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Abstract. The main theme of this workshop was the use of probabilistic
methods in combinatorics and theoretical computer science. This area is
evolving extremely quickly, with the introduction of powerful new methods
and the development of increasingly sophisticated techniques, and there have
been a number of very significant breakthroughs in the area in recent years.
The workshop emphasized several of these recent breakthroughs, which in-
clude applications of probabilistic techniques to extremal questions, and of
combinatorial techniques to areas of discrete probability theory, such as ran-
dom matrices and planar percolation.
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Introduction by the Organizers

The meeting was very well attended with 53 in-person participants from around
the globe, including the US, Israel, Canada, Brazil, and many European countries,
and 7 online participants from the US, Australia and Germany. In addition, many
excellent mathematicians who would have loved to participate could not be invited,
for lack of space. The program consisted of 8 main lectures, 19 shorter talks, and
a problem session, with plenty of time for discussion.

There have been a number of very significant breakthroughs in probabilistic
combinatorics in recent years, and the workshop highlighted several of these. Per-
haps the most spectacular of these breakthroughs was the proof of the Kahn–Kalai
conjecture by Jinyoung Park and Huy Tuan Pham, both of whom spoke (remotely)
about their work during the workshop. Their theorem implies that the threshold
of any increasing property is at most Oplog nq times the “expectation threshold”
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which is a natural lower bound. Pham presented the proof of a related conjecture
of Talagrand, which also follows from their method.

There were a number of other major highlights of the workshop, including the
proof of the classical Ryser–Brualdi–Stein conjecture for large even n, which was
announced by Richard Montgomery in his talk. More precisely, Montgomery used
a random process together with a novel kind of algebraic absorbing structure
to show that if n is sufficiently large, then every Latin square of order n has a
transversal with n´ 1 cells.

Patrick Morris presented his recent proof of a beautiful conjecture of Krivele-
vich, Sudakov and Szabó, on the threshold for the existence of a triangle-factor
in a sparse pseudorandom graph. Roughly speaking, his theorem shows (together
with a construction of Alon) that as soon as one can guarantee the existence of
a triangle, one can also find a triangle-factor. He also obtained bounds for gen-
eral clique-factors, but for larger cliques it is not known (and it is a major open
problem to determine) whether or not matching constructions exist.

Julian Sahasrabudhe and Matthew Jenssen both gave talks about different as-
pects of their stunning recent work (with Marcelo Campos and Marcus Michelen)
on symmetric random matrices. Sahasrabudhe spoke about their proof of an ex-
ponential upper bound on the singularity probability of a uniformly-chosen nˆ n

symmetric random matrix with entries in t´1, 1u, while Jenssen discussed a very
recent extension of that work, bounding the least singular value of a larger class
of random matrices. In the proofs of these results they introduced some exciting
new techniques for controlling approximate negative correlation between random
variables, and for “reusing” randomness.

Katherine Staden presented her proof (with Peter Keevash) of Ringel’s tree
packing conjecture, which was first posed in 1963. The conjecture states that,
for any tree T with n edges, the complete graph with 2n ` 1 vertices can be
decomposed into 2n` 1 copies of T . Staden and Keevash actually proved a much
more general result, about decompositions of pseudorandom graphs into trees of
appropriate sizes. Their proof is very technically impressive, and builds on the
proof (by the same authors) of the “generalised Oberwolfach problem”.

There were many other excellent talks during the week. To mention just a few:
Vincent Tassion described a beautiful proof (found with Laurin Köhler-Schindler)
of an extremely general Russo–Seymour–Welsh theorem, only using symmetry
and positive association; Shoham Letzter presented an almost-sharp bound on
the maximum possible number of edges in an r-uniform hypergraph on n vertices
that contains no tight cycles; Matija Bucic presented a breakthrough (found with
Richard Montgomery) on an old conjecture of Erdős and Gallai, showing that
every graph with n vertices can be decomposed into Opn log‹ nq cycles and edges;
Lisa Sauermann described a method (found with Asaf Ferber and Matthew Kwan)
of showing that certain list-decodable Reed–Solomon codes exist; Anita Liebenau
presented some of her recent results with Nina Kamčev and Natasha Morrison
on “uncommon” systems of equations; Ashwin Sah and Mehtaab Sawhney each
described different aspects of their recent work (joint with Matthew Kwan and
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Michael Simkin) on Steiner Triple Systems; Marcelo Campos presented some new
bounds on the number of sumsets; and Benny Sudakov presented a proof (found
with Nemanja Draganić and David Munhá Correia) of a conjecture of Erdős on
the pancyclicity of Hamiltonian graphs.

As always, and on behalf of all participants, the organizers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Liana Yepremyan in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

New bounds on the Erdős-Gallai Cycle Decomposition Conjecture

Matija Bucić

(joint work with Richard Montgomery)

When is it possible to decompose a graph into edge-disjoint subgraphs with cer-
tain properties? Many classical problems in extremal combinatorics fall within
this framework, and together with the natural generalisation to hypergraphs they
have found some remarkable applications both within and beyond extremal combi-
natorics. The particular case where we seek to decompose a graph into cycles has
a long history, dating back to the 18th century and Euler’s result on the existence
of Euler tours. As Veblen later observed, Euler’s result immediately implies that
any graph with even vertex degrees (i.e., any Eulerian graph) has a decomposition
into cycles, while it is immediate that if a graph has a vertex of odd degree then
it can not be decomposed into cycles. This result is known as Veblen’s theorem
and it arose naturally in connection to his algebraic approach for attacking the
Four-Colour Theorem in 1912.

This result gives, however, no non-trivial bound on the number of cycles needed
for a decomposition. That Opnq cycles might be sufficient is easily seen to be
equivalent to the following conjecture of Erdős and Gallai [4] dating back to 1966,
which is one of the major open problems on graph decompositions.

Conjecture 1. Any n-vertex graph can be decomposed into Opnq cycles and edges.

As we have noted, Conjecture 1 is equivalent to conjecturing that every n-
vertex Eulerian graph can be decomposed into Opnq cycles, however, the optimal
implicit constants in these conjectures, if they hold, seem likely to be different.
For the Eulerian problem, Hajós conjectured that n

2
cycles should be sufficient,

while the best known lower bound for the number of cycles and edges required
in Conjecture 1 is p3

2
´ op1qqn, as observed by Erdős in 1983 [3], improving on a

previous construction of Gallai [4].
Despite a lot of work on related problems over the years direct progress towards

the Erdős-Gallai Conjecture has only been made within the last decade. The pre-
vious related results, which we discuss first, mostly focused on the analogous path
decomposition problem and the covering version of the Erdős-Gallai conjecture.

Path decompositions. In the 1960’s, Gallai [10] posed the analogous path de-
composition version of Conjecture 1. In particular, he conjectured that any con-
nected n-vertex graph can be decomposed into at most n`1

2
paths. Lovász [10] in

1968 proved that any graph can be decomposed into at most n´1 paths. This fol-
lows easily from his complete solution to the problem of how many paths or cycles
one needs to decompose an n-vertex graph, to which the answer is tn

2
u. Currently

the best general bound in the path decomposition problem is due independently
to Dean and Kouider and Yan, who showed that any graph can be decomposed
into at most t 2n

3
u paths. Gallai’s path decomposition result is known to hold for
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quite a few special classes of graphs, with connected planar graphs being the most
recent addition to the list, this result is due to Blanché, Bonamy and Bonichon.

Covering problems. Another interesting direction which has attracted a lot of
attention is a covering version of Conjecture 1, in which we do not insist that the
cycles we find should be disjoint, only that together they contain all the edges of
the host graph. In 1985, Pyber proved the covering version of the Erdős-Gallai
conjecture, showing that the edges of any n-vertex graph can be covered with n´1
cycles and edges. The analogous covering version of Gallai’s conjecture, raised by
Chung in 1980, has been settled first approximately by Pyber in 1996 and then
completely by Fan in 2002, who showed that the edges of any connected graph
can be covered by rn

2
s paths. The covering version of Hajós’ conjecture was solved

by Fan, who showed that any n-vertex Eulerian graph can be covered by at most
tn´1

2
u cycles, settling another conjecture of Chung.

Results on the Erdős-Gallai conjecture. In more recent years, the Erdős-
Gallai conjecture (along with more accurate results on the implicit bounds) has
been shown to hold for two large specific classes of graphs – random graphs and
graphs with linear minimum degree. The conjecture was first established for a
typical binomial random graph Gpn, pq (for any p “ ppnq) by Conlon, Fox and
Sudakov [1]. Korándi, Krivelevich, and Sudakov [9] found the correct leading con-
stant here, showing that p1

4
` p

2
`op1qqn cycles and edges are typically sufficient to

decompose Gpn, pq. For constant edge probability p, Glock, Kühn, and Osthus [6]
were even able to determine with high probability the exact minimum number
of cycles and edges required to decompose a (quasi)random graph. On the other
hand, Conjecture 1 was first shown to hold for graphs with linear minimum degree
again by Conlon, Fox and Sudakov [1]. Very recently, the asymptotically correct
bound of p3

2
` op1qqn cycles and edges has been proved by Girão, Granet, Kühn,

and Osthus [5] for large graphs with linear minimum degree.
For almost 50 years, the best known bound in the general case of the Erdős-

Gallai conjecture (as observed by Erdős and Gallai) came from a simple argument
involving the iterative removal of a longest cycle, which shows that an n-vertex
graph can always be decomposed into Opn log nq cycles and edges. In 2014, Fox,
Conlon and Sudakov [1] made the first major breakthrough on this problem, show-
ing that such a decomposition with only Opn log lognq cycles and edges always
exists. Here will we give the following improvement on this bound, where log‹ n
is the iterated logarithm function.

Theorem 2. Any n-vertex graph can be decomposed into Opn log‹ nq cycles and
edges.

A key new idea introduced in [1] was the use of graph expansion. One of the
new insights we bring to the table is the use of a much weaker, sublinear, version of
expansion. The main benefit of this is that it is far less costly to reduce the general
problem to decomposing expanders, albeit at a cost of being much more difficult
to work with. The first to use a similar notion were Komlós and Szemerédi [7, 8]
although since then it has been modified in a number of ways and has recently
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found some remarkable applications. In addition to introducing an alternative
notion of robustness inherent to this notion of expansion, we develop a range of
new tools, which we hope will prove useful elsewhere. In particular, we show that
inducing our expander onto a random linear-sized vertex set is likely to produce an
expander. This is particularly difficult as the expansion we use is sublinear, and
proving it involves a carefully designed random process. Other highlights include
a similar result but while randomly removing edges, the (almost) decomposition of
any graph into expander, finding a ‘connective skeleton’ (a sparse subgraph of an
expander retaining some expansion properties), and our use of the Aharoni-Haxell
hypergraph matching theorem as a ‘probability booster’. The actual application of
these tools to the Erdős-Gallai conjecture begins by almost decomposing the initial
arbitrary graph into robust sublinear expanders before decomposing each of these
expanders carefully into paths (using an aforementioned result of Lovász) while
avoiding a ‘connective skeleton’ which has been carefully found to have few edges
while being very well-connected so that in particular it can be used to connect
these paths into edge-disjoint cycles. All remaining edges lie within the connective
skeletons, which are sparse, so there will be very few such edges and this will allow
us, via a careful iterative argument, to prove Theorem 2.
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The number of sumsets in Zn

Marcelo Campos

Given a prime n and sets A,B Ă Zn we may define their sumset as

A`B :“ ta` b : a P A, b P Bu.
This object has been intensely studied over the years and is one of the main objects
of study of additive combinatorics. In this context, a natural question that arises
is how many subsets of Zn are of the form A ` A for some A Ă Zn? Green and
Ruzsa [1] gave a first answer to this question.

Theorem 1 (Green, Ruzsa, 2004). Let n be a prime. There are

2n{3`opnq

subsets of Zn of the form A`A for some A Ă Zn.

In a different direction Alon, Graville and Ubis [2] proved various results about
counting sets of the form A`B, for instance they proved the following.

Theorem 2 (Alon, Granville, Ubis, 2010). Let n be a prime. There are

2n{2`opnq

subsets of Zn of the form A`B for some A,B Ă Zn, with |A|, |B| Ñ 8.

Notice that for each t0u Ă A Ă t0u Y rn{3, 2n{3s the set A ` A is different,

so there are at least 2n{3 choices for a set of the form A ` A. In fact, for any
arithmetic progression P , with |P | “ n{3, and x such that px`P qXpP `P q “ H,
we an take all txu Ă A Ă P Y txu. In [1] the authors provide this construction,
show it provides Ωpn22n{3q sets of the form A`A, since one has n2 choices for P .
Green and Ruzsa suggest this lower bound might be tight, and in [2] the authors
also ask for a tight bound on the number of sets of the form A ` A. One of my
main contributions in this work is providing an answer to these questions up to a
constant factor.

Theorem 3. Let n be a prime. There are

Θ
´
n8{32n{3

¯

subsets of Zn of the form A`A for some A Ă Zn.

The factor of n8{3 instead of n2 is somewhat surprising, the lower bound in this
theorem comes from a construction similar to the one in [1]. Take an arithmetic

progression P , now of length n´log2 n

3
, and two points x, y P Zn such that for each

S Ă P the set ptx, yu ` Sq zP ` P is different. In this case one can prove that

there are Ωpn8{32n{3q choices for A`A of this form, where Ωpnq choices come from
choosing x, y, Ωpn2q choices from choices of P and Ωpn´1{32n{3q from choices of S.
On the way to prove Theorem 3 we also prove a typical structure result, showing
that almost all sets of the form A`A come from a construction of this type.
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Another direction one can generalize these theorems is to count sumsets of a
given size. Notice that for a progression P , of length m´k

2
, and x P Zn such that

px` P q X pP ` P q “ H, there are

Ω

ˆˆ
m´k
2

k

˙˙

choices for sets B “ A ` A, with |B| “ m and |A| “ k, and txu Ă A Ă P Y txu.
This construction also gives essentially the tight bound.

Theorem 4. Let n be a prime, k ě plog nq8, p5´ cqk ď m ď 2
3
n` k. There are

Θ

ˆ
n3

ˆ
m´k
2

k

˙˙

size m subsets of Zn of the form A`A for some A Ă Zn, with |A| “ k.

We are also able to provide a suitable sharp typical structure result in this case.
The proof of these results uses a container theorem proved in previous work by

the author [3], using the asymmetric container lemma. This container theorem
needs to be combined with a suitable removal lemma for sets with bounded dou-
bling that was proved by Shao [4]. Additionally instead of applying the container
lemma normally, one needs first to use a stability theorem and find a large arith-
metic progression inside A ` A to then be able to apply a container theorem on
a ‘smaller scale’. After applying the container theorem combined with a suitable
removal lemma, the problem reduces to a combinatorial problem about counting
neighborhoods in graphs.
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Sumset estimates in higher dimensions

David Conlon

(joint work with Jeck Lim)

Given two subsets A,B of an abelian group, the sumset A`B is defined by

A`B “ ta` b : a P A, b P Bu
and the difference set A´B is defined similarly. We discuss two recent results [1, 2]
about the estimation of sumsets in Rd.
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First, we show that

|A´A| ě
ˆ
2d´ 2` 1

d´ 1

˙
|A| ´ p2d2 ´ 4d` 3q

for any sufficiently large finite subset A of Rd that is not contained in a translate
of a hyperplane. By a construction of Stanchescu [4], this is best possible and thus
resolves an old question first raised by Uhrin [5].

Second, we show that if L1 and L2 are linear transformations from Zd to Zd

satisfying certain mild conditions, then, for any finite subset A of Zd,

|L1A` L2A| ě
´
| detpL1q|1{d ` | detpL2q|1{d

¯d

|A| ´ op|A|q.

This result corrects and confirms the two-summand case of a conjecture of Bukh
and is best possible up to the lower-order term for many choices of L1 and L2. As
an application, we prove a lower bound for |A`λ ¨A| when A is a finite set of real

numbers and λ is an algebraic number. In particular, when λ is of the form pp{qq1{d

for some p, q, d P N, each taken as small as possible for such a representation, we
show that

|A` λ ¨ A| ě pp1{d ` q1{dqd|A| ´ op|A|q.
This is again best possible up to the lower-order term and extends a recent result
of Krachun and Petrov [3] which treated the case λ “

?
2.
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Improved lower bounds on the depth of polynomial size Boolean
circuits for the independent set problem

David Gamarnik

(joint work with Aukosh Jagannath, Alex Wein)

We establish order logn{ log logn lower bound on the depth of polynomial size
Boolean circuits producing independent sets with certain proximity to optimality.
There was a series of prior such bounds for this problem, and the state of the art
is order o(log n/loglog n), obtained by Rossman [3].

Boolean circuit is a class of algorithms described as a directed graph where
all nodes except bottom layer are associated with standard logical operations
^,_, [1],[2]. Two fundamental complexity measures associated with Boolean
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circuits are the size, namely the number of nodes in the directed graph, and the
depth, namely the length of the longest path. One of the fundamental goals in the
algorithmic complexity theory is establishing lower bounds on the size and depth
of circuits for solving various algorithmic decision and search problems. One of
the highlights of the theory is that the size of any poly-size circuit which solves
the parity of n bits problem is Θplogn{ log lognq. This is based on the celebrated
Hastad’s Switching Lemma. The progress on similar bounds for combinatorial
optimization problems was significantly slower. A series of progressively stronger
bounds resulted in the bound by Rossman [3] (see also [4] and [5]), who showed
that a poly-size Boolean circuit detecting the presence of a clique in an n-node
graph should have depth at least order logn{pk2n log lognq, where kn is the clique
size.

In this work we show that a poly-size Boolean circuit producing an independent
set larger than half optimum should have depth at least order logn{ log logn, thus
improving over the bound in [3]. Strictly speaking though our bounds are not
comparable, since the bound by Rossman is for the decision problem and our
bounds is for the search problem (namely the problem of actually exhibiting the
independent set itself).

Our formal result is stated as follows. We denote by Cpn, ppnq, ρq the family
of all m “

`
n
2

˘
-input, n-output Boolean circuits C which satisfy the following

properties:

(a) The depth of C is at most ppnq.
(b) For every graph y P t0, 1um, the output CpGq is an independent set in y

which satisfies

|Cpyq| ě ρ max
IPIpyq

|I|.

Here y encodes the adjacency matrix of a graph with m edges and I is the set of all
independent sets in the graph y. In other words, this is a family of circuits which,
given a graph as an input, is required to produce an independent set in this graph
with value that is at least a multiplicative constant ρ away from optimality. We
note that this family is non-empty, as it is possible to implement an exhaustive
search type algorithm that finds a largest independent set as a Boolean circuit
with depth bound that does not depend on n. Our main result below states that
if the depth ppnq is at most roughly logn{ log logn, any circuit in the family must
have super-polynomial size.

Theorem 1. Fix any ρ ą 1{2 and α ą 0. Let

ppnq “ logn

p1 ` αq log logn.

Then for all sufficiently large n, and all C P Cpn, ppnq, ρq, the size spCq of the
circuit C satisfies

spCq ě nplognqα{3

.
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Our proof is obtained by analyzing the performance of Boolean circuits on
sparse Erdös-Rényi graphs Gpn, d{nq and using the Overlap Gap Property (OGP).
Roughly speaking, the OGP says that for every pair of sufficiently large indepen-
dent sets in Gpn, d{nq their intersection normalized by the number of nodes is
either at most ν1 or at least ν2 for some ν1 ă ν2. We show that poly-size circuits
with depth smaller than one stated in the theorem can be run twice so that to
produce pairs of independent sets with ”prohibited” intersection size in pν1, ν2q,
thus obtaining a contradiction.

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[2] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
[3] Benjamin Rossman, On the constant-depth complexity of k-clique, Proceedings of the fortieth

annual ACM symposium on Theory of computing, 2008, pp. 721–730.
[4] Benjamin Rossman. Average-case complexity of detecting cliques. PhD thesis, Massachusetts

Institute of Technology, 2010.
[5] Yuan Li, Alexander Razborov, and Benjamin Rossman. On the AC0 complexity of subgraph

isomorphism. SIAM Journal on Computing, 46(3):936–971, 2017.

Cliques in the random graph process and the hitting time of
clique factors

Annika Heckel

(joint work with Marc Kaufmann, Noela Müller, Matija Pasch)

Given n, r, π, let Hrpn, πq denote the random r-uniform hypergraph where each of
the

`
n
r

˘
possible hyperedges of size r is present independently with probability π.

The usual random graph Gpn, pq is then given by the special case H2pn, pq.
In 1979 Shamir asked the following natural question: How large does π “ πpnq

need to be for Hrpn, πq to contain a perfect matching, that is, a collection of n{r
vertex-disjoint hyperedges? (Here and in the following, we implicitly assume r|n
whenever necessary.)

A seemingly closely related question, posed by Rućinski [7] and Alon and
Yuster [1], is: For which p “ ppnq does the random graph Gpn, pq contain an
r-clique factor, that is, a collection of n{r vertex-disjoint cliques of size r?

These questions remained some of the most prominent open problems in random
(hyper-)graph theory until they were solved up to constant factors by Johansson,
Kahn and Vu in their seminal paper [3]. It had long been assumed that the main
(or only) obstacle in finding a perfect matching in Hrpn, πq were isolated vertices,
that is, vertices not contained in any hyperedge. In the clique factor setting, the
corresponding obstacle are vertices not contained in any r-clique. Let

π0 “ π0prq “
logn`
n´1
r´1

˘ and p0 “ p0prq “ π
1{pr2q
0
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then π0 and p0 are known to be sharp thresholds for the properties ‘minimum
degree at least 1’ and ‘every vertex is covered by an r-clique’, respectively. Jo-
hansson, Kahn and Vu [3] showed that π0 and p0 are (weak) thresholds for the
existence of a perfect matching in Hrpn, πq and the existence of an r-clique factor
in Gpn, pq, respectively.

Recently, Jeff Kahn [4] proved that π0 is in fact a sharp threshold for the exis-
tence of a perfect matching in Hrpn, πq. Indeed, he was able to confirm the con-
jecture that isolated vertices are essentially the only obstacle, and therein answer
Shamir’s question, in the strongest possible sense: Let h1, . . . , hpnrq be a uniformly

random order of the
`
n
r

˘
possible hyperedges on the vertex set V “ rns, and set

Ht “ pV, th1, . . . , htuq,

which defines the random hypergraph process H “ pHtqp
n

rq
t“0. Let

T “ mintt : Ht has no isolated verticesu
be the hitting time of the last isolated vertex disappearing. In [5], Kahn proved
that this hitting time whp1 coincides with the hitting time for a perfect matching.

Theorem 1 ([5]). Let n P rZ, then with high probability,

HT has a perfect matching.

Can we get similarly strong answers to the clique factor question? Here the
question seems much harder because, unlike hyperedges in the random hyper-
graph, cliques do not appear independently from each other. However, for sharp
thresholds, it has indeed been possible to reduce the clique factor problem to
the perfect matching problem, using the following coupling result of Riordan (for
r ě 4) and the first author (for r “ 3):

Theorem 2 ([6, 2]). Let r ě 3. There are constants εprq, δprq ą 0 such that, for

any p “ ppnq ď n´2{r`ε, letting π “ pp
n

2qp1 ´ n´δq, we may couple the random
graph G “ Gpn, pq with the random r-uniform hypergraph H “ Hrpn, πq so that,
whp, for every hyperedge in H there is a copy of Kr in G with the same vertex set.

Corollary 3. p0 is a sharp threshold for the existence of an r-clique factor.

In the same spirit, we wish to directly transfer Theorem 1 to the random graph

process setting, showing its clique factor analogue. Let G “ pGtqp
n

2q
t“0 be the random

graph process, which is given by the random hypergraph process in the special case
r “ 2. Define

TG “ mintt : every vertex in Gt is contained in at least one r-cliqueu
as the hitting time of an r-clique cover. Then to transfer Kahn’s hitting time
result to the clique factor setting, we need to find a copy of HT within the cliques
of GTG

.

1We say that a sequence of events pEnqn holds with high probability (whp) if PpEN q Ñ 8
as n Ñ 8.
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Theorem 4. Let r ě 4. We may couple the random graph process G “ pGtqp
n

2q
t“0

with the random r-uniform hypergraph process H “ pHtqp
n

rq
t“0 so that, whp, for every

hyperedge in HT there is a clique in GTG
on the same vertex set.

Corollary 5. Let r ě 4 and n P rZ, then with high probability,

GTG
has an r-clique factor.

One might wonder whether the coupling in Theorem 4 is such that up to time T
and TG, the hyperedges appear in the same order in H as they do as r-cliques in G.
The answer to this is ‘almost’ — we can match up the order of the hyperedges and
cliques as long as they are edge-disjoint, but hyperedges which share two vertices
with another hyperedge may appear at a different time in H as they do as cliques
in G (but with high probability only about log2 n such hyperedges exist in HT ).

The proof starts with the coupling of the random graph and hypergraph from
Theorem 2 with p and π slightly larger than p0 and π0, respectively. We then
carefully couple uniform orders of the edges and hyperedges in such a way that
we are able to control most pairs of hyperedges sharing two vertices, and so that
the hitting times T and TG match. We then require a series of careful further
couplings in order to treat the remaining pairs of hyperedges sharing two vertices.

Theorem 4 is stated for the case r ě 4 because for r “ 3 similar technical
issues arise as in Theorem 2, which in that case were later resolved with additional
arguments in [2]. It seems likely that a similar approach can be used to adapt the
proof of Theorem 4 to the case r “ 3.
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The least singular value of a random symmetric matrix

Matthew Jenssen

(joint work with Marcelo Campos, Marcus Michelen, Julian Sahasrabudhe)

Let A be a n ˆ n random symmetric matrix whose entries on and above the
diagonal pAi,jqiďj are i.i.d. with mean 0 and variance 1. This matrix model,
sometimes called the Wigner matrix ensemble, was introduced in the 1950s in the
seminal work of Wigner [13], who established the famous “semi-circular law” for
the eigenvalues of such matrices.
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Here we study the lower tail of the least singular value of A, which we denote by
σminpAq. We prove a bound on the lower tail of σminpAq for all random symmetric
matrices A with i.i.d. subgaussian entries which is optimal up to constants. This
confirms a folklore conjecture, explicitly stated by Vershynin in [12].

Theorem 1. Let ζ be a subgaussian random variable with mean 0 and variance 1
and let A be a nˆ n random symmetric matrix whose entries above the diagonal
pAi,jqiďj are independent and distributed according to ζ. Then for every ǫ ě 0,

PApσminpAq ď ǫn´1{2q ď Cǫ ` e´cn ,

where C, c ą 0 depend only on ζ.

This theorem is sharp up to the value of the constants C, c ą 0. We note that
the special case ǫ “ 0 tells us that the singularity probability of any random sym-
metric A with subgaussian entry distribution is exponentially small, generalising
our previous work [3] on the case where ζ is uniform in t´1, 1u. A key ingredient
in the proof of Theorem 1 is a new result on repeated eigenvalues of A, which in
particular resolves a conjecture of Nguyen, Tao and Vu [9].

Theorem 2. Let ζ be a subgaussian random variable with mean 0 and variance
1 and let A be a nˆ n random symmetric matrix where pAi,jqiďj are independent
and distributed according to ζ. Then

PpA has a repeated eigenvalue q ď e´cn ,

where c ą 0 is a constant depending only on ζ.

We in fact prove a more refined version Theorem 2 which gives an upper bound
on the probability that two eigenvalues of A fall into an interval of length ǫn´1{2.

Previous results on the lower tail of σminpAq were obtained by Nguyen [8],
Vershynin [12] and Jain, Sah and Sawhney [7] with the state of the art being the

following bound from [7]: PApσminpAq ď ǫn´1{2q ď Cǫ1{8 ` e´c
?
n.

For large ǫ, e.g. ǫ ě n´c, another very different and powerful set of techniques
have been developed for this problem. The works of Tao and Vu [10, 11], Erdős,
Schlein and Yau [4, 5, 6], and specifically Bourgade, Erdős, Yau and Yin [1] tell

us that PpσminpAq ď ǫn´1{2q ď ǫ` op1q, thus obtaining the correct dependence on
ǫ asymptotically. We note however that it appears these techniques are limited to
the large ǫ regime and different ideas are required for ǫ ă n´C , and certainly for
ǫ as small as e´Θpnq. We refer the reader to our full paper [2] for more discussion.
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The largest product-free subsets of the alternating groups

Peter Keevash

(joint work with Noam Lifshitz, Dor Minzer)

A subset A of a group G is called product-free if there is no solution to a “ bc

with a, b, c all in A. It is easy to see that the largest product-free subset of the
symmetric group Sn is obtained by taking the set of all odd permutations, i.e.
SnzAn, where An is the alternating group. By contrast, it is a long-standing
open problem to find the largest product-free subset of An. This problem has
been recently highlighted by Ben Green [4], who credits Edward Crane for the
conjectured extremal examples, which are families of the form

F x
I :“ tπ : πpxq P I, πpIq X I “ Hu

and their inverses. Writing µ for uniform measure on An and |I| “ t
?
n, one can

calculate µpF x
I q « te´t2n´1{2, which suggests the conjecture that the maximum

measure should be Θpn´1{2q, and more precisely that it should be „ 1{
?
2en.

Improving earlier bounds of Kedlaya [6] and Gowers [3], the conjecture was proved
up to logarithmic factors by Eberhard [1], who showed that any product-free A Ď
An has µpAq “ Opn´1{2 log7{2 nq. Our main result here answers the question
completely, as follows.

Theorem 1. Suppose n is sufficiently large and A Ď An is a product-free subset
of maximum size. Then A or A´1 is some F x

I .

We also obtain the following ‘99% stability result’, showing that any large
product-free subset of An is essentially contained in an F x

I or its inverse. Our
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stability result holds for sets whose measure is much smaller than the extremal
family.

Theorem 2. Suppose n is sufficiently large and A Ď An is a product-free set
with µ pAq ě n´0.66. Then there is some F x

I such that µpAzF x
I q ă n´0.66 or

µpA´1zF x
I q ă n´0.66.

We also prove that if A Ď An is a product-free set with size very close to the
maximum then A or A´1 is contained in some F x

I .

Theorem 3. There exists an absolute constant c such that if n is sufficiently large
and A Ď An is a product-free set with µpAq ą maxI,x µ pF x

I q´ c
n
then there is some

F x
I such that A Ď F x

I or A´1 Ď F x
I .

We also study the following ‘1% stability’ problem. Suppose that A Ď An is a
product-free set of density ą 1{nC for an absolute constant C. What can be said
about the structure of A?

The structures appearing in the answer to this problem are as follows. A
set of the form DiÑj “ tσ P An : σpiq “ ju is called a dictator. Let D1, . . .Dt

be distinct dictators that have a nonempty intersection; we call their intersec-
tion a t-umvirate. Equivalently, a t-umvirate corresponds to ordered sets I “
pi1, . . . , itq, J “ pj1, . . . , jtq and is given by letting UIÑJ be the set of permuta-
tions that send each ik to jk.

Our next theorem shows that any product-free set that is somewhat dense has
some local structure. This is analogous to the strong local structure exhibited by
the extremal families F x

I , which have Θ p1q density inside each dictator 1xÑi with
i P I, as when |I| “ Θp?nq a random permutation sends I to its complement with
probability Θp1q. We show that a similar, albeit weaker, phenomenon holds for
product-free sets with any polynomial density that can be much smaller than that
in the extremal examples: such sets have a density bump inside a t-umvirate.

Theorem 4. Fix r P N, suppose n is sufficiently large, and A Ď An is product-free
withµpAq ą n´r. Then there exists some t-umvirate with t ď 4r in which A has

density at least nt{4µpAq.

Our approach can be viewed as an non-abelian analogue of Roth’s bound for
sets of integers with no three-term arithmetic progression, whereby we improve the
earlier approaches of Gowers and Eberhard by establishing a form of the ‘Structure
versus Randomness’ dichotomy. We achieve this by exploiting some recent theory
developed by Filmus, Kindler, Lifshitz and Minzer [2] for global hypercontractivity
on the symmetric group (building on the corresponding theory for product spaces
developed by Keevash, Lifshitz, Long and Minzer [5]), and by also developing some
further theory of the ‘Cayley operators’ associated to global subsets.

The main steps in the proof of our main theorem are as follows.

(1) Achieving dictatorial structure: We show that A has large density inside
many dictators. In fact, we show that in some sense, the product freeness
of A is completely explained by its densities inside dictators.
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(2) Achieving star structure: We then upgrade our dictatorial structure into a
tighter star structure. We find some S that is either a star or an inverse star
such that |AzS| is small and A has significant density in each restriction
defined by S.

(3) Bootstrapping: Using the approximate star structure, we deduce our exact
results from further stability analysis showing that any small deviation
from the structure leads to a suboptimal configuration.
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Enumerating matroids, linear spaces and clique-decompositions

Matthew Kwan

(joint work with Ashwin Sah, Mehtaab Sawhney)

Matroids (also sometimes known as combinatorial geometries) are fundamental
objects that abstract the combinatorial properties of linear independence in vector
spaces. Specifically, a matroid consists of a ground set E and a collection I of
subsets of E called independent sets1. The defining properties of a matroid are
that:

‚ the empty set is independent (that is, H P I);
‚ subsets of independent sets are independent (if A1 Ď A Ď E and A P I,
then A1 P I);

‚ if A and B are independent sets, and |A| ą |B|, then an independent set
can be constructed by adding an element of AzB to B (there is a P AzB
such that B Y tau P I).

Observe that any finite set of elements in a vector space (over any field) naturally
gives rise to a matroid, though most matroids do not arise this way. The rank of
a matroid is the maximum size of an independent set.

Enumeration of matroids is a classical topic, though the state of our knowledge
is rather incomplete. Some early upper and lower bounds on the total number
of matroids on a ground set of size n were obtained in the 1970s by Piff and
Welsh [15], Piff [14] and Knuth [8], and these bounds were improved only recently

1Instead of defining a matroid by its collection of independent sets, some authors prefer to
define a matroid by some other (equivalent) data, such as its collection of flats, its collection of
hyperplanes, or its rank function. See for example [19, 12] for a more thorough introduction to
matroids and their various definitions.
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by Bansal, Pendavingh, and van der Pol [2]. It is also of interest to enumerate
matroids of fixed rank: let mpn, rq be the number of rank-r matroids on a ground
set of size n. It is trivial to see that mpn, 1q “ 2n´1, and it is also possible to prove
the exact identity mpn, 2q “ bpn ` 1q ´ 2n, where bpmq is the mth Bell number
(which counts the number of partitions of an m-element set). This identity seems
to have been first observed by Acketa [1].

For r ě 3, an exact expression for mpn, rq in terms of well-known functions
does not seem to be possible2, but after some exciting recent developments, rather
precise asymptotic expressions have become available. First, Pendavingh and
van der Pol [13] observed that (for constant r ě 1) the lower bound mpn, rq ě
pe1´rn ` opnqqnr´1{r! follows from Keevash’s breakthrough work [6, 7] on exis-
tence and enumeration of combinatorial designs. They also proved an upper

bound of the form mpn, rq ď pen ` opnqqnr´1{r!. Even more recently, van der
Hofstad, Pendavingh and van der Pol [17] closed the gap for all r ‰ 3, proving

that mpn, rq “ pe1´rn ` opnqqnr´1{r! for constant r ě 4. In the remaining case

r “ 3 they were able to prove mpn, 3q ď pne1`β ` opnqqn2{6 « p1.4nqn2{6, where
´0.67 ă β ă ´0.65 is the solution to a certain variational problem. In this paper,
we close the gap completely in this case r “ 3.

Theorem 1.

mpn, 3q “
´1`

?
3

2
e

?
3{2´3n` opnq

¯n2{6
« p0.16169nqn2{6.

In particular, Theorem 1 shows that the lower bound mpn, 3q ě pe´2n `
opnqqn2{6 obtainable from Keevash’s results is far from sharp. This confirms a
conjecture in [17] (and disproves the earlier [18, Conjecture 8.2.9]).

In fact, Theorem 1 is really a corollary of the following theorem, estimating the
number of linear spaces on a set of n points. In incidence geometry, a linear space
on a point set P is a collection of subsets of at least two points of P (called lines)
such that each pair of points lies in a unique line (see for example [3, 16] for more
on linear spaces). For reasons that will become clear in a moment, we denote the
number of linear spaces on a set of n points by ppn, 3q.

Theorem 2.

ppn, 3q “
´1`

?
3

2
e

?
3{2´3n` opnq

¯n2{6
« p0.16169nqn2{6.

We remark that one may also be interested in linear spaces in which no line has
exactly 2 points (these are called proper linear spaces). It should be possible to
adapt our proof to show that the expression in Theorem 2 is also a valid estimate for
the number of proper linear spaces on a set of n points (though this would require
some rather deep machinery due to Keevash [6] and McKay and Wormald [11]).

2Though, a lot of computational work has been done for small n, r, and there are many
conjectures about the relations between the different mpn, rq; see for example [5] and the index
for matroids on the On-Line Encyclopedia of Integer Sequences [4].
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To explain the connection between Theorems 2 and 1 we need to make a few
more definitions. A d-partition (or generalised partition of type d) of a ground set
E is a collection of subsets of E (called parts) each having size at least d, such
that every subset of d elements of E is contained in exactly one of the parts. So,
a 1-partition is an ordinary partition, and a 2-partition is a linear space. For any
r ě 2, there is a correspondence between the set of pr´ 1q-partitions of E and the
set of so-called paving matroids of rank r on the ground set E. Namely, a paving
matroid of rank r is a matroid for which its set of hyperplanes (maximal subsets
with rank r ´ 1) form an pr ´ 1q-partition of its ground set. See for example [19,
Section 3] for more details.

For r ě 2 let ppn, rq be the number of paving matroids of rank r, or equiva-
lently the number of pr´ 1q-partitions, on a ground set of size n. Given the above
correspondence, we trivially have ppn, rq ď mpn, rq, and it was proved by Pen-
davingh and van der Pol [13, Theorem 3] that ppn, rq ď mpn, rq ď ppn, rq1`Op1{nq

for constant r. So Theorem 1 is a direct consequence of Theorem 2. One may also
wish to use the language of graph theory: note that a linear space on a set of n
points is precisely equivalent to a clique-decomposition of the complete graph Kn

(meaning, a decomposition of the edges of Kn into nonempty cliques of arbitrary
sizes).
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Hypergraphs with no tight cycles

Shoham Letzter

1. Introduction

A basic fact in graph theory asserts that the maximum number of edges in a graph
on n vertices that has no cycles is n´ 1 (and maximisers are trees). It is natural
to consider an analogous question for hypergraphs: what is the maximum numebr
of edges in an r-uniform hypergraph (henceforth r-graph) that contains no cycles?
Unlike the graph case, for r ě 3 there are various natural notions of cycles in
r-graphs. Here we focus on the notion of tight cycles. An r-uniform tight cycle is
a sequence v1, . . . , vk of at least r` 1 distinct vertices satisfying that vi . . . vi`r´1

is an edge for every i P rks (indices are added modulo r). Denote by frpnq the
maximum possible number of edges in an r-graph on n vertices that contains no
tight cycles. So we will be interested in estimating frpnq for r ě 3.

Consider the r-graph on vertex set rns whose edges are r-subsets of rns that
contain 1. This hypergraph has

`
n´1
r´1

˘
edges and contains no tight cycles (indeed,

it is easy to see that the edges of any tight cycle cannot be covered by a single
vertex). In particular, frpnq ě

`
n´1
r´1

˘
. Sós and, independently, Verstraëte (see

[4, 6]) conjectured that this bound is tight for large enough n. This was refuted by
Huang and Ma [2], who showed that, for r ě 3, there exists c “ cprq ą 1 such that
frpnq ě c ¨

`
n´1
r´1

˘
for large n. A clever construction due to B. Janzer [3] implies

the best known lower bound to date, namely that frpnq ě Ωpnr´1 logn{ log lognq
for r ě 3.

Notice that frpnq ď
`
n
r

˘
, trivially. An old paper of Erdős [1] implies the following

improvement of this trivial bound: frpnq “ Opnr´2´pr´1qq. For r “ 3, this was
improved by Verstraëte (unpublished) who showed f3pnq “ Opn5{2q. Recently,
these bounds were significantly improved by Sudakov and Tomon [5], who proved

that frpnq ď nr´1eOp
?
lognq for r ě 3, establishing that frpnq “ nr´1`op1q. Our

contribution is to sharpen the error term eOp
?
lognq in Sudakov and Tomon’s bound,

as follows.

Theorem 1. Let r ě 3. Then frpnq “ Opnr´1plognq5q.
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2. Proof sketch

Our proof builds on ideas Sudakov and Tomon’s work [5]. They introduce the
notions of r-line-graphs, which are graphs that correspond naturally to r-partite
r-graph, and expansion in such graphs. They show that, given a dense enough
r-partite r-graph H, the r-line-graph that corresponds to H contains a dense ex-
pander G. Next, they define σ-paths and σ-cycles, which correspond to tight
paths and cycles in the original hypergraph H. It thus suffices to show that every
r-line-graph which is a dense expander contains a σ-cycle. Sudakov and Tomon
are not able to prove this. Instead, they show that every expander contains either
a σ-cycle or a very dense subgraph, and proceed via a density increment argument.

Our main contribution is to show that every r-line-graph which is a dense
expander indeed contains a σ-cycle. A key step in our proof is to show that in
such an expanderG, for every vertex x P V pGq, almost every other vertex y P V pGq
can be reached from x via a short σ-path P px, yq in a ‘robust’ way, meaning that no
vertex in the underlying r-graph H (except for those in the edge corresponding to
x) meets too many of the paths P px, yq. If the robustness requirement is dropped,
we obtain a lemma from [5]. To prove the robust version, we use the non-robust
version from [5] as a black box, along with another lemma from the same paper,
which asserts that the removal of a small number of vertices from the underlying
r-graph H does not ruin expansion.

To find a σ-cycle, let P px, yq be paths as above, defined for almost every x, y P
V pGq. Note that while we are guaranteed that, for every x P V pGq, no vertex v of
H meets too many paths P px, yq, we do not have any control over the number of
times v meets a path P px, yq, for a given y. Nevertheless, since the paths P px, yq
are short, for every y P V pGq there are few vertices in H that meet many path
P px, yq; denote the set of such vertices in H by F pyq. Using tools mentioned
above, for every y and almost every x there is a short σ-path Qpy, xq from y to x

that avoids F pyq. To complete the proof, we note that the robustness implies that
for almost every x, y P V pGq the path Qpy, xq is defined, and there are linearly
many z P V pGq for which P px, zqP pz, yq is a σ-path from x to y. Using robustness
and the choice of Qpy, xq, the concatenation P px, zqP pz, yqQpy, xq is a σ-cycle for
almost every x, y P V pGq and linearly many z P V pGq.
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Uncommon and Sidorenko systems of equations

Anita Liebenau

(joint work with Nina Kamčev, Natasha Morrison)

In 1962, Erdős [4] conjectured that the number of monochromatic k-cliques Kk

in any two-colouring of the edges of Kn is asymptotically minimised by a random
two-colouring. A graphH with this property is called common, i.e. if the number of
monochromatic copies of H in any two-colouring of the edges of Kn, is asymptoti-
cally minimised by a random two-colouring. In 1980, Burr and Rosta [1] extended
Erdős’ conjecture to arbitrary H. This conjecture was independently disproved by
Thomason [17], who also disproved Erdős’ conjecture by showing that K4 is un-
common, and by Sidorenko [16]. Later, Jagger, Šťov́ıček and Thomason [9] proved
that common graphs are in fact quite rare by showing that any graph containing
K4 as a subgraph, is uncommon. Although the conjectures of Erdős and of Burr
and Rosta are false in this very strong sense, the desire to characterise common
and uncommon graphs continues to this day, see for example see [8, 10] and the
references therein.

The phenomenon of a random colouring minimising the number of monochro-
matic structures was also investigated in the arithmetic setting. In 1996, Graham,
Rödl and Ruciński [7] asked about the minimal proportion of monochromatic Schur
triples, i.e. solutions to x ` y “ z, in two-colourings of rns. This number was
independently shown [3, 13, 15] to be far below the number expected in a ran-
dom colouring. In contrast to this, in the finite Abelian group setting, Cameron,
Cilleruelo and Serra [2] showed that the random colouring minimises the number
of monochromatic solutions to any equation in an odd number of variables.

Inspired by the above-mentioned results for graphs and arithmetic structures,
Saad and Wolf [14] initiated a systematic study of the number of monochromatic
solutions to linear patterns in more generality. From now on, we work over the
finite field Fq, where q is a prime power, following e.g. [5, 14]. Consider a linear
map L : pFn

q qk Ñ pFn
q qm with coefficients in Fq. Say that L is common if the

density of monochromatic solutions to the system of linear equations Lpxq “ 0 in
any two-colouring of Fn

q is asymptotically minimised by the expected density of
solutions in a random two-colouring.

Earlier work focused on systems consisting of a single equation a1x1 ` ¨ ¨ ¨ `
akxk “ 0 with coefficients ai P Fˆ

q “ Fqzt0u. As mentioned above, whenever k is
odd, such an equation is common [2]. For even k, Saad and Wolf [14] proved that
the equation is common whenever the coefficients can be partitioned into pairs,
each pair summing to zero. They conjectured that this sufficient condition is also
necessary, which was confirmed by Fox, Pham and Zhao [5]. Hence homogeneous
equations of this form are completely characterised.

Fox, Pham and Zhao [5] asked about a similar characterisation for common
systems of equations, hoping that it might lead to a better understanding of the
analogous properties for graphs and hypergraphs, but they note that they do not
have a guess for such a characterisation. We make significant progress towards
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a classification for common systems of two or more linear equations. As a first
step, we show that in many cases, the presence of a particular small subsystem is
sufficient for a system to be uncommon. This can be seen as an analogue of the
result of Jagger, Šťov́ıček and Thomason [9] mentioned above, showing that any
graph containing a copy of K4 is uncommon.

In order to state our main results, we now introduce some definitions. Let
L be a collection of m linear forms L1, . . . , Lm in k variables with coefficients
in Fq. For an ℓ-variable system L1, we say that L induces L1 as a subsystem if
there exists a subset ti1, . . . , iℓu Ď rks such that Lpx1, . . . , xkq “ 0 implies that
L1pxi1 , . . . , xiℓq “ 0. A system L is called an pm ˆ kq-system if the rows of the
coefficient matrix of L are linearly independent over Fq. Finally, L is degenerate if
it induces the equation xi´xj “ 0, for some i “ j, and non-degenerate otherwise.

Theorem 1. Let q be an odd prime power, let 2 ď m ă k be integers and let L be
a non-degenerate pm ˆ kq-system over Fq. If L induces a p2 ˆ 4q-system, then L

is uncommon.

We remark that an pm ˆ kq-system always satisfies m ď k, and that m “ k

implies that L is trivially common. Furthermore, the non-degeneracy condition on
the subsystem (implied by the non-degeneracy of L) is required, as, for example,
the system x1 “ x2 “ . . . “ xk is common. The commonness of a degenerate
system is determined by the commonness of a non-degenerate subsystem.

For any prime p ą 3 and any power q of p, an arithmetic progression of length
four (4-AP) is a non-degenerate p2 ˆ 4q-system over Fq, and so we obtain the
following corollary which resolves a question of Saad and Wolf [14].

Corollary 2. Let q be an odd prime power, let 2 ď m ă k be integers and let L be
a non-degenerate pmˆ kq-system over Fq. If L induces an arithmetic progression
of length four, then L is uncommon.

Since an arithmetic progression of length k ě 4 induces a 4-AP, our result
implies that any k-AP, and any system inducing a k-AP is uncommon. We remark
that Corollary 2 has been independently proved by Versteegen [18].

Earlier results on the uncommonness of 4APs [14, 19] used geometric intuition
relying on strong structural properties of arithmetic progressions, but perhaps sur-
prisingly we do not utilise these properties here. Excitingly, Theorem 1 applies to
any non-degenerate p2ˆ 4q-system. Not only does this determine the uncommon-
ness of a large and general family of systems, but as we only use weak conditions
on the structure of the solution space, there is reason to believe that our techniques
could be used to characterise other general families of systems.

Theorem 1 is obtained as a consequence of a much more general (and more
technical) result. We refer the reader to Theorem 3.1 in [11] for the exact statement
of the theorem. Roughly speaking, this result provides a sufficient condition for a
system to be uncommon based solely on particular ‘critical’ subsystems which all
have rank at most two.

Finally, we introduce a parameter that provides some guidance towards a char-
acterisation. The length of an equation E is the number of variables in E with
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non-zero coefficients. Given a system L, let spLq denote the minimal length of an
equation induced by L.

Theorem 3. Let q be a prime power, let 2 ď m ă k be integers and let L be an
pm ˆ kq-system over Fq such that spLq is even. If every equation of length spLq
induced by L is uncommon, then L is uncommon.

We have also made progress towards the related notion of a Sidorenko system
of equations. In particular, we show in [12] that spLq being even is a necessary
condition for a system to be Sidorenko. We also provide a large class of non-trivial
Sidorenko systems of equations.
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[9] C. Jagger, P. Šťov́ıček, and A. Thomason. Multiplicities of subgraphs. Combinatorica,
16(1):123–141, 1996.

[10] D. Král’, J.A. Noel, S. Norin, J. Volec, and F. Wei. Non-bipartite k-common graphs. Com-
binatorica (2022), 1–28.
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A proof of the Ryser-Brualdi-Stein conjecture for large even n

Richard Montgomery

The study of transversals in Latin squares dates back at least to the 18th century
when Euler considered Latin squares which can be decomposed into full transver-
sals [5]. A Latin square of order n is an n by n grid filled with n symbols, so that
every symbol appears exactly once in each row and each column. A transversal
of a Latin square of order n is a collection of cells in the grid which share no row,
column or symbol, while a full transversal is a transversal with n cells.

Key examples of Latin squares include the addition tables of finite groups, which
easily provide examples that, if n is even, then there are Latin squares of order
n with no full transversal (e.g., the addition table for Z2). In 1967, Ryser [11]
conjectured that there are no such Latin squares of order n when n is odd (see
also [1]), while Brualdi [3] and Stein [13] later independently conjectured that
every Latin square of order n has a transversal with at least n ´ 1 cells. The
following combined form of these conjectures, known as the Ryser-Brualdi-Stein
conjecture, has become the most widely known open problem on transversals in
Latin squares.

Conjecture 1 (The Ryser-Brualdi-Stein conjecture). Every Latin square of order
n has a transversal with n´ 1 cells, and a full transversal if n is odd.

Towards Conjecture 1, increasingly large transversals were shown to exist in
any Latin square by Koksma [8], and Drake [4], before Brouwer, De Vries and
Wieringa [2] and Woolbright [14] independently showed that every Latin square of
order n has a transversal with at least n´?n cells. In 1982, Shor [12] showed that

a transversal with n´Oplog2 nq cells exists in any Latin square of order n, though
the proof had an error that was only noticed and corrected by Hatami and Shor in
2008 [6]. This bound (essentially) stood for several decades until the breakthrough
work of Keevash, Pokrovskiy, Sudakov and Yepremyan [7] in 2020, which showed
that every Latin square of order n has a transversal with n ´ Oplog n{ log lognq
elements.

In this talk, I will discuss the following result.

Conjecture 2. There is some n0 P N such that every Latin square of order n ě n0

contains a transversal with n´ 1 cells.

The bound Oplog n{ log log nq in the result by Keevash, Pokrovskiy, Sudakov
and Yepremyan [7] is a natural barrier, and it seems likely this is the best bound
that can be achieved with methods that approach each Latin square in the same
manner. Thus, for Theorem 2, we introduce the first techniques to identify and
exploit the possible algebraic properties behind the entries in a Latin square.

To prove Theorem 2, we use a combination of the semi-random method and
the absorption method. We use an implementation of the semi-random method
in this setting in [9], and therefore all the main novelty occurs in our use of
absorption. Since its codification in 2008 as a general approach by Rödl, Ruciński
and Szemerédi [10], absorption has been a critical tool in turning approximate
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results into exact results. That is, we aim to set aside some special ‘absorber’
which can be extended into a transversal with p1 ´ op1qqn cells in a Latin square
of order n using the semi-random method. The aim is that the absorber should
have some special properties to turn this into a transversal with n´ 1 cells.

However, the extremal examples showing a full transversal may not always exist
(when n is even) demonstrate the challenge of using the absorption method in this
setting. In these examples, the algebraic properties behind the entries in the Latin
square prevent the existence of the typical absorbers used for an application of the
absorbing method. Latin squares arising as the addition tables of groups are good
examples of such algebraic properties, but other extremal examples show these
properties can be more complicated still.

To prove Theorem 2, we introduce methods to group the symbols of the Latin
square into colour classes with some limited algebraic properties. We then use
this properties to create both an ‘absorption structure’ as well as introducing an
‘addition structure’ which will identify which row and column should be left out
of the n´ 1 transversal that we create.
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Triangle factors in pseudorandom graphs

Patrick Morris

We say a graph G contains a triangle factor if there is a collection of vertex disjoint
triangles which completely cover the vertex set of G. As a natural generalisation
of a perfect matching in a graph, triangle factors are a fundamental object in
probabilistic, extremal and algorithmic graph theory. However, unlike perfect
matchings, it is not easy to verify whether a graph G contains a triangle factor or
not. Indeed Schaeffer [8] proved that determining if a graph on n P 3N vertices
contains a triangle factor is an NP-complete problem. Given that we can not hope
for a nice characterisation of graphs which contain triangle factors, there has been
a focus on providing sufficient conditions. One classical such theorem is due to
Corrádi and Hajnal [4] who showed that a triangle factor is guaranteed if the host
graph is sufficiently dense.

Theorem 1. If G is a graph on n P 3N vertices with minimum degree δpGq ě 2n{3,
then G contains a triangle factor.

This theorem is tight, as can be seen, for example, by taking G to be a complete
graph with a clique of size n{3`1 removed to leave an independent set of vertices,
say I. All examples verifying the tightness of Theorem 1 share some features with
the graph given here. For example they contain much larger independent sets
than almost all graphs of this density. Therefore, one might hope to capture more
graphs having a triangle factor by adding a condition that precludes the atypical
behaviour of the extremal examples.

This naturally leads us to the notion of pseudorandom graphs, which are, roughly
speaking, graphs which imitate random graphs of the same density. The study of
pseudorandom graphs, initiated in the 1980s by Thomason [14], has become a cen-
tral and vibrant field at the intersection of Combinatorics and Theoretical Com-
puter Science. One way of imposing pseudorandomness is through the spectral
notion of the eigenvalue gap. Here we focus on so-called pn, d, λq-graphs G which
are d-regular n-vertex graphs with second eigenvalue λ. By second eigenvalue,
what is actually meant is the second largest eigenvalue of the adjacency matrix
in absolute value. It turns out that this parameter λ controls the pseudorandom-
ness of the graph G, with smaller values of λ giving graphs that have stronger
pseudorandom properties.

It follows from simple linear algebra that for an pn, d, λq-graph, one has that
λ ď d always and moreover, as long as d is not too close to n, say d ď 2n{3, one
has that λ “ Ωp

?
dq. Thus, we think of pn, d, λq-graphs with λ “ Θp

?
dq as being

optimally pseudorandom.
A prominent theme in the study of pseudorandom graphs has been to give con-

ditions on the parameters, n, d and λ which guarantee certain properties of an
pn, d, λq-graph. For example, it follows easily from the so-called expander mixing
lemma that any pn, d, λq-graph G with λ ă d2{n contains a triangle. In particu-
lar, any optimally pseudorandom graph with d “ ωpn2{3q must contain a triangle.
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Moreover, this condition is tight due to a triangle-free construction of an pn, d, λq-
graph due to Alon [2] with d “ Θpn2{3q and λ “ Θpn1{3q. In general, finding
optimal conditions for subgraph appearance in pn, d, λq-graphs seems very hard.
Indeed the only tight conditions that are known are those for fixed size odd cy-
cles [3, 9]. With respect to spanning structures, it is only perfect matchings that
have been well understood [9].

In this talk we present an answer to what has become one of the central problems
in this area, by giving a tight condition for an pn, d, λq-graph to contain a triangle
factor.

Theorem 2. There exists ε ą 0 such that any pn, d, λq-graph with n P 3N and
λ ď εd2{n, contains a triangle factor.

Theorem 2 was conjectured by Krivelevich, Sudakov and Szabó [10] in 2004.

Focusing solely on optimally pseudorandom graphs, that is, setting λ “ Θp
?
dq,

Theorem 2 gives that any optimally pseudorandom graph with d “ ωpn2{3q con-
tains a triangle factor. Comparing this to Theorem 1, we see that imposing pseu-
dorandomness, which is easy to compute via the second eigenvalue, allows us to
capture much sparser graphs which are guaranteed to contain a triangle factor.

Let us note that Theorem 2 is tight due to the construction of Alon discussed
above. Indeed, one of the reasons that the conjecture has attracted so much atten-
tion is that it marks a distinct difference between the behaviour of random graphs
and that of (optimally) pseudorandom graphs. In random graphs, we know that
triangles appear at density roughly p “ n´1, whilst for triangle factors the thresh-
old is considerably denser, namely p “ n´2{3plognq1{3 [7]. On the other hand,
there exists triangle-free, optimally pseudorandom graphs with density roughly
n´1{3, but any pseudorandom graph whose density is a constant factor larger than
this is guaranteed to have not only a triangle but a triangle factor. Furthermore,
it follows from Theorem 2 and (the proof of) a result of Han, Kohayakawa, Person
and the author [5] that even more is true.

Corollary 3. There exists ε ą 0 such that any pn, d, λq-graph G with λ ď εd2{n
is 2-universal. That is, given any graph F on at most n vertices, with maximum
degree 2, G contains a copy of F .

Theorem 2 concludes a body of work towards the conjecture of Krivelevich,
Sudakov and Szabó and the proof of the theorem builds upon the many beautiful
ideas of various authors, which have arisen in this study. The first step towards
the conjecture was given by Krivelevich, Sudakov and Szabó [10] themselves, who
showed that λ ď εd3{pn2 lognq for some sufficiently small ε is enough to guarantee
a triangle factor. This was improved by Allen, Böttcher, Hàn, Kohayakawa and
Person [1] to λ ď εd5{2{n3{2 and they could also prove that with this condition
one can guarantee the appearance of the square of a Hamilton cycle. Nenadov [12]
then got very close to the conjecture, showing that λ ď εd2{pn lognq guarantees
a triangle factor. Concentrating solely on optimally pseudorandom graphs, these
results read that having degree d “ ωpn4{5plog nq2{5q, ωpn3{4q and ωppn lognq2{3q
respectively, guarantees the existence of a triangle factor.
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In a different direction, one can fix the condition that λ ď εd2{n for some small
ε ą 0 and prove the existence of other structures giving evidence for a triangle
factor. Again, this was initiated by Krivelevich, Sudakov and Szabó [10] who
proved that with this condition, one can guarantee the existence of a fractional
triangle factor. Another interesting result of Sudakov, Szabó and Vu [13] showed
that when we have λ ď εd2{n, we have many triangles and these are well dis-
tributed in the pn, d, λq-graph. Indeed they proved a Turán result showing that
one needs to delete at least half the edges of such an pn, d, λq-graph in order to
eliminate all the triangles. Another more recent result due to Han, Kohayakawa
and Person [6] shows that λ ď εd2{n guarantees the existence of a near triangle
factor ; that there are vertex disjoint triangles covering all but n647{648 vertices of
such an pn, d, λq-graph.

Our proof of Theorem 2 incorporates discrete algorithmic techniques, proba-
bilistic methods, fractional relaxations and linear programming duality and the
method of absorption. For details of the proof, we refer to the full paper of this
result [11].
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Down-set thresholds

Bhargav Narayanan

(joint work with Benjamin Gunby, Xiaoyu He)

We elucidate the relationship between the threshold and the expectation-threshold
of a down-set. Qualitatively, our main result demonstrates that there exist down-
sets with polynomial gaps between their thresholds and expectation-thresholds; in
particular, the logarithmic gap predictions of Kahn–Kalai [1] and Talagrand [2]
about up-sets do not apply to down-sets. Quantitatively, we show that any collec-
tion G of graphs on rns that covers the family of all triangle-free graphs on rns sat-
isfies the inequality

ř
GPG expp´δepGcq{?nq ă 1{2 for some universal δ ą 0, and

this is essentially best-possible; in particular, the this shows that the expectation-
threshold of the down-set of triangle-free graphs on rns is Ωp1{?nq while its thresh-
old is Θp1{nq.
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A proof of the Kahn-Kalai Conjecture

Jinyoung Park

(joint work with Huy Tuan Pham)

Given a finite set X , write 2X for the power set of X . For p P r0, 1s, let µp be the

product measure on 2X given by µppAq “ p|A|p1´ pq|XzA|. In this paper F Ď 2X

always denotes an increasing property, meaning that if B Ě A P F , then B P F . It
is a well-known fact that µppFqp:“

ř
APF µppAqq is strictly increasing in p for any

F ‰ H, 2X . The threshold, pcpFq, is then the unique p for which µppFq “ 1{2. In
this paper, we resolve a conjecture of Kahn and Kalai [12], reiterated by Talagrand
[16], relating the threshold and the ”expectation-threshold” (definition is below).

Following [16], we say F is p-small if there is G Ď 2X such that

(1) F Ď xGy :“
ď

SPG
tT : T Ě Su

and ÿ

SPG
p|S| ď 1{2.

We say that G is a cover of F if (1) holds. The expectation-threshold of F , qpFq,
is defined to be the maximum p such that F is p-small. Observe that qpFq is a
trivial lower bound on pcpFq, since
(2) µppFq ď µppxGyq ď

ÿ

SPG
p|S|.
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Note that, with Xp the random variable whose distribution is µp, the right-hand
side of (2) is Er|tS P G : S Ď Xpu|s.

Given an increasing property F , write ℓpFq for the size of a largest minimal
element of F . Our main theorem resolves the following conjecture of Kahn and
Kalai [12].

Theorem 1 (The Kahn-Kalai Conjecture). There is a universal constant K such
that for every finite set X and increasing property F Ď 2X,

pcpFq ď KqpFq log ℓpFq.

Roughly speaking, Theorem 1 says that for any increasing property, the threshold
is never far from its trivial lower bound given by the expectation threshold.

Thresholds have been a central subject in the study of random discrete struc-
tures since its initiation by Erdős and Rényi [4, 5], the study of which has flourished
in random graph theory, computer science [13, 16], and statistical physics [9]. The
definition of the threshold above is finer than the original Erdős-Rényi notion,
according to which p˚ “ p˚pnq is a threshold for F “ Fn if µppFq Ñ 0 when
p ! p˚ and µppFq Ñ 1 when p " p˚. That pcpFq is always an Erdős-Rényi thresh-
old follows from [3], in which it was observed that every increasing F admits a
threshold in the Erdős-Rényi sense. While much work has been done identifying
thresholds for specific properties (see [2, 10]), another intensively studied direction
in the study of thresholds is “sharpness” of thresholds: we refer interested readers
to [7, 8].

To emphasize the strength of Theorem 1, we point out that, in [12], Kahn
and Kalai wrote that “It would probably be more sensible to conjecture that it
is not true.” The expectation threshold is the most naive (and often the easiest)
approach to estimating the threshold, and Theorem 1 says that for every increasing
property, its threshold is only within a logarithmic factor of this naive estimate.
In particular, many important works in this area have been on thresholds for
specific properties, and Theorem 1 easily implies some of those very hard results
on the location of thresholds, for example, the appearance of perfect matchings in
random r-uniform hypergraphs [11], and the appearance of a given bounded degree
spanning tree in a random graph [15]. For more discussion on the significance
and applications of this theorem, we refer the readers to [6], in which a weaker
(“fractional”) version of Theorem 1 was proved.

Part of our proof is inspired by the algorithm in [1] and the analysis of the
algorithm in [6, 14], though our implementation is significantly different from the
ideas in those papers. In particular, our analysis completely avoids the use of
“spread,” which was a key ingredient in the aforementioned papers. We remark
that our proof technique can also be adapted to simplify the proof of the main
lemma of [6].
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On a conjecture of Talagrand on selector processes and a consequence
on positive empirical processes

Huy Tuan Pham

(joint work with Jinyoung Park)

The study of suprema of stochastic processes is a central interest in probability
theory with influential applications in related areas. We refer the readers to [4, 8]
for extensive discussions of various aspects of this subject. Through many funda-
mental developments, one now has fairly good understanding of the suprema of
centered Gaussian processes1. In particular, one can associate each Gaussian pro-
cess pZtqtPT indexed by a set T with a metric on T given by dpt, sq :“ ErpZt´Zsq2s,
and Talagrand’s celebrated generic chaining bound and majorizing measure theo-
rem [3, 5, 8] determine the expectation of the supremum suptPT Zt up to a constant
by a quantity depending only on the metric space pT, dq. Via this fundamental re-
sult, one can obtain deep insights and characterizations of the suprema of Gaussian
processes. One important example is Theorem 1 below, which gives a nice geo-
metric characterization of large suprema of Gaussian processes: such event must
be contained in a union of half-spaces whose sum of measures is small.

1Following [8], we always assume Gaussian processes are centered, i.e., EZt “ 0 for all t P T .
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Theorem 1 (Talagrand, Theorem 2.12.2 in [8]). There exists L ą 0 such that
the following holds. Let g be an M -dimensional standard Gaussian vector. For
T Ď RM , consider the process Zt “ xt, gy for t P T . Then one can find a sequence
of half-spaces Hk of RM with

"
sup
tPT

Zt ě LE sup
tPT

Zt

*
Ă

ď

kě1

Hk,

and ÿ

kě1

PpHkq ď
1

2
.

Our main contribution in this paper is the proofs of a conjecture of Talagrand
on selector processes (Theorem 2; originally [6, Problem 4.1], [7, Conjecture 5.7]
and [8, Research Problem 13.2.3]) and a result on positive empirical processes
(Theorem 3; a question of Talagrand [9] and a problem posed in [6]), which are
analogous to Theorem 1. We first quickly state our main results, and then provide
more context, definitions, and motivations for Talagrand’s questions.

Given a finite set X , write 2X for the power set of X . For p P r0, 1s, let µp be

the product measure on 2X given by µppAq “ p|A|p1´ pq|XzA|. We use Xp for the
random variable whose distribution is µp. For S Ď X , define the upset generated
by S to be xSy :“ tT : T Ě Su. Following [7], we say F Ď 2X is p-small if there is
G Ď 2X such that

(1) F Ď xGy :“
ď

SPG
xSy

and

(2)
ÿ

SPG
p|S| ď 1{2.

We say G is a cover of F if (1) holds.
Our first main result is the Bernoulli-p analog of Theorem 1.

Theorem 2. There exists L ą 0 such that the following holds. Consider any
0 ă p ă 1, any finite set X and any collection Λ of sequences λ “ pλiqiPX with
λi ě 0. Then the family

$
&
%S Ď X : sup

λPΛ

ÿ

iPS
λi ě LE sup

λPΛ

ÿ

iPXp

λi

,
.
-

is p-small.

In [7], Talagrand explains the meaning of the above theorem this way: Conjecture
5.7 (now Theorem 2) shows that “if you are given a selector process, and would like
to prove that, within a multiplicative factor, the quantity E supλPΛ

ř
iPXp

λi ďM

for a constant M , there is in the end no other way than to find the witnesses that
the set tS Ď X : supλPΛ

ř
iPS λi ě LMu is small.” In the same place, Talagrand

suggests that this result “provides fundamental information.”
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Our second main result is the analog of Theorem 1 for positive empirical pro-
cesses.

Theorem 3. There exists L ą 0 such that the following holds. For any N ą 0
and i.i.d. random variables Y1, . . . , YN distributed according to a Borel probability
measure on a Polish space T, and any finite collection F of functions f : TÑ Rě0

with F Ď L8pTq, consider the positive empirical process Zf “ 1
N

řN

i“1 fpYiq.
Assume that 0 ă ErsupfPF Zf s ă 8. Then one can find a collection C of pairs pg, tq
where g is a nonnegative function on T and t ą 0, so that with Eg,t :“ tZg ě tu,
we have

#
sup
fPF

Zf ě LE sup
fPF

Zf

+
Ă

ď

pg,tqPC
Eg,t,

and
ÿ

pg,tqPC
PpEg,tq ď

1

2
.

We remark that the conclusion of Theorem 3 readily extends to cases where F

is not necessarily finite, for example when F is a totally bounded infinite subset
of L8pTq.

The full version of our paper can be found at [2]. Our proofs of Theorem 2 and
Theorem 3 are also closely connected to and motivate our recent resolution of the
Kahn-Kalai conjecture [1].
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A random Hall-Paige Conjecture

Alexey Pokrovskiy

(joint work with Alp Müyesser)

A complete mapping of a group G is a bijection φ : G Ñ G such that x ÞÑ xφpxq
is also bijective (this is equivalent to asking that the multiplication table of the
group has a transversal i.e. a set of |G| entries that don’t repeat rows, columns,
or symbols). Hall and Paige [4] conjectured in 1955 that a finite group G has a
complete mapping whenever

ś
xPG x P G1 (where G1 is the commutator subgroup

of the group). They proved that this is a necessary condition, so the main part of
the conjecture is to prove that “

ś
xPG x P G1 ùñ G has a complete mapping”.

This was confirmed in 2009 by Wilcox [6], Evans [3], and Bray [1] with a proof
using the classification of finite simple groups. Recently, Eberhard, Manners, and
Mrazović [2] found an alternative proof of the conjecture for sufficiently large
groups using ideas from analytic number theory. Their proof gives a very precise
estimate on the number of complete mappings that each group has.

In this talk, we presented a third proof of the conjecture using a different set
of techniques, this time coming from probabilistic combinatorics. This proof only
works for sufficiently large groups, but generalizes the conjecture in a new direction.
This direction is to find complete mappings not just in full groups but also in their
subsets. Specifically:

Theorem 1 (Müyesser-Pokrovskiy, [5]). Let G be a group of order n. Let p ě
n´1{10100 . Let R1, R2, R3 Ď G be p-random subsets, sampled independently. Then,
with high probability, the following holds.

Let X,Y, Z Ď G be subsets satisfying the following properties.

‚ |X∆R1| ` |Y∆R2| ` |Z∆R3| ď p10
10

n{ logpnq1015
‚ |X | “ |Y | “ |Z|
‚

ś
X

ś
Y p

ś
Zq´1 P G1

Then, there exists a bijection φ : X Ñ Y such that x ÞÑ xφpxq is a bijection from
X to Z.

Using Theorem 1, it is possible to settle the following open problems for suffi-
ciently large groups.

(1) It is possible to confirm a conjecture of Snevily by characterising large
subsquares of multiplication tables of finite groups that admit transversals.
Previously, this characterisation was known only for abelian groups of odd
order (by a combination of papers by Alon; Dasgupta, Károlyi, Serra, and
Szegedy; Arsovski).

(2) It is possible to characterize the abelian groups that can be partitioned
into zero-sum sets of specific sizes. This solves a problem of Tannenbaum,
and confirms a conjecture of Cichacz.

(3) It is possible to characterize harmonious groups, that is, groups with an
ordering in which the product of each consecutive pair of elements is dis-
tinct. This solves a problem of Evans.
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(4) It is possible to characterize the groups with which any path can be as-
signed a cordial labelling. In the case of abelian groups, this confirms a
conjecture of Patrias and Pechenik.
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High-girth Steiner triple systems

Ashwin Sah

(joint work with Matthew Kwan, Mehtaab Sawhney, and Michael Simkin)

We prove a 1973 conjecture of Erdős on the existence of Steiner triple systems
with arbitrarily high girth. Specifically, given g P N, any sufficiently large n ” 1, 3
pmod 6q admits a 3-graph on n vertices so that every pair is in a unique hyperedge
and so that for all 4 ď j ď g, any j vertices contains at most j ´ 3 hyperedges.
We also prove an analogue for Latin squares conjectured by Linial.

The techniques build on the iterative absorption framework for designs intro-
duced by Glock, Kühn, Lo, and Osthus [3] as well as prior approximate results of
Bohman and Warnke [1] as well as Glock, Kühn, Lo, and Osthus [2]. At a high
level, the idea is to use explicit combinatorial constructions to form a finite ab-
sorbing structure that can only “fix” very restricted types of defects, and then to
iteratively transform the decomposition problem into smaller and smaller decom-
position problems until it is of bounded size, able to be solved using the absorber.
Specifically, we start with the entire vertex set of size n and attempt to cover all
edges outside of smaller and smaller localized subsets. To simplify, this iterative
transformation process relies on a triangle-removal process (or high-girth triangle
removal process due to [1, 3] in our setting) and a “cover-down” step which runs
a disjoint matching process to use to use all remaining edges outside of the new
vertex set.

Unfortunately, in the setting of high-girth Steiner systems, the issue of “hybrid
configurations” spanning multiple levels of this iteration poses severe difficulties.
As an initial issue, a positive fraction of the remaining triangles are expected to be
forbidden after each step. This effect multiplies as the iteration continues, leading
to a “constraint focusing” issue. This is mitigated by (a) reducing the number of
steps of iteration via an efficient (high-girth) absorber construction which allows
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one to have a polynomial-size (instead of bounded-size) final vertex set, and (b)
an initial sparsification which mitigates the focusing effect.

To analyze the most general hybrid configurations that can arise, we adapt ideas
of Bohman and Warnke [1], creating a “weight-system” framework for analyzing
moments of random processes and allowing for a retrospective analysis approach to
assuring various quantities remain bounded throughout our multi-stage random
procedure. Finally, to ensure the high-girth process runs far enough to use in
iterative absorption, we introduce tools to regularize guiding auxiliary data.
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The singularity probability of a random symmetric matrix

Julian Sahasrabudhe

(joint work with Marcelo Campos, Matthew Jenssen, Marcus Michelen)

In the late 1950s Wigner [20], initiated the study of the eigenvalues of random
symmetric matrices (sometimes called Wigner random matrices after him) and
proved the, now classical, “semi-circular law” for the distribution of the eigenvalues
of such matrices. Here we study the probability that such a matrix is singular.

Let An be drawn uniformly from all n ˆ n symmetric matrices with entries in
t´1, 1u. We consider the quantity

PpdetpAnq “ 0q.
A natural lower bound comes from the event that two rows are equal up to sign
and indeed, a moment’s thought reveals that

PpdetpAnq “ 0q ě p1` op1qqn22´n.

One attractive feature of this problem is that it is widely believed that this lower
bound is indeed represents the truth. That is, it is believed that this lower bound,
or at least 2´np1`op1qq, is also a corresponding upper-bound. However, establishing
this “obvious” conjecture has proven to be a fascinating challenge and has lead to
much interesting mathematics.

We first mention the great success that has been attained on the analogous
problem for the related iid model. For this, we let Bn be drawn uniformly from all
nˆ n matrices with all entries in t´1, 1u; that is, we have dropped the symmetry
condition. Here the problem got its start with the work of Komlós in the 60s
[10, 11] who showed that Bn is non-singular with probability 1 ´ op1q. This was
then greatly imporved 20 years later in a beautiful paper of Kahn, Komlós and
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Szemerédi [9]. Further progress was made by Tao and Vu [15, 16, 17] Bourgain, Vu
and Wood [2], and Rudelson and Vershynin [13], until the problem was essentially
resolved by Tikhomirov [18] who showed that

PpdetpBnq “ 0q “ 2´np1`op1qq,

in a breakthrough paper.
Progress on the singularity probability for the symmetric model An has come

somewhat more recently and more slowly. The problem of showing that An is
almost surely non-singular goes back, at least, to Weiss in the early 1990s but was
not resolved until 2005 by Costello, Tao and Vu [5], who obtained the bound

PpdetpAnq “ 0q ď n´1{8`op1q.

The first super-polynomial bounds were obtained by Nguyen [12] and, simul-
taneously, Vershynin [19], the latter obtaining a bound of the form expp´ncq. In
2019, a more combinatorial perspective was introduced by Ferber, Jain, Luh and
Samotij [7] and applied by Ferber and Jain [6] to show

PpdetAn “ 0q ď expp´cn1{4plognq1{2q .
In a similar spirit, Campos, Mattos, Morris and Morrison [4] then improved this
bound to

PpdetAn “ 0q ď expp´cn1{2q,
by proving a“rough” inverse Littlewood-Offord theorem, inspired by the theory of
hypergraph containers (see [1, 14]). This bound was then improved by Jain, Sah

and Sawhney [8], who improved the exponent to ´cn1{2 log1{4 n, and, simultane-
ously, by the authors of this paper [3] who improved the exponent to ´cpn lognq1{2.

It turns out that the convergence of these results to the exponent of´cpn lognq1{2

is no coincidence and, in fact, represents a natural barrier for the problem. This
“barrier” was first pointed out in [4], where the authors noticed that all previous
papers, for the core of their proofs, work only with the top-half of the matrix
(i.e. the half above the diagonal), and assume the worst case in the rest. The
authors then argue that any argument of this form cannot do better than a bound
of expp´cpn lognq1{2q. Therefore, to get beyond this obstruction, somehow the
randomness of the matrix must “reused”.

In this talk, I discuss our recent proof of an exponential upper-bound on the
singularity probability of a symmetric random matrix, thereby breaking-though
this barrier and giving the optimal bound, up to the constant in the exponent.

Theorem 1. Let An be uniformly drawn from all nˆ n symmetric matrices with
entries in t´1, 1u. Then
(1) PpdetpAnq “ 0q ď e´cn,

where c ą 0 is an absolute constant.

In this talk I sketch the main new combinatorial technique of this paper that
allows us to “reuse” the randomness of our matrix by pushing some of the random-
ness onto the random selection of a potential kernel vector from our discretized
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sphere. I also touch on another main challenge of this paper which is a result that
shows the “approximate negative correlation” of certain kinds of linear events.
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List-decoding for Reed–Solomon codes

Lisa Sauermann

(joint work with Asaf Ferber, Matthew Kwan)

Reed–Solomon codes are a family of error-correcting codes that have been studied
intensively in many different contexts since they were introduced in [3]. As the
parameters of the code, consider a prime power q and integers 1 ď k ă n ď q.
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Then, for n distinct evaluation points a1, . . . , an P Fq, the rn, ks-Reed–Solomon
code with these evaluation points is defined to be the set of codewords

Cpkq
a1,...,an

:“ tpfpa1q, . . . , fpanqq | f P Fqrxs, deg f ă ku Ď F
n
q .

One reason for the great interest in Reed–Solomon codes is that they behave
optimally with respect to the classical unique decoding problem, having an optimal
trade-off between rate and distance. The rate of a code C Ď Fn

q is defined to be
logq |C|{n, and the distance of C is defined to be the minimum Hamming distance
between a pair of distinct codewords γ, γ1 P C (recall that the Hamming distance
between γ and γ1 is the number of positions in which γ and γ1 disagree). Every
rn, ks-Reed–Solomon code has rate k{n and distance n´ k ` 1. By the Singleton
bound [6], this is the highest possible rate for any code of this distance.

An important generalization of unique decoding is the notion of list-decoding,
and properties of Reed–Solomon codes with respect to list-decodability are much
less understood. Roughly speaking, while the unique encoding problem demands
that the original codeword can be uniquely reconstructed from a noisy signal,
for the list-decoding problem we are satisfied with a short list of candidate code-
words for a noisy signal. List-decodability was first introduced by Elias [1] and
Wozencraft [7] in the 1950s, and has since been used in several different areas of
theoretical computer science. Regarding list-decodability of Reed–Solomon codes
specifically, there are applications in complexity theory and the theory of pseudo-
randomness. The problem of understanding the (combinatorial) list-decodability
of Reed–Solomon codes has been raised by many researchers over the last two
decades, and there has been a lot of recent work investigating this problem [2, 4, 5].
Still, a lot of questions remain open.

In order to formally define what it means for a code to be list-decodable, we need
to introduce some more definitions. Given r P p0, 1q, and β P Fn

q , the Hamming
ball of (relative) radius r centered at β is defined as

Brpβq :“ tγ P Fn
q | γris “ βris for at least p1´ rqn positions 1 ď i ď nu

(here, by γris we denote the symbol in the i-th position of γ P Fn
q ). In other

words, this Hamming ball consists of all points γ P F
n
q that differ in at most rn

coordinates from β.
A code C Ď Fn

q is called pr, Lq-list-decodable (for some radius r P p0, 1q and some
list size L P N) if we have |C X Brpβq| ď L for all β P Fn

q . In other words, C is
pr, Lq-list-decodable if each Hamming ball of (relative) radius r in Fn

q contains at
most L codewords from C. Note that for list size L “ 1, the setting of pr, Lq-list-
decodability precisely corresponds to the classical unique decoding setting.

One may now ask about the best possible trade-off between the rate of an
pr, Lq-list-decodable code and the radius r and list size L. It is not hard to show
that for fixed r P p0, 1q and L P N with r ě L{pL` 1q, every pr, Lq-list-decodable
code C Ď Fn

q must have rate op1q as n Ñ 8. So let us from now on assume that
r ă L{pL`1q. Shangguan and Tamo [5] proved the following upper bound for the
rate of any pr, Lq-list-decodable code C Ď Fn

q (where n is large).
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Theorem 1 (Shangguan and Tamo [5]). For fixed list size L P N and radius
0 ă r ă L{pL ` 1q, and large n, any pr, Lq-list-decodable linear code C Ď Fn

q has
rate at most

1´ L` 1

L
¨ r ` op1q.

This result can be viewed as a generalization of the classical Singleton bound
[6] for unique decoding, and can be proved with a similar counting argument.
Shangguan and Tamo [5] conjectured that the rate in their general upper bound
can be attained for Reed–Solomon codes (similarly to the fact that Reed–Solomon
codes behave optimally with respect to unique decoding).

Conjecture 2 (Shangguan and Tamo [5]). For fixed list size L P N and radius
0 ă r ă L{pL ` 1q, and large n, there exist pr, Lq-list-decodable Reed–Solomon
codes with rate

1´ L` 1

L
¨ r ´ op1q.

Shangguan and Tamo [5] proved their conjecture for L “ 2 and L “ 3, but
for larger L the conjecture is still wide open. We prove the conjecture for general
L P N up to some constant-factor-loss in the rate.

Theorem 3. For fixed list size L P N and radius 0 ă r ă L{pL` 1q, and large n,
there exist pr, Lq-list-decodable Reed–Solomon codes with rate

1

10

ˆ
1´ L` 1

L
¨ r

˙
.

The constant 10 is not optimized in our proof, and can be improved to any
constant c ą 2. Our proof shows, similarly to previous works on this topic [2,
5], that for q sufficiently large with respect to n, for random evaluation points

a1, . . . , an P Fq, the Reed–Solomon code C
pkq
a1,...,an (with k “ rp1´ L`1

L
¨ rq{10s) will

likely be pr, Lq-list-decodable (unfortunately, the proof does not give an explicit
choice of such evaluation points). Our result requires a bound of q ě n1.25 for
the field size (which can be improved to q ě nc for any c ą 1 at the expense of
increasing the constant 10). In contrast, the previous works [2, 5] required q to be
exponential in n.

In the case of radius r “ 1 ´ ε for small ε ą 0, Theorem 3 gives the following
corollary.

Theorem 4. For fixed ε P p0, 1q, and large n, there exist p1´ε, r3{εsq-list-decodable
Reed–Solomon codes with rate at least ε{15.

By the list-decoding capacity theorem, any p1 ´ ε, Lq-list-decodable Reed–
Solomon code (with list size L less than exponential in n) can have rate at most
ε` op1q. Theorem 4 matches this rate upper bound up to the constant the factor
15. In previous work, Guo, Li, Shangguan, Tamo, and Wootters [2] showed a
similar result with rate Ωpε{ logp1{εqq, matching the list-decoding capacity upper
bound up to a logarithmic factor. They stated that their “motivating question is
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whether or not RS codes can be list-decoded up to radius 1´ ε with rates Ωpεq”,
and Theorem 4 answers this question affirmatively.

Our proof of Theorem 3 also show a more general result about list-decodability
of random puncturings of a given code with very large distance, but this talk was
only focused on Reed–Solomon codes.
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On the Threshold for Steiner Triple Systems

Mehtaab Sawhney

(joint work with Ashwin Sah, Michael Simkin)

We consider the following problem: for what p does the random r-uniform hyper-
graph, Gprqpn, pq on n vertices contain an pn, q, rq design? Recall that an pn, q, rq
design is a system of sets of size q such that every set of size r is contained in
exactly 1 set of size q and Gprqpn, pq is the random r-uniform hypergraph where
every set r-edge is contained with probability p.1

This question contains a number of questions which themselves been sources of
intense study. First, the deterministic question for p “ 1 of the mere existence of
pn, q, rq-designs was a long standing open question which was famously resolved
by Keevash [1] via a new method of Randomized Algebraic Constructions. Sub-
sequently a second proof, was given by Glock, Kühn, Lo, and Osthus [2] based on
the method of iterative absorption. Second, for q “ 2 and r “ 1, note that an
pn, 2, 1q design is simply a perfect matching and therefore the question specializes
to the threshold for Gpn, pq containing a perfect matching. This was resolved in
foundational work of Erdős and Rényi [5] with a hitting time result being proved
in later work of Bollobás and Thomason [4]. The more general question of when

1Note that for this question to make sense, it is necessary to restrict to n which satisfy the
necessary divisibility conditions for an pn, q, rq design to exist.
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Gprqpn, pq contains an pn, r, 1q design was an infamous open problem, going under
the name of Shamir’s problem. The threshold for containing an pr, 1q-design was
first resolved up to constant factors in seminal work of Johansson, Kahn, and Vu
[3] and then later with a sharp constant and a hitting time result being proved in
difficult work of Kahn [7, 6].

Our main result is resolving the threshold for containing a p3, 2q-design up to a
sub-polynomial factor.

Theorem 1. There exists C ą 0 such that

lim
nÑ8

n”1,3 mod 6

PrGp3qpn, exppCplog nq3{4qn´1q contains a p3, 2q-designs “ 1.

We note that by coupon-collector that the threshold for containing a p3, 2q-
design (or a Steiner triple system) is Á plog nq{n and therefore the above theorem,
with results of Friedgut [10], imply a sharp threshold sequence for the property of
containing a Steiner triple system. We also prove the analogous result for Latin
squares.

Our result relies on recent breakthrough work due to Frankston, Kahn, Narayan,
and Park [8] resolving the Fractional Expectation Threshold vs Threshold conjec-
ture. (We note that more recently, the full Expectation Threshold vs Threshold
conjecture, was resolved in breakthrough work of Park and Pham [9].) The crucial
ingredient we require is the following result regarding spread -measures.

Theorem 2 (From [8, Theorem 1.6]). Consider a finite ground set Z and fix a
nonempty collection of subsets H Ď 2Z . Let µ be a probability measure on H. For
q ą 0 we say that µ is q-spread if for every set S Ď Z:

µ ptA P H : S Ď Auq ď q|S|.

There exists a constant C ą 0 such that the following holds. Suppose that there
exists a q-spread probability measure on H. Then a random binomial subset of
Z where each element is sampled with probability minpCq log |Z|, 1q contains an
element of H as a subset with probability at least 3{4.

The key task therefore is to produce a sufficiently spread measure on the set of
Steiner triple systems. In previous applications of [8, Theorem 1.6], the measure
µ was taken to be uniform over all possible copies of the embedded structure.
However results regarding the enumeration of Steiner triple systems are too poor
to directly pursue this strategy (see [8, Section 8.D] for further discussion).

Instead our construction of a spread measure of Steiner triple systems follows
from a delicate boostrapping procedure. Roughly the proof proceeds in four steps.
First, we set aside a sparse set of triangles of suitable spread on top of a set
of vertices X . Second, using tools from iterative absorption, we cover all edges
outside of X with spread |X |´1`op1q. Third by induction, we cover the edges
within X with a certain spread. Finally, using the triangles set aside initially we
“delocalize” the spread with certain gadgets and a careful analysis reveals that
this procedure allows one to iteratively construct measures of improved spread.
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Induced subgraphs of induced subgraphs of large chromatic number

Alex Scott

(joint work with António Girão, Freddie Illingworth, Emil Powierski, Michael
Savery, Youri Tamitegama and Jane Tan)

It is a fundamental problem of graph theory to understand what structures must
appear in graphs of large chromatic number. A straightforward reason for a graph
to have large chromatic number is the presence of a large clique. However, this
is not necessary as there are examples of triangle-free graphs with large chro-
matic number (see, for instance, Tutte [3] and Zykov [10] among many classical
constructions).

If a graph has large chromatic number and small clique number, it is reasonable
to ask whether it contains induced subgraphs with large chromatic number which
are ‘simple’ in some way. A natural conjecture, attributed to Esperet (see [9]),
asked whether all graphs with large chromatic number contain either a large clique
or a triangle-free induced subgraph with large chromatic number (the non-induced
version of this was proven by a beautiful argument of Rödl [7]). This conjecture
was recently disproved by Carbonero, Hompe, Moore and Spirkl [2], who found a
surprising new twist on a construction of Kierstead and Trotter [5], and proved
the following.

Theorem 1 (Carbonero, Hompe, Moore and Spirkl [2]). There are graphs of arbi-
trarily large chromatic number that contain neither a K4 nor an induced triangle-
free subgraph of chromatic number greater than four.
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Let us write ωpHq for the clique number (the maximum number of vertices in a
complete subgraph) of a graph H and χpHq for the chromatic number of H . We
say that a graph G is F -free if it does not contain an induced copy of F .

Briański, Davies and Walczak [1] extended the result of Carbonero, Hompe,
Moore and Spirkl to cliques of prime order, in an ingenious paper proving the
following.

Theorem 2 (Briański, Davies and Walczak [1]). For every prime p, there are
Kp`1-free graphs G of arbitrarily large chromatic number such that every Kp-free

induced subgraph H of G satisfies χpHq ď ωpHqωpHq2 .

As a consequence, they showed that there are classes of graphs that are χ-
bounded but not polynomially χ-bounded, disproving another conjecture of Es-
peret [4] (see [8] and [9] for definitions and related discussion).

Theorems 1 and 2 show that there areKp`1-free graphs of large chromatic num-
ber in which every induced subgraph of large chromatic number contains a copy
of Kp. It is natural to ask whether anything is true for other graphs F . In other
words, is there a graph G with small clique number and large chromatic number
such that every induced subgraph of G with large chromatic number contains an
induced copy of F? Perhaps surprisingly, our main theorem answers this in the
affirmative for every nontrivial graph F . Indeed, G can be taken to have the same
clique number as F .

Theorem 3. For every graph F with at least one edge, there is a constant cF and
graphs G of arbitrarily large chromatic number and the same clique number as F

such that every F -free induced subgraph of G is cF -colourable.

Theorem 3 gives a graph G with the same clique number as F . In the case
when F is triangle-free, it is natural to ask whether we can take our graphs G to
have the same girth as F . We conjecture that this is the case.

Conjecture 4. For every graph F with at least one cycle, there exists a constant
bF and graphs G of arbitrarily large chromatic number and the same girth as F

such that every F -free induced subgraph of G is bF -colourable.

It would already be interesting to prove this in the special case where F is the
5-cycle. We prove a weaker version of the conjecture, where girth is replaced by
odd girth, the length of the shortest odd cycle.

Theorem 5. For every nonbipartite graph F , there is a constant c1
F and graphs G

of arbitrarily large chromatic number and the same odd girth as F such that every
F -free induced subgraph of G is c1

F -colourable.

The proofs of Theorems 3 and 5 follow a common framework, building on the
arguments of Carbonero, Hompe, Moore and Spirkl [2], and Briański, Davies and
Walczak [1]; but the constructions are much more delicate and require additional
ideas. In the construction of Theorem 3, it is convenient to begin with the oriented
Zykov graph (which was also used in [1] and [2]). However, for Theorem 5, we
introduce an oriented version of graphs of Nešetril and Rödl [6]. A key ingredient
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of the proof, which may be of independent interest, is to show that every cycle in
these graphs has a large number of direction changes. Another new ingredient in
both proofs is the use of Bh-sets to control the appearance of the graph F .
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Weakly Saturated Hypergraphs and a Conjecture of Tuza

Asaf Shapira

(joint work with M. Tyomkyn)

Typical problems in extremal combinatorics, e.g. the Turán and Ramsey problems,
ask how large or small a discrete structure can be, assuming it possesses certain
properties. While in many cases it seems hopeless to obtain full solutions to these
problems, one would at least like to know that these extremal functions are “well
behaved”. For example, it is natural to ask if the quantities expn,Hq{nr and

Rpnq1{n tend to a limit. While it is easy to see that the first quantity indeed tends
to a limit [18], it is a famous open problem of Erdős [9, 10, 12] to prove that the
second one does so as well. Our aim in this paper is to prove that another well
studied extremal function is well behaved.

For a fixed r-graph H , an r-graph G “ pV,Eq is called H-saturated if it does not

contain a copy of H but for any edge e P
`
V
r

˘
zEpGq adding e to G creates a copy

of H . We let satpn,Hq denote the smallest number of edges in an H-saturated
r-graph on n vertices. Let Kr

t denote the complete r-graph on t vertices; when
r “ 2 (i.e. when dealing with graphs) we use Kt instead of K2

t . The problem of
determining satpn,Ktq was raised by Zykov [28] in the 1940’s and studied in the

1960’s by Erdős, Hajnal andMoon [11] who showed that satpn,Ktq “
`
n
2

˘
´

`
n´t`2

2

˘
.

Their result was later generalized by Bollobás [5] who showed that satpn,Kr
t q “
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`
n
r

˘
´

`
n´t`r

r

˘
. It is worth noting that the proof in [5] introduced the (equivalent

and) highly influential Two Families Theorem.

We say that G is weakly H-saturated if the edges of
`
V
r

˘
zEpGq admit an ordering

e1, . . . , ek such that for each i “ 1, . . . , k the r-graphGi :“ GYte1, . . . , eiu contains
a copy of H containing the edge ei. We refer to the sequence e1, . . . , ek as a
saturation process. Define wsatpn,Hq to be the smallest number of edges in a
weaklyH-saturated r-graph on n vertices. Note that we may automatically assume
that any G realizing wsatpn,Hq is H-free, as otherwise we could remove an edge
from a copy ofH inG to obtain a smaller weaklyH-saturated r-graph. Hence weak
saturation can be viewed as an extension of the notion of (ordinary) saturation.
The problem of determining wsatpn,Hq was first introduced in 1968 by Bollobás [6]
who conjectured that wsatpn,Ktq “ satpn,Ktq. This was proved independently by
Frankl [15] and Kalai [16, 17] using the skewed variant of Bollobás’s Two Families
Theorem (a related statement for matroids was proven earlier by Lovász [19]) and
further extended by Alon [1] and Blokhuis [4]. This result, which has several other
equivalent formulations, is amongst the most classical and important results of
extremal combinatorics. See e.g. the discussions in [2, 20, 23, 25].

At this point it is natural to ask if for every H there is a constant CH so that

(1) wsatpn,Hq “ pCH ` op1qqn.
Such a result was obtained in 1985 by Alon [1], who proved that for graphs the
function wsatpn,Hq is (essentially) subadditive, implying that wsatpn,Hq{n tends
to a limit, by Fekete’s subadditivity lemma [14].

Much less was known when H is an r-graph with r ě 3. Bollobás’s construction
from [5] gives a simple bound of

wsatpn,Hq ď satpn,Hq “ OHpnr´1q.
A more refined result was obtained by Tuza [27] who introduced the following key
definition. The sparseness of an r-graph H , denoted spHq, is the smallest size of
a vertex set W Ď V contained in precisely one edge of H ; note that 1 ď spHq ď r

for every non-empty r-graph H . It was proved in [27] that for every r-graph H

there are two positive reals cH and CH such that

(2) cH ¨ ns´1 ď wsatpn,Hq ď CH ¨ ns´1.

It was further conjectured in [27] that the more refined bound wsatpn,Hq “ CH ¨
ns´1`Opns´2q holds for every r-graph of sparseness s. See also the recent survey
[8] on saturation problems where this conjecture is further discussed. Since such
a result is not known even for graphs (i.e. when r “ s “ 2), Tuza [27] asked if one
can improve upon (2) by showing that for every r-graph we have wsatpn,Hq “
CH ¨ ns´1 ` opns´1q where s “ spHq. Prior to this work, such a result was only
known for r “ 2 by Alon’s result (1). In this paper we fully resolve Tuza’s problem
for all r-graphs.

Theorem 1. For every r-graph H there is CH ą 0 such that

lim
nÑ8

wsatpn,Hq{ns´1 “ CH ,
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where s “ spHq is the sparseness of H. In particular, for every r-graph H there
is C 1

H ě 0 such that

lim
nÑ8

wsatpn,Hq{nr´1 “ C 1
H .

Proof and paper overview: It is natural to ask why Alon’s [1] one-paragraph proof
of Theorem 1 for s “ 2 is hard to extend to s ą 2. Perhaps the simplest reason
is that one cannot hope to show that in these cases the function wsatpn,Hq is
subadditive since a subadditive function is necessarily of order Opnq, while we
know from (2) that when s ě 3 the function wsatpn,Hq is of order at least n2.
The main novelty in this paper is in finding a direct and efficient way to use an
m-vertex r-graph witnessing the fact that wsatpm,Hq is small, in order to build
arbitrarily large n-vertex r-graphs witnessing the fact that wsatpn,Hq is small.
One of the main tools we use to construct such an example is Rödl’s approximate
designs theorem [24] which enables us to efficiently combine many examples of size
m into one of size n. Rödl’s result would only allow us to construct a saturation
process generating part of the edges of Kr

n. To complete this saturation process
we would also need another set of gadgets.
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Ringel’s tree packing conjecture in quasirandom graphs

Katherine Staden

(joint work with Peter Keevash)

The following conjecture was posed by Ringel [13] in 1963.

Ringel’s Conjecture. For any tree T with n edges, the complete graph K2n`1

has a decomposition into 2n` 1 copies of T .

I discuss our 2020 proof of this conjecture for large n, via the following theorem
which is a generalisation to decompositions of quasirandom graphs into trees of
the appropriate size. For the statement we use the following quasirandomness
definition: we say that a graph G on n vertices is pξ, sq-typical if every set S of at

most s vertices has pp1˘ξqdpGqq|S|n common neighbours, where dpGq “ epGq
`
n
2

˘´1

is the density of G.

Theorem 1. There is s P N such that for all 0 ă p ď 1 there exist ξ, n0 such that
for any n ě n0 such that ppn ´ 1q{2 P Z and any tree T of size ppn ´ 1q{2, any
pξ, sq-typical graph G on n vertices of density p can be decomposed into n copies
of T .
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The case p “ 1 of Theorem 1 establishes Ringel’s conjecture for large n, a result
also obtained in 2020 independently by Montgomery, Pokrovskiy and Sudakov [12]
by different methods, along the lines of their proof of an asymptotic version in [11].
They show that certain edge-colourings of K2n`1 contain a rainbow copy of T ,
such that the required T -decomposition can be obtained by cyclically shifting this
rainbow copy. This approach is specific to the complete graph, and does not apply
to the more general setting of quasirandom graphs as in Theorem 1.

Ringel’s conjecture was well-known as one of the major open problems in the
area of graph packing. In a graph packing problem, one is given a host graph G

and a guest graph F and the task is to fit as many edge-disjoint copies of F into
G as possible. If the size (number of edges) of F divides that of G, it may be
possible to find a perfect packing, or F -decomposition of G. More generally, given
a family F of graphs of total size equal to the size of G, we seek a partition of (the
edge set of) G into copies of the graphs in F .

These problems have a long history, going back to Euler in the eighteenth
century. The flavour of the problem depends very much on the size of F . The
earliest results concern F of fixed size, in which case F -decompositions can be
naturally interpreted as combinatorial designs.

There is also a large literature on F -decompositions where the number of ver-
tices of F is comparable with, or even equal to, that of G. Classical results of this
type are Walecki’s 1882 decompositions of K2n into Hamilton paths, and of K2n`1

into Hamilton cycles. There are many further results on Hamilton decompositions
of more general host graphs.

Much of the literature on F -decompositions for large F concerns decomposi-
tions into trees. Besides Ringel’s conjecture, the other major open problem of
this type is a conjecture of Gyárfás [6], saying that Kn should have a decom-
position into any family of trees T1, . . . , Tn where each Ti has i vertices. Both
conjectures have a large literature of partial results; the most significant of these
include the following. Joos, Kim, Kühn and Osthus [7] proved both conjectures
for bounded degree trees. Ferber and Samotij [5] and Adamaszek, Allen, Grosu
and Hladký [2] obtained almost-perfect packings of almost-spanning trees with
maximum degree Opn{ lognq. These results were generalised by Allen, Böttcher,
Hladký and Piguet [4] to almost-perfect packing of spanning graphs with bounded
degeneracy and maximum degree Opn{ lognq. This was extended in [3] to perfect
packings provided linearly many of the graphs are slightly smaller than spanning
and have linearly many leaves. Very recently, Gyárfás’s conjecture for maximum
degree Opn{ log nq trees was proved in [1]. The above results mainly use ran-
domised embeddings, for which a maximum degree bound Opn{ lognq is necessary
for concentration of probability. While the results of Montgomery, Pokrovskiy and
Sudakov [10, 11] also use probabilistic methods, they are able to circumvent the
maximum degree barrier by methods such as the cyclic shifts mentioned above.

Our proof proceeds via a rather involved embedding algorithm, in which the
various subroutines are analysed by a wide range of methods, some of which are
adaptations of existing methods (particularly from [10] and [3], and also our own
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recent methods in [8] for the ‘generalised Oberwolfach problem’, which are in
turn based on [9]), but most of which are new, including a method for allocating
high degree vertices and their edges via partitioning and edge-colouring arguments
and a method for approximate decompositions based on a series of matchings in
auxiliary hypergraphs.
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Erdős’s conjecture on the pancyclicity of Hamiltonian graphs

Benny Sudakov

(joint work with Nemanja Draganić, David Munhá Correia)

Hamiltonicity is one of the most central notions in graph theory, and it has been
extensively studied by numerous researchers. The problem of deciding Hamiltonic-
ity of a graph is NP-complete, but a central theme in Combinatorics is to derive
sufficient conditions for this property. One example is the classical Dirac’s the-
orem [8], which states that every n-vertex graph with minimum degree at least
n{2 contains a Hamilton cycle. A closely related notion is that of pancyclicity - a
graph is said to be pancyclic if it contains all cycles of length from 3 up to n.

In 1973, Bondy [3] stated his celebrated meta-conjecture that any non-trivial
condition which implies that a graph is Hamiltonian should also imply that it is
pancyclic (up to a certain collection of simple exceptional graphs). As an example,
Bondy [2] himself first showed that every n-vertex graph with minimum degree of
at least n{2 is either pancyclic or isomorphic to the complete bipartite graph
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Kn{2,n{2, thus strengthening Dirac’s theorem. This meta-conjecture sparked a
lot of research which led to various appealing results and methods. For example,
Bauer and Schmeichel [1], relying on previous results of Schmeichel and Hakimi [15]
showed that the sufficient conditions for Hamiltonicity given by Bondy [4], Chvátal
[6] and Fan [10] all imply pancyclicity, up to a certain small family of exceptions.
Also, Jackson and Ordaz [11] conjectured that if a graph G has connectivity κpGq
strictly larger than its independence number αpGq, then Gmust be pancyclic. This
was motivated by the classical theorem of Chvátal and Erdős [6] that a graph with
κpGq ě αpGq must be Hamiltonian. An approximate form of the conjecture was
proven by Keevash and Sudakov [12], who showed that κpGq ě 600αpGq is already
sufficient for pancyclicity.

Bondy’s meta-conjecture deals with conditions for Hamiltonicity which imply
pancyclicity. In a similar vein, one can ask the following natural question: Let
G be a Hamiltonian graph; under which assumptions can we guarantee that G is
also pancyclic or more generally, that it has many cycle lengths? An example of a
problem of this type was introduced by Jacobson and Lehel at the 1999 conference
“Paul Erdős and His Mathematics”, where they asked for the minimal number of
cycle lengths in a k-regular n-vertex Hamiltonian graph. They conjectured (see
Verstraëte [16] for a stronger conjecture) that already when k ě 3, there are Ωpnq
many lengths. Recently, it was shown by Bucić, Gishboliner and Sudakov [5] that

any Hamiltonian graph with minimum degree at least 3 has n1´op1q different cycle
lengths; previously, the best known lower bound was of order

?
n [14].

In this paper, we consider another problem in the area. Around the same time
when Bondy stated his meta-conjecture, in 1972, Erdős [9] put forward the follow-
ing question: Given an n-vertex Hamiltonian graph with independence number
αpGq ď k, how large does n have to be in terms of k in order to guarantee that G
is pancyclic? He proved that it is enough to have n “ Ωpk4q and conjectured that
already n “ Ωpk2q should be enough. A simple construction shows that this is
best possible. Let C1, . . . , Ck be disjoint cliques of size 2k´2, and let each Ci have
two distinguished vertices ai and bi. Let G be the graph obtained by connecting
ai and bi`1 by an edge (with addition modulo k). One can easily see that this
graph, which has 2kpk´ 1q vertices, is Hamiltonian and its independence number
is k. However, it does not contain a cycle of length 2k ´ 1 (and thus, it is not
pancyclic), since every cycle must be either a subgraph of one of the cliques Ci, or
contain at least two vertices from each clique. The former type of cycles all have
length at most 2k ´ 2, whereas the latter have length at least 2k.

Since then, there has been several improvements upon Erdős’s initial result –
by Keevash and Sudakov [12] who proved that n “ Ωpk3q is enough, by Lee and

Sudakov [13] who improved it to n “ Ωpk7{3q, and finally by Dankovics [7] who
showed that n “ Ωpk11{5q suffices. In this paper we resolve the conjecture of Erdős,
showing that if a Hamiltonian graph G has n “ Ωpk2q vertices and αpGq ď k, then
G is pancyclic.

Theorem 1. Every Hamiltonian graph G with αpGq ď k and at least ck2 vertices
is pancyclic, for a large enough absolute constant c.
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The main part of the proof is to show that we can find a cycle of length n´1, as
one can then use this to obtain pancyclicity using the already existing techniques of
Keevash and Sudakov. Our proof is quite short and relies on a new idea of finding
a certain structure which we call a special matching, which has the property that
any edge added between an appropriate pair of vertices in the special matching,
creates a cycle of length n´ 1.
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Crossing probabilities in planar percolation

Vincent Tassion

(joint work with Laurin Köhler-Schindler)

We consider percolation on the square lattice. The most famous percolation model,
called Bernoulli percolation, is defined as follows. Fix a parameter p P r0, 1s. For
each edge of the square lattice, toss independently a biased coin: the edge is open
with probability p and closed otherwise. We are interested in the connectivity
properties of the resulting random graph, obtained by keeping only the open edges.

These connectivity properties are encoded by so-called crossing probabilities
(probabilities that certain rectangles are crossed from left to right). In the eighties,
Russo, Seymour and Welsh obtained general bounds on these crossing probabili-
ties for Bernoulli percolation, which rapidly became a central tool to analyze the
critical behaviour of the model.

Theorem 1 (RSW theory [Rus81, SW78]). Consider Bernoulli percolation on the
square lattice at parameter p “ 1{2. Fix ρ ą 0. There exists c “ cpρq ą 0 such
that,

@n ě 1 c ď P

„
n

ρn 
ď 1´ c.

The proof has two steps: the first step relies on self-duality of the model at
p “ 1{2, which implies that squares are crossed with probability 1{2. The second
step is the derivation of bounds for rectangle crossings. The derivation of bounds
on rectangle crossings from bounds on square crossings does not follow from a
trivial argument, and is at the heart of RSW theory.

For many years, this powerful Russo-Seymour-Welsh (RSW) theory only applied
to a very restricted class of models with strong independence properties. In the
last 20 years, this RSW lemma has been successfully extended to other percolation
models, such as Voronoi percolation [BR06a, Tas16] or FK percolation [BD12,
DST17], leading to important new results and applications (computation of the
critical point, derivation of fractal properties of the critical regime, description of
the near-critical regime,...).

Almost all the models with a rigorously established RSW theory satisfy two
properties:

[Symmetry] The percolation measure is invariant under the symmetries of Z2

(translations, π{2-rotations, horizontal and vertical reflections).

[Positive Association] Increasing events (in particular crossing events) are pos-
itively correlated.

In this talk, we discuss a new result establishing that this two properties are
sufficient to obtain a RSW property. This implies most of the previously known
RSW results.
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Theorem 2. [KST22] Let P be a planar percolation measure satisfying [Symmetry]
and [Positive Association]. Then

˜
P

„
n

n 
ě c

¸
ñ

˜
P

„
n

2n 
ě c1

¸
,

where c1 “ fpcq independent of n.

References

[BD12] V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-
cluster model is critical for q ě 1. Probab. Theory Related Fields, 153(3-4):511–542,
2012.

[BR06a] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation in
the plane is 1/2. Probab. Theory Related Fields, 136(3):417–468, 2006.
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Enumerating k-SAT functions

Yufei Zhao

(joint work with Dingding Dong and Nitya Mani)

How many k-SAT functions on n boolean variables are there? What does a typical
such function look like?

Specifically, how many functions f : t0, 1un Ñ t0, 1u can be written as

fpx1, . . . , xnq “ C1 _ C2 _ ¨ ¨ ¨ _ Cm

where each clause Ci has the form z1^¨ ¨ ¨^zk with z1, . . . , zk P tx1, x1, . . . , xn, xnu?
(This is the DNF version; it is equivalent to the CNF version of the problem.)

A function is unate if it is monotone after first negating some subset of variables.
Equivalently, a unate function is one with a formula where each variable xi appears
only positively (as xi) or negatively (as xi) but not both. For fixed k ě 2, an easy

argument shows that the number of unate k-SAT functions is p1` op1qq2n`pnkq.

Conjecture 1 (Bollobás, Brightwell, and Leader [3]). Fix k ě 2. The number of

k-SAT functions on n boolean variables is p1 ` op1qq2n`pnkq.
Equivalently: a 1´op1q fraction of all k-SAT functions on n variables are unate.
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Bollobás, Brightwell, and Leader proved a weaker version of this conjecture for

k “ 2: the number of 2-SAT functions on n boolean variables is 2p1`op1qqpn2q. The
conjecture for k “ 2 was proved by Allen [1] and k “ 3 by Ilinca and Kahn [6].

Bollobás and Brightwell [2] conjectured that if k “ kpnq is allowed to increase
with n, as long as k ď p1{2 ´ cqn for some constant c ą 0, the number of k-SAT

functions on n-variables is 2p1`op1qqpnkq. The situation is different for k ě n{2.
In our work, we reduce Conjecture 1, for each fixed k, to a Turán problem on

partially directed k-uniform hypergraphs. We also prove the k “ 4 case of the
conjecture via extremal graph theoretic arguments. A brute-force computation by
Nitya Mani and Edward Yu also verifies the k “ 5 case of the conjecture.

A partially directed k-graph (k-PDG for short) is obtained by starting with a k-
uniform hypergraph and “orienting” some of the edges. To orient an edge means
to pick a vertex in the edge. Below we write

α “ #undirected edges`
n
k

˘ and β “ #directed edges`
n
k

˘ .

A subgraph of a k-PDG is obtained by allowing deletion of vertices, edges, and
orientations.

As an example of our main theorem, we show that the following statement
implies Conjecture 1 for k “ 2.

Theorem 2. For all sufficiently large n, every n-vertex 2-PDG without the fol-
lowing as a subgraph

~T2 “ , edges = t12, 1q3, 23u

has

α` plog2 3qβ ď 1.

Likewise, the following statement implies Conjecture 1 for k “ 3.

Theorem 3. For all sufficiently large n, every n-vertex 3-PDG without the fol-
lowing subgraph

~T3 “ edges = t123, 12q4, 134u

has

α` plog2 3qβ ď 1.
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More generally, we define ~Tk as the k-PDG obtained by starting with ~T2 and
then adding k ´ 2 common vertices to all three edges, e.g.,

~T4 “ edges = t1234, 123q5, 1245u,

and

~T5 “ edges = t12345, 1234q6, 12356u.

Conjecture 4. Fix k ě 2. For all sufficiently large n (depending on k), every

n-vertex k-PDG without ~Tk as a subgraph satisfies

α` plog2 3qβ ď 1.

One of the our main results is the following.

Theorem 5. For each fixed k ě 2, Conjecture 4 implies Conjecture 1.

Furthermore, we prove Conjecture 4 for k “ 4; the proof applies a result of
Füredi and Melaki [5] on the minimum triangular edge density in a graph of fixed
edge density. Also, in an appendix by Nitya Mani and Edward Yu (see arXiv-v2
of [4]), a brute-force computation verifies Conjecture 4 for k “ 5.

We also show that by enlarging the set of forbidden subgraphs from ~Tk to some
special finite set Fk, the extremal claim α ` plog2 3qβ ď 1 becomes essentially
equivalent to Conjecture 1. For the precise statement as well as the construction
of this forbidden set Fk, see our full paper [4].
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The phase transition in the random d-process

Lutz Warnke

One of the most interesting features of Erdős–Rényi random graphs is the ‘perco-
lation phase transition’, where the global structure intuitively changes from only
small components to a single giant component plus small ones.

In this talk we discuss the percolation phase transition in the random d-process,
which is a time-evolving random graph model with bounded degrees: starting with
an empty graph on n vertices, new random edges are added step-by-step so that
the maximum degree remains at most d. For fixed d ě 3, we (i) show that the
d-process undergoes a giant component phase transition, and (ii) determine the
asymptotic size of the giant component just after the phase transition. For d “ 2,
we also show that the giant component has a non-trivial distribution at the end of
the 2-process. These results verify a conjecture of Balinska and Quintas from 1990,
and solve a problem of Wormald from 1997.

The proofs deal with the subtle edge–dependencies in the d-process by a careful
mix of different techniques. In particular, the core argument is based on tracking a
large system of Opd4q many random variables via the differential equation method:
these variables are used as input to suitable branching process approximation ar-
guments, which in turn require an asymptotic analysis of the associated unusually
large system of Opd4q many differential equation.

Based on two sets of joint works in progress: one with Nick Wormald, and one
with Laura Eslava.

Problem Session

Nathan Linial (chair)

Alexey Pokrovskiy

Definition 1. A closed walk W in a graph G has a stacking if one can draw W

in Gˆ R without a crossing.

Example 1. If G has vertices label by r5s and edges tp1, 2q, p2, 3q, p1, 3q, p3, 4q, p4, 5q,
p5, 3qu. Then W “ 1234531 has a stacking while W “ 1231231 has no stacking.

The following is a result of Louder and Witten.

Theorem 2. A closed walk W has a stacking in a graph G if and only if W ‰ kW 1

for any walk W 1 and k ě 2.

Problem 3. Find an elementary proof of Theorem 2.
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Proposed by Ashwin Sah

Problem 4. Let

tppF,Gq “ p´epF q|G|´|F | hompF,Gq,
the p-normalized homomorphism count of F within graph G. Is it possible to con-
struct a sequence of graphs Gn with |Gn| Ñ 8‘ with edge densities pn “ |Gn|´op1q

such that:

(1) aF “ limnÑ8 tpn
pF,Gnq exists for every graph F

(2) aC4
“ 1

(3) aK3
“ 1

(4) supF a
1{eF
F ă 8

(5) aF ‰ 1 for some F

Noga Alon

Problem 5. Given graphs G1 and G2 on the vertex set rns define G1 ‘ G2 “
prns, E1‘E2q. Let F be a family of graphs on the vertex set rns such that for any
distinct pair of graph F1 and F2 we have that F1 ‘ F2 is not a clique. Prove (or
disprove) that

|F | “ o

ˆ
2p

n

2q
˙
.

Remark. This can be thought of as the first open case of polynomial density
Hales–Jewett.

Mehtaab Sawhney

Problem 6. Consider the random triangle removal process in Kn run for n2{6´
n1.99 steps, and let the output set be Tn. Does there exist a constant C and a
sequence of events En which occur with probability 1 ´ op1q such that for any k

distinct triangles T1, . . . , Tk of Kn we have

PrT1, . . . , Tk P Tn|Ens ď pC{nqk?
That is, will the resulting random set of triangles be Op1{nq-spread?

Remark. We allow for situations where k grows with n, even as much as k “
n2{12, say. If we only require the estimate for k ď n1{10 the statement is relatively
straightforward.

David Conlon

Problem 7. Does there exist a constant c “ c0 such that:

‚ Fix ε ą 0. If n is sufficiently large, any pn, d, λq-graph G with λ ă pc0 ´
εqd2{n contains a triangle.

‚ There exist arbitrarily large pn, d, λq-graphs G with λ ă pc0`εqd2{n which
have no triangles.
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Furthermore, given the existence of such a constant c0, prove that for ε ą 0 and
n sufficiently large, any pn, d, λq-graph G with λ ă pc0 ´ εqd2{n contains many
triangles or a large triangle factor (scaled appropriately).

Remark. The first and second bullet points are known with differing constants
due to Alon’s construction of quasirandom triangle-free graphs [1], and the interest
is in a “sharp threshold”.
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Lior Gishboliner

Problem 8. Given prime p and arbitrary a P Fpzt0u, does there exist a set S

such that S avoids nontrivial solutions to x` ay “ pa` 1qz with |S| ě p1´op1q?

Remark. For fixed a with respect to p (e.g. a “ 2) the result follows from a
modification of the Behrend construction, but this gets worse with the height of a
and a uniform bound is desired.

Matthew Kwan

This problem is no longer open; it was solved by Matthew Kwan and
Lisa Sauermann during the workshop.

Jacob Fox, Matthew Kwan, and Hunter Spink [1] posed the following conjecture.

Problem 9. Fix a constant d and let S be a sphere in Rd. Fix nonzero vectors
a1, . . . , an P Rdzt0u, let pξ1, . . . , ξnq P t´1, 1un be a uniformly random ˘1 vector,
and let X “ ξ1a1 ` ¨ ¨ ¨ ` ξnan. Then PrpX P Sq “ Op1{?nq.

More generally, for which interesting sets S do we have a bound like PrpX P
Sq “ Op1{?nq? Note that this is the best we can hope for: even if S is a single
point we can have PrpX P Sq “ Θp1{?nq.

References

[1] Jacob Fox, Matthew Kwan, and Hunter Spink, Geometric and o-minimal Littlewood-Offord
problems.

Dhruv Mubayi

Problem 10. Given a (large) graph G with edge density ξ and nÑ 8, determine
the asymptotic maximum for the number of induced C4’s in G.

We have the following conjecture of Liu, Mubayi, and Reiher [1].

Conjecture 11. For ξ ą 1{2, the maximum number of induced C4’s is achieved
asymptotically by the construction for the triangle density problem.

Theorem 12 ([1, Theorem 1.6]). We have that Theorem 11 is true for ξ “ 1´1{k
for integers k.
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Yufei Zhao

The following problem stems from work of Conlon, Fox, Sudakov, and Zhao [1].

Problem 13. Consider a graph G with p “ epGq{
`
n
2

˘
, G being C4-free, p Á n´1{2,

and |eGpA,Bq´p|A||B|| “ oppn2q for all A,B Ď rns. Is it true that the number of
copies of the Peterson graph in G is at least (up to a constant factor) the number
of copies of the Peterson graph in Gpn, pq?
Remark. A similar question has also been posed by Jacques Verstraëte.
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Jozsef Balogh

Let G be a graph. A standard clique edge-weighting is an assignment w of weights
to the edges as follows. Let e be an edge and r be the order of the largest clique
containing e in G. Then

wpeq :“ r

2pr ´ 1q .

We extend the definition of weight w to the entire graph as the sum over all edges

wpGq :“
ÿ

ePEpGq
wpeq.

Let T pn, rq be the r-partite Turán graph on n vertices. Notice that the weights
are set up such that for all r ě 2,

lim
nÑ8

wpT pn, rqq
n2

“ 1

4
.

Conjecture 14. For every n-vertex graph G and its standard clique edge-weighting
w,

wpGq ď
´1

4
` op1q

¯
n2.

Moreover, for every ε ą 0 there exists n0 such that if wpGq “ p1{4` op1qqn2 and
n ě n0, then G is within edit distance at most εn2 from some Turán graph.

The conjecture has been proved for K5-free graphs by Balogh and Lidicky.
Shortly after the workshop Domagoj Bradač proved the above conjecture in gen-
eral.

Marcelo Campos

The following problem is due to Alon and Granville.

Problem 15. Can one find an efficient algorithm such that given B Ď Z{nZ
determine whether or not B “ A`A for A Ď Z{nZ?
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Natasha Morrison

Fix a pair of equations

a1x1 ` . . .` akxk “ 0

b1x1 ` . . .` bkxk “ 0.

We say this pair of equations is common with respect to 2-coloring if for all n and
f : Fn

q Ñ r0, 1s that

Ea1x1`...`akxk“0
b1x1`...`bkxk“0

ˆ ź

i

fpxiq `
ź

i

p1 ´ fpxiqq
˙
ě 21´k.

Conjecture 16. For all k ě 6, k even, such that the dimension of the solution
space of a1x1 ` . . . ` akxk “ 0, b1x1 ` . . . ` bkxk “ 0 is k ´ 2, and q sufficiently
large, we have that the pair of equations is uncommon.

Lutz Warnke

In a landmark paper from 1987, Shamir and Spencer [5] proved that the chromatic
number χpGn,pq of an n-vertex binomial random graph Gn,p is typically contained
in an interval of length at most ω

?
n, where ω “ ωpnq is an arbitrary function

with ω Ñ8 as nÑ8, as usual. For constant edge-probabilities p P p0, 1q, Alon
noticed in the 1990s that this concentration interval length can be slightly improved
to ω

?
n{ logn, see [2, Excercise 7.9.3] and Scott’s note [4]. In the sparse case

where p “ ppnq Ñ 0 vanishes as nÑ8., i.e., for edge-probabilities of form p “ n´α

with α P p0, 1{2q, Shamir and Spencer proved in their 1987 paper that χpGn,pq is
typically contained in an interval of length at most ω

?
np logn, and a modern

inspection of their proof reveals that length ω
?
np suffices. Very recently Surya

and Warnke [6] extended Alon’s logarithmic improvement to the sparse case (by
avoiding large deviation inequalities such as Janson’s inequality, instead relying
on more robust Chernoff bound based arguments), obtaining the following result.

Theorem 17 ([6]). Let ω “ ωpnq Ñ 8 as nÑ8 be an arbitrary function, and

let δ P p0, 1q be a constant. If the edge-probability p “ ppnq satisfies n´1{2`δ ! p ď
1´ δ, then there exists a function Λn,p such that the chromatic number χpGn,pq
of the random graph Gn,p satisfies

lim
nÑ8

P

ˆ
|χpGn,pq ´ Λn,p| ď

ω
?
np

logn

˙
“ 1.

Given the importance of the chromatic number χpGn,pq for the development of
random graph theory, it is of great interest to understand how sharp this concen-
tration boundi is, i.e., if it is best possible up to plog nqOp1q or nop1q factors, say.

Problem 18. Is the upper bound of Theorem 17 on the concentration of the chro-
matic number χpGn,pq of the random graph Gn,p close to best possible or not?

There is some evidence in both directions. On the one hand, it might be close to
best possible, since (a) it is the best bound one can hope for using the martingale
based Shamir-Spencer proof framework [5], (b) the form of the ω

?
np{ logn bound
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is consistent with the fact that, for n´1 ! p ! n´1{2´δ, the chromatic number is
concentrated on two different values [1] due to work of Alon and Krivelevich [1],
and (c) it is sharp (up to logarithmic factors) for uniform edge-probability p “ 1{2
due to the work of Heckel and Riordan [3]. On the other hand, the bound of
Theorem 17 might be far from best possible since (d) if one transfers the coloring
heuristic of the Heckel and Riordan [3] to the sparse case, then with some hand-
waving one arrives at the conclusion that the concentration should perhaps rather
roughly be of form

a
np3 ¨ plognqOp1q, say. In any case, we believe that a solution

to Problem 18 will most likely advance the field by new ideas or proof techniques.
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Andrzej Ruciński

Fix an alphabet A with |A| “ k ě 2 and consider words w P An.

Definition 19. Define a pair of subwords w1, w2 of w to be twins if they are
identical and disjoint.

Example 2. The overline and underlined words in 11012055 are twins.

Let tpwq be the length of the longest pair of twins in w and

tn,k “ min
wPAn

|A|“k

tpwq.

Work of Axenovich, Person, and Puzynina [1] proved that tpn, 2q “ n{2´ opnq
which immediately implies that tpn, 3q ě n{3´opnq (by looking at the pair of most
common letters). This was improved by Bukh and Zhou [2] to prove that tpn, 3q ě
.34n and they also proved that tpn, 4q ď 0.493n. Finally Dudek, Grytczuk, and
Ruciński improved the bound on tpn, 3q by proving that asymptotically almost
surely (a.a.s.) that tpW3pnqq ě 0.411n where Wkpnq is a uniformly random work
of length n given an alphabet of size k.

Question 20. Is it asymptotically almost surely true that tpW3pnqq “ n{2´opnq?
Question 21. Is tpn, 3q “ n{2´ opnq?
Question 22. For every k, is it asymptotically almost surely true that tpWkpnqq “
tpk, nq ` opnq?
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Peter Allen

Conjecture 23. Given an n-vertex graph G which is ∆-regular with ∆ ě 3 and
G is Ramanujan.

Let N “ 1010
10

∆

n and let p be the threshold probability p for which with proba-
bility 1{2 any two coloring of GpN, pq must contain a copy of G.

Then the size Ramsey number of G is Θppn2q.
Remark. Informally, this question is asking whether for large sparse graphs which
are expanders, the size Ramsey number is controlled by the construction coming
from random graphs.

Reporter: Matija Bucić
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Department of Mathematics
London School of Economics
Houghton Street
London WC2A 2AE
UNITED KINGDOM

Dr. Matija Bucić
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