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Introduction by the Organizers

The workshop Interactions between Algebraic Geometry and Noncommutative Al-
gebra organised by W. Crawley-Boevey, M. Reineke, C. Stroppel, and M. Van den
Bergh was well-attended with more than 40 participants. The group of partici-
pants consisted of a broad mix of researchers with respect to age, career status,
gender and geographic diversity. Unfortunately, the COVID and political situa-
tion did not allow the personal attendance of several researchers, in particular of
those located in Japan and Russia. They participated online and were included
into the conference via a zoom hybrid format. The format of the talks was the
usual 50 minutes talks. The organisers decided to keep the amount of online talks
to a minimum which meant one online talk per day. In this way many discussions
emerged during and after the talks and created a lively open atmosphere amongst
the participants. Younger participants were included substantially, in particular
also as speakers. The mathematical spectrum was rather broad ranging from clas-
sical ring theory, over derived noncommutative geometry, algebraic geometry and
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higher Auslander-Reiten theory to geometric representation theory. Derived cate-
gories and Hall algebras of different types were some of the main linking themes.

An introduction into dg techniques and derived commutative algebra summa-
rizing well established results which then could be viewed as granted in the talks
during the week was given by Amnon Yekutieli. By putting dg structures on
cluster categories and taking dg Drinfeld quotients, Bernhard Keller recovered
Auslander–Reiten theory at a very high level.

Michael Wemyss talked about Gromov–Witten and Gopakumar–Vafa invariants
for 3-fold flops and described them in terms of a beautiful combinatorics. Using the
stable Z-graded category of CM modules on the non-isolated A∞-curve singular-
ity, Jenny August constructed an additive category that realises the combinatorics
of infinite-type cluster algebras. Will Donovan used a conjectural topological de-
scription of the Stringy Kaehler Moduli space to both find and prove relationships
between natural functors on higher dimensional flopping contractions.

Ben Davison explained the construction of a BPS Lie algebra resembling a
current Lie Algebra, whose Euler characteristic of a certain graded piece recovers
the Kac polynomial. Its 0th-cohomologically graded piece is the positive part of
an associated Kac-Moody Lie algebra, whereas the full object is a generalised KM
Lie algebra. Daniel Kaplan used Davison’s result that moduli in a 2-CY category
are locally a quiver variety as motivation to prove fundamental results for the
multiplicative preprojective algebras.

Matthew Young showed that Knörrer periodicity lifts to a new equivariant
quasi-equivalence of matrix factorisations, motivated by Atiyah’s real vector bun-
dles. The construction arises as some fixed point construction under an involu-
tion. An open question hereby is whether this could shed some light on orthogonal
Khovanov-Rozansky knot homologies. Given a d-dimensional connected N-graded
ring (with a fixed α-invariant a), such that the singularity category is the per-
fect category of a finite dimensional algebra A, Osamu Iyama constructed a very
general categorical equivalence between the Z/aZ-singularity category and the d-
1-cluster category of A. This can be applied to a striking number of examples,
including Geigle–Lenzing spaces and Grassmannian cluster categories.

Travis Schedler talked about how to find crepant resolutions of Nakajima quiver
varieties. This was done by embedding the movable cone as a certain region of
a hyperplane arrangement, generalising previous work of Bellamy–Craw. Mag-
dalena Boos considered quiver representations and the corresponding theory of
fixed points under diagram involutions. A general framework of quiver represen-
tations equipped with orthogonal or symplectic forms was developed. The be-
haviour under the usual constructions (like degenerations) is surprisingly difficult.
Hans Franzen talked about attracting cells of torus moduli spaces with the goal
of explicit and concrete descriptions. He gave a concrete realisation of important
modules whose existence was proved by Kac.

GIT constructions appeared as a crucial ingredient in several talks at the con-
ference. Pieter Belmans however went the opposite direction and outlined a proof
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that quiver GIT spaces are projective without using GIT. This was done using the
analogy between quiver GIT and moduli of vector bundles on curves.

Jens Eberhardt gave a beautiful overview on several known geometric represen-
tation theoretic constructions and then presented a general framework of Springer
type resolutions and associated algebras using Chow groups and motives. It al-
lowed to establish strong formality results and to incorporate naturally gradings
and base chances. Shinnosuke Okawa used categorical polarisation data to recon-
struct certain AS regular algebras A from categories of coherent sheaves.

In a different direction, Anya Nordskova gave a vast simplification and gener-
alisations of both, a result of Seidel-Thomas and of Brav–Thomas, that there is
a faithful ADE action given by any ADE configuration of spherical objects. The
existing proofs are via Floer homology, intrigued combinatorics or seriously usage
of normal forms in braid groups. Alice Rizzardo used twisted Hodge diamonds to
construct a very large number of possible non-Fourrier-Mukai functors.

S. Paul Smith talked on Feigin and Odesskii’s Elliptic Algebras and their prop-
erties. These form a very large family of noncommutative algebras which include
Sklyanin algebras, twisted homogeneous rings and more. He could give a pre-
sentation, descriptions of point and line modules as well as shed some light on
mysterious formulas involving theta functions.

Finally, based on Tamarkin’s famous paper: what do dg-categories form? Dmitriy
Kaledin talked about the question: what do abelian categories form?
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Abstracts

GV and GW invariants via the enhanced movable cone

Michael Wemyss

(joint work with Navid Nabijou)

Curve invariants associated to smooth 3-fold flopping contractions turn out to be
controlled by Dynkin data, via a subset I of an ADE Dynkin diagram ∆.

As a first example, consider the D5 Dynkin diagram , where I corresponds
to the two light gray vertices. There are twenty positive roots of ∆, five of which
are illustrated below.

0 1
0
0 0 0 0

0
1 0 1 1

1
1 0 1 2

1
1 0 1 2

1
2 1

Restricting all twenty positive roots to I, which are the dotted boxes above, and
discarding zero gives the set of restricted positive roots. In the example above,
these are {10, 01, 11, 21, 22}. Each of these gives rise to a dual hyperplane: the
first gives x = 0, the second y = 0, the third x + y = 0, etc. This yields the
following finite hyperplane arrangement.

x

y

1

2
1

1

Restricted Root

01
11, 22

21

10

The hyperplane x + y = 0 is of course the same as the hyperplane 2x + 2y = 0.
The subtle point below is that for the curve counting, it is important to remember
this multiplicity. This is the enhanced from the title. The number 2 is written
next to the dark gray hyperplane, since that hyperplane appears twice.

In general, for any I ⊂ ∆ with ∆ ADE, repeating the above procedure always
gives a finite hyperplane arrangement HI together with multiplicities.

Now to a smooth 3-fold flopping contraction f : X → SpecR, Reid’s general
hyperplane section associates to f a subset I ⊂ ∆. Furthermore, Katz associates
Gopakumar–Vafa (GV) invariants via one-parameter deformation, the upshot of
which is a number nβ ∈ Z≥0 for each curve class β. The first main result is that
nβ 6= 0 if and only if β is a restricted positive root.

To describe the Gromov–Witten theory requires us to translate the finite hy-
perplanes in HI over the integers, to obtain an infinite arrangement Haff

I . The
subtle point is that

x+ y = 0 −→ x+ y ∈ Z
2(x+ y) = 0 −→ 2(x+ y) ∈ Z

and so there are more hyperplanes in the infinite hyperplane arrangement than is
typical in Coxeter theory. In the above example, Haff

I is drawn in [IW, §4].



1246 Oberwolfach Report 23/2022

The second main result is that the pole locus of the associated Gromov–Witten
quantum potential is the (complexification of) the infinite arrangementHaff

I . There
are various corollaries, including a visual proof of the Crepant Resolution Conjec-
ture in this context, and how the dimension of the contraction algebra changes
under flop.
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Cluster structures for the A∞ curve singularity

Jenny August

(joint work with M. W. Cheung, E. Faber, S. Gratz, S. Schroll)

Since their introduction by Fomin and Zelevinsky, cluster algebras have been a
great source of interesting combinatorics. For example, some of the simplest cases,
known as type A cluster algebras, have combinatorics which are completely de-
scribed by triangulations of polygons and their mutations via flipping diagonals.

This has inspired many to search for similar combinatorics in other settings,
such as in representation theory or geometry. One well known instance of this is
the work of Jensen, King and Su [8] who demonstrated that the combinatorics of a
Grassmannian cluster algebra are exhibited by the so called cluster-tilting theory
of a certain curve singularity. As a special case (namely for the Grassmannians
Gr(2, n)), this provided a link between type A cluster algebras and type A curve
singularities.

In particular, they showed the type An curve singularity given by R2,n =
C[x, y]/(x2−yn+1), has an associated category C2,n of equivariant maximal Cohen-
Macaulay R2,n-modules where:

(1) the indecomposable objects of C2,n are in bijection with the diagonals of
an (n+ 3)-gon;

(2) under this bijection, the cluster-tilting objects (those with vanishing self-
extensions + good mutation properties) precisely correspond to triangu-
lations of the (n+ 3)-gon, and;

(3) mutation of cluster-tilting objects (as defined by Iyama and Yoshino [7])
coincides with flipping diagonals.

In other words, C2,n has finite type A cluster combinatorics.
Our work starts by extending some of Jensen, King and Su’s results to the

the Grassmannian cluster algebras of infinite rank, as introduced by [6], which one
should think of as corresponding to some kind of infinite Grassmannian “Gr(k,∞)”.
By naively sending n→∞ in the JKS construction, we associate the singularities
Rk = C[x, y]/(xk) and consider Ck to be the category of Z-graded maximal Cohen-
Macaulay modules over Rk, where x and y lie in degrees 1 and −1 respectively [1].
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Some of our results hold for all k, but here we focus on the k = 2 case where R2

is the well known A∞ curve singularity.
One major advantage of the k = 2 case is that C2 is tame, and the indecompos-

able objects fall into two families [5]:

(1) the shifted ideals (x, yi)(j) for i ≥ 0, j ∈ Z;
(2) the shifted modules C[y](ℓ) for ℓ ∈ Z.

With this in mind, the objects in C2 are naturally in bijection with arcs in the
completed ∞-gon. Indeed, one may think of the completed ∞-gon as a discrete
set of points on the unit circle S1 with one two-sided accumulation point. We
can label the marked points by Z and the accumulation point as −∞, and then
an arc is simply an unordered pair (a, b) ∈ Z ∪ {−∞}, which can be depicted by
drawing a path between the corresponding points. The bijection is then given by
(x, yi)(j)↔ (−i− j, 1 − j) and C[y](ℓ)↔ (−∞,−ℓ).

The ideas of noncrossing diagonals and triangulations extend naturally to arcs
in the completed∞-gon, and the combinatorics of these is studied in [4]. Our goal
was to show that, as in the finite setting, these triangulations control the cluster-
tilting subcategories of C2 and their mutation. Keeping in mind that rigidity
(the vanishing of extensions) is a key property of cluster-tilting, we show that the
only nonzero extensions between indecomposable objects in C2 correspond to the
following pictures:

X Y

V

Z

W

U

0 → X → W ⊕ V → Y → 0

0 → Y → U ⊕ Z → X → 0

X

Y

U V

W Z

0 → X → W ⊕ V → Y → 0

0 → Y → U ⊕ Z → X → 0

X Y

Z

0 → X → Z → Y → 0

With this information, it is then straightforward to classify the cluster-tilting
subcategories in C2 as certain triangulations of the completed∞-gon [2]. Moreover,
whenever mutation of a cluster-tilting subcategory is possible, we show it corre-
sponds to flipping a diagonal exactly as in the finite case. In this way, we say that
C2 (corresponding to the A∞ singularity) has infinite type A cluster combinatorics.

However, not all triangulations of the completed ∞-gon correspond to cluster-
tilting subcategories. In fact, any triangulation with more than one arc of the
form (−∞, a) fails to even be rigid, as can be seen from the third picture above.
Thus to characterise subcategories corresponding to triangulations, and so make
use of the combinatorial results in [4], we need a more general notion.

For this, we were inspired by work of Barnard, Gunawan, Meehan and Schiffler
[3] to say that a subcategory of C2 is almost rigid if any two indecomposbles either
have no extensions between them, or the middle term of any nontrivial extension
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between them is indecomposable. It follows directly from the above description of
extensions in C2 that triangulations of the completed ∞-gon correspond precisely
to maximal almost rigid subcategories of C2. Moreover, we extend the mutation
of cluster-tilting subcategories to this setting and show it corresponds to flipping
diagonals [2].

By combining with [4], we conclude that we can pass between any two maximal
almost rigid subcategories of C2 with a sequence of transfinite mutations, and we
may say that C2 fully exhibits the combinatorics of the completed ∞-gon.
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The noncommutative conifold and fermionization of Yangians

Ben Davison

Let Q be a finite quiver, i.e. a pair of finite sets Q1 (the arrows) and Q0 (the
vertices) and two morphisms s, t : Q1 → Q0. We define the double Q by adding an
arrow a∗, for each a ∈ Q1, satisfying s(a∗) = t(a) and t(a∗) = s(a). We denote by
CQ the free path algebra of the doubled quiver, and by ΠQ := CQ/〈

∑
a∈Q1

[a, a∗]〉
the preprojective algebra.

Via pullback and pushforward of Borel–Moore homology in the diagram

M(ΠQ)×M(ΠQ) Exact(ΠQ)
π1×π3oo π2 // M(ΠQ),

where Exact(ΠQ) is the stack of short exact sequences of ΠQ-modules, Schiffmann
and Vasserot defined [1] the cohomological Hall algebra structure on

AΠQ =
⊕

d∈NQ0

HBM(Md(ΠQ),Qvir)

where the subscript vir denotes some system of cohomological shifts that we intro-
duce so that the product respects cohomological degree, as well as the NQ0 -grading.

Some theorems [2, 3] on the cohomological Hall algebra AΠQ :
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(1) There is a NQ0 -graded and cohomologically graded subspace gΠQ ⊂ AΠQ

which is closed under the commutator Lie bracket, and such that the PBW
morphism Sym

(
gΠQ ⊗H(pt/C∗,Q)

)
→ AΠQ is an isomorphism, where we

denote by Sym(V ) the free supercommutative algebra generated by V .
(2) For γ ∈ NQ0 a dimension vector there is an equality of Laurent polynomials

χq1/2(gΠQ,γ) :=
∑

i

dim(giΠQ
)qi/2 = aQ,γ(q−1)

where aQ,γ(q) is the Kac polynomial, counting iso-classes of absolutely
indecomposable γ-dimensional FqQ-modules.

(3) There is an isomorphism of Lie algebras g0ΠQ

∼= n−Qre where Qre is the

quiver obtained by removing all vertices supporting loops, and n−Qre is one
half of the associated Kac–Moody Lie algebra.

(4) (Work in progress, with L. Hennecart and S. Schlegel-Mejia): The Lie
algebra gΠQ is one half of a generalised Kac–Moody Lie algebra.

(1), (3) and (4) suggest that AΠQ is one half of some kind of generalized Yangian.
Indeed in finite and affine type, this statement can be made precise. (2) tells
us that the Lie algebra/algebra is concentrated entirely in even cohomological
degrees. We are motivated by the

Question. Is there a “fermionized”, or partially odd version of the above con-
struction? I.e. can we recover Yangians of classical super-algebras like gl(m|n)?

We will answer this question by taking the word “fermionization” seriously:
physicists teach us that particles acquire mass (i.e. become fermionic) by adding
“mass terms” or quadratic terms, to superpotentials governing their gauge the-
ory. So first we have to recast AΠQ in terms of potentials. A potential W ∈
CQ/[CQ,CQ]cyc is a linear combination of cyclic paths. If W = a1 . . . an and
a ∈ Q1 we define ∂W/∂a =

∑
ai=a ai+1 . . . ana1 . . . ai−1 and extend to arbitrary

W by linearity. Then define Jac(Q,W ) := CQ/〈∂W/∂a | a ∈ Q1〉.
An important class of examples come from the tripling construction. We denote

by Q̃ the quiver obtained by adding a loop ωi at every vertex of Q, the doubled
quiver. This carries the cubic potential W̃ = (

∑
a∈Q1

[a, a∗])(
∑

i∈Q0
ωi). It is

easy to verify that there is a natural isomorphism Ψ: Jac(Q̃, W̃ ) ∼= ΠQ[ω] with
Ψ−1(ω) =

∑
i∈Q0

ωi.

Given a quiver Q with potential W we denote by Tr(W ) ∈ Γ(M(CQ)) the re-
sulting function on the stack of CQ-modules. Then as substacks of M(CQ) there
are equalities crit(Tr(W )) = M(Jac(Q,W )) = supp(φTr(W )Qvir) where φTr(W )Qvir

is a perverse sheaf on the stack of Jac(Q,W )-modules that turns out to be the
“right” one from the point of view of geometric representation theory. In particu-
lar, there is an isomorphism of algebras

AΠQ
∼= AQ̃,W̃ :=

⊕

γ∈NQ0

H(Mγ(Jac(Q̃, W̃ )), φTr(W̃ )Qvir)
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where the target carries the cohomological Hall algebra structure introduced by
Kontsevich and Soibelman [4]. So this at least expresses our algebra in terms of
something involving potentials, and now the question becomes:

Question. Is there a choice of quiver Q′ and potential W ′ such that AQ′,W ′

“partially fermionizes” AQ̃,W̃ ?

On the way to an affirmative answer to this question, we take some inspira-
tion from the world of noncommutative geometry, where Jacobi algebras play an
important role.

Let G ⊂ SL2(C) be a finite group. We denote by X0 = C2/G the associated
Kleinian singularity, and by p : Y0 → X0 a minimal resolution. Then p−1(0) is
a tree of rational curves, with incidence matrix Γ a graph of ADE type. Let h

denote the Cartan sub-algebra of the associated Lie algebra. It has a natural basis
provided by Γ0. There is a universal deformation given by the leftmost diagram:

Y0 //

��

Y

��

Y α

��

// Y

��
0
�

�

// h A1 t7→t·α // h.

For α ∈ h (not necessarily non-zero) we define Y α via the rightmost, Cartesian,
diagram. Then Y α is a smooth threefold. The curve Ci corresponding to the vertex
i ∈ Γ0 deforms along A1 if and only if α ∈ i⊥, so if we denote byMi,n the moduli
space of semistable coherent sheaves of class OCi(n), we findMi,n

∼= A1 if α ∈ i⊥,
andMi,n

∼= pt otherwise. In general the “BPS cohomology” for a specific class in
a specific 3-Calabi–Yau category is hard to claclulate, or even define, but for these
smooth, simply connected, moduli spaces the definition is basically forced:

gBPS
i,n = H(Mi,n,Q[dim(Mi,n)])[−1]

In particular, this BPS cohomology is one-dimensional, with parity depending on
which hyperplanes α avoids.

To connect with the noncommutative conifold, we set G = Z/2Z. Then g = sl2
and h is 1-dimensional. We consider the extended quiver for Γ. Then there is a
derived equivalence between Coh(Y 0) and the category of ΠQ[ω]-modules. Here,
Y 0 is obtained by setting α = 0 in the above construction. In particular, the BPS
cohomology for the quiver Q̃ with potential W̃ is entirely even. If we pick any
α 6= 0, then Y α is the resolved conifold singularity, and by results [5] of Morrison,
Mozgovoy, Nagao and Szendrői (along with a purity result) the BPS cohomology
is partially odd.

The resolved conifold also has a noncommutative model: if we set WKW =
aa∗b∗b − abb∗a∗ and set B = Jac(Q,WKW), then there is a derived equivalence
between coherent sheaves on Y α and B-modules. So the answer to our question
is “yes” for this particular Q̃ and W̃ . For a more general answer, observe that
if we set W̃ (1,−1) = W̃ − (ω2

0 − ω2
1) then via a simple noncommutative change

of variables there is an isomorphism Jac(Q,WKW) ∼= Jac(Q̃, W̃ (1,−1)). Our main
theorem generalises this story from the noncommutative conifold:
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Theorem ([6]). Given a quiver Q and µ ∈ CQ0 define W̃µ = W̃−(
∑

i∈Q0
µiω

2
i ) ∈

CQ̃/[CQ̃,CQ̃]cyc. Then for γ ∈ NQ0 there is an isomorphism

gQ̃,W̃µ,γ
∼= gQ̃,W̃ ,γ [ǫγ ]

where ǫγ = 0 if µ · γ = 0 and is −1 otherwise.

We leave to future work the computation of the Lie algebra structure on these
partially fermionized Yangians: for the case of the noncommutative resolved coni-
fold, a conjecture of Kevin Costello tells us that we have indeed recovered a Yan-
gian associated to gl(1|1), while the general case remains somewhat mysterious.
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A Constructive Approach to Derived Algebra

Amnon Yekutieli

Let me begin by saying what is derived algebra, as used in this talk. It means
replacing rings and modules by DG rings and DG modules, and then studying the
corresponding derived categories. “DG” means “differential graded”. DG rings
come in two distinct flavors: commutative and noncommutative (NC). Here is the
plan of my talk:

• Definition of the two kinds of DG rings.
• A panorama of the roles that DG rings (both kinds) have in algebra and

geometry.
• The structure of the derived category of commutative DG rings.
• A conjectural formulation of the cotangent DG module of a commutative

DG ring.

The emphasis is on working directly with DG rings, suitable resolutions of
them, and certain homomorphisms among them. Hence the words “constructive
approach” in the title of the talk. There is a lot of overlap between the derived
algebra discussed in this talk and other, much more prominent, versions, e.g. those
of J. Lurie and B. Toën. See the survey article [To]. A major contrast between
our constructive approach and the other approaches is that we do not use Quillen
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model structures and simplicial methods at all. I wish to thank a few people
who contributed to my understanding of derived algebra over the years: Vladimir
Hinich, James Zhang, Bernhard Keller, Michel Van den Bergh, Liran Shaul, Mattia
Ornaghi, and Asaf Yekutieli.

Here are some definitions and basic facts, for details see [Ye, Chapter 3]: A DG
ring is a graded ring A =

⊕
i∈ZA

i, with unit 1A ∈ A
0, together with an additive

operator dA of degree 1, called the differential. The conditions are:

⊲ dA ◦ dA = 0.
⊲ The graded Leibniz rule: for all elements a ∈ Ai and b ∈ Aj

dA(a · b) = dA(a) · b+ (−1)i · a · dA(b).

The traditional name for “DG ring” is “unital associative cochain DG algebra”.
Let A and B be DG rings. A homomorphism of DG rings f : A → B is a ho-

momorphism of rings that respects units, gradings and differentials. The category
of DG rings is denoted by DGRng. Rings are viewed as DG rings concentrated in
degree 0. Fix some DG ring A. A DG A-ring is a DG ring B equipped with a
DG ring homomorphism f : A → B. The DG A-rings form a category, which we
denote by DGRng /A.

Let A =
⊕

i∈ZA
i be a DG ring.

⊲ A is called nonpositive if Ai = 0 for all i > 0.
⊲ A is called weakly commutative if b ·a = (−1)i · j · a · b for all a ∈ Ai and
b ∈ Aj .

⊲ A is called strongly commutative if it is weakly commutative, and also
a · a = 0 for all a ∈ Ai such that i is odd.

⊲ A is called a commutative DG ring if it is nonpositive and strongly com-
mutative.

Weak commutativity is a manifestation of the Koszul sign rule; strong commu-
tativity is subtle: it eliminates 2-torsion in semi-free commutative DG rings.

The cohomology H(A) =
⊕

i∈Z Hi(A) of a DG ring A is a graded ring. A DG
ring homomorphism f : A → B is called a quasi-isomorphism if H( f) : H(A) →
H(A) is an isomorphism of graded rings.

The derived category D(CDGRng /A) is the localization of CDGRng /A w.r.t.
the quasi-isomorphisms in it. There is the localization functor

Q : CDGRng /A→ D(CDGRng /A).

We wish to describe the structure of this derived category. There is a notion of ho-
motopy γ : f0 ⇒ f1 between homomorphisms f0, f1 : B → C in CDGRng /A. This
is called a left homotopy in [Ho]. The homotopy relation requires a modification.

A quasi-homotopy (g, γ) : f0 ⇒ f1 consists of a quasi-isomorphism g : B̃ → B,
and a homotopy γ : f0 ◦ g ⇒ f1 ◦ g.

Theorem. Quasi-homotopy is a congruence on the category CDGRng /A.
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This means that there is a category K(CDGRng /A), called the homotopy cat-
egory, with the same objects. The morphisms in K(CDGRng /A) are the quasi-
homotopy classes of homomorphisms in CDGRng /A. There is a full functor

P : CDGRng /A→ K(CDGRng /A),

which is the identity on objects. The localization functor Q factors through P;
there is a functor Q̄ s.t. Q = Q̄ ◦ P.

Theorem. The functor Q̄ is a faithful right Ore localization.

Thus, the derived category D(CDGRng /A) admits a calculus of fractions.
A DG ring B ∈ CDGRng /A is called semi-free if the graded ring B♮, gotten

by forgetting the differential, is a commutative polynomial ring over A♮ (in the
strongly commutative graded sense). Every B ∈ CDGRng /A admits semi-free

resolutions B̃ → B.

Theorem. Let A be a commutative DG ring, let B,C ∈ CDGRng /A, and assume
that B is semi-free. Then the function

Q̄ : HomK(CDGRng /A)(B,C)→ HomD(CDGRng /A)(B,C)

is bijective.

We give a conjectural description of the cotangent DG module LB/A associated
to a homomorphism A→ B of commutative DG rings. We believe that it coincides
with the cotangent complex of Quillen, André and Illusie [Il] if A and B are rings.
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Calabi–Yau structures on Drinfeld quotients, after Junyang Liu

Bernhard Keller

In 2009, Amiot [1] constructed Calabi–Yau structures on certain Verdier quo-
tients. Our aim is to lift her construction to the level of dg (=differential graded)
enhancements.

Let k be a field and N a k-linear Hom-finite triangulated category. Let d ∈ Z
and suppose that N is d-Calabi–Yau, i.e. endowed with bifunctorial isomorphisms

DHom(X,Y ) ∼−→ Hom(Y,ΣdX)

where X,Y ∈ N and D denotes the dual over k. For example, let X be a smooth
projective variety of dimension d over an algebraically closed ground field k and
N the bounded derived category of coherent sheaves on X . Then, by one possible
definition, the variety X is d-Calabi–Yau iff its canonical sheaf ωX is trivialis-
able and that happens iff N is d-Calabi–Yau as a triangulated category. As a

https://arxiv.org/abs/1610.09640v4
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second example, suppose that A is a finite-dimensional basic algebra and N the
bounded homotopy category of finitely generated projective A-modules. Then N
is 0-Calabi–Yau iff A is symmetric, i.e. isomorphic to its dual DA as a bimodule.
The examples we are most interested in are associated to quivers with potential
(Q,W ) which are Jacobi-finite, i.e. the associated (complete) Jacobi algebra is
finite-dimensional, cf. [2] for the terminology. Let Γ be the Ginzburg dg alge-
bra [4], cf. also [6], associated with such a quiver with potential. Let DΓ be its
unbounded derived category, per (Γ) its perfect derived category (the full subcat-
egory of compact objects in DΓ) and pvd (Γ) its perfectly valued derived category,
i.e. the full subcategory of objects M of DΓ such that the underlying complex
M |k is perfect over k. By Amiot’s definition [1] of the cluster category CQ,W , we
have an exact sequence of triangulated categories

0 pvd (Γ) per (Γ) CQ,W 0.

Here the perfectly valued derived category is 3-Calabi–Yau, the perfect derived
category is not Calabi–Yau and the cluster-category is 2-Calabi–Yau, cf. [1] and
the references given there.

The last example can be generalized as follows: Suppose that the category N is
contained as a thick subcategory in a k-linear triangulated category T . As shown
by Amiot [1], in the exact sequence

0 N T T /N 0,

the Verdier quotient T /N is often (d− 1)-Calabi–Yau. Let us recall the construc-
tion of the Calabi–Yau structure. For N ∈ N , let us denote by

tN : Hom(N,ΣdN)→ k

the trace form, which by definition corresponds to the identity of ΣdN under the
given isomorphism

DHom(N,ΣdN) ∼−→ Hom(ΣdN,ΣdN).

By bifunctoriality, these trace forms determine the Calabi–Yau structure so that
it suffices to construct the corresponding trace forms for the objects of T /N .

Theorem 1 (Amiot [1]). Under suitable non degeneracy hypotheses, the Verdier

quotient T /N becomes (d− 1)-Calabi–Yau for the trace forms t
T /N
X defined by

t
T /N
X (“f ◦ s−1”) = tNN ((Σdb) ◦ f ◦ a),

where “f ◦ s−1” is a fraction given by morphisms f and s (with cone ΣN ∈ N ) as
in the following diagram

N X ′ X ΣN

Σd−1X ΣdN.

a s

f

b

Σdb
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For example, if A is a finite-dimensional symmetric algebra, we have the short
exact sequence of triangulated categories

0 Hb(projA) Db(modA) sg(A) 0

and we find that the stable category sg(A) ∼−→ modA is (−1)-Calabi–Yau, which
corresponds to the well-known fact that the Auslander–Reiten translation is given
by the square of the syzygy functor Ω2 = Σ−2.

Our aim is to lift this construction to the level of dg (=differential graded)
categories. Let A be a (small) dg category and DA its derived category. Its
objects are the dg functors M : Aop → Cdg(Mod k) from Aop to the dg category of
k-vector spaces. Suppose that A is pretriangulated, i.e. the Yoneda functor

H0(A)→ DA , X 7→ A(?, X)

is an equivalence onto a full triangulated subcategory. Let B ⊆ A be a full pretri-
angulated dg subcategory. By definition [3], the Drinfeld quotient A/DrB = A/B
is obtained from A by formally adjoining a contracting homotopy

hN : N → N, |hN | = −1, d(hN) = 1N

for each object N ∈ B. Thus, by definition, the canonical functor A → A/B is
strictly universal among the dg functors F : A → F to a dg category where all the
objects FN , N ∈ B, are endowed with a contracting homotopy. As shown in [3],
we have an induced short exact sequence of triangulated categories

0 H0B H0A H0(A/B) 0.

It follows that the sequence of dg categories

0 B A A/B 0

is homotopy exact, i.e. the sequence of triangulated categories

0 DB DA D(A/B) 0

is exact. Therefore, by the main result of [5], we have long exact sequences in
Hochschild and cyclic homology

. . . HC∗(B) HC∗(A) HC∗(A/B) HC∗−1(B) . . .

Now suppose that B is an H∗-finite dg category, i.e. the spaces Hp(B)(X,Y ) are
finite-dimensional for all X , Y in B and all p ∈ Z. Let d be an integer. Following
Kontsevich, a (right) d-Calabi–Yau structure on B is a class c ∈ DHC−d(B) which
is non degenerate, i.e. its image under the composition of canonical maps

DHC−d(B)→ DHH−d(B) ∼−→ HomD(Be)(D,Σ
−dDB)

is invertible. Here, by abuse of notation, we denote by B the B-bimodule (X,Y ) 7→
B(X,Y ) and by DB the B-bimodule (X,Y ) 7→ DB(Y,X). If B is pretriangulated
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and carries a d-Calabi–Yau structure, then H0B becomes d-Calabi–Yau as a tri-
angulated category since we have

(H0B)(X,Y ) ∼−→ H0Σ−dDB(Y,X) = D(H0B)(X,ΣdY ).

Thus, we obtain a canonical map

DHCnd
−d(B) {d-Calabi–Yau structures on H0B},

where DHCnd
−d(B) denotes the space of non degenerate classes in DHC−d(B).

Now let B ⊆ A be a full pretriangulated subcategory of a pretriangulated dg
category A. Thus, we have a long exact sequence

. . . HC−d+1B HC−d+1A HC−d+1(A/B) HC−d B . . .δ

Theorem 2 (Liu 2022 [7]). The square

DHCnd
−d(B) DHCnd

−d+1(A/B)

{d-CY structures on H0B} {(d− 1)-CY structures on H0(A/B)},

Dδ

where the bottom horizontal arrow is given by Amiot’s construction, is commuta-
tive.

Let us sketch the proof: Let HH(A) be the Hochschild complex of A. It is the
sum total complex of the double complex

∐
A0
A(A0, A0)

∐
A0,A1

A(A0, A1)⊗A(A1, A0) . . .

where the sums are taken over the objects of A and, for example, the leftmost
differential sends f0 ⊗ f1 to f1 ◦ f0 − (−1)|f0||f1|f1 ◦ f0. Then the sequence of dg
categories

0 DB DA D(A/B) 0

with the given nullhomotopy for the composition B → A/B yields a homotopy
short exact sequence of complexes (defined below)

HH(B) HH(A) HH(A/B)

h

i p

where the map h sends fp ⊗ · · · f0 to hB0fp ⊗ · · · ⊗ f0 (B0 is the source of f0 and
the target of fp). The homotopy snake lemma (stated below) then allows us to
compute the connecting morphism

δ : HH−d+1(A/B) −→ HH−d(B)

and to check the commutativity claimed in the theorem.
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We define a homotopy short exact sequence of complexes to be a diagram of
complexes of abelian groups

B A Ci

h

p

such that i and p are morphisms of complexes and h is a homogeneous morphism
of degree −1 such that p ◦ i = d(h) and that the graded object C ⊕ ΣA ⊕ Σ2B
endowed with the differential 


d p h
0 −d i
0 0 d




is acyclic. Such a diagram yields a triangle

B A C ΣB

in the derived category of abelian groups and we can compute the connecting
morphism

δ : HpC → Hp+1B

thanks to the following homotopy snake lemma, where b ∈ Bp+1, c ∈ Cp, a ∈ Ap.

Lemma 1. We have δ(c) = b if and only if there is an a ∈ A such that we have
i(b) = −d(a) and p(a) + h(b) = c.

References

[1] Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with poten-
tial, Annales de l’institut Fourier 59 (2009), no. 6, 2525–2590.

[2] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their
representations I: Mutations, Selecta Mathematica 14 (2008), 59–119.

[3] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691.
[4] Victor Ginzburg, Calabi-Yau algebras, arXiv:math/0612139v3 [math.AG].
[5] Bernhard Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136

(1999), no. 1, 1–56.
[6] Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with po-

tential, Advances in Mathematics 26 (2011), 2118–2168.
[7] Junyang Liu, On the structure of relative Calabi–Yau morphisms, City University of Paris,

Ph. D. thesis in preparation.

Matrix factorizations, Reality and Knörrer periodicity

Matthew B. Young

(joint work with Jan-Luca Spellmann)

Let w ∈ R = C[[x1, . . . , xn]] be a non-zero polynomial without constant term. A
matrix factorization of w is a Z/2Z-graded finite rank free R-module M with an
odd R-linear endomorphism dM which satisfies d2M = w · idM . The 2-periodic
dg category of matrix factorizations MF(R,w) is a categorical invariant of (R,w)
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introduced by Eisenbud. Much recent interest in MF(R,w) stems from its appear-
ance in high energy physics as the category of D-branes in the Landau–Ginzburg
model defined by (R,w).

A fundamental property of matrix factorizations is their Knörrer periodicity [3],
which is a quasi-equivalence

MF(R,w)
∼
−→ MF(R[[y, z]], w + y2 + z2).

The goal of this talk is to explain generalizations of Knörrer periodicity to cat-
egories of Real matrix factorizations. The word Real denotes two distinct, but
related, structures on matrix factorizations. The first is a matrix factorization
theoretic analogue of Atiyah’s Real structures on complex vector bundles. Recall
that Real vector bundles are the fundamental geometric objects of KR-theory
[1]. The second is a matrix factorization theoretic analogue of the fundamen-
tal geometric objects of the Grothendieck–Witt theory of a scheme, the algebraic
counterpart of KR-theory. Accordingly, we prove two distinct, but related, Real
generalizations of Knörrer periodicity, which we argue are structurally similar to
(1,1)-periodicity for KR-theory and 4-periodicity for Grothendieck–Witt theory.

To state our results, let C2 be the multiplicative group {1,−1} and π : Ĝ→ C2

a C2-graded finite group. Set G = kerπ. Suppose first that Ĝ acts on R by ring
automorphisms {σ : R → R}σ∈Ĝ which are C-linear if π(σ) = 1 and C-antilinear

if π(σ) = −1 and such that w is Ĝ-invariant, i.e σ(w) = w, for σ ∈ Ĝ.
In particular, only G is a symmetry of (R,w) in the sense of Landau–Ginzburg

orbifolds. A Real G-equivariant structure on a matrix factorization (M,dM ) is
a coherent family of dM -linear graded abelian group isomorphisms {uσ : M →
M}σ∈Ĝ which satisfy uσ(rm) = σ−1(r)uσ(m) for all r ∈ R, m ∈ M . Let
MFĜ(C[[x1, . . . , xn]], w) be the dg category of Real G-equivariant matrix factor-

izations. Extend the C-antilinear action of Ĝ on R to R[[y, z]] by requiring G to

act trivially and σ(y) = −y, σ(z) = z for σ ∈ Ĝ \G. The following form of Real
Knörrer periodicity is an analogue of (1, 1)-periodicity:

Theorem 1. There is a quasi-equivalence of R-linear dg categories

Perf(MFĜ(R,w))
∼
−→ Perf(MFĜ(R[[y, z]], w + y2 + z2)),

where Perf(C) denotes the triangulated hull of a dg category C.

In the second setting, suppose that Ĝ acts on R by C-algebra automorphisms
{σ : R → R}σ∈Ĝ such that w is π-semi-invariant, i.e. σ(w) = π(σ)w for σ ∈ Ĝ.
Again, only G is an orbifold symmetry of (R,w). However, as explained by Hori–

Walcher [5], the entire group Ĝ is an orientifold symmetry of (R,w). Orientifolding
is a physical construction which produces an unoriented string theory from an
oriented one, in contrast to the standard orbifold construction, which preserves
orientability. As such, the second setting can be seen as a precise mathematical
approach to Landau–Ginzburg orientifolds. From the above data, we construct
a duality structure on G-equivariant matrix factorizations MFG(R,w), that is, a
dg functor MFG(R,w)op → MFG(R,w) with coherence data asserting that it is
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an involution. Extend the C-linear action of Ĝ on R to R[[y, z]] by requiring G to

act trivially and σ(y) = −iz, σ(z) = iy for σ ∈ Ĝ \ G. The second form of Real
Knörrer periodicity, the second part of which is an analogue of 4-periodicity of
Grothendieck–Witt theory, is as follows.

Theorem 2. There is a quasi-equivalence of C-linear dg categories with duality

Perf(MFG(R,w))
∼
−→ Perf(MFG(R[[y, z]], w + y2 + z2)),

where the duality structure of the codomain is a shifted and signed version of that
of the domain. In particular, there is a quasi-equivalence of dg categories with
duality

Perf(MFG(R,w))
∼
−→ Perf(MFG(R[[y1, z1, y2, z2]], w + y21 + z21 + y22 + z22)),

where both dg categories are given the same duality structure.

Degenerate versions of Theorems 1 and 2 recover specializations of Hirano’s
equivariant Knörrer periodicity [4], Hori–Walcher’s extended Knörrer periodicity
[5] and Brown’s 8-periodic version of Knörrer periodicity over R [2]. Theorems 1
and 2 are proved using techniques from Real categorical representation theory.

This work is part of a larger project whose goal is to use Real matrix factor-
izations to construct non-semisimple unoriented topological field theories in two
dimensions. The results of this talk are described in [6].

References

[1] M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367–386.
[2] M. Brown, Knörrer periodicity and Bott periodicity, Doc. Math. 21 (2016), 1459–1501.
[3] H. Knörrer, Cohen–Macaulay modules on hypersurface singularities. I, Invent. Math. 88

(1987), no. 1, 153–164.
[4] Y. Hirano, Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg

models, Compos. Math. 153 (2017), no. 5, 973–1007.
[5] K. Hori and J. Walcher, D-brane categories for orientifolds—the Landau–Ginzburg case, J.

High Energy Phys. 4 (2008), 030, 36.
[6] J.-L. Spellmann and M. Young, Matrix factorizations, Reality and Knörrer periodicity,

arXiv:2204.13645 (2022).

Simplices of higher-dimensional flops

Will Donovan

The set of crepant resolutions of a given singularity may be related by an intricate
web of birational maps. In this talk, I discussed a particular sequence of singular-
ities in dimension 4 and above, and the associated derived category structures.

These singularities have crepant resolutions whose exceptional loci are isomor-
phic to cartesian powers of the projective line P1. In each dimension n, the reso-
lutions naturally correspond to vertices of an (n − 2)-simplex, and flops between
them correspond to edges of the simplex. I show that each face of the simplex
corresponds to a certain relation between functors of derived categories.
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Singularities and resolutions. Consider the n-fold singular cone for n ≥ 3
given by the rank 1 tensors of signature 2n−1 as follows.

Z = {v1 ⊗ · · · ⊗ vn−1 ∈ V1 ⊗ · · · ⊗ Vn−1} Vi ∼= C2

The cone Z has n− 1 crepant resolutions, here written as Xi for i = 1, . . . , n− 1.
These may be constructed explicitly by putting Exc = PVi+1×· · ·×PVi+n−2 where
subscripts for the vector spaces V1, . . . , Vn−1 are taken modulo n − 1. Then the
resolution Xi is given by the total space of the rank 2 bundle Vi ⊗O(−1, . . . ,−1)
over Exc along with a natural map to Z. The exceptional locus for each Xi is the
zero locus of this bundle, which may be identified with Exc ∼= (P1)n−2.

For n = 3, we have two resolutions of the cone of singular 2×2 matrices, related
by a 3-fold Atiyah flop. In general, assigning each resolution Xi to a vertex of an
(n−2)-simplex, the edges of the simplex correspond to birational maps Xi Xj

as illustrated below.

X1

X2

X3

(a) Four-folds for n = 4.

X1

X2

X3

X4

(b) Five-folds for n = 5.

Result. The birational maps appearing here are all family Atiyah flops, and there-
fore have associated flop functors, which are equivalences of derived categories of
coherent sheaves. This is illustrated below (on the left) for the case n = 4.

(1) D(X1)

D(X2)

D(X3)

D(X1)

D(X2)

D(X3)

F1

F2

F3

For n ≥ 4 take, without loss of generality, three resolutions X1, X2 and X3. I then
prove the following, by calculating the action of functors on a certain (relative)
tilting bundle.

Theorem. [2] Write flop functors as on the right in (1). Then there is a natural
isomorphism F3

∼= Tw2 ◦ F2 ◦ F1 where Tw2 is for n = 4 a Seidel–Thomas spherical
twist around the torsion sheaf OExc(0,−1) on X3, where Exc ∼= PV1 × PV2, and
for n > 4 a family version [1] of this spherical twist, over base PV4 × · · · × PVn−1.

Remark. As an immediate corollary of the theorem, we get F3 ◦ F
−1
1 ◦ F

−1
2
∼= Tw2.

There are many results of the form ‘flop-flop = twist’ (up to taking inverses) in
the literature. I hope the above formula gives a hint of how they may generalize to
flop cycles of length 3 and above.
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Classifying crepant resolutions of quotient singularities and
quiver varieties

Travis Schedler

(joint work with Gwyn Bellamy, Alastair Craw, Steven Rayan, Hartmut Weiß,
Dan Kaplan)

The main goal of this work, based on [3], [4], and [11] is to understand crepant res-
olutions of symplectic singularities. These resolutions are ubiquitous, not merely
in geometry, but in geometric representation theory and physics. For instance, the
Springer resolution encodes the representation theory of semisimple Lie algebras.
The Higgs and Coulomb branch varieties are important pieces of the moduli of
vacua in supersymmetric gauge theories.

This talk was focused on two main kinds of symplectic cones: the quotient
singularities V/Γ for V a symplectic complex vector space and Γ ≤ Sp(V ) a finite
subgroup, and Nakajima quiver varieties, defined as a Hamiltonian reduction of
T ∗ Repα(Q) by GLα, where Q is a quiver with vertex set Q0 and arrow set Q1,
and α ∈ NQ0 .

In [3], we found a surprising isomorphism between one of each of these examples.
The talk was constructed so as to introduce each of the cases, observing similari-
ties, and discuss the classification question in this context, before generalizing to
arbitrary cones of the preceding type.

The quotient singularity V/Γ we consider takes V = C2 ⊗ C2 ∼= C4 and G =
Q8 ×C2 D8, where Q8 = {±1,±i,±j,±k} ⊆ H is the quaternionic group of order
eight, and D8 is the dihedral group of order eight. Since Q8 acts on C2 preserving
a symplectic form, and D8 acts on C2 preserving an orthogonal form, the product
Q8×D8 acts on V = C2⊗C2 preserving the tensor product of these forms, which
is symplectic. The kernel of the action is the order-two subgroup generated by
(−I,−I), so calling this the subgroup C2, the quotient Q8×C2D8 := (Q8×D8)/C2

acts faithfully and symplectically on V .
This quotient singularity was considered in [6], where it was shown to admit a

crepant (=symplectic) resolution. Subsequently in [5], Bellamy showed that there
were precisely 81 projective crepant resolutions. Then, in [7], all of these were
explicitly constructed via Cox rings, with the help of computer.

Part of the idea of the classification result of [5] involves explicitly comput-
ing a hyperplane arrangement which was defined earlier in [14], together with
Namikawa’s Weyl group action. Briefly, for any projective crepant resolution
ρ : X → Y of a Gorenstein singularity Y , one can consider the rational vector
space N1(X/Y ) spanned by line bundles on X modulo numerical equivalence,

http://arxiv.org/abs/2108.10541
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i.e., L ≃ L′ if L and L′ have the same degree on every irreducible curve con-
tracted by ρ (necessarily projective). Then one can consider the movable cone
Mov(X/Y ) ⊆ N1(X/Y ) of all line bundles such that the stable base locus (the
locus where some section of a tensor power of the bundle does not vanish) has codi-
mension at least two. By [2], the movable cone is a finite polyhedral cone, whose
chambers, called Mori chambers, are the ample cones of all the other projective
crepant resolutions (this says that X is a relative Mori dream space over Y ). In
[14], in the case that X is symplectic (equivalently, Y is a symplectic singularity),
it was shown that N1(X/Y ) is equipped with a finite hyperplane arrangement
and a Weyl group action W , preserving the hyperplanes, so that a fundamental
region for the action is identified with Mov(X/Y ), sending the hyperplanes pre-
cisely to the boundary walls of the Mori chambers. As a result, the number of
projective crepant resolutions equals the number of chambers in the complement
of this hyperplane arrangement, divided by the order of W .

Finally, in [5], this combinatorial data was computed for an arbitrary quotient
singularity V/Γ. The main point is that there is a natural deformation of V/Γ
defined by Etingof and Ginzburg [9] (whose construction appears earlier in work
of Drinfeld [8]), by the spectrum of the so-called spherical symplectic reflection
algebra, eH0,ce. The base of this family consists of conjugation-invariant functions
S → C for S ⊆ Γ the subset of symplectic reflections, i.e., γ such that V γ has
codimension two (the minimum nonzero value, since Γ acts symplectically). In
the case that this generic deformation is smooth (which is actually equivalent to
the existence of a projective crepant resolution thanks to [10], [13]), the hyperplane
arrangement consists of the loci of c : S → C such that the deformation is singular.

In the talk, I illustrated these ideas by explicitly describing the hyperplane
arrangement for the aforementioned example V/Γ. First we briefly review some
facts about Γ: this group of size 32 has seventeen conjugacy classes; aside from {I}
and {−I}, they all have order two. The symplectic reflections are the order-two
elements other than −I, and there are ten of these, giving five conjugacy classes.
The outer automorphism group of Γ acts simply transitively on these five classes,
hence is isomorphic to S5. The quotient Γ/{±I} is abelian and isomorphic to C4

2 ,
which means that there are sixteen one-dimensional characters χ : Γ → C×, each
valued in {±1}.

Let s1, . . . , s5 be representatives of the five conjugacy classes of symplectic re-
flections. The hyperplane arrangement in question consists of the five coordinate
planes {c(si) = 0}, together with the sixteen hyperplanes {

∑
s∈S χ(s)c(s) = 0},

where χ ranges over all one-dimensional characters.
On the other side, I considered the quiver in Fig. 1. This quiver Q has vertex set

Q0 of size six and arrow set Q1 of size five. Let α = (2, 1, 1, 1, 1, 1) be the dimension

vector, and GLα = GL2×GL5
1, with Lie algebra glα = gl2 ⊕ gl51. Consider the

representation space Repα(Q) = Hom(C,C2)5 and doubled space T ∗ Repα(Q) ∼=
Hom(C,C2)5⊕Hom(C2,C)5. The moment map µ : T ∗ Repα(Q)→ glα is given by

µ((X1, . . . , X5), (Y1, . . . , Y5)) = (X1Y1 + · · ·+X5Y5,−Y1X1,−Y2X2, . . . ,−Y5X5).

The quiver variety M0(Q,α) is defined by the categorical quotient µ−1(0)//GLα.
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Figure 1. Five-branch star shaped quiver

We also consider a natural resolution of singularities, given by a stability condi-
tion θ ∈ Z6 satisfying θ·α = 0. We may then consider the open subsets µ−1(0)θ-s ⊆
µ−1(0)θ-ss ⊆ µ−1(0) of θ-stable and semistable points, respectively. Concretely,
these may be identified with the representations of the doubled quiver Q (now with
ten arrows, going in both directions from the central node to the external ones)
such that every dimension β of a subrepresentation satisfies β ·θ < 0, or β ·θ ≤ 0, re-
spectively. Then we define the quiver variety Mθ(Q,α) := µ−1(0)θ-ss//GLα. This
is a geometric invariant theory (GIT) quotient, which admits a projective mor-
phism Mθ(Q,α) → M0(Q,α). For generic θ, every θ-semistable point is stable,
which implies that Mθ(Q,α) is smooth and this morphism is a crepant resolution
of singularities.

The quiver varieties Mθ(Q,α) are hyperkähler analogues of Kirwan and Kly-
achko’s moduli spaces of pentagons in R3 with prescribed edge lengths, which are
isomorphic to Repα(Q)θ-ss//GLα, with the last five coordinates of θ giving the edge
lengths (above we only allowed θ to be integral in order to have an interpretation
via GIT, but this can be generalized to any real values).

Note that the condition θ · α = 0 means that θ is uniquely determined by the
five values at the external vertices. The generic values of θ are when these values
are in the complement of the following explicit hyperplane arrangement in R5: the
five coordinate planes θi = 0, 1 ≤ i ≤ 5, and for every subset I ⊆ {1, . . . , 5}, the
hyperplane

∑
i∈I θi =

∑
j /∈I θj . These hyperplanes are the same as those for the

quotient singularity discussed above! In fact, Mekareeya [12] observed that the two
cones V/Γ and M0(Q,α) have the same Hilbert series of rings of regular functions,
suggesting they are isomorphic.

Theorem 1. [3] There is an isomorphism V/Γ ∼= M0(Q,α).

The idea of the proof is, while writing an explicit isomorphism is difficult, it is
much easier to relate the Cox ring of V/Γ, which is C[V ][Γ,Γ]={±I} with the ring
C[µ−1(0)]SL2 of “semi-invariants”, which in turn are closely related to the Cox ring
of resolutions Mθ(Q,α). In more detail, we define a surjection C[µ−1(0)]SL2 →
C[V ]±I . Under this surjection, the subring C[µ−1(0)]GLα has image C[V ]Γ, and
since these are both integral domains of the same dimension, it is an isomorphism.

In [3], using techniques of [1], we show that all projective crepant resolu-
tions of M0(Q,α) are of the form Mθ(Q,α), by identifying the movable cone
Mov(Mθ(Q,α)/M0(Q,α)) for a fixed generic θ with a region of the above hy-
perplane arrangement in R5—the region where all coordinates are nonnegative.
This we did also for the analogous quiver Qn with any number n of branches,
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and αn = (2, 1, . . . , 1) ∈ Nn. The resolutions are then called hyperpolygon spaces,
in analogy with the polygon spaces of Kirwan and Kylachko. The hyperplane
arrangement is also defined in exactly the same way, replacing 5 by n.

Theorem 2. [3] The projective crepant resolutions of M0(Qn, αn) are in bijection
with the chambers of the hyperplane arrangement lying in the region Rn

≥0.

In particular this gives a conceptual and computational-free construction of all
of the projective crepant resolutions of V/Γ ∼= M0(Q5, α5). Moreover, as there
are well known techniques for computing with hyperplane arrangements, we can
count resolutions (with some computational help):

Corollary 3. There are precisely 81 projective crepant resolutions of V/Γ ∼=
M0(Q5, α5). There are precisely 1684 projective crepant resolutions of M0(Q6, α6).

The techniques used to prove Theorem 2 apply to quite general GIT quo-
tients. The main point is to show that, fixing generic θ, the linearization map
Lθ : Hom(GLα /C×,C×) ⊗Z Q → N1(Mθ(Q,α)/M0(Q,α)) identifies a region of
the GIT fan with the movable cone. In work in progress with Bellamy and Craw,
we carry this out generally, and as a consequence prove:

Theorem 4 (Bellamy–Craw–Schedler, in progress). Fix an arbitrary quiver Q
with dimension vector α. If there is a projective crepant resolution of the form
Mθ(Q,α) → M0(Q,α), then every projective crepant resolution is of this form.
Under a mild minimality assumption on α, two values θ, θ′ give isomorphic res-
olutions if and only if their GIT chambers are images of each other under an
element of the Namikawa Weyl group.

We note that the minimality assumption on α can always be arranged up to
replacing α with some α′ < α with M0(Q,α) ∼= M0(Q,α′); equivalently, we could
leave α the same and pass to a linear subspace of the GIT parameter space. Also,
we understand the conditions under which some crepant resolution is given as
above. For example, if α is not just minimal but indecomposable (we cannot write
M0(Q,α) as a product of quiver varieties for α′ < α), then the condition is that
α is indivisible, i.e., gcd(αi) = 1.

Finally, I briefly discussed joint work in progress with D. Kaplan. The point
here is that many moduli spaces have singularities locally given by quiver varieties.
By the above, we can classify projective crepant resolutions of these singularities
(under mild assumptions). Our joint work explains what the obstructions are
to gluing these to a global crepant resolution. The main point is that, if these
local resolutions do glue, they glue uniquely. This is because, if f : X → Y and
f ′ : X ′ → Y are two birational maps, then there can exist at most one isomorphism
g : X → X ′ such that f = f ′◦g, as g is uniquely determined on a dense open subset.
Hence the only problem with gluing resolutions is to see whether the choices of
local resolutions are compatible with each other. This leads to a combinatorial
description of all global locally projective crepant resolutions in terms of the local
hyperplane arrangements and Namikawa Weyl group actions. See the extended
abstract by Kaplan for more details on this.
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[7] M. Donten-Bury and J. A. Wísniewski, On 81 symplectic resolutions of a 4-dimensional

quotient by a group of order 32, Kyoto J. Math. 57 (2017), no. 2, 395–434. MR 3648055
[8] V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i

Prilozhen. 20 (1986), no. 1, 69–70. MR 831053
[9] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and

deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.
[10] V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities,

Adv. Math. 186 (2004), no. 1, 1–57, arXiv:math/0212279.
[11] D. Kaplan and T. Schedler, Crepant resolutions via gluing, in preparation.
[12] N. Mekareeya, The moduli space of instantons on an ALE space from 3d N = 4 field

theories, J. High Energy Phys. (2015), no. 12, 174, front matter+29pp. MR 3464628
[13] Y. Namikawa, Poisson deformations of affine symplectic varieties, Duke Math. J. 156

(2011), no. 1, 51–85, arXiv:math/0609741. MR 2746388 (2012a:14023)
[14] Y. Namikawa, Poisson deformations and birational geometry, J. Math. Sci. Univ. Tokyo 22

(2015), no. 1, 339–359. MR 3329199

Projectivity of good moduli spaces of semistable quiver
representations and vector bundles

Pieter Belmans

(joint work with C. Damiolini, H. Franzen, V. Hoskins, S. Makarova, T. Tajakka)

1. Parallels between quivers and curves

There are many parallels between moduli spaces Mθ-ss
Q (d) of semistable quiver rep-

resentations and moduli spaces MC(r, d) of semistable vector bundles on a curve C.
Here we consider a quiver Q = (Q0, Q1) and finite-dimensional representations
of Q with dimension vector d, which are semistable with respect to a stability
function θ : ZQ0 → Z such that θ(d) = 0 (resp. semistable bundles of rank r and
degree d, where C has genus g ≥ 2). Some of these parallels are discussed in [6],
and there are others (such as similarities in the structure of their Brauer groups,
or rationality questions).

The parallel I wish to focus on is their (usual) construction in algebraic geometry
via geometric invariant theory (GIT). Using the notion of (semi)stability for quiver
representations [7] (resp. for vector bundles [8]) one considers
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• the open locus of Rep(Q,d) =
∏

i∈Q0
Ad(i)

k , respectively
• a suitable Quot scheme (by making all bundles globally generated)

corresponding to semistable objects, and then quotients out

• the conjugation action by GLd =
∏

i∈Q0
GLd(i), respectively

• the GLN -action with N the dimension of the global sections after twisting.

The moduli space of semistable quiver representations is projective-over-affine,
the base affine variety being the spectrum of the invariant ring (from the zero sta-
bility function), which by Le Bruyn–Procesi is generated by traces along cycles. In
particular, if Q is acyclic the resulting moduli space of semistable representations
is projective. The moduli space of semistable vector bundles is always projective.

Nowadays there are many (more complicated) moduli spaces being studied,
e.g. moduli spaces of Bridgeland-semistable objects [9]. For these no GIT-construc-
tion is available, so a GIT-free construction is needed. The general program is to:

(1) interpret the moduli problem as an algebraic stack M of finite type;
(2) prove that there exists a good moduli space M , and show it is a proper

algebraic space via the valuative criterion for universal closedness for M;
(3) descend a line bundle to M and check its ampleness.

For step (2), if M has finite stabilisers, then the Keel–Mori theorem provides
coarse moduli space M . If M has infinite stabilisers, one can use the recent
Alper–Halpern-Leistner–Heinloth existence criterion [2, Theorem A].

For step (3) one uses the moduli-theoretic interpretation of the space and the
line bundle to produce sections thereof, in order to check ampleness.

By implementing this program for well-known moduli spaces one can start to
understand more complicated constructions, and also obtain additional results in
these classical cases. The program is explained for MC(r, d) in [1]. For the Deligne–
Mumford compactification Mg of the moduli space of curves (which is also usually
constructed using GIT) it is explained in [4].

In the next section I will briefly explain the structure of the program in the
case of quiver representations, which is the novel joint work I’m reporting on [3].
In this abstract we work over an algebraically closed field k of characteristic 0, so
that we avoid adequate moduli spaces and geometrically stable representations,
but op. cit. is written in greater generality.

2. Projectivity for moduli spaces of quiver representations

Let us assume that Q is acyclic in what follows. Step (1) consists of writing
the usual setup in a suitable functor-of-points language and quickly deducing
the necessary properties. For step (2) one applies the Alper–Halpern-Leistner–
Heinloth existence criterion for the moduli stack Mθ-ss

Q (d), by explicitly checking
Θ-reductivity, S-completeness, and the valuative criterion for universal closedness.
The latter is done by giving a version of Langton’s semistable reduction for quiver
representations. The existence criterion then yields a good moduli space Mθ-ss

Q (d),
and shows it is a proper algebraic space.
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In order to show projectivity we need a line bundle on Mθ-ss
Q (d) for which we

can prove ampleness. In the setting of vector bundles on a curve such line bundles
are provided by descending determinantal line bundles from the moduli stack:
considering the Fourier–Mukai functor given by the universal vector bundle, a
vector bundle F on C gives a 2-term complex of vector bundles on the moduli
stack. One can take the determinant of this complex to obtain a line bundle on
the moduli stack, which only depends on the numerical invariants of F . If the rank
and degree of F are chosen appropriately so that χ(C,E ⊗ F ) = 0 (where E has
rank r and degree d) it is possible to descend this line bundle to the good moduli
space, and moreover construct a section of this line bundle (which does depend on
the isomorphism class of F ).

A similar construction can be done for moduli of quiver representations using
the universal representation. Interpreted in concrete terms (which is how Schofield
originally introduced them): if M is a d-dimensional and N is an e-dimensional
representation, define dMN :

⊕
i∈Q0

Homk(Mi, Ni) →
⊕

α∈Q1
Homk(Mt(α), Nh(α))

as (φi)i∈Q0 7→ (φh(α) ◦ Mα − Nα ◦ φt(α))α∈Q1 . If 〈d, e〉 = 0, then dMN is in
fact a square matrix, and following Schofield we define the determinantal semi-
invariant c(M,N) := det dMN . In what follows we will usually fix some N (or more
precisely try to construct one with special properties) so that c( , N) can be seen
as a section of a determinantal line bundle on Mθ-ss

Q (d). One important result
on these determinantal semi-invariants is that by varying over all N of dimension
vector e orthogonal to d they span the ring of semi-invariants (as a vector space),
a result independently proven by Derksen–Weyman, Schofield–Van den Bergh and
Domokos–Zubkov. The semi-invariant c( , N) has weight −〈 , e〉.

The next step is to produce enough determinantal semi-invariants to show that
the determinantal line bundles (for an appropriate choice of multiple of the dimen-
sion vector e) is basepoint-free. This can be done using the analogue of Faltings’s
characterization of semistable vector bundles, which says that a vector bundle
is semistable if and only if there exists a vector bundle orthogonal in the sense
from above for which HomC(F∨, E) = Ext1C(F∨, E) = 0. Such characterizations
were known already to Schofield(–Van den Bergh) and Crawley-Boevey. But in-
terestingly, from our proof we also obtain effective bounds on which power of this
semiample determinantal line bundle becomes basepoint-free.

The final step, where truly new ingredients are needed, is to prove for an acyclic
quiver Q that determinantal line bundle is ample, and not just semiample. This
is done by performing a dimension count, which for curves is done in [5]. The
semiample determinantal line bundle provides us with a morphism from a proper
algebraic space to some PN , and by constructing suitable determinantal semi-
invariants we can separate enough points to prove that this map is finite, thus the
determinantal line bundle is ample. This part of the argument builds upon the
(limited) compatibility between Auslander–Reiten functors and semistability.
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Soergel and Springer: Motives and Correspondences

Jens Niklas Eberhardt

(joint work with Catharina Stroppel)

In this talk, I presented joint work with Catharina Stroppel, see [9], in which
we explain how many equivalences between categories of sheaves on spaces and
representations of convolution algebras can be understood in terms of formality of
so-called Springer motives.

1. Convolution

1.1. A toy example. As a first motivation, we start with a toy example of con-
volution of functions on finite sets. For a finite set X, denote by QX the vector
space of Q-valued functions on X. There is a bilinear point wise product ∩ as
well as pullbacks f∗ and pushforwards f! (summing along the fibers of f) for maps
f : X → Y. For three finite sets X,Y and Z one can define the convolution product

∗ : QX×Y ×QY×Z → QX×Z , α ∗ β = π!(∆
∗(p∗(α) ∩ q∗(β)))(1)

using the natural maps

X × Y
X × Y × Y × Z X × Y ×X X × Y.

Y × Z q

p
∆ π

In fact, this convolution product is just matrix multiplication.
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1.2. Cohomological Convolution Algebras. The toy example has a vast gen-
eralization by replacing finite sets X by spaces (manifolds, varieties, stacks, . . . )
and the vector space of functions QX by some cohomology theory (singular coho-
mology, K-theory, Chow groups,. . . ). Since these cohomology theories are (under
appropriate assumptions) also equipped with analogues the operations ∩, f∗, f!
one can define a convolution product exactly as in (1). For example, the Chow
groups (CH•(X×SX)Q, ∗) with convolution form a graded associative algebra [4].

1.3. Examples. Let N ⊂ g be the nilpotent cone in a complex reductive Lie alge-
bra and denote by µ : T ∗X → N the Springer resolution, where X is flag variety of
g. Then there is an isomorphism (CHdimT∗X(T ∗X×N T

∗X)Q, ∗) = Q[W ] whereW
is the Weyl group. Using equivariant Chow groups and algebraic K-theory yields
Lusztig’s (graded) affine Hecke algebra, see [17, 10]. Similarly, quiver Hecke/Schur
algebras arise from quiver flag varieties, [12, 19, 18]. Another example is Soergel
theory: Consider the Bott–Samelson resolutions of Schubert varieties in the flag
variety µ : BS =

⊎
w∈W BS(w)→ X where w is a reduced expression for w ∈ W.

The category of finite-dimensional modules over (CH•(BS ×X BS)C, ∗) is equiva-
lent to O0(gL), the principal block of category O associated to the Langlands dual
Lie algebra, see [14].

1.4. Chow Motives. Convolution also appears prominently in Grothendieck’s
category of Chow motives. Let S/k be variety over a field k. The category of
correspondences Corr(S)Q consists of objects M(X/S) for any π : X → S for
X/k smooth and π projective. Its morphism are Hom(M(X/S),M(Y/S)) =
CHdimX(X ×S Y )Q and are composed by convolution. By passing to the idempo-
tent completion and formally inverting the reduced motive of P1 one obtains the
category of Chow motives Chow(S)Q.

1.5. Mixed Motives. Chow motives can be considered pure motives, since they
are tied to smooth projective varieties. Correspondingly, they only form an addi-
tive category. However, they are contained in the triangulated category of mixed
motives Chow(S)Q ⊂ DM(S)Q, see [20, 5]. The categories DM(S)Q come equipped
with a six functor formalism and realisation functors to constructible sheaves
on the complex points San(C) or ℓ-adic sheaves on S/Fq. Moreover, under the
correct assumptions, they are equipped with a weight structure w whose heart
DM(S)w=0

Q = Chow(S)Q is the category of Chow motives, see [2]. This implies the

existence of a weight complex functor DM(S)→ Kb(Chow(S)Q) to the homotopy
category of complexes of Chow motives.

2. Motivic Springer Theory

2.1. Springer Motives. Let k = Fq, µ : X → S be a projective map of varieties
over k and X/k be smooth. Moreover, assume that µ is equivariant for the action
of a linear algebraic group G. Then we define the category of Springer motives

DMSpr
G (S)Q = 〈µ!(QX)〉∆,A,(1) ⊂ DMG(S)
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as the full triangulated generated by the motive µ!(QX) its direct summands and
Tate twists. Here, DMG(S) is the G-equivariant version of the category DM [15].

2.2. Formality. Under the appropriate purity assumptions on the fibers of µ
the weight complex functor becomes an equivalence when restricted to Springer
motives:

Theorem (See [9]). Assume that X has finitely many G-orbits and that the mo-
tives M(µ−1({x})/k) of the fibers are direct sums of Q(n)[2n] for n ∈ Z. Then
there is an equivalence DMSpr

G (S)Q
∼
→ DZ

perf(E) with the perfect derived category

of graded modules of the convolution algebra E = (CHG
• (X ×S X)Q, ∗).

This theorem can be seen as a prototypical formality result, as it show that

DMSpr
G (S) is governed by a formal dg-algebra E.

2.3. Examples. The assumptions of the theorem are fulfilled in many of the ex-
amples explained in Section 1.3. For example, the motives of Springer fibers are

pure Tate by [6] and one obtains an equivalence DMSpr
G×Gm

(N )Q
∼
→ DZ

perf(H(G)Q)

where H(G)Q is the graded affine Hecke algebra. Similar results hold for quiver
Hecke/Schur algebras in types A,D,E and for cyclic quivers using cell decompo-
sition of quiver flag varieties, see [3, 11, 13, 9]. Moreover, µ : BS → X recovers

the Koszul equivalence DMSpr(X)
∼
→ Db(O0(gL)) from [14, 1].

2.4. Further Directions. These results are the starting point for a further in-
vestigation in motivic representation theory pioneered in [16]. A logical next step
is to replace (equivariant) Chow group by K-theory and to consider integral coeffi-
cients, yielding a wide range of equivalences not achievable with classical categories
of sheaves, see [7, 8].
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[math.RT], September 2018.

[16] Wolfgang Soergel and Matthias Wendt. Perverse motives and graded derived category O
Journal of the Institute of Mathematics of Jussieu, 17(2):347–395, April 2018.

[17] T. A. Springer. A construction of representations of Weyl groups. Inventiones mathematicae,
44(3):279–293, October 1978.

[18] Catharina Stroppel and Ben Webster. Quiver Schur algebras and q-Fock space.
arXiv:1110.1115 [math.RA], July 2014.

[19] M. Varagnolo and E. Vasserot. Canonical bases and KLR-algebras. 2011(659):67–100, Oc-
tober 2011.

[20] Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander. Triangulated Categories of
Motives Over a Field. In Cycles, Transfers, and Motivic Homology Theories. (AM-143),
pages 188–238. Princeton University Press, 2000.

The reconstruction theorem for AS-regular 3-dimensional cubic
Z-algebras

Shinnosuke Okawa

(joint work with Takuya Kitamura)

Z-graded algebras, or more generally Z-algebras, are noncommutative generaliza-
tions of polarized varieties. To each such algebra A with good enough properties
we can associate the category qgrA = grmodA/ torsA, which should be regarded
as the category of coherent sheaves on a noncommutative projective variety.

Since the data of “polarization” is lost in the process A 7→ qgrA, in general one
can not reconstruct A from the category qgrA. Hence it is natural to ask when
two such algebras A and A′ satisfy the equivalence of categories:

qgrA ≃ qgrA.(1)

It is shown by Van den Bergh that if A and A′ are AS-regular 3-dimensional
quadratic Z-algebras, then (1) holds if and only if A ≃ A′. Note that the categories
qgrA for those algebras are noncommutative projective planes in that they are flat
deformations of the abelian category cohP2.

On the contrary, in [6] Van den Bergh introduced two involutions on the set
of isomorphism classes of AS-regular 3-dimensional cubic Z-algebras (cubic Z-
algebras, for short) which do not change the equivalence classes of qgr. In this
case, the categories should be considered as noncommutative P1 × P1.
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One of the two involutions is the degree shift A 7→ A(1), where A(n)ij =
Ai+n,j+n, which turns out to be an involution since we always have an isomorphism
A(2) ≃ A for cubic Z-algebras. The other involution, which is called ω in [6],
is best explained in terms of the geometric data corresponding to the algebras
(or the moduli space of points) but we will come back to this later. The two
involutions are independent, and hence yield an action of the infinite dihedral
group D∞ = C2 ∗ C2 ≃ Z ⋊ C2 on the set of isomorphism classes of cubic Z-
algebras. Our main result (of [4] in preparation) is as follows:

Theorem 1. Two AS-regular 3-dimensional cubic Z-algebras A and A′ satisfy
qgrA ≃ qgrA′ if and only if they belong to the same orbit of the D∞-action.

For the proof of Theorem 1, we introduce the notion of line bundles.

Definition 2. An object L ∈ qgrA is called a line bundle if it is torsion free, of
rank 1, and satisfies χ(L,L) = 1.

On the other hand, for each (a, b) ∈ Z2 we define the object O(a, b) ∈ qgrA
inductively, starting with the case where 0 ≤ b − a ≤ 1; in this case, they are
defined to be the irreducible projective modules of A regarded as objects of qgrA.
Indeed, it is an acyclic helix (as we call it in [5]) of the derived category Db qgrA.
Note that these objects are identified with the vertices of the “zig-zag” or “stairs”
in the plane whose edges are of length 1 and are parallel to either of the coordinate
axes, and contains the origin as a “right bottom corner”. To proceed, we define
the notion of even mutation and odd mutation for cubic Z-algebras. If we identify
the original algebra A with the zig-zag, then the even/odd mutation correspond to
flipping the zig-zag along the line b− a = 1 and b− a = 0, respectively. It follows
that the result of even/odd mutation of a cubic Z-algebra is again a cubic Z-
algebra, which is identified with the “flipped zig-zag” and have the same qgr as the
original Z-algebra. Therefore by iterating the even/odd mutations alternatively,
we can fill the plane by the repeatedly flipped zig-zags and thus obtain the objects
O(a, b) for all a, b ∈ Z corresponding to their vertices.

The key ingredient of the proof is the following

Theorem 3. An object L ∈ qgrA is a line bundle if and only if L ≃ O(a, b) for
some (a, b) ∈ Z2.

Moreover, we can rephrase the notion of torsion-freeness and rank in Definition 2
by those intrinsic to the category qgrA. Combined with Theorem 3, this implies
that any equivalence as in (1) preserves the collection of objects {O(a, b)}(a,b)∈Z2 .

Note that this set of objects is partially ordered by the order M ≤ L ⇐⇒
Hom(M,L) 6= 0, and the induced bijection must respect this structure. Note that
this poset is isomorphic to

(
Z2,≤

)
, where (a, b) ≤ (a′, b′) ⇐⇒ a ≤ a′ and b ≤ b′.

Thus we conclude that the group G := Aut
(
Z2,≤

)
= Z2 ⋊C2 acts transitively

on the set of possible Z2-markings of line bundles of qgrA, which are indeed
equivalent to the data of the original Z-algebra A. However, it is known that the
action of the element [ 11 ] ∈ G, which is the generator of the center of G, sends the
algebra A to its shift A(2). Thus we obtain an (effective) action of the quotient
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group G/Z(G) =
〈

[ 01 ]
〉
⋊ 〈s〉 ≃ Z⋊C2 on the set of isomorphism classes of cubic

Z-algebras whose orbits consist exactly of those algebras yielding the same qgr.
From this point of view, the two involutions (1) and ω are nothing but the

elements [ 01 ] ◦ s and s, respectively. In particular, they generate the whole group
G/Z(G). This finishes the proof of Theorem 1.

Lastly, we point out that the D∞-action above originates from the autoequiv-
alence group of the bounded derived category of coherent sheaves of the stack
P(1, 1, 2). To see this, we use the fact that for any cubic Z-algebra A there is a flat
family of abelian categories over a smooth curve whose central fiber is equivalent
to cohP(1, 1, 2) and also there is a fiber which is equivalent to qgrA. The helix

(
OP(1,1,2)(i)

)
i∈Z

(2)

on the central fiber deforms to the standard helix (corresponding to the zig-zag) of
qgrA. On the other hand, the autoequivalence group of the bounded derived cate-
goryDb cohP(1, 1, 2) send the helix (2) to various helices ofDb cohP(1, 1, 2). There
is the derived McKay correspondence for the A1-singularity Db cohP(1, 1, 2) ≃
Db coh Σ2, where Σ2 is the Hirzebruch surface of degree 2. It contains a (−2)-
curve C, and line bundles on C yield 2-spherical twists of the derived category.
Since the action of any spherical twist on the helix (2) is realized by a sequence of
mutations (see, say, the proof of [3, Theorem 6.4]), we confirm that any of the he-
lices obtained by applying autoequivalences of the central fiber deforms to a helix
of the derived category of qgrA, which turns out to be in the heart of the standard
t-structure and corresponds to a polarization of qgrA. Thus we obtain the action
of the autoequivalence group of Db coh Σ2 on the set of polarizations(=helices) of
qgrA, hence a surjective group homomorphism to the group D∞ (autoequivalence
groups of smooth projective toric surfaces are classified in [1], based on [2]).

For example, the even/odd mutation of the zig-zag mentioned above are ob-
tained from the spherical twist by OC and OC(−1), respectively. Hence they
generate a subgroup of D∞ of index 2 (the gap is filled by −⊗OP(1,1,2)(1)), which
is also isomorphic to D∞. In fact, it is more appropriate to regard it as the affine
Weyl group of type A1. It is widely recognized that the geometry of noncommuta-
tive del Pezzo surface should be governed by the affine Weyl group whose Dynkin
type is specified by the orthogonal complement of the anti-canonical class in the
Picard group, and this is an explanation of why that is the case (in the case of
noncommutative P1 × P1) via degeneration.
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Multiplicative preprojective algebras and quiver varieties

Daniel Kaplan

(joint work with Travis Schedler)

1. The strong free product property

The exposition follows Etingof–Ginzburg [13, Section 3.3], which in turn utilizes
the cotangent sequence of Cuntz–Quillen [11] and Anick’s resolution [2].

Let k be a field, K a separable k-bimodule, and A a graded k-algebra with
K-bimodule structure. Suppose further that A has a presentation as A ∼= B/(R)
where B := TK(V ) is the tensor algebra, R is the K-bimodule of relations, and
(R) ⊂ TK(V )≥2 is the two-sided ideal generated by R. Consider the following
comparison map between two A-bimodule complexes of A:

P• := 0

ϕ•

��

// A⊗K R⊗K A

ϕ1

��

f1 // A⊗K V ⊗K A
f0 //

ϕ0

��

A⊗K A

id

��

µ
// A

id

��
Q• := 0 // (R)/(R)2

g1 // A⊗B Ω1(B)⊗B A
g0 // A⊗K A

µ
// A

where ϕ1(1⊗ r⊗ 1) = r and ϕ0(1⊗ v ⊗ 1) = 1⊗ [v ⊗ 1− 1⊗ v]⊗ 1. Note that ϕ0

is an isomorphism of A-bimodules so ϕ• is an isomorphism of complexes if ϕ1 is
an isomorphism of A-bimodules. In this case, (R)/(R)2 is a projective bimodule,
and Etingof–Ginzburg call A a noncommutative complete intersection (NCCI).

NCCIs have homological dimension at most two. If further P• is self-dual, then
A is 2-Calabi–Yau. In this case, dimAe(A ⊗K R ⊗K A) = dimAe(A⊗K A) = 1 so
we can write R = K〈r〉, for a single relation r.

We want to generalize the above analysis to the ungraded setting where B is
a localization of a path algebra of a quiver and r ∈ B need not be homogeneous.
One can still ask if (I) (R)/(R)2 is projective as an A-bimodule, an ungraded
NCCI condition, and stronger if (II) ϕ1 is an isomorphism of K-bimodules. We
propose a mild strengthening of this condition, that relies on the auxiliary data of
a K-bimodule section σ : B/(r)→ B of the projection map π : B → B/(r).

Definition 1 ([15, Definition 3.1]). We say the triple (B, r, σ) satisfies the strong
free product property (SFPP) if the map σ̃ : B/(r) ∗K K〈t〉 → B, σ̃ |B/(r)≡ σ,
σ̃(t) = r extended multiplicatively is a K-bimodule isomorphism. We say that
(B, r) (or sometimes B/(r)) satisfies the SFPP if there exists σ such that (B, r, σ)
satisfies the SFPP.

Remark 2. Later, we will fix a quiver Q with vertex set Q0 and arrow set Q1

and consider the case K = kQ0 and B = kQ[(1 + a∗a)−1]a∈Q1 . The relation
r := rmult ∈ B has rmult + q invertible for some q ∈ K, (see Definition 4). In this
setting, we say (B, r, σ) satisfies the SFPP if σ̃ : B ∗kQ0 kQ0[t, (t + q)−1] → B is
an isomorphism of kQ0-bimodules.
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Notice if (B, r) satisfy the SFPP then σ̃ preserves the t-adic filtration on the
LHS and the r-adic filtration on the RHS. Taking the associated graded map and
considering the first filtered piece gives a B/(r)-bimodule isomorphism

gr(σ̃)1 : B/(r)⊗K K〈t〉 ⊗K B/(r)→ (r)/(r)2 1⊗ t⊗ 1 7→ r + (r)2.

So (r)/(r)2 is projective and B/(r) is an (ungraded) NCCI. Note that in the graded
setting gr(σ̃)1 = ϕ1 and in the following three notions are equivalent: (I) B/(r) is
an NCCI, (II) gr(σ̃)1 is a K-bimodule isomorphism, and (III) (B, r) satisfies the
SFPP. In general, (III) implies (II) which in turn implies (I). The advantage of
the SFPP is that one can often prove it (and build σ explicitly) using a system of
reductions and Bergman’s Diamond Lemma for ring theory [5].

Example 3. (a) The pair (C[x], r = x2) does not satisfy the SFPP since

σ̃ : C[x]/(x2) ∗ C[t]→ C[x] σ̃(xt− tx) = σ(x)x2 − x2σ(x) = 0

for any σ : C[x]/(x2)→ C[x] and hence no such σ̃ is injective.
(b) The triple (C〈x, y〉, r = y, σ1) where σ1(x + (y)) = x satisfies the SFPP but

the triple (C〈x, y〉, r = y, σ2) with σ2(x+ (y)) = x(1− y) does not satisfy the
SFPP since x = σ2(x)(1 − y)−1 is not in the image of σ̃2.

(c) Fix a connected quiver Q with non-empty arrow set. Let K := kQ0 and B :=
kQ the path algebra of the double quiver. Then (kQ, radd :=

∑
a∈Q1

[a, a∗])

satisfies the SFPP if and only if Q is not ADE Dynkin, see [16, Propositions
5.1.9, 5.2.1]. These were known to be NCCIs from [13, Theorem 1.3.1, Propo-
sition 6.3.1] following [7]. Moreover, one can deform the additive preprojective
relation using λ ∈ kQ0 and the corresponding pair satisfies the SFPP, giving
an alternate proof of [9, Theorem 2.7].

2. Multiplicative preprojective algebras

In this section we recall the definition of the multiplicative preprojective algebra
following Crawley-Boevey and Shaw and give a summary of results.

Definition 4 ([10, Definition 1.2, Section 2]). Let L := kQ[(1 + a∗a)−1]a∈Q1 be
a localized path algebra and define the multiplicative preprojective algebra with
parameter q ∈ (k∗)Q0 to be the quotient Λq(Q) := L/(rmult) where

rmult :=
∏

a∈Q1

(1 + aa∗)(1 + a∗a)−1 −
∑

i∈Q0

qiei.

The product is taken with respect to some choice of order ≤ on the set of arrows
Q1, but the isomorphism class of Λq(Q) is independent of this choice.

A summary of results from [15, 14]:

(1) If Q is ADE Dynkin then Λ1(Q) ∼= Π(Q) if and only if char(k) is good for Q
meaning not 2 in type D, not 2 or 3 in type E, and not 2, 3, or 5 for E8, (see
[14] and references therein.)
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(2) If Q = Ãn then (L, rmult) satisfies the SFPP and hence Λq(Q) is an ungraded
NCCI. Furthermore it is prime, 2-Calabi–Yau, and if q = 1 it is an NCCR over

Z(Λ1(Ãn)) ∼= e0Λ1(Ãn)e0 ∼= k[x, y, z]/(zn + xy + xyz)

where the second isomorphism is due to Shaw [17, Theorem 1.3.5].

(3) If Q ) Ãn then (L, rmult) satisfies the SFPP so Λq(Q) is an ungraded NCCI.
Further Λq(Q) is 2-Calabi–Yau, prime, and Z(Λq(Q)) = k [15].

3. Symplectic resolutions of multiplicative quiver varieties

The goal of this section is to use the 2-Calabi–Yau property of preprojective alge-
bras to prove results about multiplicative quiver varieties.

For any algebra A over kQ0 let Repθ
d(A) denote the set of θ-semistable repre-

sentations of A of dimension vector d. The group GLd :=
∏

i∈Q0
GLdi(k) acts on

Repθ
d(A) by conjugation and letMθ

d(A) denote the GIT quotient, Repθ
d(A)//GLd.

If A = Π(Q) (respectively A = Λq(Q)) then we call Mθ
d(A) a quiver variety (re-

spectively multiplicative quiver variety).
Results about the structure of Mθ

d(A) for A a 2-Calabi–Yau algebra:

• Prehistory: A graded 2-Calabi–Yau algebra is isomorphic to Πk(Q) for Q with
connected components not ADE Dynkin.
• Van den Bergh : A complete 2-Calabi–Yau algebra is isomorphic to Π̂(Q) for
Q connected not ADE Dynkin [18, Corollary 9.3].
• Bocklandt–Galluzzi–Vaccarino: If A is a 2-Calabi–Yau algebra and M is a

semisimple A-module, then H0(Ext•A(M,M)!) is a completed preprojective al-
gebra, where A! := RHomkQ0 (A,A) denotes the Koszul dual of A. In words,
the formal neighborhood of M ∈ M0

d(A) is isomorphic to the formal neigh-
borhood of 0 ∈M0

d′(Π(Q)) for some d′, Q [6, Theorem 6.6].
• Kaplan–Schedler: The previous result holds for any θ 6= 0 and M ∈ Mθ

d(A)
θ-polystable, or more generally if EndA(M) is semisimple [15].
• Davison: The moduli space of objects in a (nice) 2-Calabi–Yau category is

formally locally a quiver variety [12].

In the case A = Λq(Q), we have the following result for Mθ
d(A):

Theorem 5 ([15, Theorem 5.4]). Multiplicative quiver varieties are formally lo-
cally isomorphic to the neighborhood of the zero representation in a quiver variety.

Proof. By [15], if Q contains a cycle, then Λq(Q) is 2-Calabi–Yau and the theorem

holds. Otherwise, define Q̃ from Q by adding an additional vertex v, adding an
arrow a : v → w for some w ∈ Q0 a vertex in the original quiver, and adding b : v →
v a loop at vertex v. Now any (neighborhood of a) representation in Mθ

d(Λq(Q))

can be regarded as a (neighborhood of a) representation in M
(θ,0)
(d,0)(Λ

(q,1)(Q̃)),

which is formally locally isomorphic to the zero representation in a quiver variety.
�
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A recent program aims to classify which symplectic singularities have projective
symplectic resolutions, and classify all such resolutions when they exist. Bellamy–
Schedler [4] show that the quiver variety M0

d(Π(Q)) has symplectic singularities
and classify which pairs (Q, d) admit projective symplectic resolutions. Work in
progress by Bellamy–Craw–Schedler [3] aims to prove that if a single projective
symplectic resolution of M0

d(A) is given by VGIT (i.e., via a map Mθ
d(A) →

M0
d(A) for some stability parameter θ) then all projective symplectic resolutions

arise this way. Therefore, as explained in Schedler’s talk, one can classify all
projective symplectic resolutions of X by giving an identification X ∼=Mθ

d(Π(Q))
where some projective symplectic resolution is given by VGIT.

For X = Mθ
d(Λq(Q)), one no longer has an identification X ∼= M0

d′(Π(Q′)),
but Theorem 5 ensures the statement is true for every formal local neighborhood
of X . Hence we can use Bellamy–Schedler to classify symplectic resolutions in
every formal neighborhood, after which we hope to classify all global resolutions,
by developing a local-to-global obstruction theory for symplectic resolutions. This
should give classifications of symplectic resolutions in new, interesting examples.

Example 6. LetX = (C∗)n×(C∗)n and consider the the action of Γ := (C2)n⋊Sn

where Sn is permuting the factors and C2 acts by (z, w) 7→ (z−1, w−1). For
simplicity take n = 1, although, with more work, our analysis holds for general n.
The singularities of X/Γ (i.e., the fixed points of the Γ-action) are the four points
(±1,±1). Formally locally each singularity is simple: C∗ × C∗/C2

∼= C2/C2. The
simple singularity has a unique resolution, and hence the same is true for X , as
these resolutions glue to a global symplectic resolution.
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Faithful ADE braid group actions on triangulated categories

Anya Nordskova

(joint work with Yury Volkov)

Let k be an infinite field and D be a k-linear triangulated category and with a
fixed dg-enhancement. A so-called ADE-configuration of n-spherical objects in
D gives rise to an action of a generalised braid group (Artin group) on D via
spherical twists. Together with Y. Volkov, we showed that this action is faithful
for any integer n 6= 1. Although various results on the faithfulness of this action
have been obtained over the years (e.g. for type A or n=2, and in some other
cases), the approach we present allows us to establish it for any ADE diagram,
any enhanced triangulated category, and any integer n 6= 1 almost simultaneously.
Let us now introduce the problem and state the result in more detail.

Let Homk(A,B) denote HomD(A,B[k]). By Hom∗(A,B) we denote the graded

space
⊕

k∈Z Homk(A,B).

Definition. Let n ∈ Z. An object P ∈ D is called n-spherical if

(i) dimk Hom∗(P,X) <∞ for any object X ∈ D.
(ii) Hom∗(P, P ) ∼= k[t]/(t2) as graded k-algebras, where deg(t) = n.

(iii) P is an n-Calabi–Yau object, which means that for any X ∈ D there is a
perfect pairing

Hom∗(P,X)×Hom∗(X,P )
◦
−→ Hom∗(P, P )/〈IdP 〉 ∼= k.

Definition. Let P be a spherical object. The spherical twist tP along P is an
endofunctor of D defined by

tP (−) = cone(P ⊗Hom∗(P,−)
ε(−)
−−−→ (−)),

where ε is the counit of the adjunction Hom∗(P,−) : D←→ D(Vect−k) : P ⊗ (−)
and D(Vect−k) denotes the derived category of finite dimensional k-vector spaces.

Since we assumed that the category D comes with a fixed dg-enhancement, one
can indeed correctly define tP as a functor, considering cones that descend from
the dg level (details can be found in the literature). In fact, it is well-known that
if P is a spherical object, then tP is an autoequivalence of D.
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Let Γ be an ADE Dynkin diagram. By Γ0 we denote the set of vertices of Γ.

Definition. The Artin group (generalised braid group) BΓ of type Γ is generated
by si, i ∈ Γ0 subject to braid relations sisjsi = sjsisj for i, j adjacent in Γ and
commutation relations sisj = sjsi for i, j not adjacent in Γ. The braid monoid

B+
Γ is a monoid given by the same generators and relations.

Definition. A collection of n-spherical objects {Pi}i∈Γ0 labeled by the vertices of
Γ is called a Γ-configuration if for any i 6= j

(1) dimk Hom∗(Pi, Pj) = 1 if i and j are adjacent in Γ;
(2) Hom∗(Pi, Pj) = 0 otherwise.

Proposition (Seidel, Thomas [4]). Let {Pi}i∈Γ0 be a Γ-configuration. Then the
functors tPi satisfy braid relations of type Γ up to a natural isomorphism. In other
words, there is a group homomorphism

F : BΓ −→ Aut(D)

where Aut(D) is the group of exact autoequivalences of D modulo natural isomor-
phisms.

We have just defined an action of the braid group BΓ on the category D. The
main result of this talk says that this action is faithful if n 6= 1:

Theorem (Nordskova, Volkov [2]). Let Γ be a simply-laced Dynkin diagram,
n ∈ Z, n 6= 1 and {Pi}i∈Γ0 a Γ-configuration of n-spherical objects in a trian-
gulated category D with a fixed dg-enhancement. Then the action of BΓ on D

generated by the spherical twists tPi is faithful.

Remark.

(1) For n = 1 this action can be unfaithful, see [4] for a counterexample.
(2) The faithfulness of this action had been established in some cases before,

for instance, see [4] (type A, n ≥ 2), [1] (n = 2), [3] (n ≥ 2, D is the
derived category of a Ginzburg dg-algebra).
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Non-Fourier-Mukai functors via twisted Hodge diamonds

Alice Rizzardo

This is a report on work by my PhD student, Felix Küng. Throughout we work
over a base field of characteristic zero.

Consider an exact functor F between two triangulated categories A and B, and
assume that these have corresponding DG- or A∞-enhancements a and b: in other
words, a and b are pre-triangulated DG or A∞-categories such that H0(a) = A
and H0(b) = B.

Definition 1. We say that F : A → B is a Fourier-Mukai functor if there exists
a DG or A∞-functor f : a→ b such that F ∼= H0(f) as graded functors.

Note that in the case where A and B are the bounded derived categories of
two smooth projective varieties X and Y , by a result of Toën [5], this definition
coincides with the more classical definition of a Fourier-Mukai functor as a functor
of the shape

F ∼= Rp2∗(K
L
⊗X×Y Lp∗1(−))

for some K ∈ Db(coh(X × Y )), where p1 and p2 are the projections from X × Y
onto X and Y respectively.

The question of which functors are Fourier-Mukai has a relatively long history,
both in the algebraic setting whereA and B are bounded derived categories of finite
dimensional algebras, and in the geometric setting where A and B are bounded
derived categories of smooth projective varieties. Let us focus on the geometric
setting here.

First of all, let us remind the reader that the bounded derived category of a
smooth projective variety always admits a unique DG enhancement [2]. This allows
us to quote the celebrated result by Orlov [1] using our definition of Fourier-Mukai
functor: any fully faithful exact functor F : Db(cohX)→ Db(cohY ) is a Fourier-
Mukai functor. For some time, there was some hope that every exact functor
would have this shape, so that there would be a perfect dictionary between the
derived categorical level and the level of enhancements, but this turned out not to
be the case.

Indeed, together with my coauthors Van den Bergh and Neeman, we exhibited
a counterexample in [4]:

Theorem 2 (Rizzardo, Van den Bergh, Neeman). There exists an exact, non-
Fourier-Mukai functor

F : Db(cohQ)→ Db(cohP4)

where Q is a smooth quadric hypersurface in P4.

The proof that the functor F constructed in the paper is non-Fourier-Mukai
hinges on an obstruction theory that proved harder to control in higher dimension:
this is the reason why the original paper [4] only provided one example, despite
the construction of candidate non-Fourier-Mukai functors being potentially very
general.
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Intuitively, it should be possible to obtain non-Fourier-Mukai functors as non-
commutative deformations of a Fourier-Mukai functor. This suggests that there
should be plenty of examples out there, and indeed there are! First of all we have
the following result from [3]:

Theorem 3 (Raedschelders, Rizzardo, Van den Bergh). Let X be a smooth pro-
jective scheme of dimension m ≥ 3 which has a tilting bundle. Then there exists
an exact, non-Fourier Mukai functor

(1) Db(coh(X))→ Db(coh(Y ))

where Y is a smooth projective scheme.

This theorem provides an infinite amount of non-Fourier-Mukai functors, but
this is done at the price of allowing Y to have very high dimension.

The result of my PhD student Felix Küng builds on the original result of [4] by
providing an infinite family of non-Fourier-Mukai functors with controlled source
and target, one for each odd-dimensional quadric hypersurface:

Theorem 4 (Küng). Let Q be a smooth quadric hypersurface in P2k, for k > 2.
Then there exists an exact, non-Fourier-Mukai functor

F : Db(cohQ)→ Db(Pn).

Küng also provides a way to construct “candidate” non-Fourier-Mukai functors
with source equal to the derived category of an arbitrary hypersurface X . In
particular he exhibits a candidate non-Fourier-Mukai functor for each element in a
vector space of dimension equal to a certain entry in a twisted Hodge diamond of
X . These twisted Hodge numbers are easy to calculate using a computer algebra
program. One can see in this way that the number of candidate functors is often
extremely high, even in low dimension. Unfortunately it is still not clear how to
show that these yield non-Fourier-Mukai functors, and how to see which of these
choices give nonisomorphic functors.
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Singularity categories and cluster categories

Osamu Iyama

(joint work with Norihiro Hanihara)

1. Cohen-Macaulay representations and cluster categories

Let R be a commutative Gorenstein ring of dimension d. One of the main objects
in Cohen-Macaulay representation theory is the singularity category Dsg(R) :=
Db(modR)/ perR of R, the Verdier quotient of the bounded derived category by
the perfect derived category. It is enhanced by the Frobenius category CMR of
Cohen-Macaulay R-modules [5] and thus triangle equivalent to the stable category
CMR. Moreover it is (d− 1)-Calabi-Yau when R is an isolated singularity [3].

We have another important class of Calabi-Yau triangulated categories, namely
cluster categories [4, 1, 7, 12, 13]. Let A be a finite dimensional algebra over a
field k, and let d ∈ Z. Then the d-cluster category Cd(A) of A is the triangulated
hull [12] of the orbit category perA/−⊗L

ADA[−d], where D = Homk(−, k) is the
k-dual. Under a mild assumption on A, it is a d-Calabi-Yau triangulated category.

Recently there have been extensive studies in relating these two classes of
Calabi-Yau triangulated categories [10]. Based on [9], we will present a general
strategy to construct equivalences between singularity categories and cluster cat-
egories, and give some applications.

2. Results

2.1. Main theorem. Our approach is to consider a grading on our Gorenstein
ring R. When R is graded by an abelian group G we form the G-graded singularity
DG

sg(R) := Db(modGR)/ perGR. For simplicity, we explain our results in [9] in the
following typical setting: Let R =

⊕
i≥0Ri be a positively graded commutative

Gorenstein isolated singularity of dimension d such that R0 = k is a field and has
Gorenstein parameter a 6= 0. In this setting we have the following main result.

Theorem 1. Suppose we have a triangle equivalence DZ
sg(R) ≃ perA for a finite

dimensional algebra A. Then it extends to a commutative diagram

perA //

≃

Cd(A) //

≃

C
(1/a)
d (A)

≃

DZ
sg(R) // D

Z/aZ
sg (R) // Dsg(R).

Here, C
(1/a)
d (A) is the triangulated hull of perA/F for an autoequivalence of F

satisfying F a ≃ −⊗L
A DA[−d] (cf. [14, 8]).

2.2. Examples. Let us give some examples to apply our result.

Example 2. Let k be an algebraically closed field of characteristic 0 and G ⊂
SL(d, k) a finite subgroup. Then G acts on the polynomial ring S = k[x1, . . . , xd].
Giving a grading on S by deg xi = 1, the invariant subring R = SG inherits a
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grading so that its Gorenstein parameter is d. We assume that R is an isolated
singularity. In this case it is shown in [11] that we have a triangle equivalence
DZ

sg(R) ≃ Db(modA) for some finite dimensional algebra A of finite global dimen-
sion. We conclude that there is a commutative diagram

Db(modA) //

≃

Cd−1(A) //

≃

C
(1/d)
d−1 (A)

≃
DZ

sg(R) // D
Z/dZ
sg (R) // Dsg(R).

Let us look at the following two cases in more detail.
(1) Let d = 3 and G ⊂ SL(3, k) the cyclic subgroup of order 3 generated

by diag(ω, ω, ω), where ω is a primitive third root of unity. In this case, A =

kQ3 × kQ3 × kQ3 for the Kronecker quiver Q3 : ◦
3 // ◦ with 3 arrows. By the

main theorem and an interpretation of C
(1/3)
2 (A), we obtain equivalences

Dsg(R) ≃ C
(1/3)
2 (A) ≃ C2(kQ3),

as was established in [15].
(2) Let d = 4 and G ⊂ SL(4, k) the cyclic subgroup of order 2 generated by

diag(−1,−1,−1,−1). In this case we can take A = kQ6 × kQ6 for the Kronecker

quiver Q6 : ◦
6 // ◦ with 6 arrows. We similarly obtain equivalences

Dsg(R) ≃ C
(1/4)
3 (A) ≃ C

(1/2)
3 (kQ6).

This recovers a result of [14].

Example 3. Let d = 0, so that R =
⊕

i≥0 Ri be an Artinian Gorenstein ring

with R0 = k. Then it has Gorenstein parameter a = −max{i ≥ 0 | Ri 6= 0}. It

is shown in [16] that T :=
⊕−a

i=1 R(i)≥0 is a tilting object, and A := EndDZ
sg(R)(T )

has finite global dimension. It follows that we have a commutative diagram

Db(modA) //

≃

C−1(A) //

≃

C
(1/a)
−1 (A)

≃

DZ
sg(R) // D

Z/aZ
sg (R) // Dsg(R).

We have further examples for quotient singularities with different gradings [2],
Gorenstein rings of dimension 1 [6], and so on.

2.3. Key points. We mention two important steps toward the main theorem.
Although everything is hidden in the statement of the main result, we essentially
work in differential graded (dg) enhancements of the relevant categories. The
first one is the following property of the canonical enhancement of the singularity
category of R.

Theorem 4. Let C be the canonical dg enhancement of DZ
sg(R). Then there exists

an isomorphism in D(Ce):
DC ≃ C(−a)[d− 1].
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Taking the 0-th cohomology we recover the classical Calabi-Yau property of
DZ

sg(R) [3].
The second point concerns an enhancement of the cluster category. Note that

an enhancement of the cluster category Cd(A) is given by the dg orbit category
A/F , where A = Cb(projA) the enhancement of perA and F = − ⊗A X for a
bimodule projective resolution X → DA[−d] [12]. Notice that dg orbit categories
have a natural additional Z-grading, leading to study such Z-graded dg categories.
The second key step is the following characterization of dg orbit categories among
dg categories with an additional Z-grading.

Theorem 5. Let B be a Z-graded dg category. Assume that perZB is generated
by {B(−, B) | B ∈ B}. Put A = B0 and V = B−1. Then there exists a Z-graded
quasi-equivalence B ≃ A/V .

The main result is obtain by a combination of Theorem 4 and Theorem 5.
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Feigin and Odesskii’s Elliptic Algebras

S. Paul Smith

(joint work with Alexandru Chirvasitu, Ryo Kanda)

We reported on results from [4, 5, 6, 7, 8, 9] by Chirvasitu-Kanda-Smith (CKS)
that establish some fundamental properties of the algebras Qn,k(E, ξ), which were
defined in the late 80’s by Feigin and Odesskii. [11, 13]. Almost all these properties
had been stated by Feigin and Odesskii in their inaugural and subsequent papers,
but proofs were often omitted and some of their claims are not true in the generality
they are stated. Some of their statements to the effect that something is true
“generically” cry out for more precision. Nevertheless, Feigin and Odesskii’s papers
are a reliable guide as to what one should expect of these algebras.

1. Definition and first properties of Qn,k(E, ξ)

1.1. Preliminary definitions. Fix relatively prime integers n > k ≥ 1 and
(η | τ) ∈ C × H, where H = {z ∈ C | ℑ(z) > 0}. Define Λτ := Z + Zτ and
Eτ := C/Λτ . We write E[r] for the r-torsion subgroup of E and e(z) := e2πiz.

Let Hn := 〈S, T, ǫ | Sn = T n = ǫn = 1, [S, T ] = ǫ, ǫ is central 〉 be the
Heisenberg group of order n3. By standard complex analysis, dimC Θn(τ) = n,
where Θn(τ) is the space of holomorphic functions f : C→ C such that

(1)

{
f(z + 1) = f(z)

f(z + τ) = − e(−nz)f(z)

for all z ∈ C. Every 0 6= f ∈ Θn(τ) has (counted with multiplicity) exactly n zeros
in a fundamental parallelogram for Λτ ; the sum of the zeros is n−1

2 modulo Λτ .

The conditions in (1) imply that the map C→ Pn−1, z 7→ (θ0(z), . . . , θn−1(z)),
descends to a well-defined holomorphic map

(2) ϕ : Eτ −→ Pn−1, ϕ(z) = (θ0(z), . . . , θn−1(z)).

This is a closed immersion when n ≥ 3.1 Each point z ∈ C determines a
codimension-one subspace of Θn(τ), namely Hz := {f ∈ Θn(τ) | f(z) = 0},
and hence a 1-dimensional subspace of Θn(τ)∗; as z varies, z 7→ Hz is a map from
C to the projective space P

(
Θn(τ)∗

)
of lines in Θn(τ)∗. But this is the map ϕ, so

(3) ϕ : Eτ −→ P
(
Θn(τ)∗

)
∼= Pn−1.

See also [4, §2.4]. Let L := ϕ∗OPn−1(1) = OPn−1(1)
∣∣
E

. Since the sum of the zeros

of a non-zero function f ∈ Θn(τ) equals n−1
2 modulo Λτ , L ∼= OE

(
n(n−1

2n )
)
.

The group Hn acts on the space of holomorphic functions f : C→ C via
{

(S · f)(z) := f
(
z + 1

n

)

(T · f)(z) := e
(
z + 1

2n −
n−1
2n τ

)
f
(
z + 1

nτ
)
.

1We will assume that n ≥ 3 in what follows. The case n = 2 is not interesting because
Q2,1(E, ξ) is a polynomial ring on 2 variables.
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It is easy to check that Θn(τ) is an n-dimensional irreducible representation of Hn

under this action and that it has a basis {θα | α ∈ Zn} (which is unique up to a
common non-zero scalar multiple) of functions θα(z) = θα(z | τ) such that

S · θα = e
(
α
n

)
θα, and T · θα = θα+1.

The function θ(z | τ) is a basis for Θ1(τ) and it has simple zeros at the points of
Λτ and no other zeros. The zeros of θα therefore occur at the points α

n τ+ 1
nZ+Λτ

and each of these is a simple zero.

1.2. Definition of Qn,k(η | τ). Fix again (n ≥ 3, k, η, τ). Let V be a complex
vector space with basis {xα | α ∈ Zn} and let R(z) = Rη(z) = Rn,k,η,τ (z) :
V ⊗2 → V ⊗2

(4) Rη(z)(xi⊗xj) :=
θ0(−z) . . . θn−1(−z)

θ1(0) . . . θn−1(0)

∑

r∈Zn

θj−i+r(k−1)(−z + η)

θj−i−r(−z)θkr(η)
xj−r⊗xi+r

for all (i, j) ∈ Z2
n. The family of linear operators R(z), z ∈ C, satisfies the quan-

tum Yang-Baxter equation (QYBE) with spectral parameter. The family Rη(z) is
Belavin’s elliptic solution to the quantum Yang-Baxter equation [3].

Given the description of the zeros of the θα’s, Rn,k,η,τ (z) is not defined when
η ∈ 1

nΛτ so assume for a moment that η /∈ 1
nΛτ ; the term θj−i−r(−z) in the

denominator of (4) is sometimes zero, but the numerator before the Σ sign was
chosen so as to cancel the θj−i−r(−z) term, thereby ensuring that the singularities
in Rn,k,η,τ (z) are removable; thus, Rη(z) makes sense for all z ∈ C when η /∈ 1

nΛτ .
A finer analysis shows that one can define Rn,k,η,τ for all η ∈ C and so make sense
of the operators Rn,k,η,τ (z) for all η and z.

We now define, for all (n, k, η, τ),

Qn,k(η | τ) :=
C〈x0, . . . , xn−1〉

(image of R(η))
:=

TV

(image of R(η))
.

Because Qn,k(η | τ) is defined by homogeneous relations of degree two it has a qua-
dratic dual which we denote by Qn,k(η | τ)!. By Theorem 1.3 below, Qn,k(η | τ) is
usually (conjecturally, always) a Koszul algebra with Hilbert series (1−t)−n which
implies that the Hilbert series of Qn,k(η | τ)! is (1 + t)n. The finite dimensional
algebras Qn,k(η | τ)! have a rich representation theory (see [16] for example).

Feigin and Odesskii observed that Hn acts as C-algebra automorphisms via

S · xα = e
(
α
n

)
xα and T · xα = xα+1.

The Hn-modules V and Θn(τ) are isomorphic via xα ←→ θα. Thus, it makes
sense to identify the degree-one component of Qn,k(η | τ) with Θn(τ). The map ϕ
in (2) therefore gives a natural embedding Eτ → P(V ∗).2

2Translation by a point ζ ∈ Eτ [n] extends to an automorphism of P(V ∗) and these are the
same automorphisms as those coming from the projective action of Hn/〈ǫ〉 on P(V ∗); on Eτ , S

acts as translation by 1

n
and T acts as translation by 1

n
τ .



Interactions between Algebraic Geometry and Noncommutative Algebra 1287

1.3. Definition of Qn,k(E, ξ). Fix a complex elliptic curve E and a translation
automorphism ξ : E → E.

The group SL(2,Z) acts on C×H via
(
a b
c d

)
· (η | τ) =

(
η

cτ + d

∣∣∣∣
aτ + b

cτ + d

)

Theorem 1.1. [9] There are graded C-algebra isomorphisms

Qn,k(η | τ) ∼= Qn,k

(
η

cτ + d

∣∣∣∣
aτ + b

cτ + d

)
.

Choose any point (η | τ) ∈ C×H such that there is an isomorphism ψ : Eτ → E
with the property that ψ(η + Λτ ) = ξ; such a point (η | τ) exists. Another point
(η′ | τ ′) “has the same property” if and only if (η′ | τ ′) = γ · (η | τ) for some γ ∈
SL(2,Z). It therefore follows from Theorem 1.1 that the definition

Qn,k(E, ξ) := Qn,k(η | τ)

defines Qn,k(E, ξ) up to isomorphism of N-graded C-algebras.

1.4. Properties of Qn,k(E, ξ). When k = 1, Feigin and Odesskii gave an alter-
native geometric description of the relations for Qn,k(E, ξ) (see [4, §3.2.5] and [13,
§2(a)]). Tate and Van den Bergh used this description to define algebrasQn,1(E, ξ)
for elliptic curves E over any field [20].

It would be good to have an analogous geometric description of the relations
when k > 1. This might allow us to use Tate and Van den Bergh’s notion of a
basis of I-type for Qn,k(E, ξ), which was the key tool in proving Theorem 1.2,
when k ≥ 2 and so prove the next theorem for all k. (See [1] and [12] for some of
the terminology.)

Theorem 1.2. [20] The algebra A = Qn,1(E, ξ) is a noetherian domain which is
Koszul and has Hilbert series equal to (1− t)−n. It is a finitely generated module
over its center⇔ ξ has finite order. Moreover it is Artin-Schelter regular, satisfies
the Auslander condition, is Cohen-Macaulay and a maximal order;

We expect Theorem 1.2 is true for all Qn,k(E, ξ), but can only prove a slightly
sharper version of the next result (which is, of course, over C).

Theorem 1.3. [7] Assume ξ ∈ E is not a torsion point. The algebra Qn,k(E, ξ) is
Koszul with Hilbert series (1− t)−n. It is a Frobenius algebra for almost all ξ ∈ E.

2. The characteristic variety of Qn,k(E, ξ)

2.1. Representation theory of a connected graded algebra. Let k be an
algebraically closed field and A = k⊕A1⊕A2⊕ · · · a finitely presented connected
graded k-algebra that is generated by A1. If x1, . . . , xn is a basis for A1, then A =
k〈x1, . . . , xn〉/(f1, . . . , fr) for certain homogeneous elements fi in the free algebra.
Clearly, d × d matrix solutions to the system of equations f1 = · · · = fr = 0 are
the same things as d-dimensional A-modules and, since the fi’s are homogeneous,
if (M1, . . . ,Mn) is such a solution, then so is (λM1, . . . , λMn) for all λ ∈ k×. For
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that reason we consider the category Gr(A) of graded left A-modules. As one
notes in the context of projective algebraic geometry, there is a trivial solution to
the system f1 = · · · = fr = 0, namely (0, . . . , 0) and, in analogy with omitting
the origin when passing from affine to projective space, one performs an algebraic
operation that “excises” the trivial solution: one defines the quotient category

QGr(A) :=
Gr(A)

Fdim(A)

where Fdim(A) denotes the full subcategory of Gr(A) consisting of those modules
that are the sum of their finite dimensional submodules or, equivalently, those
modules all of whose elements are killed by a suitably high power of the ideal A≥1

(informally, the modules supported at {0}.) When we talk about the representation
theory of A we mean the category QGr(A). If A is also commutative, then there is
an equivalence of categories QGr(A) ≡ Qcoh(X), where Qcoh(X) is the category
of quasi-coherent sheaves on the projective scheme X := Proj(A) ⊆ Pn−1 (Serre
in FAC). The simplest modules over a k-algebra are those of dimension one. The
simplest objects in Qcoh(X) are the skyscraper sheaves (they are the simple objects
in Qcoh(X)). If X = Proj(A) (where A is as above and commutative!), then the
skyscraper sheaf Ox for a point x = (α1, . . . , αn) ∈ X ⊆ Pn−1 corresponds to the
graded A-module

Mx :=
A

(αjxi − αixj | 1 ≤ i, j ≤ n)
=

A

Ax⊥
.

This module has the following properties: (1) it is generated by its degree-zero
component, and (2) dimk(Mx)i = 1 for all i ≥ 0.

Now, for any A as defined at the start of this subsection, we call a graded left
A-module M a point module if M = AM0 and dimk(Mi) = 1 for all i ≥ 0. Such a
module becomes a simple object in QGr(A) and if M and M ′ are point modules,
then M ∼= M ′ in Gr(A) if and only if M ∼= M ′ in QGr(A). Thus point modules
give “skyscraper sheaves” in QGr(A) (or “points in Projnc(A)).3

For many of the non-commutative algebras A having the “good properties”
in Theorems 1.2 and/or 1.3, there is a subvariety (not necessarily irreducible)
X ⊆ P(A∗

1) with the following property: if x ∈ X , then the module Mx := A/Ax⊥,
where x⊥ := {a ∈ A1 | a vanishes at x}, is a point module and all point modules
are of this form. (This is the case for all Qn,1(E, ξ), for example.) In that case we
call X the point variety for A.

The characteristic variety that we define below is “a large part” of the point
variety for Qn,k(E, ξ) and, conjecturally, is “often” all of it.4

3There will usually be other simple objects in QGr(A), e.g., the fat point modules in [15].
4Feigin and Odesskii thought that the characteristic variety coincided with the point variety

but that is not true for Q4,1(E, ξ) or Q8,3(E, ξ), for example.
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2.2. The integers n1, . . . , ng and the subgroup Σn/k ⊆ Aut(Eg). If n1, . . . , ng

are integers ≥ 2, we use the notation

(5) [n1, . . . , ng] = n1 −
1

n2 −
1

. . .− 1
ng

.

There are unique integers g ≥ 1 and n1, . . . , ng, all ≥ 2, such that n
k = [n1, ..., ng].

We will consider the g-fold product Eg = E× · · · ×E. Let L = OE((0)). Odesskii
and Feigin defined the invertible OEg -module

Ln/k :=
(
Ln1 ⊠ · · ·⊠ (Lng

)( g−1⊗

i=1

pr∗i,i+1P

)

where pri,i+1 : Eg → E × E is the map (z1, . . . , zg) 7→ (zi, zi+1) and P is the
Poincaré bundle OE2(∆− {0} × E − E × {0}),

The subgroup

Eg ≡ {(z1, . . . , zg+1) ∈ Eg+1 | z1 + · · ·+ zg+1 = 0} ⊆ Eg+1

is stable under the permutation action of the symmetric group Σg+1 of order
(g + 1)! on Eg+1. Let si ∈ Σg+1 be the transposition (i, i+ 1) and define

Σn/k := the subgroup generated by {si | ni = 2, 1 ≤ i ≤ g} ⊆ Σg+1.

Proposition 2.1. [5] We have dimH0(Eg,Ln/k) = n. Moreover, Ln/k is ample
and base-point free (i.e., ample and generated by its global sections). It is very
ample if and only if all ni are ≥ 3.

It follows from (1) and (2) that the complete linear system |Ln/k| provides a

morphism Eg → PH0(Eg,Ln/k)∗ ∼= Pn−1. We define the characteristic variety

(6) Xn/k := the image of |Ln/k| ⊆ PH0(Eg,Ln/k)∗ ∼= Pn−1.

Theorem 2.2. [5] Xn/k
∼= Eg/Σn/k.

One can give a more explicit description of Xn/k in terms of products of sym-
metric powers of E [8].

Theorem 2.3 (Feigin-Odesskii). Each point x ∈ Xn/k determines a point module

for Qn,k(E, ξ).5

2.3. A twisted homogeneous coordinate ring. Using the integers n1, . . . , ng,
one may define an automorphism σ : Eg → Eg that descends to an automorphism
σ′ : Xn/k → Xn/k. Let L′ denote OPn−1(1)

∣∣
Xn/k

, via (6). Following [2], we denote

by B(Xn/k, σ
′,L′) the twisted homogeneous coordinate ring associated to this data.

Theorem 2.4. [6]

5It is not clear that the point module associated to x is of the form A/Ax⊥, though it is
certainly a quotient of this.
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(1) There are graded C-algebra homomorphisms

Qn,k(E, ξ) −→ B(Xn/k, σ
′,L′n/k)

∼
−→ B(Eg , σ,Ln/k)Σn/k ⊆ B(Eg , σ,Ln/k)

that are surjective in degree one.
(2) QGr(B(Xn/k, σ

′,L′n/k)) and QGr(B(Eg , σ,Ln/k)) are equivalent to

Qcoh(Xn/k) and Qcoh(Eg), respectively.

We could show further results, in effect, that there is a closed immersion

i : Xn/k −→ Projnc
(
Qn,k(E, ξ)

)
.

Phrases like this can be made precise: see [22] and [17].

2.4. Connections with Uq(sl2). The remarks in the introduction to [13] sug-
gest a relation between a degeneration of Qn2,n−1(E, ξ) and Uq(sln). The case
n = 2, i.e., Q4,1(E, ξ) and Uq(sl2), is examined in some detail in [10]. The struc-
ture constants for Q4,1(E, ξ) = Q4,1(η | τ) (in Sklyanin’s presentation [14]) can
be expressed in terms of ratios of products of theta functions having half-integer
characteristics; if one replaces these by their limits as τ → i∞ one obtains an
algebra S, or rather a family of algebras depending on the parameter η. There
are normal degree-one elements K and K ′ in S such that KK ′ is central. It
turns out that S[(KK ′)−1]0 ∼= Uq(sl2) where q depends on η. It turns out that
there is an exact functor j∗ : QGr(S) → Mod

(
Uq(sl2)

)
having a right adjoint

j∗ : Mod
(
Uq(sl2)

)
→ QGr(S). In geometric terms, after removing the two “non-

commutative hyperplanes” {KK ′ = 0} in Propnc(S), which is a non-commutative
analogue of P3, one obtains a “noncommutative affine variety” with “coordinate
ring” Uq(sl2); there is an open immersion j : Specnc(Uq(sl2) → Propnc(S). The
remarks in [13] suggest that something like this will happen when one degenerates
Qn2,n−1(η | τ) by taking τ → i∞. We also remind the reader of Van den Bergh’s
remarkable paper [21] which establishes a translation principle for Q4,1(E, ξ) that
is analogous to that for U(sl2). It would not be surprising if there were a similar
result for Qn2,n−1(E, ξ).
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Coadjoint orbits for the Virasoro algebra

Susan J. Sierra

(joint work with Alexey V. Petukhov)

Unless otherwise referenced, all results in this extended abstract are proved in [4].
Let W = C[t, t−1]∂t be the Witt algebra of algebraic vector fields on C×, and

let Vir , the Virasoro algebra be its unique nontrivial central extension Vir =
C[t, t−1]∂t ⊕ Cz, with Lie bracket given by

[f∂t, g∂t] = (fg′ − f ′g)∂t + Res0(f ′g′′ − g′f ′′)z, z is central.

It has been known since 2013 that the universal enveloping algebras of these
Lie algebras have badly behaved one-sided structure:

Theorem 1 ([5]). U(W ) and thus U(Vir) are neither left or right noetherian.
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(This theorem was first proved by relating U(W ) to a graded domain of cubic
growth which was known, through the (partial) classification of noncommutative
projective surfaces, to be non-noetherian.)

However, two-sided structures of these enveloping algebras appear more
tractable. As a shadow of this, we study Poisson ideals (under the Kostant–
Kirillov Poisson bracket) in their symmetric algebras. Concretely, we write

Vir = C · (z, {ei : i ∈ Z}),

where ei = ti+1∂t. Then we have S(Vir) = C[z, {ei}], with Poisson bracket

{z,−} = 0, {ei, ej} = (j − i)ei+j + δi,−j
i3 − i

12
z.

Standard algebraic geometry on MSpecS(Vir) is difficult, as maximal ideals
correspond to elements of the uncountable-dimensional vector space Vir∗ via the
extended Nullstellensatz:

χ ∈ Vir∗ ↔ mχ = {f : f(χ) = 0}.

It turns out, however, that Poisson geometry on MSpecS(Vir) has much more
structure. Here recall that a two-sided ideal I ⊳ S(Vir) is a Poisson ideal, written
I ⊳P S(Vir), if I is a Lie ideal for the Poisson bracket:

{I, S(Vir)} ⊆ I.

Poisson ideals in S(Vir ) are well-behaved in important ways. For example:

Proposition 2 ([3]). S(Vir) satisfies ACC on radical Poisson ideals.

Theorem 3 ([2]). Let λ ∈ C and let I ⊳P S(Vir) be a Poisson ideal which strictly
contains (z − λ). Then S(Vir )/I has polynomial growth: that is, finite Gelfand–
Kirillov dimension.

A moral corollary of these two results is that if P is a prime Poison ideal of
S(Vir) which strictly contains some (z − λ), then

V (P ) ⊆MSpecS(Vir) = Vir∗

is a finite-dimensional variety, and one can hope to do algebraic geometry on V (P ).
We are particularly interested in V (P ) where P is a so-called Poisson primitive

ideal of S(Vir): that is, there is some χ ∈ Vir∗ so that P is the maximal Poisson
ideal contained in mχ. We write P = PCore(mχ) for this situation.

Recall that if G is an algebraic group with g = Lie(G), and χ ∈ g∗, then
PCore(mχ) ⊳P S(g) is the defining ideal of the coadjoint orbit G · χ in g∗ =
MSpecS(g). Further, η ∈ G · χ if and only if PCore(mη) = PCore(mχ). Al-
though Vir famously has no adjoint group, we are motivated by this classical
relationship to define:

Definition. Let χ ∈ Vir∗.The pseudo-orbit of χ is

O(χ) := {η ∈ Vir∗ : PCore(mη) = PCore(mχ)}.

There are then two natural questions:
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Question.

(1) Classify the Poisson primitive ideals PCore(mχ).
(2) Given χ, compute O(χ).

We are able to do both. In particular, a sub-question of Question (1) is:

Question. (1a) For which χ ∈ Vir∗ does PCore(mχ) % (z − χ(z))?

The answer to Question (1a) involves local functions, where χ ∈ Vir∗ is local if
χ is a sum of functions of the form:

χx;α0,...,αn : z 7→ 0, f∂t 7→ α0f(x) + · · ·+ αnf
(n)(x).

One of our main results is:

Theorem 4. χ ∈ Vir∗ is local if and only if PCore(mχ) 6= (z − χ(z)).
In particular, if λ ∈ C× then S(Vir)/(z − λ) is Poisson simple.

To prove this theorem, we also consider local functions on W (under the obvious
definition), and show

Proposition 5. For χ ∈W ∗, the following are equivalent:

(a) χ is local;
(b) dimW · χ <∞;
(c) There is 0 6= h ∈ C[t, t−1] so that Wχ ⊇ hW , where Wχ is the isotropy

subalgebra of χ;
(d) PCore(mχ) is nontrivial.

From this result, we can deduce:

Corollary 6. Let g be a Lie subalgebra of W of finite codimension. Then g

contains some nontrivial hW .

Corollary 7. If g is a Lie subalgebra of Vir of finite codimension, then z ∈ [g, g].

Corollary 7 and Theorem 3 allow us to conclude that if χ ∈ Vir∗ is such that
PCore(mχ) 6= (z−χ(z)), then χ(z) = 0, reducing the characterisation in Theorem 4
to that in Proposition 5.

We are further able to show that for a local function χ ∈ Vir∗, the pseudo-orbit
O(χ) is isomorphic to the orbit of a finite-dimensional algebraic group on an affine
variety. We use this to explicitly describe O(χ). We also give a parameterisa-
tion of Poisson prime ideals in S(W ) = S(Vir)/(z). (Recall that by Theorem 4,
S(Vir)/(z − λ) is Poisson simple for λ 6= 0.) Open questions include:

Question.

(A) The containment relations among Poisson primitive ideals.
(B) If λ 6= 0, is U(Vir )/(z − λ) simple?
(C) Does U(Vir) satisfy the ascending chain condition on two-sided ideals?

As moral evidence towards Question (B), consider the following recent result:
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Theorem 8 ([1]). Let g be a finite-dimensional simple complex Lie algebra (for

example, g = sl2), and let L̂g be the unique nontrivial central extension of the loop

algebra of g. If λ 6= 0 then U(L̂g)/(z − λ) is simple.

As representations of L̂g and of Vir are linked through the Sugawara construc-

tion, and L̂g is significantly more commutative than Vir , it is difficult to believe
that Theorem 8 is compatible with a negative answer to Question B.
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Spaces of quasi-invariants of compact Lie groups

Yuri Berest

(joint work with Ajay C. Ramadoss)

Quasi-invariants are natural geometric generalizations of invariant polynomials of
finite reflection groups. In the case of Coxeter groups, they first appeared in math-
ematical physics in the early 1990s (see [5]), and since then have found applications
in other areas: most notably, representation theory, noncommutative algebra and
combinatorics (see, e.g., [8], [7], [2], [1]). For general pseudoreflection groups,
quasi-invariants were introduced in [1]. This last paper extended the results of [2]
linking quasi-invariants to representation theory of Cherednik algebras.

The goal of this work (see [3]) is to realize the algebras of quasi-invariants topo-
logically: as (equivariant) cohomology rings of certain spaces naturally attached to
compact connected Lie groups. Our main result is a generalization of a well-known
theorem of A. Borel [4] that realizes the algebra of invariant polynomials of a Weyl
group W as the cohomology ring of the classifying space BG of the corresponding
Lie group G:

(1) H∗(BG,Q) ∼= H∗(BT,Q)W ,

where BT is the classifying space of the maximal torus T in G. Replacing coho-
mology with equivariant K-theory gives a multiplicative (exponential) analogues
of quasi-invariants, and in fact, quasi-invariants can be defined for an arbitrary
(complex oriented) generalized cohomology theory.

We first recall the algebraic definition of quasi-invariants. Let W be a Coxeter
group acting in its complexified reflection representation V . Denote by A := {Hα}
the set of reflection hyperplanes of W in V and write sα ∈W for the reflection in
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Hα. For each Hα ∈ A, fix a linear form αH ∈ V ∗ such that Hα = Ker(αH) and
choose a non-negative integer mα ∈ Z+ to be referred to as a multiplicity of Hα.
The group W acts naturally on A and we assume that mα = mα′ whenever Hα

and Hα′ are in the same W -orbit in A: thus, we define a W -invariant function
m : A → Z+ by Hα 7→ mα. Now, following [5] (see also [2]), we call a polynomial
p ∈ C[V ] a W -quasi-invariant of multiplicity m if it satisfies

(2) sα(p) ≡ p mod 〈αH〉
2mα , ∀α ∈ A ,

where 〈αH〉 is the principal ideal in C[V ] generated by the form αH . We write
Qm(W ) for the space of all W -quasi-invariants in C[V ] of multiplicity m. It is
easy to see that Qm(W ) is a f.g. graded subalgebra of C[V ] containing C[V ]W

and stable under the action of W . A much deeper fact (proved in [8] for rank two
groups and [7] and [2] in general) is that Qm(W ) is a free module over C[V ]W of
rank |W | for all m. For m = 0, this is a well-known theorem due to Chevalley.

Now, let’s turn to topology. It is a general consequence of Quillen’s rational
homotopy theory [9] that every reduced, locally finite, graded commutative algebra
A defined over a field k of characteristic zero is topologically realizable, i.e. A ∼=
H∗(X, k) for some (simply-connected) space X . Thus, if we put on C[V ] the
cohomological grading (deg(v) = 2 for all v ∈ V ), then the natural question: “For
which values of m is the algebra Qm(W ) ⊆ C[V ] realizable?” has an immediate
answer: for all m. A more interesting question is whether we can realize the family
of algebras Qm(W ) together with additional structure that these algebras possess.
To make this precise denote by M(W ) := Z+[A/W ] the set of all W -invariant
multiplicity functions m : A → Z+ and put on this set the natural partial order:

m′ ≥ m
def
⇐⇒ m′

α ≥ mα , ∀α ∈ A .

Then the algebras Qm(W ) (with fixed W but varying ‘m’) form a contravariant
diagram on the poset M(W ), i.e. a functor M(W )op → CommAlgC with values in
(graded) commutative algebras that we can visualize as a filtration

(3) C[V ] = Q0(W ) ⊇ . . . ⊇ Qm(W ) ⊇ Qm′(W ) ⊇ . . . ⊇ C[V ]W

If we apply ‘Spec’ to (3), we get a diagram of W -equivariant affine schemes
Vm(W ) := Spec [Qm(W )] (called the varieties of quasi-invariants) over M(W ):

(4) V = V0(W )→ . . .→ Vm(W )
πm,m′

−−−−→ Vm′(W )→ . . .

that has many nice geometric properties (see [2]). We would like to realize the
diagrams (3) and (4) topologically, modeling geometric properties of schemes in
(4) by homotopy-theoretic properties of classifying spaces of compact Lie groups.
To make it precise we state our realization problem axiomatically.

Problem. Given a compact connected Lie group G with maximal torus T ⊆ G
and associated Weyl group W = WG(T ), construct a diagram of spaces Xm(G, T )
over the poset M(W ):

(5) BT = X0(G, T )→ . . .→ Xm(G, T )
πm,m′

−−−−→ Xm′(G, T )→ . . .

together with natural maps pm : Xm(G, T )→ BG (one for each m), such that
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(P1) Each Xm(G, T ) is a W -space (i.e., a CW complex equipped with an action
of W ), and all maps are W -equivariant. The map p0 : X0(G, T ) → BG
coincides with the canonical map p : BT → BG, and for all m′ ≥ m , we
have pm′ ◦ πm,m′ = pm . Thus, (5) is a diagram of W -spaces over BG.

(P2) The diagram (5) ‘converges’ to BG in the sense that the maps pm induce
a weak homotopy equivalence of spaces:

hocolimM(W )[Xm(G, T )]
∼
→ BG .

(P3) Each map pm : Xm(G, T ) → BG factors (naturally in m) through
the fibre inclusion into the space Xm(G, T )hW of homotopy W -orbits in
Xm(G, T ), inducing algebra isomorphisms for all m ∈ M(W ):

H∗
W (Xm, Q) ∼= H∗(BG, Q)

(P4) Each map πm,m′ in (5) induces an injective homomorphism on cohomology
so that the Borel map (1) factors into a M(W )op-diagram (filtration) of
algebra maps

H∗(BT,Q) ←֓ . . . ←֓ H∗(Xm,Q)
π∗

m,m′

←֓ H∗(Xm′ ,Q) ←֓ . . . ←֓ H∗(BG,Q)

(P5) With natural identification H∗(BT,Q) = Q[V ] (where V = H2(BT,Q)),
the maps π∗

0,m : H∗(Xm,Q) →֒ H∗(BT,Q) in (P4) induce isomorphisms

H∗(Xm,Q)⊗ C ∼= Qm(W )

where Qm(W ) are the subalgebras of W -quasi-invariants in C[V ].

Note that (P4) and (P5) show that the diagram of spaces (5) provides a topo-
logical realization for the diagram of algebras (3). The first three properties are
natural homotopy-theoretic analogues of properties of the diagram of varieties (4).

Now, the main result of our work can be encapsulated into the following

Theorem ([3]). For any compact connected Lie group G, there exists a diagram
of spaces Xm(G, T ) satisfying all properties (P1)–(P5) listed above, with (P4) and
(P5) holding (at least) for even-dimensional cohomology.

We expect that axioms (P1)-(P5) characterize the spaces Xm(G, T ) uniquely, up
to (rational) homotopy equivalence (i.e. the above realization problem has a unique
solution for any Lie group G). Most interesting perhaps is the fact that Xm(G, T )
can be constructed functorially in a purely homotopy-theoretic way (using the
so-called ‘fibre-cofibre’ construction due to T. Ganea). A generalization of this
construction allows us to define analogues of the spaces Xm(G, T ) for some non-
Coxeter (p-adic) pseudoreflection groups, in which case the compact Lie groups
are replaced by the p-compact groups a.k.a. homotopy Lie groups (see [6]).
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groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115–207.
[5] O. A. Chalykh and A. P. Veselov, Commutative rings of partial differential operators and

Lie algebras, Comm. Math. Phys. 126 (1990), 597–611.
[6] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite

loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395–442.
[7] P. Etingof and V. Ginzburg, On m-quasi-invariants of a Coxeter group, Mosc. Math. J.

2(3) (2002), 555–566.
[8] M. Feigin and A. P. Veselov, Quasi-invariants of Coxeter groups and m-harmonic polyno-

mials, Int. Math. Res. Not. 10 (2002), 521–545.
[9] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295

Representations of cohomological Hall algebras via stable pairs

Francesco Sala

(joint work with Duiliu-Emanuel Diaconescu and Mauro Porta)

Let A be an abelian category and denote by MA the corresponding moduli stack
of objects. Under certain conditions on A, the stackMA is an Artin stack locally
of finite type over C parametrizing families of flat objects in A. In particular,
its groupoid of C-points MA(C) coincides with the groupoid of objects of A.
Similarly, we can consider the moduli stack Mext

A parametrizing families of short
exact sequences in A and form the diagram

MA ×MA Mext
A MA

p q
(1)

where p and q map 0→ E1 → E → E2 → 0 to (E1, E2) and E, respectively.
The map q is representable by proper schemes. Assume that p is “sufficiently

well behaved”, then passing to (an oriented1) Borel–Moore homology yields a
product map

q∗ ◦ p
∗ : HBM

∗ (MA)⊗ HBM
∗ (MA) −→ HBM

∗ (MA) ,(2)

which can after been proven to be associative. We refer to the above multiplicative
structure as a “cohomological Hall algebra” attached to A.

Examples of cohomological Hall algebras are those associated to finite-dimen-
sional representations of a quiver (cf. [KS11]), finite-dimensional representations
of the preprojective algebra of a quiver (cf. [SV20] and references therein), prop-
erly supported coherent sheaves on a smooth surface (cf. [KV19] and references
therein), Higgs sheaves on a smooth projective curve (cf. [SS20] and references
therein), etc.

In [PS19], in the curve and surface cases, we defined suitable natural derived
enhancements RMA and RMext

A of the moduli stacks MA and Mext
A , such that

1Examples of oriented Borel–Moore homology theories are the G0-theory (i.e., the
Grothendieck group of coherent sheaves), Chow groups, elliptic cohomology.
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p is derived lci. Thus, the derived enhancement of the convolution diagram (1)
induces a E1-monoidal structure

©⋆Hall : Coh
b(RMA)⊗ Cohb(RMA) −→ Cohb(RMA)(3)

on the dg-category of complexes of sheaves with bounded coherent cohomology on
RMA. We call this monoidal dg-category the categorified Hall algebra of A.

Two-dimensional cohomological Hall algebras represent a geometrical approach
to the construction of Yangians, i.e., certain quantizations of the universal envelop-
ing algebra of the current algebra of a Lie algebra. A different approach to the
geometric realization of Yangians is due to Maulik–Okounkov, which developed
the theory of stable envelopes associated to any symplectic variety. Applying this
theory to Nakajima quiver varieties of a quiver Q, they produced a R-matrix, and
then, thanks to the RTT formalism, they defined an associative algebra, which is
the Yangian of a graded Lie algebra associated to Q (whose degree zero part is
the usual Kac–Moody algebra of Q). In [SV17], the authors established a relation
between Maulik–Okounkov approach and the cohomological Hall algebra of the
preprojective algebra of Q: one of the key points is that the latter acts on the
cohomology of Nakajima quiver varieties of Q.

To apply Maulik–Okounkov formalism of stable envelope to other cases (such
as the “surface case”) and establish a relation to the corresponding cohomological
Hall algebra, a first step consists of providing a representation of the latter to
the cohomology of certain moduli space. In addition, the searched moduli space
should have a symplectic structure and a proper map to a singular (affine) space,
so that it could be interpreted as a “surface analog” of a Nakajima quiver variety.
Let S be a smooth projective irreducible complex surface. In this case, a candidate
is the moduli space of Pandharipande–Thomas stable pairs.

A stable pair is a pair consisting of a pure one-dimensional sheaf F on S and
a section s : OS → F with zero-dimensional cokernel. Let P(S) be the moduli
space of stable pairs on S. One can define a natural derived enhancement RP(S)
of P(S). One of the main results of [DPS] is the following:

Theorem ([DPS]). Assume that

(1) H0(S, ωS ⊗ OS(−C)) = 0 for any non-zero effective divisor C; or

(2) H0(S, ωS) = 0.

Then, Cohbpro(RP(S)) is a right categorical module over the categorified Hall algebra

of the category of torsion sheaves on S. In particular, G0(P(S)) and HBM
∗ (P(S))

are right modules of the K-theoretical and cohomological Hall algebras of the cate-
gory of torsion sheaves on S, respectively.

The derived moduli space RP(S) has a natural 0-shifted symplectic structure.
Moreover, the classical stack P(S) has a Hilbert–Chow map to the Chow variety
of S, sending the underlying one-dimensional sheaf of a stable pair to its funda-
mental one-cycle. Thus, although P(S) has some of the geometrical properties of
a Nakajima quiver variety, one cannot apply directly Maulik–Okounkov formalism
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since the classical moduli space is singular: a way to overcome this could be to
extend their theory to symplectic quasi-smooth derived schemes.

Let X be a smooth projective complex curve and let S := P(OX ⊕ ωX) be the
compactification of the cotangent space T ∗X ofX . Denote byD the compactifying
divisor. In this case, we can restrict the above action to an action of the categori-
fied (resp. K-theoretical, cohomological) Hall algebra of the category of torsion

sheaves on S, which are disjoint from D, on Cohbpro(RP(S)◦) (resp. G0(P(S)◦) and

HBM
∗ (P(S)◦)). Here, P(S)◦ is the open scheme of P(S) consisting of those stable

pairs, which are disjoint from D.
The spectral correspondence yields a correspondence between torsion sheaves

(resp. stable pairs) on S whose support is disjoint from D and Higgs sheaves (resp.
cyclic Higgs bundles) on X . Denote by Higgscyc(X) the moduli space of cyclic
Higgs bundles on X .

For example, if X = P1, via the derived McKay correspondence the moduli
space Higgscyc(P1) can be realized as a closed subscheme of a certain Nakajima
quiver variety of the affine type A1 quiver associated to a non-dominant (!) sta-
bility condition. The previous result reduces to:

Theorem ([DPS]). The stable ∞-pro-category Cohbpro(RHiggscyc(P1)) is a right
categorical module over the categorified Hall algebra of Higgs sheaves on X. In
particular, G0(Higgscyc(P1))) and HBM

∗ (Higgscyc(P1)) are right modules of the
K-theoretical and cohomological Hall algebras of Higgs sheaves on X, respectively.

This represents the first construction of a representation of a cohomological
Hall algebra related to a Nakajima quiver variety which is not (!) associated to
the dominant stability condition.

References

[DPS] D.-E. Diaconescu, M. Porta, and F. Sala, Representations of cohomological Hall algebras
via torsion pairs, in preparation.

[KV19] M. Kapranov and E. Vasserot, The cohomological Hall algebra of a surface and factor-
ization cohomology, arXiv:1901.07641, 2019.

[KS11] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge struc-
tures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5
(2011), no. 2, 231–352.

[PS19] M. Porta and F. Sala, Two-dimensional categorified Hall algebras, to appear in Journal
of the European Mathematical Society, arXiv:1903.07253, 2019.

[SS20] F. Sala and O. Schiffmann, Cohomological Hall algebra of Higgs sheaves on a curve,
Algebr. Geom. 7 (2020), no. 3, 346–376.

[SV20] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: generators,
J. Reine Angew. Math. 760 (2020), 59–132.

[SV17] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: Yangians,
arXiv:1705.07491, 2017.

http://arxiv.org/abs/1901.07641
http://arxiv.org/abs/1903.07253
http://arxiv.org/abs/1705.07491


1300 Oberwolfach Report 23/2022

Approaching symplectic/orthogonal orbit closure relations

Magdalena Boos

(joint work with Giovanni Cerulli Irelli)

The notion of a symmetric quiver was first introduced by Derksen and Weyman
[7] in 2002. Symmetric quiver representations are collected in so-called symmetric
representation varieties which are acted on by reductive groups via change of basis
[7, 10, 11]. We motivate our interest in understanding orbit closure relations, i.e.
symmetric degenerations of said actions. Our main result describes them explicitly
in case the symmetric quiver is of finite representation type.

Symmetric Representation Theory

We fix a symmetric quiver (Q, σ), that is, a finite quiver Q together with an arrow-
reversing involution σ on Q0 ∪ Q1 such that σ(Q0) = Q0 and σ(Q1) = Q1 [7].
Let I ⊂ CQ be an admissible ideal with σ(I) = I and denote by A := CQ/I the
finite-dimensional associative quotient algebra. The involution σ then induces an
isomorphism A ∼= Aop.

Let V =
⊕

i∈Q0
Vi be a Q0-graded C-vector space of dimension vector d = (di)i.

There is a natural change of basis action of the reductive group GL•(V ) :=∏
i∈Q0

GL(Vi) on the representation variety R(A, V ) ⊆
∏

α:i→j Hom(Vi, Vj). Its
orbits are in bijection with the isomorphism classes of representations in the rep-
resentation category rep(A)(d).

Let ε be 1 or −1 and fix a non-degenerate bilinear ε-form

〈 , 〉 : V × V → C

which fulfills 〈 , 〉|Vi⊕Vj = 0 unless i = σ(j). For an endomorphism f ∈ End(V ),
denote by f∗ its adjoint with respect to the form 〈 , 〉.

We define Rε(A, V ) := {M | M = −M∗} ⊆ R(A, V ) to be the subvariety of so-
called symmetric representations. The subgroup G•(V, ε) := {g | g = (g∗)−1} ⊆
GL•(V ) of graded isometries acts on Rε(A, V ) by change of basis. The following
theorem relates the orbits of both described base change actions and thus relates
representations and symmetric representations [7, 8, 4].

Theorem. Let M,N ∈ Rε(A, V ). Then

GL•(V ).M = GL•(V ).N ⇐⇒ G•(V, ε).M = G•(V, ε).N

There is a self-duality ∇ on the representation category rep(A) and every sym-
metric representation is self-dual with respect to ∇ [7]. Thus, orbits are well
understood and we focus on the description of orbit closure relations now.

Definition. For M,N ∈ R(A, V ) set M ≤deg N whenever GL•(V ).N ⊆

GL•(V ).M . Similarly, forM,N ∈ Rε(A, V ) setM ≤ε
degN whenever G•(V, ε).N ⊆

G•(V, ε).M .

Our aim is to figure out the interrelation between the partial orders ≤deg and ≤ε
deg.
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Motivation

Our motivation to study symmetric representations and their degenerations is to
a certain degree self-contained since we believe that Symmetric Representation
Theory will play a bigger role in understanding symplectic and orthogonal setups
- in a similar way as Type A Representation Theory has impact on different fields
of mathematics. However, there are two particular interests.

(1) Algebraic group actions: In Type A, for several algebraic group actions
there are associated fibre bundle translations to setups in Representation Theory.
In a similar manner, the restrictions to classical groups can then be translated to
setups in Symmetric Representation Theory. Thus, in oder to understand orbit
closure relations of said actions, we need to understand (ε)-degenerations. One
example is the conjugation action of a Borel subgroup of a classical Lie group on
the variety of 2-nilpotent matrices in its Lie algebra [5].

(2) Linear degenerations of flag varieties: In [6], Cerulli Irelli, Fang, Fei-
gin, Fourier and Reineke construct a projective GL•(V )-equivariant family Y →
R(CQ, V ), where Q is a linearly oriented Type A Dynkin quiver. The generic fibre
of this map is the complete flag variety and every other fibre is a quiver Grassman-
nian. To transfer these results to classical Lie types, the first step is to understand
orbit closure relations in the base, that is, ε-degenerations in Rε(CQ, V ).

Main result

Main Theorem. Let (Q, σ) be a quiver of finite ε-representation type. Then for
M,N ∈ Rε(V,A):

M ≤deg N ⇔M ≤ε
deg N

The proof of our Main Theorem [4] is constructive. Given two ε-representations
M,N ∈ Rε(V,A) such that M ≤deg N , it inductively provides ε-representations
M = M(0),M(1), · · · ,M(k) = N such that for every i there is a one parameter
subgroup λi(t) ∈ G•(V, ε) which fullfills limt→0 λi(t) ·M(i) = M(i+ 1).

This strategy is inspired by work of Bongartz [2]. In Type A, there is another
partial order ≤ext on R(A, V ). It is defined as the transitive closure of the relation
given by M ≤ N if there is an exact sequence 0 → L → M → V → 0 such that
U ⊕ V ∼= N . Then if M ≤ext N holds for two representations, Bongartz shows
M ≤deg N [2] by construction of an explicit one parameter subgroup which goes
to the smaller orbit in the limit. In case of a Dynkin quiver, in the same article
he proves that both orders coincide.

For ε-degenerations, in a similar way we define a partial order≤ε
ext as the transitive

closure of the relation given by M ≤ε N if there is an exact sequence 0 → L →
M → V → 0 where L→M is an isotropic embedding and M ≃ L⊕∇L⊕ L⊥/L.
Then M ≤ε

ext N implies M ≤ε
deg N [4] and the proof provides the before mentioned

one parameter subgroups.

The induction of the proof of our Main Theorem then makes use of deep Auslander-
Reiten combinatorics. The reason why the Auslander-Reiten quiver plays such big
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role, is the fact that it inherits the symmetry of the quiver deeply. In more detail,
the functor ∇ can be read off the Auslander-Reiten quiver as can be seen nicely
in the following example of the linearly oriented Dynkin quiver of type A5:

•
��❄

❄

. ~~

∇

  •

??⑧⑧

��❄
❄ •

��
.

L

??⑧⑧
f
��
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∇L

��❄
❄

•

??⑧⑧

��❄
❄ M
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❄ ∇M

∇f ??

��❄
❄ •
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❄

•

??⑧⑧
•

??⑧⑧
•

??⑧⑧
•

??⑧⑧
•

Next steps

Our next aim is to figure out symplectic and orthogonal linear degenerations of flag
varieties. Furthermore, we want to understand ε-degenerations for representation-
finite algebras with symmetries. As shown in [3], in general ≤deg and ≤ε

deg do not
coincide. We conjecture that for representation-directed algebras they do.
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Attractors of torus actions on quiver moduli

Hans Franzen

(joint work with Magdalena Boos)

The talk is based on the paper [2]. We investigate torus actions on quiver moduli.
We compute the weight spaces of the action on tangent spaces at fixed points and
determine an explicit description of the attracting sets. This allows us in special
cases to determine generic normal forms of stable representations.

Let Q be a quiver, d a dimension vector and θ : ZQ0 → Z a stability function.
Fix complex vector spaces Vi of dimension di. LetR(Q, d) =

⊕
a∈Q1

Hom(Vs(a), Vt(a)),
regarded as an affine space. It is acted upon by the algebraic group Gd =∏

i∈Q0
GL(Vi) by conjugation. We look at the GIT quotient

Mθ−st(Q, d) = R(Q, d)θ−st/Gd

and call it, following King [3], the θ-stable moduli space. If Q is acyclic and if
d and θ satisfy a certain genericity assumption, then Mθ−st(Q, d) is smooth and
projective.

Let T = C×. Choose weights wa ∈ Z for a ∈ Q1. The linear action of T on
R(Q, d) given by t.M = (twaMa) leaves the stable locus invariant and it commutes
with the Gd-action. It hence descends to an action of T on Mθ−st(Q, d). The fixed
points of this action were described by Weist [4]. He defines a covering quiver
Q(w), depending on the set w = {wa}a of weights. His result asserts that the
decomposition of the fixed point locus into connected components

Mθ−st(Q, d)T =
⊔

β

Fβ

is indexed by dimension vectors β of Q(w) which cover d, up to translation. The
fixed point component Fβ is isomorphic to the moduli space Mθ−st(Q(w), β).

Let [M ] ∈Mθ−st(Q, d)T , and let Ṁ be a lift of M to Q(w) according to Weist’s
result. The torus T acts on the tangent space T[M ](M

θ−st(Q, d)) ∼= ExtCQ(M,M).
We show that for n ∈ Z, the weight n weight space of the tangent space at [M ] is

(T[M ]M
θ−st(Q, d))n ∼= Ext1CQ(w)(Ṁ, s−n(Ṁ)).

Here, s−n is an auto-equivalence which lifts the translation action on the quiver
Q(w). As a consequence, the dimension of the weight space can be computed as
δn,0 − 〈β, s−n(β)〉Q(w).

For a lift Ṁ of M to the covering quiver, we obtain decompositions Vi =⊕
n∈ZVi,n. We define the ascending filtration Fi,∗ of Vi by Fi,n =

⊕
m≤nVi,m.

The collection F∗ = {Fi,∗}i is called the filtration associated with Ṁ . We define

RF∗
:= {N ∈ R(Q, d) | Na(Fs(a),n) ⊆ Ft(a),n+wa−1 (all a)}

uF∗
:= {x ∈ gd | xi(Fi,n) ⊆ Fi,n−1 (all i)}

[uF∗
,M ] := im

(
uF∗
→ RF∗

, x 7→ [x,M ]
)
.
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The vector spacesRF∗
and uF∗

are graded by Z>0 and [uF∗
,M ] is a graded subspace

of RF∗
. We show that if we choose a Z>0-graded complement R′ of [uF∗

,M ] inside
RF∗

, then the map

R′ → R(Q, d)θ−st →Mθ−st(Q, d)

which sends N ∈ R′ to the isomorphism class [M +N ] is well-defined and induces
an isomorphism onto the attractor of the fixed point [M ] in the Bia lynicki-Birula
decomposition [1].

Assume now that there exists a dimension vector β of Q(w) which covers d,
such that β is a real root of Q(w), the stable moduli space Mθ−st(Q(w), β) is non-
empty, and 〈β, s−m(β)〉Q(w) = 0 for all m < 0. Then, for R′ as above, the subset
{M} + R′ of R(Q, d) is a generic normal form for θ-stable representations of Q.
Such a covering dimension vector exists for example for any generalized Kronecker
quiver and dimension vectors of the form d = (2, 2r + 1).
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What do abelian categories form?

Dmitry Kaledin

The talk is based on my recent paper [1]. Its title is taken from D. Tamarkin’s pa-
per [2] where an analogous question was asked for DG-categories over a fixed field
k. The answer Tamarkin gave is essentially a 2-category of small DG-categories
over k, with all the natural higher structures. We want to do the same for abelian
categories, both in the k-linear and in the absolute context, where no base field
is fixed. Namely, for any finitely presentable abelian categories A, B, with the
full subcategories Ac ⊂ A, Bc ⊂ B of compact objects, we define an abelian
category Mor(A,B) of functors E : A → B that are continuous – that is, com-
mute with filtered colimits – and satisfy the sheaf condition for an appropriate
Grothendieck topology on Ao

c that we call “the single-ei topology” (coverings are
epimorphisms). Note that we do not require our functors to be additive! Nev-
ertheless, both conditions are obviously closed under compositions – indeed, the
sheaf condition amounts to requiring that for any injective map f : A→ B in A,
E(f) : E(A)→ E(B) is injective, and so is the natural map

E(B)⊕E(A) E(B)→ E(B ⊕A B),

where we let B ⊕A B be the cokernel of the map a ⊕ (−a) : A → B ⊕ B, and
similarly for E(B) ⊕E(A) E(B). Therefore we obtain a well-defined 2-category



Interactions between Algebraic Geometry and Noncommutative Algebra 1305

of finitely presentable abelian categories, with Mor(−,−) as the categories of 1-
morphisms. We can then define the “absolute Hochschild cohomology” HH

q

abs(C)
of a finitely presentable abelian category C as HH

q

abs(C) = Ext
q

Mor(C,C)(Id, Id), and
it is expected that these groups control deformations of C in the appropriate sense
(including in particular square-zero extensions such as Z/p2Z→ Z/pZ). If C is the
category of k-vector spaces for a perfect field k, then HH

q

(C) recovers the Mac
Lane cohomology of k.

We also explore the derived category D(Mor(A,B)) of our category of mor-
phisms. Morally, the full subcategory D+

add(Mor(A,B)) ⊂ D+(Mor(A,B)) of func-
tors additive on the derived level is an explicit purely homological model for the
category of stable functors D(A)→ D(B) (in any homotopically-enhanced sense).
While we do not prove this – that would require fixing a particular model for
homotopical enhancement, and none that exist at the moment are too appealing
– we prove the following two statements that at the end of the day, amount to
the same thing. Let C≥0(A), C≥0(B) be the categories of chain complexes in
A, B concentrated in non-negative cohomological degrees, and say that a functor
C≥0(A) → C≥0(B) is homotopical if it sends quesiisomorphisms to quasiisomor-
phisms. Then (i) a continuous functor E : A → B that is a morphism in our sense
extends to a continuous homotopical functor D(E) : C≥0(A)→ C≥0(B), uniquely
up to a pointwise quasiisomorphism, and every continuous homotopical functor
arises in this way, and (ii) D(E) descends to an additive functor on the level of
derived categories if and only if it commutes with homological shifts, thus extends
to all complexes bounded from below.
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Noncommutative Surfaces and Stacky Surfaces

Colin Ingalls

(joint work with Eleonore Faber, Shinnosuke Okawa, Matthew Satriano)

We first recall some well known examples that relate categories of modules with
categories of coherent sheaves on stacks. The first two follow immediately from
definitions.

Example 1. Let k be a field and let G be an algebraic group over k. The classifying
stack BG = [Speck/G] is the stacky quotient of Speck by G. Let kG be the group
algebra. Then there is an equivalence of monoidal categories of finitely generated
modules and coherent sheaves mod kG ≃ cohBG since both are equivalent to the
category of representations of G.

Example 2. Let X be a scheme with an action by a finite group G. We define
the skew group algebra OX ⋊ G =

⊕
g∈GOXg with multiplication (xg)(yg) =
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(xg(y))(gh) for x, y ∈ OX and g, h ∈ G. Let X = [X/G] be the quotient stack.
Then the monoidal categories modOX ⋊G ≃ coh[X/G] are both equivalent to the
category of G-equivariant coherent sheaves on X

This example (partially described in [2]) is not immediate, but is well known.

Example 3. Let A be an Azumaya algebra over a scheme X. Then

A ∈ H1(X,PGLn)→ H2(X,µn)

gives rise to a µn-gerbe X over X. Let coh(i)X be the category coherent sheaves on
X where µn acts by the character χ(z) = zi. There is an equivalence of categories

modA ≃ coh(1)X

and an equivalence of monoidal categories

mod

n−1∏

i=0

A⊗i ≃ cohX .

Alain Connes defined a convolution algebra of a groupoid of topological spaces
by using integration on fibres. In the algebraic setting, we can consider a groupoid
of schemes where the source and target maps s, t : R ⇒ U of the groupoid are
finite and flat. Let X = [U/R] be the quotient stack. In this case [1], we have
the convolution algebra O∨

R = Hom(s∗OR,OU ) and an equivalence of monoidal
categories modO∨

R ≃ cohX . We are interested in understanding which noncom-
mutative algebras are convolution algebras of finite flat groupoids.

Let X be an integral scheme over a base field k. An order A over OX is a
sheaf of OX -central algebras that is coherent and torsion free as a sheaf such that
A⊗X k(X) is simple algebra. We say that A is tame if it is reflexive and hereditary
in codimension one. If the inclusion of sheaves OX → A is split, we say that A is
split. The following is our main result. This was previously known locally in [3,
Section 5], and in dimension one [1]. Below we sketch the proof.

Theorem 1. Let k be an algebraicaly closed field of characteristic ≥ 7. Let X be
a projective surface over k. Let A be a tame split order with centre OX of global
dimension two. Then there is a tame algebraic stack X with generic stablizer µn

and coarse moduli space X such that modA ≃ coh(1)X .

Proof. We first follow [3] and we define the graded algebra Ar := ⊕i∈Zω
⊗i
A . Let

Xr = [SpecXZ(Ar)/Gm] whic is the root stack on the discriminant. Then Ar

is a Gorenstein order on X and is Azumaya in codimension one. Furthermore
modAr ≃ modA. Next we take the canonical stack π : Xc → Xr and pullback
Ac = π∗Ar. Now Ac is an Azumaya algebra and again we have modAc ≃ modAr.

Lastly, we let X be a µn-gerbe over Xr to obtain modAc ≃ coh(i) X . �
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