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ing the meeting, various interesting topics in geometry were discussed, such
as geometric flows, Einstein manifolds and spaces with sectional curvature
bounds.
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Introduction by the Organizers

The workshop consisted of 18 one hour talks and 3 half hour after dinner talks
(Monday, Tuesday, Thursday). The after dinner talks were given by PhD students
and very recent PhD’s. All the speakers did an excellent job, which were the main
contributions to the good atmosphere at the workshop.

Among all the talks, four were focused on geometric flows. Two of them were
related to Ricci flow and the other two related to mean curvature flow. Hamilton’s
pinching conjecture states that three dimensional Ricci pinched manifolds are ei-
ther flat or compact. Miles Simon used stability estimates for the initial data of
Ricci flows to present a proof of Hamilton’s pinching conjecture with the additional
assumption of bounded sectional curvature. Peter Topping proved the long time
existence of Ricci flow on a non-compact Ricci pinched manifold. As a corollary
he obtained Hamilton’s pinching conjecture without any additional assumptions
on the sectional curvature. The other two talks were related to mean curvature
flow. Gerhard Huisken studied inverse mean curvature flow with entire graphs as
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initial data. He proved long time existence for graphs with superlinear growth
that are δ-starshaped. For linear growth a diffusion effect occurs and the solution
converges in finite time. Robert Haslhofer classified noncollapsed translators in
R4. As an application he obtained a classification of certain blowup limits of mean
curvature flow in R4.

Michael Wiemeler, Jan Nienhaus and Anton Petrunin talked about manifolds
with non-negative and positive sectional curvature. A famous conjecture by Hopf
states that an even dimensional positively curved manifold has positive Euler cha-
racteristic. Under the additional assumption of an isometric five-torus action on
the manifold Michael Wiemeler proved the Hopf conjecture. For this he gave
a classification of fixed point sets of a five-torus action on a positively curved
manifold. He also presented a classification up to rational cohomology of even
dimensional manifolds with vanishing odd-degree cohomology that admit an action
by a seven-torus. Jan Nienhaus extended Wiemeler’s results to four- and six-
torus actions. In particular he was able to improve Lee Kennard’s four-periodicity
theorem, using that the normal bundle of a fixed point set of a torus action always
admits a complex structure. Anton Petrunin showed, that five point metric spaces
can be embedded into a non-negatively curved Riemannian manifold, if and only
if the Lang-Schroeder-Sturm inequalities are satisfied.

A mordern approach to the Bochner technique was presented by Matthias Wink.
In particular he showed, that n-manifolds with ⌈n

2 ⌉-positive curvature operator are
rational homology spheres. Furthermore he presented applications to the Kähler
curvature operator on a Kähler manifold. Eleonora di Nezzas talk was focused
on Kähler geometry. In fact she studied geodesics in a certain p-distance on the
spaces of Kählerpotentials and plurisubharmonic functions on a compact Kähler
manifold. Olivier Biquard gave a classification of toric hermitian gravitational
instantons.

Two talks related to positive scalar curvature were given by Chao Li and Chris-
tos Mantoulidis. Chao Li studied manifolds with λ1(−∆+ 1

2R) > 0, where λ1 is
the eigenvalue of the self-adjoint elliptic operator with Dirichlet boundary condi-
tions. The study of these manifolds is motivated by the study of hypersurfaces
in manifolds with positive scalar curvature. An application of his main result is
a proof of the three dimensional Bernstein conjecture, which states that an im-
mersed, complete, two-sided, stable minimal hypersurface of the four-dimensional
Euclidean space is flat. Christos Mantoulidis proved that every closed and oriented
four-manifold that admits a metric of positive scalar curvature can be obtained
from a four-orbifold with vanishing first Betti number that admits a metric with
positive scalar curvature by 0- and 1-surgeries. Additionally the second Betti num-
ber of the orbifold is bounded by the second Betti number of the original manifold.
This partially answers the question if any four-manifold admitting positive scalar
curvature can be obtained by performing surgeries of codimension at least three
on “simple” manifolds.

Three of the talks were related to Einstein metrics. The famous Alekseevsky
conjecture states that any homogeneous Einstein manifold with negative Einstein
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constant must be diffeomorphic to Rn. Christoph Böhm presented a proof of
this conjecture by using the more general approach of studying invariant Einstein
metrics on manifolds with a group action of one orbit type. Ursula Hamenstädt
and Frieder Jäckel talked about a joint work on metrics that are almost Einstein
and close to a hyperbolic metric. As an application of their main result they
showed that hyperbolic manifolds still carry hyperbolic metrics even after certain
“drilling and filling” constructions are performed.

The remaining five talks were given by Robin Neumayer, Daniel Stern, Karl-
Theodor Sturm, Guofang Wei and Liam Mazurowsky. Robin Neumayer studied
the existence of minimizers and the rigidity of optimal Sobolev inequalities. In
particular she showed that optimal Sobolev inequalities for a bounded domain
with boundary of class C2 are sharp. As a corollary a rigidity statement was ob-
tained. Daniel Stern studied the existence of harmonic maps on closed manifolds,
such that the codomain has non-trivial l-th homotopy group. In particular he
could find harmonic maps with Morse-index bounded by l + 1 and small singular
sets. He applied this result to study Schrödinger operators on manifolds with di-
mensions between three and five. Karl-Theodor Sturm constructed and analysed
conformally invariant fields on manifolds of even dimension. In particular these
fields share a quasi invariance property under conformal transformation and define
so called Liouville Quantum Gravity measures, which also fulfill a quasi invariance
property. Guofang Wei proved that there is no lower bound on the fundamental
gap in terms of the diameter of the Laplacian and the Schrödinger operator with
Dirichlet boundary conditions on a convex domain in a hyperbolic space. This is
a sharp contrast to the flat or spherical case. Liam Mazurowski applied Zhou’s
and Zhu’s Min-Max theory to non-compact manifolds to construct submanifolds
with constant mean curvature in asymptotically flat manifolds.
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Stability of Einstein metrics and effective hyperbolization in large Hempel
distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1568
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Abstracts

Comparing Riemannian manifolds using spinors

John Lott

In 1998, Llarull proved that if g is a Riemannian metric on Sn with g ≥ gstan
and R ≥ n(n − 1) then g = gstan [3]. Here gstan is a Riemannian metric on
Sn with constant sectional curvature 1 and R denotes the scalar curvature. In
particular, one cannot simultaneously increase the Riemannian metric and the
scalar curvature of the sphere. Although the statement of Llarull’s theorem sounds
elementary, the only known proof uses spinors.

In 2002, Goette-Semmelmann extended Llarull’s result, replacing the standard
sphere by a compact Riemannian manifold M with nonnegative curvature opera-
tor. Theorem [2] Let N and M be compact connected Riemannian manifolds of

dimension n. Let f : N →M be a smooth spin map. Suppose that
1. f is Λ2-nonincreasing.
2. M has nonnegative curvature operator.
3. RN ≥ f∗RM .
4. χ(M) 6= 0 and f has nonzero degree.

Then RN = f∗RM .

The proof of the Goette-Semmelmann theorem uses a Clifford module which, when
N and M are both spin, is SN ⊗ f∗SM . Motivated by questions of Gromov, I ex-
tended the result to manifolds with boundary.

Theorem [4] Let N and M be compact connected Riemannian manifolds-with-
boundary of even dimension n. Let f : (N, ∂N) → (M,∂M) be a smooth spin
map. In additions to the assumptions of the previous theorem, suppose that
1. ∂f is distance-nonincreasing.
2. ∂M has nonnegative second fundamental form.
3. H∂N ≥ (∂f)∗H∂M .

Then RN = f∗RM and H∂N = (∂f)∗H∂M . If M is flat then N is Ricci-flat.

Here H denotes the mean curvature. In later improvements, Wang-Xie-Yu showed
that the result is also true when n is odd [6] and Wang-Xie showed that flatness
of M implies flatness of N [5]. In fact, Wang-Xie-Yu extending the theorem to
manifolds-with-corners and Wang-Xie showed that the polyhedral analog implies
the validity of the Stoker conjecture concerning convex polyhedra.

As a further application of the technique of comparing spinors, I described how
to define a spinorial quasilocal mass for a compact manifold-with-boundary, in
analogy to Witten’s proof of the positive mass theorem for a noncompact asymp-
totically Euclidean spin manifold. Earlier work in this direction was done by
Dougan-Mason [1] and Zhang [7]. There are two basic issues in defining a spino-
rial quasilocal mass. First, it is not clear how to put in the comparison manifold.
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Second, it is not clear how to impose boundary conditions. Both of these issues
are resolved by comparing spinors.

Let N and M be compact connected Riemannian manifolds-with-boundary of
dimension n. Let f : (N, ∂N) → (M,∂M) be a smooth spin map so that for

any component C of ∂N , the restriction ∂f
∣

∣

∣

C
: C → (∂f)(C) is an isometric

diffeomorphism. For simplicity, suppose that n is even, and that N and M are
spin. Then

SN ⊗ f∗SM

∣

∣

∣

∂N

∼= Λ∗T ∗N
∣

∣

∣

∂N

∼= Λ∗T ∗∂N ⊕ (τn ∧ Λ∗T ∗∂N),

where τn is a unit conormal to ∂N . There is a canonical section of Λ∗T ∗∂N ,
namely the constant function 1. It turns out that one can always solve the Dirac
equation on C∞(N,SN ⊗ f∗SM ) with boundary value 1 + τn ∧ φ for some φ ∈
Ω∗(∂N), although perhaps not uniquely. Let ψ be the solution with minimal
L2-norm. Then we define the quasilocal mass of N , relative to M , by

M = −
∫

∂N

〈ψ,∇enψ〉dA,

where en is the inward-pointing unit normal vector. Some basic properties are

(1) If N =M and f is the identity map then M = 0.
(2) If M has nonnegative curvature operator and RN ≥ |Λ2df | f∗RM then

M ≥ 0.

In the weak field limit, i.e. when M is close to N , the quasilocal mass M is
approximated by the Brown-York mass. There is also a spacetime extension of the
definition of M.
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Geodesic distance

Eleonora Di Nezza

(joint work with Chinh Lu)

LetX be a compact Kähler manifold of complex dimension n and fix a Kähler met-
ric ω normalized such that

∫

X ωn = 1. By the ∂∂̄-lemma there is a correspondence

between the space of Kähler metrics in the cohomolgy class {ω} ∈ H1,1(X,R) and
the space of Kähler potentials

H := {u ∈ C∞(X,R) : ωu := ω + i∂∂̄u > 0}.

This space of smooth potential is a subset of PSH(X, ω), the set of ω-plurisub-
harmonic functions. We say that a function u : X → R ∪ {−∞} is quasi-
plurisubharmonic (qpsh) if locally u = ρ + ϕ where ϕ is plurisubharmonic (psh)
and ρ is smooth. A qpsh function u is ω-psh if ω + i∂∂̄u ≥ 0 in the weak sense of
currents.

Motivated by the study of canonical metrics on X , in [1] Mabuchi introduced a
Riemannian structure on the space of Kähler potentials, giving rise to the notion
of length of a smooth path γ : [0, 1] → H

ℓ2(γ) :=

∫ 1

0

√

∫

X

|γ̇t|2ωn
γt
dt,

and consequently the notion of distance between ϕ0, ϕ1, two elements in H:

d2(ϕ0, ϕ1) := inf{ℓ2(γ) γ : [0, 1] → H, γ(0) = ϕ0, γ(1) = ϕ1}.

Mimicking the finite dimensional setting in Riemannian geometry, one can also
define geodesics by the Euler-Lagrange equation of the energy functional associated
to the L2-metric. It turns out that such geodesics can be explicit expressed as an
envelope.

For a curve [0, 1] ∋ t 7→ ut ∈ PSH(X, ω) we define

(1) X ×D ∋ (x, z) 7→ U(x, z) := ulog |z|(x),

where D = {z ∈ C, 1 < |z| < e} and π : X × D → X is the projection on the
first factor. We say that t 7→ ut is a subgeodesic if (x, z) 7→ U(x, z) is a π∗ω-psh
function on X ×D.

Given ϕ0, ϕ1 ∈ H, for (x, z) ∈ X ×D we define

Φ(x, z) := sup{U(x, z) : t 7→ ut is a subgeodesic and lim sup
t→0,1

ut ≤ ϕ0, ϕ1}.

The curve t 7→ ϕt constructed from Φ via (1) is the plurisubharmonic (psh) geo-
desic segment connecting ϕ0 and ϕ1.

Such a description turns out to be very useful and handy since geodesics joining
two elements in H are not smooth in general. The optimal regularity is indeed
only C1,1. Nevertheless, it was proved by Chen [2] that such geodesics are distance
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minimizing, i.e.

d2(ϕ0, ϕ1) =

√

∫

X

|ϕ̇t|2ωn
ϕt
, ∀t ∈ [0, 1].

Later on, Darvas [3] defined a family of Lp distances dp, p ≥ 1, (coming from
a Finsler structure on the tangent spaces) between two potentials ϕ0, ϕ1 ∈ H
proving that, once again

(2) dp(ϕ, ϕ1)
p =

(
∫

X

|ϕ̇t|pωn
ϕt

)1/p

, ∀t ∈ [0, 1],

where ϕt is the psh geodesic segment defined above.
It follows from the equality in (2) that (H, dp) is a metric space. On the other

hand, the latter is not complete since we know already that geodesics do not stay
in H.

Darvas also proved that the metric completion (H, dp) can be identified with the
energy class Ep(X,ω). This class is a subset of (possibly singular) ω-psh functions
with an extra integrability assumption: we say that a ω-psh function u belongs to
Ep(X,ω) if and only if

∫

X
|u|pωn

u < +∞. Examples of functions in Ep are functions
that locally (in a small coordinate ball) write as −(− log |z|)α with α ∈ (0, 1) such

that p < n(1−α)
α . In particular Ep contains a lot of unbounded potentials.

The main goal of the joint paper with Chinh Lu [4] is to investigate under which
condition on ϕ0, ϕ1 ∈ Ep(X,ω), the identity in (2) holds. It is easy to construct
examples of bounded (but not smooth!) endpoints such that (2) does not hold.
Our result give a sufficient condition under which we have a positive answer:

Theorem 1. Assume ϕ0, ϕ1 ∈ Ent(X,ω) and let ϕt be the psh geodesic connecting
varphi0 to ϕ1. If ϕ0 − ϕ1 is bounded then

∫

X

|ϕ̇t|pωn
ϕt

is constant in t ∈ [0, 1].

If in addition ϕ0, ϕ1 ∈ Ep(X,ω), then

dpp(ϕ0, ϕ1) =

(
∫

X

|ϕ̇t|pωn
ϕt

)1/p

, ∀t ∈ [0, 1].

Here Ent(X,ω) consists of functions u ∈ E(X,ω) whose Monge-Ampère measure
has finite entropy:

Ent(ωn, ωn
u) :=

∫

X

log

(

ωn
u

ωn

)

ωn
u < +∞.
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Initial stability estimates for Ricci flow and three dimensional
Ricci-pinched manifolds

Miles Simon

(joint work with Alix Deruelle, Felix Schulze)

We consider the following setup:
(N, g(t))t∈(0,T ) is a smooth, complete, connected solution to Ricci flow ∂g

dt (t) =
−2Ric(g(t)) (introduced by Hamilton ’82) with

Ric ≥ 0 (a)

|Rm| ≤ c20
t

(b)

The evolution of distance under Ricci flow satisfies the following estimates (Hamil-
ton/Perelman)

dse
t−s ≥ dt ≥ ds − c0γ(n)

√
t− s (c)

for 0 < s < t where dt = d(g(t)).

A prominent example is:
Expanding Solitons with bounded non-negative curvature operator:
g(t) := t(Φt)

∗g(1), t ∈ (0,∞), where Φt : N → N are diffeomorphisms, and

R(g) ≥ 0.
The solution is in fact a Gradient soliton: there exists f : M → R such that

∂tΦt = −t−1∇gf ◦ Φt.
(c) implies there is a uniform non-degenerate limit

d0 := lim
tց0

d(g(t)).

We wish to compare regions of solutions.
We consider M1 ⊆ N1, M2 ⊆ N2, which are open, connected regions, (N1, g1(t))
(N2, g2(t)) t ∈ (0, T ) are smooth, complete , bounded curvature solutions to Ricci

flow satisfying |Rm(gi(t))| ≤ c20
t (a) ,Ric ≥ 0, (b) for i = 1, 2 and hence (c)

di,s ≥ di,t ≥ di,s − c0γ(n)
√
t− s (c)

for 0 < s < t where di,t = d(gi(t)), and di,0 := limt→0 di,t and there exists an
isometry ψ0 : (M1, d1,0) → (M2, d2,0). We assume two regularity conditions on
the initial data of the regions (Mi, di,0). the first one is : “all tangent cones are
(Rn, deuc)”. In the setting we are considering Cheeger-Colding/ Colding theory
implies this is equivalent to a uniform Reifenberg condition:

(R1) for all p ∈M and for all ε > 0, there exist r > 0 and a neighborhood

Up ⊂⊂M such that dGH(Bs−1d0
(x, 1),B(0, 1)) < ε, for all s < r, and for all

x ∈ Up such that Bd0(x, s) ⊂⊂ Up.
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The second regularity condition is:

(R2) For any x0 ∈M , there is a radius R = R(x0) > 0 such that

Bd0(x0, 4R) ⊂⊂M and points a1, . . . , an ∈ Bd0(x0, 3R) such that the map

D0 :

{

Bd0(x0, 4R) → Rn

x → (d0(a1, x)− d0(a1, x0), . . . , d0(an, x)− d0(an, x0)),

is a (1 + ε0) bi-Lipschitz homeomorphism on Bd0(x0, 2R).

In order to compare the solutions (M1, g1(t)) and (M2, g2(t)) we need a ‘good
gauge’. Our Gauge is the Ricci DeTurck Flow/Ricci Hamronic map heat flow:
We consider Dirichlet solutions ∂

∂tFi(·, t) = ∆gi(t)Fi(·, t) to Ricci Harmonic map
heat flow, g̃i(t) = (Fi(t))∗(gi(t)) and we compare g̃1(t) and g̃2(t).

Theorem 1. Let (Nn
i , gi(t))t∈(0,T ), i = 1, 2, be smooth solutions to Ricci flow

with Ric ≥ 0 and |Rm(·, t)| ≤ c20
t and hence (c). Assume that on M1 ⊆ N1 and

M2 ⊆ N2 there exists an isometry ψ0 : (M1, d1,0) → (M2, d2,0). We assume (R1),
(R2) hold on M1 and M2 and that x0 ∈M1. Then there exists an R0 ∈ (0, 1) and
T0 > 0 depending on n, ε0 and x0 and Dirichlet solutions to Ricci Harmonic map
heat flow F1 : Bd1,0(x0,

3
2R0)× [0, T0] → Rn with initial and boundary values given

by D0, and F2 : Bd2,0(ψ0(x0),
3
2R0)×[0, T0] → Rn, with initial and boundary values

given by D0◦ψ−1
0 , such that F1(t) and F2(t) are smooth, uniformly Bi-Lipschitz

diffeos for t > 0.
The solutions (g̃1(t))t∈(0,T0) and (g̃2(t))t∈(0,T0) to δ-Ricci-DeTurck flow defined

on B(0, R0) × (0, T0) satisfy the following: There exist C0 > 0 depending on n, ε0
and x0 such that if t ∈ (0, T0]:

|g̃1(t)− g̃2(t)|δ ≤ exp
(

−C0

t

)

, on B(0, R0).

An application: The Hamilton conjecture

Let (M, g) be a smooth, complete manifold with bounded and uniformly pinched
non-negative Ricci curvature, that is

R ≥ 0 and the eigenvalues λ1 ≤ λ2 ≤ λ3 of the Ricci curvature satisfy aR ≤ λ1 ≤
λ2 ≤ λ3 ≤ R where a > 0.

Hamilton Conjecture: Either (M, g) is compact or (M, g) is flat.
Assume by contradiction, (M, g0) is as above but not compact and not flat (*)

Previous works: John Lott (2019):

Let (M3, g0) be as in (*). Then there exists a (M, g(t))t∈[0,∞) solution to Ricci
flow with 0 < bR ≤ λ1 ≤ λ2 ≤ λ3 ≤ R for all t > 0 and

AV R(M, g(t)) = limr→∞
vol(Bg(t))(r)

r3 = v0 > 0 (is a non-zero constant inde-

pendent of time) and |Rm(·, t)| ≤ c20
t for all t ∈ [0,∞). Without loss of gen-

erality v0 < ω3 : otherwise the equality case of the Bishop-Gromov-Inequality
implies the space is flat, which leads to a contradiction. We blow down the solu-
tion, to obtain a solution (N1, g1(t))t∈(0,∞) satisfying Ric(t) ≥ 0 and |Rm(·, t)| ≤
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c20
t for all t ∈ [0,∞). Hence (c) is satisfied. The initial metric (N1, d1,0) is a
cone and has AV R = v0 < ω3. Using results from RCD/Alexandorv theory
(Sturm, Lott/Villani, (2005 →), Ketterer (2011), Ambrosio-Erbar-Gigli-Savaré-
Sturm (2011-2013), Cavelletti/Millman (2016), Alexandrov, Reshetnyak, (1900’s)
, Lytchack/Stadler (2018) ... ) we see that the cone is in fact a cone over an Alexan-
drov space with sec ≥ 1 and may be approximated in the Gromov-Hausdorff sense
by smooth spaces with curvature operator R ≥ 0. A result of Hochard shows that
both (N1, d1,0) and (N2, d2,0) satisfy (R1) away from the tip. Hence, using the
theory of Alexandrov Spaces (Gromov-Burgao-Perleman (1992) ) we see that also
(R2) is satisfied away from the tip.

Using previous results of the authors, we see that there is an expanding gradient
soliton (N2, g2(t)) coming out of (N1, d1,0). A result of Hochard shows that both
solutions (N1, g1(t)) and (N2, g2(t)) satisfy (R1) away from the tip, and so we may
compare the solutions away from the tip of the cone, using the first part of the
talk. This shows us that (N2, g2(t)) satisfies

Ric(g2(1)) ≥ λ0Rg2(1)g2(1)− exp (−C0f) g2(1), on N2.

where f is the potential of the expanding gradient soliton. Results of A. Deruelle
(2017) then show that (N2, g2(t)) is isometric to (R3, deuc). Hence (N2, d2,0) is
isometric to (R3, deuc) and hence (N1, d1,0) is isometric to (R3, deuc) and hence
(N1, g1(t)) is flat, and has asymptotic volume ratio equal to ω3, which is a contra-
diction to the fact that asymptotic volume ratio of (N1, g1(t))) is v0 < ω3.

The case of non-bounded curvature (Man-Chun Lee/Peter Topping):
In a paper which appeared shortly after ours, Man-Chun Lee/ Peter Topping
(2022) show that any smooth, complete non-compact Ricci pinched manifold
(M, g0) has a solution which remains Ricci pinched and satisfies (a),(b) and (c).
In particular |Rm(·, t)| ≤ c

t < ∞ for all t > 0 and hence, the results of this talk
imply that (M, g(t)) is flat for all t ∈ (0,∞) and hence (M, g0) is flat. That is,
the Conjecture of Hamilton is verified also in the case where one doesn’t assume,
that curvature is bounded.

Existence of Extremals and Rigidity for Optimal Sobolev Inequalities

Robin Neumayer

(joint work with Francesco Maggi and Ignacio Tomasetti)

Introduction. Sobolev inequalities, which relate the integrability or regularity
of a function to the integrability of its derivatives, are a fundamental tool across
analysis and geometry. A classical example is the optimal Sobolev inequality on
Euclidean space: for n ≥ 2 and p ∈ (1, n) fixed, any function u ∈ C∞

0 (Rn) satisfies

(1) ‖∇u‖Lp(Rn) ≥ Sn,p‖u‖Lp⋆(Rn) .

The critical exponent p⋆ = np/(n − p) is the unique value making the left- and
right-hand sides of (1) scale the same way under dilations u(x) 7→ u(x/α) for
α > 0. Optimal Sobolev constants often encode geometric information about
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their underlying domain or manifold. For example, Ledoux showed in [6] that if a
complete Riemannian manifold (Mn, g) with non-negative Ricci curvature admits
a Sobolev inequality of the form (1) with optimal constant Sg, then Sg ≤ Sn,p,
with Sg = Sn,p if and only if (Mn, g) is isometric to Euclidean space. A stability
result corresponding to this geometric comparison theorem was shown in [13]; for a
comparison theorem for optimal log-Sobolev constants, a different type of stability
was shown in [7] for manifolds with (almost) non-negative scalar curvature.

Let Ω ⊂ Rn be an open bounded domain with C1 boundary. The Sobolev inequal-
ity (1) holds for any u ∈ C∞

c (Ω), with the same optimal constant Sn,p. This is
just one slice of the global picture, though; functions that do not vanish on the
boundary also enjoy a Sobolev inequality once a term with a trace norm on ∂Ω
is included. The optimal form of such a Sobolev inequality is defined through a
family of variational problems with two critical constraints: for T ≥ 0, let

(2) ΦΩ(T ) = inf

{

(
∫

Ω

|∇u|p
)1/p

:

∫

Ω

|u|p⋆

= 1,

∫

∂Ω

|u|p♯

= T p♯

}

.

Here p♯ = (n − 1)p/(n − p) is the critical exponent making this norm scale the
same way as the other two; the critical scaling of the norms makes ΦΩ(T ) invariant
under dilations as well as translations of the domain Ω. By definition, ΦΩ(T ) is
the optimal constant in a family of Sobolev inequalities:

‖∇u‖Lp(Ω) ≥ ΦΩ(T )‖u‖Lp⋆(Ω) whenever ‖u‖Lp♯(∂Ω)

/

‖u‖Lp⋆(Ω) = T.(3)

The particular slice T = 0 is the inequality (1), i.e. ΦΩ(0) = Sn,p. A constant test

function shows that ΦΩ(I(Ω)
1/p♯

) = 0, where we set I(Ω) := Per(Ω)/|Ω|n−1
n .

In [10], Maggi and Villani proved a geometric comparison theorem for the opti-
mal Sobolev constants ΦΩ(T ), showing that balls have the worst optimal Sobolev
constant. More precisely, letting B = {|x| < 1} ⊂ Rn, they showed that

(4) ΦΩ(T ) ≥ ΦB(T ) for all T ∈ [0, I(B)1/p
♯

] .

They also proved existence and characterization of minimizers for the variational
problem ΦB(T ) for all T in this parameter range. Scaling shows that half spaces
have the best optimal Sobolev constant, i.e. ΦΩ(T ) ≤ ΦH(T ) for all T > 0, where
H = {x ·en > 0} ⊂ Rn. In [8], Maggi and the author established the existence and
characterization of minimizers of ΦH(T ) for all T > 0 (see also [3] when p = 2).

Main Results. Two main open problems about ΦΩ(T ) motivate the paper [9].

(A) When do minimizers of the variational problem (2) exist? Equivalently,
when do extremal functions exist in the sharp Sobolev inequality (3)?

(B) Does rigidity hold in the geometric comparison theorem (4)?

From scaling and the characterization of extremal functions of (1) due to Aubin [2]
and Talenti [12], it is easily shown that for T = 0, minimizers of (2) cannot exist
unless Ω = Rn. For T > 0, in [9] we use the characterization of ΦH(T ) from [8] to
prove that if existence fails on an open bounded domain Ω with C1 boundary, it
can only occur because a minimizing sequence concentrates at exactly one point
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located on ∂Ω. Assuming further regularity of ∂Ω and restricting the dimension,
we rule out this possibility and prove the following existence theorem.

Theorem 1. Fix p > 1 and n > 2p. Let Ω ⊂ Rn be an open bounded domain
with boundary of class C2. For every T ∈ (0,∞), a minimizer of (2) exists.

Question (B) was posed as an open problem in [10], and the proof of (4) implies
the following rigidity criterion: If Ω is connected and ΦΩ(T ) = ΦB(T ) for some

T ∈ (0, I(B)1/p
♯

), and additionally a minimizer of (2) exists for this T , then Ω is a
ball. The connectedness assumption is necessary for rigidity to hold; consider the
union of a ball and any other domain. Thanks to this rigidity criterion, we obtain
an affirmative answer to Question (B) under the assumptions of Theorem 1.

Corollary 2. Fix p > 1 and n > 2p. Let Ω ⊂ Rn be an open, bounded, connected

domain with boundary of class C2. If ΦΩ(T ) = ΦB(T ) for some T ∈ (0, I(B)1/p
♯

],
then Ω is a ball.

Finally, we obtain the following weak rigidity theorem without additional re-
strictions on n or ∂Ω.

Theorem 2. Fix n ≥ 2 and p ∈ (1, n). Let Ω ⊂ Rn be an open, bounded,
connected domain with boundary of class C1. If there exists T∗ > 0 such that
ΦΩ(T ) = ΦB(T ) for all T ∈ (0, T∗), then Ω is a ball.

The proof of Theorem 2 again uses the rigidity criterion above; based on
the characterization of minimizers of ΦH(T ) from [8] and an analysis of the
Euler-Lagrange equation asymptotically satisfied by a concentrating minimizing
sequence, we prove that minimizers of (2) exist for T > 0 sufficiently small under
the assumptions of Theorem 2.

Open problems. There are quite a few open problems related to this program.
First, can one show Theorem 1 in all dimensions? In [9], we build an explicit
(“Aubin-type” [1]) test function and expand its energy to rule out concentration.
The dimension restriction comes from the tail decay rate of extremals of ΦH(T );
this issue is familiar from the Yamabe problem and one may hope to construct a
“Schoen-type” [11] global test function to show existence in low dimensions.

Second, under the assumptions of Corollary 2, is the comparison theorem (4) stable,

i.e. if ΦΩ(T ) ≈ ΦB(T ) for some T ∈ (0, I(B)1/p
♯

], then is Ω close to a ball in a
suitable sense? A starting point here is to analyze the mass transportation proof
of (4) from [10] and to show that the optimal transport map taking a minimizer
of ΦΩ(T ) to a minimizer of ΦB(T ) is close to the identity.

Finally, when p = 2, the variational problem (2) is related to the Yamabe problem
for manifolds with boundary [4, 5], where one seeks a conformal metric of constant
scalar curvature and constant mean curvature boundary on a given Riemannian
manifold with boundary. In the conformally flat case (M, g) = (Ω, geuc), this is
equivalent to showing the existence of critical points of the energy

∫

Ω |∇u|2 +

cn
∫

∂Ω
hu2 in the same constraint space as in (2). Here h is the mean curvature of
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∂Ω. Can our analysis in [9] be refined to produce a one-parameter family {gT}T>0

of Yamabe metrics with the prescribed ratio vol(∂M, gu)/vol(M, gu) = T ?
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An improved 4-periodicity theorem and its applications to positively
curved manifolds with symmetry

Jan Nienhaus

When studying positively curved manifolds with torus actions one important tool is
the 4-periodicity theorem of Lee Kennard [1]. It states that wheneverNn−k −֒→Mn

is a dim(N)-connected inclusion of submanifolds with k ≤ n
3 , then H∗(M,Q) is

4-periodic, i.e. is a rational sphere or admits an element x ∈ H4(M,Q) such that
multiplication with x is an isomorphism in all degrees. This is a main ingredient
of Kennard-Wiemeler-Wikling’s rational cohomology classification of fixed point
components of T 5-actions on positively curved manifolds [2]. They are there shown
to have the cohomology rings of spheres or complex or quarternionic projective
spaces. In particular, positively curved manifolds with symmetry rank at least 5
have χ(M) > 0 in even dimensions.

When trying to improve these results, one finds the k ≤ n
3 -condition to be the

main obstacle for going to T 4-symmetry. However, S8 ⊂ CaP2 gives an example
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with k = n
2 that is not 4-periodic. To circumvent this counterexample, one has

to incorporate more geometric information: If N ⊂M is a fixed point component
of some S1-action, as is always the case in the applications, the isotropy action
induces a complex structure on the normal bundle VN . It turns out that this is
already enough additional data. We prove that forN ⊂M dim(N)-connected with
k ≤ n

2 and complex normal bundle, H∗(M,Q) is 4-periodic. The main new idea is
to move relations arising from the action of the Steenrod algebras on H∗(BU,Zp)
to the cohomology of M . Using this new 4-periodicity theorem we prove that
fixed point components of effective isometric T 4-actions on positively curved closed
manifolds have the rational cohomology ring of spheres or complex/quarternionic
projective spaces. In particular, χ(M) > 0 if n is even.
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Inverse mean curvature flow and the relation to fast diffusion

Gerhard Huisken

(joint work with Panagiota Daskalopoulos)

The lecture explores inverse mean curvature flow

∂

∂t
F =

1

H
ν, F (·, t) : Rn → Rn+1,

ν exterior unit normal, H > 0 mean curvature, for initial data that are entire
graphs Mn

0 = graphu0 with u0 : R
n → R. We prove long time existence if the

initial data have super-linear growth

u0(x) → ∞, |∇u(x)| → ∞ as |x| → ∞

such as u(x) = |x|q, q > 1 and are δ-starshaped around some point x0 ∈ Rn+1:

0 < δ ≤ H〈F − x0, ν〉
In case of linear growth, assuming u0 is convex and

α0|x| ≤ u0(x) ≤ α0|x|+ k, 0 < k ∈ R

0 < c0 ≤ H · u ≤ c1 <∞
We show that a fast diffusion effect occurs and u(·, t) converges in finite time to a

horizontal plane in C1,α
loc with height h ∈ (0, k).
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Stability of Einstein metrics and effective hyperbolization in large
Hempel distance

Ursula Hamenstädt

(joint work with Frieder Jäckel)

The talk is devoted to the explaining the following result and its applications [2].
In its formulation, the thick part of a Riemannian manifold M is the subset of all
points of injectivity radius bigger than a fixed Margulis constant for the dimension
and the given curvature bounds. Its complement is the thin part of M .

Theorem 1. For ǫ > 0, b > 1, δ < 2 − b consider a finite volume Riemannian
manifold (M, g) of dimension 3 with the following curvature properties.

(1) The sectional curvature is contained in the interval [−1− ǫ,−1 + ǫ].
(2) If d is the distance function, then for any x ∈ M , the Ricci curvature

satisfies

ebd(x,Mthick)|
∫

e−(2−δ)d(x,y)|Ric + 2g|2dy| ≤ ǫ2.

(3) In the thin part of M , the curvature is constant −1.

There exists ǫ0 such that if ǫ ≤ ǫ0, then there exists a metric of constant curvature
−1 which is close to g in the C2-topology.

The result extends an unpublished result of Tian [3] and also relies on earlier
work of Bamler [1].

A component of the thin part of a hyperbolic 3-manifold either is a solid torus
whose core curve is a short closed geodesic, or a cusp, which is a submanifold
diffeomorphic to T 2× [0,∞) where T 2 is a two-torus. In particular, the boundary
of a Margulis tube is diffeomorphic to the boundary of a cusp. As a consequence,
Margulis tubes can be surgered from the manifold and replaced by cusps, and
cusps can be surgered from the manifold and replaced by Margulis tubes.

We explain how Theorem 1 can be used to proof the following drilling and
filling theorem, improving earlier results of Brock and Bromberg, and Hodgson
and Kerckhoff with a different proof.

Theorem 2.

(1) The manifold obtained from drilling sufficiently sparsely distributed Mar-
gulis tubes with sufficiently short core geodesics from a hyperbolic 3-
manifold M admits a finite volume hyperbolic metric C2-close to the orig-
inal metric on the complement of the surgered tubes.

(2) The manifold obtained from removing sufficienlty sparsely distributed
cusps from a hyperbolic 3-manifoldM and gluing in solid tori whose merid-
ians correspond to sufficiently long curves on the boundary tori admits a
finite volume hyperbolic metric which is C2-close to the original metric on
the complement of the filled cusps.

We discuss how this drilling and filling result enters into the proof of the fol-
lowing second application of Theorem 1.



Geometrie 1569

The curve graph of a closed surface is the graph whose vertices are simple
closed curves and where two such curves are connected by an edge of length one
if they can be realized disjointly. The Hempel distance of a closed 3-manifold M ,
glued from two handlebodies H1, H2 of genus g ≥ 2 with an orientation reversing
diffeomorphism f : ∂H1 → ∂H2, is the minimal distance in ∂H1 = ∂H2 between
a diskbounding simple closed curve in H1 and a diskbounding simple closed curve
in H2.

Theorem 3. For all g ≥ 2 there exists numbers R = R(g) > 0, C = C(g) > 0
with the following property. If the Hempel distance δ of a closed 3-manifold M ,
glued from two handlebodies of genus g, is at least R, then M admits a hyperbolic
metric, and the volume of this metric is at least Cδ.

A much more general result in this direction is due to Perelman, but the proof
of hyperbolization we give and the volume estimate are new.
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Non-compact Einstein-manifolds with symmetry

Christoph Böhm

(joint work with Ramiro Lafuente)

One of the applications of Theorem 3 yields the proof of the long standing

Theorem 1 (Alekseevskii Conjecture). A homogeneous Einstein manifold (Mn, g)
with negative Einstein constant is diffeomorphic to Rn.

The conjecture was known for n ≤ 5 and n = 7 (Arroyo and Lafuente, 2017)
and in certain cases (Jablonski, 2015). Is was not known whether SlC(2) does
admit a homogeneous Einstein metric. It is still open, whether SlC(2) does admit
a homogeneous metric with ric(g) < 0. The case SlR(3) was also open. It was
known that SlR(3) admits homogeneous metrics with ric(g) < 0. Homogeneous
Einstein metrics on Rn are isometric to Einstein solvmanifolds [BL22].

Conjecture (Dynamical Alekseevskii Conjecture). Let Mn be a homogeneous,
simply-connected manifold which is not contractible. Then all homogeneous Ricci
flow solutions on Mn have finite extinction time.

It is known that such homogeneous spaces Mn admit a homogeneous metric
g+ with positive scalar curvature (for each representation Mn = G/H indeed).
The above conjecture then claims, that for any other homogeneous initial metric
g0 on Mn, possibly having negative scalar curvature or even negative Ricci cur-
vature, the corresponding Ricci flow solution has finite extinction time. Clearly,
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a homogeneous Einstein metric g− with negative Einstein constant, which does
not exist by Theorem 1, would provide a counterexample to the dynamical Alek-
seevskii Conjecture. The dynamical Alekseevskii Conjecture is known to be true
for compact homogeneous spaces [B15].

Surprisingly, to prove the Alekseevskii Conjecture, we have to consider the
following much more general situation. We will assume that a (connected) Lie
group G acts on (Mn, g) isometrically (almost effectively and properly) and that
all orbits are principal. In this case the orbit space

B =Mn/G

is a smooth manifold (no boundary, dimB = d = n−dimG). We call an isometric
action of G on (Mn, g) principal with compact base if all orbits are principal and
the orbit space B is compact.

Example: Let B be a compact (smooth) manifold, G be a non-compact Lie
group and set

Mn := G×B .

Theorem 2. If (Mn, g) admits an isometric G-principal action with compact base
and if ric(g) < 0, then G is non-unimodular or semisimple.

A Lie group G is unimodular if the Haar measure of G is right-invariant. The
subgroup ∆(m) of upper triangular matrices in SlR(m) is non-unimodular. Nilpo-
tent Lie groups are unimodular. The subgroup N(m) of ∆(m) with diagonal
elements all equal to 1 is nilpotent. A Lie group G is semisimple if and only if the
nilradical N , (the largest normal nilpotent subgroup of G) vanishes. Semisimple
Lie groups are classified, and they are unimodular. SlR(m) is semisimple. The
case dimB = 0 is due to Dotti-Miatello (1984).

Theorem 3. If an Einstein manifold (Mn, g) with λ = −1 admits an isometric
G-principal action with compact base, G non-unimodular, then the nilradical N
of G acts polarly on Mn and the N -orbits are nilsolitons.

An action is polar if and only if the horizontal distributionH = V⊥ is integrable,
Vp = Tp(N.p) for all p ∈ Mn. A nilsoliton is a left-invariant metric on N , which
is a (non-gradient) Ricci soliton. Theorem 3 generalizes the famous result of J.
Lauret [L10] that Einstein solvmanifolds are standard. There exist examples of
product Einstein manifolds (Mn = G×B, g) as in Theorem 3.
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Under the above assumptions, considering the Riemannian submersion given
by the N -action on (Mn, g), the Ricci tensor ric(g) of (M, g) is given by

ric(U,U) = ricF (U,U) + 〈LZU,U〉

+〈AU,AU〉 −
d

∑

j=1

〈(∇Xj
L)Xj

U,U〉 ,

ric(U,X) = −
n−d
∑

i=1

〈(∇Ui
T )Ui

U,X〉+ 〈∇UZ,X〉

+

d
∑

j=1

〈(∇Xj
A)Xj

X,U〉 − 2 〈AX , TU 〉,

ric(X,X) = ric(X̄, X̄)− 2 ‖AX‖2 − ‖LX‖2 + 〈∇XZ,X〉 .
Here LX denotes the shape operator of the fibres F in the normal direction X ; X
horizontal vector field, often even basic. Note: Basic vector fields are N -invariant.
Z denotes the mean curvature vector of the fibres F . ricF denotes the Ricci tensor
of the fibres, (F, gF = g|TF ). ric denotes the Ricci tensor of the base (B, ḡ). Note
that apriori we know nothing about the geometriy of the base. A denotes the
A-tensor, measuring the integrability of the horizontal distribution.

We are able to obtain sharp estimates for the above equations, using sharp
estimates for ricF , coming from real GIT (geometric invariant theory), a gener-
alized Helmholtz-decomposition for smooth vector fields on compact Riemannian
manifolds and the Bochner formula for ric.

If G is semisimple, we use the Iwasawa decomposition of G, which enables us
to apply Theorem 3 also in this case.
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Harmonic maps and extremal Schrödinger operators

Daniel Stern

(joint work with Mikhail Karpukhin)

Questions about the existence and regularity of harmonic maps have inspired many
important developments in geometric analysis since the 1960s, beginning with the
foundational work of Eells and Sampson [EeSa64] proving existence of harmonic
maps minimizing the energy in any homotopy class of maps from a given closed
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manifold M to a closed target N of nonpositive sectional curvature. In the 1970s,
major breakthroughs in the existence theory for harmonic maps from surfacesM2

were made by several authors, most notably Sacks and Uhlenbeck [SaUhl77].
In the special case of sphere-valued maps from surfaces u : M2 → Sk, it was

observed in [ESI08, Na96] that harmonic maps correspond to critical points for
the eigenvalue functionals

λ̄j(M, g) := λj(∆g) · Area(M, g)

in a fixed conformal class [g], via the assignment u 7→ gu = 1
2 |du|2gg. In particu-

lar, maximization of λ̄j in a given conformal class gives rise to a harmonic map
u : (M2, [g]) → Sk into some sphere Sk . In an earlier paper [KS20], we studied
a natural min-max construction for harmonic maps M2 → Sk from surfaces to
spheres, and showed that the construction stabilized for k sufficiently large, yield-
ing a metric maximizing the normalized first Laplace eigenvalue λ̄1(M, g) in a given
conformal class. In addition to giving a new existence proof for λ̄1-maximizing
metrics (previously established in [Pet14] and [KNPP20]), our approach yielded
regularity and stability results for a generalized version of the λ̄1-maximization
problem [KNPS], with applications to variational problems for Steklov eigenvalues
and free boundary minimal surfaces [KS21].

The initial motivation for the work described in this talk was an attempt to gen-
eralize the results of [KS20] to higher dimensions–namely, to produce a canonical
family of sphere-valued harmonic maps on any Riemannian manifold, and relate
these maps to a spectral optimization problem generalizing the conformal maxi-
mization of λ̄1(M, g) from the two-dimensional setting. In the course of solving this
problem, we also obtained new existence and partial regularity results for harmonic
maps from higher-dimensional manifolds to a larger class of targets containing the
round spheres: in particular, while the results of [EeSa64] deliver a satisfactory ex-
istence theory for harmonic maps from higher-dimensional manifolds into targets
of nonpositive sectional curvature, our results show that the space of harmonic
maps from higher-dimensional manifolds into targets satisfying certain curvature
positivity conditions can be fruitfully explored via Morse-theoretic methods.

Building on work of Lin [Lin99] and Hsu [Hsu05], our work begins with the
observation that, for any closed manifold Nk containing no stable minimal two-
spheres–e.g., 3-manifolds N of positive Ricci curvature, or 4 ≤ k-manifolds Nk

with positive isotropic curvature–the space of stationary harmonic maps satisfy-
ing simultaneous bounds on energy E(u) and Morse index indE(u) is strongly
compact in the W 1,2 sense. Moreover, similar compactness results hold for certain
relaxations of the harmonic map problem of the kind appearing in [CS], allowing
us to produce stationary harmonic maps with Morse index bounds by min-max
methods. As an application, we obtain the following existence result.

Theorem 1. [KS22] Let (Mn, g) be an arbitrary closed Riemannian manifold
of dimension n ≥ 3, and let (N, h) be a closed Riemannian manifold containing
no stable minimal 2-spheres. Then if πℓ(N) 6= 0 for some ℓ ≥ 3, there exists a
nonconstant stationary harmonic map u :M → N of Morse index indE(u) ≤ ℓ+1,
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smooth away from a singular set Sing(u) of dimension

dim(Sing(u)) ≤ n−m ≤ n− 3,

where m is the smallest integer for which there exists a nonconstant stable 0-
homogeneous harmonic map φ : Rm → N .

In the special case where N = Sk for k ≥ 3, work of Schoen-Uhlenbeck
[SchUhl84] and Lin-Wang [LW] gives improved partial regularity results for lo-
cally stable stationary harmonic maps. Combining their work with the preceding
theorem in the case N = Sk, ℓ = k, we obtain the following result, generalizing
the construction of [KS20] to higher dimension.

Theorem 2. [KS22] On any closed Riemannian manifold (Mn, g) of dimension
n ≥ 3, for every k ≥ 3 there exists a nonconstant stationary harmonic map
uk : M → Sk of Morse index indE(u) ≤ k + 1, smooth away from a singular set
Sing(u) of dimension

dim(Sing(uk)) ≤ n− k − 1 for 3 ≤ k ≤ 5,

dim(Sing(uk)) ≤ n− 6 for 6 ≤ k ≤ 9,

and
dim(Sing(uk)) ≤ n− 7 for 10 ≤ k.

In particular, on manifolds (Mn, g) of dimension 3 ≤ n ≤ 5, these maps are
smooth as soon as k ≥ n. Moreover, in these dimensions, we can indeed relate these
harmonic maps to an intrinsic variational problem for certain elliptic operators on
(Mn, g), generalizing the conformal maximization of λ̄1 in the surface case. By
work of Grigor’yan-Netrusov-Yau [GNY] and Grigor’yan-Nadirashvili-Sire [GNS],
on any Riemannian manifold (Mn, g), the integral

∫

V of a bounded function
V ∈ L∞(M) can be bounded above in terms of the geometry (M, g) and the index
ind(LV ) of the associated Schrödinger operator LV = ∆g − V , where ∆g = d∗d is
the positive-spectrum Laplacian on (M, g). In other words, for every m ∈ N, the
quantity

Vm(M, g) := sup{
∫

M

V dvolg | ind(LV ) ≤ m}
is a finite geometric invariant. In dimension two, one can see using the conformal
covariance of the Laplacian that

Vm(M, g) = sup
g̃∈[g]

λ̄m(M, g̃),

and the existence of potentials realizing Vm is equivalent to the existence of con-
formally maximizing metrics for λ̄m(M, g).

After a delicate analysis showing that the harmonic maps uk : Mn → Sk

constructed above stabilize in a certain sense as k → ∞, we are able to show the
following.

Theorem 3. [KS22] On any closed manifold (Mn, g) of dimension 3 ≤ n ≤ 5,
there exists a Schrödinger operator LV of smooth, nonnegative potential V ∈
C∞(M) with index ind(LV ) = 1 such that V1(M, g) =

∫

V . For k sufficiently large,
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we in fact have V = |duk|2g, where uk : Mn → Sk is the harmonic map of index
indE(uk) ≤ k+1 constructed in the previous theorem, and any other Schrödinger
operator realizing V1(M, g) must arise in the same way from the energy density of
a smooth sphere-valued harmonic map.
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Prescribed Mean Curvature Min-Max Theory in Some Non-compact
Manifolds

Liam Mazurowski

Let (M, g) be a Riemannian manifold and let h : M → R be a smooth function.
Let Ω be an open region in M with smooth boundary Σ. The hypersurface Σ is
said to have mean curvature prescribed by h provided HΣ(x) = h(x)ν(x) for every
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x ∈ Σ. Here HΣ denotes the mean curvature vector of Σ and ν is the inward
pointing normal as determined by Ω.

A basic problem in differential geometry is to construct prescribed mean curva-
ture surfaces in a given manifold M . One approach to this problem is variational:
a hypersurface Σ = ∂Ω has mean curvature prescribed by h provided Ω is a critical
point of the functional

Ah(Ω) = Area(∂Ω)−
∫

Ω

h.

Thus to find prescribed mean curvature surfaces inM , it is enough to find (smooth)
critical points of the Ah functional. In the minimal case h ≡ 0, the Almgren-
Pitts min-max theory is a powerful tool for finding critical points of the area
functional. It was first developed in the early 1980s by Almgren [1], Pitts [5], and
Schoen-Simon [6] and has since been extensively developed by Marques, Neves, and
others (see, for example, [2] and [3]). Their combined work gives a very detailed
understanding of the Morse theory of the area functional on a closed manifold.

In the case of functions h, an analogous min-max theory was developed only
comparatively recently by Zhou and Zhu (see [7], [8]). They proved the following
result.

Theorem 1 (Zhou and Zhu). Assume M is a closed Riemannian manifold of
dimension between 3 and 7. Then for an admissible function h : M → R, there
exists a smooth, almost-embedded hypersurface Σ in M with mean curvature
prescribed by h.

Here the class of admissable functions includes the constant functions as well
as functions which are never zero. Moreover, a generic choice of function h is
admissable.

In this talk, we discuss a technique for applying Zhou and Zhu’s min-max the-
ory on certain non-compact manifolds. As an application, we give the following
min-max theorem for constructing constant mean curvature surfaces in an asymp-
totically flat manifold [4].

Theorem 2. Assume (M3, g) is a complete, asymptotically flat manifold with no
boundary. Fix a constant c > 0. Assume the one parameter min-max value ω
satisfies

(1) ω <
4π

3

(

2

c

)2

.

Then there exists a smooth, closed, almost-embedded hypersurface Σ of constant
mean curvature c in M .

Here the one parameter min-max value ω is defined by

ω = inf
{Ωt}t∈[0,1]

[

sup
t∈[0,1]

Ac(Ω)

]

where the infimum is taken over all smoothly varying families of open sets
{Ωt}t∈[0,1] with Ω0 = ∅ and Ac(Ω1) < 0.
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Finally we discuss some geometric conditions on M which may imply that
hypothesis (1) holds. In particular, we conjecture that (1) holds whenever M has
non-negative scalar curvature and is not isometric to Euclidean R3.
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On ALF Gravitational Instantons

Olivier Biquard

(joint work with Paul Gauduchon)

A gravitational instanton is a 4-dimensional Riemannian manifold (M4, g), which
is complete, Ricci flat, and has finite energy:

∫

M

|Rm|2 <∞.

By Cheeger-Tian [3] one must have |Rm| = O(r−2), where r is the distance to a
base point.

There are four classes of gravitational instantons, depending on the dimension
of asymptotic cones: dimensions 4, 3, 2, 1 correspond respectively to ALE (Asymp-
totically Locally Euclidean), ALF (Asymptotically Locally Flat), ALG and ALH
gravitational instantons.

Kähler gravitational instantons (which is almost the same as hyperKähler grav-
itational instantons) are classified or almost classified: this began more than 30
years ago with the classification by Kronheimer [6] of ALE hyperKähler gravita-
tional instantons and is being finished only nowadays after lots of works, see in
particular the recent work of Sun and Zhang [8].

In this work we are interested in non Kähler gravitational instantons. The first
examples are older and come from physics: the Schwarzschild metric, the Kerr
metrics (of which Schwarzschild is a special case), the Taub-bolt metric. These
metrics are ALF or even AF (Asymptotically Flat) in the following sense: we say
that a Riemannian manifold (M4, g) is ALF if
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• it has one end diffeomorphic to (A,+∞)× L, where L is S1 × S2 (in this
case we say that (M4, g) is AF), or S3, or a finite quotient;

• there is a triple (η, T, γ) defined on L, where η is a 1-form, T a vector field
such that η(T ) = 1 and T ydη = 0, and γ is a T -invariant metric on the
distribution ker η;

• the transverse metric γ has constant curvature +1;
• the metric g has the behaviour

(1) g = dr2 + r2γ + η2 + h, with |∇kh| = O(r−1−k),

where γ is extended to the whole TL be deciding that ker γ is generated
by T , and the covariant derivative ∇ and the norm are with respect to the
asymptotic model dr2 + r2γ + η2.

The meaning of formula (1) is that at infinity the metric g looks locally like a
product R3 × S1. But this is only a local picture, in particular the ‘collapsed
direction’ T (this is locally the factor S1) does not need to have closed orbits.

A breakthrough in the subject was made by Chen and Teo [5] who found a
new family of AF gravitational instantons by finding explicit formulas, and our
work originated from an attempt to understand better this example, and maybe
construct other examples.

The Kerr metrics are defined on R2×S2, and the Chen-Teo metrics are defined
on a (complex) blowup of this manifold at a point. (The Taub-bolt metric is
defined on the complex blowup of R4 at the origin). They are all toric, that is
have an isometric action of a 2-torus.

Let us say that a metric is Hermitian if it is conformal to a Kähler metric. All
the classical examples (Kerr, Taub-bolt) are Type D, which means that they are
Hermitian for both orientiations. It was observed by Andersson and Aksteiner
[1] that the Chen-Teo metrics are also Hermitian, but only for one orientation.
We can also add to this list the Taub-NUT metric, which is an hyperKähler ALF
metric on R4, but it is also Hermitian non-Kähler with respect to the opposite
orientation.

In [2] we classify these metrics and prove that no new smooth example can
exist; nevertheless we also produce new examples with conical singularities along
2-spheres:

Theorem A.
1) Suppose (M4, g) is a smooth Hermitian, toric, ALF gravitational instanton.

If g is not Kähler, then g is a Kerr metric, a Chen-Teo metric, the Taub-NUT
metric (with the orientation opposed to the hyperKähler orientation) or the Taub-
bolt metric.

2) There exist an infinite number of Hermitian, toric, ALF gravitational instan-
tons (with infinitely many different topologies), with conical singularities along
2-spheres.

There is a curious duality between this classification of toric, Hermitian, Ricci
flat metrics, and that of compact, Hermitian, Einstein 4-manifolds with positive
Einstein constants [7, 4]: the examples are CP 2 (with the reverse orientation),
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the Page metric on the blowup of CP 2 at one point, and the Chen-LeBrun-Weber
metric on the blowup of CP 2 at two points. This is exactly similar to the Taub-
NUT, Kerr, and Chen-Teo metrics, but we have found no explanation for this
unexpected duality. (The Taub-bolt does not seem to fit in the picture but is
actually a degeneration of the Chen-Teo family).

The proof of the Theorem is based on two reductions:

(1) A reduction to toric Kähler geometry: it turns out that the conformal
Kähler metric has to be extremal and Bach flat, both conditions having
nice interpretations in the setting of toric Kähler geometry and the formal-
ism of Delzant polytopes, symplectic potential, etc. conversely, a suitable
extremal, Bach flat, toric Kähler metric will give rise to a gravitational in-
stanton, so the problem is completely reduced to a problem in toric Kähler
geometry.

(2) Despite everything known in Kähler geometry on the extremal metric
problem (Yau-Tian-Donaldson conjecture), it turns out that it is not pos-
sible to use this theory in our case; fortunately the Bach flat equation in
addition to the extremal Kähler equation is so strong that solutions can be
given in terms of an ansatz of Tod [9], of which we give a proof in terms of
older ansatz of LeBrun and Ward. It then turns out that the solutions are
generated from an axisymmetric harmonic function on R3, and the singu-
larity on the axis gives a convex, piecewise, linear function on R. From
this combinatorial object we can reconstruct the whole structure and in
particular find when the corresponding Ricci flat metric is smooth, or has
conical singularities. This leads to the classification theorem.
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Conformally Invariant Random Geometry on Manifolds
of Even Dimension

Karl-Theodor Sturm

(joint work with Lorenzo Dello Schiavo, Ronan Herry, Eva Kopfer)

For large classes of even-dimensional Riemannian manifolds (M, g), we construct
and analyze conformally invariant random fields. These centered Gaussian fields
h = hg, called co-polyharmonic Gaussian fields, are characterized by their covari-
ance kernels k which exhibit a precise logarithmic divergence:

∣

∣k(x, y)−log 1
d(x,y)

∣

∣≤
C. They share the fundamental quasi-invariance property under conformal trans-
formations: if g′ = e2ϕg, then

hg′
(d)
= enϕ hg − C · Volg′

with an appropriate random variable C = Cϕ.
In terms of the co-polyharmonic Gaussian field h, we define the Liouville Quan-

tum Gravity measure, a random measure on M , heuristically given as

dµh
g (x) := eγh(x)−

γ2

2k(x,x) dVolg(x) ,

and rigorously obtained as almost sure weak limit of the right-hand side with h
replaced by suitable regular approximations hℓ, ℓ ∈ N. These measures share a
crucial quasi-invariance property under conformal transformations: if g′ = e2ϕg,
then

dµh′

g′ (x)
(d)
= eF

h(x) dµh
g (x)

for an explicitly given random variable Fh(x).
In terms on the Liouville Quantum Gravity measure, we define the Liouville

Brownian motion on M and the random GJMS operators. Finally, we present an
approach to a conformal field theory in arbitrary even dimensions with an ansatz
based on Branson’s Q-curvature: we give a rigorous meaning to the Polyakov–
Liouville measure

dν∗
g(h) =

1

Z∗
g

exp

(

−
∫

ΘQgh+meγhdVolg

)

exp
(

−an
2
pg(h, h)

)

dh

for suitable positive constants Θ,m, γ and an, and we derive the corresponding
conformal anomaly.

The set of admissible manifolds is conformally invariant. It includes all compact
2-dimensional Riemannian manifolds, all compact non-negatively curved Einstein
manifolds of even dimension, and large classes of compact hyperbolic manifolds
of even dimension. However, not every compact even-dimensional Riemannian
manifold is admissible.

Our results concerning the logarithmic divergence of the kernel k — defined as
the Green kernel for the GJMS operator on (M, g) — rely on new sharp estimates
for heat kernels and higher order Green kernels on arbitrary compact manifolds.
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The geometry of metrics with λ1(−∆ + 1

2
R) > 0 and applications

Chao Li

(joint work with Otis Chodosh)

Consider a smooth Riemannian manifold (Mn, g) (possibly with nonempty smooth
boundary). Let R denote the scalar curvature of g. We study the condition

(1) λ1(−∆+ 1
2R) > 0

on (M, g). Here λ1 denotes the first eigenvalue of the self-adjoint elliptic operator,
with Dirichlet boundary condition if ∂M 6= ∅.

One motivation of investigating (1) comes from the study of two-sided stable
minimal hypersurfaces in manifolds with positive scalar curvature. Indeed, suppose
Mn → (Xn+1, gX) is a two-sided stable minimal immersion (here stablility means
δ2|M |(f) ≥ 0 for any normal variation f vanishing on ∂M). A well-known trick
due to Schoen–Yau implies that

∫

M

|∇f |2 + 1

2
RMf

2 ≥
∫

M

1

2
RXf

2, ∀f ∈ C1
0 (M).

Thus, the variational characterization of the first eigenvalue implies

λ1(−∆+ 1
2RM ) ≥ inf

M
RX ,

and hence (1) holds if RX > 0 everywhere.
A quick observation here is that when n ≥ 3, the conformal Laplacian of (Mn, g)

is −∆+ n−2
4(n−1)R. Since

n−2
4(n−1) <

1
2 , we have that

λ1(−∆+ 1
2R) > 0 ⇒ λ1(−∆+ n−2

4(n−1)R) > 0.

Therefore, (1) implies that (M, g) is conformal to a manifold with positive scalar
curvature. This motivates us to study condition (1) using techniques from positive
scalar curvature.

Indeed, joint with Chodosh [1], we showed the following metric property for
3-manifolds with (1), which extends earlier results of Gromov [7].

Theorem 1. Suppose (M3, g) is a 3-manifold, possibly with compact nonempty
boundary, such that

(2) λ1(−∆+ 1
2R) ≥ λ > 0,
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and suppose that there exists p ∈ M such that dg(p, ∂M) ≥ 5π√
λ
. Then there

exists an open set Ω containing ∂M , Ω ⊂ B 5π√
λ

(∂M), such that each connected

component of ∂Ω \ ∂M is a 2-sphere with area at most 8π
λ and intrinsic diameter

at most 2π√
λ
.

Previously, Theorem 1 was been applied to study the topology of manifolds with
positive scalar curvature [1, 4]. We now apply Theorem 1 to an entirely different
problem - the stable Bernstein conjecture for minimal surfaces.

Conjecture 2. A complete, two-sided, stable minimal immersionMn → (Rn+1, δ)
is flat.

It is well-known that the conjecture is falst when n ≥ 7. Previous, the case when
n = 2 was solved independently by Fischer-Colbrie–Schoen [6], do Carmo–Peng
[5] and Pogorelov [8]. The case when n = 3 was conjectured in the affirmative by
Schoen, and was recently verified by Chodosh and the author [2]. When 2 ≤ n ≤ 5,
Conjecture 2 was proved by Schoen–Simon–Yau [9] with the additional assumption
that M has intrinsic Euclidean volume growth, that is,

sup
ρ>0

|BM (0, ρ)|
ρn

<∞.

In [3], we studied the n = 3 case of Conjecture 2 using Theorem 1, and showed
the following result.

Theorem 3. Let M3 → R4 be a complete, two-sided, simply connected, stable
minimal immersion, 0 ∈M . Then

|BM (0, ρ)| ≤
(

32π

3

)
3
2 e

30π√
3

6
√
π
ρ3,

for all ρ > 0.

When combined with the classical result due to Schoen–Simon–Yau [9], this
gives an alternative proof of our recent stable Bernstein theorem when n = 3.
Moreover, the approach is flexible enough to handle stable solutions to anisotropic
functional. Precisely, consider Φ : R4 \ {0} → (0,∞) a 1-homogeneous C3

loc

function. For M3 → R4 a two-sided immersion with a chosen unit normal vector
field ν(x), consider the anisotropic area functional

Φ(M) =

∫

M

Φ(ν(x))dx.

Theorem 4. Assume that Φ satisfies

|v|2 ≤ D2Φ(ν)(v, v) ≤
√
2|v|2,

for any v ∈ ν⊥. Consider M3 → R4 a complete, two-sided, Φ-stationary and
stable immersion. Suppose 0 ∈ M , and M is simply connected. Then there exist
explicit constants V0 = V0(‖Φ‖C1(S3)), Q > 0 such that

|BM (0, ρ)| ≤ V0ρ
3, for all ρ > 0.
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Combined with a previous of Winklmann [10], Theorem 4 implies the stable
Bernstein theorem for anisotropic minimal hypersurfaces in R4, as long as Φ is
C4-close to the area functional (with explicit numerical estimates on the closeness).
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Short-time existence for Ricci flow

Peter Topping

(joint work with Hao Yin, Man-Chun Lee)

It has been understood since the beginning of Ricci flow theory [4] that given a
smooth Riemannian metric on a closed smooth manifold, there exists a unique
smooth Ricci flow continuation. However for many applications it is necessary to
have existence for noncompact underlying manifolds, and/or with initial data that
is rough or uncontrolled in one sense or another. In the talk I explained several
instances of this.

It is a long-standing open problem as to whether one can start the Ricci flow
with an arbitrary complete three-dimensional Riemannian manifold with nonneg-
ative Ricci curvature. This problem became well known starting in the 1980s
because being able to do so would give a classification of complete three-manifolds
with non-negative Ricci curvature via an approach of Hamilton and Shi. Recently,
with Man-Chun Lee, we proved much more than this if we also assume a Ricci
pinching condition. More precisely, we proved:

Theorem 1. Suppose (M3, g0) is a complete non-compact three-dimensional Rie-
mannian manifold with Ric(g0) ≥ εR(g0) ≥ 0 for some ε > 0, where R is the
scalar curvature. Then there exists a = a(ε) > 0 such that the Ricci flow has a
complete long-time solution g(t) starting from g0 so that
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(a) Ric(g(t)) ≥ εR(g(t)) ≥ 0;
(b) |Rm(g(t))| ≤ at−1;

for all (x, t) ∈M × (0,∞).

As a corollary we were able to extend the applicability of earlier work of Lott
[5] and Deruelle-Schulze-Simon [2] in order to fully settle Hamilton’s pinching
conjecture without additional hypotheses:

Corollary 2 (Hamilton’s pinching conjecture). Suppose (M3, g0) is a complete
(connected) three-dimensional Riemannian manifold with Ric ≥ εR ≥ 0 for some
ε > 0. Then (M3, g0) is either flat or compact.

In the second part of the talk I focussed on two-dimensional Ricci flow. With
Hao Yin we have proved an existence theorem starting with a (possibly noncom-
pact) Riemann surface equipped with a nonatomic Radon measure that extends
earlier work, especially [3].

Theorem 3 ([7]). Suppose M is any (connected, possibly noncompact) Rie-
mann surface and µ is any (nonnegative) nontrivial Radon measure on M that
is nonatomic in the sense that

µ({x}) = 0 for all x ∈M.

Define

(1) T :=















µ(M)
4π if M = C ≃ R2

µ(M)
8π if M = S2

∞ otherwise.

Then there exists a smooth complete conformal Ricci flow g(t) onM , for t ∈ (0, T ),
such that the Riemannian volume measure µg(t) converges weakly to µ as tց 0.

In the cases that T <∞, as t ↑ T we have

Volg(t)(M) = (1 − t
T )µ(M) → 0.

Moreover, if µ has no singular part then µg(t) → µ in L1
loc(M). More generally, if

Ω is the complement of the support of the singular part of µ, then µg(t)xΩ → µxΩ

in L1
loc(Ω).

Two application areas of this theory were described. Because the theory is
general enough to allow initial data with certain scale invariance, we are able to
obtain a large new family of expanding Ricci solitons. The new examples change
our intuition of what an expanding soliton typically looks like. They include the
first known nongradient Kähler Ricci soliton.

As a second application, we show how to construct an example of nonuniqueness
in Ricci flow when the initial data is only expected to be attained in a metric sense.
Combining work with Yin [7] and with Lee [6], we construct a flow starting with
the Euclidean plane (R2, g0) other than the static solution g(t) ≡ g0, and with
explicit curvature decay:
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Theorem 4. There exists a smooth complete conformal Ricci flow g(t) on R2, for
t > 0, with |Kg(t)| ≤ 1

2t such that

(2) dg(t) → dg0 locally uniformly on R2 × R2 as t ց 0,

(where dg denotes the Riemannian distance of a metric g) but so that g(t) is not
identically g0.

This example settles the time zero regularity question of whether a smooth
Ricci flow for positive time that attains smooth initial data in the metric sense (2)
must necessarily be smooth down to time zero. It does not. On the other hand,
Deruelle-Schulze-Simon [1] have proved that one does obtain time zero regularity
if the flow satisfies both a uniform lower Ricci bound and C/t curvature decay. In
particular, our example must not satisfy a lower Ricci bound.

Following on from these observations, with M.-C. Lee [6] we prove that a lower
Ricci bound is sufficient for time zero regularity in dimensions 2 and 3, and give
an analogous higher dimensional result. In particular, a flow that is PIC1 will
necessarily have time zero regularity. As an application we prove that smooth
Gromov-Hausdorff limits of (weakly) PIC1 manifolds are necessarily also (weakly)
PIC1.
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Five-point Toponogov theorem

Anton Petrunin

(joint work with Nina Lebedeva)

Toponogov theorem provides an if-and-only-if condition on a metric on four-point
space that admits an isometric embedding into a nonnegatively curved Riemannian
manifold. The only-if part is proved by Toponogov, and the if part follows from a
result of Abraham Wald [1, §7].

We show that the so-called Lang–Schroeder–Sturm inequality is the analogous
condition for five-point spaces.
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Namely, we prove that a five-point metric space F admits an isometric embed-
ding into a complete nonnegatively curved Riemannian manifold if and only if all
Lang–Schroeder–Sturm inequalities hold in F . The only-if part of this statement
is well known, but the if part is new.
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Classification of noncollapsed translators in R4

Robert Haslhofer

(joint work with Kyeongsu Choi, Or Hershkovits)

In the analysis of mean curvature flow it is crucial to understand ancient non-
collapsed flows. We recall that a mean curvature flow Mt is called ancient if it
is defined for all t ≪ 0, and noncollapsed if it is mean-convex and there is an
α > 0 such that every point p ∈Mt admits interior and exterior balls of radius at
least α/H(p). In particular, thanks to the work of White [14] it is known that all
blowup limits of mean-convex mean curvature flow are ancient noncollapsed flows.

In a recent breakthrough, Brendle-Choi [2, 3] and Angenent-Daskalopoulos-Sesum
[1] classified all ancient noncollapsed flows in R3 (and similarly in Rn+1 under
a uniform two-convexity assumption). Specifically, they showed that any such
flow is either a flat plane, a round shrinking sphere, a round shrinking cylinder, a
translating bowl soliton, or an ancient oval. This in turn has been generalized in
our recent proof of the mean-convex neighborhood conjecture [5, 9]. In stark con-
trast, the classification of ancient noncollapsed flows in higher dimensions without
two-convexity assumption has remained a widely open problem.

As an important first step towards overcoming this dimension barrier, we recently
classified all ancient noncollapsed flows in R4 assuming self-similarity:

Theorem (Choi-H.-Hershkovits [7, 8]). Every noncollapsed translator in R4 is
either R×2d-bowl, or the 3d round bowl, or belongs to the one-parameter family of
3d oval-bowls {Mk}k∈(0,1/3) constructed by Hoffman-Ilmanen-Martin-White [12].

As a corollary we obtain a classification of certain blowup limits in R4:

Corollary (Choi-H.-Hershkovits [7, 8]). For mean-convex mean curvature flow in
R4 (or more generally in any 4-manifold), every type I blowup limit (ala Huisken)
is either a round shrinking S3, or a round shrinking R× S2, or a round shrinking
R2 × S1, and every type II blowup limit (ala Hamilton) is either R×2d-bowl, or
the 3d round bowl, or belongs to the one-parameter family of 3d oval-bowls.
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Figure 1. The oval-bowls {Mk}k∈(0,1/3) are 3-dimensional trans-

lators in R4, whose level sets look like 2d ovals in R3. They are
parametrized in terms of the smallest principal curvature at the
tip, and interpolate between the 3d round bowl and R×2d-bowl.

To sketch the main steps of the proof given a noncollapsed translator M ⊂ R4,
that is neither R×2d-bowl nor 3d-bowl, we normalize without loss of generality
such that H = e⊥4 . To begin with, by our no-wings theorem from [6], we have

(1) lim
λ→0

λM = {µe4|µ ≥ 0}.

In particular, together with a recent result of Zhu [15] this yields SO(2)-symmetry.
Hence, the level sets Σh = M ∩ {x4 = h} can be described by a renormalized
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profile function v(y, τ), where τ = − log h, whose analysis is governed by the one-
dimensional Ornstein-Uhlenbeck operator L = ∂2y − y

2∂y + 1. Next, we show that

v(y, τ) satisifies similar sharp asymptotics as the 2d ancient ovals in R3. We then
establish a spectral uniqueness theorem, which says that if for two (suitably nor-
malized) translators the difference of the profile functions v1 − v2 is perpendicular
to the unstable and neutral eigenspace of L, then the translators agree. We arrange
this spectral condition using a delicate continuity argument. Finally, we relate the
eccentricity at high levels and the tip curvature using a Rado-type argument and
Lyaponov-Schmidt reduction and linearized variants of our estimates.

The result is part of a larger classification program for ancient noncollapsed flows
in R4 that I recently introduced in joint work with Choi-Hershkovits [6] and Du
[10]. In particular, in another paper with Du [11] we constructed a one-parameter
family of Z2

2×O(2)-symmetric ancient ovals in R4, which can be viewed as compact
counterpart of the HIMW-family. In forthcoming work we prove:

Theorem (Choi-Daskalopoulos-Du-H.-Sesum [4]). Every bubble-sheet oval for the
mean curvature flow in R4, up to scaling and rigid motion, either is the O(2) ×
O(2)-symmetric ancient oval from [14], or belongs to the one-parameter family of
Z2
2 ×O(2)-symmetric ancient ovals constructed in [11].

Finally, it is tempting to conjecture that similar results hold for κ-solutions in
4d Ricci flow. In particular, concerning self-similar solutions I believe:

Conjecture. Every noncollapsed 4d steady Ricci soliton with nonnegative curva-
ture operator is either R×3d-Bryant soliton, or the 4d Bryant soliton, or belongs
to the one-parameter family of noncollapsed examples constructed by Lai [13].
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A modern take on the Bochner technique

Matthias Wink

(joint work with Jan Nienhaus, Peter Petersen)

The Bochner technique provides a fundamental connection between the geometry
and the topology of a closed Riemannian manifold. In particular, in 1946 Bochner
[Boc46] proved that manifolds with positive Ricci curvature have vanishing first
Betti number. The key observation is that every harmonic form satisfies the elliptic
equation

∆
1

2
|ω|2 = |∇ω|2 + g(RicL(ω), ω).

For 1-forms, the curvature term of the Lichnerowicz Laplacian RicL is precisely
Ricci curvature. However, for p-forms, p ≥ 2, it depends on the entire curvature
operator of the Riemannian manifold. Until recently, results based on the Bochner
technique that control p-forms for p ≥ 3 required assumptions on the lowest eigen-
value of the curvature operator. In particular, this applies to the results of D.
Meyer [Mey71], Gallot-Meyer [GM75] and Gallot [Gal81].

In this talk we explain how the holonomy representation on tensors provides
structural insights into the curvature term of the Lichnerowicz Laplacian. This
generalizes an idea of Poor [Poo80]. As an application, we show that n-dimensional
manifolds with ⌈n

2 ⌉-positive curvature operators are rational homology spheres,
[PW21a]. We note that this curvature condition is different from positive isotropic
curvature and is not invariant under the Ricci flow ODE. The theorem is a con-
sequence of the fact that the p-th Betti number vanishes provided the curvature
operator is (n − p)-positive. We also establish the corresponding rigidity and
estimation results.

Recall that the curvature operator vanishes on the orthogonal complement of
the holonomy algebra. Therefore, the above results are relevant for manifolds with
holonomy SO(n). For manifolds with reduced holonomy, we consider the restriction
of the curvature operator to the holonomy algebra. In the case Hol = U(m) this
is the Kähler curvature operator. Let µ1 ≤ . . . ≤ µm2 denote its eigenvalues. We
show that a Kähler manifold of complex dimensionm with µ1+µ2+

(

1− 2
m

)

µ3 > 0
has the rational cohomology ring of complex projective space, [PW21b]. Note that
this curvature condition does not imply positive orthogonal complex bisectional
curvature.

The theorem relies on vanishing theorems for the individual Hodge numbers.
For example, if the Kähler curvature operator is (m+1−p)-positive, then hp,p = 1.
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Furthermore, our methods also provide the corresponding rigidity and estimation
results.

For applications of the techniques to curvature tensors and generalizations of
Tachibana’s theorem [Tac74], please refer to [PW22].

In the last part of the talk we explain recent results on Nishikawa’s conjec-
ture [Nis86] on manifolds with nonnegative curvature operator of the second kind.
Note that the curvature tensor induces a map on symmetric (0, 2)-tensors via
hij 7→ ∑

k,lRikljhkl. The induced map on trace-free, symmetric (0, 2)-tensors is
called curvature operator of the second kind. Extending work of Cao-Gursky-Tran
[CGT21], X. Li [Li22] proved that manifolds with 3-nonnegative curvature opera-
tor of the second kind are either flat, diffeomorphic to a spherical space form, or
their universal cover is isometric to a compact irreducible symmetric space. We
exclude the symmetric spaces from this list and moreover show that manifolds with
⌊n+2

n ⌋-nonnegative curvature operator of the second kind are rational homology
spheres or flat, [NPW22]. More generally, unless the manifold is flat, we obtain
vanishing of the p-th Betti number provided the curvature operator of the second
kind is C(p, n)-nonnegative. For large n we have C(p, n) ∼ 3n

2
p

p+2 . In particular,

for p ≥ 5 this curvature assumption does not imply nonnegative Ricci curvature
anymore. Our techniques again rely on the Bochner technique, and extend work
of Ogiue-Tachibana [OT79].
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Stability of Einstein metrics

Frieder Jäckel

(joint work with Ursula Hamenstädt)

The question which manifolds admit an Einstein metric has a long history. Related
to the existence question is the question of stability, that is, if a manifoldM admits
a metric ḡ that is almost Einstein (in a suitable sense), does there exist an Einstein
metric on M that is close to ḡ?

Using the convergence theory of Riemannian manifolds one can easily show
that under upper diameter and lower injectivity radius bounds, it suffices that
||Ric(ḡ) − λḡ||C0 is sufficiently small (see [3, Theorem 11.4.16]). Namely, for all
n ≥ 2, λ ∈ R, D ≥ 0, and i0 > 0 there exists ε0 = ε0(n, λ,D, i0) > 0 so that if Mn

admits a Riemannian metric ḡ such that

||Ric(ḡ)− λḡ||C0 ≤ ε0, diam(M, ḡ) ≤ D, and inj(M, ḡ) ≥ i0,

then M admits an Einstein metric with Einstein constant λ that is C1,α-close to
ḡ. Therefore, it is important to find stability results that do not assume an upper
bound on the diameter, nor a lower bound on the injectivity radius.

In [4] Tian proved a stability result for Einstein metrics of negative sectional
curvature that does not even assume an upper bound on the volume, though it still
assumes a lower bound on the injectivity radius. In [2] we extend Tian’s result to
3-manifolds without a lower injectivity radius bound. Our proof builds on earlier
ideas of Bamler [1] and Tian [4].

Theorem 1. For all α ∈ (0, 1), Λ ≥ 0, δ ∈ (0, 2), b > 1 and η > 2 there exist
ε0 = ε0(α,Λ, δ, b, η) > 0 and C = C(α,Λ, δ, b, η) > 0 with the following property.
LetM be a 3-manifold that admits a complete Riemannian metric ḡ satisfying the
following conditions for some ε ≤ ε0:

(1) vol(M, ḡ) <∞;
(2) −1− ε ≤ sec(M,ḡ) ≤ −1 + ε;
(3) For all x ∈Mthin it holds

max
π⊆TxM

|sec(π) + 1|, |∇Rm|(x), |∇2Rm|(x) ≤ εe−ηd(x,Mthick);

(4) For all x ∈M it holds

ebd(x,Mthick)

∫

M

e−(2−δ)d(x,y)|Ric(ḡ) + 2ḡ|2ḡ(y) dvolḡ(y) ≤ ε2;

(5) ||∇Ric(ḡ)||C0(M,ḡ) ≤ Λ.
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Then there exists a hyperbolic metric ghyp on M so that

||ghyp − ḡ||C2,α(M,ḡ) ≤ Cε1−α.

Moreover, if additionally ḡ is already hyperbolic outside a region U ⊆M , and if
∫

U

|Ric(ḡ) + 2ḡ|2ḡ dvolḡ ≤ ε2,

then for all x ∈Mthick it holds

|ghyp − ḡ|C2,α(x) ≤ Cε1−αe−(1− 1
2 δ)distḡ(x,U ∪ ∂Mthick).

It is important to note that in (4) the weight e−(2−δ)d(x,y) inside the integral
has the chance to absorb the weight ebd(x,Mthick) outside the integral (if 2− δ > b).

Applications of Theorem 1 include a new analytic proof for the drilling and
filling of hyperbolic 3-manifolds, and effective hyperbolization in large Hempel
distance.
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Positive curvature, Torus symmetry, and Matroids

Michael Wiemeler

(joint work with Lee Kennard and Burkhard Wilking)

A long standing open problem in Riemannian Geometry is the classification of
simply connected, positively curved, closed Riemannian manifolds. What makes
this problem difficult is the lack of both, examples and obstructions: In dimensions
n > 24 all known examples of such manifolds are diffeomorphic to Sn, CPn/2, or
HPn/4. Moreover, for simply connected, non-negatively curved manifolds there is
no known obstruction to admitting positive sectional curvature.

To make the classification problem simpler Karsten Grove in 1992 suggested
to first classify positively curved manifolds with large isometry group. This was
partly motivated by the fact that all known constructions of positively curved
examples involved some sort of symmetry. Since then this has been a successful
approach (see e.g. [4], [9], [5], [3]).

Recently we proved the following two theorems:

Theorem 1 ([6]). If T d, d ≥ 5, acts effectively by isometries on a connected,
closed, orientable, positively curved Riemannian manifold, then every component
of the fixed-point set has the rational cohomology of a sphere or a complex or
quaternionic projective space.



1592 Oberwolfach Report 28/2022

Corollary 1. If M is an even-dimensional, connected, closed, positively curved
Riemannian manifold whose isometry group has rank at least five, then χ(M) > 0.

Note that by the corollary the Hopf Conjecture holds for manifolds with T 5-
action. Theorem 1 has strong implications on the topology of the one-skeleton
M1 = {x ∈ M ; dimTx ≤ 1} of an isometric action of a torus of dimension at
least seven on a positively curved manifold. So by combining this theorem with
the Chang–Skjelbred Lemma [2] one can show:

Theorem 2 ([6]). If T d, d ≥ 7, acts effectively by isometries on a connected,
closed, orientable, positively curved, even-dimensional manifold Mn with vanish-
ing odd-degree cohomology, then Mn has the rational cohomology of Sn, CP

n
2 , or

HP
n
4 .

Note that the condition of Hodd(M ;Q) = 0 is natural in view of the Bott
Conjecture which says that a simply connected, non-negatively curved manifold
is rationally elliptic. Together with the Hopf Conjecture it would imply that
Hodd(M ;Q) = 0 holds for positively curved, even-dimensional manifolds.

Note, moreover, that by work of Nienhaus [7] the conclusion of Theorems 1 and
2 also hold for d = 4 and d = 6, respectively.

Since the Bott Conjecture is still wide open, it is natural to ask whether one
can replace the topological condition, Hodd(M ;Q) = 0, in Theorem 2 by a more
geometric condition. In view of the proof of Theorem 1 it is natural to require that
near a fixed point of the action all isotropy groups are connected. An investigation
of this condition leads to the following unpublished result.

Theorem 3 (Kennard, Wiemeler, Wilking, 2022). Let Mn be a closed, oriented,
positively curved Riemannian manifold. Assume T d acts effectively by isometries
with a fixed point and the property that all isotropy groups in a neighborhood of
the fixed point have an odd number of components.

(1) If d = 9, then M has the rational cohomology of Sn,CPn/2 or HPn/4.
(2) If d = 6, then M has the rational cohomology of Sn,CPn/2 or HPn/4 up

to degree n
3 .

The proof of this theorem consists of two steps. The first step is to find circle

groups S1 ⊂ T d such that the codimension of MS1 ⊂ M is low in comparison
to dimM . The second step is then to use Theorem 1, Nienhaus’ results [7] and
Wilking’s Connectedness Lemma [9] to get the conclusion.

There are two main observations in the proof of the first step.

(1) The weights of a faithful torus representation ρ : T d → SO(V ) without
isotropy groups with an even number of components form a combinatorial
object called regular matroid M(ρ) of rank d.

(2) minS1⊂Td
codim(V S1⊂V )

dimV = g∗(M(ρ), λ) where g∗(M(ρ), λ) denotes the co-
girth of M(ρ) weighted with the dimensions of the weight spaces of ρ.

Here the co-girth of a weighted matroid is the girth of its dual matroid, i.e. the
length of the shortest cycle in the dual matroid.
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We use Seymour’s classification [8] of regular matroids to compute sharp upper
bounds for g∗(M,λ) for all weighted regular matroids of rank less than or equal
to nine which only depend on the rank of M .

For ranks less than or equal to six these bounds easily follow from known results
[1]. However for ranks between seven and nine our bounds seem to be new. The
important estimates which make the proof of Theorem 3 possible are g∗(M,λ) ≤ 1

3

for weighted, regular matroids (M,λ) of rank six and g∗(M,λ) ≤ 1
4 for weighted,

regular matroids (M,λ) of rank nine.
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Decomposing 4-manifolds with positive scalar curvature

Christos Mantoulidis

(joint work with Richard H. Bamler, Chao Li)

Recall the following well-known theorem of Schoen–Yau ([8]) and Gromov–Lawson
([3]) that exhibits the richness of the class of manifolds that can carry Riemannian
metrics with positive scalar curvature. For convenience and brevity, we will adopt
the convention of writing “PSC” for “positive scalar curvature,” and will call a
manifold “topologically PSC” if it can carry PSC Riemannian metrics.

Theorem. Let M be a topologically PSC n-manifold with n ≥ 3. Any manifold
obtained from M by performing a sequence of 0-, 1-, ..., and/or (n− 3)-surgeries
is also topologically PSC.

The theorem above naturally leads one to ask:

Question. Can all topologically PSC n-manifolds be built out of “simple” topo-
logically PSC n-manifolds by performing codimension ≥ 3 surgeries?

Our understanding of 3-manifold topology yields a conclusive answer when n =
3. The following theorem follows from the combined work of Schoen–Yau ([8, 9]),
Gromov–Lawson ([2]), and Perelman ([5, 6, 7]):
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Theorem. Every closed, oriented, topologically PSC 3-manifold can be obtained
by performing 0-surgeries on a disjoint union of spherical space forms (i.e., S3/Γ’s,
where the Γ’s are finite subgroups of SO(4) acting freely on S3).

The following new result was presented, obtained by the speaker, R. H. Bamler,
and C. Li:

Main Theorem ([1]). Every closed, oriented, topologically PSC 4-manifold M
can be obtained from a possibly disconnected, closed, oriented, topologically PSC
4-orbifold M ′ with isolated singularities such that b1(M

′) = 0 and b2(M
′) ≤ b2(M)

by performing 0- and 1-surgeries. All 1-surgeries are standard manifold ones, but
0-surgeries may occur at orbifold points.

Recall that the jth Betti number bj(M
′) of the orbifold M ′ is defined to be the

jth Betti number ofM ′ viewed as a topological space; in our case, this is equivalent
to the jth Betti number of the regular part M ′

reg ⊂ M ′. In the connected case,
b1(M

′) is the same as the rank of the abelianization of the orbifold fundamental
group πorb

1 (M ′). Finally, a 0-surgery occurring at two orbifold points both modeled
onR4/Γ means that the corresponding connected sum operation is performed with
a S3/Γ neck.

Our proof of the Main Theorem relies on the flexibility of two-sided stable
minimal hypersurfaces in PSC 4-manifolds manifolds due to the speaker and C. Li
([4]). Specifically, the following metric preparation lemma was necessary:

Metric Preparation Lemma. Let Σ be a two-sided, closed, embedded, stable,
minimal hypersurface inside an oriented PSC 4-manifold (M, g). Then:

(a) Σ must be topologically PSC and thus obtained by performing 0-surgeries
on a disjoint union of spherical space forms.

(b) Given any auxiliary PSC metric σ on Σ, there exists a new PSC metric g̃
on M , which:

• is isometric to a product cylinder (Σ, σ) × (−2, 2) in the distance-2
tubular neighborhood of Σ, and

• coincides with g outside a larger tubular neighborhood of Σ.

Let now us outline the proof of the Main Theorem. Endow M with an arbitrary
PSC metric. We “exhaust” the codimension-1 homology of M with a two-sided,
stable minimal hypersurface Σ. By a now-standard argument of Schoen–Yau, the
metric induced on Σ is conformal to a PSC metric. Thus, Σ is topologically the
result of 0-surgeries on spherical space forms. With the help of the aforementioned
flexibility theory, we locally modify the metric onM to another PSC metric that is
locally a product near Σ and induces a “model” PSC metric on Σ. If Σ is merely
the disjoint union of spherical space forms S3/Γ, with no 0-surgeries, then our
model metrics are all round and simple 3-surgeries on M along the components of
Σ yield a 4-orbifold whose b2 is unchanged and b1 is trivial (assuming Σ suitably
“exhausted” the codimension-1 homology of M). If Σ does involve 0-surgeries, we
first undo these using 2-surgeries on M near Σ’s 0-surgery neck regions; this may
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decrease b2. We have only performed 3- and 2-surgeries onM to get to the orbifold,
so M can be obtained from the orbifold via 0- and 1-surgeries, respectively.

We conclude our introduction by posing the following:

Question. Let M be a closed, oriented, topologically PSC 4-manifold. Can one
obtain M from a closed, oriented, topologically PSC 4-orbifold M ′ with isolated
singularities and the property that each component has finite orbifold fundamental
group πorb

1 (M ′) by performing 0- and 1-surgeries?
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Fundamental Gap Estimate for Convex Domains

Guofang Wei

The fundamental (or mass) gap refers to the difference between the first two eigen-
values of the Laplacian or more generally for Schrödinger operators. It is a very in-
teresting quantity both in mathematics and physics as the eigenvalues are possible
allowed energy values in quantum physics. Naturally one looks for optimal upper
and lower estimates for the gap. For convex domains with Neumann boundary
condition, this is well studied and optimal lower bound has been obtained awhile
back. Here we concentrate on the Dirichlet boundary condition.

In their celebrated work, B. Andrews and J. Clutterbuck [1] proved the funda-
mental gap conjecture that difference of first two eigenvalues of the Laplacian with
Dirichlet boundary condition on convex domain with diameter D in the Euclidean
space is greater than or equal to 3π2/D2. In several joint works with X. Dai,
Z. He, S. Seto, L. Wang (in various subsets) [7, 4, 3] the estimate is generalized,
showing the same lower bound holds for convex domains in the unit sphere. The
key is to prove super log-concavity of the first eigenfunction.
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In sharp contrast, in joint work with T. Bourni, J. Clutterbuck, X. Nguyen, A.
Stancu and V. Wheeler [2], we prove that there is no lower bound at all for the
fundamental gap of convex domains in hyperbolic space in terms of the diameter.
Recently, jointed with X. Nguyen, A. Stancu [6], we show that even for horoconvex
(which is much stronger than convex) domains in the hyperbolic space, the product
of their fundamental gap with the square of their diameter has no positive lower
bound.

Many questions remain open, especially for manifolds with variable curvature.
In a joint work in progress with G.Khan, X. Nguyen, M. Tuerkoen [5], we obtain
a log-concavity estimate of the first eigenfunction for convex domains in surfaces
with variable curvature. Namely given Ω a convex domain in a Riemann surface
(M2, g) with positive sectional curvature κ, denote λ1(Ω), u1 be its first Dirichlet
eigenvalue and eigenfunction, if ∆ log κ−5κ > −4λ1(Ω), then Hess (log u1) < −κ

2 g.
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Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Robert Haslhofer

Department of Mathematics
University of Toronto
Room BA 6208
40 St George Street
Toronto ONT M5S 2E4
CANADA

Prof. Dr. Gerhard Huisken

Fachbereich Mathematik
Universität Tübingen
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