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Introduction by the Organizers

The workshop Hilbert Complexes: Analysis, Applications, and Discretizations, or-
ganised by Ana Alonso (Trento), Doug Arnold (Minneapolis), Dirk Pauly (Dres-
den), and Francesca Rapetti (Nice) was well attended with over 40 participants
and over 25 additional online participants with broad geographic representation
from Europe and the United States. This workshop was a nice blend of researchers
with various backgrounds in mathematical and numerical analysis, applications,
and discretizations of Hilbert Complexes, mainly in PDE related complexes.

Hilbert complexes arise throughout mathematical physics. The fundamental
partial differential operators from which most models in continuum physics are
built may be realized as unbounded operators mapping between Sobolev and re-
lated Hilbert spaces, and these spaces and operators assemble into chain complexes.
The resulting structure is a Hilbert complex: a finite sequence of Hilbert spaces
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together with closed unbounded operators from one space to the next such that the
composition of two consecutive operators vanishes. This is a rich structure which
combines functional analysis and homological algebra. Hilbert complexes arise not
only in physics – electromagnetics, fluid mechanics, elasticity, general relativity,
etc. – but are also fundamental to parts of geometry, such as the Hodge theory of
Riemannian manifolds. In recent decades it has been discovered that the Hilbert
space structure is crucial to numerical analysis as well. Stable discretization of
the partial differential equations related to Hilbert complexes depends crucially
on retaining the Hilbert space structure at the discrete level. This viewpoint has
led to major advances in discretization for numerous problems, and holds great
promise for other applications.

The de Rham complex – whether presented on a domain in space in terms of
vector calculus, or more generally, in terms of differential forms on Riemannian
manifolds – is a canonical example of a Hilbert complex, and many aspects of
its analysis, application, and discretization are well-understood. The situation
is less developed for other Hilbert complexes which arise in applications such as
elasticity, plate theory, and general relativity. In particular, a systematic approach
to deriving discretizations for these applications is not yet at hand. In view of the
many applications, this would be of immense utility.

Interest in Hilbert complexes blurs the lines between analysis, geometry, nu-
merical analysis, and applications, between pure and applied mathematics. In this
workshop, we brought together researchers with an interest in Hilbert complexes
and their implications coming from all these communities in order to establish new
lines of communications and advance the state of the art.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

What are complexes doing in numerical PDE?

Douglas N. Arnold

As an introduction to the workshop “Hilbert Complexes: Analysis, Applications,
and Discretizations,” held in June 2022 at Oberwolfach, this talk began with
the question: How did Hilbert complexes, mathematical objects which at first
consideration may seem to be very distant from numerical analysis, come to play
a major role in numerical PDE?

Topological background material. We began with a very quick review of the basic
notions of topology and differential geometry needed. One simple but essential
notion is that of a chain complex—a sequence of vector spaces Vk connected by
linear maps ∂k : Vk → Vk−1 which are differentials in the sense that ∂k−1 ◦∂k = 0:

· · · → Vk+1
∂k+1−−−→ Vk

∂k−→ Vk−1 → · · ·
Similarly we introduced cochain complexes, subcomplexes, chain maps, and, most
importantly, the notions of cycles and boundaries (kernels and ranges of the dif-
ferential), and their quotient space, boundaries modulo cycles, which define the
homology spaces of the chain complex.

A concrete example which explains some of the terminology is the simplicial
chain complex which can be defined whenever we are given a simplicial complex,
i.e., a triangulation (by simplices) of a domain in Rn or a manifold. The spaces
Vk consist of the k-dimensional chains in the simplicial complex, and ∂k to be the
boundary operator taking a k-chain to a (k − 1)-chain. The dimensions of the
homology groups give the Betti numbers, which count the k-dimensional holes in
the domain and are the most fundamental topological invariants.

The de Rham complex. A second example of a chain complex is the de Rham
cochain complex for a domain Ω ⊂ Rn (or a manifold). Here the spaces are

V k = Λk(Ω) := C∞(Ω,AltkRn), the space of smooth differential k-forms on Ω
and the differential dk : Λk(Ω)→ Λk+1(Ω) is the exterior derivative, the extension
to any manifold of any dimension of the fundamental vector calculus operators
grad, div, and curl. Now the de Rham complex is a cochain complex whose spaces
are infinite dimensional function spaces and whose differentials are differential
operators, so quite different from the simplicial chain complex, with finite dimen-
sional spaces and combinatorial differentials. But their homology is the same. This
is the content of De Rham’s Theorem. In particular, the de Rham cohomology
spaces have the Betti numbers as their dimensions, just as for the simplicial chain
complex.

The de Rham complex

(1) 0→ C∞Λ0 d−→ C∞Λ1 d−→ · · · d−→ C∞Λn → 0

is a simple, elegant homological structure which can be defined on any smooth
manifold and which captures basic topological properties of the manifold. Its
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differentials are exterior derivatives, which are fundamental first order partial dif-
ferential operators from vector calculus. But it does not lead to other partial
differential operators, since the only way to combine two exterior derivatives is by
composition of two successive ones, which simply gives zero.

Hodge theory. To introduce Hodge theory we require additional structure of the
domain or manifold, namely it must be a Riemannian manifold, i.e., at each point
of the manifold, the tangent space is endowed with an inner product, depending
smoothly on the point. Then we can define the L2 spaces of differential forms,
L2Λk, which we take for the spaces in a complex. The operators are taken to be,
again, the exterior derivatives, but these are now viewed as closed, densely-defined
linear operators from L2Λk to L2Λk+1 and so, instead of the smooth de Rham
complex (1), we get the L2 de Rham complex

(2) 0→ L2Λ0 d−→ L2Λ1 d−→ · · · d−→ L2Λn → 0.

We emphasize that the operator dk here is only defined on a dense subspace of
L2Λk and is not bounded. The property of being closed is a generalization of
boundedness to operators which are only densely-defined.

Hilbert complexes. Just as the simplicial chain complex of a triangulationo
inspired the definition and study of the abstract structure named a chain complex,
in which the spaces no longer need to refer to any triangulation, so the L2 de Rham
complex (2) inspired the abstract notion of a Hilbert complex, which is simply
defined to be a sequence of Hilbert spaces W k, with closed densely-defined linear
operators W k → W i+1 such that range of dk is contained in the null-space of
dk+1. This definition was first promulgated by Brüning and Lesch in 1992 and first
introduced into numerical analysis by Arnold, Falk, and Winther in 2010. Despite
the simplicity of the definition, many of the key results of the Hodge theory of
Riemannian manifolds can be proven within the framework of Hilbert complexes.
An important example is the existence of a dual complex with the same spaces
W k, but with the maps d∗k+1 : W k+1 → W k equal to the Hilbert space adjoint of

dk : W k →W k+1 and so going in the opposite direction. Unlike the dk alone, the
dk together with the d∗k can be combined to create many important differential
operators. The most canonical of these is the Hodge Laplacian ∆ = dd∗ + d∗d,
that is, ∆k = dk−1d∗k + d∗k+1d

k : L2Λk → L2Λk. The Hodge Laplacian operator
was originally defined on differential k-forms on a manifold, but the definition and
many of its properties extend to any closed Hilbert complex (here closed means
that the range of each dk is closed in W k+1). Other properties of the de Rham
complex on a Riemannian manifold which are best understood in the Hilbert
complex framework are: the identification of the kth cohomology space with the
space of harmonic k-forms, defined as the elements of W k belonging to the null
space of the Hodge Laplacian; the Hodge decomposition of the spaceW k into three
orthogonal subspaces, the range of dk−1, the range of d∗k+1, and the harmonic
k-forms; and the Poincaré inequality.
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Other examples of important Hilbert complexes. The elasticity complex (or
Calabi complex or Kröner complex) is

0→ L2 ⊗ V
def−−→ L2 ⊗ S

inc−−→ L2 ⊗ S
div−−→ L2 ⊗ V→ 0, [V := R

3, S := R
3×3
symm]

Here V = R3, S = R3×3
symm. PDEs coming from this complex include the equations

of elasticity in either primal or mixed form, and equations relating to general
relativity. Note that the Saint Venant incompatibility operator inc = curlT curl
is second order.

The Hessian complex also contains a second order operator:

0→ L2 hess−−→ L2 ⊗ S
curl−−→ L2

T
div−−→ L2 ⊗ V→ 0

with T denoting the trace-free subspace of R3×3. It relates to numerous PDEs,
such as the biharmonic equation. Similarly we have the div div complex, which is
adjoint to the Hessian complex, and has other applications.

The BGG construction. To apply these Hilbert complexes, we must establish
some basic properties. The key one, that implies many other is that they are closed
Hilbert spaces (the differentials have closed range). For the de Rham complex on
a Lipschitz manifold with or without boundary, the closed ranges were established
by R. Picard in 1984. Following Arnold and Hu 2021, in the talk we summarize
a construction that allows us a systematic derivation of new complexes, starting
with already known complexes. We call the construction the BGG construction,
recognizing that it is related to the Bernstein–Gelfand–Gelfand resolution from
representation theory of Lie algebras. Beginning with the de Rham complex, for
example, we may derive, the Hessian complex, the div div complex, and many
others. Moreover we can establish basic properties of these complexes based on
known properties of the de Rham complex.

Discretization. Finally, we discuss the discretization of Hilbert complexes and
PDEs arising from them. For any k > 0, the k-form Hodge Laplacian of any
Hilbert complex is a naturally a saddle point formulation, and discretizing it stably
requires developing special purpose finite elements suited to the type of space
being discretized. For example, the 3-form Hodge Laplacian in 3 dimensions is
the mixed variational formulation of the scalar Laplacian, written in terms of
the flux. The flux belongs to the domain of d2 in L2Λ2, which is essentially the
space H(div). The canonical finite elements to discretize H(div) are the Raviart–
Thomas–Nédélec element—they are the canonical flux element. In fact, canonical
stable finite element spaces have been designed systematically for all the fields
arising from de Rham complex, i.e., for all of the differential form spaces in any
number of dimensions. Indeed, these are captured in the Periodic Table of the
Finite Elements (Arnold–Logg 2014), which is itself a major outcome of Finite
Element Exterior Calculus.

In the final portion of the talk we show how the BGG construction can be used
to discretize fields of different sorts, deriving new finite elements from old ones,
and pointing the way to many new elements, a number of which have already been
discovered.
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Discretization of Hilbert complexes

Kaibo Hu

Discretization of Hilbert complexes plays a central role in finite element exterior
calculus [3, 6, 7]. In this report, we review some recent development in this direc-
tion, emphasizing conforming finite elements.

Overview. The overall aim of discretizing Hilbert complexes is to construct finite-
dimensional spaces that fit in a complex. These spaces should have certain conti-
nuity and inherit algebraic and differential structures on the continuous level, e.g.,
exactness. Construction of spaces with high regularity is naturally connected with
spline theory. In contrast, allowing low regularity often leads to spaces involving
Dirac measures, which we will refer to as distributional finite elements [19, 27, 54].
The construction of simplicial splines is subtle due to intrinsic supersmoothness
[35, 69] (piecewise smooth functions may have automatic higher order continuity
at hinges, e.g., vertices and edges of a mesh). The construction of distributional
finite elements is usually more straightforward, but numerical schemes call for at-
tention. The general idea is to choose proper combinations of spaces such that
Dirac measures are only evaluated on continuous functions or forms [37, 62]. The
situation can be more subtle for nonlinear problems since the product of Dirac
measures is not defined in general (c.f. [14, 28, 38]).

This report will mainly focus on the construction of conforming finite elements.
On cubical meshes, the tensor product provides a useful algebraic tool to derive
elements and complexes in any dimension from results in 1D [4, 16, 17]. On sim-
plicies, there are two general strategies to handle supersmoothness: incorporating
supersmoothness in the definition of finite element spaces (e.g., the Argyris C1

element with second order vertex derivative degrees of freedom) or subdividing a
simplex and seeking piecewise polynomials on the refined mesh (e.g., the Clough-
Tocher C1 element). In general, several possible constructions exist and finer
subdivisions usually require less supersmoothness, c.f. [32, 36, 39, 58].

de-Rham complex. The development of discrete de-Rham complexes demon-
strates deep connections between topology and numerical analysis. The Raviart-
Thomas [64], Nédélec [56, 57] and Brezzi-Douglas-Marini [20] finite elements
achieved success in computational electromagnetism and other areas. It was re-
alized later that these finite elements fit in a discrete de-Rham complex, and the
lowest order version coincides with the Whitney forms in geometric integration
theory [70]. This observation inspired the development of discrete differential
forms [18, 44, 45] and the finite element exterior calculus [3, 6, 7]. The finite el-
ement periodic table [9] summarized several families of de-Rham finite elements
on simplicial and cubical meshes. Poincaré (Koszul) operators, pj , j = 1, 2, · · · , n,
satisfying dk−1pk + pk+1dk = I, provide explicit forms of potential and thus lead
to polynomial exact sequences on cells [6, 44].

Smoother de-Rham (Stokes) complexes. Stokes problems in fluid mechanics
raise the question of constructing a finite element velocity space Vh ⊂ [H1]3 and
a pressure space Qh ⊂ L2 such that div Vh = Qh and the inf-sup condition holds.
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The Stokes problem motivates discretizing de-Rham complexes that are smoother
than the standard HΛ version (u in L2 with du in L2). On the continuous level,
there are several possible combinations of Sobolev spaces that fit in a de-Rham
complex, and the following has a direct application in the 2D Stokes problem [34]:

0 H2 [H1]
2

L2 0.curl div

The above sequence shows connections between scalar high order problems (H2)

and the Stokes problem (div : [H1]
2 → L2). To a large extent, these two topics

were developed independently over a long time (see, e.g., [10, 52, 71, 72]) until
smoother de-Rham complexes built a bridge. On the one hand, one may differen-
tiate scalar splines and obtain a Stokes pair. On the other hand, investigating the
pre-image of the divergence operator helps to clarify the inf-sup stability of Stokes
pairs (e.g., the Scott-Vogelius elements [42, 68]).

Most existing conforming elements either use subdivision (e.g., [10, 36, 39, 72])
or/and higher order derivatives as degrees of freedom (e.g., [34, 58, 59]), which
are two general strategies for handling supersmoothness. Recent development in
2D and 3D can be found in, e.g., [2, 32, 40, 41, 51]. In the direction of reducing
the number of degrees of freedom, one is interested in a minimal Stokes pair,
where the degrees of freedom for the velocity space involve vertex evaluation (for
approximation) and normal component on each face (for surjectivity of div).

Bernardi and Raugel [15] constructed elements with the above degrees of freedom
by enriching Lagrange elements with face bubbles. The resulting elements do not
fit in a complex. Guzmán and Neilan [41] modified the bubbles using modes on the
Alfeld split of a tetrahedron to render the complex property (see also [51] for the
entire complex). A canonical construction on various subdivisions can be found in
[32].

BGG complexes. BGG complexes, as well as the BGG diagrams that lead to
them, encode structures of many PDE problems [8, 60, 61]. Since the construction
of the Arnold-Winther element [11], which was the first conforming triangular
finite element with polynomial shape functions, several discretizations for linear
elasticity were developed (e.g., [49, 50]). Recently, there has been a surge of
finite elements for Hilbert complexes, especially the Hessian, elasticity and div div
complexes in 2D and 3D [2, 21, 22, 23, 24, 25, 29, 33, 46, 47, 48, 66].

The approach in [8] for deriving BGG complexes on the continuous level is
to collect several copies of de-Rham complexes and eliminate some components.
Therefore a natural approach to deriving discrete BGG complexes is to mimic
the construction and fit finite element spaces in diagrams. A simple example
is demonstrated in the following diagram, where one connects two 1D de-Rham
complexes
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дx

дx

I

to derive a finite element complex with a second order differential operator:

д
2
x

.

This example also demonstrates that the input discrete de-Rham complexes should
have different regularity in this approach. Such finite element diagram chasing
was first used in [5] as a re-interpretation of the Arnold-Winther elasticity ele-
ment. Recently, this approach has been extended to derive more complexes with
applications in discretizing elasticity and curvature [29, 31, 33].

One may also directly discretize the BGG complexes without referring to the
BGG diagrams. Hu and collaborators [46, 47, 48, 49] constructed several conform-
ing finite element complexes in 2D and 3D based on explicit characterizations of
bubble functions and an investigation of Lagrange type bases. Chen and Huang
[21, 22, 23, 24, 25] further developed geometric decomposition and polynomial
BGG complexes and obtained various conforming finite element complexes. There
has been progress towards a systematic discretization of BGG complexes in any
dimension [16, 22] and a wide variety of continuity [26].

Summary and overlook. This report aims to review some progress on discretiz-
ing Hilbert complexes. The emphasis is mainly on conforming finite elements on
simplices, while other important topics are not covered, e.g., polygonal elements,
virtual elements, isogeometric analysis, nonconforming elements and applications.

Canonical finite element de-Rham complexes have been implemented in several
packages, e.g., FEniCS [1], Firedrake [13], NGSolve [67]. Nevertheless, most ex-
isting smoother finite element de-Rham (Stokes) complexes and BGG complexes
have not been included. An exception is the Regge element. Regge calculus [65]
was proposed as a scheme for quantum and numerical gravity, and later interpreted
as a finite element [27, 53]. The Regge element has been implemented in several
finite element packages [1, 13, 67].

Computational issues, e.g., well-conditioned bases and implementation, remain
open, especially for the BGG complexes. Ideas and algorithms for scalar splines
may carry over here by complexes. General constructions of distributional and
nonconforming elements for the BGG complexes call for further investigation.
These elements enjoy simple degrees of freedom, and may thus provide a bridge for
discretization of PDEs and discrete structures, including graph theory [55], dis-
crete mechanics [43], discrete differential geometry [14, 27, 33, 38, 53] and gauge
theory [30]. Finite elements may provide a new perspective for these areas by
supplying local shape functions [27] and inspire new schemes. Recent progress on
Hilbert complexes paves a way to tackle the Einstein equations with applications
in numerical relativity [12, 53, 63].
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Finite element systems

Snorre H. Christiansen

Recall the definition of a finite element by Ciarlet. It consists of three parts: A
geometric cell T (for instance a simplex), a space A(T ) of fields on T (for intance
vector fields that are polynomial, with given maximum degree), and a set of de-
grees of freedom that are unisolvent on A(T ). We point out some shortcomings of
the definition, by expressing what is implicit: First, degrees of freedom are geo-
metrically located (attached to subcells of T ). Second, there is a way of identifying
degrees of freedom attached to a subcell, from incident cells.

The framework of finite element systems addresses these problems by positing
instead the following. A finite element is defined given a cellular complex T .
Then it is a contravariant functor A from T (interpreted as a poset category) to
the category of vector spaces.

This definition expresses that there are in fact spaces attached to cells of all
dimensions in T , and that they are linked by restriction maps, satisfying obvious
commutation relations.

I gave some examples of known finite element systems: trimmed polynomial
differential forms, the Clough-Tocher element, the Argyris element, the Morley
element. For the last three spaces the only difficulty is to come up with the spaces
attached to edges. The claim is that all nice finite elements can be recast as finite
element systems, and that this point of view reveals some useful facts.

The global finite element space is then deduced as an inverse limit. The global
space will not always be a good space: the continuity requirement inherent in
taking the inverse limit can result in global linear dependencies, preventing local
bases. To avoid such rigidity properties we introduce a notion of softness. It is
related on the one hand to the unisolvence in Ciarlets definition of a FE and on
the other hand to softness of sheaves. Several characterizations of softness are
possible, e.g. with dimension counts.

Given two finite element systems – two functors – one can consider the natural
transformations from one to the other. These are linear maps that commute with
the restriction maps. Differential operators, inclusion maps, and interpolation
operators are all examples of natural transformations.

When we have sequences of soft finite element systems, linked by differential
operators that are natural transformations and form complexes, the global spaces
are also complexes. Importantly, the cohomology of the global spaces is the right
one: it is isomorphic to the cellular cochain cohomology. This is a variant of de
Rham’s theorem.

The framework works both for spaces of differential forms [1] (here we intro-
duced spaces with enhanced continuity, such as appears in Stokes problem) and
for complexes appearing in elasticity or Riemannian geometry [2]. In the latter
case cochains with values in rigid motions play a special role.
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Finite elements for Riemannian geometry

Evan S. Gawlik

(joint work with Yakov Berchenko-Kogan)

The building blocks of Riemannian geometry – metrics, connections, and curvature
– play an important role in mathematical physics and geometric analysis, but
they are challenging to discretize numerically. Here we discuss recent efforts to
discretize these objects with finite elements. Many of these efforts are guided by
commutative diagrams of differential complexes.

Given a triangulation S of a compact, oriented manifold of dimension N , the
lengths of all of the edges in S determine a piecewise constant Riemannian metric
g on S. This metric automatically possesses the following continuity property: g
has single-valued tangential-tangential components on every (N − 1)-dimensional
simplex in S. The metric g is an example of a tensor field belonging to the
lowest-order Regge finite element space Σ0

h [3, 6], a space that has been studied
extensively and generalized to higher order in the thesis of Li [6]. For an integer
r ≥ 0, the Regge finite element space Σr

h of order r consists of symmetric (0, 2)-
tensor fields on S that are piecewise polynomial of degree at most r and obey the
same tangential-tangential continuity constraint as above. We call elements of this
space Regge metrics if they are positive definite everywhere.

Although Regge metrics cannot be differentiated in the classical sense, one can
give meaning to a Regge metric’s scalar curvature (times the volume form ω) in a
distributional sense. In dimension N = 2, one defines the distributional curvature
two-form (κω)dist(g) associated with a Regge metric g as follows. Let V , E , and
T denote the set of vertices, edges, and triangles in S, and assume that S has no
boundary. Let V be the space of continuous functions whose restrictions to each
triangle T ∈ T lie in the Sobolev space H2(T ). We define (κω)dist(g) ∈ V ′ via

〈(κω)dist(g), v〉V ′,V =
∑

T∈T

∫

T

κT vωT +
∑

e∈E

∫

e

[[k]]evωe +
∑

z∈V
Θzv(z), ∀v ∈ V,

where κT is the (classically defined) Gaussian curvature of g within the triangle T ,
ωT is the volume form on T , ωe is the induced length form on e, [[k]]e denotes the
jump in e’s geodesic curvature across e, and Θz is the angle defect at the vertex
z: 2π minus the sum of the angles incident at z (as measured by g).

It turns out that a great deal of information about a Regge metric’s distribu-
tional curvature can be gleaned from studying its evolution under deformations
of the metric. For one thing, doing so allows us to show that the distributional
curvature operator described above is (infinitesimally) consistent; its linearization
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around a given Regge metric g is precisely the linearized curvature operator, in-
terpreted in a distributional sense. In particular, we show in [1, Theorem 4.1] that
if g(t) is a family of Regge metrics with ∂

∂tg =: σ, then for every v ∈ V ,

(1) 2
d

dt
〈(κω)dist(g(t)), v〉V ′,V =

∑

T∈T

∫

T

〈Sσ,∇∇v〉ωT −
∑

e∈E

∫

e

Sσ(n, n)[[∇nv]]ωe.

Here, Sσ = σ − gTr σ, ∇ is the covariant derivative, n is the unit normal vector
to e with respect to g, and 〈·, ·〉 is the g-inner product of tensor fields.

Numerical analysts will recognize the right-hand side of (1); its Euclidean coun-
terpart appears in the Hellan-Hermmann-Johnson (HHJ) finite element discretiza-
tion of

∫
(div div Sσ)vω. This link with the HHJ method naturally leads one to

consider using the Regge finite element space Σr
h to discretize the metric tensor

and the Lagrange finite element space V q
h = {v ∈ V | v|T ∈ Pq(T ), ∀T ∈ T },

q ≥ 1, to discretize the scalar curvature in two dimensions. One defines a discrete
scalar curvature κh ∈ V q

h via
∫
κhvhω = 〈(κω)dist(g), vh〉V ′,V for every vh ∈ V q

h .
If gh ∈ Σr

h is an interpolant of a smooth Riemannian metric g on a planar domain
Ω, then an error estimate

‖κh(gh)− κ(g)‖H−1(Ω) ≤ C
(
hr|g|Hr+1(Ω) + hq+2|κ(g)|Hq+1(Ω)

)

can be proved [4, Theorem 4.1] by exploiting the fact that the smooth curvature
κ(g) and its discretization κh(gh) both satisfy an equality of the form (1), albeit
with different metrics on the right-hand side. Here, h = maxT∈T diam(T ). A
sharper estimate has recently been proven in the case where q = r + 1 and gh is
the canonical Regge interpolant of g [5].

When g and gh are Euclidean and q = r + 1, the spaces above fit into a com-
mutative diagram of differential complexes which is discussed in [1, Section 7.1]:

RM U Σ V ′ 0

RM U r+1
h Σr

h V r+1
h 0

⊂ def

πU
h πΣ

h

(div div S)dist

πV
h

⊂ def (div div S)h

This diagram is related to ones that appear in [3, 2]. Briefly, the space U r+1
h con-

sists of continuous vector fields that are piecewise polynomial of degree r+1, RM
consists of the rigid motions, U and Σ are certain infinite-dimensional superspaces
of U r+1

h and Σr
h, def is the symmetric gradient, (div div S)dist is the distributional

linearized curvature operator, and (div div S)h is its discrete counterpart.
In dimension N > 2, preliminary work suggests that the distributional scalar

curvature (times the volume form) of a Regge metric g becomes

〈(Rω)dist(g), v〉V ′,V =
∑

T

∫

T

RT vωT+2
∑

F

∫

F

[[H ]]F vωF+2
∑

S

∫

S

ΘSvωS , ∀v ∈ V,

where the first sum is over N -simplices T , the second is over (N − 1)-simplices
F , and the third is over (N − 2)-simplices S. Here, RT denotes the (classically
defined) scalar curvature of g within T (which equals 2κT in dimension N = 2),
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[[H ]]F denotes the jump in F ’s mean curvature across F , and ΘS denotes the angle
defect along S, which may vary along S.

If g(t) is a family of Regge metrics in dimension N with ∂
∂tg =: σ, then one

finds

d

dt
〈(Rω)dist(g(t)), v〉V ′,V =

∑

T

∫

T

〈Sσ,∇∇v〉ωT −
∑

F

∫

F

Sσ(n, n)[[∇nv]]ωF

−
∑

T

∫

T

〈G, σ〉vωT −
∑

F

∫

F

〈
[[ĪI]], σ|F

〉
vωF +

∑

S

∫

S

ΘS Tr(σ|S)vωS ,

(2)

where G = Ric− 1
2Rg denotes the Einstein tensor, and ĪI(X,Y ) = g(∇Xn, Y ) −

Hg(X,Y ) is the trace-reversed second fundamental form on F . We recognize (2)
as a distributional version of the identity

d

dt

∫
Rvω =

∫
(div div Sσ)vω −

∫
〈G, σ〉vω

that holds in the smooth setting. The appearance of [[ĪI]] lends credence to this as-
sertion; the same quantity arises in studies of singular sources in general relativity,
where it encodes the so-called Israel junction conditions across a hypersurface [7].1

This motivates the following definition. Given a Regge metric g, the discrete
Einstein tensor Gh associated with g is the unique element of Σr

h satisfying
(3)∫
〈Gh, σh〉ω =

∑

T

∫

T

〈G, σh〉ωT +
∑

F

∫

F

〈
[[ĪI]], σh|F

〉
ωF −

∑

S

∫

S

ΘS Tr(σh|S)ωS

for every σh ∈ Σr
h. In dimension N = 2, one can check that the right-hand side

of (3) simplifies to zero, which is consistent with the fact that the Einstein tensor
always vanishes in two dimensions. In N dimensions, our preliminary numerical
experiments suggest that (3) yields a Gh that converges in a weak sense to its
smooth counterpart under refinement of the triangulation; analysis is ongoing.
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Smooth finite element sequences on Worsey-Farin splits

Michael Neilan

(joint work with Johnny Guzmán, Anna Lischke)

Motivated by structure-preserving and divergence-free discretizations of incom-
pressible flow, we construct various Stokes complexes, consisting of piecewise poly-
nomial spaces, with respect to three-dimensional simplicial triangulations. In par-
ticular, we consider the following de Rham complexes with enhanced regularity:

R −−→ H2(Ω)
grad

−−→ H1(curl; Ω)
curl
−−→ [H1(Ω)]3

div
−−→ L2(Ω) −−→ 0,

R −−→ H2(Ω)
grad

−−→ H1(curl; Ω)
curl
−−→ H1(div; Ω)

div
−−→ H1(Ω) −−→ 0,

to construct discrete analogues:

(1)
R −−→ S0h

grad

−−→ S1h
curl
−−→ L2h

div
−−→ V3

h −−→ 0,

R −−→ S0h
grad

−−→ S1h
curl
−−→ S2h

div
−−→ L3h −−→ 0,

where S0h ⊂ H2(Ω), S1h ⊂ H1(curl; Ω), S2h ⊂ H1(div; Ω), L2h ⊂ [H1(Ω)]3, L3h ⊂
H1(Ω), and V3

h ⊂ L2(Ω) are finite dimensional spaces consisting of piecewise poly-
nomials with respect to a simplicial mesh of Ω. The last two (non-trivial) spaces
in the sequences may be suitable for discretizations for incompressible flows. Pro-
vided the discrete complexes (1) are exact, and if the mapping div : L2h → V3

h

(resp., div : S2h → L3h) has a bounded right-inverse, then the pair L2h × V3
h (resp.,

S2h × L3h) constitutes a stable and divergence-free for the Stokes/NSE problem.
This framework also indicates a connection between H2-conforming finite element
spaces and divergence-free pairs.

On general simplicial triangulations, conformingH2-spaces finite element spaces
require high polynomial degree and complexity. For example, on general three-
dimensional simplicial meshes, H2-conforming spaces require polynomial degrees
of at least nine. In addition, such spaces have extrinsic supersmoothness (e.g.,
constrained to be C4 at vertices and C2 on edges). The relationships between
distinct finite element spaces in (1) imply many of these attributes of smooth
finite element spaces translate to divergence-free pairs.

To reduce the complexity and polynomial degree of the discrete spaces, we
consider discrete complexes (1) defined on splits of simplicial triangulations, in
particular, Worsey-Farin (WF) splits. On such splits, there exists H2-conforming
finite element spaces (with local bases) of degree three and greater. In addition,
these spaces do not possess extrinsic supersmoothness, as their degrees of freedom
only involve function and derivative information [3].
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Given a simplicial, three-dimensional triangulation Th, its WF split T wf
h is

created in three steps: (i) Adjoin the incenter of each T ∈ Th to its vertices; (ii)
Connect the incenters of each adjacent pair of tetrahedra with a line segment.
This line segment intersects the common face F at a point call mF ; (iii) Connect
mF to the three vertices of F . Thus, a WF split divides each tetrahedron in the
mesh into 12 sub-tetrahdra.

Our first main result concerns exactness properties of discrete spaces defined
on a single macro element. Let T ∈ Th be a tetrahedron, and denote by Twf its
induced WF refinement consisting of 12 sub-tetrahedra. Let Pℓ(T

wf) be the space
of (discontinuous) piecewise polynomial of degree ≤ ℓ with respect to Twf , and set

S0ℓ(T
wf) = Pℓ(T

wf)∩H̊2(T ), S1ℓ (T
wf) = [Pℓ(T

wf)]3∩H̊1(curl;T ), and S2ℓ(T
wf) =

[Pℓ(T
wf)]3 ∩ H̊1(div;T ). We further denote L2ℓ(T

wf) = [Pℓ(T
wf) ∩ H̊1(T )]3 and

L3ℓ(T
wf) = Pℓ(T

wf)∩ H̊1(T )∩ L̊2(T ) to be the vector and scalar Lagrange spaces,
respectively. Then the following sequences are complexes and are exact for r ≥ 3
[2]:

(2)
0 −−→ S̊0r(T

wf)
grad

−−→ S̊1r−1(T
wf)

curl
−−→ L̊2r−2(T

wf)
div
−−→ N̊3

r−3(T
wf) −−→ 0,

0 −−→ S̊0r(T
wf)

grad

−−→ S̊1r−1(T
wf)

curl
−−→ S̊2r−2(T

wf)
div
−−→ L̊3r−3(T

wf) −−→ 0.

Here, N̊3
r−3(T

wf) ⊂ H̊(curl;T ) ∩ [Pr−3(T
wf)]3 is a Nédélec-type space with addi-

tional normal continuity at some edges in Twf .
Our second result is a global analogue of (2). For brevity, we describe the

global version of the first sequence in (2). To this end, we let Pℓ(T wf
h ) denote

the space of piecewise polynomials with respect to the globally refined WF mesh.

Set S0ℓ (T wf
h ) = Pℓ(T wf ) ∩ H2(Ω), S1ℓ (T wf

h ) = [Pℓ(T wf )]3 ∩ H1(curl; Ω), and

L2ℓ(T wf
h ) = [Pℓ(T wf ) ∩ H1(Ω)]3. We further let Nℓ(T wf

h ) be the space of piece-

wise polynomials with respect to T wf
h of degree ≤ ℓ that have an alternating weak

continuity property at singular edges (cf. [2]). Then, for r ≥ 3, there exists oper-
ators Π0 : C∞(Ω) → S0r (Th), Π1 : [C∞(Ω)]3 → S1r (Th), Π2 : [C∞(Ω)]3 → L2r(Th),
and Π3 : C∞(Ω)→ N 3

r (Th) satisfying the commuting properties

gradΠ0ω0 = Π1gradω0, curlΠ1ω1 = Π2curlω1, div Π2ω2 = Π3divω2.

The operators Π2 and Π3 can be modified to construct stable Fortin-like operators,
resulting in a stable and divergence-free P1 − P0 discretization for the Stokes
problem [1].
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Traces for Hilbert Complexes

Ralf Hiptmair

(joint work with Dirk Pauly and Erick Schulz)

Motivation. For the 3D Euclidean de Rham complex on a Lipschitz domain
Ω ⊂ R3 the trace operators γ (point trace), γt (tangential component trace), and
γn (normal component trace) connect it to a Hilbert complex of functions on the
boundary Γ := ∂Ω:

H1(Ω) ⊂ L2(Ω) H(curl,Ω) ⊂ L
2(Ω) H(div,Ω) ⊂ L

2(Ω) L2(Ω)

H
1
2 (Γ) ⊂ H−

1
2 (Γ) H

−
1
2

⊥
(curlΓ,Γ) ⊂ H

−
1
2

⊥
(Γ) H−

1
2 (Γ) ⊂ H−

1
2 (Γ) 0 ,

grad

γ

curl

γt

div

γn

gradΓ curlΓ 0

where the trace spaces are defined as

H
1
2 (Γ) :=

{
v∈ H

−
1
2 (Γ) : gradΓ v ∈ H

−
1
2

⊥
(Γ)

}
,

H
−

1
2

⊥
(curlΓ,Γ) :=

{
v∈ H

−
1
2

⊥
(Γ) : curlΓ v ∈ H

−
1
2 (Γ)

}
,

H
−

1
2 (Γ) :=

{
v∈ H

−
1
2 (Γ)

}
,

H
1
2
⊥
(Γ) := γ×H

1(Ω) ,

H
−

1
2

⊥
(Γ) :=

(
H

1
2
⊥
(Γ)

)′

.

Obviously, the trace complex is a Hilbert complex of unbounded surface differen-
tial operators based on duals of trace spaces of H1-regular functions on Ω. The
question is, whether this is a peculiarity of the de Rham complex, or a general
structure inherent in a certain class of Hilbert complexes.

Functional traces. Let Wk, k ∈ Z, be a sequence of Hilbert spaces, and
Ak : D(Ak) ⊂ Wk → Wk+1, unbounded, closed, densely defined, linear (cddl)
operators, satisfying the complex property Ak+1 ◦ Ak = 0. In addition, we take

for granted another sequence of cddl operators Åk : D(Åk) ⊂Wk →Wk+1 with

Åk+1 ◦ Åk = 0 and Åk ⊂ Ak, that is, D(Åk) ⊂ D(Ak) and Ak|D(̊Ak)
= Åk. This de-

fines a complex and a sub-complex. So do the adjoint operators A∗
k and A⊤

k := Å∗
k,

related by A
∗
k ⊂ A

⊤
k .

Taking the cue from a generalization of the integration by parts formula we first
define the trace in a weak sense.

Definition 1 ((Primal) Hilbert trace, [2, Def. 3.1]). The primal Hilbert trace

Tt
k : D(Ak)→ D(A⊤

k )
′ is defined by

〈Tt
kx,y〉D(A⊤

k
)′ := (Akx,y)Wk+1

−
(
x,A⊤

k y
)
Wk

∀x ∈ D(Ak),y ∈ D(A⊤
k ).

We find ‖Tt
k‖ = 1 and the kernel N (Tt

k) = D(Åk). The range of this trace
operator allows a non-trivial characterization.

Theorem 2 (Chracterization of “trace space”, [2, Prop. 3.4]).

R(Tt
k) = D(A∗

k)
◦ :=

{
φ ∈ D(A⊤

k )
′ | 〈φ,y〉D(A⊤

k
)′ = 0 ∀y ∈ D(A∗

k)
}

.
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Quotient traces. For the de Rham complex the trace operators γ, γt, and γn map
onto the corresponding trace spaces, which paves the way for their characterization
as quotient spaces. This carries over to the abstract setting.

Theorem 3 (Trace space = quotient space, [2, Thm. 3.10]).

I
t
k :

{ D(Ak)/D(Åk) → R(Tt
k) = D(A∗

k)
◦

[x] 7→ T
t
kx

is an isometric isomorphism.

Surface differential operators. Writing πt
k : D(Ak) → D(Ak)/D(Åk) for the

canonical projections, we can introduce operators mapping between “trace spaces”,

Dt
k := (A⊤

k+1)
′ : D(A⊤

k )
′ → D(A⊤

k+1)
′ ,

Stk := πt
k+1 ◦ Ak ◦ (πt

k)
−1 : D(Ak)/D(Åk) → D(Ak+1)/D(Åk+1) ,

which make the following diagram commute:

D(Ak)/D(Åk) D(Ak+1)/D(Åk+1)

D(Ak) D(Ak+1)

R(Tt
k) R(TT

k+1)

S
t
k

I
t
k

I
t
k+1

π
t
k

Ak

π
t
k+1

T
t
k

−D
t
k

T
t
k+1

These are generalized versions of the surface difference operators of the trace De
Rham complex.

Characterization of trace spaces. A more detailed characterization of trace
space will rely on them, but also on a somewhat extended framework providing
so-called regular decompositions:

• We have “more regular” Hilbert spacesW+
k ⊂Wk, k ∈ Z, with continuous

and dense embeddings W+
k →֒ D(A⊤

k−1).
• There exist bounded linear operators

L
t
k+1 : D(A⊤

k )→W+
k+1 and V

t
k+1 : D(A⊤

k )→W+
k+2

such that y = (Lk+1 + A
T
k+1V

t
k+1)y ∀y ∈ D(A⊤

k ) .

• The embedding W+
k (A

⊤
k−1) := {z ∈W+

k : A
⊤
k−1 z ∈W+

k−1} →֒ D(A⊤
k−1)

is continuous and dense.
• The inclusion W+

k ⊂ D(A⊤
k−1) induces a continuous and dense embedding

W̊+
k := W+

k ∩ D(A∗
k−1) →֒ D(A∗

k−1).

We point out that the existence of regular decompositions has been verified for a
large range of important Hilbert complexes obtained from the de Rham complex
by the BGG construction [1, Thm. 3].
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Theorem 4 (Characterization of functional trace space, [2, Thm. 6.8]). Introduc-

ing the annihilator (W̊+
k+1)

◦ := {φ ∈W−
k+1 : 〈φ,y〉

W
−

k+1
= 0 ∀y ∈ W̊+

k+1}, we
have

R(Tt
k) = {ψ ∈ (W̊+

k+1)
◦ : D

t
kψ ∈ (W̊+

k+2)
◦} with equivalent norms.

This induces a similar characterization of quotient trace spaces: [2, Thm. 6.11]:

R(Tt
k)

∼= {ψ ∈ (W̊+
k+1)

◦ : Dt
kψ ∈ (W̊+

k+2)
◦}

xy xy xy

D(Ak)/D(Åk) ∼=
{
φ ∈

(
W+

k+1/W̊
+
k+1

)′
: (Snk+1)

′φ ∈
(
W+

k+2/W̊
+
k+2

)′}
.

Note that for the de Rham Hilbert complex the natural choices for W+
k are H1-

regular functions/vector fields. Then W+
k+1/W̊

+
k+1 can be identified with suitable

dual spacesH
− 1

2• (Γ) and we recover the characterization of the trace spacesH
1
2 (Γ),

H
− 1

2

⊥ (curlΓ,Γ), and H− 1
2 (Γ) given above.

Trace Hilbert complex. The generalized surface differential operators map
between trace spaces and spawn a trace Hilbert complex:

Theorem 5 (Trace Hilbert complex, [2, Thm. 7.1]). The sequence of unbounded
operators

· · · D
t
k−1−−−−→ R(Tt

k) ⊂ (W̊+
k+1)

◦ D
t
k−−−−→ R(Tt

k+1) ⊂ (W̊+
k+2)

◦ D
t
k+1−−−−→ · · ·

is a Hilbert complex (the Dt
ks densely defined, closed on (W̊+

k+1)
◦).

A simple criterion ensures that the trace Hilbert complex is Fredholm:

Theorem 6 (Fredholm property of trace Hilbert complex, [2, Thm. 7.3]). If the
inclusions W+

k →֒Wk are compact for all k ∈ Z, then the embeddings

D(Dt
k) ∩ D((Dt

k−1)
∗) →֒ (W̊+

k+1)
◦ are compact.
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Boundary Integral Exterior Calculus

Erick Schulz

(joint work with Ralf Hiptmair and Stefan Kurz)

Applying the so-called tangential and normal traces t = ı∗ and n = ⋆−1 ı∗⋆ to
the de Rham complex in a Lipschitz subdomain Ω of a manifold M, we obtain
the trace de Rham complexes (see [6, 8] and the recent work “Traces for Hilbert
complexes” [3])

...
dℓ−1−−−→ H

− 1
2

⊥ Λℓ−1(d,Γ)
dℓ−→ H

− 1
2

⊥ Λℓ(d,Γ)
dℓ+1−−−→ ...,(1a)

...←−−−
δℓ−1

H
− 1

2

‖ Λℓ−1(δ,Γ)←−
δℓ

H
− 1

2

‖ Λℓ(δ,Γ)←−−−
δℓ+1

....,(1b)

on the boundary Γ = ∂Ω, respectively. We equip these spaces with the non-local
inner products [7, Thm. 3.6] (also see [1])

(u, v)− 1
2 ,λ,t

= 〈tSλ(u), v〉Γ, u, v ∈ H
− 1

2

‖ Λℓ(Γ),(2a)

(w, z)− 1
2 ,λ,n

= 〈nD(w), w〉Γ, w, z ∈ H
− 1

2

⊥ Λℓ(Γ),(2b)

involving the boundary potentials [7, Eq. 3.8]

Su(x) = 〈u, tG(x, ·)〉Γ, and Dw(x) = 〈w, nG(x, ·)〉Γ ,(3)

where G is a fundamental solution [7, Sec. 3] for the Hodge–Laplace or Yukawa
operator (see [7, Sec. 3] and [2, 4, 5])

(4) −∆+ λ = dδ + δd + λ.

The gist of Boundary Integral Exterior Calculus is the observation that two com-
mutation identities are available which greatly simplify the derivation of boundary
integral equations for operators related to the Hodge–Laplace/Yukawa operator
acting on forms of order ℓ and to the (possibly perturbed) Hodge–Dirac operator

(5) D+ iκ = d+ δ + iκ

acting on the full graded algebra of differential forms:

I. The pullback commutes with exterior differentiation as [7, Eq. 1.11]

t ◦ d = d ◦ t and n ◦ δ = −δ ◦ n.(6)

II. The boundary potentials commute with exterior differentiation as [7, Lem.
3.1] (cf. [5, Lem. 3])

δS(v) = S(δv) and dD(u) = −D(du).(7)

Since ∂Γ = ∅, integrating by parts then reveals that

〈tdSλ(u), v〉Γ = (δ∗u, v)− 1
2 ,λ,t

, 〈tδSλ(u), v〉Γ = (δu, v)− 1
2 ,λ,t

,(8a)

〈ndD(w), z〉Γ = −(dw, z)− 1
2 ,λ,n

, 〈nδD(w), z〉Γ = −(d∗w, z)− 1
2 ,λ,n

,(8b)

where d∗ and δ∗ are Hilbert space adjoint to the exterior derivative and codif-
ferential under the non-local inner products (2a) and (2b). These identities are
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crucial, because they make it possible to recognize that the first-kind boundary
integral operators for Hodge–Dirac and Hodge–Laplace operators are Hodge–Dirac
and Hodge–Laplace operators themselves in the trace de Rham complexes.

For example, suppose that a full form U ∈ L2Λ(M) is compactly supported
and that there exists F ∈ L2Λ(M) such that F |Ω = (D + iκ)U |Ω and F |Ω+ =
(D+ iκ)U |Ω+ . Then, one has the representation formula

(9) U = (D− iκ) (NF − SλJnUK +DλJtUK) ,

where N is the Newton operator given by the integral transformation involving G
and J•K denotes the jump of a trace across Γ. Taking average traces {•} on both
sides of (9) yields the boundary integral operators

V[D] := {t} (D− iκ)S, K[D] := {t} (D− iκ)D,(10a)

A[D] := {n} (D− iκ)S, W[D] := {n} (D− iκ)D,(10b)

that enter the variational formulations

h ∈ H
− 1

2

‖ Λ(δ,Γ) : 〈V[D]h,w〉Γ = 〈(1
2
Id + K[D])g,w〉Γ, ∀w ∈ H

− 1
2

‖ Λ(δ,Γ),

(11a)

g ∈ H
− 1

2

⊥ Λ(d,Γ) : 〈W[D]g,v〉Γ = 〈(1
2
Id− A[D])h,v〉Γ, ∀v ∈ H

− 1
2

⊥ Λ(d,Γ),

(11b)

associated with first-kind direct boundary integral equations. But from the jump
relations

JtKS = 0, JtdKS = 0, JtδKS = 0,(12a)

JnKS = 0, JndKS = −Id, JnδKS = 0,(12b)

JtKD = 0, JtdKD = 0, JtδKD = Id,(12c)

JnKD = 0, JndKD = 0, JnδKD = 0,(12d)

that were used to establish those equations, we also find that V[D] = t (D− iκ)Sλ

and W[D] = n(D − iκ)D. Based on the previous identities (I) and (II), we can
evaluate [7, Sec. 4.1.2]

〈V[D]h,w 〉Γ = (δh,w)− 1
2 ,λ,t

+ (h, δw)− 1
2 ,λ,t
− iκ(h, δw)− 1

2 ,λ,t
,(13a)

〈W[D]g,v 〉Γ = −(dg,v)− 1
2 ,λ,n

− (g,dw)− 1
2 ,λ,n

− iκ(g,v)− 1
2 ,λ,n

,(13b)

from which we discover that

V[D] = δ + δ∗ − iκ and W[D] = −(d+ d∗)− iκ(14)

on the boundary.
More involved calculations reveals that the first-kind boundary integral opera-

tors for the Hodge–Laplacian are also Hodge–Laplace operators on the boundary.
This is true for both the strong and the mixed formulation

M =

(
−Id δ
d δd + λ

)
,



Hilbert Complexes: Analysis, Applications, and Discretizations 1627

obtained by introducing an auxiliary unknown V = δU . Indeed, these operators
admit the representation formulas [7, Prop. 4.5 and 4.6]

U = NF −
(
d Id

)( SJnUK
SJndUK

)
+
(
Id δ

)(DJtδUK
DJtUK

)

and

(
V
U

)
=

(
−dδ − λId δ

d Id

)((
NH
NF

)
−
(

0
D JtV K + δD JtUK

)
+

(
S JnUK
S JndUK

))

that eventually leads to the boundary integral operators [7, Sec. 4.2]

(15a) V[∆] = V[M] =

(
−δ∗δ − λId δ

δ∗ Id

)

(15b) W[∆] = W[M] =

(
Id −d∗
−dℓ−1 −d∗d− λId

)

formulated in the trace de Rham complex equipped with non-local inner products.
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Hybridization and postprocessing in finite element exterior calculus

Ari Stern

(joint work with Gerard Awanou, Maurice Fabien, and Johnny Guzmán)

This talk presents the results of the paper [5], in which we develop hybridiza-
tion and postprocessing techniques for the Hodge–Laplace problem on differential
k-forms in Rn, within the framework of finite element exterior calculus (FEEC)
[3, 4, 1]. The hybridized FEEC methods use discontinuous spaces of differential
forms, enforcing continuity and boundary conditions using Lagrange multipliers
on the element boundaries. Their solutions are seen to agree with those of the
original, non-hybrid FEEC methods, and the Lagrange multipliers correspond to
weak tangential and normal traces. This hybrid formulation enables static con-
densation: since only the Lagrange multipliers are globally coupled, the remaining
internal degrees of freedom can be eliminated using an efficient local procedure,
and the resulting Schur complement system can be substantially smaller than the
original one. We also present a generalization of Stenberg postprocessing [11],
which for 0 < k < n is shown to give new improved estimates.

The special cases k = 0 and k = n are shown to recover known results on
hybridization and postprocessing for the scalar Poisson equation. In particular,
the case k = n corresponds to the hybridized Raviart–Thomas [2] and Brezzi–
Douglas–Marini [6] methods, and the postprocessing procedure is precisely that of
Stenberg [11]. The case k = 0 corresponds to the more recent hybridization of the
continuous Galerkin method by Cockburn, Gopalakrishnan, and Wang [8].

The hybrid and postprocessing schemes in the remaining cases 0 < k < n
are new and, to the best of our knowledge, have not appeared in the literature
even for the vector Poisson equation when n = 2 or n = 3. In particular, the
hybridization of Nédélec edge elements is different from that in [7]: here, the
Lagrange multipliers are simply traces of standard elements, rather than living
in a space of “jumps.” We expect these new methods to be especially useful in
computational electromagnetics, where Nédélec elements are ubiquitous and the
differential forms point of view has provided significant insight [10].

While we restrict our attention primarily to hybrid methods for conforming
simplicial meshes, we remark that the framework developed here has the potential
to be applied to other types of domain decomposition methods, including methods
on cubical meshes, nonconforming meshes, mortar methods, etc. We also discuss
briefly how the unified hybridization framework of Cockburn, Gopalakrishnan,
and Lazarov [9], which includes nonconforming and hybridizable discontinuous
Galerkin (HDG) methods, may also be generalized to the Hodge–Laplace problem
for 0 < k < n.
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The bubble transform and the de Rham complex

Ragnar Winther

(joint work with Richard S. Falk)

The purpose of this talk is to discuss a generalization of the bubble transform to
differential forms. The bubble transform was discussed for scalar valued functions,
or zero forms, in [2]. It represents a new tool for the understanding of finite element
spaces of arbitrary polynomial degree. The present talk contains a similar study
for differential forms. From a simplicial mesh T of the domain Ω, we build a map
which decomposes piecewise smooth k forms into a sum of local bubbles supported
on appropriate macroelements. The key properties of the decomposition are that
it commutes with the exterior derivative and preserves the piecewise polynomial
structure of the standard finite element spaces of k-forms. Furthermore, the trans-
form is bounded in L2 and also on the appropriate subspace consisting of k-forms
with exterior derivatives in L2.

We let Λk(T ) denote the set of piecewise smooth k forms with respect to the
mesh T . In the setting of finite element exterior calculus, there are two funda-
mental families of piecewise polynomial subspaces of Λk(T ). These are the spaces
PrΛ

k(T ) and P−
r Λk(T ), where r ≥ 1. The spaces PrΛ

k(T ) consist of all piecewise
polynomial k-forms of degree r, while the spaces P−

r Λk(T ) consist of piecewise
polynomial k-forms which locally on each subsimplex contain Pr−1Λ

k, but are
contained in PrΛ

k. In the special case r = 1, the space P−
1 Λk(T ) is exactly the



1630 Oberwolfach Report 29/2022

Whitney forms associated to the mesh T . For both these families of finite ele-
ment spaces, there exist sets of degrees of freedom associated to elements of ∆(T )
which uniquely determine the elements of the space. More precisely, an element u
is uniquely determined by functionals of the form

(1) u 7→
∫

f

trf u ∧ η, η ∈ P ′(f, k, r), f ∈ ∆(T ), dim f ≥ k,

where the test space P ′(f, k, r) ⊂ Λdim f−k(f). We refer to [1, Chapter 4], for more
details. The degrees of freedom of the form (1) correspond to a decomposition of
the dual space into local subspaces, and lead to a local basis, referred to as the
dual basis for the spaces PrΛ

k(T ) and P−
r Λk(T ). A further consequence is that

the spaces themselves admit a decomposition of the form

(2) V k(T ) =
⊕

f∈∆m(T )

m≥k

V k
f , V k

f ⊂ Λ̊k(Tf ),

where V k(T ) is a space of the form PrΛ
k(T ) or P−

r Λk(T ), and V k
f is a V k

f consists

of functions in V k(T ) with all degrees of freedom taken to be zero except the ones
associated to the simplex f . More precisely, a function u ∈ V k(T ) admits a
decomposition

u =
∑

f∈∆m(T )
m≥k

uf , uf ∈ V k
f ,

and the map u 7→ {uf} is implicitly given by the degrees of

trf

m∑

j=k

uj = trf u, f ∈ ∆m(T ), k ≤ m ≤ n,

where uj =
∑

g∈∆j(T ) ug and where tr denotes the trace operator. The map

u 7→ {uf} depends heavily on the particular space V k(T ), and in particular on the
polynomial degree r. On the other hand, the geometry of the decomposition (2),
represented by the macroelements Ωf and the associated mesh Tf , is independent
of the choice of discrete spaces. This indicates that it might be possible to define
the map u 7→ {uf} independent of the choice of discrete spaces. With some
modifications, this is what we achieve by the construction presented in this talk.
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BGG sequences of tensor product finite elements with
arbitrary continuity

Francesca Bonizzoni

(joint work with Kaibo Hu, Guido Kanschat, Duygu Sap)

Starting from the well-understood de Rham complex, it is possible to derive new
complexes and deduce their properties from those of the starting complex. This
construction is related to the Bernstein-Gelfand-Gelfand (BGG) sequence, and its
first systematic study is due to [2]. Recently, there has been a growing inter-
est in discretizing special cases of BGG complexes. Nevertheless, a systematic
construction of discrete BGG complexes is still missing.

In the present work (based on [3]) we provide a recipe to derive discrete BGG
diagrams and BGG complexes of arbitrary dimension on Cartesian meshes. The
construction is based on tensor product for complexes of differential forms intro-
duced in [1], and its building block are the one-dimensional finite element (FE)
cochain complexes of arbitrary continuity presented in [4, 5].

Let {Sr}r≥0 be the family of FE subspaces of polynomials of degree r on the

reference interval I = [0, 1], and denote with Sr−iΛ
i := Sr−i ⊗ Alti the finite

dimensional space of FE differential i-forms on I = [0, 1], for i = 0, 1. We assume
that the following sequence is an exact complex:

(1) 0 R SrΛ0 Sr−1Λ
1 0.d

Examples of exact FE complexes can be found in [4, 5]. Tensorizing the spaces in

(1) with j-alternating forms Altj , for j = 0, 1, we obtain

(2) SrΛ
i,j := Sr−i−j ⊗Alti ⊗Altj ,

namely, spaces of alternating i, j-forms with coefficients in Sr−i−j . They form the
following BGG diagram:

(3)

0 SrΛ
0,0 Sr−1Λ

1,0 0

0 Sr−1Λ
0,1 Sr−2Λ

1,1 0

d

d

S0,1

Note, in particular, that the operator S0,1 is bijective and, in a vector proxy with
canonical bases, it boils down to the identity operator. The BGG construction
yields the following complex:

(4) 0 Υ0 Υ1 0D

with spaces

Υ0 := SrΛ
0,0, Υ1 := Sr−2Λ

1,1,

and the operator

D = d(S0,1)−1d.
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Given a non-negative integer I, we define the set of characteristic multi-indices

XI :=



t = (t1, · · · , tn) ∈ {0, 1}n

∣∣∣∣∣∣

n∑

j=1

tj = I



 .

Let be given a multi-index r = (r1, · · · , rn), where ri denotes the polynomial
degree in the ith direction. The tensor product construction yields to

SrΛ
I,J :=

⊕

(ii,··· ,in)∈XI

(j1,··· ,jn)∈XJ

(Sr1−i1−j1 ⊗ · · · ⊗ Srn−in−jn)⊗ Alti1,j1 ⊗ · · · ⊗Altin,jn .

The spaces {SrΛ
I,J}I,J form the following tensor product BGG diagram

(5)

· · · SrΛ
I−1,J−1 SrΛ

I,J−1 SrΛ
I+1,J−1 · · ·

· · · SrΛ
I−1,J SrΛ

I,J SrΛ
I+1,J · · ·

d d

d

SI−1,J

d

SI,J

where d : SrΛ
I,J → SrΛ

I+1,J and SI,J : SrΛ
I,J → SrΛ

I+1,J−1. Following the
BGG recipe, we then derive the following BGG complex:

(6) 0 Υ0 Υ1 · · · Υn 0D
0

D
1

D
n−1

with spaces

ΥK :=

{
SrΛ

K,J−1 ∩R(SK−1,J )⊥, K < J ;

SrΛ
K,J ∩ ker(SK,J ), K ≥ J,

and operators

D
K :=





PR(SK−1,J )⊥d, K ≤ J − 1;

d ◦ (SK−1,J)−1 ◦ d, K = J ;

d, K ≥ J + 1.

Let us now assume that there exists πi,j : L2Λi,j(I)→ SrΛ
i,j(I), for i, j = 0, 1,

such that it is L2-stable and it commutes with the exterior derivative d as well as
with Si,j . Examples of such quasi-interpolation operators can be found in [4, 5].
Following the tensor product construction, we define

πI,J
⊗n :=

⊕

(ii,··· ,in)∈XI

(j1,··· ,jn)∈XJ

(πi1,j1 ⊗ · · · ⊗ πin,jn).

The tensor product operator πI,J
⊗n maps the space of I, J-forms on I×n with L2-

regular coefficients to S p
r ΛI,J . It can be proved that πI,J

⊗n is L2-stable and it

commutes with the operators d and SI,J forming the tensor product BGG dia-
gram (5). As a result, we have equipped the tensor product BGG complex (6)
with commuting quasi-interpolation operators.
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Matrix-valued Finite Elements with Applications in
Elasticity and Curvature

Joachim Schöberl

Vector-valued function spaces, their finite element sub-spaces, and relations be-
tween these spaces are well understood within the de Rham complex. The frame-
work of differential forms and Hilbert complexes provides a unified framework for
any space dimension.

Various matrix-valued finite element spaces have been introduced and analyzed
more or less independently. In this report we put these spaces into a so called
2-complex. We consider function spaces on Ω ⊂ R3.

The vector-valued spaces are H(curl) = {v ∈ L2(V) : curlu ∈ L2(V)} and
H(div) = {v ∈ L2(V) : div u ∈ L2}, with V := R3. We consider the de Rham
sequence

H1 H(curl)
grad

H(div)
curl

L2
div

The boxes below the space represent direct sums of sub-spaces. E.g. H(curl) can
be decomposed into the range of grad, and a sub-space on which the curl is regular.
Similar for H(div), and also at the end of the sequence with trivial sub-spaces.

The differential operators commute with proper boundary traces, e.g. the tan-
gential gradient of anH1 function is the same as the tangential trace of its gradient
in H(curl). The canonical traces are reflected in the continuity properties of finite
elements, e.g. tangential-continuous Nédélec elements N k and normal-continuous
Raviart-Thomas RT k or Brezzi-Douglas-Marini elements BDMk.

We introduce the matrix valued spaces

Ĥ(dd) :={σ ∈ H
−1(S) : div σ ∈ H

−1(V),div div σ ∈ H
−1(R)},

Ĥ(cd) :={σ ∈ H
−1(T) : div σ ∈ H

−1(V), sym-curlT σ ∈ H
−1(S), curl div σ ∈ H

−1(V)},

Ĥ(cc) :={σ ∈ H
−1(S) : curlσ ∈ H

−1(T), curlT curlσ ∈ H
−1(S)},
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with S = {σ ∈ R3×3 : σ = σT }, T = {η ∈ R3×3 : tr η = 0}. A differential operator
is applied to a matrix row-wise, und ·T means that it is applied column-wise. The
prefix sym takes the symmetric part of the result.

This spaces are less regular than L2. To define L2-like energy norms, we need
the regular sub-spaces

H̃(dd) := {σ ∈ L2(S) : div div σ ∈ H−1(R)},
H̃(cd) := {σ ∈ L2(T) : curl div σ ∈ H−1(V)},
H̃(cc) := {σ ∈ L2(S) : curl

T curlσ ∈ H−1(S)}.
Together with the scalar and vector-valued spaces we can put these spaces into

a sequence:

H1 H(curl) Ĥ(cc) Ĥ(cd) Ĥ(dd) H(curl)∗ [H1]∗
grad sym-gradT

curl sym-curlT div divT

Defining A0 = grad, A1 = sym-gradT , and so on, we can easily verify that

Ai+2Ai+1Ai = 0,

i.e. three operators in a row vanish. This is called a 2-complex. The boxes below
the matrix-valued spaces represent sub-spaces. The box at the head of an arrow
represents the range of the operator applied to the sub-space associated to the box

at the arrow tail. E.g. the the space Ĥ(cc) is decomposed into three sub-spaces:

The bottom box is the range of the second order operator hess := sym-gradT grad .
This sub-space is exactly the null-space of the next, first order operator curl. The
middle box is the range of the first order operator sym-gradT , applied to the
complement space of the gradient sub-space within H(curl). Restricted to the
middle box the curl operator is regular, but the second order operator inc :=
sym-curlT curl vanishes. On the sub-space of the upper box the second order
operator inc is regular. Understanding the cohomology spaces of this 2-complex
is ongoing research.

By forming different combinations of two first order operators to a second order
operator, we can recover the following complexes, which are exact:

• Elasticity complex

H(curl)
def−→ H(cc)

inc−→ H(dd)
div−→ H(curl)∗

• Hessian complex (using div sym-curl = 1
2 curl div):

H1 hess−→ H(cc)
curl−→ H(cd)

div−→ H(div)∗
div curl=0−→ 0

• div div complex (using curl sym-grad = 1
2 dev grad curl):

0
curl grad=0−→ H(curl)

dev grad−→ H(cd)
sym-curlT−→ H(dd)

div div−→ H−1

Finite element spaces for the matrix-valued function spaces are defined similarly
as for vector-valued spaces, with certain continuity constraints for normal and
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tangential components. Now, we multiply the matrix with normal or tangential
vectors from the left and from the right:

V k
dd = {σ ∈ L2(S) : σ|T ∈ P k(S), σnn continuous}

V k
cd = {σ ∈ L2(T) : σ|T ∈ P k(T), σnt continuous}

V k
cc = {σ ∈ L2(S) : σ|T ∈ P k(S), σtt continuous}

These spaces are slightly non-conforming. In 2D, V k
dd is the Hellan-Herrmann-

Johnson finite element space, used for Kirchhoff plates [3]. It was extended to
3D for the TDNNS method for elasticity [13, 12]. The H(curl div) space and Vcd

finite elements were introduced in [6, 4] for the MCS method for the Navier-Stokes
equations. The Vcc is the Regge finite element space, which was brought by [2, 7]
into the finite element framework with applications in relativity, see also [8, 5, 9].

All finite element spaces start from lowest order k = 0, and can be defined as
usual by mapping from a reference element. This easily allows curved elements,
and also elements mapped to manifolds.

To solve variational problems we have to verify well-posedness of operators. It
is easy to show continuity

∀u ∈ H(curl) ∀σ ∈ H(dd) : 〈div σ, v〉 ≤ ‖σ‖Ĥ(dd)‖u‖H(curl)

as well es the stability condition

∀u ∈ H(curl) ∃σ ∈ H(dd) :
〈div σ, u〉

‖σ‖H(dd)‖u‖H(curl)
≥ β

for both versions, Ĥ(dd) and H̃(dd).
Most of the derivatives within the sequence are not defined as weak derivatives,

but must be understood in distributional sense. Consider σ ∈ V k
dd, and evaluate

its distributional divergence f := div σ:

〈f, ϕ〉 = −
∫

σ : ∇ϕ = −
∑

T

∫

T

σ : ∇ϕ =
∑

T

∫

T

div σ −
∫

∂T

σnϕ

=
∑

T

∫

T

div σϕ−
∑

E

∫

E

[σn]ϕ =
∑

T

∫

T

div σ︸ ︷︷ ︸
fT

ϕ−
∑

E

∫

E

[σnt]︸︷︷︸
fE

ϕt

f = div σ consists of element-terms fT = divT σ, and and facet-terms fE = [σnt].
Since the facet term acts in tangential direction, this distribution can be applied
to Nédélec finite element functions N k, which have single valued tangential traces
on facets. We write the duality pairing as

〈div σ, v〉 for σ ∈ V k
dd, v ∈ N k

We can continue with the second distributional divergence div div σ and obtain a
distribution which can be applied to H1-conforming finite elements Lk. Due to
the arising point measures (2D) or edge measures (3D), div div σ 6∈ H−1, and thus
the finite element space is non-conforming.

There are many more pairings which can be built by distributional operators ap-
plied to these finite element spaces, e.g. 〈hessw, σ〉, 〈def(u), σ〉,

〈
curl def(u), ηT

〉
,
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〈
curl γ, ηT

〉
, 〈inc γ, γ̃〉, 〈sym-curl η, γ〉, 〈div η, q〉, 〈div σ, u〉 , 〈div div σ,w〉 with w ∈

Lk ⊂ H1, u ∈ N k ⊂ H(curl), q ∈ BDMk ⊂ H(div), γ ∈ V k
cc ⊂ H̃(cc),

η ∈ V k
cd ⊂ H̃(cd), σ ∈ V k

dd ⊂ H̃(dd).
These distributional pairings allow the construction of many finite element

methods having additional robustness properties, e.g.
TDNNS method for elasticity: find stress σ ∈ V k

dd and displacement u ∈ N k

∫
Aσ : τ + 〈div τ, u〉 = 0 ∀ τ ∈ Vdd

〈div σ, v〉 = f(v) ∀ v ∈ N
this method is robust for thin structures [13, 12].

MCS method for Stokes: Find σ ∈ V k
cd, u ∈ BDMk, and p ∈ P k−1:

∫
Aσ : τ + 〈div τ, u〉+ (div u, q) = 0 ∀ τ ∈ Vcd, ∀ q ∈ P k−1

〈div σ, v〉 + (div v, p) = f(v) ∀ v ∈ BDMk.

It obtains an exactly divergence-free discrete velocity, and is pressure robust [6, 4].
The Hellan-Herrmann-Johnson (HHJ) method for Kirchhoff plates: Find bend-

ing moments σ ∈ V k
dd and vertical deflection w ∈ Lk+1 [3]:

∫
Aσ : τ + 〈div τ,∇w〉 = 0 ∀ τ ∈ V k

dd

〈div σ,∇v〉 = f(v) ∀ v ∈ Lk+1

TDNNS for Reissner Mindlin plates: Find σ ∈ V k
dd and w ∈ Lk+1, β ∈ N k:

∫
Aσ : τ + 〈div τ, β〉 = 0 ∀ τ ∈ V k

dd

〈div σ, δ〉 − 1
t2 (∇w − β,∇v − δ) = f(v) ∀ v ∈ Lk+1, ∀ δ ∈ N k,

It is free of locking for small t, and for t → 0 the discrete RM solution converges
to the solution of the HHJ method [11].

Computing curvature using V k
cc finite elements is presented in the contribution

by M. Neunteufel. We are faithful for many discussions at the MFO workshop on
this topics, in particular with Kaibo Hu and Douglas Arnold.
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Analysis of curvature approximations via covariant curl and
incompatibility for Regge metrics

Michael Neunteufel

(joint work with Jay Gopalakrishnan, Joachim Schöberl, Max Wardetzky)

We consider d-dimensional Riemannian manifolds (M, g) with metric tensor g.
The intrinsic curvatures are given in terms of the fourth order Riemannian curva-
ture tensor R. Regge calculus has originally been developed for solving Einstein
field equations in a coordinate free manner [1]. The manifold M gets approxi-
mated by a simplectic net and the squared lengths at the edges are prescribed.
This approach leads to a discretized tangential-tangential continuous metric ten-
sor gh of g. In terms of the angle deficit an approximated curvature is computed
by summing the internal angles around d − 2-dimensional sub-simplexes and the
deviation from 2π indicates curvature. We present and discuss the high-order cur-
vature approximation for two- and three-dimensional Riemannian manifolds and
their convergence, where M ⊂ Rd and a triangulation T of M is given.

Two-dimensional Riemannian manifolds. For Riemannian manifolds (M, g),
M ⊂ R2, the Gauss curvature K = 1

detgR1221 is the intrinsic curvature quantity.

The lifted distributional Gauss curvature Kh ∈ V k+1
h of an approximated metric

tensor gh = IReg,k
h g ∈ Reggekh is defined by solving for all uh ∈ V k+1

h [4, 2]
∫

M

Khuh

√
det gh da =

∑

T∈T

∫

T

K(gh)
√
det ghuh da+

∑

E∈E

∫

E

[[κg(gh)]]
√
gh,ttuh dl

+
∑

V ∈V

(
2π −

∑

T∈T :V⊂T

∠
T
V (gh)

)
uh(V ).

Here, motivated by the Gauss–Bonnet theorem, K(gh) denotes the element-wise
Gauss curvature, [[κg(gh)]] the jump of geodesic curvature of gh at the edges, and
the last term involves the angle deficit, where ∠T

V (gh) is the internal angle of T at
the vertex V with respect to gh. Further,

Reggekh := {σh ∈ Pk(T ,Rd×d
sym) | [[σh,tt]] = 0 for all faces}
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denotes the tangential-tangential continuous Regge finite elements of polynomial

order k, IReg,k
h the corresponding canonical interpolant [5], and V k

h the Lagrangian
finite element space. The tangential vector at an element boundary is given by t.

Linearizing the right-hand side of the distributional Gauss curvature leads to
an integral representation, where the distributional version of the covariant incom-
patibility operator incg = curlgcurlg is involved. Exploiting the properties of the

Regge interpolant we prove for gh = IReg,k
h g the convergence rate [2]

‖K(g)−Kh‖H−1 ≤ Chk+1
(
‖g‖Wk+1,∞ + ‖K(g)‖Hk

)
.

Using approximations gh ∈ Reggekh of g other than the canonical Regge interpolant
convergence of one order less has been proven in [4, 3].

Three-dimensional Riemannian manifolds. For Riemannian manifolds M ⊂
R3 we consider the curvature operator Q : M → R3×3

sym encoding the intrinsic
curvatures. It is given in coordinates by the Riemannian curvature tensor with
Einstein’s summation conventionQij = − 1

4 detg ε
iklεjmnRklmn, where ε

ijk denotes

the Levi-Civita symbol. To define the lifted distributional curvature operator
Qh ∈ Reggekh in analogy to the 2D setting we cannot rely on the Gauss-Bonnet
theorem, not being available in 3D. We propose in coordinate expression to solve
for all Ph ∈ Reggekh∫

M

Qh : Ph

√
det gh dx =

∑

T∈T

( ∫

T

Q(gh) : Ph

√
det gh dx

+

∫

∂T

√
det gh

cof(gh)nn
n⊗ n× Γn

•• : Ph da
)
+
∑

E∈E

(
2π −

∑

T∈T :E⊂T

∠
T
E(gh)

)
Ph,tEtE dl.

Here, : and ⊗ denote the Frobenius inner and dyadic outer product, respectively,
cof(·) the cofactor matrix, and (A × B)ij = εiklεjmnAkmBln the tensor cross
product of two matrices. Further, n and tE are the face outer normal and edge
tangential vectors, respectively, and ∂T denotes the element boundary of T . The
face terms, which involve the Christoffel symbols of second kind Γk

ij , were de-
rived by mollification and has strong similarities to the geodesic curvature in 2D,

κg(gh)
√
gh,tt =

√
det gh

gh,tt
Γn
tt =

√
det gh

gh,tt
Γk
ijt

itjnk.
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Duality and symmetry in finite element exterior calculus

Yakov Berchenko-Kogan

In 2006, Arnold, Falk, and Winther developed finite element exterior calculus,
generalizing the Lagrange, Raviart-Thomas, Brezzi-Douglas-Marini, and Nédélec
elements using the language of differential forms. In their work, determining the
degrees of freedom of these spaces relied on a Hodge-star-like duality between
k-forms with vanishing trace and (n − k)-forms of lower polynomial degree with
no boundary conditions. However, the exact relationship between this duality
map and the Hodge star remained a mystery. We show that, after a coordinate
transformation λi = u2

i between the standard simplex and the standard sphere,
the relationship becomes clear: On the sphere, the duality map is just the Hodge
star times a bubble function.

More recently, there has also been interest in whether these finite element spaces
have bases that are invariant with respect to the symmetries of the simplex, both
for theoretical reasons and for practical reasons of exploiting symmetry to acceler-
ate computation. For instance, the standard basis for Whitney k-forms associates
a basis element to each k-face of the simplex, and hence symmetries of the simplex
send basis elements to basis elements (up to sign). However, in general, sym-
metric bases for finite element exterior calculus spaces might not exist. Recently,
Licht conjectured for which spaces and which polynomial degrees such bases exist;
building on Licht’s work, we resolve this conjecture.

In my talk, I outlined these results and the main elements of the proofs. For the
symmetry results, the main technique was understanding the representation theory
of the space PrΛ

k(T n) and P−
r Λk(T n) on which the symmetric group Sn+1 acts

by permuting the vertices of the standard simplex T n, or, equivalently, permuting
the barycentric coordinates. Every representation has a unique decomposition as a
direct sum of irreducible representations, so we can answer the question of whether
invariant bases exists in two steps:

(1) determine the decomposition into irreducibles for PrΛk(T n) and P−
r Λ

k(T n),
and

(2) determine which direct sums of irreducibles have invariant bases and which
do not.

It turns out that in two or three dimensions, these steps can be simplified slightly;
it suffices to consider just the subgroup that cyclically permutes three vertices
rather than the entire permutation group.

Meanwhile, for the duality results, the main steps of the proof are:

(1) identify the spaces of differential forms on the sphere that one obtains after
applying the coordinate transformation λi = u2

i to the spaces PrΛ
k(T n),

P−
r Λk(T n), and the corresponding spaces with vanishing trace, and

(2) show that applying the Hodge star on the sphere followed by multiplication
by a bubble function yields isomorphisms between the appropriate spaces
of differential forms on the sphere.
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In the talk, I went through each of these items, highlighting the main ideas for
each finite element space.

Discrete Elasticity Complex on Alfeld Splits

Jay Gopalakrishnan

(joint work with Snorre Christiansen, Johnny Guzmán, Kaibo Hu)

We report on our construction [2] of a discrete elasticity complex of finite element
spaces, complete with unisolvent degrees of freedom and cochain projections.

For smooth fields on a contractible domain Ω ⊂ R3, the exactness of the Kröner

complex, R C∞ ⊗ V C∞ ⊗ S C∞ ⊗ S C∞ ⊗ V 0,
⊂ ε inc div

is classical. Here, R denotes the space of rigid displacements, V = R3, S =
sym(R3×3) where sym(M) = (M +M ′)/2 for M ∈ R3×3, ε(v) = sym(gradv) for
vector fields v : Ω → V, inc g = curl(curl g)′ for matrix fields g : Ω → S, and
div σ denotes the row-wise divergence of a matrix field σ : Ω → S. Our discrete
elasticity complex is obtained by mimicking a construction that gives a Sobolev
space analogue of this smooth complex.

This construction, which we now describe, is based on the Bernstein-Gelfand-
Gelfand (BGG) resolution [1]. Let skw(M) = (M − M ′)/2, K = skw(R3×3),
mskw : V→ K denote the operator with the property that mskw(v)w = v×w for

vectors v, w ∈ V, and vskw = mskw−1 ◦ skw. Starting with the Stokes complex
containing the Sobolev space H1(curl) = {v ∈ H1⊗V : curl v ∈ H1⊗V}, we line
up another smooth de Rham complex (whose exactness follows from [3]) to get

(1)

H2 ⊗ V H1(curl)⊗ V H1 ⊗M L2 ⊗ V

H2 ⊗ V H1 ⊗M H(div)⊗ V L2 ⊗ V

grad curl div

grad

−mskw

curl

S

div

2vs
kw

where Sσ = σ′ − tr(σ)δ is a bijection. It is easy to verify that the above diagram
commutes. Hence, by the simple result of [2, Proposition 2.3] inspired by the BGG
technique, we obtain the derived exact complex

(2)

[
H2⊗V
H2⊗V

]
H1(curl)⊗V H(div)⊗V

[
L2⊗V
L2⊗V

]
[grad,−mskw] curlS−1curl

[
2vskw
div

]

.

Noting that for symmetric matrix fields g, the middle operator’s action reduces
to inc g, we reconsider the above sequence after symmetrizing the contributions
from the operator [grad,−mskw], and replacing H(div)⊗V by the kernel of vskw,
denoted by H(div, S). Then, the exactness of (2) implies the exactness of

(3) H2 ⊗ V sym
(
H1(curl)⊗ V

)
H(div, S) L2 ⊗ V

sym grad inc div .
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The final step is to prove that the second space in (3) is the same as H(inc) =
{g ∈ H1 ⊗ S : inc g ∈ L2 ⊗ S}, i.e., to prove that

(4) sym
(
H1(curl)⊗ V

)
= H(inc).

To do so, for the ⊆-direction, let G ∈ H1(curl)⊗V. Then obviously g = symG is
in H1 ⊗ S. Moreover, since trace of curl symG vanishes, inc g = curlS−1 curlG ∈
L2⊗S. For the reverse⊇-direction, let g ∈ H(inc) and put σ = inc g ∈ L2⊗S. Then[
2vskw
div

]
σ = 0 implies, by the exactness of (2), the existence of z ∈ H1(curl) ⊗ V

such that σ = curlS−1 curl z. Hence curlS−1 curl(g − z) = 0, which implies the
existence of a v ∈ H1 ⊗ V such that S−1 curl(g − z) = grad v. Since curlmskw =
S grad, setting G = g +mskwv, we find that curlG = curl g − S gradv = curl z ∈
H1 ⊗ V. Thus g = symG for a G ∈ H1(curl), completing the proof of (4).
Combining (4) and (3), we complete our derivation of the exact complex

(5) R H2 ⊗ V H(inc) H(div, S) L2 ⊗ V 0
⊂ ε inc div

using the BGG technique.
These arguments set the stage for our discrete analysis in [2], which, even if more

complicated, can be viewed as resulting from a search for finite element analogues
of the above-described simple ideas. We start by considering the standard de Rham
complex of finite element spaces on an Alfeld split of a single tetrahedron, namely
let W k

r denote the usual polynomial Pr∧k spaces. Let Lk
r denote the product of

( 3
k ) copies of the degree r Lagrange space and let Sk

r = {w ∈ Lk
r : dw ∈ Lk+1

r−1}.
Then, on a single (split) tetrahedron,

Z0
r = S0

r ⊆ H2 ⊗ V

Z1
r = {ω ∈ S1

r : curlω is C1 at vertices of T} ⊆ H1(curl)⊗ V

Z2
r = {ω ∈ L2

r : ω is C1 at vertices of T} ⊆ H1 ⊗M

Z3
r = {ω ∈ W 3

r : ω is C0 at vertices of T} ⊆ L2 ⊗ V

are subspaces of the spaces in the top row of (1) while

V 0
r = S0

r ⊆ H2 ⊗ V

V 1
r = {ω ∈ L1

r : ω is C1 at vertices of T} ⊆ H1 ⊗M

V 2
r = {ω ∈ W 2

r : ω is C0 at vertices of T} ⊆ H(div)⊗ V

V 3
r = W 3

r ⊆ L2 ⊗ V

are subspaces of the spaces in the bottom row of (1). For these subspaces, we are
able to carry over the BGG construction (1). In particular, the diagram

Z0
r+1 ⊗ V Z1

r ⊗ V Z2
r−1 ⊗ V Z3

r−2 ⊗ V

V 0
r ⊗ V V 1

r−1 ⊗ V V 2
r−2 ⊗ V V 3

r−3 ⊗ V

grad curl div

grad

−mskw

curl

S

div

2vs
kw
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commutes and, as proved in [2], its top and bottom rows are exact sequences for
r ≥ 4. Just as (2) is the derived from (1), this then implies the exactness of the
derived complex

[
Z0
r+1⊗V
V 0
r ⊗V

]
Z1
r⊗V V 2

r−2⊗V
[
Z3
r−2⊗V

V 3
r−3⊗V

]
[grad, −mskw] curlS−1 curl

[
2vskw
div

]

,

which is useful to understand mixed methods for elasticity with weakly imposed
stress symmetry constructed using the last two spaces above.

Next, let U1
r = sym(Z1

r ⊗V) and denote the kernel of vskw by U2
r−2 = {ω ∈

V 2
r−2⊗V : skwω = 0}. Then, as before, we obtain a discrete analogue of (3):

Z0
r+1⊗V U1

r U2
r−2 V 3

r−3⊗Vε inc div .

Finally to see that U1
r = sym(Z1

r ⊗ V) is an H(inc)-conforming subspace, we
perform a discrete analogue of the argument that we used above to prove (4).
This is detailed in [2, Theorem 5.6]. Renaming Z0

r+1⊗V to U0
r+1 and V 3

r−3⊗V to
U3
r−3 and handling the end cases, we thus obtain the discrete elasticity complex

R U0
r+1 U1

r U2
r−2 U3

r−3 0
⊂ ε inc div

for r ≥ 4, a subcomplex of (5) on a single split tetrahedron.
It does not appear to be trivial to conclude that the local finite element elasticity

complex on a single tetrahedron immediately yields the associated global finite
spaces on a mesh of tetrahedra (due to the tricky supersmoothness properties of
Alfeld splits). Therefore, global finite element spaces are developed in [2] using the
laborious approach of repeating the BGG construction with the global analogues
of each of the above local spaces (and proving exactness of the global finite element
sequences as needed). Unisolvent degrees of freedom for the spaces in the discrete
elasticity complex and characterizations of the inter-element continuity constraints
of the global spaces can all be found among the further results proved in [2].
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The hp3D Code with Applications to Modeling of Optical Amplifiers

Leszek Demkowicz, Stefan Henneking

(joint work with Jacob Badger, Markus Melenk)

In the discretization of partial differential equations (PDEs) in weak form, the
natural energy setting for functions often falls within the energy spaces forming
the exact sequence,

H1(Ω)
∇−→ H(curl,Ω)

∇×−→ H(div,Ω)
∇·−→ L2(Ω),

where Ω ⊂ R3 denotes the domain in which the problem is being solved. This
work presents advances in the implementation of the hp3D finite element (FE)
software, which supports conforming discretization of the exact-sequence energy
spaces. More precisely, hp3D supports the construction of orientation-embedded
shape functions corresponding to Nédélec’s sequence of the first type [7] for ele-
ments of “all shapes:” tetrahedra, hexahedra, prisms, and pyramids. The hp3D
code is documented in [2, 3, 15], and more recently in [11, 19, 14]. As of July 2022,
a preliminary version of hp3D, and accompanying user manual [13], has been made
available as open-source code at https://github.com/Oden-EAG/hp3d.

hp3D supports discretization of any system of PDEs involving unknowns from
the exact-sequence spaces and possibly defined only on specific subdomains of
Ω. It also supports the solution of weakly-coupled problems where one solves
sequentially two or more different problems with unknowns defined on a common
domain. As an example of a complex multiphysics application realized in hp3D,
we present results for a Maxwell model of an optical fiber amplifier accompanied
by stability analysis of a related linear waveguide problem.

The DPG method. Over the past decade, the hp3D code has served as a
main research tool for the discontinuous Petrov–Galerkin (DPG) method. The
DPG method offers an unprecedented guaranteed stability with no preasymptotic
behavior. The stability comes from using optimal test functions that are computed
locally on the fly. The local determination of optimal test functions is possible only
because of the use of discontinuous test spaces [4]. The method can be classified
as a minimum residual method with the residual measured in an (approximate)
dual norm; it always delivers a positive definite Hermitian matrix, and it comes
with a built-in a-posteriori error estimate [5]. DPG is a hybrid method with a
group variable consisting of the solution defined on elements and additional traces
that live on the mesh skeleton. The additional unknowns (traces) are discretized
by using traces of standard element shape functions to the mesh skeleton [8, 6].

Advances in hp3D. Recent development of hp3D has been focused on the im-
plementation of an adaptive DPG multilevel solver for wave propagation prob-
lems [17, 18, 19] and the hybrid parallelization of the code with MPI+OpenMP
[11, 12]. These advancements are built on the code’s lean data structures, sup-
porting anisotropic refinements in both element size h and polynomial order p.
Such refinements are essential to obtaining optimal convergence in many prob-
lems (e.g., to resolve boundary layers). The parallel code has been designed to run
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efficiently on small machines (e.g., a single workstation or laptop), as well as large-
scale computing facilities (e.g., Frontera at the Texas Advanced Computing Center
(TACC)). The mesh partitioning follows a hybrid MPI/OpenMP parallelization
approach where mesh data is distributed to MPI processes and each MPI process
uses OpenMP threading to parallelize its computational workload.

Optical amplifier. hp3D implements a vectorial Maxwell model of an ytterbium
(Yb)-doped active gain fiber amplifier. The model is described in [10], and large-
scale simulations for 10k wavelengths are shown in [9, 12]. In a nutshell, the model
solves a nonlinear Maxwell problem describing the electromagnetic field inside the
optical amplifier, weakly coupled to the transient heat equation. Both problems are
discretized with the DPG method. At high power levels, the amplifier experiences
a thermally-induced transverse mode instability (TMI) which must be suppressed
to preserve the output beam quality.

Once we learned that the TMI-related fluctuations happen at the level of the
modal interference pattern (thousands of wavelengths), the idea of using the so-
called full envelope ansatz emerged. This ansatz for the (linear) Maxwell problem

trades the original operator A for a new operator Ã defined as:

Ãũ = e−ikzA(eikz ũ︸ ︷︷ ︸
=u

) , ũ = ũ(x, y, z) ,

where k corresponds to the wavenumber of the fundamental mode. Consequently,
if original solution u involves the resolution of 10M wavelengths, the new variable
ũ involves simulation of “only” 10k wavelengths, accessible with the parallel hp3D
code [9, 12]. In context of the DPG method, the full envelope problem does not

simply reduce to the use of the exponential ansatz; the new operator Ã is employed
in the adjoint graph norm used in the actual computations.

Waveguide analysis. We have been able to analyze the stability of the (ideal)
DPG full envelope waveguide model [16]. The result consists of three major steps.
Step 1: Stability result for a (linear) acoustic or Maxwell waveguide problem with
frequency ω and length L:

‖Au‖ ≥ α‖u‖ , α =
C

L
, C > 0 ,

where ‖ · ‖ denotes the L2-norm. Note that the frequency is fixed and only the
length of the waveguide (number of wavelengths) is varied. Step 2: Observation
that operators A and ũ share the boundedness-below constant α,

‖Ãũ‖ = ‖e−ikzA(eikz ũ)‖ = ‖A(eikz ũ)‖ ≥ α‖eikz ũ‖ = α‖ũ‖ .
Step 3: Dependence of the inf–sup constant for the ultraweak formulation upon α
and a scaling constant β in the adjoint graph norm:

sup
v

(u,A∗v)

‖v‖V
= sup

v

(u,A∗v)

‖A∗v‖
‖A∗v‖√

‖A∗v‖2 + β2‖v‖2
≥
(
1 +

β2

α2

)−1/2

‖u‖ ,

since operators A and A∗ share the boundedness-below constant.
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Discrete Vector Bundles with Connection and Curvature

Anil N. Hirani

(joint work with Daniel Berwick-Evans, Mark Schubel)

In the smooth theory of vector bundles with connection, spaces of vector bundle
valued differential forms form a sequence with the operators between the pairs of
spaces being d∇, the exterior covariant derivative. This is in general a sequence,
not a complex, since d2∇ is the curvature of the connection which need not be
zero. The exterior covariant derivative is an extension of the connection on the
vector bundle, similar to how d, the exterior derivative on scalar valued forms
is an extension of the differential on smooth functions. Ordinary scalar valued
forms act on vector bundle valued forms through linear maps and this action is
the wedge product between scalar valued and vector bundle valued forms. The
d∇ is compatible with d in that if w is a k-form on the base manifold and α is a
vector bundle valued l-form then d∇(w ∧α) = dw ∧ α+ (−1)|w|w ∧ d∇α. That is,
there is a product rule. The wedge and d∇ are natural with respect to pullbacks
of bundles induced by smooth maps of the base manifolds.

What might a combinatorial version of this machinery look like? We have been
developing something along these lines by generalizing discrete exterior calculus
(DEC) to a framework for discrete vector bundle valued forms on an oriented man-
ifold simplicial complex [1]. As in lattice gauge theory and in some other works
on simplicial gauge theory [3], a vector space is associated with each vertex, and
invertible parallel transport maps are associated with edges and constitute the dis-
crete connection of the discrete bundle. By analogy with DEC, the discrete vector
bundle valued k-forms are k-cochains. In the discrete vector bundle framework a
k-cochain is a mapping from the k-simplices of the underlying simplicial complex
X to vectors, one in each vector space associated with a vertex of each k-simplex.
We call such a special vertex the origin vertex of that simplex.

These origin vertices are used as assembly points for the discrete operators and
parallel transport maps are used to assemble quantities at the origin vertex. For
example, the discrete d∇ is like the coboundary operator on cochains (which is
used as a discrete exterior derivative in DEC), except that all vectors must be
transported to the origin vertex, since vectors living in different vector spaces
can’t be added. We define d2∇ := F to be the discrete curvature of the connection
and this quantity measures the difference in transporting vectors along two paths
on a triangle. Moreover, this d∇ is natural with respect to pullback via abstract
simplicial maps of the base simplicial complexes. Thus abstract simplicial maps
between simplicial complexes play the role of discrete smooth maps between man-
ifolds as in DEC. The discrete d∇ has an extension that yields d∇F = 0, a discrete
Bianchi identity.

At this stage one has to make a choice about the origin vertices and consider
alternatives to using vertices as assembly points. In the present framework, we
have chosen to order the vertices of X and use the lowest numbered vertex in
each simplex as the origin vertex. An alternative elegant choice is to associate
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some point inside each simplex of each dimension as the assembly point. This
latter approach is the one taken by [2]. In fact our approach and theirs can be
related via a subdivision (this point was mentioned in passing during this talk).
We were motivated to take a deeper look at the implications of vertex ordering
and assembly points, prompted by discussions with Snorre Christiansen during
the Newton Institute program in 2019.

Now a word about the discrete wedge product. In DEC, unlike in finite element
exterior calculus (FEEC), cochains are not available as discrete forms defined
everywhere in a simplex. In FEEC shape functions yield such discrete forms
and thus one would imagine that taking a wedge product in FEEC is a simple
matter. However, since polynomial spaces are not closed under products this
requires more care. One approach for the lowest order FEEC (corresponding to,
say, P−

1 Λk spaces) is to use DEC for the wedge product and then interpolate using
shape functions. Indeed, for some purposes DEC can be viewed as a computational
framework working exclusively with degrees of freedom corresponding of the lowest
order FEEC. Thus it seems worthwhile for DEC and its extensions to confront the
question of products in order to discretize product terms such as that arising in
the convection term in Navier-Stokes equations. In DEC a cup-like product on
cochains is analogous to the tensor product and it is anti-symmetrized to define a
discrete wedge product. This discrete wedge product is also natural with respect
to pullbacks via abstract simplicial maps.

In extending these ideas to vector bundle valued cochains we discovered the
following curious fact. We found that if assembly points are chosen to be inside
each simplex then a product rule for cup-like product is obstructed by curvature.
If the assembly points are chosen as the lowest numbered vertices in each simplex
then a cup-like product does satisfy a product rule. However some terms in the
anti-symmetrization will have a curvature obstruction in the product rule. As a
result we are currently studying the implications of using a cup-like product with-
out anti-symmetrization as a discrete wedge product for discrete vector bundles
with connection.

References

[1] D. Berwick-Evans, A. N. Hirani, M. Schubel. Discrete vector bundles with connection and
the Bianchi identity, arXiv:2104.10277 [math.DG] (2021).

[2] S. H. Christiansen, K. Hu. Finite element systems for vector bundles: elasticity and curva-
ture, Foundations of Computational Mathematics, (2022), DOI:10.1007/s10208-022-09555-x.

[3] S. H. Christiansen, T. G. Halvorsen. A simplicial gauge theory, J. Math. Phys. 53 (2012),
DOI:10.1063/1.3692167.



1648 Oberwolfach Report 29/2022

Geometric finite elements for nonlinear Cosserat shell problems

Oliver Sander

(joint work with Hanne Hardering, Lisa Julia Nebel, and Patrizio Neff)

We discuss structure-preserving discretizations for problems involving maps v :
ω → M between manifolds ω and M . The prime example of such a problem is
the computation of harmonic maps from ω to M , that is, maps that make the
Dirichlet energy

J(v) =

∫

ω

‖∇v‖2dx

stationary.
Discretizing such problems is challenging because M typically does not have a

vector space structure. Therefore the typical approximations by finite elements
(i.e., piecewise polynomials) is not possible. To preserve the nonlinear structure
of sets of maps into M , we present two types of generalized finite element func-
tions [3]. These functions vh, collectively termed geometric finite elements, are
geometrically conforming in the sense that vh(x) ∈ M for each x ∈ ω. At the
same time, they degenerate to classical piecewise polynomials in the special case
M = R. What is more, geometric finite elements are Sobolev functions, i.e., ele-
ments of H1(ω;M). This simplifies the error analysis of corresponding numerical
methods for solving partial differential equations tremendously. The finite ele-
ments are constructed either by projecting polynomials in a surrounding space
pointwise onto M (projection-based finite elements), or intrinsically by using the
Riemannian center of mass (geodesic finite elements). These constructions pre-
serve all invariance properties expected by applications in physics and mechanics.

For the harmonic maps problem we show a priori bounds of the discretization
error in the H1 and L2 norms. The bounds are optimal in the sense that the
discretization errors are bounded by the same powers of the mesh resolution as
in linear problems in vector spaces. We also verified this numerically. The proofs
generalize established constructs from the vector space theory such as the Céa
lemma and the Aubin–Nitsche trick to the non-Euclidean setting. Approximation
properties of the nonlinear finite element spaces are shown under four abstract
conditions, which are fulfilled by the particular constructions mentioned above.

We apply the novel discretization technique to an advanced elastic Cosserat
shell model, generalizing a model originally proposed in [1]. Such a shell model
describes the mechanical behavior of thin, essentially two-dimensional objects un-
der load. In our generalization, the midsurface of the shell is an abstract smooth
twodimensional manifold ω. A configuration is given as an immersion m : ω → R3

together with a field of orientations Qe : ω → SO(3), which describes local shear-
ing and drilling of the shell. The material behavior is described by a hyperelastic
energy density involving terms up to fifth order in the shell thickness. For shells
that are homeomorphic to a subset of R2, Ghiba et al. [2] proved existence of global
minimizers of the shell energy in H1(ω;R3 × SO(3)). We generalize the result to
general midsurfaces ω.
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We compute numerical solutions of this model. Geodesic finite elements are
used to approximate the microrotation field Qe, whereas the midsurface config-
uration m is approximated with standard Lagrange finite elements. We prove
that this discrete problem has at least one solution. Numerically we show that
the model does not show shear locking, unless the approximation orders of the
fields and of the geometry are too low. We also show that the discrete model can
reproduce challenging wrinkling and buckling scenarios.
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Numerical Simulation of Wave Equations

Sanna Mönkölä

(joint work with Lauri Kettunen, Tuomo Rossi, Jukka Räbinä, Tytti Saksa, and
Jonni Lohi)

We present a general model for linear wave equations covering hyperbolic problems
in both classical and quantum mechanical application areas. The model is based on
differential geometry in (d+1)-dimensional spacetime. We discretize the problem
in spacetime with the discrete exterior calculus and run numerical simulations
using a software library developed at the University of Jyväskylä.

1. Model

We present a general model for linear wave equations in four dimensions based on
a Clifford algebra in Minkowski spacetime R1,d. That is, we have an Euclidean
space (x1, x2, . . . , xd)

T , imaginary time x0 = ict, and orthonormal basis vectors
γi, i = 0, . . . , d, such that γ0γ0 = −1 and γiγi = 1 for i = 1, . . . , d. The unit
pseudoscalar is i = γ0γ1 · · · γd. The geometric product of two vectors, a and b, can
be presented by ab = a · b+a∧ b, where a · b is the dot product and a∧ b = ia× b is
the exterior product (wedge product). The geometric product of the basis vectors
is associative and distributive, and γiγj = −γjγi for i 6= j.

The basis for (1+d)-dimensional geometric algebra is set by 2d+1 blades.
Basis k-blades (of grade k) are wedge products of k basis vectors that span

a k-dimensional subspace. The wedge product of two vectors results to a two-
dimensional subspace called bivector (2-vector), the wedge product of three vectors
results to a three-dimensional subspace called trivector (3-vector), and so forth. In
a four-dimensional space, the basis is set by 24 = 16 blades, and a general element
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F = f1+f2γ0+f3γ1+f4γ2+f5γ3+f6(γ0∧γ1)+f7(γ0∧γ2)+f8(γ0∧γ3)+f11(γ2∧
γ3) + f10(γ3 ∧ γ1) + f9(γ1 ∧ γ2) + f14(γ0 ∧ γ2 ∧ γ3) + f13(γ0 ∧ γ3 ∧ γ1) + f12(γ0 ∧
γ1 ∧ γ2) + f15(γ1 ∧ γ2 ∧ γ3) + f16(γ0 ∧ γ1 ∧ γ2 ∧ γ3) is presented as a sum of blades
weighted by coefficients fi, i = 1, . . . , 16. Respectively, we present a general source
J . F is operated by the spacetime gradient ∇ = −γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3, and
the resulting multivector is equal to 0 in free space or J 6= 0 with external forces.
The resulting system resembles Rainer Picard’s ”Mother PDE” [5].

Based on the dual correspondence between k-vectors and k-differential forms [1],
we turn to a differential form representation, where the differentials dx0, dx1, dx2

and dx3 are basis 1-forms and basis k-forms are constructed as wedge (exterior)
products of k basis 1-forms, such that, dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi.
With differential (multi)forms F̃ and J̃ we can present linear wave models as

∂F̃ = J̃ , or ∂ ⋆ F̃ = ⋆J̃, where ∂ = (d + δ) is the
differential operator that is the sum of the exterior derivative d and its coderivative
(interior derivative) δ = (−1)k ⋆−1 d⋆ and ⋆ is the Hodge star operator. See [4]
for the action principle based derivation of the general model and topical physics
field models as its instances.

2. Discretization

We perform the spacetime discretization by the discrete exterior calculus (DEC)
method. In principle, the procedure is similar than applied to space discretization
(see, e.g. [2, 7, 8]). First, we provide the computational domain with two meshes, a
primal mesh and a dual mesh. The dual mesh is orthogonal, under the Minkowski
inner product, to the primal mesh. Each mesh is a cell complex with such a
hierarchy that a 0-cell is a vertex, a 1-cell is an edge between two 0-cells, a 2-
cell is a face surrounded by edges, a 3-cell is a volume element surrounded by
faces, and a 4-cell is a 4D volume element. Each primal k-cell is associated with
a corresponding dual (n − k)-cell. The variables can be associated with nodes
(0-forms), edges (1-forms), faces (2-forms), volumes (3-forms), or 4-volumes (4-
forms).

A discrete k-form corresponding to a differential form αk is

uk =

∫

Ck

αk =




∫
Ck1

αk

...∫
Cknp

αk


 ,(1)

where Cki is the ith k-cell and np is the number of k-cells in the mesh. At
the discrete level, the exterior derivative is presented as an incidence matrix
dk that operates discrete differential k-forms uk and represents the neighbor-
ing relations and relative orientations. Since the Stokes theorem holds exactly,
dkuk = dk

∫
Ck

αk =
∫
Ck+1

dαk, the discrete differential operator is exact. The dis-

crete counterpart to the Hodge operator is matrix ⋆k mapping between the primal
and dual mesh. It is diagonal by construction if the dual elements are orthogonal
to the primal elements.



Hilbert Complexes: Analysis, Applications, and Discretizations 1651

The discretized general model for linear wave equations in four dimensions
without external forces is




δ0s
1

∆t2 d0t
d0s δ1s

1
∆t2 d1t

d0t −δ0s
d1s δ2s

1
∆t2 d2t

d1t −d0s −δ1s
d2s

1
∆t2 d3t

d2t −d1s −δ2s
d3t −d2s







u0s

u1s

u1t

u2s

u2t

u3s

u3t

u4t




= 0,(2)

where discrete k-forms uk and incidence matrices dk and the corresponding co-
operators δk are constructed by spatial (subscript s) and temporal (subscript t)
components. As a consequence of the model (2), we get a leap-frog style time-
stepping.

3. Numerical examples

As an example we consider a spacetime mesh twisted around the time axis making
the cross-section of a boomerang shaped cavity to rotate. The primal mesh is
constructed by simplices and it has 29952 nodes, 194068 edges, 320834 faces, and
156717 volumes. The wave source is set in the beginning of the simulation by
discrete 2-form values on the mesh faces whose center of the mass is closer than
the distance of π

50 to the point that is at horizontal distance of 12 edges from the
tip of the trailing boomerang arm.

The boundaries of the cavity are assumed to be rigid. The simulation was
carried out with the wave speed 1 until time t = 7.2 reached. The snapshots
of total wave pattern, as the wave is scattered by the moving cavity boundaries,
are presented in the figure below at t = ti = 9i

5 , i = 1, 2, 3, 4. The CPU time
required for the simulation, including mesh generation, assembling discrete struc-
tures, spacetime evolution, and visualization, was 145 s on an Intel Core i5-5300U
processor at 2.30 GHz. Moving or deforming domains can be obtained by the
construction in (1+1)- and (3+1)-dimensional cases [6], as well. The future work
includes higher-order DEC-based discretizations [3] in spacetime.
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Towards “all” boundary value problems – exploitation of the
structural properties

Lauri Kettunen, Tuomo Rossi

Second order boundary value problems and their numerical solutions provide one
with a powerful design tool. In developing tools for design, it would be very
inefficient to create software for each specific need, but instead, one is after a
concise system that served many purposes at once. This raises a mathematical
question: What is the common structure behind second order boundary value
problems, and how should this structure be represented in finite dimensional spaces
(in which the problems are solved)?

This question boils down to analogies and quoting John Baez, “every good anal-
ogy is yearning to become a functor”. Functors are mappings between categories
such that the compositions and identity morphisms are preserved. Boundary value
problems themselves contain a i) structural layer of differentiability – for this only
a sufficiently smooth manifold is needed – and ii) the metric dependent layer. The
differentiable structure is given by pairs of differential equations, and the metric
layer is established with the constitutive laws. The modern view on differential
equations is, they are derived from the action principle.

“All” boundary value problems point to a class rather than a finite set. Ex-
ploitation of the structural properties means, one works out a type of boundary
value problem – for example, say Maxwell’s equations – as a category. Then, if
one finds a functor to other type of problems – such as to those of elasticity –
by definition, the functor preserves the compositions of the underlying morphism,
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here, the compositions of the functions. This then reveals and answers the ques-
tion, which functions are the ones that should be translated to pieces of software
to build multipurpose software. Notice, all software programs are functions as
indicated by functional programming languages.

The presentation explains an approach to find some basic structural blocks be-
hind the commonly employed field theories of physics. As a pragmatic example, we
explain how one may construct a generalized pair of partial differential equations.
This yields foundations to software systems that are not restricted to particular
or a priori given problems.
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FINLAND

Dr. Martin Licht

EPFL SB MATH-GE
Martin Licht
MA A1 364, Bât. MA
Station 8
1015 Lausanne
Switzerland
1015 Lausanne
SWITZERLAND

Prof. Dr. Peter Monk

Department of Mathematical Sciences
University of Delaware
Newark DE 19716-2553
UNITED STATES

Dr. Sanna Mönkölä
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