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Introduction by the Organizers

The mathematical treatment of high dimensional statistical problems has been
at the core of recent research in Statistics, Machine Learning and Artificial In-
telligence. The last several decades have seen both positive and negative results
that made it evident that statistical inference in very high dimensions, possibly
larger than the size of the observed samples, is reliable and practical only for data
that implicitly or explicitly are generated from probability models that exhibit low
dimensional structure.

Understanding the nature of this structure has been and continues to be an
area of active investigation. The last two decades showed the crucial role played
by sparsity in generative models, and lead to the growth of a sub-area devoted to
the understanding of restricted (regularized) statistical estimators. The last few
years have seen a more intense focus on other structures, chiefly low dimensional
latent generative structures, broadly defined. The interplay between the ways in
which various simpler structures can explain phenomena in high dimensions lead to
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new impactful mathematical developments that require re-visiting and re-thinking
existing paradigms in mathematical statistics.

The workshop talks and discussions tackled several new challenges and open
problems. The statistical aspects of neural networks and deep learning are not
well understood, and this has led to the study of over-parameterized models in
high dimensional statistical problems. This includes principal component analysis,
classification and regression problems under the (sometimes implicit) assumption
on the existence of a lower dimensional latent generative model. While latent
models have been studied and applied for years, their behavior and effect on anal-
yses is only well understood in low dimensions. Connecting them with modern
Machine Learning and Artificial Intelligence challenges, as well as studying them
in high dimensions requires a re-thinking of existing proof techniques, while also
opening new avenues for research. Other important trends include non-asymptotic
approaches to robustness in high dimensions and methods of online learning, in
particular, via developing novel bandit algorithms as well as sampling techniques.
Contributions to all these directions were provided at the workshop. The talks
given at the workshop can be, at a high level, subdivided into the following groups.

• Structured high-dimensional inference and learning: The talks by Boaz Nadler,
Jaouad Mourtada, Sara van de Geer, Nicolas Verzelen, Mathias Drton, Marten
Wegkamp, Olga Klopp, Corinne Emmenegger, Martin Wahl. A particular focus
on tensor models was provided in the talks by Ming Yuan and Cun-Hui Zhang.

• Deep learning: The talks by Peter Bartlett, Andrea Montanari, Helmut Bölcskei.

• Bandit algorithms: The talks by Solenne Gaucher, Karim Lounici, Alexandra
Carpentier.

• Robustness: The talks by Arnak Dalalyan and Mohamed Ndaoud.

• Sampling techniques and stochastic optimization: The talks by Richard Nickl,
Arya Akhavan, Vladimir Spokoiny, Kevin Jamieson, Evgenii Chzhen.

• Other topics: The talks by Philippe Rigollet (statistical optimal transport),
Angelika Rohde (testing in diffusion models), Johannes Schmidt-Hieber (foun-
dations of inference), László Györfi (classification in metric spaces).
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Abstracts

On sampling high-dimensional non-log concave posterior measures

Richard Nickl

The problem of efficiently generating random samples from high-dimensional and
non-log-concave posterior measures arising from nonlinear regression problems is
considered. Extending investigations from [2], local and global stability properties
of the model are identified under which such posterior distributions can be approx-
imated in Wasserstein distance by suitable log-concave measures. This allows the
use of fast gradient based sampling algorithms, for which convergence guarantees
are established that scale polynomially in all relevant quantities (assuming ‘warm’
initialisation). Applications to a variety of PDE models are discussed, such as
non-Abelian X-ray transforms [1] or elliptic diffusion or Schrödinger equations.

References

[1] F. Monard, R. Nickl, G.P. Paternain, Consistent inversion of non-Abelian X-ray transforms.
Comm. Pure Appl. Math. (2021).

[2] R. Nickl, S. Wang, On polynomial-time computation of high-dimensional posterior measures
by Langevin-type algorithms, J.Eur.Math.Soc. (2022), to appear.

[3] J. Bohr, R. Nickl, On log-concave approximations of high-dimensional posterior measures
and stability properties in non-linear inverse problems, arXiv (2021).

Completing large matrices with only few observed entries: A one-line
algorithm with provable guarantees

Boaz Nadler

(joint work with Pini Zilber)

Suppose you observe very few entries from a large matrix. Can we predict the
missing entries, say assuming the matrix is (approximately) low rank ? In [1] we
describe a very simple and computationally efficient method to solve this non-
convex matrix completion problem. Our approach, denoted GNMR, is factoriza-
tion based and relies on a Gauss-Newton linearization of the quadratic objective.
In details, given a current guess of the two factor matrices U0 and V0, at each iter-
ation GNMR searches for an update U1 = U0 + ∆U, V1 = V0 + ∆V by minimizing
the following objective

min
∆U,∆V

‖PΩ(U0V
⊤
0 + U0∆V ⊤ + ∆UV T

0 )− PΩ(X∗)‖F .

Here X∗ is the true underlying matrix, Ω is the subset of observed entries and PΩ

is the projection of a matrix onto the set of indices Ω. In the above objective, the
non-convex quadratic term ∆U∆V ⊤ has been neglected. Hence, at each iteration
GNMR solves a simple least squares problem. On the empirical front, we show
that GNMR is able to recover matrices from very few entries and/or with ill con-
ditioned matrices, where many other popular methods fail. Furthermore, due to
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its simplicity, it is easy to extend our method to incorporate additional knowledge
on the underlying matrix, for example to solve the inductive matrix completion
problem [2]. On the theoretical front, we prove that GNMR enjoys some of the
strongest available theoretical recovery guarantees. Specifically, near the global
optimum its convergence rate is quadratic. To derive these theoretical results we
develop a sharp RIP-like guarantee for matrix completion. This theorem, in par-
ticular, implies a uniform RIP for the difference between two incoherent matrices,
provided they are sufficiently close to each other. This settles an open question
posed in [3]. Finally, for inductive matrix completion, we prove that under suitable
conditions the recovery problem itself has a benign optimization landscape with
no bad local minima.

Our work also raises several open questions and challenges. For example, com-
paring the empirical results of our method with the theoretical recovery guarantees
highlights that there exist a significant gap. Specifically, nearly all available guar-
antees, including ours, scale at least quadratically with the condition number of
the underlying matrix. In contrast, empirically our method shows little sensitivity
to the condition number and successfully recovers highly ill conditioned matrices
from few observations. Deriving guarantees for factorization based methods that
close this gap is an interesting question for future research.

References

[1] P. Zilber and B. Nadler, GNMR: A Provable One-Line Algorithm for Low Rank Matrix
Recovery, SIAM Journal on the Mathematics of Data (2022), to appear.

[2] P. Zilber and B. Nadler, Inductive Matrix Completion: No Bad Local Minima and a Fast
Algorithm, International Conference on Machine Learning (ICML), 2022.

[3] M.A. Davenport and J. Romberg, An overview of low-rank matrix recovery from incomplete
observations, IEEE Journal on Selected Topics in Signal Processing 10 (2016), 608–622.

Coding convex bodies under Gaussian noise, and the Wills functional

Jaouad Mourtada

In sequential probability assignment, one aims to assign a large probability to a
sequence of observations (unknown a priori), close to that of the best a posteriori
distribution within a prescribed model. This prediction problem is intimately
connected to that of lossless coding in information theory.

In this work, we study the case of a sequence of real-valued observations, mod-
eled by a subset of the Gaussian sequence model with mean constrained to a
general convex body. This can be thought of as an information-theoretic analogue
of fixed-design regression. We show that the minimax-optimal error is exactly
given by a certain functional of the constraint set from convex geometry called the
Wills functional. As a consequence, we express the optimal error in terms of basic
geometric quantities associated to the convex body, namely its intrinsic volumes.
After comparing the optimal error to the Gaussian width of the constraint set, and
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to fixed points of local Gaussian widths, we state a fundamental concavity prop-
erty of the error, and deduce some strong monotonicity properties with respect to
noise and sample size.

References

[1] J. Mourtada, Coding convex bodies under Gaussian noise, and the Wills functional, In
preparation, 2022.

Sample complexity of entropic optimal transport

Philippe Rigollet

(joint work with Austin J. Stromme)

Fueled by recent computational advances, optimal transport (OT) techniques have
become preponderant in a variety of statistical applications. Given two measures
µ and ν on R

d and a cost function c : R
d × R

d → [0,∞), the OT problem of
interest here is the infinite dimensional linear optimization problem given by

(1) inf
π∈Π(µ,ν)

∫
‖x− y‖2dπ(x, y) ,

where the infimum is taken over the set Π(µ, ν) of couplings between µ and ν
and ‖ · ‖ denotes the Euclidean norm. Recall that π ∈ Π(µ, ν) is a valid coupling
between µ and ν if π is a probability measure on R

d × R
d, such that for any

measurable A ⊂ R
d, it holds that π(A × R

d) = µ(A) and π(Rd × A) = ν(A). We
assume further that µ and ν have bounded support. Under these conditions, (1)
admits a unique minimizer π0, called the OT coupling. Furthermore, Brenier’s
theorem states that under mild regularity conditions on µ, the OT coupling π0 is
supported on the graph of a deterministic map T called the Brenier map. In other
words, (X,Y ) ∼ π0 if and only if X ∼ µ and Y = T (X) ∼ ν.

The OT coupling and the Brenier map have a dynamical interpretation in terms
of energy minimization that has fueled a conceptual shift from the traditional sta-
tistical toolbox in many areas including statistics, economics, computer graphics,
computational biology, and machine learning. Indeed, a central application of op-
timal transport is transfer learning, where the goal is to transfer information from
one dataset to another using the Brenier map which, in turn needs to be estimated
from data.

Unfortunately, a long line of work has provided strong evidence that the OT
coupling suffers from a statistical curse of dimensionality. Indeed, without further
assumption, the minimax rate for estimating the OT cost is at least n−2/d and a
similar rate is conjectured to hold for the problem of estimating the Brenier map T .
While recent theoretical effort has been devoted to showing that this inefficiency
can be alleviated by making structural assumptions—chiefly smoothness—on the
transport map, finding computationally efficient and smoothness-adaptive estima-
tors is a challenging and ongoing research topic.
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In this talk, we presented an alternative to the OT coupling that we call the
Schrödinger coupling. It arises as the solution to the entropically regularized OT
problem given by, for η > 0,

(2) S(µ, ν) = inf
π∈Π(µ,ν)

{∫
‖x− y‖2dπ(x, y) +

1

η
KL(π‖µ⊗ ν)

}
,

where KL denotes the Kullback-Leibler divergence. Under our conditions, the
Schrödinger coupling exists and is unique and denoted π⋆. This regularized prob-
lem dates back to early work of Schrödinger and recently has largely eclipsed the
OT coupling in applications because it offers significant computational advantages.
Like the OT coupling, the Schrödinger coupling also arises from a minimum energy
paradigm in the context of stochastic control and is also justified in the aforemen-
tioned applications even for a fixed η, say η = 1. While it does not give the Brenier
map, it produces a map, called the entropic regression function, and defined by
x 7→ E[Y |X = x] where (X,Y ) ∼ π⋆. This map is just as useful as the Brenier
map in applications. However, unlike the latter, a key finding of this work is that
estimation of the entropic regression function does not suffer from the curse of
dimensionality.

More specifically, we focused on the estimation of the Schrödinger coupling
and quantities that are derived from it. To that end, assume that we observe
X1, . . . , Xn ∼ µ i.i.d., and Y1, . . . , Yn ∼ ν i.i.d. The corresponding empirical mea-
sures are denoted µn and νn respectively and we consider the optimization problem
associated to computing S(µn, νn). In particular, this plug-in version of the prob-
lem outputs a coupling of µn and νn from which estimators of various quantities
of interest, including the entropic regression function, can be computed. Crucially
these estimators escape the curse of dimensionality and, instead, converge at a fast,
parametric rate. Our proofs use an elementary approach to bypass the control of
suprema of empirical processes, and may be of independent interest.

Re-thinking logistic regression

Sara van de Geer

Theoretical results for the logistic regression model typically assume that the ob-
served binary label has probabilities staying away from zero. We study a situation
where this assumption is violated, which is the case where the the noise level is
low. There may even be no noise at all, which is often assumed in the literature
on 1-bit compressed sensing.

Consider a feature vector x ∈ R
s and a vector of regression coefficients β∗ ∈

Ss−1
2 := {b ∈ R

s : ‖b‖2 = 1}, with s logn ≪ n and let y ∈ {±1} be the sign of
xβ∗ + σζ where the noise ζ ∼ N(0, 1) is independent of x and 0 < σ ≤ 1. Then
1/σ is the signal-to-noise level, since only the ratio of signal strength and noise
level is identified.

We observe n i.i.d. copies {(Xi, Yi)}ni=1 of (x,y). With feature vector x ∈ R
s

and label y ∈ {±1} the logistic loss function is lc(x, y) := log(1 + e−yxc). We
examine the estimator γ̂ := arg minc∈Rs

∑n
i=1 lc(Xi, Yi).
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Let β̂ := γ̂/‖γ̂‖2. We show that for the case of Gaussian design, the rate of con-

vergence for ‖β̂− β∗‖2 is of order
√
σs log n/n when σ is of larger order s logn/n.

For the case where σ is of order s logn/n we obtain a rate of order s logn/n for

‖β̂ − β∗‖2 where β̂ = γ̂/‖γ̂‖2 is now the logistic regression estimator with the
constraint that ‖γ̂‖2 is bounded by a large constant. Empirical risk minimization
with {0, 1} loss l{sign(xc) 6= y} has the rate (σ2s logn/n)1/3 ∨ s logn/n. Thus,
with Gaussian design, logistic regression appears to have a faster rate.

Estimator loss function ‖β̂ − β∗‖2

ERM l{sign(xc) 6= y}
(

σ2s logn
n

) 1
3

∨ s logn
n

logistic regression log(1 + e−xc)

(
σs logn

n

) 1
2

∨ s logn
n

linear −yxc+ ‖c‖22
(

s
n

) 1
2

hybrid −yxb+ |xb|
(

σs logn
n

) 1
2

∨ s logn
n

Table 1. Rates of convergence for various estimators β̂ of β∗.
The noise is assumed to be N(0, σ2)-distributed and independent
of the features. The result for ERM follows from [1]. The hybrid
estimator faces the norm constraint ‖b‖2 = 1.

After the reparamatrization c 7→ (τ, b), where τ = ‖c‖2 ∈ R+ is the “signal
strength” and b := c/‖c‖2 ∈ Ss−1

2 is the “direction”, one may rewrite the logistic
loss function as

lτ,b(x, y) = log(1 + e−τ |xb|) + τ |xb|l{sign(xb) 6= y}︸ ︷︷ ︸
hybrid loss

so that the logistic risk is
n∑

i=1

lτ,b(Xi, Yi) =

n∑

i=1

log(1 + e−τ |Xib|) +

n∑

i=1

τ |Xib|l{sign(Xib) 6= Yi}.

The first term induces a normalization, whereas the second term promotes
a small number of misclassifications. Note that in the noiseless case, one can
interpolate the signs by taking b = β∗: sign(Xiβ

∗) = Yi for all i ∈ {1, . . . , n}.
Then the second term is zero and then the first term is minimized by taking
τ →∞. In other words, then the logistic regression estimator does not exist. For
very small noise, one can interpolate with a probability staying away from zero.
Therefore, when there is no noise or very small noise, one needs to restrict the
estimator or add a penalty term.

We show that for σ > 0, the score for estimating τ∗ := ‖γ∗‖2 is orthogonal to
the score for estimating β∗. Moreover, we explain that the rate of convergence for
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estimating τ∗ is much slower than the rate for estimating β∗. This leads to using

a weighted Euclidean distance between (τ∗, β∗) and (τ̂ , β̂) where τ̂ = ‖γ̂‖2. We
show a type of sandwich formula result when σ is of larger order s logn/n: lower
bounds for the excess risk and upper bounds for the empirical process, both in
terms of the weighted Euclidean distance. For σ or order s logn/n we bound 1/τ̂

first and then derive the rate for β̂.

References

[1] P. Massart, and É. Nédélec, Risk bounds for statistical learning, The Annals of Statistics,
34 (2006) 2326–2366.

Optimal ranking in crowd-sourcing problems

Nicolas Verzelen

(joint work with Alexandra Carpentier, Emmanuel Pilliat)

We consider a crowd-sourcing problem where we have n experts and d tasks. The
average ability of each expert for each task is stored in an unknown matrixM , from
which we have incomplete and noisy observations. We make no semi-parametric
assumptions, but assume that both experts and tasks can be perfectly ordered: so
that if an expert A is better than an expert B, the ability of A is higher than that
of B for all tasks - and that the same holds for the tasks. This implies that if the
matrix M , up to permutations of its rows and columns, is bi-isotonic. We focus
on the problem of recovering the optimal ranking of the experts when the ordering
of the tasks is known to the statistician. In other words, we aim at estimating a
permutation π∗ of the rows of M such that the corresponding permuted matrix is
bi-isotonic.

This problem has attracted a lot of attention in the last years [2, 3]. Unfortu-
nately, there remains a large gap between the minimax estimation rate achieved
by exponential-time methods and the much more worse performances achieves by
known polynomial time methods. Recently, Liu and Moitra [1] have introduced
a minimax polynomial time procedure in the specific square case (n = d), where
one has polylogarithmic noisy observations of the matrix M . The purpose of this
presentation is to go beyond this specific situation.

Let us describe more formally the setting. Let M ∈ [0, 1]n×d and π∗ be a permu-
tation of [n] such that the corresponding permuted matrix Mπ∗−1 is bi-isotonic.
For an estimator π̂ of π∗, we quantify its error by the loss

l(π∗, π̂) = ‖Mπ∗−1 −Mπ̂−1‖2F .

We consider a partial observation scheme defined as follows. Given λ > 0, we
have P(λnd) observations of the form (ys, xs) where the position xs ∈ [n]× [d] is
sampled uniformly and ys = Mxs

+ Exs
is a noisy observation of Mxs

. Here, Exs

is distributed as a standard Gaussian variable.
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Our main contribution is the construction of a quadratic-time estimator π̂ achiev-
ing the risk bound

E[l(π∗, π̂)] ≤ c logc
′

(nd)

[
nd1/6

λ5/6
∧ n

3/4d1/4

λ3/4
+
n

λ

]
,

where c and c′ are numerical constants. Up to polylogarithmic multiplicative
terms, this risk bound is minimax optimal for all n, d, and all λ ∈ [1/d, 1], which
encompasses all non-trivial regimes of partial observations.

Among others, the construction of π̂ combines hierarchical clustering ideas with
spectral clustering and change-point detection methods.

References
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sourcing and rank aggregation, in Conference on Learning Theory (2020), 2780–282.
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Robust estimation of the Gaussian mean by spectral
dimension reduction

Arnak Dalalyan

(joint work with Amir-Hossein Bateni, Arshak Minasyan)

The broad goal of robust estimation is to design statistical procedures that are
not very sensitive to small changes in data or to small departures from the mod-
eling assumptions. A typical example, extensively studied in the literature, and
considered in the present work, is when the data set contains outliers. In their
vast majority, the well-established approaches of robust estimation treated the di-
mension of the parameter as a fixed and small constant. This simple setting was
convenient for mathematical analysis and for computational purposes, but some-
what disconnected from many practical situations. Furthermore, it was hiding
some fascinating phenomena that emerge only when the dimension is considered
as a parameter that might be large, in the same way as the sample size.

In particular, it turns out that under the Huber contamination, the component-
wise median is not minimax-rate optimal whereas the Tukey median is. More pre-
cisely, if a p-dimensional mean vector is to be estimated from n independent vectors
drawn from the mixture distribution (1 − ε)Np(µ,Σ) + εQ (where ε ∈ (0, 1/2) is
the rate of contamination and Q is the unknown distribution of outliers), then the
mean squared error of the componentwise median is of order p/n+ pε2 while that
of Tukey’s median is of order p/n+ ε2. Thus, as long as only statistical properties
of the estimators are considered, Tukey’s median is superior to its competitors, the
componentwise and the geometric medians. However, the componentwise and the



1390 Oberwolfach Report 25/2022

geometric medians are better than the Tukey’s median in terms of the breakdown
point and in terms of computational complexity.

This observation led to the development of a number of computationally tract-
able estimators having an error with nearly the same dependence on dimension as
that of Tukey’s median. The goal of this talk is to make a step forward by designing
an estimator which is not only nearly rate optimal and computationally tractable,
but also has a breakdown point equal to 1/2, which is the highest possible value
of the breakdown point. To construct the estimator, termed iterative spectral
dimension reduction or SDR, we combine and suitably adapt ideas from [1], [2] and
[3]. The main underlying observation is that if we remove some clear outliers and
restrict our attention to the subspace spanned by the eigenvectors of the sample
covariance matrix corresponding to small eigenvalues, then the sample mean of
the projected data points is a rate-optimal estimator. This allows us to iteratively
reduce the dimension and eventually to estimate the remaining low-dimensional
component of the mean by a standard robust estimator such as the componentwise
median or the trimmed mean.

Importantly, the SDR estimator does not require as input the rate of contami-
nation ε but only an upper bound on ε. We establish an upper bound on the error
of the SDR estimator, showing that it is nearly minimax-rate optimal and has a
breakdown point equal to 1/2. This is done in the general case of a sub-Gaussian
distribution with heterogeneous covariance matrix contaminated by adversarial
noise. We then extend this result to the case where only an approximation to the
covariance matrix is available.
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Adaptive robustness and sub-Gaussian deviations in Sparse Linear
Regression through Pivotal Double SLOPE

Mohamed Ndaoud

(joint work with Stas Minsker)

Consider the sparse linear model where some of the entries can be corrupted and
the noise heavy-tailed, i.e.

Y = Xβ∗ +
√
nθ∗ + σξ,

where β∗ and θ∗ are both sparse vectors of sparsity s and o respectively, and ξ the
noise vector.
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After deriving the minimax quadratic risk for estimation of β∗, we propose a
practical and fully adaptive procedure that is optimal. Our procedure corresponds
to solving the following pivotal estimation problem

min
β∈Rp,θ∈Rn

1√
n
‖Y −Xβ −√nθ‖+ ‖θ‖µ + ‖β‖λ,

where ‖ · ‖η corresponds to a sorted ℓ1 norm that depends on some sequence
(η)m. Our procedure is not only minimax optimal and robust but also enjoys
sub-Gaussian deviations even in the presence of heavy-tailed noise.

Identification and model selection for graphical continuous
Lyapunov models

Mathias Drton

(joint work with Philipp Dettling, Carlos Améndola, Niels Richard Hansen,
Mladen Kolar, Roser Homs Pons)

Graphical continuous Lyapunov models offer a new perspective on modeling causal-
ly interpretable dependence structure in multivariate data by treating each inde-
pendent observation as a one-time cross-sectional snapshot of a temporal pro-
cess. Specifically, the models consider multivariate Ornstein-Uhlenbeck processes
in equilibrium [1, 2]. This leads to Gaussian models in which the covariance matrix
is determined by the continuous Lyapunov equation. In this setting, each graph-
ical model assumes a sparse drift matrix with support determined by a directed
graph. In the research presented in Oberwolfach we discussed identifiability of
such sparse drift matrices as well as their ℓ1-regularized estimation.

Identifiability in graphical continuous Lyapunov models. We study the
crucial problem of parameter identifiability in the class of graphical continuous
Lyapunov models. Indeed, given a statistical model induced by a graph, it is
essential for statistical analysis to clarify if it is possible to uniquely recover the
parameters from the joint distribution of the observed variables. We show that
this question can be reduced to analyzing the rank of certain sparse matrices with
covariances as entries. Depending on the graph under consideration, the structure
of these matrices changes in subtle ways. We study identifiability for different
classes of graphs. For directed acyclic graphs, the matrices to be studied are
block upper triangular and global identifiability is easily derived. However, cyclic
graphs may also yield a globally identifiable parametrization and we prove, in our
main result, that global identifiability holds if and only if the graph is simple (i.e.,
contains at most one edge between any two nodes). We computationally classify all
graphs with up to 5 nodes, and present intriguing examples of non-simple graphs
for which the associated model has generically identifiable parameters.

In future work it will be interesting to pursue a characterization of which non-
simple graphs yield generically identifiable models. Moreover, the work we pre-
sented focused on the case where the volatility matrix of the Ornstein-Uhlenbeck
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process is known up to a multiplicative constant, and it will be interesting to
consider models in which the volatility matrix is unknown (but structured so).

On the Lasso for graphical continuous Lyapunov models. A natural ap-
proach to model selection for the considered graphical models is to use an ℓ1-
regularization approach that seeks to find a sparse approximate solution to the
Lyapunov equation when given a sample covariance matrix. We study the model
selection properties of the resulting lasso technique by applying the primal-dual
witness technique for support recovery. Our analysis uses special spectral prop-
erties of the Hessian of the considered loss function to arrive at a consistency
result. While the lasso technique is able to recover useful structure, our results
also demonstrate that the relevant irrepresentability condition may be violated in
subtle ways, preventing perfect recovery even in seemingly favorable settings.

Given the obstacles encountered with the direct application of ℓ1 regularization,
it would be interesting to consider alternative forms of regularized estimation and
theoretically explore other possible loss functions. At a more fundamental level,
it remains to develop a better understanding of whether/to which extent different
graphs may induce identical statistical models.
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Optimal discriminant analysis in high-dimensional latent factor models

Marten Wegkamp

(joint work with Xin Bing)

In high-dimensional classification problems, a commonly used approach is to first
project the high-dimensional features into a lower dimensional space, and base the
classification on the resulting lower dimensional projections. In this talk, we for-
mulate a latent-variable model with a hidden low-dimensional structure to justify
this two-step procedure. We derive minimax lower bounds for the misclassification
regret under these latent-variable models. We propose a computationally efficient
classifier that takes certain principal components (PCs) of the observed features
as projections, with the number of retained PCs selected in a data-driven way.
Next, we show that our proposed method also performs favorably relative to other
existing discriminant methods on three real data examples. A general theory is
established for analyzing such two-step classifiers based on any low-dimensional
projections. We derive explicit rates of convergence of the excess risk of the pro-
posed PC-based classifier. The obtained rates are further shown to be optimal up
to logarithmic factors in the minimax sense, only provided we modify the classifier
slightly that involves data-splitting to handle the bias due to the low-dimensional
projection. Interestingly, simulations show that there are scenarios when the rates
are suboptimal if this data-splitting device isn’t implemented. Our theory allows,
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but does not require, the lower dimension to grow with the sample size and is
also valid even when the feature dimension exceeds the sample size. We will show
simulations that corroborate our theoretical findings.

Assigning topics to documents by successive projections

Olga Klopp

(joint work with Maxim Panov, Suzanne Sigalla, Alexandre B. Tsybakov)

Assigning topics to documents is an important task in several applications. For
example, press agencies need to identify articles of interest to readers based on the
topics of articles that they have read in the past. Analogous goals are pursued by
many other text-mining applications such as, for example, recommending blogs
from among the millions of blogs available. A popular approach to the problem of
estimating hidden thematic structures in a corpus of documents is based on topic
modeling.

In this paper, we adopt the probabilistic Latent Semantic Indexing (pLSI) model
introduced in [5]. The pLSI model deals with three types of variables, namely,
documents, topics and words. Topics are latent variables, while the observed
variables are words and documents. Assume that we have a dictionary of p words
and a collection of n documents. Documents are sequences of words from the
dictionary. The number of topics is denoted by K. Usually, K ≪ min(p, n).
Throughout this paper, we assume that 2 ≤ K ≤ min(p, n). The pLSI model
assumes that the probability of occurrence of word j in a document discussing topic
k is independent of the document. Therefore, by the total probability formula,

P(word j|document i) =
K∑

k=1

P(topic k|document i)P(word j|topic k).

Introducing the notation Πij := P(word j|document i),Wik := P(topic k|document
i) and Akj := P(word j|topic k) we may write Πij = WT

i Aj , whereWi = (Wi1, . . . ,

WiK)T ∈ [0, 1]
K

is the topic probability vector for document i and Aj = (A1j , . . . ,

AKj)
T ∈ [0, 1]K is the vector of word j probabilities under topics k = 1, . . . ,K:

Π = WA,(1)

where Π is the document-word matrix of size n × p with entries Πij , W :=

(W1, . . . ,Wn)T is the document-topic matrix of size n×K and A := (A1, . . . , Ap)
is the topic-word matrix of size K × p. The rows of these matrices are probability
vectors,

K∑

m=1

Wim = 1,

p∑

j=1

Akj = 1,

p∑

j=1

Πij = 1 for any i = 1, . . . , n, k = 1, . . .K.(2)

The value Πij is the probability of occurrence of word j in document i. It is
not available but we have access to the corresponding empirical frequency Xij .
Thus, we have a document-word matrix X = (Xij) of size n×p such that for each
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document i in 1, . . . , n, and each word j in 1, . . . , p, the entry Xij is the observed
frequency of word j in document i. Let Ni denote the (non-random) number of
sampled words in document i. We can write the observation model in a “signal +
noise” form:

X = Π + Z = WA + Z,(3)

where Z := X − Π is a zero mean noise. The objective in topic modeling is
to estimate matrices A and W based on the observed frequency matrix X and
on the known N1, . . . , Nn. The recovery of A and the recovery of W address
different purposes. An estimator of matrix A identifies the topic distribution
on the dictionary. An estimator of W indicates the topics associated to each
document. Estimation of W has multiple applications and has been extensively
discussed in the literature, mainly in the Bayesian perspective. The focus was
on Latent Dirichlet Allocation (LDA) and related techniques. These methods are
computationally slow and, to the best of our knowledge, no theoretical guarantees
on their performance are available.

On the other hand, estimation of matrix A is well-studied in the theory. Several
papers provide bounds on the performance of different estimators of A. Most of
the results use the anchor word assumption postulating that for every topic there
is at least one word, which occurs only in this topic, see [2, 4, 6]. At first sight, it
seems that results on estimation of matrix A can be applied to estimation of W
by simply taking the transpose of (2) and inverting the roles of these two matrices.
However, such an argument is not valid since the resulting models are different.
Indeed, the rows of matrix XT are not independent and the rows of matrices
ΠT,AT,WT do not sum up to 1, which leads to a different statistical analysis.

In the present paper, we change the framework by focusing on estimation of
matrix W rather than A. We introduce the following assumption, the Anchor
document assumption: for each topic k = 1, . . . ,K, there exists at least one
document i (called an anchor document) such that Wik = 1 and Wil = 0 for
all l 6= k . Both anchor word and anchor document assumptions are very relevant
in real word applications. Since each document is identified with a mixture of
K topics, anchor document assumption means that, for each topic, there is a
document devoted solely to this topic.

Our approach to estimation of matrix W that we call Successive Projection
Overlapping Clustering (SPOC) is inspired by the Successive Projection Algorithm
(SPA) initially proposed for non-negative matrix factorization [1]. The idea of
such methods is to start with the singular value decomposition (SVD) of matrix
X, and launch an iterative procedure that, at each step, chooses the maximum
norm row of the matrix composed of singular vectors and then projects on the
linear subspace orthogonal to the selected row. From a geometric perspective,
the rows of the matrix composed of singular vectors of Π belong to a simplex in
R

K . The documents can be identified with some points in this simplex and the
anchor documents with its vertices. Our algorithm iteratively finds estimators of
the vertices, based on which we finally estimate W .
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Note that the idea of exploiting simplex structures for estimation of matrix A

rather than W was previously developed in, for example, [2, 6], among others.
For example, the method to estimate A suggested in [6] is based on an exhaustive
search over all size K subsets of {1, . . . , p}. Its goal is to select K vertices of a
p-dimensional simplex and its computational cost is at least of the order pK . Our
algorithm for estimating W recovers the vertices of much less complex object,
which is a K-dimensional simplex (recall that K ≪ p), and has much lower com-
putational cost. Another important point is that existing simplex-based methods
for estimation of matrix A require the number K of topics to be known. In the
present paper, we propose a procedure that is adaptive to unknown K.

Our theoretical results deal only with the problem of estimating the topic-
document matrix W , for which the theory was not developed in prior work. But
in practice, our method can be used for estimation of matrix A as well. Based
on the SPOC estimator of W , we immediately obtain an estimator of matrix A

by a computationally fast procedure. Our simulation studies indicate that this
estimator exhibits a behavior similar to LDA on average while being more stable.

We prove that the SPOC estimator of W converges in the Frobenius norm and
in the ℓ1-norm with the rates

√
n/N and n/

√
N (up to a weak factor1), respec-

tively, assuming that Ni = N for i = 1, . . . , n. We also prove lower bounds of the
order

√
n/N and n/

√
N , respectively, implying near optimality of the proposed

method. One of the conclusions, both from the theory and the numerical exper-
iments, is that the error of the SPOC algorithm does not grow significantly with
the size of the dictionary p, in contrast to what one observes for Latent Dirichlet
Allocation. We also introduce an estimator for the number K of topics, which is
usually unknown in practice. We show that SPOC algorithm using the estimator
of K preserves its optimal properties in this more challenging setting.
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Optimization and generalization in high dimensions: wide global
minima of empirical risk

Peter L. Bartlett

(joint work with Olivier Bousquet, Philip M. Long, Gabor Lugosi,
Alexander Tsigler)

We consider the impact of optimization methodology on statistical performance
in high-dimensional prediction problems, motivated by the success of deep learn-
ing. We review empirical evidence that optimization algorithms that favor wide
minima give better performance, and describe some recent analysis of one such
algorithm, sharpness-aware minimization, highlighting questions about how wide
global minima of empirical risk behave in these high-dimensional settings.

Zero order optimization of highly smooth functions

Arya Akhavan

(joint work with Evgenii Chzhen, Massimiliano Pontil, Alexandre Tsybakov)

This work studies minimization problems with zero-order noisy oracle information
under the assumption that the objective function is highly smooth and possibly
satisfies additional properties. The studied algorithm uses a gradient estimator
based on randomization on the ℓ2 sphere. The precise form that we consider is due
to [2] and it has been used for zero order optimization of strongly convex functions.
We present an improved analysis of this algorithm for the same class of functions
and we derive rates of convergence for more general function classes. In particular,
we consider functions which satisfies the Polyak- Lojasiewicz condition instead of
strong convexity, and the larger class of highly smooth non-convex functions. We
also analyse the case of quadratic, but not necessary strongly convex, functions,
establishing improved rates of convergence. The improvements are achieved by new
bounds on bias and variance for this algorithm, which is obtained via a Poincaré
type inequality for uniform distribution on ℓ2 sphere. The optimality of the upper
bounds is discussed and a slightly more general lower bound than the state-of-the
art bound in [1] is presented. These results imply that the proposed algorithm is
nearly minimax optimal.
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Double machine learning methods: Beyond independence

Corinne Emmenegger

(joint work with Peter Bühlmann, Meta-Lina Spohn)

Double machine learning is a tool to combine machine learning algorithms and
statistical models to estimate and make inference on low-dimensional parameters.
These parameter estimators converge at the parametric rate and follow a Gaussian
distribution asymptotically. We present three use cases: estimating the linear part
in a partially linear endogenous model and in a partially linear mixed-effects model
and treatment effect estimation for observational network data. For the latter, we
provide more in-depth discussions.

Double machine learning and use cases. Semiparametric methods combine
the flexibility of nonparametric approaches with ease of interpretation of para-
metric approaches. Double machine learning [1] is a tool to estimate and make
inference on a low-dimensional parameter θ0 in the presence of high- or infinite-
dimensional nuisance components η0 that satisfy some moment conditions

1

N

N∑

i=1

E[ψ(Si, θ
0, η0)] = 0,

where N denotes the number of experimental units and ψ is a suitable function
on the data Si of the experimental units. The method uses sample splitting and
cross-fitting. The data is partitioned into K many sets I1, I2, . . . , IK of approx-
imately equal size. For each k ∈ {1, 2, . . . ,K}, the nuisance components η0 are
estimated on the complement of Ik using an arbitrary machine learning algorithm
and plugged into the estimating equation for θ0. The data from Ik is then used to

build an estimator θ̂Ik of θ0 using this estimating equation. The final estimator

of θ0 averages over the θ̂Ik , and it converges at the parametric rate, N−1/2, and
follows a Gaussian distribution asymptotically, provided ψ is Neyman orthogonal
and the machine learning errors decay fast enough. Typically, these errors decay
at the rate oP (N−1/4) if the problem is smooth and sufficiently sparse. Neyman
orthogonality requires that the Gateau derivative of ψ vanishes at the true θ0 and
η0, which makes ψ insensitive to inserting biased machine learning estimators of
η0. The algorithm is called “double” machine learning because η0 consists of at
least two objects, which means that machine learning algorithms are applied at
least twice. Nonparametric components can also be estimated without sample
splitting [6], but complex machine learners do not satisfy the entropy conditions
these results require [1]. Consequently, sample splitting is essential.

This double machine learning base method can be extended to estimate the
linear parameter in a partially linear endogenous model [2] or in a partially lin-
ear mixed-effects model [3] or to estimate the treatment effect from interacting
units [4]. First, if endogeneity is present, so-called two-stage least squares is fre-
quently applied, but it often outputs a large standard error. The regularization
scheme proposed in [2] reduces the standard error and thus the confidence interval
length, leading to preciser results. Second, mixed-effects models are frequently
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used in clinical trials because they account for the correlation from observing
the same patients repeatedly. Third, causal inference methods for treatment ef-
fect estimation usually assume independent experimental units. However, this
assumption is often questionable because experimental units may interact. The
vaccination (treatment) of a person not only influences this person’s health status
(outcome), but can also protect the health status of other people the person is
interacting with. Ignoring interactions may yield biased estimators and invalid
inference and contributes to the replication crisis. Subsequently, we describe our
solution presented in [4] in more detail.

Treatment effect estimation from observational network data. For a
dichotomous Bernoulli treatment Wi ∈ {0, 1} and a continuous outcome Yi for
units i = 1, 2, . . . , N , our goal is to estimate and make inference for the expected
average treatment effect (EATE)

θ0N =
1

N

N∑

i=1

E

[
Y

do(Wi=1)
i − Y do(Wi=0)

i

]
,

where we use the do-notation of [8]. The EATE measures how, on average, the
outcome Yi of unit i is causally affected by its own treatment Wi in the presence
of so-called spillover effects from other units. We consider a structural equation
model as a data generating mechanism. The data on the unit level comes from
sequentially evaluating the structured equations

Ci ← εCi

Wi ← h0(Ci, Zi) + εWi

Yi ← Wig
0
1(Ci, Xi) + (1−Wi)g

0
0(Ci, Xi) + εYi

,

where Zi and Xi are user-specified features that capture spillover effects. The
variables Ci are observed confounders. The εCi

as well as the εYi
are i.i.d.,

and the endogenous error terms εWi
are independent across units and satisfy

E[εWi
|Ci, Zi] = 0 within units. This approach can be extended to discrete re-

sponses [4]. Interactions among the units are encoded by the edges of a network,
which is an undirected graph on the units. Spillover effects are along network
paths. The Zi features account for spillover from other units’ confounders, and
the Xi features account for spillover from other units’ confounders and treatment
assignments. For example, the user may choose as Xi the average number of
treated neighbors and/or treated neighbors of neighbors of a unit.

We use the estimating equation

θ0N = 1
N

∑N
i=1 E

[
g01(Ci, Xi)− g00(Ci, Xi)

+ Wi

h0(Ci,Zi)

(
Yi − g01(Ci, Xi)

)
− 1−Wi

1−h0(Ci,Zi)

(
Yi − g00(Ci, Xi)

)]

for the EATE, which reminds us of augmented inverse probability weighting. The
two summands in the second line above serve as a “bias correction” for biased
machine learning estimators of η0 = (g01 , g

0
0 , h

0) because they make the underly-
ing ψ-function Neyman orthogonal. Sample splitting and cross-fitting are used
to estimate the EATE. The propensity function h0 and the two functions g01 and
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g00 characterizing the outcome model are estimated using machine learning algo-
rithms. In each of the K steps, the data used to estimate these functions needs
to be independent from the data used to compute θ0N from its estimating equa-
tion. Consequently, unit-level data points Si = (Wi, Ci, Xi, Zi, Yi) that are not
independent from the data in Ik are removed to estimate η0. The number of such
removed data points depends on how far-reaching the Z- and X-features are. The
resulting estimator of θ0N converges at the parametric rate, N−1/2, and follows a
Gaussian distribution asymptotically. The underlying network cannot be arbitrar-
ily complex, but it can become more dense as the number of units increases. The
simulation study in [4] demonstrates the effectiveness of our method. Approaches
that cannot correctly account for the correlation structure induced by the network
yield biased results and invalid confidence intervals, whereas our method does not.

Other authors either uniformly limit the number of edges in the network, con-
sider spillover from direct neighbors only, estimate densities, and assume a semi-
parametric model [7]; they do not incorporate observed confounding variables and
consider spillover from the average of treated neighbors [5]; or they assume the
network consists of multiple independent groups. We leverage all of these short-
comings at once: we perform entirely nonparametric regressions with arbitrary
machine learning algorithms, include observed confounding variables, and allow
the units to interact beyond direct neighborhoods in a general and increasingly
complex network.
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The price of unfairness in linear bandits with biased feedback

Solenne Gaucher

(joint work with Alexandra Carpentier and Christophe Giraud)

Artificial intelligence is increasingly used in a wide range of decision making sce-
narii with higher and higher stakes. Recent works have shown that the decisions
made by algorithms can be dangerously biased against certain categories of people,
and have endeavored to mitigate this behavior. This work addresses the problem
of online decision making under biased feedback. In the present talk, we consider a
variant of the linear bandit problem, where the agent only has access to an unfair
assessment of the action taken, that is systematically biased against a group of
actions. For example, examiners may be prejudiced against people from a minority
group, and give them lower grades; similarly, algorithms trained on biased data
may produce unfair assessments of the credit risk of individuals belonging to a
minority group. The problem of sequential decision making under biased feedback
can be formalized as follows.

Biased linear bandit problem. A player is presented with a set of k distinct
actions characterized by covariates x ∈ X ⊂ R

d, and by known sensitive attributes
zx ∈ {−1, 1} indicating the group of the action. At each round t ≤ T , the player
chooses the action xt and receives an unobserved reward x⊤t γ

∗, where γ∗ ∈ R
d is

the regression parameter specifying the true value of the action. The regret of the
player is given by

RT = E

[∑

t≤T

(x∗ − xt)⊤γ∗
]
, where x∗ ∈ arg max

x∈X
x⊤γ∗.

By contrast to the classical linear bandit, the player does not observe a noisy
version of the unbiased reward x⊤t γ

∗. Instead, she observes an unfair evaluation
yt of the value of the action x⊤t γ

∗, given by the following biased linear model:

yt = x⊤t γ
∗ + zxt

ω∗ + ξt

where ξt
i.i.d∼ N (0, 1) is a noise term. The evaluation are systematically biased

against a certain group: this unequal treatment of the groups is captured by the
bias parameter ω∗ ∈ R.

In the following, we assume that all covariates x ∈ X are distinct, which implies
that the group zx of action x is well defined. We also assume that no group is

empty, that the set {
(

x
zx

)
: x ∈ X} spans R

d+1 (which guarantees identifiability

of the parameters), and that the rewards are bounded: maxx∈X |x⊤γ∗| ≤ 1.

Preliminary discussion. The biased linear bandit is a variant of the classical
linear bandit, where the agent observes a noisy version of the reward. Obviously,
applying directly an algorithm designed for linear bandit to biased linear bandits
without correcting the evaluations could lead to a linear regret if the evaluation
mechanism is prejudiced against the group of the best action in terms of reward.
To avoid this pitfall, one must estimate the bias in order to correct the evaluations.
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This implies a change in the exploration-exploitation trade-off, as exploration be-
comes more expensive. Indeed, in classical bandit problems, one can compare the
rewards of two actions by repeatedly sampling them - or, to put it differently, one
can find the best action by sampling only those actions that seem optimal. This
does not hold in the biased linear bandit: if, at some point, the set of potentially
optimal actions contains representatives from both groups, and does not span R

d,
one is forced to sample sub-optimal actions to estimate the bias and improve the
estimation of the unbiased rewards. This underlines the necessity to ensure suffi-
cient estimation of the bias parameter, even when it implies sampling sub-optimal
actions.

Worst case regret of the biased linear bandit. The following theorem charac-
terizes the worst-case regret of the biased linear bandit. Before stating it, we intro-

duce further notations : we write κ∗ = min
π∈PX

ed+1

e⊤d+1

(∑
x π(x)

(
x
zx

)(
x
zx

)⊤)+

ed+1,

where ed+1 denotes the d+1-th vector of the canonical basis in R
d+1, M+ denotes

any generalized inverse of a matrix M , and PX
ed+1

denotes the set of probability

measures π on X such that ed+1 ∈ Span
{(

x
zx

)
: π(x) > 0

}
.

Theorem 1 ([1]). There exists a numerical constant C > 0 such that the following
bound on the regret of the Fair Phased Elimination algorithm [1] holds

RT ≤ Cκ1/3∗ T 2/3 log(T )1/3

for T ≥ Tκ∗,k,d, where Tκ∗,k,d is a constant depending on k, d and κ∗.

Lower bounds established in [1] show that the upper bound obtained in Theo-
rem 1 is sharp in some settings, up to the sub-logarithmic factor log(T )1/3. These

results show that the worst-case regret grows as Cκ
1/3
∗ T 2/3 log (T )

1/3
. This worst-

case regret rate is higher than the typical rate Cd log(T )T 1/2 obtained under un-
biased feedback on the rewards. This increase in the regret corresponds to the
cost of learning from unfair evaluations. It is due to the fact that the algorithm
may need to sample actions that are sub-optimal in order to estimate the bias

parameter. Note that this rate Õ(T 2/3) is typical for globally observable bandit
problems with partial linear monitoring[2].

By contrast to previous results, Theorem 1 characterizes precisely the depen-
dence of the worst-case regret on the geometry of the action set. The relevant
constant κ∗ is the minimal variance for estimating the bias, which appears when
considering the related c-optimal design problem. The constant κ∗ corresponds to
the minimum number of samples required for estimating the bias with a variance
equal to 1 (up to rounding issues). Intuitively, if the actions are very correlated
with their sensitive attributes, more samples will be needed to estimate the bias
with the same precision. This situation corresponds to cases where κ∗ is large, and
leads to a higher regret. The following Lemma relates κ∗ to the margin between
the two groups of actions.
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Lemma ([1]). κ∗ is the largest constant κ ≥ 0 such that, there exists an hyperplane
H containing zero and separating the two groups, and such that, the margin to H

is at least
√
κ−1√
κ+1

times the maximum distance of all points to the hyperplane H.

When no such hyperplane exists, then κ∗ = 1.

Gap-dependent regret of the biased linear bandit. We characterize the
worst-case regret of the biased linear bandit. Before stating our results, let us
introduce further notations. We denote by ∆x = (x∗ − x)⊤γ∗ the instantaneous
regret (or gap) of action x ∈ X , by ∆ = (∆x)x∈X the vector of gaps, and for any
δ > 0, by ∆ ∨ δ = (∆x ∨ δ)x∈X . We write

κ(∆) = min
µ∈Med+1

X

∑
x µ(x)∆x such that e⊤d+1

(∑
x π(x)

(
x
zx

)(
x
zx

)⊤)+

ed+1 ≤ 1.

whereMX
ed+1

denotes the measures on X such that ed+1 ∈ Span
{(

x
zx

)
: π(x) > 0

}
.

Theorem 2 ([1]). Assume that x∗ ∈ arg maxx∈X x
⊤γ∗ is unique. Then, there

exists a numerical constant C > 0 such that the following bound on the regret of
the Fair Phased Elimination algorithm [1] holds

RT ≤ C
(

d

∆min
∨ κ

(
∆ ∨∆6= ∨ εT

)

∆2
6=

)
log(T ) for T ≥ Tk,d,∆min

where ∆min = minx∈X\x∗ ∆x, ∆6= = minx∈X :zx=−zx∗ ∆x, εT = (κ∗ log(T )
T )1/3, and

Tk,d,∆min
depends on k, d and ∆min.

Lower bounds established in [1] show that the upper bound obtained in Theorem

2 is sharp in some settings up to a numerical constant. The term d
∆min
∨κ(∆∨∆ 6=∨εT )

∆2
6=

highlights the two sources of difficulty of the problem. On the one hand, the term
d log(T )
∆min

corresponds to the gap-dependent regret of a classical d-dimensional linear

bandit. By contrast, the term
κ(∆∨∆ 6=∨εT )

∆2
6=

is characteristic of the biased linear

bandit problem. When d
∆min

≤ κ(∆∨∆ 6=∨εT )

∆2
6=

, the regret corresponds to the regret of

this bias estimation phase. In other words, when both groups contain near-optimal
actions, the difficulty of the problem is dominated by the price to pay for debiasing

the unfair evaluations. Interestingly, when d
∆min

>
κ(∆∨∆ 6=∨εT )

∆2
6=

, the difficulty of

the linear bandit with systematic bias is dominated by that of the classical d-linear
bandit. In this case, the algorithm is able to find the group containing the best
action, and the problem reduces to a linear bandit in dimension d.
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Tensor PCA in high dimensional CP models

Cun-Hui Zhang

(joint work with Yuefeng Han)

The CP decomposition for high-dimensional non-orthogonal spiked tensors is an
important problem with broad applications across many disciplines. However, pre-
vious works with theoretical guarantees typically assume restrictive incoherence
conditions on the basis vectors for the CP components. In [2], we have proposed
and studied composite PCA (CPCA) and iterative concurrent orthogonalization
(ICO) algorithms for tensor CP decomposition with theoretical guarantees under
much milder incoherence conditions. The CPCA applies the principal component
or singular value decompositions twice, first to a matrix unfolding of the tensor
data to obtain singular vectors and then to the matrix folding of the singular vec-
tors obtained in the first step. It can be used as an initialization for any iterative
optimization schemes for the tensor CP decomposition. The ICO iteratively es-
timates the basis vectors in each mode of the tensor by simultaneously applying
projections to the orthogonal complements of the spaces generated by other CP
components in other modes. It is designed to improve the alternating least squares
(ALS) estimator and other forms of the high order orthogonal iteration for tensors
with low or moderately high CP ranks, and it is guaranteed to converge rapidly
when the error of any given initial estimator is bounded by a small constant. Both
algorithms are applicable to deterministic tensor, its noisy version, and the order-
2K covariance tensor of order-K tensor data in a factor model with uncorrelated
factors.

Tensor CP factor models. In the tensor CP factor model, we observe d1×· · ·×
dK tensors Xi, 1 ≤ i ≤ n, of the following form

Xi =

r∑

j=1

wjfijaj1 ⊗ aj2 ⊗ · · · ⊗ ajK + Ei,

where ⊗ denotes tensor product, fij are i.i.d N(0, 1), wj > 0 represent signal
strength, ajk ∈ R

dk are basis vectors with ‖ajk‖2 = 1 for all 1 ≤ j ≤ r, 1 ≤ k ≤ K,
and Ei are i.i.d. noise tensors each with i.i.d N(0, σ2) entries.

The covariance operator of the data, a tensor of order 2K, can be written as

T =
1

n

n∑

i=1

Xi ⊗Xi =
r∑

j=1

λj ⊗K
k=1 a

⊗2
jk + Ψ,

where λj = w2
j and Ψ is a random tensor with E[Ψ] = σ2Id. This is a spiked

covariance tensor model as it is analogous to the spiked covariance matrix model
in the study of matrix PCA in high dimensions [3]. However, here ajk, 1 ≤ j ≤ r,
are not assumed orthogonal given mode k. The problem is to estimate λj and
ajka

⊤
jk. We note that ajk is identifiable only up to ±ajk.

Among the most promising existing methods, [1] proposed to use clustering of
power iterations of rank-1 random projections of T to obtain initial estimates of
ajk and the ALS to improve them. However, such methods require restrictive
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incoherence conditions on each CP tensor basis, e.g. ϑmax ≤ polylog(dmin)/
√
dmin

for 3-way tensors [1] where

ϑmax = max
1≤k≤K

ϑk, ϑk = max
1≤i<j≤r

|a⊤ikajk|.

Our idea is to develop new methodologies to take advantages of the multiplicative
nature of the co-linearity of the CP components. Let

δmax = max
1≤k≤K

δk, δk =
∥∥A⊤

k Ak − Ir
∥∥
S
,

with the mode-k basis matrix Ak = (a1k, . . . , ark) ∈ R
dk×r. If we vectorize the

data points Xi, we would have a spiked covariance matrix

mat[K]

(
T
)

=
1

n

n∑

i=1

vec(Xi)vec(Xi)
⊤ =

r∑

j=1

λja
⊗2
j + mat[K]

(
Ψ
)
,

with aj = vec
(
⊗K

k=1 ajk
)
. While A = (a1, . . . , ar) is still not orthonormal, aj are

much less co-linear than their counterparts in the individual modes.

Proposition 1. Let ϑ = max1≤i<j≤r |a⊤i aj| and δ =
∥∥A⊤A− Ir

∥∥
S
. Then,

ϑ ≤
K∏

k=1

ϑk, δ ≤
(

(r − 1)ϑ

)
∧
(

min
k≤K

δk

)
∧
( ∏

k≤K

δk

)
.

When δ is small, aj are not far from the j-th eigenvector of E
[
mat[K]

(
T
)]

.

Proposition 2. There exists an orthonormal matrix U ∈ R
d×r such that ‖AΛA⊤−

UΛU⊤‖S ≤ δ‖Λ‖S for all nonnegative-definite matrices Λ in R
r×r.

CPCA and ICO algorithms. In the tensor factor model, the CPCA and ICO
algorithms are given in Tables 2 and 3 respectively.

Table 2. CPCA for pairwise symmetric tensors

Input: T = n−1
∑n

i=1Xi ⊗Xi, CP rank r

Formulate T to be a d× d matrix mat[K](T ) with d =
∏K

k=1 dk
Compute {λ̂cpca

j , ûj} = PCAj

(
mat[K](T )

)

Compute âcpca
jk = LSVD1

(
matk(ûj)

)
∈ R

dk

Output: â
cpca
jk , λ̂

cpca
j , j = 1, ..., r, k = 1, ...,K

Here in CPCA, ûj is the j-th eigenvector of the d × d matrix mat[K](T ), ûj
is then reformatted into a dk × (d/dk) matrix matk(ûj), and âcpca

jk is the leading

left-singular vector of matk(ûj). According to Proposition 3 below, the second
step of the CPCA is an contraction when the angular error of the first step is
no more than 45 degrees. Thus, by Propositions 1 and 2, the error of CPCA is
controlled by the much smaller, multiplicative incoherence measures ϑ and δ.

Proposition 3. In the CPCA given in Table 2,
(
‖âcpca

jk (âcpca
jk )⊤ − ajka⊤jk‖2S

)
∧ (1/2) ≤ ‖ûjû⊤j − aja⊤j ‖2S.
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Table 3. ICO for pairwise symmetric tensors

Input: T = n−1
∑n

i=1Xi ⊗Xi, r, warm-start â
(0)
jk , ǫ > 0, M ≥ 1, m = 0

Compute (̂b
(1)
1k , ..., b̂

(1)
rk ) =

(
(â

(0)
1k , . . . , â

(0)
rk )⊤

)† ∈ R
dk×r

Repeat
Set m = m+ 1
For k = 1 to K

For j = 1 to r

Compute T
(m)
jk = T ×l∈[2K]\{k,K+k} (̂b

(m)
jl )⊤, b

(m)
j,K+l = b

(m)
jl

Compute â
(m)
jk = LPCA1T

(m)
jk ∈ R

dk

End For

Compute (̂b
(m)
1k , ..., b̂

(m)
rk ) =

(
(â

(m)
1k , ..., â

(m)
rk )⊤

)† ∈ R
dk×r

Set (̂b
(m+1)
1k , ..., b̂

(m+1)
rk ) = (̂b

(m)
1k , ..., b̂

(m)
rk )

End For

Until m = M or maxj,k ‖â(m)
jk â

(m)⊤
jk − â(m−1)

jk â
(m−1)⊤
jk ‖S ≤ ǫ

Output: âico
jk = â

(m)
jk , λ̂ico

j = T ×2K
k=1 (̂b

(m)
jk )⊤, j = 1, ..., r, k = 1, ...,K

The ICO also takes advantage of the multiplicative nature of the CP basis,
compared with ALS.

Proposition 4. When the ICO in Table 3 is applied to T =
∑r

j=1 λj ⊗r
k=1 a

⊗2
jk

in the case of σ = 0 and n =∞, for some numeric constant C0

∥∥ânew
jk ânew⊤

jk − ajka⊤jk
∥∥
S
≤ C0 max

jk

∥∥âold
jk â

old⊤
jk − ajka⊤jk

∥∥2(K−1)

S

Theoretical properties. Suppose λ1 ≥ · · · ≥ λr > 0. We summarize theoretical
properties of CPCA and ICO in the tensor CP factor model as follows.

Theorem 1. Suppose σ = 0 and n =∞. The CPCA gives

∣∣ sin θ
(
â

cpca
jk , ajk

)∣∣ =

√
1−

(
a⊤jkâ

cpca
jk

)2
≤
(

1 +
2λ1
λgap

)
δ =: ψ0,

with λgap = minj≤r{λj − λj+1}. When 3(λ1/λr)ψ
2K−3
0 ≤ ρ < 1 with the CPCA

initialization, the ICO gives√
1−

(
a⊤jk â

(m)
jk

)2
≤ ψ0 ρ

γmK−1

K =: ψm,

and ψm ≤ ǫ within m = ⌈1 + K−1(log γK)−1 log(log(ψ0/ǫ)/ log(1/ρ))⌉ iterations
for a certain constant γK ∈ [2, 3).

Theorem 2. Let τ ∈ [0, d]. With probability at least 1− e−τ , the CPCA gives
√

1−
(
a⊤jkâ

cpca
jk

)2
≤
(

1 +
2λ1
λgap

)
δ

︸ ︷︷ ︸
bias

+C

(
λ1
λgap

)(
R(0) +

√
τ/n

)

︸ ︷︷ ︸
stochastic error
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with R(0) =
√

(reff/n)(1 + 1/SNR)(1 + (reff/d)/SNR), a constant C and

SNR =
E
∥∥∑r

j=1 wjftj ⊗K
k=1 ajk

∥∥2
HS

E‖Et‖2HS

=

∑r
j=1 λj

σ2d
=
reffλ1
σ2d

.

Theorem 3. Suppose ψ0 = (δ + R(0))λ1/λgap < c0/
√
r where c0 is a small con-

stant. After at most O(log log(ψ0/ψideal)) ICO iterations, with probability at least
1− T−K −∑k e

−dk , the ICO with CPCA initialization gives

√
1−

(
â ico⊤
jk ajk

)2
≤ CK



√
σ2dmax

λrn
+
σ2

λr

√
dmax

n


 =: ψideal,

for all 1 ≤ j ≤ r and tensor mode k ≤ K, where CK depends on K only.

Low-rank tensor denoising. In [2] we have also extended the CPCA and ICO
algorithms and Theorems 1, 2 and 3 to the estimation of λj and ajk in the following
asymmetric noisy tensor CP model:

T =

r∑

j=1

λj ⊗N
k=1 ajk + Ψ ∈ R

d1×···×dN ,(1)

where λj > 0, ‖aj,k‖2 = 1 and E[Ψ] = 0. Again, ajk, 1 ≤ j ≤ r, are allowed to
have moderate correlations.
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From high-dimensional projection pursuit to interpolation in
neural networks

Andrea Montanari

(joint work with Kangjie Zhou)

Given a cloud of n data points in R
d, consider all projections onto m-dimensional

subspaces of R
d and, for each such projection, the empirical distribution of the

projected points. What does this collection of probability distributions look like
when n, d grow large? We consider this question under the null model in which the
points are i.i.d. standard Gaussian vectors, focusing on the asymptotic regime in
which n, d→∞, with n/d→ α ∈ (0,∞), while m is fixed. Denoting by Fm,α the
set of probability distributions in R

m that arise as low-dimensional projections in
this limit, we establish several new results on this model:
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Wasserstein radius for m = 1: Denoting by W2(P1, P2) the second
Wasserstein distance between probability measures P1 and P2, we prove
that sup{W2(P,N(0, 1)) : P ∈ F1,α} = 1/

√
α.

KL-Wasserstein outer bound: We show that, for any m, Fm,α is con-
tained in a W2 neighborhood of the set of distributions P such that
DKL(P‖N(0, Im)) ≤ Cmα−1(1 ∨ logα), with DKL the Kullback-Leibler
divergence.

Information dimension bound: Denoting by d(P ) the lower information
dimension of P , we prove that Fm,α is contained in {P : d(P ) ≥ m(1 −
1/α)} for α > 1.

The previous question has application to unsupervised learning methods, such as
projection pursuit and independent component analysis. We introduce a version
of the same problem that is relevant for supervised learning, where the labels
depend on k-dimensional projections of the covariates through a link function ϕ,
and present the following results:

General ERM asymptotics: We consider a class of empirical risk mini-
mization problems over functions f : Rd → R of the form f(x) = h(W⊤x),
and show that the asymptotics of the minimum empirical risk can be ex-
pressed in terms of the feasibility set Fϕ

m,α.

Wasserstein bound for m = 1: We prove an outer bound on F
ϕ
1,α for gen-

eral k = O(1), which generalizes the Wasserstein radius result obtained in
the unsupervised setting. In fact, this outer bound characterizes the max-
imum W2 distance between the empirical distribution of one-dimensional
projections and the expected distribution.

Interpolation for two-layer networks: As a corollary to the previous re-
sult, we prove that a neural network with two-layers and m hidden neu-
rons can separate n data points in d dimensions with margin κ only if
md ≥ Cκ2n. Earlier bounds only required md ≥ Cn/ log(d/κ).

Margin distributions for linear classifier: We demonstrate the tightness
of our W2 bound by deriving the asymptotic distribution of the margins
in linear max-margin classification.
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Perturbation bounds for (nearly) orthogonally decomposable Tensors
with statistical applications

Ming Yuan

(joint work with Arnab Auddy)

We develop deterministic perturbation bounds for singular values and vectors of
orthogonally decomposable tensors, in a spirit similar to classical results for matri-
ces such as those due to Weyl, Davis, Kahan and Wedin. Our bounds demonstrate
intriguing differences between matrices and higher-order tensors. Most notably,
they indicate that for higher-order tensors perturbation affects each essential sin-
gular value/vector in isolation, and its effect on an essential singular vector does
not depend on the multiplicity of its corresponding singular value or its distance
from other singular values. Our results can be readily applied and provide a
unified treatment to many different problems involving higher-order orthogonally
decomposable tensors. In particular, we illustrate the implications of our bounds
through connected yet seemingly different high dimensional data analysis tasks:
the unsupervised learning scenario of tensor SVD and the supervised task of tensor
regression, leading to new insights in both of these settings.

Laplace approximation in high dimension

Vladimir Spokoiny

High dimensional Laplace approximation has recently gained an increasing atten-
tion in connection with Bayesian inference for complicated nonlinear parametric
models such as nonlinear inverse problems and Deep Neuronal Networks. The
Laplace approximation is obtained by replacing a log density with its second order
Taylor approximation around the point of maximum. This leads to a Gaussian
measure centered at the maximum with a covariance corresponding to the Hessian
of the negative log-density (see, e.g., [1, Section 4.4]). The asymptotic behavior
of the parametric Laplace approximation in the small noise or large data limit
has been studied extensively in the past (see, e.g., [18]). The asymptotic approx-
imation of general integrals of the form

∫
eλf(x) g(x) dx by Laplace’s method is

presented in [13, 18]. Non-asymptotic error bounds for the Laplace approxima-
tion can be found in [12] for the univariate case and in [8, 4] for the multivariate
case. [5] studied the Laplace approximation error and its convergence in the limit
λ → ∞ in the multivariate case when the function f depends on λ . Coefficients
appearing in the asymptotic expansion of the approximated integral are given in
[10].

Laplace approximation is an important step in establishing the prominent Bern-
stein - von Mises (BvM) Theorem that quantifies the convergence of the scaled
posterior distribution toward a Gaussian distribution in the large data or small
noise limit. Parametric BvM theory is well-understood [17, 6]. Modern appli-
cations with a high dimensional parameter space and limited sample size pose
new questions and identify new issues in study of applicability and accuracy of
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Laplace approximation. We refer to [7] for a study a parametric BvM theorem for
nonlinear Bayesian inverse problems with an increasing number of parameters. A
number of papers discuss the BvM phenomenon for nonlinear inverse problems; see
e.g. [11, 9, 2], where the convergence is quantified in a distance that metrizes the
weak convergence. [16] showed that the Laplace approximation error in Hellinger
distance converges to zero in the order of the noise level. The recent paper [3]
provides a finite sample error of Laplace approximation for the total variation dis-
tance with an explicit dependence on the dimension and of the nonlinearity of the
forward mapping. The Laplace approximation is also widely utilized for different
purposes in computational Bayesian statistics; see e.g. [15].

Motivation: Gaussian approximation of the posterior. As one of the main motiva-
tion for this study, consider the problem of Bayesian inference for the log-likelihood
function L(θ) = L(Y , θ) with data Y , a parameter θ ∈ R

p and a Gaussian
prior π ∼ N (θ0, G

−2) . Here G−2 is a symmetric positive definite matrix in R
p .

Then the posterior density πG(·) of θ given Y is proportional to the product

eL(θ) e−‖G(θ−θ0)‖2/2 :

ϑG|Y ∼ πG(θ) ∝ exp
{
L(θ)− ‖G(θ − θ0)‖2/2

}
,

where the sign ∝ means equality up to a normalizing multiplicative constant.
Assume that the penalized maximum likelihood estimator (pMLE) θ̃G is well

defined: θ̃G = arg max
θ

{
L(θ) − ‖G(θ − θ0)‖2/2

}
. Clearly θ̃G is also maximizer

of πG(θ) . That is why it is often referred to as maximum a posteriori (MAP)
estimator. Let also the log-likelihood function L(θ) be twice differentiable and
weakly concave. Define

FG(θ) = −∇2L(θ) +G2. (1)

Assuming the latter expression to be positive definite for all considered θ , define
also its square root DG(θ) =

√
FG(θ) . We use the shortcut D̃G = DG(θ̃G) .

Laplace’s approximation means that the posterior distribution πG is close to the
Gaussian distribution N (θ̃G, D̃

−2
G ) . A closely related Bernstein - von Mises phe-

nomenon claims an approximation of the posterior by N (θ̃, D−2) , where θ̃ is the
MLE and D2 = F = −∇2L(θ∗) is the Fisher information matrix for the true
parameter value θ∗ ; see e.g. [16] for a detailed discussion in context on nonlinear
inverse problems. The mentioned results provide an efficient tool for Bayesian
uncertainty quantification and constructing the elliptic credible sets as level sets
of the approximating Gaussian distribution; see [3] or [14] for applications to drift
and diffusion estimation.

This paper’s contributions. This paper aims at reconsidering the classical results
about Laplace approximation and to address the above issues. Below the list of
the most important achievements in the paper.

Effective dimension and dimension free guarantees. We introduce the notion of
effective dimension p0 of the problem which can be small of moderate even for
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huge parameter dimension p . The value p0 is defined by an interplay between
the information delivered by the data and information contained in the prior; see
Section for more details. Further we establish explicit non-asymptotic and dimen-
sion free guarantees for the accuracy of Gaussian approximation of the posterior
in total variation (TV) distance in terms of effective dimension; see Theorem 1.
In the case when the non-penalized log-likelihood function grows linearly with the
sample size n , the quality of Laplace approximation is of order

√
p30/n . It can

be improved to p30/n if instead of TV-distance, we limit ourselves to the class of
centrally symmetric sets. The proofs combine classical variational arguments with
sharp bounds for Gaussian quadratic forms. Conditions require that f is strongly
concave and locally smooth with a uniform bound on the third Gateaux derivative
of f in a local vicinity of the point of maximum.

Critical dimension. The result of Theorem 1 helps to address the issue of critical
dimension for applicability of Laplace approximation: the relation p30 ≪ n be-
tween the sample size n and the effective dimension p0 is sufficient for our main
results. The result on concentration of the posterior only requires p0 ≪ n .

Setup and conditions. Let f(x) be a function in a high-dimensional Eu-
clidean space R

p such that
∫
ef(x) dx = C < ∞ , where the integral sign

∫

without limits means the integral over the whole space R
p . Then f deter-

mines a distribution P with the density C−1ef(x) . Let x∗ be a point of max-
imum: f(x∗) = supu∈Rp f(x∗ + u). We also assume that f(·) is smooth, more
precisely, three or even four time differentiable. Introduce the negative Hessian
D2 = −∇2f(x∗) and assume D2 strictly positive definite. Given a function g(·) ,
we consider the ratio of two integrals

I(g) ,

∫
g(u) ef(x

∗+u) du∫
ef(x

∗+u) du
. (2)

We aim at establishing a Gaussian approximation for I(g) :

I(g) ≈ ID(g) ,

∫
g(u) e−‖Du‖2/2 du∫

e−‖Du‖2/2 du
= Eg(γD), γD ∼ N (0,D−2) .

The total variation distance between P and N (x∗,D−2) can be obtained as the
supremum of |I(g) − ID(g)| over all measurable functions g(·) with |g(u)| ≤ 1 :
TV
(
P,N (x∗,D−2)

)
= sup‖g‖∞≤1

∣∣I(g)− ID(g)
∣∣ .

Concavity. Below we implicitly assume the following condition.

b(C0) : There exists another operator D2
0 ≤ D2 in R

p such that the function

f0(u) , f(x∗ + u) + 1
2‖Du‖2 − 1

2‖D0u‖2 is concave. Equivalently, for all

x , ∇2f(x) + D2 − D2
0 ≤ 0.

Effective dimension. With D2 = −∇2f(x∗) and D2
0 from b(C0) , the effective

dimension p0 is defined as p0 , tr
(
D2

0 D
−2
)
. Of course, p0 ≤ p but the choice of
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a proper penalty G2 in (1) allows to avoid the “curse of dimensionality” issue and
ensure a small or moderate effective dimension p0 even for p large or infinite. The
value p0 determines the radius of the local vicinity U0 defined below. Namely,
let us fix some ν < 1 , e.g. ν = 2/3 , and some x > 0 ensuring that e−x is our
significance level. Define

r0 = 2
√
p0 +

√
2x, U0 =

{
u : ‖D0u‖ ≤ ν−1r0

}
. (3)

Local smoothness conditions. Let p ≤ ∞ and let f(·) be a three times con-
tinuously differentiable function on R

p . We fix a reference point x and local
region around x given by the local set U0 ⊂ R

p from (3). Also consider the sec-
ond order Taylor approximation f(x+u) ≈ f(x)+

〈
∇f(x),u

〉
+ 1

2

〈
∇2f(x),u⊗2

〉

and similarly the third order expansion and introduce the remainders δ3(x,u) =
f(x+u)−f(x)−〈∇f(x),u〉− 1

2

〈
∇2f(x),u⊗2

〉
. Local smoothness of f or, equiv-

alently, of f0 , at x will be measured by the quantity

ω(x) , sup
u∈U0

1

‖D0u‖2/2
∣∣δ3(x,u)

∣∣. (4)

We also set ω , ω(x∗). Our results apply under the condition ω ≪ 1 . Local
concentration of the measure P requires ω ≤ 1/3 . The main results about
Gaussian approximation of P are valid under a stronger condition ω p0 ≤ 2/3 .
Our main result describes the quality of approximation of the measure P by the
Gaussian measure with mean x∗ and covariance D−2 in total variation distance.

Theorem 1. Let bX ∼ P . Suppose b(C0) . Let U0 be defined by (3). If ω from
(4) satisfies ω ≤ 1/3 , then P (bX − x∗ 6∈ U0) ≤ e−x. If ω p0 ≤ 2/3 , then for any
g(·) with |g(u)| ≤ 1 , it holds for I(g) from (2)

∣∣I(g)− ID(g)
∣∣ ≤ 2(♦+ e−x)

1−♦− e−x
≤ 4(♦+ e−x)

with ♦ = ♦2 = 0.75ω p0
1−ω .

Corollary 1. Under the conditions of Theorem 1, it holds

sup
A∈B(Rp)

∣∣P (bX − x∗ ∈ A)− P (γD ∈ A)
∣∣ ≤ 4(♦3 + e−x),
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Meta-learning representations with contextual linear bandits

Karim Lounici

(joint work with Leonardo Cella, Massimiliano Pontil)

Meta-learning seeks to build algorithms that rapidly learn how to solve new learn-
ing problems based on previous experience. In this paper we investigate meta-
learning in the setting of stochastic linear bandit tasks. We assume that the tasks
share a low dimensional representation, which has been partially acquired from
previous learning tasks. We aim to leverage this information in order to learn a
new downstream bandit task, which shares the same representation. Our princi-
pal contribution is to show that if the learned representation estimates well the
unknown one, then the downstream task can be efficiently learned by a greedy
policy that we propose in this work. We derive an upper bound on the regret of
this policy, which is, up to logarithmic factors, of order r

√
N(1 ∨

√
d/T ), where

N is the horizon of the downstream task, T is the number of training tasks, d the
ambient dimension and r ≪ d the dimension of the representation. We highlight
that our strategy does not need to know r. We note that if T > d our bound
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achieves the same rate of optimal minimax bandit algorithms using the true un-
derlying representation (up to a logarithmic term).
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Shape-contrained thresholding bandit problem

Alexandra Carpentier

(joint work with James Cheshire, Maurilio Gutzeit, Andréa Locatelli,
Pierre Ménard)

We consider the Thresholding Bandit Broblem (TBP), a sequential learning prob-
lem where the aim of the learner is to recover a set of actions such that their mean
is above a given threshold τ - see [1] for the initial reference for this problem. More
precisely, we consider a bandit problem with K distributions (arms) (ν)k≤K , and
we assume that νk is supported on [0, 1] for any k. For a given horizon T , at
each time t ≤ T , the learner is allowed to select an arm kt and receives a sam-
ple Xt ∼ νkt

. Let us write (µk)k≤K for the means of the distributions, and let
τ ∈ [0, 1] be a threshold. the aim of the learner is to output at time T an estimator

Q̂ that encodes the set of arms such that their mean is above threshold, namely

(Qk)k = (21{µk ≥ τ} − 1)k,

where here Qk = 1 if arm k is above the threshold and Qk = −1 otherwise. In
what follows, write

(∆k)k := (|µk − τ |)k ,
for the vector of gaps to the threshold.

We define two measures of performances for algorithms in this setting, for any
policy π and bandit problem ν. the simple regret is

(1) r̄πν (T ) := Enu
π max
k:Q̂k 6=Qk

|τ − µk| .

and the probability of error, i.e. the probability they misclassify at least one arm,
is

ēπν (T ) := Pnu
π∃k : µk 6= τ : Q̂k 6= Qk .
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In this report we only discuss the simple regret, but in the talk and the related
work, the probability of error is also studied. For a subset of bandit problems B,
we define the associated minimax simple regret as:

(2) r∗(T,B) = inf
π

sup
ν∈B

r̄πν (T ),

where the infimum is taken on all policies and the supremum is taken on all bandit
problems in B. In what follows, and for positive sequences (φK,T )K,T , (ψK,T )K,T

we write φK,T ≍ ψK,T if there exists two absolute constants c, c′ > 0 such that
c′ψK,T ≤ φK,T ≤ cψK,T .

We consider this bandit problem under several shape constraints on the means
of the arms (µk)k - namely for several set of problems B:

• we consider the unconstrained case, namely (νk)k are just assumed to be
supported on [0, 1] and no additional assumptions on the (µk)k is made.
In this case, one can prove that

r∗(T,B) ≍
√
K logK

T
.

• we consider the monotone case, namely we additionally assume that the
sequence (µk)k is monotone - w.l.g. µ1 ≤ µ2 ≤ . . . ≤ µK . In this case, one
can prove that

r∗(T,B) ≍
√

logK

T
.

• we consider the concave case, namely we assume that the sequence (µk)k
is concave - for any k we have µk−1 + µk+1 ≤ µk. In this case, one can
prove that

r∗(T,B) ≍
√

log logK

T
.

• we finally consider the unimodal case, namely we assume that the sequence
(µk)k is unimodal - there exists l ≤ K such that for any k < l we have
µk ≤ µk+1 and for any k ≥ l we have µk ≥ µk+1. In this case, one can
prove that

r∗(T,B) ≍
√
K

T
.

These results appeared in the papers [2, 3, 4], along with some other related
problem dependent results (on the probability of error eπν ). Other very relevant
references to this line of work are to be found in the mentioned papers.
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On the relationship between adaptive sampling and the suprema of
empirical processes

Kevin Jamieson

(joint work with Romain Camilleri, Lalit Jain, Zohar Karnin,
Julian Katz-Samuels)

We study different high-dimensional aspects of linear and combinatorial bandits.
Given known finite subsets X ⊂ R

d ,Z ⊂ R
d and an unknown θ ∈ R

d, consider a
sequential game where at each time the player chooses an xtinX and then Nature
reveals a noisy observation yt = 〈xt, θ〉+ǫt where ǫt ∼ N (0, 1). In as few time steps
as possible, the learner’s goal is to identify arg maxz∈Z〈z, θ〉 with high probability.
When X and Z are enumerable and the dimension d is small, we propose a simple
algorithm that we show obtains a near-optimal sample complexity. This talk
focuses on complications that arise when Z is intractably large to enumerate (such
as all spanning trees) or when d is far larger than the desired sample complexity.
In each case, we provide a computationally efficient algorithm that obtains a near-
optimal sample complexity.
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A gradient estimator for noisy zero-order optimization

Evgenii Chzhen

(joint work with Arya Akhavan, Massimiliano Pontil, Alexandre Tsybakov)

We consider the problem of online learning from sequentially observing noisy values
of unknown functions ft : Rd → R, t = 1, 2, . . .. The learning protocol is as follows.
At each round t, the learner chooses x′

t,x
′′
t ∈ R

d and the adversary reveals

y′t = ft(x
′
t) + ξ′t and y′′t = ft(x

′′
t ) + ξ′′t ,

where ξ′t, ξ
′′
t ∈ R are noise variables, random or not. Based on the values (xi, y

′
i, y

′′
i )

for 1 ≤ i ≤ t − 1, and on y′t, y
′′
t , the learner outputs xt ∈ Θ, where Θ is a

given subset of R
d, and suffers loss ft(xt). The goal of the learner is to find

a strategy with small cumulative regret E
∑T

t=1 ft(xt) − infx∈Θ

∑T
t=1 ft(x). To
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achieve this goal, we consider the mirror descent algorithm, initializing at z1 = 0
and computing xt according to the recursions

xt = arg max
x∈Θ

{〈zt, x〉 − V (x)} , zt+1 = zt − ηtgt,(1)

where V : Θ→ R is a given function, (ηt)t≥1 a given sequence of positive numbers,
and gt is a gradient estimator. We propose to use a gradient estimator gt based
on ℓ1-randomization defined as follows. Denote by Bd

1 and ∂Bd
1 the open unit ball

and unit sphere in ℓ1-norm, respectively. For t ≥ 1, let ζt be distributed uniformly
on ∂Bd

1 ; rt uniformly distributed on [−1, 1]; ht > 0. We choose the query points
x′
t = xt + htrtζt, x

′′
t = xt − htrtζt and define the gradient estimator as

gt ,
d

2ht
(y′t − y′′t ) sign(ζt)K(rt).(2)

Here, sign(·) is the coordinate-wise sign function and K(·) is a standard kernel for
non-parametric estimation of the first derivative, cf. [1, 4].

The method defined above is analyzed in different setups yielding, in the par-
ticular cases previously studied in [3, 2, 4], either similar or better bounds. We
state here selected results distinguishing between two possible assumptions on the
noise.

Assumption 1 (Canceling noise). For t ≥ 1, it holds that ξ′t = ξ′′t almost surely.

Assumption 2 (Adversarial noise). For t ≥ 1, it holds that: (i) E[(ξ′t)
2] ≤ σ2

and E[(ξ′′t )2] ≤ σ2; (ii) (ξ′t)t≥1 and (ξ′′t )t≥1 are independent of (ζt, rt)t≥1.

Consider first the setting where all ft’s are convex Lipschitz continuous func-
tions. We assume that p, q ∈ [1,∞], d ≥ 3, and set p∗, q∗ ∈ [1,∞] such that
1
p + 1

p∗ = 1 (respectively, for q). We denote by ‖ · ‖q the ℓq-norm on R
d.

Assumption 3. The following conditions hold:

(1) The set Θ ⊂ R
d is compact and convex.

(2) There exists V : Θ → R, which is 1-strongly convex on Θ w.r.t. the ℓp-
norm and such that sup

x∈Θ V (x)− infx∈Θ V (x) ≤ R2, for some R > 0.

(3) Each function ft : Rd → R is convex on R
d for all t ≥ 1.

(4) For all x,x′ ∈ R
d, and all t ≥ 1 we have |ft(x)− ft(x′)| ≤ L‖x−x′‖q for

some constant L > 0.

Set

bq(d) ,
1

d+ 1
·
{
qd

1
q if q ∈ [1, log(d)),

e log(d) if q ≥ log(d).

Theorem 1. Let Assumptions 1 and 3 hold. Let xt be defined by (1) - (2) with

ηt ≡ η = AL
R

√
d
−1− 2

q∧2
+ 2

p

T , ht ≡ h ≤ R
50bq(d)

√
T
d

1
2
+ 1

q∧2
− 1

p , where A = (3 + 3
√

2)−1,

and K(·) ≡ 1. Then, for any x ∈ Θ we have

E

[
T∑

t=1

(
ft(xt)− ft(x)

)
]
≤ 14.5 · RL

√
Td1+

2
q∧2

− 2
p .
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Theorem 2. Let Assumptions 2 and 3 hold. Let xt be defined by (1) - (2) with ηt ≡
η = R√

TL

(
σbq(d)√

2R

√
Td4−

2
p +ALd1+

2
q∧2

− 2
p

)− 1
2

, ht ≡ h =
( √

2Rσ
Lbq(d)

) 1
2

T− 1
4 d1−

1
2p ,

where A = 9(1+
√

2)2, and K(·) ≡ 1. Then, for any x ∈ Θ we have

E

[
T∑

t=1

(
ft(xt)− ft(x)

)
]
≤ 14.5 · RL

√
Td1+

2
q∧2

− 2
p

+ 2.4 ·
√
RLσT

3
4 ·





√
qd1+

1
q
− 1

p if q ∈ [1, log(d)),
√
e log(d)d1−

1
p if q ≥ log(d).

We also propose a fully adaptive version of method (1) - (2), with ηt, ht inde-
pendent of L, σ, and show that it achieves bounds as in Theorems 1 and 2 with
the same rates but slightly inflated constants.

Next, we consider the case where ft ≡ f for all t and a higher order smooth
function f : Rd → R. For a given horizon T , and a convex compact set Θ, we
analyze the optimization error Ef(xT )− f⋆, where f⋆ = minx∈Θ f(x).

Definition 1 (Higher order smoothness). Fix some β ≥ 2 and L > 0. Denote
by Fβ(L) the set of all functions f : Rd → R that are ℓ = ⌊β⌋ times continuously
differentiable and satisfy, for all x, z ∈ R

d the Hölder condition∥∥∥f (ℓ)(x)− f (ℓ)(z)
∥∥∥ ≤ L ‖x− z‖β−ℓ

2 ,

where ‖·‖ is the standard ℓ2-type norm on tensors of ℓth partial derivatives.

Assumption 4. The function f ∈ Fβ(L) ∩ F2(L̄) for some β ≥ 2 and L, L̄ > 0.

Definition 2 (α-gradient dominance). Let α > 0. Function f : Rd → R is called
α-gradient dominant on R

d if f is differentiable on R
d and satisfies the Polyak-

 Lojasiewicz inequality: 2α(f(x)− f⋆) ≤ ‖∇f(x)‖22 , ∀x ∈ R
d.

Theorem 3. Let f : Rd → R be an α-gradient dominant function and Assump-
tions 2, 4 hold. Let xt be given by the gradient descent instance of (1) - (2) (that

is, V (x) := ‖x‖22 /2) with kernel K as in [4] and

ηt = min

(
cd
L̄d

,
4

αt

)
, ht = d

β+2

2β ·
{
t−

1
2β if ηt = 4

αt ,

T− 1
2β if ηt = cd

L̄d

for all t = 1, . . . , T , where cd is explicitly given and such that c ≤ cd ≤ c′ for some

absolute constants c, c′ > 0. If Θ = R
d, x1 is deterministic, and T ≥ d2− β

2 , then

E[f(xT )− f⋆] ≤ A1d

αT
(f(x1)− f⋆) +

A2

min{α, α2}

(
d2

T

) β−1

β

,

where A1, A2 > 0 depend only on σ2, L, L̄, β.

We show further that, for strongly convex functions f , the value min{α, α2} in
this bound can be replaced by α. We also analyze the non-convex case providing
a stationary-point guarantee.



1418 Oberwolfach Report 25/2022

A key ingredient of our analysis is the following new Poincaré-type inequality.

Lemma 1. Let d ≥ 3. Assume that G : Rd → R is a continuously differentiable
function and ζ is distributed uniformly on ∂Bd

1 . Then

Var(G(ζ)) ≤ 4

(d− 2)(d− 1)
E

[
‖∇G(ζ)‖22

(
1 +
√
d‖ζ‖2

)2]
.

Furthermore, if G : Rd → R is an L-Lipschitz function w.r.t. the ℓ2-norm, then

Var(G(ζ)) ≤ 4L2

(d−2)(d−1)

(
1 +

√
2d
d+1

)2
.
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Sharp adaptive similarity testing with pathwise stability for
ergodic diffusions

Angelika Rohde

(joint work with Johannes Brutsche)

Within the nonparametric diffusion model, we develop a multiple test to infer
about similarity of an unknown drift b to some reference drift b0: At prescribed
significance, we simultaneously identify those regions where violation from simi-
larity occurs, without a priori knowledge of their number, size and location. Here,
a drift b is said to be similar to b0 at tolerance η ≥ 0 within some interval I if

b0(x) − η ≤ b(x) ≤ b0(x) + η for all x ∈ I.
For η > 0, the null is a composite hypothesis. Although our test statistic is
motivated by the idea of simultaneously testing b ≤ b0 + η and b ≥ b0 − η point-
wisely, there is no evidence that the boundary cases are least favourable for the
null hypothesis of similarity. Indeed, the stochastic order relation required for this
purpose may be missing even for the corresponding local likelihood ratio statistics.
The reason is that their distribution does not only depend on local values of the
drift b, but on the entire drift function via the invariant density.

Our main results are the following.

(i) Based on a multiscale statistic and for any significance level α ∈ (0, 1), we
construct a threshold level such that the resulting test φηT for the similarity testing



Re-thinking High-dimensional Mathematical Statistics 1419

problem satisfies

lim sup
T→∞

sup
b∈H0

Ebφ
η
t ≤ α,(1)

where T denotes the time horizon of the diffusion’s observation. Note that (1) is a
substantially stronger statement than the pointwise relation lim supT→∞ Ebφ

η
t ≤ α

for all b ∈ H0. For the derivation of (1), we construct a random variable Yη

• that provably dominates the test statistic uniformly on the similarity hy-
pothesis in stochastic order asymptotically and
• whose distribution depends continuously on the level η of similarity, and
Y0 equals the limiting distribution of the test statistic under the simple
null.

The cornerstone of the construction of Yη is the identification of the weak limit of
the multiscale test statistic uniformly in b ∈ H0. Whereas weak limit results for
supremum statistics like ours have been derived in various settings, the additional
uniformity in the drift parameter accounting for the composite null hypothesis of
similarity is new and considerably more involved on a mathematical level.

(ii) We prove optimality and adaptivity for the multiple similarity test in the
minimax sense. We exemplarily consider the case of alternatives belonging to some
Hölder ball where deviations are measured in weighted supremum norm which is
the equivalent to weighted risk definitions in sharp adaptive drift estimation like
in [1] or [3]. Our similarity test is shown to be rate-optimal in the minimax sense,
adaptive in both the unknown Hölder exponent and the radius, optimal in the
constant for the exponent ≤ 1 and here, even sharp adaptive in the radius. The
hypotheses construction in the proof of the lower bound involves a delicate fixed
point problem as the drift itself appears in the invariant density which pops up in
the deviation measure between null and alternative.

Since diffusion models arise frequently as scaling limits of jump processes, another
aspect is of particular importance: Small perturbations in the jump process mod-
eling lead to a different drift in the limiting diffusion, but they might change the
process class of the driving noise as well. In consequence, when testing for similar-
ity of the drift to the drift of a reference model, the true noise may only be close to
that of this reference model, and testing is only meaningful under some stability
properties with respect to the driving noise specification. Besides, in applications
where a nontrivial dependence structure in time is present, the driving noise is not
given by Brownian motion. In such situations, fractional diffusion models have be-
come increasingly popular. However, in contrast to standard diffusion, fractional
diffusions neither belong to the process class of Markov processes nor semimartin-
gales. Thus, the number of tools for statistical analysis is rather limited. In view
of the non-availablity of efficient nonparametric testing procedures in such cases,
stability justifies to use tests developed for the standard diffusion model at least in
situations where the driving noise is close to Brownian motion in a suitable sense.

(iii) We address the problem of stability for fractional diffusion models where the
driving Brownian motion is replaced by a fractional Brownian motion with Hurst
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index H ∈ (0, 1). Note that H = 1/2 corresponds to standard Brownian motion.
We prove that the test statistic built from observations in the fractional diffusion
model has strong performance properties as the fractional driving noise approaches
Brownian motion in the following sense:

• The test is uniformly over the hypothesis of similarity of approximate level
α, i.e. (slightly simplified)

lim sup
T→∞

lim sup
H→1/2

sup
b∈H0

E
H
b φ

η
t ≤ α(2)

where E
H
b denotes the expectation when applied to fractional diffusion

with Hurst index H and drift b.
• We prove that the minimax optimality is preserved in a certain sense as

the fractional driving process approaches Brownian mo-tion.

As our test statistic for φηT involves a stochastic integral which is not even defined
for fractional diffusion observations a priori, we first introduce a pathwise continu-
ation of the statistic as a function of the data that is continuous with respect to the
topology of uniform convergence. Then, uniformly over the similarity hypothesis,
we prove that the test statistic built from observations for fractional driving noise
converges for H → 1/2 in probability to that built for standard Brownian motion.
This uniformity, which is substantially harder to derive than the corresponding
pointwise result for any fixed drift, is crucial in order to deduce (2). The preserva-
tion of minimax properties relies on L1(P)-convergence of likelihood ratios of the
fractional diffusion model to those of the standard model. This derivation is based
on (deterministic) fractional calculus.

(iv) We outline how to extend our results to the multidimensional case. While the
construction of a multiscale test statistic is possible in higher dimension, an identi-
fication of a dominating random variable as in (i) for η > 0 is not available a priori.
However, in case of the simple null hy-pothesis η = 0, minimax rate-optimality can
be attained. This extension is mainly of technical nature as local time does not
exist in higher dimension. Our stability results for the fractional diffusion model
do neither transfer straightforwardly. Instead, we present a pathwise sta- bility
approach based on the theory of rough paths which was first introduced by Lyons.
The presentation includes a rough path version of our test that is close in spirit
to a similar rough path version of maximum likelihood estimators in [2].
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Consistent classification in metric space

László Györfi

(joint work with Roi Weiss)

Let (X, ρ) be a separable metric space. Assume that the feature element X takes
values in X and let its label Y take values in {1, . . . ,M}. The error probability of
an arbitrary decision function g : X→ {1, . . . ,M} is

L(g) = P{g(X) 6= Y },

while the error probability of the Bayes decision g∗ is denoted by

L∗ = P{g∗(X) 6= Y }.

In the standard model of pattern classification, we are given labeled samples,

Dn = {(X1, Y1), . . . , (Xn, Yn)},

which are n independent copies of (X,Y ). We assume that in addition to the
labeled sample Dn, we also have an independent unlabeled sample {X ′

1, . . . , X
′
m}

where the X ′
i’s are independent copies of X . Introduce the data-driven partition

Pm of X such that Pm is a Voronoi partition with the nucleus set {X ′
1, . . . , X

′
m},

i.e.,

Pm = {Am,1, Am,2, . . . , Am,m}
such that Am,ℓ is the Voronoi cell around the nucleus X ′

ℓ,

Am,ℓ =
{
x ∈ X : ℓ = argmin1≤i≤mρ(x,X ′

i)
}
,

where tie breaking is done by indices, i.e., if X ′
i and X ′

j are equidistant from x, then
X ′

i is declared “closer” if i < j. Then, the prototype nearest neighbor classification
rule is then defined by

gn(x) = argmax1≤j≤M

n∑

i=1

I{Yi=j,Xi∈Am,ℓ}, if x ∈ Am,ℓ.

Theorem 1 ([1]). If m = mn → ∞ such that mn/n → 0, then the classification
rule gn is universally strongly consistent, that is, for any distribution of (X,Y ),

lim
n→∞

L(gn) = L∗ a.s.

References

[1] L. Györfi and R. Weiss, Universal consistency and rates of convergence of multiclass proto-
type algorithms in metric spaces , Journal of Machine Learning Research 22 (2021), 1–25.



1422 Oberwolfach Report 25/2022

On lower bounds for the bias-variance trade-off

Johannes Schmidt-Hieber

(joint work with Alexis Derumigny)

The summary below is an extension of the abstract in [2].

It is a common phenomenon that for high-dimensional and nonparametric statisti-
cal models, rate-optimal estimators balance squared bias and variance. Although
this balancing is widely observed, little is known whether methods exist that could
avoid this trade-off between bias and variance. Indeed for several machine learn-
ing methods such as neural networks, good generalization performance has been
reported in the overparametrized regime. This behavior is highly counterintuitive
as it suggests that the classical bias-variance trade-off does not hold [1, 3].

We propose a general strategy to obtain universal lower bounds on the variance
that hold for any estimator with bias smaller than a prespecified bound. These
bounds shows to which extent the bias-variance trade-off is unavoidable and al-
lows us to quantify the loss of performance for methods that do not obey it. The
approach is inspired by the Cramér-Rao lower bound, which lower bounds the
variance by an expression involving the derivative of the bias. The underlying
regularity conditions render this approach, however, impractical for nonparamet-
ric and highdimensional models. To circumvent these regularity conditions, our
approach is based on a number of abstract inequalities for the variance involving
the change of expectation with respect to different probability measures as well as
information measures such as the Kullback-Leibler or chi-square-divergence. Some
of these inequalities rely on a new concept of information matrices. We also show
that these inequalities generalize the Cramér-Rao inequality in the sense that by
taking appropriate limits and imposing the standard regularity conditions, the
Cramér-Rao lower bound can be recovered.

The abstract change of expectation inequalities are applied to derive universal
lower bounds for the bias-variance trade-off for several statistical models including
the Gaussian white noise model, a boundary estimation problem, the Gaussian se-
quence model and the high-dimensional linear regression model. For these specific
statistical applications, different types of bias-variance trade-offs occur that vary
considerably in their strength.

For pointwise function estimation, we can prove that there is a U-shaped bias-
variance curve in the sense that small bias or small variance will necessary inflate
the mean squared error. More precisely, if the function space is a ball in the
space of β-Hölder functions, we obtain a universal lower bound stating that the
worst case bias B and the worst case variance V of any estimator must obey the
inequality B1/βV ≥ C/n with n the sample size and C a constant. This quantifies
for instance by how much the worst case variance increases if the bias is forced to
be small.
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In the Gaussian sequence model, different phase transitions of the bias-variance
trade-off occur. Although there is a non-trivial interplay between bias and vari-
ance, the rate of the squared bias and the variance do not have to be balanced in
order to achieve the minimax estimation rate.

For the trade-off between integrated squared bias and integrated variance in
the Gaussian white noise model, we combine the general strategy for lower bounds
with a reduction technique. This allows us to link the original problem to the bias-
variance trade-off for estimators with additional symmetry properties in a simpler
statistical model.
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Fundamental limits of generative deep neural networks

Helmut Bölcskei

(joint work with Dmytro Perekrestenko, Léandre Eberhard)

We show that every d-dimensional probability distribution of bounded support can
be generated through deep ReLU networks out of a 1-dimensional uniform input
distribution. What is more, this is possible without incurring a cost—in terms
of approximation error measured in Wasserstein-distance—relative to generating
the d-dimensional target distribution from d independent random variables. This
is enabled by a vast generalization of the space-filling approach discovered in [1].
The construction we propose elicits the importance of network depth in driving
the Wasserstein distance between the target distribution and its neural network
approximation to zero. Finally, we find that, for histogram target distributions,
the number of bits needed to encode the corresponding generative network equals
the fundamental limit for encoding probability distributions as dictated by quan-
tization theory.
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Lower bounds for invariant statistical models with
applications to PCA

Martin Wahl

We address the problem of deriving lower bounds for the estimation of principal
components. A state-of-the-art result, obtained in [1], provides a non-asymptotic
lower bound for the spiked covariance model with two groups of eigenvalues. To
state their result, consider the statistical model defined by

(1) (PU )U∈O(p), PU = N (0, UΛUT )⊗n,

where O(p) denotes the orthogonal group, Λ = diag(λ1, . . . , λp) is a diagonal ma-
trix with λ1 ≥ · · · ≥ λp > 0 and N (0, UΛUT ) denotes a Gaussian distribution with
expectation zero and covariance matrix UΛUT . This statistical model corresponds
to observing n independentN (0, UΛUT )-distributed random variablesX1, . . . , Xn,
and we will write EU to denote expectation with respect to X1, . . . , Xn having law
PU . Moreover, in this model, the d-th principal subspace (resp. its corresponding
orthogonal projection) is given by P≤d(U) =

∑
i≤d uiu

T
i , where u1, . . . , up are the

columns of U ∈ O(p).

Theorem 1 ([1]). Consider the statistical model (1) with λ1 = · · · = λd > λd+1 =
· · · = λp > 0. Then there is an absolute constant c > 0 such that

inf
P̂

sup
U∈O(p)

EU‖P̂ − P≤d(U)‖22 ≥ c ·min
(d(p− d)

n

λdλd+1

(λd − λd+1)2
, d, p− d

)
,

where the infimum is taken over all estimators P̂ = P̂ (X1, . . . , Xn) with values
in the class of all orthogonal projections on R

p of rank d and ‖ · ‖2 denotes the
Hilbert-Schmidt (or Frobenius) norm.

The proof of Theorem 1 is based on applying lower bounds under metric entropy
conditions combined with the metric entropy of the Grassmann manifold. While
Theorem 1 can be applied to different spiked structures, it is of limited use in
settings with decaying eigenvalues, typically encountered in functional data anal-
ysis and kernel-based learning. To solve this problem, [2] and [3] developed a new
approach based on a van Trees inequality (i.e. a Bayesian version of the Cramér-
Rao inequality) tailored for invariant statistical models. The key ingredient was to
explore the group equivariance of the model (1), saying that if (X1, . . . , Xn) has
distribution PU , then (V X1, . . . , V Xn) has distribution PV U , U, V ∈ O(p). For
instance, a main consequence of the developed theory is the following extension of
Theorem 1.

Theorem 2 ([3]). Consider the statistical model (1). Then, for each δ > 0, we
have

inf
P̂

∫

O(p)

EU‖P̂ − P≤d(U)‖22 dU ≥ Iδ
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with infimum taken over all Rp×p-valued estimators P̂ = P̂ (X1, . . . , Xn) and

Iδ = 1
1+2δ max

{∑

i≤d

∑

j>d

xij : 0 ≤ xij ≤ 2
n

λiλj

(λi−λj)2
for all i ≤ d, j > d,

∑

i≤d

xij ≤ δ for all j > d,

∑

j>d

xij ≤ δ for all i ≤ d
}
.

The lower bound in Theorem 2 is characterized by doubly substochastic matri-
ces whose entries are bounded by the inverses of the different Fisher information
directions. Similar results can be stated for the matrix denoising problem and the
group synchronization problem.
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SWITZERLAND

Prof. Dr. Victor-Emmanuel Brunel
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Institut de Mathématique d’Orsay
CNRS, Université Paris-Saclay
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5, Avenue Henry Le Châtelier
91120 Palaiseau Cedex
FRANCE

Prof. Dr. Mathias Drton

Technische Universität München
Lehrstuhl für Mathematische Statistik
Boltzmannstr. 3
85748 Garching bei München
GERMANY

Corinne Emmenegger

Seminar für Statistik
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SWITZERLAND

Prof. Dr. Rina Foygel Barber

Department of Statistics
The University of Chicago
5747 S. Ellis Avenue
Chicago, IL 60637-1514
UNITED STATES

Solenne Gaucher

Laboratoire de Mathématiques
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ETH Zürich (HG G 24.1)
Rämistrasse 101
8092 Zürich
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