic heat equation.
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Then, we discuss the para-controlled Ansatz for the solution u≤N , which takes
the form

(6) u≤N = ≤N
− ≤N − ≤N

+ 3 ≤N +X
(1)
≤N +X

(2)
≤N + Y≤N .

The first four summands in (6) are explicit stochastic objects, the fifth and sixth
summands are para-controlled components, and the last summand is a nonlinear
remainder. At the end of this talk, we discuss further aspects regarding explicit
stochastic objects, such as a hidden cancellation between sextic stochastic objects.
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Invariant Gibbs measures for the three-dimensional cubic nonlinear
wave equation (II)

Yu Deng

(joint work with Bjoern Bringmann, Andrea R. Nahmod and Haitian Yue)

This talk presents the recent proof [2] of the invariance of Gibbs measure for the
cubic nonlinear wave equation on the three-dimensional torus, which is joint work
with Bjoern Bringmann, Andrea R. Nahmod and Haitian Yue.

The Gibbs measure for the 3D cubic nonlinear wave equation, commonly known
as the Φ4

3 measure, has been a subject of extensive study since the 70’s. In the
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seminal work of Hairer [7], it has been established that the Φ4
3 measure is invariant

under the stochastic heat equation

(1) (∂t −∆)u + u3 −∞ · u+ ξ = 0,

where ξ is the spacetime white noise. The result presented in this talk can be
viewed as the hyperbolic counterpart of the result in [7], namely we establish the
invariance of the Φ4

3 measure under the wave dynamics.
More precisely, consider the suitably renormalized cubic nonlinear wave equa-

tion

(2) (∂2t −∆)u+ u3 −∞ · u = 0

with the initial data
u[0] = (u(0), ∂tu(0))

distributed according to the measure

u[0] ∼ dµ⊗ dρ,

where dµ is the Φ4
3 measure on the torus T3, and dρ is the white noise measure

again on the torus.
Then, with probability 1, the equation (2) has a unique global solution with

initial data u[0] (this should be understood as the sequence of truncated solutions
with suitable renormalizations converging to the unique limit), and at each time
t, the data u[t] = (u(t), ∂tu(t)) is again distributed according to the measure

u[t] ∼ dµ⊗ dρ.

The proof of this result combines the major technologies developed for the
probabilistic theory of PDEs in the last few years. The most important aspects
include: the “caloric” representation of data, interplay of heat and wave objects,
para-controlled calculus, random tensor theory, a hidden cancellation that has its
roots in wave turbulence, and a novel bilinear estimate. Below we will briefly
explain the last four aspects, which are closely linked to the local theory.

The para-controlled calculus is what the main ansatz of our solutions is based
on. This idea first appeared in the parabolic context due to Gubinelli-Imkeller-
Perkowski [5] and was then extended to the wave setting by Gubinelli-Koch-Oh [6]
(see also recent works such as [1, 9, 10]). The main idea is to identify the high-low
interactions where the high frequency component is explicitly Gaussian or multi-
Gaussian, and view such interactions as appropriate “shifts” of the exact Gaussians
or multi-Gaussians. Then they should inherit the important cancellation and
large deviation properties from these explicit Gaussian expressions, which provide
improved estimates when they are involved in otherwise troublesome interactions.

The random tensor theory is developed in the work of Deng-Nahmod-Yue [4],
following its precursor, the random averaging operators in [3]. The main idea is
to unravel more layers of randomness structure than what is done in the para-
controlled calculus by (i) exhibiting the probabilistic independence between the
high and low frequency components, and (ii) exploiting also the randomness of
the low frequency components by performing an inductive on frequency argument.
This has been applied to nonlinear Schödinger equations, while para-controlled
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calculus has been quite successful in nonlinear heat and wave equations, due to
the different level of smoothing in both cases.

The equation (2) is a semilinear wave equation, which has adequate smoothing;
as such, we have chosen to use the para-controlled ansatz rather than the random
tensor ansatz in [4]. However, the random tensor estimates in [4], which were
developed for justifying the ansatz in that paper, turns out to be extremely useful
also in our setting. In fact, they provide estimates for the various norms of general
random tensors that are sharp for most purposes. As such, they can be used to
deduce the estimates we need in almost all scenarios - except for one special case,
in which a bilinear improvement is required.

Another main ingredient is a hidden cancellation, which we refer to as the 1533
cancellation. This has to do with the linear term M(1), the cubic term M(3) and
the quintic term M(5), which are zeroth, first and second iterates starting from
the linear Gaussian input. In fact, a logarithmic divergence occurs when one tries
to calculate

E|M(3)|2 = lim
N→∞

E|M(3)
N |2,

where M
(3)
N is the quantity M(3) for the approximate solution with frequency

truncation N . However, it turns out that, this term is exactly cancelled (up to
lower order terms) by the correlation

E
(
M(1)M(5)

)
,

more precisely we have

(3) E
(
|M(3)|2 + 6M(1)M(5)

)
= lim
N→∞

E
(
|M(3)

N |2 + 6M(1)
N M(5)

N

)
,

where the limit does converge. This cancellation is quite mysterious, however it
seems to root from the calculations of the wave kinetic equation, because (3) is
essentially the first order coefficient in the time Taylor expansion of the solution
to the wave kinetic equation, however this solution should be independent of time
because the Gibbs measure corresponds to a stationary solution to the wave kinetic
equation, so the leading contribution of (3) should vanish.

Finally, we mention a new bilinear estimate developed in this paper, which is
needed due to the inefficiency of the linear estimates in [4] in one specific scenario.
Thus, we have to exploit the true bi-linearity of the norms involved instead of
naively controlling it by linear norms. This results in a key lemma (Lemma 8.1 in
[2]) which brings a major improvement upon [4]. We have not found any similar
results in the literature, and believe that such results should be of independent
interest, as they go beyond the regime of random matrices and involve genuinely
bilinear (or multilinear) phenomena. We believe this will lead to many new pos-
sibilities, and it remains to be seen what are expected to the optimal estimates in
these settings.
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What is stochastic quantisation?

Massimiliano Gubinelli

In my talk I gave a personal perspective of the recent progress on the construc-
tion of Euclidean quantum field theories (EQFTs) via stochastic quantisation.
These progresses were made possible by novel techniques in the analysis of sin-
gular stochastic partial differential equations (SPDEs) which spurred a renewed
interest in using stochastic and PDE techniques in constructive EQFTs. Sto-
chastic quantisation has been introduced by Nelson and Parisi-Wu from different
perspectives. After early rigorous work of Jona-Lasinio and Mitter in the ’80s and
Da Prato–Debbusche in the early 2000s, a breakthrough came from the inven-
tion of regularity structures by Hairer (2014) and paracontrolled distributions by
Perkowski, Imkeller and myself. These tools allowed to construct and renormalise
solutions of evolutionary non-linear stochastic partial differential equations whose
invariant measures were EQFTs in dimension two and three. A series of progress
allowed also the passage to the infinite volume limit, most notably thanks to work
of Mourrat and Weber in the case of Φ4

2 and then Gubinelli and Hofmanova which
constructed Φ4

3 in the full space in a fully non-perturbative fashion. In the talk I
stressed more recent work my my collaborators and myself which tries to articulate
the question in the title: what is (really) stochastic quantisation? In particular we
currently know various different realisations of the idea of stochastic quantisation
which rely on various kinds of equations:

• Parabolic equations [1];
• Elliptic equations [3, 4, 2, 8];
• Stochastic control problems [5, 6, 7];
• Wave equations [10, 9].

All these different methods have strong similarities which hints to the fact that
stochastic quantisation is really a kind of stochastic analysis of EQFTs, in the
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sense of Ito’s approach to the theory of Markov processes, see e.g. the introduc-
tion to [12]. The key aspects of these approach is that the EQFT measure is
constructed as the push-forward of a Gaussian measure via the solution map of a
well-behaved singular non-linear equation. As a byproduct, this construction au-
tomatically provides a coupling of the interacting field with a free field (possibly on
an extended space) which is an important technical tool to overcome the possible
singularity of the interacting measure with respect to the Gaussian free field itself.
PDE techniques can then be used to analyse this push-forward and provide useful
results. It is useful to note that recent literature, see e.g. [11] develops similar
idea in the context of functional inequalities, and it is not difficult to imagine that
fruitful interactions between these two topics will be possible in the near future.
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A stochastic analysis approach to lattice Yang–Mills

Rongchan Zhu

(joint work with Hao Shen, Scott Smith, Xiangchan Zhu)

In this talk, we consider the lattice Yang–Mills model based on stochastic analysis
approach. We first recall the basic setup and definitions of the model.

Let ΛL = Zd∩LTd be a finite d dimensional lattice with side length L and unit
lattice spacing. We will sometimes write Λ = ΛL for short. Let E+ (resp. E−) be
the set of positively (resp. negatively) oriented edges, and denote by E+

ΛL
, E−

ΛL
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the corresponding subsets of edges with both beginning and ending points in ΛL.
Define E := E+ ∪ E−.

We write G for the Lie group SO(N) or SU(N) and g for the associated Lie
algebra so(N) or su(N).

A plaquette is a closed path of length four which traces out the boundary of a
square. Also, let PΛL be the set of plaquettes whose vertices are all in ΛL, and
P+
ΛL

be the subset of plaquettes p = e1e2e3e4 such that the beginning point of e1
is lexicographically the smallest among all the vertices in p and the ending point
of e1 is the second smallest.

The lattice Yang-Mills theory (or lattice gauge theory) on ΛL for the structure
group G, with β ∈ R the inverse coupling constant, is the probability measure
µΛL,N,β on the set of all collections Q = (Qe)e∈E+

ΛL

of G-matrices, defined as

dµΛL,N,β(Q) := Z−1
ΛL,N,β

exp
(
S(Q)

) ∏

e∈E+
ΛL

dσN (Qe) ,

with

S(Q) := NβRe
∑

p∈P+
ΛL

Tr(Qp),

where ZΛL,N,β is the normalizing constant, Qp := Qe1Qe2Qe3Qe4 for a plaquette
p = e1e2e3e4, and σN is the Haar measure on G.

In the first part, we give a new derivation of the finite N master loop equation
for lattice Yang-Mills theory with structure group SO(N), U(N) or SU(N). The
SO(N) case was initially proved by Chatterjee in [1], and SU(N) was analyzed in
a follow-up work by Jafarov [2]. Our approach is based on the Langevin dynamic,
an SDE on the manifold of configurations, and yields a simple proof via Itô’s
formula. More precisely, given a loop l = e1e2 · · · en, the Wilson loop variable Wl

is defined as

Wl = Tr(Qe1Qe2 · · ·Qen) .
For any non-null loop sequence s with minimal representation (l1, . . . , lm) such
that each li is contained in Λ, define

Ws =Wl1Wl2 · · ·Wlm , φ(s) := E
Ws

Nm
.

The master loop equation is a recursion which expresses φ(s) in terms of a linear
combination of φ(s′), where s′ is a loop sequence obtained by performing an oper-
ation on s. The operations are called splitting, twisting, merger, deformation, and
expansion; each being further divided into a positive or negative type. We reprove
the master loop equation using a simple Langevin dynamic and Itô calculus. For
more details we refer to [3].

In the second part we develop a new stochastic analysis approach to the lat-
tice Yang–Mills model at strong coupling in any dimension d > 1, with t’ Hooft
scaling βN for the inverse coupling strength. We study their Langevin dynamics,
ergodicity, functional inequalities, large N limits, and mass gap.
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Assuming |β| < N−2
32(d−1)N for the structure group SO(N), or |β| < 1

16(d−1)

for SU(N), we prove the following results. The invariant measure for the corre-
sponding Langevin dynamic is unique on the entire lattice, and the dynamic is
exponentially ergodic under a Wasserstein distance. The finite volume Yang–Mills
measures µΛL,N,β converge to this unique invariant measure in the infinite volume
limit, for which Log-Sobolev and Poincaré inequalities hold. These functional in-
equalities imply that the suitably rescaled Wilson loops for the infinite volume
measure has factorized correlations and converges in probability to deterministic
limits in the large N limit, and correlations of a large class of observables decay
exponentially, namely the infinite volume measure has a strictly positive mass gap.
Our method improves earlier results or simplifies the proofs, and provides some
new perspectives to the study of lattice Yang–Mills model.

We develop new methods based on stochastic analysis and give new proofs to
these results. In these methods, the curvature properties of the Lie groups are bet-
ter exploited via the verification of the Bakry–Émery condition. In particular, this
allows us to perform more delicate calculations and obtain more explicit smallness
condition on inverse coupling. As another novelty we study the Langevin dynam-
ics (or stochastic quantization) and we prove uniqueness of the infinite volume
measures by showing that the dynamic on the entire Zd has a unique invariant
measure. To this end we employed coupling methods for our stochastic dynamics,
which is a variant of Kendall–Cranston’s coupling. Such stochastic coupling ar-
guments were used earlier in the stochastic analysis on manifolds, but to our best
knowledge this appears to be the first time that such coupling arguments are used
in the setting of statistical physics or lattice quantum field theory models with
manifold target spaces. For our coupling arguments we will also need to introduce
suitable weighted distances on the product manifolds, and in our calculations a
subtle comparison between the weight parameter and the curvature plays a key
role in order to obtain ergodicity. For more details on this part we refer to [4].
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A diagram-free approach to the stochastic estimates in
regularity structures

Felix Otto

(joint work with Pablo Linares, Markus Tempelmayr, Pavlos Tsatsoulis)

We propose an alternative to the work [1] by Chandra and Hairer in the sense of
obtaining “automated” stochastic estimates for the centered model in regularity
structures introduced in [2]. The main result is the existence of a centered model
Πx and recentering maps Γxy for any space-time points x, y ∈ R2, satisfying the
postulates of regularity structures and

(
E|Πxβ(y)|p

) 1
p . |y − x||β|,(1)

(
E|(Γxy)γβ |p

) 1
p . |y − x||β|−|γ|,

for all 0 < |y− x| <∞ (UV and IR) and p <∞, where β, γ are multi-indices and
|β| denotes the homogeneity of a multi-index defined below.

We implement this for a prototypical parabolic stochastic quasilinear equation

(2) (∂2 − ∂21)u = ξ + a(u)∂21u−
(
h+ h̃ ∂1u+

˜̃
h (∂1u)

2 + . . .
)
,

where we think of 1 as being the space direction and 2 the time direction. The
last expression on the r. h. s. denotes the counterterm that we introduce for the
following reason: we think of ξ as a random Schwartz distribution with realiza-
tions a.s. in Cα−2 (space-time white noise corresponds to α = 1

2−); then classical

Schauder theory suggests that u ∈ Cα, hence a(u)∂21u ∈ Cα · Cα−2 which is ill-
defined for α ≥ 1 and makes the equation singular in the sense of [2] for α < 1.
However, the equation is subcritical in the sense of [2] as long as α > 0.

For simplicity, we make the following assumption on the noise:

Assumption 1: The law of ξ is invariant under translation and spatial reflection.

Under this assumption, and by postulating that the counterterm is of lower order,
the counterterm takes the simpler form of a deterministic function h = h[a](u(x)).
Moreover, we make the crucial postulate h[a(· + v)](u) = h[a](u + v) for v ∈ R,
which implies that h[a](u) = c[a(·+ u)] for some deterministic functional c on the
space of a’s. It is convenient to adopt a more algebraic point of view and formally
expand

a(u) =
∑

k≥0

ukzk, i. e. zk[a] =
1

k!

dka

duk
(0), k ∈ N0.

Since c is a functional of a only, it takes the form of a power series in the variables
{zk}k≥0,

R[[zk]] ∋ c[a] =
∑

β

cβz
β, where zβ =

∏

k≥0

z
β(k)
k ,

so that for the counterterm h we obtain
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(3) h(u) =
∑

k≥0

1

k!
uk(D(0))kc,

where D(0) ∈ End(R[[zk]]) is the infinitesimal generator of u-shift.
We formally extend the coordinates {zk}k≥0 on the space of a’s to coordinates

on the manifold of solutions u (up to constants). In case of a ≡ 0, the manifold
of solutions is an affine space over space-time functions p with (∂2 − ∂21)p = 0;
those functions are analytic. It is convenient to free oneself from the constraint
(∂2−∂21)p = 0 by relaxing to the manifold of all space-time functions u that satisfy
(2) up to a space-time analytic function. In view of the Cauchy-Kovalevskaya
theorem, one expects that for analytic a, the space of analytic space-time functions
p (modulo constants) still provides a parametrization of the nonlinear solution
manifold – at least for sufficiently small a and locally near a base-point x ∈ R2.
We think of p as providing a germ at x via the space-time shift p(· − x) so that

zn[p] =
1

n!

∂np

∂xn
(0), n ∈ N2

0 \ {(0, 0)}

are natural coordinates for the parameterization near x. This allows to think of the
solution u as a formal power series in the variables {zk, zn}k≥0,n 6=0, cf. B-series,

u(y) =
∑

β

Πxβ(y)z
β ∈ R[[zk, zn]], where zβ =

∏

k≥0

z
β(k)
k

∏

n 6=0

zβ(n)
n

.

In case of an ODE, this index set of multi-indices is greedier than the one for
branched rough paths, but less greedy than the one for geometric rough paths. In
case of a PDE, the index set is more lavish than polynomial decorations. From
(∂2 − ∂21)u = ξ + a(u)∂21u− h(u) we obtain via Πxβ = 1

β!∂
βu and Leibniz’ rule

(∂2 − ∂21)Πx = ξ1+
(∑

k≥0

Πkxzk
)
∂21Πx −

∑

k≥0

1

k!
Πkx(D

(0))kc modulo polynomials,

which together with Πxen = (· − x)n serves as a rigorous definition of the centered
model.

Working on the whole space-time plane R2 instead of the torus allows us to
exploit scaling, which we shall do in the sequel to motivate the homogeneity of

a multi-index |β|. By rescaling x1 = λx̂1, x2 = λ2x̂2 and ξ =law λα−2ξ̂, we
obtain a scale invariance of the solution manifold in law, u =law λαû, provided

we rescale the nonlinearities accordingly, â(û) = a(λαû) and ĥ(û) = λα−2h(λαû).
On the level of the coordinates and the model we thus have zn[u] = λα−|n|zn[û],
zk[a] = λ−kαzk[â] and Πxβ(y) =law λ|β|Πx̂β(ŷ). Here, we made use of the parabolic
length |n| = n1 + 2n2 and the homogeneity of a multi-index defined by

|β| = α−
∑

n 6=0

(α− |n|)β(n) +
∑

k≥0

αkβ(k)
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Let us now comment on the choice of the constants cβ that fix the counterterm
h via (3). For |β| < 2, cβ is inductively determined by estimate (1) which yields

lim
R↑∞

 
BR(x)

dy E(∂2 − ∂21)Πxβ(y) = 0,

via
cβ = (∂2 − ∂21)Πxβ + terms depending only on cγ with |γ| < |β|.

This amounts to a BPHZ-choice of renormalization (however, anchored on the
infrared side). For |β| > 2, we just set cβ = 0. This renormalization, which takes
care of the mean, complements well with the following spectral gap assumption on
the noise, which estimates the variance of a functional by its Malliavin derivative.

Assumption 2: The law of ξ satisfies a spectral gap inequality, i. e.

E|F − EF |2 ≤ E
∥∥∂F
∂ξ

∥∥2
∗,

for all cylindrical funcionals F of ξ, where ‖∂F∂ξ ‖∗ = supδξ
δF
‖δξ‖ and ‖ · ‖ denotes

the homogeneous Sobolev norm of order (α−2)+ dimeff=3
2 = α− 1

2 for some α > 1
4 .

Taking the Malliavin derivative crucially helps in the reconstruction of the singular
product Πkx∂

2
1Πx ∈ Cα · Cα−2 in

Π−
x = ξ1+

(∑

k≥0

Πkxzk
)
∂21Πx −

∑

k≥0

1

k!
Πkx(D

(0))kc,

as we shall see in the following. By Leibniz’ rule we obtain that δΠ−
x equals an

expression in Πx, δΠx and c, which infers a subtle increase in regularity by dimeff=3
2 :

δΠxβ = δΠxβ(z) +
∑

γ

(dΓxz)
γ
βΠzγ +O(| · −z| 32+α)

for some modelled (w. r. t. the model itself) distribution dΓxz. This higher order
vanishing close to z yields

(δΠ−
x − dΓxzΠ

−
z )(z) = δξ(z)1+

∑

k≥0

zk Πkx︸︷︷︸
∈Cα

(z) ∂21 (δΠx − δΠx(z)− dΓxzΠz)︸ ︷︷ ︸
∈Dα+3

2

(z),

where, crucially, the divergent c drops out (i. e. no overlapping subdivergences).
It is this identity that allows for reconstruction as long as α > 1

4 , and yields an
estimate for δΠ−

x , which together with the choice of c estimates Π−
x via the spectral

gap inequality.
Our last assumption makes it possible to propagate estimates via integration

(i. e. Schauder theory) from Π−
x to Πx. As is typical for Schauder theory, integer

exponents have to be avoided, which translates in our setting into:

Assumption 3: α 6∈ Q.

By breaking scaling and splitting (1) into two separate estimates for the ultraviolet
and the infrared regime, this assumption may be seen w. l. o. g., however due to
avoiding rational α we do not (yet) capture logarithmic infrared divergences.
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Stochastic 3D Navier-Stokes equations via convex integration

Xiangchan Zhu

(joint work with Martina Hofmanová, Rongchan Zhu)

In this talk, we talk about global-in-time existence and non-uniqueness of proba-
bilistically strong solutions to the three dimensional Navier–Stokes system driven
by space-time white noise. In this setting, solutions are expected to have space
regularity at most −1/2−κ for any κ > 0. Consequently, the convective term is ill-
defined analytically and probabilistic renormalization is required. Up to now, only
local well-posedness has been known. With the help of paracontrolled calculus we
decompose the system in a way which makes it amenable to convex integration. By
a careful analysis of the regularity of each term, we develop an iterative procedure
which yields global non-unique probabilistically strong paracontrolled solutions.
Our result applies to any divergence free initial condition in L2 ∪ B−1+κ

∞,∞ , κ > 0,
and implies also non-uniqueness in law.

More precisely, we consider the three dimensional Navier–Stokes system with
periodic boundary conditions driven by a space-time white noise

(1)

du + div(u⊗ u) dt+∇p dt = ∆u dt+ dB,

divu = 0,

u(0) = u0,

where B is a cylindrical Wiener process on a stochastic basis (Ω,F , (Ft)t≥0,P).
The time derivative of B is the space-time white noise. The main result of this
talk is given as follows:

For any given divergence free initial condition u0 ∈ L2 ∪B−1+κ
∞,∞ P-a.s., κ > 0,

there exist infinitely many global-in-time probabilistically strong solutions solving
(1) in a paracontrolled sense.

In two space dimensions, the problem was solved locally in time in the semi-
nal paper by Da Prato, Debussche [1]. Furthermore, using the properties of the
Gaussian invariant measure, it was possible to obtain global-in-time existence for
a.e. initial condition with respect to the invariant measure.

The more irregular three dimensional setting remained open for much longer
as substantially new ideas were required. These came in a parallel development
with the theory of regularity structures by Hairer [3] and with the paracontrolled
distributions introduced by Gubinelli, Imkeller and Perkowski [2]. They led to a
local well-posedness theory for the Navier–Stokes system (1) in three dimensions
by Zhu, Zhu [6].
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The question of global existence is even more challenging. Roughly speaking,
in the field of singular SPDEs the only available global existence results rely either
on a strong drift present in the system or a particular transform for certain non-
linearities or on properties of an invariant measure. No such results are available
for the 3D Navier–Stokes system with space-time white noise:

• There is no strong drift helping to stabilize the evolution.
• Due to the appearance of the divergence free condition and the corre-
sponding pressure term, it is impossible to apply maximum principle or
Cole–Hopf’s transform.

• The existence of an invariant measure is an open problem.
• No global energy (or other) estimates are available due to irregularity of
solutions.

Our idea is to apply the method of convex integration in order to construct
global-in-time solutions. This is an iterative procedure which permits to construct
solutions explicitly scale by scale. It makes an essential use of the form of the
nonlinearity which propagates oscillations and reduces an error term, the so-called
Reynolds stress, in order to approach a solution as one proceeds through the
iteration. As typical for the convex integration constructions, the same method
gives raise to infinitely many solutions.

Compared to the classical uniform estimates and the compactness argument,
convex integration provides a new way of constructing solutions. This turns out
to be particularly useful in the stochastic setting as uniqueness of Leray solutions
is unknown and there has been no result of existence of global probabilistically
strong solutions before. In [4], we proved such a result for a trace-class noise
by convex integration. Furthermore, there are no alternative globally defined
solutions whatsoever (neither probabilistically strong nor probabilistically weak).
In this talk, we use convex integration to construct global probabilistically strong
solutions in this setting when the energy inequality is out of reach.

We introduce a decomposition of the Navier–Stokes system (1), which makes
also this singular setting amenable to convex integration. The common idea in the
field of singular SPDEs is to prescribe a particular form of a solution u so that the
nonlinearity can be made sense of. In the first step, we write

u = z + z1 + h.

The first term z solves the stochastic heat equation

dz +∇pz dt = ∆z dt+ dB, divz = 0,

and permits to isolate the most irregular part of u, the rest being more regular.
The above decomposition and paracontrolled ansatz for h is sufficient to prove

local well-posedness as done in [6]. However, a much more refined analysis is
indispensable to apply convex integration. Therefore, we split further h = v1 + v2

where v1 represents the irregular part and v2 the regular one. In addition, the
equation for v1 is linear whereas the one for v2 contains the quadratic nonlinearity.
Even with this decomposition into v1 + v2, it is not possible to derive global
estimates via the energy method. Our idea is instead to apply convex integration
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on the level of v2. However, the equation for v2 is coupled with the equation
for v1. Therefore, we put forward a joint iterative procedure approximating both
equations at once. The Reynolds stress R̊q is only included in the equation for
v2q , where q ∈ N0 is the iteration parameter. Consequently, the construction of

the new iteration v2q+1 relies only on the previous stress R̊q. As the next step, we

solve the equation for v1q+1 exactly by a fixed point argument.
In order to make this strategy possible, it is necessary to find the decomposition

of the equation for h into the system for v1 and v2 and to define the corresponding
equations for the iterations v1q and v2q . This together with the construction of each

approximate velocity v2q+1 through the intermittent jets has to be done in a way to

decrease the corresponding Reynolds stress R̊q+1 as q → ∞. Especially the control

of R̊q+1 requires a careful analysis of each of the terms appearing in the equation for
h. We have to balance various competing factors such as regularity, integrability,
blow-up as t → 0 and blow-up as q → ∞ of various terms. The divergencies
need to be compensated by small quantities. We rely on a decomposition of each
product into the two paraproducts and the resonant term, because each of these
parts behaves differently and requires a different treatment. Roughly speaking,
irregular terms are included into v1 while regular ones into v2, but the precise
splitting is delicate. For more details we refer to [5].
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Invariant manifolds and soliton resolution for evolution PDEs

Wilhelm Schlag

This talk will be a survey of results pertaining to the long-term dynamics of evolu-
tion partial differential equations. The emphasis lies on basic notions and results
from dynamical systems, such as invariant manifolds and omega limit set. While
these notions are directly applicable to dissipative PDEs, Hamiltonian PDEs do
not fall under the scope of classical convergence theorems. Nevertheless, recent
results on the soliton resolution problem for wave maps draw on ideas from dy-
namical systems in the form of one-pass type theorems. We will discuss some of
these developments.
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Stable and unstable periodic water waves

Massimiliano Berti

We present an overview of results proved in the last years concerning the long time
dynamics of 1-dimensional space periodic water waves, regarding

(1) KAM: bifurcation of time quasi-periodic solutions [6, 5, 9, 1];
(2) Long time stability results [2, 4, 3];
(3) Benjamin-Feir instability of the Stokes waves [7, 8].

We consider the Euler equations for a 2-dimensional incompressible and inviscid
fluid with constant vorticity γ, under the action of gravity. The fluid occupies the
region Dη,h := {(x, y) ∈ T × R : −h < y < η(t, x)} where T := R/(2πZ). The
unknowns of the problem are the free surface y = η(t, x) and the divergence free
velocity field (u(t, x, y), v(t, x, y)). If the fluid has constant vorticity vx − uy =
γ, the velocity field is the sum of the Couette flow (−γy, 0) and an irrotational
field, expressed as the gradient of a harmonic function Φ. Denoting ψ(t, x) :=
Φ(t, x, η(t, x)), one recovers Φ by solving the elliptic problem ∆Φ = 0 in Dη,h,
Φ = ψ at y = η(t, x) and Φy = 0 at y = −h. The water waves equations then are

(1)

{
ηt = G(η)ψ + γηηx

ψt = −gη − ψ2
x

2 + (ηxψx+G(η)ψ)2

2(1+η2x)
+ γηψx + γ∂−1

x G(η)ψ

where g is the gravity and G(η)ψ := (−Φxηx+Φy)|y=η(x) is the Dirichlet-Neumann
operator. It results G(0) = |D| tanh(h|D|). Capillarity effects may be included by

adding κ
(

ηx√
1+η2x

)
x
in the second equation in (1). The water waves system (1) is

Hamiltonian and reversible. The variable η belongs to Hs
0(T) and ψ ∈ Ḣs(T).

1) KAM. The linearized equations (1) at (η, ψ) = (0, 0) possess the solutions

(
η(t, x)
ψ(t, x)

)
=
∑

n∈N

(
Mnρn cos(nx− Ωn(γ)t)
Pnρn sin(nx− Ωn(γ)t)

)
+

(
Mnρ−n cos(nx+Ω−n(γ)t)
P−nρ−n sin(nx+Ω−n(γ)t)

)
,

which are the linear superposition of plane waves, traveling either to the right

or to the left, where ρn ≥ 0, Mj :=
(

Gj(0)

g+ γ2

4

Gj(0)

j2

)1/4
, j ∈ Z \ {0}, and P±n :=

γ
2
Mn

n ±M−1
n , n ∈ N. The frequencies Ω±n(γ) are Ωj(γ) :=

√(
g + γ2

4
Gj(0)
j2

)
Gj(0)+

γ
2
Gj(0)
j , j ∈ Z \ {0}. Do such solutions persist for the nonlinear equations (1)?

Theorem 1. [6] Consider finitely many integers S+ := {n̄1, . . . , n̄ν} ⊂ N, 1 ≤
n̄1 < . . . < n̄ν , and signs Σ := {σ1, . . . , σν}, σa ∈ {−1, 1}, a = 1, . . . , ν. Fix a
subset [γ1, γ2] ⊂ R. Then there exist s̄ > 0, ε0 ∈ (0, 1) such that, for any |ξ| ≤ ε20,
ξ := (ξσan̄a)a=1,...,ν ∈ Rν+, the following hold:
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1) There exists a Borel set Gξ ⊂ [γ1, γ2] with limξ→0 |Gξ| = γ2 − γ1;

2) For any γ ∈ Gξ, the gravity water waves equations (1) have a quasi-periodic
traveling wave solution of the form

(2)

(
η(t, x)
ψ(t, x)

)
=

∑

a∈{1,...,ν} : σa=+1

(
Mn̄a

√
ξn̄a cos(n̄ax− Ω̃n̄a(γ)t)

Pn̄a

√
ξn̄a sin(n̄ax− Ω̃n̄a(γ)t)

)

+
∑

a∈{1,...,ν} : σa=−1

(
Mn̄a

√
ξ−n̄a cos(n̄ax+ Ω̃−n̄a(γ)t)

P−n̄a

√
ξ−n̄a sin(n̄ax+ Ω̃−n̄a(γ)t)

)
+ r(t, x)

where r(t, x) = r̆(Ω̃σ1n̄1(γ)t− σ1n̄1x, . . . , Ω̃σν n̄ν (γ)t− σν n̄νx), for r̆ ∈ H s̄(Tν ,R2),

satisfying limξ→0
‖r̆‖s̄√

|ξ|
= 0, with a Diophantine frequency vector denoted by Ω̃ :=

(Ω̃σan̄a)a=1,...,ν in Rν , depending on γ, ξ, and satisfying

lim
ξ→0

Ω̃ = (Ωσan̄a(γ))a=1,...,ν .

In addition these quasi-periodic solutions are linearly stable.

The solutions (2) are the nonlinear superposition of multiple Stokes traveling
waves with rationally independent speeds, and can not be reduced to steady solu-
tions in any moving frame. A similar KAM result with surface tension is proved
in [5]. Quasi-periodic standing wave solutions for irrotational fluids had been
previously obtained in [1] and with surface tension in [9].

2) Long time dynamics. A complementary almost global existence result for
irrotational capillary-gravity water waves with even initial data is the following.

Theorem 2. [2] There is a zero measure subset N in ]0,+∞[2 such that, for any
(g, κ) in ]0,+∞[2−N , for any N in N, there is s0 > 0 and, for any s ≥ s0, there
are ε0 > 0, c > 0, C > 0 such that, for any ε ∈]0, ε0[, any even function (η0, ψ0) in

H
s+ 1

4
0 (T,R) × Ḣs− 1

4 (T,R) with ‖η0‖
H

s+1
4

0

+ ‖ψ0‖
Ḣs− 1

4
< ε, the gravity-capillary

water waves equations (1) with γ = 0 have a unique classical solution (η, ψ) de-

fined on ] − Tε, Tε[×T with Tε ≥ cε−N , belonging to C0
(
]− Tε, Tε[, H

s+ 1
4

0 (T,R) ×
Ḣs− 1

4 (T,R)
)
, satisfying the initial condition η|t=0 = η0, ψ|t=0 = ψ0. Moreover,

this solution is even in space and it stays at any time in the ball of center 0 and

radius Cε of H
s+ 1

4
0 (T,R)× Ḣs− 1

4 (T,R).

The local well-posedness of the water waves was first proved by S. Wu. In
particular, for initial data of size ε, the solutions exist for times of order ε−1. In
[3] we proved that Tε ≥ cε−2 for any value of (g, κ, h) and in [4] that Tε ≥ cε−3 for
pure gravity water waves in infinite depth, proving an old conjecture of Zhakarov-
Dyachenko. A tool to extend the lifespan of solutions is normal form theory. The
idea is to make changes of variables which diminish iteratively the size of the
nonlinearity, when possible, and to prove that the “resonant” terms which are left
in the normal form do not contribute to the growth of the solutions. Here the
Hamiltonian or reversible structure of the PDE plays a key role.
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3) Benjamin-Feir instability of Stokes waves. A classical problem in fluid
dynamics, pioneered by Stokes in 1847, concerns the spectral stability/instability
of periodic traveling water waves, called Stokes waves. Benjamin-Feir discovered
in the sixties, through experiments and formal arguments, that (pure gravity and
irrotational) Stokes waves in deep water are unstable, proposing a heuristic mech-
anism which leads to the disintegration of wave trains. The problem is mathemat-
ically formulated as follows: consider a 2π-periodic Stokes wave with amplitude
0 < ε≪ 1. The linearized water waves equations at the Stokes wave are, in the in-
ertial frame moving with the speed cε of the Stokes wave, a linear time independent
system of the form ht = Lεh where Lε is a linear operator with 2π-periodic coeffi-
cients which possesses the eigenvalue 0 with algebraic multiplicity four. The prob-
lem is to prove that ht = Lεh has solutions of the form h(t, x) = Re

(
eλteiµxv(x)

)

where v(x) is a 2π-periodic function, µ in R (called Floquet exponent) and λ has
positive real part, thus h(t, x) grows exponentially in time. By Bloch-Floquet
theory, such λ is an eigenvalue of the operator Lµ,ε := e−iµx Lε eiµx acting on
2π-periodic functions. The main result in [7] provides the full description of the
eigenvalues with non-zero real part close to zero of the operator Lµ,ε for ε and µ
small. We denote by r(εm1µn1 , . . . , εmpµnp) a real analytic function fulfilling for
some C > 0 and ε, µ small, |r(εm1µn1 , . . . , εmpµnp)| ≤ C

∑p
j=1 |ε|mj |µ|nj .

Theorem 3. [7] There exist ε1, µ0 > 0 and an analytic function µ : [0, ε1) →
[0, µ0), of the form µ(ε) = 2

√
2ε(1 + r(ε)), such that, for any ε ∈ [0, ε1), the

operator Lµ,ε has two eigenvalues λ±1 (µ, ε) of the form




iµ
2 + ir(µε2, µ2ε, µ3)± µ

8

√
8ε2
(
1 + r0(ε, µ)

)
− µ2

(
1 + r′0(ε, µ)

)
, µ ∈ [0, µ(ε)),

i
2µ(ε) + ir(ε3), µ = µ(ε),
iµ
2 + ir(µε2, µ2ε, µ3)± iµ

8

√
µ2
(
1 + r′0(ε, µ)

)
− 8ε2

(
1 + r0(ε, µ)

)
, µ ∈ (µ(ε), µ0).

The function 8ε2
(
1+ r0(ε, µ)

)
− µ2

(
1+ r′0(ε, µ)) is > 0, respectively < 0, provided

0 < µ < µ(ε), respectively µ > µ(ε).

The proof relies on a symplectic and reversible version of Kato perturbation
theory. The more complex finite depth case is considered in [8].
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Wave turbulence theory for a stochastic KdV type equation

Minh-Binh Tran

(joint work with Gigliola Staffilani)

The question concerning the migration of the energy of a periodic global solution
to a certain dispersive equation from low to high frequencies (forward cascade) has
been an important question in the theory of PDEs. The first approach, introduced
by Bourgain in [3], is centered on the asymptotic analysis of the normHs, s≫ 1, of
the solution itself. The second approach is based on finding an effective equation,
referred to as the wave kinetic equation, for the expectation of the square of the
norm of the solution.

The second approach is related to the so-called wave turbulence theory in con-
tinuum mechanics (see [23]). Wave turbulence theory has the origin in the works of
Peierls [20, 21], Brout-Prigogine [4], Zaslavskii-Sagdeev [25], Hasselmann [17, 18],
Benney-Saffman-Newell [1, 2], Zakharov [24]. Denoting λ > 0 the parameter that
describes the weak interactions of the wave system under consideration, it is ex-
pected that the associated wave kinetic equation can be derived at the van Hove
limit

(1) t = O(λ−2).

In rigorously deriving wave kinetic equations, the work of Lukkarinen and
Spohn [19] for the lattice cubic nonlinear Schrödinger equation (NLS) is pioneering
plays the pioneering role. Different from the work of Lukkarinen and Spohn [19],
the work of Buckmaster-Germain-Hani-Shatah [5, 6], Deng-Hani [9], and Collot-
Germain [7, 8] give rigorous derivations of the 4-wave kinetic equations from the
out of statistical equilibrium cubic NLS equation at limits closed to (1), in the
continuum setting, with random initial data. Works that derive the 4-wave kinetic
equation from the stochastic NLS in the continuum setting are done by by Dy-
mov, Kuksin and collaborators in [12, 13, 14, 15]. In [10] and [22], Deng-Hani and
Staffilani-Tran provided rigorous derivations at the kinetic limit (1) of the homo-
geneous 4-wave and 3-wave kinetic equations from the random NLS equation in
the continuum setting and the stochastic ZK equation in the lattice setting, out of
equilibrium. A propagation of chaos result was also obtained in [11]. Our starting
point of [22], inspired by the work of Faou [16], is the ZK equation in d-dimension
(d ≥ 2),

(2)
dψ(x, t) = −∆∂x1ψ(x, t)dt + λ∂x1

(
ψ2(x, t)

)
dt +

√
2cr∂x1ψ ⊙ dW (t),

ψ(x, 0) = ψ(x),
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where 1 > λ > 0 is a real constant, and

(3) cr = Crλ
θr ,

for some universal constants Cr > 0 and 1 ≥ θr > 0. The constant λ is the
parameter describing the weak interactions of the nonlinear wave system and as
mentioned above we will send λ to 0. In the identity

U ⊙ dW (x, t) =

ˆ
Λ

U(x− x′, t) ◦ dW (x′, t)dx′.

the symbol ◦ is the Stratonovich product and the symbol ⊙ represent the combi-
nation of the Stratonovich product and the convolution. The lattice system can
be rewritten in the Fourier space as

dψ̂(k, t) = iω(k)ψ̂(k, t)dt + iω̄(k)
√
2crψ̂(k, t) ◦ dW (t)

+ iλω̄(k)
1

|Λ∗|2
∑

k=k1+k2;k1,k2∈Λ∗

ψ̂(k1, t)ψ̂(k2, t),

ψ̂(k, 0) = ψ̂0(k).

The mesh and the dispersion relation are written as follows

Λ∗ = Λ∗(L) =

{
− L

2L+ 1
, · · · , 0, · · · , L

2L+ 1

}d
,

ωk = ω(k) = sin(2πk1)
[
sin2(2πk1) + · · ·+ sin2(2πkd)

]
, ω̄(k) = sin(2πk1),

with k = (k1, · · · , kd).
By setting ak = ψ̂(k)√

|ω̄(k)|
, we find

dak = iω(k)akdt + i
√
2crak ◦ dWk(t)

+ iλ

ˆ
Λ∗

dk1

ˆ
Λ∗

dk2sign(k
1)
√

|ω̄(k)ω̄(k1)ω̄(k2)|δ(k − k1 − k2)ak1ak2dt.

If we considerr the two-point correlation function

(4) f(k, t) = 〈αt(k,−1)αt(k, 1)〉,

in the limit of L → ∞, λ → 0 and t = λ−2τ = O(λ−2), the two-point correlation
function f(k, t) has the limit

lim
λ→0,D→∞

f(k, λ−2τ) = f∞(k, τ)

which is the solution of the 3-wave equation

(5)
∂

∂τ
f∞(k, τ) = C

(
f∞)(k, τ)
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where
(6)

C(f∞)(k1) =

ˆ
(Td)2

dk2dk3|M(k1, k2, k3)|2
1

π
δ(ω(k3) + ω(k2)− ω(k1))

× δ(k2 + k3 − k1)
(
f∞
2 f∞

3 − f∞
1 f∞

2 sign(k11)sign(k
1
3)− f∞

1 f∞
3 sign(k11)sign(k

1
2)
)
,

in which T is the periodic torus [−1/2, 1/2]. Here we have introduced the shorthand
notation f∞

j = f∞(kj), j = 1, 2, 3. We also set Td+ = {k = (k1, · · · , kd) ∈ Td | k1 ≥
0}.
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The mathematical theory of wave turbulence

Zaher Hani

(joint work with Yu Deng)

The subject falls under the umbrella of Hilbert’s sixth problem, which asks for a
rigorous derivation of the laws of physics starting from first principles. Most no-
tably, one is interested in rigorously deriving the laws of statistical mechanics from
the laws of dynamics. This features a justification of irreversible (in time) laws
(like the second law of thermodynamics) starting from reversible ones (like New-
ton’s or Hamilton’s equations). Explaining this apparent paradox is the essence
of Hilbert’s sixth problem.

The classical instance of such a result is the justification of Boltzmann’s ki-
netic theory for particle collisions starting from first principles given by Newton’s
equation. This was undergone starting from Lanford’s seminal work in 1975 and
continued by works of Cercignani-Illner-Pulvirenti, Pulvirenti-Saffirio-Simonella,
and completed by works of Gallagher-Saint-Raymond-Texier. There one justifies
the appearance of Boltzmann’s equation in the limit where the particle number
N → ∞ and their radius r → 0 under the so-called Boltzmann-Grad scaling
Nrd−1 = O(1).

We are interested in the analogous problem for waves, in which the microscopic
system itself is given by a nonlinear PDE that governs the interaction of waves.
Rather than thinking of particles colliding, we think of many waves interacting in
a large system whose size goes to infinity. The strength of the interaction ǫ goes
to zero in the kinetic limit, which is the analog of the limit r → 0 in the particle
setting described above [17, 19].

To make the discussion concrete, let us fix our emblematic microscopic wave
system given by the nonlinear Schrödinger equation

(1) (i∂t +∆)u = ǫ|u|2u, t ∈ R, x ∈ TdL

where the spatial domain TdL is a periodic box of size L and ǫ > 0 denotes the
strength of the nonlinear interaction. The initial data uin is taken to be randomly
distributed as follows: Denoting by ûin(k) the Fourier modes of uin at k defined
by

û(k) = L−d/2
ˆ
Td
L

u(x)e−ik·xdx,
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where k ∈ ZdL = L−1Zd belongs to a lattice of mesh size L−1, we let

ûin(k) =
√
nin(k) η

ω
k .

Here nin(k) is a sufficiently smooth and decaying non-negative function on Rd,
and ηωk are i.i.d. random variables of mean zero and variance 1. As such, one has
that E|ûin(k)|2 = nin(k), and we call such data well-prepared.

The aim of the wave kinetic theory is to study the longtime behavior of the
distribution of the Fourier modes ak starting with the central quantity E|û(k, t)|2,
whose effective dynamics are conjectured to satisfy the wave kinetic equation
(WKE)

(WKE)

{
∂tn = K(n, n, n)

n(0) = nin,

where

K(n, n, n)(ξ) = 2

ˆ
ξ1,ξ2,ξ3∈R

d

ξ1−ξ2+ξ3=ξ

δR(|ξ1|2 − |ξ2|2 + |ξ3|2 − |ξ|2)

n(ξ1)n(ξ2)n(ξ3)n(ξ)

(
1

n(ξ1)
− 1

n(ξ2)
+

1

n(ξ3)
− 1

n(ξ)

)

The (WKE) is a wave analog of Boltzmann’s equation. Note that this kinetic
approximation features a passage from the time reversible NLS equation into the
time-irreversible wave kinetic equation. There is also an inhomogeneous version
thereof in which n is also space-dependent and the LHS of the (WKE) has a
transport term. We restrict ourselves here to the homogeneous setting.

After recounting various previous contributions on the topic, most notably [15,
2, 6, 3, 4, 10, 11, 12, 13], we state our main result:

Theorem 1 (Deng-H., 2021).

• Consider (NLS) on the periodic box TdL with d ≥ 3.
• Take nin ≥ 0 to be a sufficiently smooth and decaying function on Rd,
and uin to be well-prepared, i.e. ûin(k) =

√
nin(k)ηk(ω), and suppose that

the law of ηk(ω) is rotationally symmetric and has exponential tails (e.g.
Gaussian).

• Scaling laws: Let α ∼ L−γ for γ ∈ [1− 1
20d , 1], and recall that Tkin = α−2.

For γ = 1, we assume suitable genericity conditions on the aspect ratios
of the box.

THEN, there exists δ < 1 fixed, and an absolute constant ν > 0 such that for
L large enough it holds that

E|û(t, k)|2 = n(
t

Tkin
, k) +O(L−ν)

uniformly in (t, k) for t ∈ [0, δ ·Tkin]. Here n(t, k) solves the wave kinetic equation
with data nin.
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Moreover, suppose that k1, . . . , kr are distinct, then

(1) Propagation of Chaos: The random variables û(t, kj) (1 ≤ j ≤ r) retain
their independence in the kinetic limit L→ ∞.

(2) Limiting law: The law of û(t, k) converges to the density function ρk(t, v)
(with v ∈ R2) which evolves according to the linear PDE

∂tρk =
σk(t)

4
∆ρk −

γk(t)

2
∇ · (vρk),

where σk(t) > 0 and γk(t) are functions constructed from the solution
n(t, k) to the wave kinetic equation.

(3) Propagation of Gaussianity: In particular, if ηk(ω) are Gaussian, then
ρk(t, v) is Gaussian with variance n(t, k) for any t > 0.

The precise statements, particularly about propagation of chaos and Gaussian-
ity, can be found in [7, 8] on which this talk is based. A larger range of scaling
laws than that cited in the above theorem is treated in [9] with similar outcomes.
We also mention several results that also came out in the past year on similar
questions, most notably [18, 1, 16, 5, 14]
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Stochastic Quantization of Yang Mills

Ajay Chandra

(joint work with Ilya Chevyrev, Martin Hairer, and Hao Shen)

I report on the results obtained in the recent works [3, 4] which give the first steps
of a stochastic quantization approach to the construction of continuum, finite
volume, non-abelian Yang-Mills Euclidean quantum field theories (EQFTs) in two
and three dimensions.

Fixing a compact Lie group G and writing g for the associated Lie algebra, the
corresponding Yang-Mills EQFT on Td is often formally written as a probability
measure on g-valued 1-forms A(x) = A1(x)dx1 + · · ·Ad(x)dxd ∈ Ω1

g given by

(1) dµYM(A) = Z−1 exp
[
− SYM(A)

]
dA ,

where dA is a formal “Lebesgue measure” on Ω1
g, Z is a normalization constant,

and the YM action is given by

(2) SYM(A) =

ˆ
Td

|FA(x)|2dx ,

where FA = dA + A ∧ A is the curvature 2-form of A and the norm |FA| is given
by an Ad-invariant inner product on the Lie algebra g of G.

In addition to the problems around ultraviolet renormalisation that appear in
the analysis of other EQFTs, the Yang-Mills measure has a more fundamental issue
in that (1) in invariant under the infinite dimensional group G = {g : Td → G}
of gauge transformations under the action A 7→ g · A = gAg−1 − (dg)g−1, in
particular SYM(g · A) = SYM(A). This means one would not expect the measure
(1) to giving rise to a finite measure on a space of 1-forms, the more natural state
space to support the Yang-Mills measure as a probability measure would be some
sort of quotient space Ω1

g/G - we say 1-forms A and B are gauge equivalent if
B = g · A for some g ∈ G.

While it is well understood how to use explicit formulae to construct the Yang-
Mills measure for d = 2, the situation in d = 3 remains open.

The starting point of the stochastic quantization approach to the construction
of EQFTs (see the contribution by M. Gubinelli for an introduction to stochastic
quantization) is to introduce a new “fictitious” time variable t and to obtain (1)
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as the long-time invariant measure of an associated stochastic gradient descent
dynamic which in our setting reads

(3) ∂tA = −∇SYM(A) + ξ ,

where ξ = (ξi)
d
i=1 is a gd-valued space-time white noise. Formally, solutions to (3)

are gauge covariant in law under the action of constant in time gauge transforma-
tions. The equation (3) is an example of a singular stochastic partial differential
equation, but it is not fully parabolic - intuitively the deterministic part of (3)
only moves transversely to G-orbits. In order to apply the theory of regularity
structures we study a variant of (3) where we add a DeTurck–Zwanziger term
−dAd

∗A which gives full parabolicity, in coordinates this new dynamic is given by

(4) ∂tAi = ξi +
d∑

j=1

[Aj , 2∂jAi − ∂iAj + [Aj , Ai]] , for 1 ≤ i ≤ d .

We call (4) the stochastic Yang-Mills heat flow. Formally it satisfies a gauge
covariance in law under a class of time-evolving gauge transformations. Moreover,
when d = 2 or 3 local well-posedness of (4) can be obtained by applying the
theory of regularity structures, this gives us a finite dimensional family of solutions
obtained as the ǫ ↓ 0 limit of regularized, renormalized versions of (4) given by

(5) ∂tAi = ξǫi + CǫAi +

d∑

j=1

[Aj , 2∂jAi − ∂iAj + [Aj , Ai]] , for 1 ≤ i ≤ d .

where ξǫi = ξi ∗ ρǫ with ρǫ a smooth space-time mollifier converging to a Dirac
delta as ǫ ↓ 0. The renormalization Cǫ in principle could diverge as ǫ ↓ 0 and
the finite dimensional family of solutions referenced above is explored by shifting
Cǫ 7→ C + Cǫ for a fixed constant C.

However our aim is more involved than the local well-posedness described above,
we want to obtain a “quotient dynamic” associated to (4) which has as its state
space a “1-forms modulo gauge transformations” as described earlier. The Yang-
Mills EQFT then should be the the long-time invariant measure of this quotient
dynamic.

Two major difficulties appear here:

• the regularization and renormalization procedure appear to destroy the
gauge covariance in law of the dynamic (4), this prevents us from associ-
ating a quotient dynamic to (4), and

• the solutions to (4) will actually be distributional 1-forms, which makes it
far from obvious how to construct a reasonable quotient state space.

We overcome the first problem by identifying a special choice in our finite dimen-
sional family of solutions (i.e., a special value of C) such that has gauge covariance
in law is restored in the ǫ ↓ 0 limit. When d = 2 this can be argued by using brute-
force techniques, but these same techniques become impractical in the d = 3 case
– there we instead use the stabilty of our solution theory in small noise limits in
order and the gauge covariance of the non-renormalized deterministic dynamics.
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Regarding the second point, in d = 2 one can use probabilistic arguments to
show such a quotienting procedure makes sense for realizations of the two dimen-
sional Gaussian Free Field (GFF). Our local solution theory for (4) coming from
the theory of regularity structures tells us that our solutions are perturbations of
the GFF by more regular objects, and our quotienting procedure can be extended
to such a setting.

In d = 3 the GFF itself is too singular for the probabilistic arguments above
to apply, so we instead define a weaker notion of gauge equivalence that first
evolves/smoothens 1-forms under the deterministic Yang-Mills heat flow ( (4)
without the noise term ξ) and then asks if these regularized 1-forms are gauge
equivalent. This allows us to define a quotienting procedure in a space of distri-
butions that includes realizations of the d = 3 GFF and perturbations thereof,
such as the solutions to (4). However, actually proving this is quite technically in-
volved since evolving the d = 3 GFF under the deterministic Yang-Mills heat flow
itself requires probabilistic arguments. We remark that this use of the Yang-Mills
heat flow to define a state space for the Yang-Mills measure was independently
investigated along similar lines in the recent works [1, 2].
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Université Paris Sud (Paris XI)
Batiment 425
91405 Orsay Cedex
FRANCE

Prof. Dr. Ana Patŕıcia Carvalho
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