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Introduction by the Organizers

This workshop, which continued the triennial series at Oberwolfach on Real and
Harmonic Analysis that started in 1986, has brought together experts and young
scientists working in harmonic analysis and its applications such as linear and non-
linear PDE, number theory, and complex analysis, with the objective of furthering
the important interactions between these fields.

Major areas and results represented at the workshop are:

(1) Applications of nonlinear Fourier analysis include explicit solutions to non-
linear partial differential equations in the form of the inverse scattering
method. This serves as model for new results on conserved quantities for
the Gross-Pitaevski equation. It is a natural challenge to prove analogs
of results of linear Fourier analysis in the nonlinear setting. There has
been a recent breakthrough on a nonlinear variant of Carleson’s theorem
on almost everywhere convergence of Fourier series.

(2) Local smoothing theory encompasses a range of estimates from Fourier re-
striction to decoupling. In Fourier restriction theory, there are similarities
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as well as differences between restriction to submanifolds and restriction
to thin arithmetic sets. New results include Fourier restriction bounds
for surfaces with non-vanishing Gaussian curvature and principal curva-
tures of different signs, as well as sharp small cap decoupling estimates for
the moment curve. Extremizers for L2 based Fourier extension estimates
on quadratic surfaces fall mostly into a predictable family. Exceptional
phenomena occur for Agmon Hörmander type estimates and for cones,
which are studied with the help of the Penrose transform. Extremizers for
Fourier restriction to the moment curves are shown to exist.

(3) Singular Brascamp–Lieb inequalities are much less understood than the
classical non-singular counterparts. A family of singular Brascamp-Lieb
inequalities with cubical structure has emerged as a critical case and plays
a role in applications to ergodic theory and enumerative combinatorics.
Refined phase space localized operators are a useful tool in the theory of
singular Brascamp Lieb inequalities. The study of generalized Brascamp
Lieb inequalities on varieties has led to the understanding of the local
geometry of model Radon-like transforms.

(4) Heisenberg groups arise as boundaries of Siegel domains, and boundary
behaviour of holomorphic functions on strictly pseudoconvex domains has
been studied using the Heisenberg groups. As it turns out, all nilpotent
Lie groups avoiding the obvious obstructions arise as model boundaries of
complex domains.

(5) Spherical maximal functions and their variants appear in many contexts.
An improvement of an Lp bound for Wolff’s circular maximal function
towards cinematic curves using lens cutting has led to the solution of a
conjecture of Fässler and Orponen for the Hausdorff dimension of projec-
tions. The sharp Lp bound for the helical maximal function in Euclidean
space R3 has been established. Surprisingly, spherical maximal operators
over fractal sets of dilations exhibit quite general convex sets as expo-
nent regions of boundedness. There are new results on spherical maximal
operators on the Heisenberg group for horizontal and Korányi spheres.

(6) Fine spectral analysis of one dimensional Schrödinger operators leads to
improved multiplier bounds for Grushin operators. Refined analysis of
Morawetz estimates leads to non-perturbative global solutions to nonlinear
Schrödinger equations with cubical nonlinearity. Pointwise convergence to
intitial data for Schrödinger operators has long been studied, new results
concern fractal dimensions of exceptional sets.

(7) Further topics of the workshop include a non-archimedean variant of Lit-
tlewood Paley theory for space curves, the Hardy Littlewood majorant
property in higher dimension, and new results on multi-parameter Car-
leson embedding. Improved eigenfunction bounds on manifolds imply im-
proved eigenfunction bounds on corresponding product manifolds.

The meeting took place in a lively and active atmosphere, and greatly benefited
from the ideal environment at Oberwolfach. After more than two years of the
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Covid 19 pandemic, it was refreshing to many to return to a workshop in pres-
ence, aided by good measures at the Institute. This appears to have added con-
siderably to the positive spirits at the conference. The meeting was attended in
presence by 42 participants, a small number of invitees participated online. The
program consisted of 23 lectures of 40 minutes. The organisers made an effort to
include young mathematicians, and greatly appreciate the support through the
Oberwolfach Leibniz Graduate Students Program, which allowed to invite several
outstanding young scientists.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Sharp L
p bounds for the Helical maximal function

David Beltran

(joint work with Shaoming Guo, Jonathan Hickman, Andreas Seeger)

Let γ : I → Rn be a smooth curve, where I ⊂ R is a compact interval, and
χ ∈ C∞(R) be a bump function supported on the interior of I. Given t > 0,
consider the averaging operator

Atf(x) :=

∫

R

f(x− tγ(s))χ(s) ds

and define the associated maximal function

Mγf(x) := sup
t>0

|Atf(x)|.

If γ is a non-degenerate curve, in the sense that there is a constant c0 > 0 such
that

| det(γ′(s), · · · , γ(n)(s))| ≥ c0 for all s ∈ I,

it is conjectured that the maximal functionMγ is bounded on Lp(Rn) if and only if
p > n. The two-dimensional case was settled by Bourgain [1] in 1986. In this talk,
we present a positive answer for n = 3. Note that in 3 dimensions, non-degeneracy
amounts to non-vanishing curvature and torsion.

Theorem 1 ([5]). If γ : I → R3 is a smooth, non-degenerate space curve, then
Mγ is bounded on Lp(R3) if and only if p > 3.

The same result was simultaneously and independently obtained by Ko, Lee
and Oh [6]. This result improves the previously known range p > 4 obtained by
the work of Pramanik and Seeger [4] in conjunction with the sharp ℓp-decoupling
inequalities for the cone of Bourgain and Demeter [3]. Recently, there have been
further developments in higher dimensions [7], and the partial range p > 2(n− 1)
has been verified for all n ≥ 4.

Standard reductions allow to deduce a maximal function estimate from a local
smoothing estimate. If we set Aγf(x, t) := ρ(t) ·Atf(x) for some ρ ∈ C∞

c (R) with
supp ρ ⊆ [1, 2], the key inequality that proves Theorem 1 is the following.

Theorem 2. Suppose γ : I → R3 is a smooth, non-degenerate space curve and let
3 ≤ p ≤ 4 and σ < σ(p) where σ(p) := 1

5

(
1+ 2

p

)
. Then Aγ maps Lp(R3) boundedly

into Lp
σ(R

4).

In proving Theorem 2, the main new ingredient is a family ofmicrolocal smooth-
ing estimates for pieces of the operator Aγ for which their associated Fourier mul-
tiplier (in both space and time) has slowest (or fairly slow) decay. On Fourier
side, those directions of slow decay concentrate near a 2-dimensional cone Γ in R4,
generated by a non-degenerate curve in R3. In order to establish those microlocal
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smoothing estimates we use the square-function approach introduced by Mocken-
haupt, Seeger and Sogge [2] in the context of local smoothing estimates associated
to the light cone in R3.

On an abstract level, given an operator T mapping functions from Rn to Rn+1

the approach in [2] consists in a good understanding of T on L4 via the following
4 key steps:

(i) Identify a decomposition Tf =
∑N

ν=1 Tνfν so that the pieces Tν satisfy,
via elementary integration-by-parts arguments,

(1) |Tνfν(x, t)| ≤ C(T )Kν(·, t) ∗ fν(x).

Here C(T ) is typically a gain in the scale at which the operator T is
frequency localized, and the kernel Kν(·, t) is L1-normalised.

(ii) Prove an L4 reverse square function estimate of the type

(2) ‖Tf‖L4(Rn+1) ≤ C(N)
∥∥∥(

N∑

ν=1

|Tνfν |)1/2
∥∥∥
L4(Rn+1)

for the best possible constant C(N). Of course here the goal is to improve,
whenever possible, over the trivial estimate C(N) ≤ CN1/2 implied by the
Cauchy–Schwarz inequality.

After using duality on the right-hand side of (2), the pointwise estimate (1), a
standard Cauchy–Schwarz and Fubini argument, and Hölder’s inequaltiy, one is
left with proving two more estimates.

(iii) An L4 forward square function (in Rn) of the type

(3)
∥∥∥(

N∑

ν=1

|fν |)1/2
∥∥∥
L4(Rn)

≤ C(N)‖f‖L4(Rn)

for the best possible C(N).
(iv) An L2(R4) → L2(R3) estimate for the maximal function

(4) Mg(x) := sup
ν=1,...,N

∫ 2

1

|Kν(·, t)| ∗ g(·, t)](x) dt,

with sharp operator norm in terms of N .

As mentioned above, we follow this strategy when T is a piece of Aγ whose (x, t)
Fourier transform is microlocalised in a neighbourhood (or at a certain distance) of
a 2-dimensional cone Γ. Using the geometry of Γ, we successfully obtain versions
of the estimates (1), (2), (3) and (4) in our context, which provide a satisfactory
L4 bound. The desired Lp bounds for p > 3 featuring in Theorems 1 and 2 follow
from interpolation with elementary L2 estimates for the microlocalised pieces of
Aγ .
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Fourier restriction for smooth hyperbolic 2-surfaces

Stefan Buschenhenke

(joint work with Ana Vargas and Detlef Müller)

Let S ⊂ Rn be a sufficiently smooth hypersurface. The Fourier restriction problem,
introduced by E. M. Stein in the seventies (for general submanifolds), asks for the
range of exponents p̃ and q̃ for which an a priori estimate of the form

(∫

S

|f̂ |q̃ dσ
)1/q̃

≤ C‖f‖Lp̃(Rn)

holds true for every Schwartz function f ∈ S(Rn), with a constant C independent
of f. Here, dσ denotes the Riemannian surface measure on S.

The sharp range in dimension n = 2 for curves with non-vanishing curvature
was determined through work by C. Fefferman, E. M. Stein and A. Zygmund
[F70], [Z74]. In higher dimension, the sharp Lp̃ −L2 result for hypersurfaces with
non-vanishing Gaussian curvature was obtained by E. M. Stein and P. A. Tomas
[To75], [St86] (see also Strichartz [Str77]). Some more general classes of surfaces
were treated by A. Greenleaf [Gr81]. In work by I. Ikromov, M. Kempe and D.
Müller [IKM10] and Ikromov and Müller [IM11], [IM15], the sharp range of Stein-
Tomas type Lp̃ −L2 restriction estimates has been determined for a large class of
smooth, finite-type hypersurfaces, including all analytic hypersurfaces.

The question about general Lp̃−Lq̃ restriction estimates is nevertheless still wide
open. Fourier restriction to hypersurfaces with non-negative principal curvatures
has been studied intensively by many authors. Major progress was due to J.
Bourgain in the nineties ([Bo91], [Bo95a], [Bo95b]). At the end of that decade the
bilinear method was introduced ([MVV96], [MVV99], [TVV98] [TVI00], [TVII00],
[W01], [T03], [LV10]). A new impulse to the problem has been given with the
multilinear method ([BCT06], [BoG11]). The best results up to date have been
obtained with the polynomial partitioning method, developed by L. Guth ([Gu16],
[Gu18]) (see also [HR19] and [Wa18] for recent improvements).
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For the case of hypersurfaces of non-vanishing Gaussian curvature but prin-
cipal curvatures of different signs, besides Tomas-Stein type Fourier restriction
estimates, until a few years ago the only case which had been studied successfully
was the case of the hyperbolic paraboloid (or “saddle”) in R3: in 2005, indepen-
dently S. Lee [L05] and A. Vargas [V05] established results analogous to Tao’s
theorem [T03] on elliptic surfaces (such as the 2 -sphere), with the exception of
the end-point, by means of the bilinear method.

First results based on the bilinear approach for particular one-variate perturba-
tions of the saddle were eventually proved by the authors in [BMV20], [BMVp19]
and [BMVp20a]. Furthermore, B. Stovall [Sto17b] was able to include also the
end-point case for the hyperbolic paraboloid. Building on the papers [L05], [V05]
and [Sto17b], and by strongly making use of Lorentzian symmetries, even global re-
striction estimates for one-sheeted hyperboloids have been established recently by
B. Bruce, D. Oliveira e Silva and B. Stovall [BrOS20], with extensions to higher di-
mensions by Bruce [Br20b]. Results on higher dimensional hyperbolic paraboloids
have been reported by A. Barron [Ba20]. All these results are in the bilinear range
given by [T03].

Improvements over the results for the saddle by means of an adaptation of the
polynomial partitioning method from Guth’s articles [Gu16] were achieved by C.
H. Cho and J. Lee [ChL17], and J. Kim [K17]. Moreover, for a particular class
of one-variate perturbations of the hyperbolic paraboloid, an analogue of Guth’s
result had been proved by the authors in [BMVp20b], and more lately by making
use of Lorentzian symmetries, B. Bruce [Br20a] has established analogous results
for compact subsets of the one-sheeted hyperboloid.

In this article, we shall obtain the analogous result to [Gu16] for compact subsets
of any sufficiently smooth hyperbolic surface.

More precisely, we shall study embedded Cm- hypersurfaces S in R3 of suffi-
ciently high degree of regularity m ≥ 3 which are hyperbolic in the sense that the
Gaussian curvature is strictly negative at every point, i.e., that at every point of S
one principal curvature is strictly positive, and the other one is strictly negative.

A result comparable to the one of the authors was reported by S. Guo and C.
Oh [GO20], though the initial approach is different and is based on approximation
of arbitrary compact hypersurfaces with negative curvature in R3 by polynomial
surfaces.
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Which nilpotent Lie groups arise as model boundaries of

complex domains?

Michael G. Cowling

(joint work with M. Ganji, A. Ottazzi, G. Schmalz)

On the one hand, it is well known that the Heisenberg groups arise as boundaries
of Siegel domains in Cn, and boundary behaviour of holomorphic functions on
strictly pseudoconvex domains has been studied using the Heisenberg groups as
local models for the boundary. More complicated nilpotent Lie groups appear in
the study of boundary behaviour for other model domains. On the other hand,
geometers have studied more complicated domains whose boundaries may be iden-
tified with more complicated nilpotent Lie groups. See, for example, [3, 5, 6, 7].
However, I am not aware of any systematic and complete study that answers the
question of the title of this proposed talk. As we will see, the answer to the
question, at least in one interpretation, is all.

A joint paper (in the final stages of preparation) considers a nilpotent Lie group
G with a left-invariant integrable horizontal CR structure. By this we mean that
the Lie algebra g of Gmay be written as a direct sum h⊕n, where the subspace (not
a subalgebra) h, of real dimension 2n, carries an almost complex structure J and
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generates the Lie algebra g, while n is an ideal of real dimension k. The horizontal
bundle obtained by left-translating h carries an almost complex structure, and we
assume that the CR structure so defined is integrable. We can then show that G is
the “edge of the wedge” boundary of a domain D in Cn+k defined by inequalities.
The additional dimensions arise by complexifying n.

In our proof, we first appeal to results of Baouendi and Rothschild [1] and of
Baouendi, Rothschild and Treves [2], which are based on the Newlander–Nirenberg
theorem [8], to show that G has a local CR embedding in Cn+k as a graph of a
smooth function. We then show that this graph satisfies a family of polynomial
differential equations, following [4], and that the solutions of such polynomial
differential equations in G are polynomials. At the present time, we are trying to
see whether the particular structure that we are dealing with enables us to give a
simpler proof of the Baouendi–Rothschild–Treves embedding theorem.

References

[1] M. S. Baouendi and L. P. Rothschild, Embeddability of abstract CR structures and integra-
bility of related systems, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 3, 131–141.

[2] M. S. Baouendi, L. P. Rothschild and F. Treves, CR structures with group action and

extendability of CR functions, Invent. Math. 82 (1985), 359–396.
[3] V. K. Beloshapka, Real submanifolds in complex space: polynomial models, automorphisms,

and classification problems, Russ. Math. Surv. 57 (2002), 1–41.
[4] M. G. Cowling, J. Li, A. Ottazzi and Q. Y. Wu, Conformal and CR mappings on Carnot

groups, Proc. Amer. Math. Soc. Ser B 7 (2020), 67–81.
[5] S. Murakami, On Automorphisms of Siegel Domains. Springer-Verlag, Berlin–Heidelberg–

New York, 1972.
[6] A. Nagel and E. M. Stein The ∂b-complex on decoupled boundaries in Cn, Ann. Math. 164

(2006), 649–713.
[7] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in

domains of finite type, Proc. Natl Acad. Sci. USA 78 (1981), 6596–6599.
[8] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds,

Ann. Math. 65 (1957), 391–404.

Singular Brascamp-Lieb forms with cubical structure

Polona Durcik

(joint work with Lenka Slav́ıková, Christoph Thiele)

Brascamp-Lieb inequalities are Lp estimates for forms on functions on Euclidean
spaces. They generalize several classical inequalities such as Hölder’s inequality,
Young’s convolution inequality, and the Loomis-Whitney inequality. Brascamp-
Lieb inequalities take the form

∣∣∣
∫

Rm

( n∏

i=1

Fi(Πix)
)
dx

∣∣∣ ≤ C

n∏

i=1

‖Fi‖Lpi (Rki ),

where Πi : Rm → Rki are linear surjections and the constant C is independent of
the measurable functions Fi : Rki → C. A necessary and sufficient condition for
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the Brascamp-Lieb inequality to hold is that

dim(V ) ≤
n∑

i=1

p−1
i dim(ΠiV )

for all subspaces V of Rm, with equality if V = Rm. This was established by
Bennet, Carbery, Christ, and Tao [1].

Singular Brascamp-Lieb integrals arise when we replace one of the functions
in the classical Brascamp-Lieb integral by a singular integral kernel. We consider
Calderón-Zygmund kernels on Rk, i.e. temepered distributions K, whose Fourier

transform K̂ is a smooth function on Rk \ {0} and satisfies

(1) |∂αK̂(ξ)| ≤ c0|ξ|−|α|

for some constant c0, all ξ 6= 0, and all multi-indices α up to a large finite order.
Singular Brascamp-Lieb inequalities then take the form

(2)
∣∣∣
∫

Rm

( n∏

i=1

Fi(Πix)
)
K(Πx)dx

∣∣∣ ≤ C

n∏

i=1

‖Fi‖Lpi(Rki )

where on the left-hand side, Π: Rm → Rk is a surjective linear map and the con-
stant C is independent of the test functions Fj . The constant C is allowed to
depend on K only through the constant c0 in (1) and the bound on the order of
derivatives in (1). As we want the inequality (2) to hold for all kernels satisfying
the above symbol estimates, a necessary condition for (2) can be obtained by spec-
ifying K to be the Dirac delta, which turns the left-hand side into a non-singular
Brascamp-Lieb integral. At present, there is no general necessary and sufficient
condition for the inequality (2) to hold and the theory of singular Brascamp-Lieb
integrals remains a case by case study.

We mention two examples of singular Brascamp-Lieb integrals. In the extremal
case when the dimension of the kernel is as large as possible (while fixing the
number and the dimensions of the functions and avoiding trivial examples and
counterexamples), one obtains the Coifman-Meyer multipliers, whose Lp inequal-
ities are well-known [3]. On the other extreme, when the dimensions of the kernel
is the smallest possible, one finds the simplex Hilbert transform

p.v.

∫

Rn

( n∏

j=1

Fj(x1, . . . , xj−1, xj+1, . . . , xn)
) 1

x1 + · · ·+ xn
dx1 . . . dxn.

Its boundedness is one of the major open problems in harmonic analysis. Case
n = 2 specializes to the dual of the classical Hilbert transform. Choosing the
functions Fj suitably, the simplex Hilbert transform specializes to the multilinear
Hilbert transform. Bounds for the bilinear Hilbert transform, which would also
follow from the case n = 3 of the simplex Hilbert transform, were shown by Lacey
and Thiele [12, 13]. On the other hand, the multilinear Hilbert transform in the
case n ≥ 3 is another major open problem.
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We turn our focus to an intermediate case which features a particular cubical
structure. Let m ≥ 1. For j ∈ {0, 1}m =: C, let Πj : R2m → Rm be given by

Πj(x) = (xj11 , . . . , x
jm
m ),

where x = (x01, . . . , x
0
m, x

1
1, . . . x

1
m) ∈ R2m. Let the linear surjection Π : R2m → Rm

be arbitrary. The singular Brascamp-Lieb integral that we consider is

p.v.

∫

R2m

(∏

j∈C

Fj(Πjx)
)
K(Πx)dx.

Several instances of this form have been studied previously. The case m = 1
specializes to the dual of a classical linear Calderón-Zygmund operator. The case
m = 2 and when one of the functions Fj is the constant function 1 is the so-
called twisted paraproduct, which is a special case of the two-dimensional bilinear
Hilbert transform by Demeter and Thiele [4]. First Lp bounds for the twisted
paraproduct are due to Kovač [10], after a conditional result by Bernicot [2].
In the dimension m = 2, forms with two particular choices of Π were further
studied in [5] and [6], respectively. The latter article deals with an application of
such singular Brascamp-Lieb integrals to quantitative norm convergence of ergodic
averages with respect to two commuting transformations.

The higher-dimensional casem ≥ 2 was addressed in [8] for the particular choice
of exponents pj = 2m for each j. This choice of Lebesgue exponents allows for
global arguments. The paper [8] also establishes a necessary and sufficient condi-
tion on the surjection Π for the singular Brascamp-Lieb inequality in [8] to hold.
Bounds in dimensions m ≥ 2 and in a larger range of exponents were investigated
in [7]. The main result of [7] is the following theorem.

Theorem. Let Π be a real m × 2m matrix such that for each j ∈ C, the
composition ΠjΠ

T is regular. For each j ∈ C let

2m−1 < pj ≤ ∞
and assume

∑
j∈C pj

−1 = 1. Then there exists a constant C such that for all

Calderón-Zygmund kernels K on Rm of order 26m and all tuples (Fj)j∈C of Schwartz
functions on Rm,

(3)
∣∣∣p.v.

∫

R2m

(∏

j∈C

Fj(Πjx)
)
K(Πx)dx

∣∣∣ ≤ C
∏

j∈C

‖Fj‖Lpj (Rm).

A variant of this theorem, in which the lower bound 2m−1 is replaced by a
smaller number, is false. However, we do not know the sharp range of exponents
for the inequality (3) to hold.

The key step in the proof of (3) is to prove an estimate for a localized form.
The latter is proved by an iteration of Fourier expansion, the Cauchy-Schwarz
inequality, and telescoping, all developed in a suitable localized setting. The local
estimate proven in [7] also implies sparse bounds. Sparse bounds can be used to
show certain weighted and vector-valued estimates by a standard procedure.
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The results in [7] are continuous variants of some of the results in [9] in the
dyadic setting. Other results in the dyadic setting include [11, 14], which inves-
tigate non-translation invariant kernels. It would be desirable to have a more
complete understanding of the continuous analogues of [9, 11, 14].
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The Mass Transference Principle and the fractal pointwise

convergence problem for the Schrödinger equation

Daniel Eceizabarrena

(joint work with Felipe Ponce-Vanegas)

The pointwise convergence problem for the Schrödinger equation, introduced by
Carleson in [5] in 1980, asks for the minimal Sobolev regularity s such that

lim
t→0

eit∆f(x) = f(x) for almost every x ∈ Rd, ∀f ∈ Hs(Rd).

The problem was solved quickly in d = 1 by Carleson himself and Dahlberg-
Kenig [6], who proved that s = 1/4 is sufficient and necessary. However, in higher
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dimensions the problem remained open until 2019, when Bourgain [4], Du-Guth-Li
[7] and Du-Zhang [9] proved that the critical exponent, up to the endpoint, was

s =
d

2(d+ 1)
.

The focus of this talk is the fractal refinement of this problem. For a fixed
0 ≤ α ≤ d, we want to compute
(1)

s(α) = inf{ s : lim
t→0

eit∆f(x) = f(x) Hα-almost everywhere, ∀f ∈ Hs(Rd)}.

When α ≤ n/2, the problem was solved and the exponent is (n − α)/2 [2, 15].
However, the question is still open when α > n/2. Before the work presented in
this talk, the best result was

(2)
d

2(d+ 1)
+

d− 1

2(d+ 1)
(d− α) ≤ s(α) ≤ d

2(d+ 1)
+

d

2(d+ 1)
(d− α).

The upper bound follows from the positive results by Du-Zhang [9], while the
best counterexample giving the lower bound is due to Lucà–Rogers [13] and Lucà–
Ponce-Vanegas [12].

To give positive results, the standard method of maximal estimates can be
adapted to the fractal setting. However, disproving a fractal maximal estimate is
not enough to disprove fractal convergence, and therefore counterexamples must
be constructed directly. Typically, these are built via a dyadic sum of functions
fR such that

• fR is Fourier localized in an annulus of radius R, and
• |eit∆fR| is large in a bad set FR.

The corresponding set of divergence is then given by the limit superior set

lim sup
R→∞

FR =
⋂

R≥1

⋃

M≥R

FM .

Thus, to give a fractal counterexample, one of the main challenges is to com-
pute the Hausdorff dimension of these sets. It is well known that computing the
Hausdorff dimension of a particular given set is often a difficult task.

To deal with this problem, we use the Mass Transference Principle introduced
by Beresnevich-Velani [3] in the context of Diophantine approximation and the
Duffin-Schaeffer conjecture. It reads as follows:

Theorem 1 (Mass Transference Principle [3]). Let B(xi, ri) ⊂ Rd be a sequence
of balls such that limi→∞ ri = 0. Suppose that there exists 0 ≤ α ≤ d such that

lim supi→∞B(xi, r
α/d
i ) has full Lebesgue measure. Then,

(3) dimH

(
lim sup
i→∞

B(xi, ri)
)
≥ α.

The moral of this method is that we can translate a Hausdorff measure fractal
problem to a Lebesgue measure problem, which will typically be easier to deal
with.
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As a token of the power of this method, as well as to exemplify how it works, let
me prove in the following few lines the Jarńık-Besicovitch theorem. This classical
theorem states that the set

Sτ =
{
x ∈ (0, 1) :

∣∣x− p

q

∣∣ < 1

qτ
for infinitely many p/q

}
, τ ≥ 2,

where all fractions are considered to be irreducible, has dimH Sτ = 2/τ . By the
Dirichlet approximation theorem, or using continued fractions, one immediately
gets (0, 1) \ Q ⊂ S2. Therefore, |S2| = 1 and dimH S2 = 1. For τ > 2, write the
set as

Sτ = lim sup
q→∞

B

(
p

q
,
1

qτ

)
.

Choose the dilation by α such that τα = 2, so that

lim sup
q→∞

B

(
p

q
,

(
1

qτ

)α)
= lim sup

q→∞
B

(
p

q
,

1

qτα

)
= lim sup

q→∞
B

(
p

q
,
1

q2

)
= S2.

Since S2 has full Lebesgue measure, the Mass Transference Principle implies that
dimH Sτ ≥ 2/τ . The upper bound follows from covering the set in the standard
way.

In our works [10, 11], we apply the Mass Transference Principle similarly to the
limsup sets that arise from Bourgain’s counterexample. A technical difficulty is
that in this case we do not get a limsup of balls, but of rectangles. To tackle this,
we use a generalization of the Mass Transference Principle given by Wang-Wu [14],
which allows dilations from rectangles to rectangles.

The results that I present in this talk are two:

• in [10], we improve the current best lower bound in (2) by combining
Bourgain’s counterexample and the intermediate space trick of Du-Kim-
Wang-Zhang [8], and using the Mass Transference Principle as in the proof
of the Jarnik-Besicovitch theorem above.

• in [11], we consider the alternative symbols

Pk(ξ) = ξk1 + ξk2 + . . .+ ξkd , k ∈ N, k ≥ 2,

studied by An-Chu-Pierce [1] in the Lebesgue case α = d. Using the Mass
Transference Principle, we generalize their result to the fractal case.

The precise results that we obtain depend on several parameters and are too
long to write explicitly here. Instead, we refer the reader to the statements and
visual diagrams that we included in our articles [10, 11].
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Phase space projections

Marco Fraccaroli

(joint work with Olli Saari, Christoph Thiele, Gennady Uraltsev)

Let P be a partition into dyadic intervals of the unit interval [0, 1) in R, and let
Σ(P) be the σ-algebra generated by P . Given a function f on R, by averaging it
on each element of P we define an orthogonal projection from L2([0, 1)) onto the
subspace L2([0, 1)) ∩ M(Σ(P)) of functions that are measurable with respect to
Σ(P). This projection is at the core of the Calderón-Zygmund decomposition and
it can be generalized to the case of the unit cube [0, 1)d in Rd for every dimen-
sion d ∈ N. In particular, it is a cornerstone in the analysis of forms satisfying
translation and dilation symmetries, for example those associated with Calderón-
Zygmund kernels, see [7]. However, this projection does not preserve well the

localization properties of the Fourier transform f̂ of the function f . As a con-
sequence, it is not well-suited for the time-frequency analysis of forms satisfying
additional modulation symmetries, for example those associated with the bilinear
Hilbert transform and the Carleson operator, see [8].

In this talk we describe a substitute construction, the phase space projection,

that is more sensitive to the localization of both f and f̂ at the same time. The
construction is inspired by that of Muscalu, Tao, and Thiele [6] in the case of
dimension d = 1. The novelty of our upcoming work in [2] is the description
of such a construction in the multidimensional case d > 1. Moreover, the esti-
mates we obtain for the phase space projection are useful in the proof of uniform
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bounds for families of multilinear forms satisfying translation, dilation, and mod-
ulation symmetries. A first class of examples is the one-parameter family of forms
associated with the bilinear Hilbert transforms in the case of dimension d = 1.
Bounds for these forms in terms of the Lp norms of the functions and uniformly
in the parameter were proved in [9], [6], [4], [5], and finally settled in [10]. A
second class of examples is the two-parameter family of forms associated with
the complex bilinear Hilbert transforms (or bilinear Beurling-Ahlfors transforms)
and more generally with a certain subfamily of two-dimensional bilinear Hilbert
transforms (2D-BHTs) in the case of dimension d = 2. For these forms we obtain
bounds in the local L2 range uniformly in the parameters in our upcoming work
[3]. The question about uniform bounds for the forms associated with the whole
family of 2D-BHTs remains a difficult open problem. We refer to [1] and [11] for
classifications of the different subfamilies of 2D-BHTs.

This talk is based on joint work in progress with Olli Saari, Christoph Thiele,
and Gennady Uraltsev.

References

[1] C. Demeter and C. Thiele, On the two-dimensional bilinear Hilbert transform, Amer. J.
Math. 132 (2010), no. 1, 201–256.

[2] M. Fraccaroli, O. Saari, and C. Thiele, Conditional expectation and phase space localized
operators, in preparation.

[3] M. Fraccaroli, O. Saari, C. Thiele, and G. Uraltsev, Uniform bounds for the complex bilinear

Hilbert transforms, in preparation.
[4] L. Grafakos and X. Li, Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math.

(2) 159 (2004), no. 3, 889–933.
[5] X. Li, Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam. 22 (2006),

no. 3, 1069–1126.
[6] C. Muscalu, T. Tao, and C. Thiele, Uniform estimates on multilinear operators with mod-

ulation symmetry, J. Anal. Math. 88 (2002), 255–309.
[7] E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory inte-

grals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton
University Press, Princeton, NJ, 1993. xiv+695 pp.

[8] C. Thiele, Wave packet analysis, CBMS Regional Conference Series in Mathematics, 105.
Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 2006. vi+86 pp.

[9] C. Thiele, A uniform estimate, Ann. of Math. (2) 156 (2002), no. 2, 519–563.
[10] G. Uraltsev and M. Warchalski, The full range of uniform bounds for the bilinear Hilbert

transform, arXiv preprint arXiv:2205.09851 (2022).
[11] M. Warchalski, Uniform estimates in one- and two-dimensional time-frequency analysis,

Ph.D. thesis, Universität Bonn, 2018.

Local Geometry of Model Radon-Like Transforms

Philip T. Gressman

We discuss a local characterization of the geometry in all dimensions and codi-
mensions of so-called model Radon-like transforms, which are those that locally
map Lp to Lq for a maximal collection of pairs (p−1, q−1). While there have been
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several explorations of this class of operators over the past two decades, most no-
tably by Ricci [4] and D. Oberlin [3] (see also [1]), there has until now been no
coherent way to describe the local geometry of such objects.

The precise formulation is as follows. Let d1, n, and k be positive integers such
that n > k. Suppose that U is an open subset of Rn × Rd1 , that φ(x, t) is a
smooth function of (x, t) ∈ U with values in Rk and that γt(x) := (t, φ(x, t)). Let
n1 := d1 + k and d := n− k and consider the Radon-like transform

(1) Tf(x) :=

∫

Rd1

f(γt(x))η(x, γt(x))dt,

which is well-defined a priori for all nonnegative Borel-measurable functions f
on Rn1 . Here η(x, y) is a cutoff function which will typically be restricted to
have small compact support containing some distinguished point (x∗, γt∗(x∗)) for
(x∗, t∗) ∈ U . It is assumed that the Jacobian matrix Dxφ (i.e., the matrix of first
partial derivatives of φ with respect to the x-variables) has full rank k for every
(x, t) belonging to the support of η(x, γt(x)).

When studying the Lp → Lq mapping properties of such Radon-like transforms,
a particular pair of exponents arise via Knapp-type examples as the best-possible
p and q for any specific values of n, k, and d1, namely:

(2) pb =
kd

nd1
+ 1 and qb =

n1d

kd1
+ 1.

In the special case when n = n1 and k = 1, pb = (n + 1)/n and qb = n + 1; it
has long been understood that the operator (1) maps L(n+1)/n(Rn) to Ln+1(Rn)
precisely when the family of submanifolds indexed by x ∈ Rn and parametrized by
γt(x) for t ∈ Rd1 for each fixed x exhibits nonzero rotational curvature in the sense
of Phong and Stein. However, when k > 1, nonvanishing rotational curvature is
sufficient but not generally necessary.

The fundamental geometric condition governing nondegeneracy of T can be
phrased in terms of a Newton-diagram-like construction for an associated trilin-
ear curvature form, and the proof establishes both necessity and sufficiency up
to restricted strong-type endpoint estimates. Suppose as noted above that the
Jacobian matrix Dxφ (arranged so that rows correspond to the coordinates of φ
and columns to the coordinates of x) is rank k at (x, t). Let w1, . . . , wd be any
orthonormal vectors in Rn which span the kernel of Dxφ at the point (x, t). For
i ∈ {1, . . . , d1}, i′ ∈ {1, . . . , k}, and i′′ ∈ {1, . . . , d}, let

Qii′i′′ :=

n∑

ℓ=1

wℓ
i′′
∂2φi

′

∂ti∂xℓ
(x, t)

where upper indices as in pi
′

and wℓ
i′′ indicate the coordinates in the standard

bases, e.g, φ := (φ1, . . . , φk) and wi′ := (w1
i′ , . . . , w

n
i′ ). From these coefficients, we

build a trilinear functional Q : Rd1 × Rk × Rd → R by means of the formula
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(3) Q(u, v, w) :=

d1∑

i=1

k∑

i′=1

d∑

i′′=1

Qii′i′′u
ivi

′

wi′′

for all x ∈ Rd1 , y ∈ Rk, and z ∈ Rd.
Given a multiindex β ∈ Zk

≥0 and a sequence I := {i1, . . . , is} of integers be-

longing to {1, . . . , k}, it will be said that β counts I when for each ℓ ∈ {1, . . . , k},
there are exactly βℓ values of j ∈ {1, . . . , s} such that ij = ℓ; in other words,
βℓ is number of elements of the sequence I that equal ℓ. Given Q as in (3),
let N(Q) denote the convex hull in [0,∞)d1+k+d of the collection of all triples

(α, β, γ) ∈ Zd1

≥0 × Zk
≥0 × Zd

≥0 with |α| = |β| = |γ| ≤ min{d, k} (where α, β, and

γ are regarded as multiindices) for which either (α, β, γ) = (0, 0, 0) or for which
there exist I := {i1, . . . , is} ⊂ {1, . . . , k} and J := {j1, . . . , js} ⊂ {1, . . . , d} such
that β counts I, γ counts J , and

(4) ∂ατ |τ=0 det



Q(τ, ei1 , ej1) · · · Q(τ, ei1 , ejs)

...
. . .

...
Q(τ, eis , ej1) · · · Q(τ, eis , ejs)


 6= 0,

where {ei}ki=1 is the standard basis of Rk, {ej}dj=1 is the standard basis of Rd, and

τ ∈ Rd1 . Then let

NR(Q) :=
⋂{

N(Q′) | Q′(x, y, z) = Q(O1x,O2y,O3z) for orthogonal

matrices O1, O2, O3 and all x ∈ Rd1 , y ∈ Rk, z ∈ Rd
}(5)

(i.e., NR(Q) is the intersection of all such N(Q′)). The functional Q will be called
nondegenerate when the point

(6)
(

d1 copies︷ ︸︸ ︷
dk

d1n
, . . . ,

dk

d1n
,

k copies︷ ︸︸ ︷
d

n
, . . . ,

d

n
,

d copies︷ ︸︸ ︷
k

n
, . . . ,

k

n

)

belongs to NR(Q). Any Q for which (6) does not belong to NR(Q) is called
degenerate. The main theorem is the following

Theorem 1. Consider the transform T given by (1). Let (x, y) ∈ Rn ×Rn1 have
the property that y = γt(x) for some (x, t) ∈ U , and suppose that the Jacobian
matrix Dxφ is rank k at (x, t). Let Q be the trilinear functional given by (3) at
the point (x, t). Let ∆ ⊂ [0, 1]2 be the closed triangle with vertices (0, 0), (1, 1) and
(1/pb, 1/qb).

(1) If Q is nondegenerate and φ is a polynomial in x and t, then there exists
an η of compact support which is nonvanishing at (x, y) such that (1)
satisfies a restricted strong-type (pb, qb) inequality. By interpolation, T
maps Lp(Rn1) to Lq(Rn) for all points (1/p, 1/q) belonging to the triangle
in ∆ with the possible exception of the endpoint (1/pb, 1/qb).
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(2) If Q is nondegenerate and φ is merely a smooth function of x and t, then
there exists an η of compact support which is nonvanishing at (x, y) such
that (1) maps Lp(Rn1) to Lq(Rn) for all pairs (1/p, 1/q) belonging to the
interior of the triangle ∆ (note that T also trivially maps Lp to itself for
all p ∈ [1,∞]).

(3) If Q is degenerate and η(x, y) 6= 0, then (1) fails to be bounded from
Lp(Rn1) to Lq(Rn) for all pairs (1/p, 1/q) belonging to some neighborhood
of (1/pb, 1/qb). This neighborhood may be taken to depend only on Q.

In short, for smooth φ, nondegeneracy of Q is necessary and sufficient for Lp → Lq

boundedness for some set of pairs (1/p, 1/q) having (1/pb, 1/qb) in its closure.

The proof is based on a recent testing condition characterization of the norm
of Radon-like transforms [2] and a series of results previously used to characterize
affine Hausdorff measure on general submanifolds. While it seems likely that
nondegeneracy of Q is both necessary and sufficient for full Lpb → Lqb boundedness
of (1), the methods to be used here just fail to answer this question completely
in the polynomial case. The robust characterization of boundedness of (1) that
appears in [2] leaves open the possibility that this discrepancy may ultimately
be resolved with only minor adaptations of the current proof, but resolving the
endpoint question for the smooth case would likely require a substantially different
approach.

References

[1] P. T. Gressman, Generalized curvature for certain Radon-like operators of intermediate
dimension, Indiana Univ. Math. J. 68 (2019), no. 1, 201–246.

[2] P. T. Gressman, Testing conditions for multilinear Radon-Brascamp-Lieb inequalities, avail-
able at arXiv:2201.12201.

[3] D. M. Oberlin, Convolution estimates and model surfaces of low codimension, J. Fourier
Anal. Appl. 14 (2008), no. 3, 484–491.

[4] F. Ricci, Lp − Lq boundedness for convolution operators defined by singular measures in
Rn, Boll. Un. Mat. Ital. A (7) 11 (1997), no. 2, 237–252.

On Littlewood–Paley theory for space curves

Jonathan Hickman

(joint work with James Wright)

In a variety of situations in harmonic analysis, PDE and analytic number theory,
one encounters functions with Fourier transform supported in a neighbourhood of
some submanifold of the frequency domain. Square function or Littlewood–Paley
inequalities are powerful tools for analysing such functions, allowing one to break
up the function into pieces which are Fourier support in smaller regions and are,
consequently, more easily understood.

Classically, Littlewood–Paley theory forms part of Euclidean harmonic analysis,
but here we describe recent work from [4] which explores these questions in other
setting such the rings Z/NZ of congruence classes modulo some integer N . To
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introduce the topic, however, it is worthwhile reviewing the basic setup in the
classical Euclidean setting.

The Euclidean case. Let n ≥ 2 and consider the compact portion of the moment
curve parameterised by the moment map

γ : [0, 1] → Rn, γ : t 7→ (t, t2, . . . , tn).

We define the Fourier extension operator by

(1) Ef(x) :=

∫ 1

0

e2πix·γ(t)f(t) dt for all f ∈ L1([0, 1]) and x ∈ Rn.

Note that the (distributional) Fourier support of Ef lies inside the image of γ.
According to the philosophy described above, we wish to break up the Ef into
pieces which have smaller Fourier support. To do this, let 0 < δ < 1 be a small
dyadic number and let I(δ) denote the family of dyadic subintervals of [0, 1] of
length δ. We may then write

(2) Ef =
∑

I∈I(δ)

EIf where EIf := E
(
fχI

)
for all I ∈ I(δ).

Each EIf has Fourier support lying in γ(I), the image of the interval I under the
moment map.

The problem is now to compare the size of Ef with EIf . One easy way to do
this is via the triangle inequality:

|Ef(x)| ≤
∑

I∈I(δ)

|EIf(x)|.

This estimate is typically very poor, however. Indeed, by definition the functions
EIf all oscillate with different frequencies and we therefore expect significant can-
cellation between the terms in the sum (2). When taking into account cancellation,
the best one can reasonably hope for is square-root cancellation:

(3) |Ef(x)| ≤ C
( ∑

I∈I(δ)

|EIf(x)|2
)1/2

,

where here C denotes a constant which does not depend on the parameter δ. It is
not difficult to see that the pointwise estimate (3) fails in general. Nevertheless,
the inequality does hold on average.

Theorem 1 ([2]). For all n ≥ 2 and 1 ≤ m ≤ n, there exists a constant Cm ≥ 1
such that

(4) ‖Ef‖L2m(Bδ−n ) ≤ Cm

∥∥∥
( ∑

I∈I(δ)

|EIf |2
)1/2∥∥∥

L2m(wB
δ−n

)

holds for all f ∈ L1([0, 1]) and 0 < δ < 1 dyadic.

Here Bδ−n denotes a Euclidean ball of radius δ−n and arbitrary centre, and
wBδ−n is a rapidly decaying weight function concentrated on Bδ−n ; we refer to
[2] for the precise definitions. The inequality in the n = 2 case goes back to
work of Fefferman [1]. The general case is implicit in works of Prestini [8, 7],
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albeit the arguments of these papers are somewhat lacking in detail. More re-
cently, the inequality was rediscovered in [2], which includes a complete proof and
contextualises the result in relation to recent developments in harmonic analysis
and analytic number theory. It is remarked that a reverse form of (4) holds as a
simple consequence of a classical and elementary square function estimate due to
Carleson (see, for instance, [9]).

Open Problem. There is no standard interpolation theory for square function
inequalities such as (4). In particular, for n = 2 one cannot directly deduce from
Theorem 1 that

(5) ‖Ef‖Lp(Bδ−2 ) ≤ Cp

∥∥∥
( ∑

I∈I(δ)

|EIf |2
)1/2∥∥∥

Lp(wB
δ−2

)

holds for all 2 ≤ p ≤ 4. Alternative methods can be used to prove (5) for 2 ≤ p ≤ 4,
but these arguments come with logarithmic losses in the δ parameter. It would be
interesting to establish (5) for some value of 2 < p < 4 with Cp truly uniform in
δ.

By a well-known 2n-orthogonality argument due to Córdoba and Fefferman,
the proof of Theorem 1 reduces to establishing the following number-theoretic
proposition.

Proposition 2 ([2]). For all n ∈ N there exists a constant Cn ≥ 1 such that the
following holds. Let 0 < δ < 1 and suppose (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n

satisfy

|xj1 + · · ·+ xjn − yj1 − · · · − yjn| ≤ δn for 1 ≤ j ≤ n.

Then there exists a permutation σ on {1, · · · , n} such that |xj − yσ(j)| ≤ Cnδ for
all 1 ≤ j ≤ n.

Proposition 2 examines the structure of ‘almost solutions’ to a Vinogradov-type
system of equations. In particular, it can be roughly interpreted as saying that
every ‘almost solution’ to the system xj1 + · · ·+ xjn = yj1 + · · ·+ yjn for 1 ≤ j ≤ n is
‘almost trivial’, in the sense that the yj are close to some permutation of the xj .

The passage from Proposition 2 to Theorem 1 is elementary. By translation
invariance, we may assume Bδ−n is centred at 0. Fix ϕ a non-negative Schwartz
function which dominates (up to a constant factor) the characteristic function of
the ball Bδ−n and is Fourier supported in B(0, δn). We may then write

(6) |Ef |2m · ϕ =
∑

Ij ,Jj∈I(δ)
1≤j≤m

m∏

j=1

EfIj · ϕ
m∏

j=1

EfJj · ϕ.

Thus, by Parseval’s theorem,

(7) ‖Ef‖2mL2m(Bδ−n ) ≤ C
∑

Ij ,Jj∈I(δ)
1≤j≤m

∫

Rn

( m∏

j=1

EfIj · ϕ
)
̂(ξ)

( m∏

j=1

EfJj · ϕ
)
̂(ξ) dξ.
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It is easy to see that each function
(
EfI ·ϕ

)
̂ is supported in a δn-neighbourhood

of γ(I). From this observation and the basic properties of the Fourier transform,
a given term in the above sum is non-zero if and only if there exist xj ∈ Ij and
yj ∈ Jj for 1 ≤ j ≤ m such that

|γ(x1) + · · ·+ γ(xn)− γ(y1)− · · · − γ(yn)| ≤ Cδn.

One may then apply Proposition 2 to conclude that essentially the only terms
which contribute to the sum are those where the J1, . . . , Jm are a permutation of
I1, . . . , Im. Using this observation and then reversing the initial steps (6) and (7)
concludes the argument.

The discrete setting. Having given an overview of the Euclidean theory, we turn
to the problem in the discrete setting Z/NZ, which was investigated in the recent
paper [4]. Since Z/NZ is a locally compact abelian group, it admits a Fourier
analysis and tools such as Plancherel’s theorem are available. In particular, it is
possible to make sense of an analogue of Ef in this setting and also of square
function inequalities such as (4).1 We will not detail precisely the formulation of
the square function problem over Z/NZ, but simply remark that a variant of the
argument described above reduces matters to proving an analogue of Proposition 2
involving congruence equations.

Proposition 3. Let n, a ∈ N and p be a rational prime such that p > n ≥ 2.
Suppose (x1, . . . , xn), (y1, . . . , yn) ∈ Zn satisfy the congruence equations

(8) xj1 + · · ·+ xjn ≡ yj1 + · · ·+ yjn mod pna for 1 ≤ j ≤ n.

Then there exists a permutation σ on {1, · · · , n} such that xj ≡ yσ(j) mod pa for
all 1 ≤ j ≤ n.

Proposition 3 can also be interpreted as saying almost solutions to a Vinogradov
system of equations are almost trivial. Here, however, the notion of ‘almost’ is
p-adic: we assume the integers (x1, . . . , xn), (y1, . . . , yn) ∈ Zn solve the system
modulo pna (in this sense, they form an ‘almost solution’) and conclude that, up
to permutation, each yj is close to xj in the sense that the two integers agree
modulo pa (the solution is ‘almost trivial’). The statement is therefore directly
analogous to that of Proposition 2. Despite this, the method of proof of [2] breaks
down completely in the discrete setting. In particular, the arguments of [2] rely
on order properties of the real line and tools from calculus which are simply not
available when working over Z/NZ. Consequently, in order to prove Proposition 3,
a new method was developed in [4] which is based on the careful analysis of
sublevel sets of univariate polynomials. Central to the proof of Proposition 3

1One key consideration, however, is that the function spaces ℓp([Z/NZ]n) are finite dimen-
sional and so all ℓp-norms are equivalent. Thus, it is possible to prove a square function inequality
for any ℓp by factoring through ℓ2 using equivalence of norms and using the fact that the ℓ2

square function estimate is a trivial consequence of Plancherel’s theorem. However, the equiva-
lence of norms involves a constant which depends on N , the cardinality of the underlying ring.
To make the problem non-trivial, one must stipulate that the constants in the norm inequalities
are independent of N (or have some sub-polynomial dependence).
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is a non-archimedean structural decomposition for sublevel sets of univariate real
polynomials due to Phong–Stein–Sturm [6] (see also [10]).

Proposition 3 constitutes the main result presented in the talk. Although the
result was motivated by the square function inequality, the authors believe that
the almost solution count is of interest in its own right, both in terms of the
statement and the method of proof. This work forms part of a wider programme
to study classical topics in harmonic analysis over the discrete rings Z/NZ and the
authors hope that Proposition 3 will lead to progress on more difficult problems
concerning factorisation of polynomials over Z/NZ. Such questions arise naturally
when studying Fourier restriction in this setting, see [3].
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The Gross-Pitaevskii equation: Phase space and energies

Herbert Koch

(joint work with Xian Liao)

The Gross-Pitaveskii equation is essentially the defocusing nonlinear Schrödinger
equation with nonvanishing conditions at ∞,

iqt + qxx − 2(|q|2 − 1)q = 0 on R× R ∋ (t, x),

lim
x→±∞

|q(t, x)| = 1.

The energy

E(q) =
∫

|qx|2 + (|q|2 − 1)2dx
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is conserved. It motivates to consider the equation in

Xs =
{
q ∈ Hs

loc : E
s(u) :=

(
‖qx‖2Hs−1 + ‖|q|2 − 1‖2Hs−1

)1/2
<∞

}
/S1

for s ≥ 0 where we consider functions modulo a multiplicative constant of size 1.
Special solutions are the dark resp. black solitons Qc(x− 2ct) where |c| ≤ 1 and

Qc(x) = ic+
√
1− c2 tanh(

√
1− c2x),

with Q−1 = Q1 due to the identification in Xs. The soliton resolution conjecture
amounts to an asymptotic decomposition of solutions into solitons with velocity <
2, KdV waves moving with velocity ±2, and dispersive waves with group velocities
outside [−2, 2].

We equipp Xs with the metric

(1) ds(p, q) =
( ∫ ∞

−∞

inf
|µ|=1

‖sech(x− y)(µp(x)− q(x))‖2Hs
x
dy

)1/2

.

The metric, topological and analytic structure of the metric space (Xs, ds) can be
described as follows.

Theorem 1. The space Xs with the metric ds is a complete metric space. The
set 1 + C∞

c (R) is dense. The metric is compatible with Es:

c−1ds(1, p) ≤ Es(p) ≤ Es(q) + c(1 + Es(q))1/2)ds(p, q) + c(ds(p, q))2.

There is an analytic structure compatible with this metric. The set {Qc} is a strong
deformation retract.

It is instructive to verify that

lim
ε→0

ds(exp(iε log(2 + |x|2)), 1) = 0.

The last statement of the theorem says that there is a continuous map

Ψ : Xs × [0, 1] → Xs

so that Ψ(q, 0) = q, Ψ(Qc, t) = Qc, Ψ(q, 1) ∈ {Qc}. In particular Xs has the
topology of a circle.

There is simple reasoning which shows that the topology of Xs is non trivial.
Both the momentum

P =
1

i

∫
qq̄xdx

and the asymptotic phase change

Ξ(q) =
1

i
log( lim

x→∞
q̄(x)q(−x)) ∈ R/2πZ

are defined on {q ∈ X0 : q′ ∈ L1}. One calculates

Ξ(Qc) = 2 arccos(c).

The difference

H1(q) = P − Ξ ∈ R/2πZ
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is a continuous function on X1/2, which again cannot be lifted to map to R, not
even the restriction to {Qc} ∈ Xs, hence Xs has nontrivial topology.

The Gross-Pitaevskii equation has a Lax-pair with the Lax operator

Lψ :=

(
i∂ −iq
iq̄ −i∂

)
ψ

and the Gross-Pitaevskii equation is equivalent to a commutator identity

[∂t + P,L] = 0.

The Lax operator is self adjoint with essential spectrum (−∞,−1] ∪ [1,∞) and
isolated simple eigenvalue in (−1, 1) which correspond to solitons. Let q ∈ 1 + S
and Imλ > 0. The equation

Lψ = zψ

has a two dimensional space of solutions spanned by left and right Jost solutions
ψl, ψr. One defines the transmission coefficient by

T (λ) = det(ψl, ψr)
−1.

Due to the commutator identity the transmission coefficient is conserved under the
evolution of the Schrödinger equation. Faddeev and Takhtajan [1] define conserved
Hamiltonians as coefficients of the asymptotic series

−i logT (λ) ∼
∞∑

n=1

Hn(2z)
−1−n

where z =
√
1− λ2 with positive imaginary part,

H0 = M =

∫
|q|2−1 dx, H1 = P =

1

i

∫
qq̄xdx, H2 = E =

∫
|qx|2+(|q|2−1)2dx,

H3 =
1

i

∫
qxq̄xx + 3(|q|2 − 1)qq̄xdx− P .

The energy E is defined on X1. Unfortunately, it is the only quantity of the four
above which can be defined on any Xs space. In [3] we prove (with a nontrivial
adaptation of the techniques of [2, 5]) that

−i logTc := −i logT −M(2z)−1 − iP(2z(λ+ z))−1

defines a smooth map from Xs with s > 1
2 to holomorphic functions on {z =

x + iy, y > 1}. We use it to define conserved energies on Xs controlling Es for
s > 1

2 . In [4] we prove that

−i logTc := −i logT −M(2z)−1 − iΞ(2z(λ+ z))−1

defines a smooth map on the universal covering space of X0 to holomorphic func-
tion which allows to define conserved energies as above for s ≥ 0. The coefficients
of its asymptotic series define Hamiltonians Hn on Xn/2 for all n, with quadratic
part
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H2n(q) =

∫
|q(n)|2dx+O((En(q))3, H2n+1(q) =

1

i

∫
q(n)q̄(n+1)dx+O((En+ 1

2 (q))3)

for n ≥ 1.
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Small cap decoupling for the moment curve in R3

Dominique Maldague

(joint work with Larry Guth)

We prove sharp small cap decoupling estimates for the moment curve M3 =
{(t, t2, t3) : t ∈ [0, 1]} in R3. Begin by describing the problem and our results in
terms of exponential sums. One of our motivations for this work was the conjecture
of Demeter, Guth, and Wang [5] that for each N ≥ 1, 0 ≤ σ ≤ 2, and s ≥ 1,

(1)

∫

[0,1]2×[0, 1
Nσ ]

|
N∑

k=1

e(kx1 + k2x2 + k3x3)|2sdx ≤ CǫN
ǫ
[
Ns−σ +N2s−6

]
,

where e(t) = e2πit. The s = 1 and s = ∞ versions of this conjecture are easily
verified using L2-orthogonality and the triangle inequality, respectively. When
σ = 0, this is Vinogradov’s mean value theorem, solved in three dimensions by
Wooley [8] and using decoupling for the moment curve by Bourgain, Demeter,
and Guth [1]. The case of σ = 2 was proven by Bombieri and Iwaniec [2] and by
Bourgain [3] using a different argument. In [5], they prove (1) in the range 0 ≤
σ ≤ 3

2 . Our general small cap decoupling theorem has the following exponential
sum corollary, which implies (1) in the full range 0 ≤ σ ≤ 2: for each R ≥ 1,
1
3 ≤ β ≤ 1, 2 ≤ p ≤ 6 + 2

β , and r ≥ Rmax(2β,1),

(2) |Qr|−1

∫

Qr

|
∑

ξ∈Ξ

aξe(x · (ξ, ξ2, ξ3))|pdx ≤ CǫR
ǫRβ p

2

for any r-cube Qr and any collection Ξ ⊂ [0, 1] with |Ξ| ∼ Rβ consisting of
∼ R−β-separated points and aξ ∈ C with |aξ| ≤ 1. For comparison, the canonical
decoupling of M3 from [1] only implies (2) in the range r ≥ R3β . We obtain such
general exponential sum estimates (without requiring frequency points with extra
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structure, e.g. {(n/N, n2/N2, n3/N3)} for N ∼ Rβ) since decoupling techniques
do not rely on counting arguments from number theory.

Now we describe the general set-up which we use to prove (2). Small cap decou-
pling is an estimate for functions with Fourier support in a certain neighborhood
of M3 in terms of its Fourier projections onto small caps γ which partition the
neighborhood. Let β ∈ [ 13 , 1] and R ≥ 1 and assume for simplicity that Rβ is an

integer. For each l ∈ {0, . . . , Rβ − 1}, a small cap γ is roughly a block centered
at (lR−β, (lR−β)2, (lR−β)3) that goes R−β in the (1, 2lR−β, 3(lR−β)2) direction,
R−2β in the (0, 2, 6lR−β) direction, and R−1 in the (0, 0, 1) direction. Small cap de-
coupling gives sharp estimates for ‖f‖pp/

∑
γ ‖fγ‖pp where f : R3 → C is a Schwartz

function with Fourier transform supported in ⊔γ and fγ is the Fourier projection
onto γ. Our strategy follows the basic structure of a high/low proof of decoupling
first established for canonical decoupling of the parabola in [7]. Very roughly, the
high/low proof of decoupling is a way to interpolate between multilinear restriction
estimates (an L6 inequality for M3) and L∞ estimates. The multilinear restriction
inequality essentially gives the square function estimate

∫
|f |6 ≤ C

∫
|
∑

γ

|fγ |2|3.

In order to obtain a sharp estimate for the right hand side, we split the integrand
into a high-frequency and low-frequency portion. The low-frequency portion is fed
into an iterative process. We identify the Fourier support of the high-frequency
portion as related to a small cap tiling of a cone. Applying the recently proved
small cap decoupling estimates for the cone [6] to estimate the right hand side
above leads to a sharp M3 small cap inequality.
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Sharp multiplier theorems for Grushin operators

Alessio Martini

(joint work with Gian Maria Dall’Ara)

Let L = −∆x − V (x)∆y be a Grushin-type operator on Rn1
x × Rn2

y , where the

coefficient V : Rn1 → [0,∞) is comparable to a power law, i.e., V (x) ≃ |x|D
for some exponent D ∈ (0,∞). Techniques based on heat-kernel estimates [8]
allow one to prove an Lp spectral multiplier theorem of Mihlin–Hörmander type
for L, so that an operator of the form F (L) is of weak-type (1, 1) and bounded
on Lp(Rn1

x × Rn2
y ) whenever the spectral multiplier F : R → C satisfies a scale-

invariant local Sobolev condition

(1) sup
t>0

‖F (t·)χ‖Lq
s
<∞

with q = ∞ and order s > Q/2. Here χ ∈ C∞
c ((0,∞)) is any nontrivial cutoff,

while Q = n1 + (1 + D/2)n2 is the homogeneous dimension associated with the
degenerate Riemannian metric determined by L. Clearly the value of Q grows
with the degree D, and consequently does the smoothness requirement.

A natural question is whether the above multiplier theorem is sharp, or if instead
the smoothness assumption on F can be weakened. As it turns out, improvements
are possible in particular cases. Indeed, when V (x) = |x|2, in [7, 5] it was proved
that the condition (1) with q = 2 and s > (n1 + n2)/2 is enough; an analogous
improvement was obtained in [1] in the case V (x) =

∑
j |xj | and n1 ≥ n2/2. As L

is elliptic away from x = 0, one can see via transplantation that the smoothness
condition s > (n1+n2)/2 in these results is sharp, i.e., it cannot be further pushed
down. However, the aforementioned improvements are for very particular choices
of the coefficient V (e.g., in these cases V is homogeneous of degree D ≤ 2), and it
is natural to ask whether these restrictions on V are really needed, or instead one
can push down the smoothness condition to s > (n1 + n2)/2 in greater generality.

In joint work with G. M. Dall’Ara [2, 3, 4], we show that neither the homogeneity
of V nor the constraint D ≤ 2 are needed for this improvement. In particular, in
the case n1 = n2 = 1, we can prove that, if V : R → [0,∞) is C2 off the origin
and satisfies the estimates

(2) |x2V ′′(x)| . xV ′(x) ≃ V (x) ≃ V (−x),

then the condition (1) with q = 2 and s > 2/2 is enough for the weak-type
(1, 1) and Lp boundedness (1 < p < ∞) of F (L). In other words, in contrast
to the result in [8], where the smoothness assumption depends on V and may
be arbitrarily large for fixed dimension of the underlying space, our assumption
is independent of V and matches the corresponding assumption in the classical
Mihlin–Hörmander theorem for the Euclidean Laplacian on R2. The estimates
(2) are satisfied, among others, by V (x) = |x|D for any D ∈ (0,∞), but also by
V (x) = |x|d + |x|D and V (x) = 1/(|x|−d + |x|−D) for d,D ∈ (0,∞), thus showing
that comparability with a specific polynomial law is not even needed.
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The proof of our result hinges on the analysis of one-dimensional Schrödinger
operators of the form

H = −∂2x + V (x),

where V satisfies the estimates (2), which imply that V is a single-well potential
diverging at infinity. In particular, we obtain universal estimates for eigenvalues,
eigenvalue gaps and eigenfunctions of H, as well as for the matrix elements of
the potential V in the basis of the eigenfunctions of H. The universality of these
estimates, which may be of independent interest, lies in the fact that they hold
for any potential satisfying (2), with implicit constants only depending on those
in (2).

The above results for Grushin operators can be thought of as part of a more gen-
eral research programme aimed at understanding sharp conditions in Lp multiplier
theorems for sub-elliptic, non-elliptic operators, where a number of fundamental
questions remain open [6].
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Maximizers for Fourier adjoint restriction estimates to cones

Giuseppe Negro

1. Introduction: Maximizers

Let d ≥ 2. In 1977, Strichartz [9] proved that solutions u = u(t, x) to the wave
equation utt = ∆u on R1+d, with initial data u(0, x) = u0(x) and ut(0, x) = u̇0(x),
satisfy the estimate

(1) ‖u‖2Lq(R1+d) ≤ C2
d

∫

Rd

(
|ξ||û0(ξ)|2 + |ξ|−1|̂̇u0(ξ)|2

)
dξ, q = 2 d+1

d−1 .

Here the multiplicative constant Cd > 0 is finite, but it is not explicit.
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In 2007, Foschi [2] found that, when d = 3, the optimal value for such constant
is C3 = (3/(16π))1/4. Moreover, he characterized all the maximizers, that is,
the functions that attain this optimal constant. One of these maximizers is the

solution with initial data (u0(x), u̇0(x)) = ((1 + |x|2)− d−1
2 , 0), for d = 3. Foschi

conjectured that this should be a maximizer for arbitrary d ≥ 2.
In the next section, we will observe that (1) is intimately connected to a more

general family of estimates, known as the Fourier adjoint restriction estimates on
the cone, and extend the conjecture of Foschi to this general setting. In Section 3
we will present the current state of this conjecture. Finally, in Section 4 we will
give some ideas of proof.

2. The Fourier adjoint restriction estimates

Consider the measure µ+ := δ(τ2 − |ξ|2)1τ>0 = δ(τ − |ξ|)/(2|ξ|), supported on the
one-sheeted cone Kd

+ := {τ = |ξ|} ⊂ R1+d; see Figure 1. The restriction conjecture

for Kd
+ asks whether there is a C+

d,p > 0 such that

(2) ‖f̃µ+‖Lq(R1+d) ≤ C+

d,p‖f‖Lp(µ+), provided 1
p = 1 + 1+d

1−d
1
q and q > 2d

d−1 ,

and ·̃ denotes the Fourier transform on R1+d. It is obvious that (2) holds for µ+

if and only if it holds, perhaps with a different constant Cd,p, for the measure
µ := δ(τ2 − |ξ|2), which is supported on the two-sheeted cone Kd := {τ2 = |ξ|2}.

ξ1

τ

ξd

Kd = {τ2 = |ξ|2}

ξ1

τ

ξd

{τ = |ξ|} = Kd
+

µ = δ(τ2 − |ξ|2) µ+ = δ(τ2 − |ξ|2)1τ>0

Figure 1. The two-sheeted and the one-sheeted cone.

Here we will make no attempt whatsoever to enlarge the range of parameters
for which (2) is proved; see [7] for more information on that. Our task will be to
give information on the maximizers to (2), for those cases for which it is known to
hold.

Note that (2) surely holds on Kd, hence also on Kd
+, for p = 2. Indeed, letting

u(t, x) = f̃µ(t, x), we see that utt = ∆u, with initial data

û0(ξ) =
1

2|ξ| (f(|ξ|, ξ) + f(−|ξ|, ξ)) , ̂̇u0(ξ) =
i

2
(f(|ξ|, ξ)− f(−|ξ|, ξ)) ,

where ·̂ denotes the Fourier transform on Rd. It follows that the Strichartz esti-
mate (1) is exactly the p = 2 case of (2) on Kd, and the conjectured maximizer of
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Foschi corresponds to f⋆(τ, ξ) := exp(−|τ |). It is natural to ask whether this f⋆
could be a maximizer for (2) for a wider range of parameters, and also on Kd

+; we
will see that the answer is generically negative. See also [6] for a survey on this
and related questions.

3. Results

We say that f⋆(τ, ξ) = exp(−|τ |) is a critical point for (2) on Kd
+ if

∂

∂ǫ


‖ ˜(f⋆ + ǫf)µ+‖Lq(R1+d)

‖f⋆ + ǫf‖Lp(µ+)




q∣∣∣∣∣∣
ǫ=0

= 0, ∀f ∈ Lp(µ+).

Theorem 1 ([5]). The function f⋆ is a critical point for (2) on Kd
+ if and only if

p = 2.

In particular, it is clear that f⋆ is never a maximizer for the restriction esti-
mate (2) on Kd

+ when p 6= 2. The scenario is very similar on the paraboloid, with
the gaussian functions playing the role of f⋆; see [1].

In the case p = 2, hence q = 2 d+1
d−1 , it is possible to give a great deal more infor-

mation for the maximizers to (2), both on Kd
+ and on Kd; the latter corresponds

to the Strichartz inequality (1) as already noted in the previous section. We say
that f⋆ is a local maximizer for (2) on Kd

+ if

‖f̃µ+‖Lq(R1+d)

‖f‖L2(µ+)
≤ ‖f̃⋆µ+‖Lq(R1+d)

‖f⋆‖L2(µ+)
, ∀f in some L2(µ+)-neighborhood of f⋆.

The corresponding definitions of critical point and local maximizer on Kd are
entirely analogous to the ones for Kd

+ and we omit them.

Theorem 2 ([2, 3, 4]). Let p = 2. The function f⋆ is a maximizer for (2) on Kd
+

for d = 2, 3. It is a local maximizer for d ≥ 3. The function f⋆ is a maximizer
for (2) on Kd for d = 3. It is a local maximizer for all odd d, and it is not even a
critical point for even d.

Spatial dimension d on Kd with µ on Kd
+ with µ+

2 NO YES
3 YES YES

4, 6, 8, . . . NO Local
5, 7, 9, . . . Local Local

Table 1. Is f⋆(τ, ξ) = exp(−|τ |) a maximizer for the Fourier
adjoint restriction estimate (2) with p = 2?

The results of Theorem 2 are summarized in Table 1.
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4. Idea of proof: the Penrose transform

All results mentioned in Theorem 1 and Theorem 2, with the exception of the
original ones of Foschi [2], rely on conformally mapping the Minkowski spacetime
R1+d to a compact submanifold D1+d of [−π, π]× Sd. This D1+d is known as the
Penrose diamond, and originally appeared in [8]. See Figure 2.

r = |x|

t

R1+d

θ

T

−π

π

π

D1+d

[−π, π]× Sd

Figure 2. The Penrose map of R1+d onto the Penrose diamond
D1+d ⊂ [−π, π]×Sd. Here r ≥ 0 and θ ∈ [0, π] respectively denote
the distance from the origin of Rd and the geodesic distance from
the North Pole of Sd.

Under this map, the right-hand side of (2) reads

(3) ‖f̃µ+‖qLq(R1+d)
=

∫

D1+d

|U |q(cosT + cos θ)
d+1

2(p−1) (2−p),

where U is a solution of the spherical wave equation ∂2TU = (∆Sd − (d−1)2

4 )U .
More precisely, there is a 1:1 correspondence between f ∈ Lp(µ+) and the initial
data of the spherical wave equation. Analogous results hold for Kd, in which case
f ∈ Lp(µ).

Crucially, both for Kd and for Kd
+ the conjectured maximizer f⋆ corresponds

to initial data that are constant functions on Sd; this enables much more precise
computations.

We conclude with a remark. As formula (3) shows, the case p = 2 is especially
simpler, since the right-hand side enjoys a greater degree of symmetry. Thus, our
application of the Penrose transform gives a qualitative reason why we can obtain
much more precise results in this p = 2 case than in the general one.
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Majorant properties in arbitrary dimensions

Lillian B. Pierce

(joint work with Philip T. Gressman, Shaoming Guo, Joris Roos, Po-Lam Yung)

This talk introduced the systematic study of majorant properties on Lp([0, 1]d) in
arbitrary dimensions d, motivated by a well-known circle of ideas that is nearly
100 years old. This abstract reprises some motivating questions and new theorems
recently developed in a joint paper by Gressman, Guo, Roos, Yung, and the author
[GGPRY22].

In 1935, Hardy and Littlewood [HL35] wrote a brief paper on one-dimensional
majorant inequalities of the form

(1)
∥∥∥
∑

n∈Γ

ane(n · x)
∥∥∥
Lp([0,1])

≤
∥∥∥
∑

n∈Γ

Ane(n · x)
∥∥∥
Lp([0,1])

where Γ ⊂ Z is a finite set of frequencies. Here as usual, e(θ) := e2πiθ for θ ∈ R.
Given a set of frequencies Γ ⊂ Z and an exponent p, if this inequality holds for all
choices of coefficients an, An with |an| ≤ An for each n ∈ Γ, then we say the strict
majorant property holds for Γ, p. For any finite set Γ ⊂ Z, the strict majorant
property holds for all p ∈ 2N by a simple expansion of the integral, as Hardy and
Littlewood point out.

Does it also hold for all p 6∈ 2N? Hardy and Littlewood write: “This is untrue
and, since it is the falsity of (1) which first reveals the difficulties of our problem, we
prove it at once...” for p = 3. The falsity was verified for all p ≥ 1, p 6∈ 2N by Boas
[Boa63]. Next one can ask whether a weaker majorant property holds, for example
the property that there is some constant Cp such that (1) holds for all Γ ⊂ Z upon
taking |an| ≤ 1 and An = 1 for n ∈ Γ, if the right-hand side is enlarged by Cp.
Work of Bachelis [Bac73], Mockenhaupt and Schlag [MS09], and Green and Ruzsa
[GR04] dramatically confirmed that the majorant property is violated for every
p > 2, p 6∈ 2N. Majorant properties and possible violations of these properties
continue to inspire interest, also because of their close relationship to the local
restriction conjecture for the sphere and the Kakeya conjecture [Moc96].
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In this talk we introduced the systematic study of strict majorant properties in
arbitrarily high dimensions. Let Γ ⊂ Zd be a fixed set of d-tuples of integers. We
say that Γ satisfies the strict majorant property on Lp([0, 1]d) if for all choices of
real coefficients (an)n∈Γ, (An)n∈Γ with |an| ≤ An,

(2)
∥∥∥
∑

n∈Γ

ane(n · x)
∥∥∥
Lp([0,1]d)

≤
∥∥∥
∑

n∈Γ

Ane(n · x)
∥∥∥
Lp([0,1]d)

.

For any set Γ ⊂ Zd, this statement is true for all p ∈ 2N. When p 6∈ 2N, for which
Γ is it true?

Our first main result characterizes the sets Γ ⊂ Zd for which the strict majorant
property holds for all p > 0. We recall that a set Γ ⊂ Zd is affinely independent if
for any n0 ∈ Γ, {n− n0 ∈ Zd : n ∈ Γ, n 6= n0} is linearly independent.

Fix an integer d ≥ 1. We prove that a non-empty set Γ ⊂ Zd satisfies the
strict majorant property on Lp([0, 1]d) for all p > 0 if and only if Γ is affinely
independent. Furthermore, whenever Γ is not affinely independent, then there
exists an integer m ≥ 0, and real coefficients (an)n∈Γ, such that for every p ∈
(2m, 2m+ 2),

∥∥∥∥∥
∑

n∈Γ

|an|e(n · x)
∥∥∥∥∥
Lp([0,1]d)

<

∥∥∥∥∥
∑

n∈Γ

ane(n · x)
∥∥∥∥∥
Lp([0,1]d)

.

In particular, this holds for every set Γ ⊂ Zd of cardinality at least d+ 2.
Second, if Γ ⊂ Zd is infinite, we prove that for infinitely many positive integers

m, there exist real coefficients (an)n∈Γ such that for every p ∈ (2m, 2m+ 2),
∥∥∥∥∥
∑

n∈Γ

|an|e(n · x)
∥∥∥∥∥
Lp([0,1]d)

<

∥∥∥∥∥
∑

n∈Γ

ane(n · x)
∥∥∥∥∥
Lp([0,1]d)

.

The length of these intervals of p is tight, since the strict majorant property holds
for all p ∈ 2N.

Third, we prove violations of the strict majorant property for a nice geometric
example: the moment curve. Let γ(t) = (t, t2, . . . , td) parametrize the moment
curve in Rd. For any p > 0 with p /∈ 2N, there exists k ∈ N and a0, . . . , ad ∈ R
such that

∥∥∥1 +
d∑

i=0

|ai|e(γ(k + i) · x)
∥∥∥
Lp([0,1]d)

<
∥∥∥1 +

d∑

i=0

aie(γ(k + i) · x)
∥∥∥
Lp([0,1]d)

.

Nevertheless, a weaker majorant property does hold: for all choices of real coeffi-
cients an, An with |an| ≤ An for all n,

∥∥∥
∑

n∈Z

ane(γ(n) · x)
∥∥∥
Lp([0,1]d)

≤ (d!)1/2d
∥∥∥
∑

n∈Z

Ane(γ(n) · x)
∥∥∥
Lp([0,1]d)

for all 2 ≤ p ≤ 2d. Both results for the moment curve are motivated by recent
work of Bennett and Bez [BB12], who introduced the study of the strict majorant
property for frequencies on the parabola in the case d = 2.
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It seems that the setting of majorant properties in arbitrary dimensions is rich
with unexplored questions. For example, in the d-dimensional setting, how big a
correction factor Bp(Γ) on the right-hand side of (2) is required to make a weaker
majorant property hold on Lp([0, 1]d) for a particular set of frequencies Γ ⊂ Zd?
For the moment curve, the result immediately above shows that Bp(Γ) ≪d 1
suffices for all 2 ≤ p ≤ 2d. For which sets Γ ⊂ [1, N ]d does Bp(Γ) ≪ Nε suffice
for every ǫ > 0? Can the methods of [MS09] be adapted to this setting? Such
investigations could have interesting applications in recent work of Demeter and
Langowski [DL21] on restriction of exponential sums to hypersurfaces (see [DL21,
Conj. 1.2, Conj. 1.3, Lem. 2.1]).
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Pointwise convergence of scattering data

Alexei Poltoratski

The scattering transform for the Dirac system of differential equations is commonly
viewed as a non-linear analog of the Fourier transform. This connection brings up
a series of natural questions on finding analogs of key properties and estimates of
the classical Fourier analysis in non-linear settings. In my talk I discuss an analog
of Carleson’s theorem on almost everywhere convergence of Fourier integrals for
the non-linear Fourier transform.

The tools of Krein-de Branges theory of canonical Hamiltonian systems allow
one to apply the methods of complex function theory to spectral and scattering
problems for Dirak systems. The proof of convergence is obtained as a result of
the study of the dynamics of resonances of a Dirak system. One of the main
ingredients of our approach is an auxiliary family of inner functions satisfying a
Riccati equation corresponding to the initial system.
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Among further problems in this direction are the underlying maximal estimates
conjectured in a paper by Muscalu, Tao and Thiele [2] and relations of the non-
linear result with the classical Carleson’s theorem.
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Spherical maximal functions and fractal dimensions of dilation sets

Joris Roos

(joint work with Andreas Seeger)

Let d ≥ 2 and consider spherical means

Atf(x) =

∫

Sd−1

f(x− ty) dσ(y),

where f ∈ L1
loc(R

d), t > 0, x ∈ Rd, and σ is the normalized surface measure on
Sd−1. Given a set E ⊂ [1, 2] we are interested in the local maximal operator

MEf(x) = sup
t∈E

|Atf(x)|

and we seek to determine the closure of its type set

TE = {( 1p , 1q ) ∈ [0, 1]2 : ME bounded Lp → Lq}.
The study of spherical maximal operators goes back to classical works of Stein
[14] (d ≥ 3) and Bourgain [2] (d = 2). Schlag [11] and Schlag-Sogge [12] have
determined TE for the full dilation set E = [1, 2], while the single average case
E = {point} goes back to earlier work of Littman [8]. One motivation to study
Lp → Lq bounds originates in the connection to sparse bounds and weighted Lp

estimates for associated global maximal operators (see Lacey [7]). However, we are
interested in Lp improving properties for their own sake. The sharp range of Lp →
Lp bounds for general E ⊂ [1, 2] has been determined in [13] (up to endpoints),
depending in essence on the Minkowski dimension of E. When it comes to Lp → Lq

bounds however, it turns out that the sharp region of exponents depends not only
on the Minkowski dimension of E, but also other fractal dimensions. For θ ∈ (0, 1]
we define the upper Assouad spectrum at θ, denoted dimA,θ E, as the infimum over
all a > 0 so that there exists c > 0 such that for every δ ∈ (0, 1) and every interval
I ⊂ [1, 2] with |I| ≥ δθ,

N(E ∩ I, δ) ≤ c (|I|/δ)a,
where N(F, δ) denotes the minimum number of intervals of length δ required to
cover a set F ⊂ [1, 2]. This was recently introduced in work of Fraser and Yu [4, 5]
(also see [3, 9]). One sees that dimA,0E is simply the (upper) Minkowski dimension

of E. Moreover, the function θ 7→ dimA,θ E is non-decreasing, continuous and
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converges to a limit as θ → 1−. That limit is called the quasi-Assouad dimension
of E,

dimqAE = lim
θ→1−

dimA,θ E.

Given 0 ≤ β ≤ γ ≤ 1 let Q(β, γ) denote the closed quadrilateral with vertices

Q1 = (0, 0), Q2,β = ( d−1
d−1+β ,

d−1
d−1+β ),

Q3,β = ( d−β
d−β+1 ,

1
d−β+1), Q4,γ = ( d(d−1)

d2+2γ−1 ,
d−1

d2+2γ−1 ).

Given a set E we write

β = dimA,0E ≤ γ = dimqAE.

In earlier work with T. Anderson and K. Hughes [1] we showed that for d ≥ 3
(or d = 2 and γ ≤ 1/2) we have Q(β, γ) ⊂ TE . Near the points Q1, Q2,β, Q3,β,
it suffices to use Littlewood-Paley theory and interpolation to exploit the crucial
decay estimate for the surface measure,

|σ̂(ξ)| . |ξ|− d−1
2 .

The quasi-Assouad dimension enters estimates near the point Q4,γ , where we use
a TT ∗ argument in the spirit of the Stein-Tomas restriction theorem. This method
fails entirely in the case d = 2, γ > 1/2. However, in [10] it is proved that the
inclusion Q(β, γ) ⊂ TE does continue to hold when d = 2, γ > 1/2. The argument
follows the general outline of [12] and boils down to a crucial weighted L2 estimate,
which in [12] is proved using a certain space-time estimate due to Klainerman and
Machedon [6], which is not available in our setting. Instead, we exhibit a certain
property of almost orthogonality between contributions from sufficiently separated
points in E that involves the Assouad spectrum.

The inclusion Q(β, γ) ⊂ TE is an equality for certain E (as already shown in
[1]). Also, known examples show that TE ⊂ Q(β, β). Surprisingly, these inclusions
characterize type sets.

Theorem 1 ([10]). Let A ⊂ [0, 1]2 be a closed convex set. There exists E ⊂ [1, 2]
such that A = TE if and only if

Q(β, γ) ⊂ A ⊂ Q(β, β)

for some 0 ≤ β ≤ γ ≤ 1.

In particular, it is possible for the boundary of the type set to contain an
arbitrary convex curve segment in the critical triangle given by Q(β, β) \ Q(β, γ)
(if β < γ). To prove this result we need to construct a set E such that A = TE .
Let us first consider the case when Q(β, γ) = TE . Call E quasi-Assouad regular if
dimA,θ E = γ for all 1 > θ > 1− β/γ. Expressed in other words, this means that
the Assouad spectrum attains its maximum value as soon as it can, with respect
to trivial upper bounds. It turns out that if E is quasi-Assouad regular, then
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TE = Q(β, γ). On the other hand, if E is a finite union of quasi-Assouad regular
sets Ei with Minkowski dimension βi and quasi-Assouad dimension γi, then

TE =
⋂

i

Q(βi, γi).

To prove the theorem we construct a specific countably infinite union of carefully
chosen quasi-Assouad regular sets.

An interesting open problem is to determine whether and how for any given E,
the set TE can be determined from the Assouad spectrum of E and subsets of E.
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Global maximizers for spherical restriction

Diogo Oliveira e Silva

1. Introduction

A consequence of the classical Hausdorff–Young inequality is that the Fourier

transform f̂ of an Lp function f : Rd → C is defined almost everywhere on Rd if
1 ≤ p ≤ 2. It is a striking observation of Stein from the late 1960s that for a special

range of p’s the function f̂ can be meaningfully defined on submanifolds of Rd
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possessing some degree of curvature. The simple yet fundamental observation that
curvature causes the Fourier transform to decay links geometry to analysis, and
lies at the base of Fourier restriction theory. The celebrated restriction conjecture
predicts the validity of the estimate

∫

Sd−1

|f̂(ω)|qdσ(ω) ≤ C‖f‖q
Lp(Rd)

, for 1 ≤ p < 2d
d+1 and q ≤ (d−1

d+1 )p
′,

and is remarkable in its numerous connections and applications. It exhibits deep
links to Bochner–Riesz summation methods and to decoupling phenomena for the
Fourier transform, and is known to imply the Kakeya conjecture. Despite the
great deal of attention that this circle of problems has received during the past
four decades, the restriction conjecture remains open in dimensions d ≥ 3.

Sharp inequalities have a rich tradition in harmonic analysis, going back to
the epoch making works of Beckner and Lieb for the sharp Hausdorff–Young and
Hardy–Littlewood–Sobolev inequalities, respectively. Even though the history of
sharp restriction theory is considerably shorter, it is moving at an incredible pace.
The exciting surge of activity from the last decade produced the following high-
lights. Firstly, gaussians are known to maximize the Strichartz inequality for the
Schrödinger equation,

‖eit∆f‖Lp
t (R;L

q
x(Rd)) ≤ Sp,q‖f‖L2(Rd), p, q ≥ 2, 2p + d

q = d
2 ,

if (d, p, q) ∈ {(1, 6, 6), (1, 8, 4), (2, 4, 4)}. Secondly, constant functions maximize
the Stein–Tomas adjoint restriction (or extension) inequality to the sphere,

‖f̂σ‖Lq(Rd) ≤ Td,q‖f‖L2(Sd−1), q ≥ 2 d+1
d−1 ,(1)

in the endpoint case (d, q) = (3, 4). Different proofs of these facts relying on
heat flow monotonicity, representation formulae, and orthogonal polynomials are
available, but they all ultimately hinge on the Lebesgue exponents in question
being even integers. In this case, one can invoke Plancherel’s theorem in order to
reduce the problem to a simpler multilinear convolution estimate.

In the remainder of this abstract, we will discuss some results from sharp re-
striction theory on the sphere which we recently obtained in [1, 2, 6, 7, 9, 8].

2. Two simple case studies

In this section, we discuss the sharp form of two simple inequalities due to Agmon-
Hörmander (1975) and Vega (1988) for the extension operator on Sd−1 which
exhibit interesting properties.

2.1. Agmon–Hörmander. ([6]) We compute the optimal constant and charac-
terize the maximizers at all spatial scales for the Agmon–Hörmander inequality,

1

ρ

∫

Bρ

|f̂σ(x)|2 dx

(2π)d
≤ Ad(ρ)

∫

Sd−1

|f(ω)|2 dσ(ω).

The maximizers switch back and forth from being constants to being non-symmet-
ric at the zeros of two Bessel functions. We also study the stability of this estimate
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and establish a sharpened version in the spirit of Bianchi–Egnell. The corre-
sponding stability constant and maximizers again exhibit a curious intermittent
behaviour.

2.2. Vega. ([1]) Let d ≥ 2 be an integer and let 2d
d−1 < q ≤ ∞. We investigate

the sharp form of the mixed norm Fourier extension inequality
∥∥f̂σ

∥∥
Lq

radL
2
ang(R

d)
≤ Vd,q ‖f‖L2(Sd−1),

established by Vega in 1988. Letting Ad ⊂ (2d/(d − 1),∞] denote the set of
exponents for which the constant functions on Sd−1 are the unique maximizers of
this inequality, we show that:

• Ad contains the even integers and ∞;
• Ad is an open set in the extended topology;
• Ad contains the half-line (q0(d),∞] with q0(d) ≤

(
1
2 + o(1)

)
d log d.

In low dimensions, we further show that q0(2) ≤ 6.76 ; q0(3) ≤ 5.45 ; q0(4) ≤
5.53 ; q0(5) ≤ 6.07. In particular, this breaks for the first time the even exponent
barrier in sharp restriction theory. Our approach relies on a hierarchy between
certain weighted Bessel integrals, a question of independent interest within the
theory of special functions.

3. Foschi revisited

In this section, we recall Foschi’s argument for the sharp endpoint Stein–Tomas
inequality on S2 in a form reflecting more recent insights; for complete details, see
[7, §2]. Foschi’s original argument from [5] consisted of three steps:

(1) a magic identity involving 4-tuples of unit vectors summing to zero;
(2) an ingenious application of the Cauchy–Schwarz inequality;
(3) a spectral decomposition of the relevant quadratic form.

We recently observed in [7] that Steps 1 and 3 above can be replaced by the
following more robust counterparts:

(1’) an application of the Helmholtz equation u + ∆u = 0 satisfied by the

extension u := f̂σ followed by an integration-by-parts identity;
(3’) Plancherel’s theorem applied to the homogeneous distribution hs(φ) :=

Γ( s+3
2 )−1

∫
R3 |x|sφ(x)dx for s = 1 acting on the convolution measure gσ ∗

gσ, where g = f2 − 1 has mean zero.

Step (1’) has already found a novel application in [2] in the setting of sharp
weighted restriction estimates. Explorations related to (3’) are currently underway.

4. Bootsrapping maximizers

In this section, we discuss how to use Foschi’s theorem (discussed in §3) to prove
that constants continue to maximize inequality (1) in the higher dimensional set-
ting of arbitrary even exponents.
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4.1. Smoothness. ([8]) An instance of our result concerns the regularity of solu-
tions of the convolution equation

a · (fσ)∗(q−1)
∣∣
Sd−1 = f a.e. on Sd−1,

where a ∈ C∞(Sd−1), q ≥ 2 d+1
d−1 is an integer, and the only a priori assumption is

f ∈ L2(Sd−1). We prove that any such solution belongs to the class C∞(Sd−1).
In particular, we show that all critical points associated to the sharp form of the
corresponding extension inequality on Sd−1 are C∞-smooth. This extends previous
work of Christ–Shao [4] to arbitrary dimensions and general even exponents, and
plays a key role in the next and final subsection of this abstract.

4.2. Maximizers. ([9]) We prove that constant functions are the unique real-
valued maximizers for all L2−L2k extension inequalities on Sd−1, d ∈ {3, 4, 5, 6, 7},
where k ≥ 3 is an integer. The proof uses tools from probability theory, Lie theory,
functional analysis, and the theory of special functions. It also relies on general
solutions of the underlying Euler–Lagrange equation being smooth, a fact of inde-
pendent interest which we discussed in the previous subsection. We further show
that complex-valued maximizers coincide with nonnegative maximizers multiplied
by the character eiξ·ω, for some ξ, thereby extending previous work of Christ–Shao
[3] to arbitrary dimensions d ≥ 2 and general even exponents.
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Product manifolds with improved spectral cluster and Weyl

remainder estimates

Christopher D. Sogge

(joint work with Xiaoqi Huang, Michael E. Taylor)

In a joint work Xiaoqi Huang, Michael Taylor and I investigated improved spectral
cluster and Weyl remainder bounds in certain geometric situations. We consider
product manifolds X × Y , with (X, gX) and (Y, gy) being compact Riemannian
manifolds, and, since we are considering Cartesian products we consider eigen-
functions and eigenvalues of the product Laplacian ∆ = ∆gX + ∆gY , with ∆gX

and ∆gY being the Laplace-Beltrami operators on X and Y , respectively.
We have two types of main results. First, we show that if, say, Y has improved

spectral cluster or Weyl remainder estimates versus the universal ones, then so does
X × Y . Second, we show that for large enough exponents one can get optimal
spectral cluster estimates on products of spheres of length 5 or more and near
optimal ones involving products of shorter length. Our work was inspired in part
and improves in part recent work of Iosevich and Wyman [11]. We were also
motivated by recent work of Canzani and Galkowski [5]–[6].

Let us recall the classical Weyl formula of Avakumovic [1] and Levitan [12]. We
let (M, g) be a compact Riemannian manifold of dimension d ≥ 2. Then if eλj

are the eigenfunctions, i.e., −∆geλj = λ2jeλj with eigenvalues λj of
√
−∆g labeled

with respect to multiplicity, 0 = λ0 < λ1 ≤ λ2 ≤ · · · , then the Weyl counting
function N(λ) denotes the number of the λj which are ≤ λ. The sharp Weyl
formula of Avakumovic and Levitan then says that

(1) N(λ) = cλd +O(λd−1), c = cM = (2π)−dωd ·Volg(M),

with ωd denoting the volume of the unit ball in Euclidean space and Volg(M)
denoting the Riemannian volume of M . These universal bounds are saturated on
round spheres Sd due to the fact that spherical harmonics of degree k there each
have eigenvalue λ =

√
k(k + n− 1) which repeats with multiplicity ≈ kd−1 (the

dimension of spherical harmonics of degree k).
So on the standard sphere these universal bounds cannot be improved. However,

there are many cases in which the bounds for the Weyl error term can be improved.
For instance for the standard torus, Td, (a product manifold) one can get power
improvements

(2) cλd −N(λ) = O(λd−1−σd ), some σd > 0.

Indeed, a classical result of Walfisz [18] says that one can take σd = 1 (best
possible) if d ≥ 5. Also, by classical results of Bérard [2] one can obtain logarithmic
improvements if the sectional curvatures of M are all nonnegative. More recently,
Canzani and Galkowski [6] obtained these sorts of bounds for all product manifolds
X × Y without curvature assumptions.

In addition to investigating situations in which the error bounds in (1) can
be improved, we are also interested in studying cases where the universal spectral
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cluster bounds of one of us [13] can be improved. Recall that the following universal
bounds for Lq(M), q > 2, eigenfunctions are valid

(3) ‖eλ‖Lq(M) . λσ(q)‖eλ‖L2(M),

with

(4) σ(q) = σ(q, d) = max{d(12 − 1
q )− 1

2 ,
d−1
2 (12 − 1

q )}

=

{
d(12 − 1

q )− 1
2 , q ≥ qd = 2(d+1)

d−1
d−1
2 (12 − 1

q ), 2 < q ≤ qd.

More generally, one has the spectral cluster estimates for “quasimodes”, which say
that

(5) ‖ψλ‖Lq(M) . λσ(q), if Spec (ψλ) ⊂ [λ− 1, λ+ 1].

The first estimate, (3), is also saturated on round spheres and the second one, (5)
cannot be improved on any (M, g) (see [15]) due to its “local nature” of involving
unit bands of the spectrum.

Over the years there have been many attempts to improve the bounds in (5)
when one replaces the unit interval there with one of the form [λ− ε(λ), λ+ ε(λ)]
with ε(λ) → 0 as λ → ∞. These of course lead to improvements of (3). For
exponents q ≥ qd a goal would be to show that if χ[λ−λ(ε),λ+ε(λ)] denotes the

projection onto the [λ − ε(λ), λ + ε(λ)] part of the spectrum of
√
−∆g then one

has bounds of the form

(6) ‖χ[λ−ε(λ),λ+ε(λ)]f‖q ≤ C
√
ε(λ) λσ(q)‖f‖2.

One can check that these are optimal in the sense that the factor
√
ε(λ) cannot

be replaced by a smaller factor; however, one wishes for ε(λ) to go to zero as fast
as possible for a given q. For the torus, or more generally products of spheres,
one can check that one can never take ε(λ) = o(λ−1). So bounds of the form (6)
with ε(λ) = λ−1 (the “wavelength”) are optimal. These sort of bounds are natural
analogs of the Stein-Tomas [17] restriction/extension theorem for Rd.

It is implicit in Bérard [2] that one can take ε(λ) = (logλ)−1 if M has nonposi-
tive curvature and q = ∞. More recently, Hassell and Tacy [8] showed that under
this assumption one can obtain the analogous bounds for all q ∈ (qd,∞]. Also,
Canzani and Galkowski [5] obtained these bounds for any product manifold X×Y
of dimension d. Obtaining improved spectral cluster estimates for q ∈ (2, qd) or,
more importantly, q = qd, proved to be a bit more elusive; however, log-power
improvements were obtained by Blair and one of us [3] for q = qd (and hence for
all other exponents) if (M, g) has negative curvature. It would be interesting if
this sort of result also held for arbitrary products X × Y .

Let us return our focus on cases where the optimal “half power” improvement
of the universal bounds may be valid:

(7) ‖χ[λ−λ−1,λ+λ−1]f‖Lq(M) ≤ Cλσ(q)−1/2 ‖f‖L2(M).
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We are also interested in variants involving additional arbitrary λε, ε > 0, in the
right. Since σ(q) < 1/2 if σ < 2d

d−2 , it is easy to check that neither bound can

hold (7) to be valid on any M if q < 2d
d−2 . In the case of the torus, an important

conjecture is that these sort of bounds should be valid for this endpoint case, i.e.,

(8) ‖eλ‖L2d/(d−2)(Td) ≤ Cελ
ε‖eλ‖L2(Td).

The best possible results to date seem to be due to Bourgain and Demeter [4] who
showed that the analog of (8) is valid if 2d/(d − 2) is replaced by the somewhat
smaller exponent 2(d + 1)/(d − 1), and they also obtained variants of (7) for a
range of exponents larger than the critical exponent for this problem 2d/(d− 2).

One of the main results in our joint work with Huang and Taylor, [10], says that
one can obtain the optimal bounds (7) for large exponents q if M is a product of 5
or more spheres or slightly weaker ones for products of shorter length. So we are
now considering M = Sd1 × Sd2 × · · · × Sdn with n ≥ 2. The special case where
all the dj equal one of course is the n-torus. To state our result, let

ρ(λ) = #{j : Zn : |j| = λ}
denote the number of integer lattice points on λ · Sn−1. Then one of the bounds
from [10] says that

Theorem 1. Let M = Sd1 × Sd2 × · · · × Sdn be a cartesian product of spheres of
dimension d = d1 + · · · + dn involving n factors. Then if eλ is an eigenfunction
on M we have

(9) ‖eλ‖Lq(M) ≤ C
√
ρ(λ)

( d∏

j=1

λσ(q,dj)
)
‖eλ‖L2(M).

In particular if, if n ≥ 5

(10) ‖eλ‖Lq(M) ≤ Cλσ(q,d)−1/2‖eλ‖L2(M), q ≥ max
1≤j≤n

2(dj+1)
dj−1 .

Also if 2 ≤ n ≤ 4 the analog of (10) is valid if one includes an additional factor
of λε in the right with ε > 0 arbitrary.

One proves (9) using the universal bounds (3) and an orthogonality argument
after noting that an eigenfunctions on M as above involve linear combinations
of products of eigenfunctions on the Sdj . One obtains (10) from (9) using the
fact that the aforementioned result of Walfisz [18] implies that ρ(λ) = O(λn−2) if
n ≥ 5, and one obtains the variants for 2 ≤ n ≤ 4 using the fact that classical
estimates for this case say that ρ(λ) = O(λn−2+ε), for all ε > 0. Also note that,
since on products of spheres the distinct eigenvalues are square roots of integers,
the eigenfunction estimates in (10) are equivalent to bounds in (7) for the same
range of exponents.

Our Theorem 1 was motivated by an earlier result of Iosevich and Wyman [11]
which says that for M as above one has power improvements over the universal
Weyl bounds in (1), namely:

(11) N(λ) = cλd +O(λd−1− n−1
n+1 ),
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which, of course, generalizes the classical result of Hlwaka [9] corresponding to
d1 = · · · = dn = 1. The bounds in (11) immediately imply that for such M
we have that the multiplicity of a distinct eigenvalue λ, i.e., #λj = λ must be

O(λd−1−n−1
n+1 ). Because of the aforementioned spectral properties of M this in

turn implies the bounds

‖χ[λ−λ−1,λ+λ−1]f‖L∞(M) . λ
d−1
2 − n−1

2(n+1) ‖f‖L2(M),

which are a bit weaker than the ones in Theorem 1 which say that one has

O(λ
d−1
2 − 1

2 ) if n ≥ 5 and O(λ
d−1
2 − 1

2+ε) for all ε > 0 if 2 ≤ n ≤ 4.
Iosevich and Wyman conjectured that when n ≥ 5 the Weyl error term should

be O(λd−2) (as in Walfisz [18] when d1 = · · · = dn = 1). It is often the case that
sup-norm estimates like the ones we just mentioned from Theorem 1 lead to these
types of bounds; however, it is not clear how to use them in this case to obtain
this natural conjecture.

Additionally, Iosevich and Wyman [11] also showed that if M = X × Y is an
arbitrary Cartesian product of dimension d = dX + dY , then

(12) N(λ) = cλd + o(λd−1).

To do this they first showed that for such M the set of periodic geodesics through
any x ∈M has measure zero, and so (12) follows from the Duistermaat-Guillemin
[7] theorem. As a corollary to this observation of Iosevich and Wyman [11] and
techniques of one of us and Zelditch [16] one can show that there exists ε(λ) → 0
so that on M = X × Y one has

‖χ[λ−ε(λ),λ+ε(λ)]‖L2→L∞ = O(
√
ε(λ)λ

d−1
2 ).

Although one cannot replace the right side by o(
√
ε(λ)λ

d−1
2 ) bounds, a deficiency

of these bounds is that one can not specify how ε(λ) goes to zero using the above
techniques. Recently, though, Canzani and Galkowski [5] showed that on arbi-
trary products one can take ε(λ) = (logλ)−1, as well as analogous results for all
exponents q > qd. Improvements for q = qd or 2 < q < qd remain open in this
case, though.

In our work with Huang and Taylor [10] we are also able to show that if Y has
improved spectral projection bounds than so does X × Y . We assume here that
dY denotes the dimension of Y and dX that of X so that d = dX + dY is that of
X × Y .

Theorem 2. Assume that λ→ λε(λ) is non-decreasing, and that, moreover,

(13) ‖χ[λ−ε(λ),λ+ε(λ)]‖L2(Y )→Lq(Y ) = O(δ(λ)λσ(q,dY )), with δ(λ) → 0.

Then

(14) ‖χ[λ−ε(λ),λ+ε(λ)]‖L2(X×Y )→Lq(X×Y ) = O(δ(λ)λσ(q,dY )λσ(q,dX )λ1/2).

In particular, if q ≥ max(qX , qY ), then

(15) ‖χ[λ−ε(λ),λ+ε(λ)]‖L2(X×Y )→Lq(X×Y ) = O(δ(λ)λσ(q,d)).
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As was shown in [10], one proves (14) using the assumption (13) and an or-
thogonality argument (which is a bit more intricate than the one used to obtain
(9)). The estimate (15) is a simple consequence of (14) and the numerology of the
exponents σ(q, n).

In [10] we also showed that improved Weyl error term bounds on Y carry over
to the product X × Y :

Theorem 3. If

(16) N(Y ;λ) = cY λ
dY +O(ε(λ)λdY −1)

with ε(λ) as above then

(17) N(X × Y ;λ) = cX×Y λ
d +O(ε(λ)λd−1).

To prove Theorem 3 we first note that if the spectrum of −∆X is {µ2} and

the spectrum of −∆Y is {ν2} then the spectrum of
√−∆X −∆Y is {

√
µ2 + ν2}.

Therefore,

N(X × Y ;λ) = #{(µ, ν) :
√
µ2 + ν2 ≤ λ}

=
∑

√
µ2+ν2≤λ

1

=
∑

µ≤λ

( ∑

ν≤
√

λ2−µ2

1
)

=
∑

ν≤λ

N(Y ;
√
λ2 − µ2) =

∑

µ≤λ

[
cY (λ

2 − µ2)dY /2 +RY (
√
λ2 − µ2)

]

= I + II.

Since RY (
√
λ2 − µ2) = O(ε(

√
λ2 − µ2) · (λ2 − µ2)(dY −1)/2), one can use our as-

sumption on ε(λ) along with (16) and a simple calculation to see that

II = O(ε(λ)λd−1)

as desired.
Consequently, since λ−1 . ε(λ), our proof would be complete if we could show

that

(18) I =
∑

µ≤λ

cY (λ
2 − µ2)dY /2 = cX×Y λ

d +O(λd−2).

To prove this, we note that if {eµ} is an orthonormal basis of eigenfunctions with
eigenvalues {µ} then

(19) I = cY λ
dY

∫

X

∑

µ≤λ

(
1− (µ/λ)2

)dY /2
eµ(x) eµ(x) dx

= cY λ
dY

∫

X

S
dY /2
λ (x, x) dx,
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if Sδ
λ(x, y) =

∑
µ(1 − (µ/λ)2)δ+eµ(x) eµ(y) is the Bochner-Riesz kernel of index δ.

It is known (see e.g. [14] or [15]) that

(20) S
dY /2
λ (x, x) = cXλ

dX +O(λdX−1−dY /2),

cX = (2π)−dX ·
∫

ξ∈RdX

(1 − |ξ|2)dY /2 dξ.

It is a straightforward calculation to obtain (18) from (19)–(20) along with the
definition of cX×Y in (1), which completes the proof.
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Two Analogues of the Euclidean Spherical Maximal Function on

Heisenberg Groups

Rajula Srivastava

(joint work with Joris Roos, Andreas Seeger)

We shall discuss sharp (up to end points) Lp − Lq estimates for local maximal
operators associated with dilates of two different surfaces on Heisenberg groups.
The first is the “horizontal sphere” of codimension two. The second is the Korányi
sphere: a surface of codimension one compatible with the non-isotropic dilation
structure on the group but with points of vanishing curvature. We shall exam-
ine the geometry of these surfaces in light of two different notions of curvature
and compare their effect on the estimates for the corresponding maximal opera-
tors. The Heisenberg group structure will play a crucial role in our arguments.
However, the theory of Oscillatory Integral Operators will be central despite the
non-Euclidean setting. We shall also discuss two new counterexamples which im-
ply the sharpness of our results (up to endpoints). Partly based on joint work with
Joris Roos and Andreas Seeger.

Extremizability of Fourier restriction to the moment curve

Betsy Stovall

(joint work with Chandan Biswas)

The Fourier restriction operator associated to the moment curve,

Rf(t) := f̂(γ(t)), γ(t) := (t, . . . , td),

initially defined on smooth functions with compact support, has been known since
1985 work of Drury [2] to obey the Lebesgue space inequalities

(1) ‖Rf‖Ls(R) . Ar‖f‖Lr(Rd),

for all exponent pairs r, s ∈ [1,∞] obeying the relations s = 2r′

d(d+1) and 1 ≤
r < d(d+1)+2

d(d+1) . Moreover, (1) fails for all other values of s, r. Here Ar denotes

the operator norm, which is the minimal constant for which (1) holds for all
f ∈ C∞

c (Rd), and we identify functions on the curve with their composition with
the parametrization above. While the inequality (1) is an elementary consequence
of Hölder’s inequality when r = 1, s = ∞, its validity for larger values of r is a
more subtle question, due to the zero Lebesgue measure of the curve γ. Here, the
nonvanishing of the torsion of the curve γ plays a critical role.

This talk concerns recent work [1], in which we have studied questions relating
to the reverse of the inequality (1). In particular, Do there exist nonzero functions
f attaining the upper bound expressed in (1) (we call these extremizers)?, and,
Must sequences of norm-1 functions saturating this inequality (we call these nor-
malized extremizing sequences) possess convergent subsequences? Such questions
have recently attracted broader interest within the harmonic analysis literature
(see [4] for an extensive review and the introduction of [3] for a description of
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some more recent results). For linear operators acting on finite dimensional vec-
tor spaces, the answers to both questions are always yes, due to the compactness
of the unit sphere. However, in the case of infinite dimensional Banach spaces,
these questions are generally nontrivial. Indeed, while the answers to both ques-
tions can sometimes be yes, there also exist bounded linear operators with no
extremizers, there exist bounded linear operators with extremizers for which nor-
malized extremizing sequences need not have convergent subsequences, and there
exist bounded linear operators with no extremizers (whose normalized extremizing
sequences necessarily cannot converge).

The curve γ possesses a rich symmetry group, namely, the dilations:

γ(λt) = diag(λ, . . . , λd)γ(t),

translations,

γ(t+ t0)− γ(t0) = [γ′(t0), . . . , γ
(d)(t0)]γ(t),

and the compositions thereof. These symmetries, along with the modulation sym-
metry of the Fourier transform, induce symmetries of the operator, that is, Lr(Rd)
isometries S for which there exist Ls(R) isometries T such that R ◦ S = T ◦ R.
Due to the presence of a noncompact symmetry group for R, we know that nor-
malized extremizing sequences need not possess subsequences that converge; this
is because there exist sequences of symmetries converging to zero in the weak op-
erator topology. However, the richness of the symmetry group leads us to expect
that normalized extremizing sequences might possess convergent subsequences if
we are first allowed to apply the symmetries of the operator. Our main result is
that this is indeed the case.

Theorem 1 ([1]). For every 1 ≤ r < d(d+1)+2
d(d+1) , there exist nonzero extremizers for

(1). Moreover, when 1 < r < d(d+1)+2
d(d+1) , every normalized extremizing sequence has

a subsequence that converges in Lr(R), after the application of suitable symmetries.

Our proof of Theorem 1 passes through the proof of the analogous result for its
adjoint, the Fourier extension operator

Ef(x) :=
∫

R

eix·γ(t)f(t) dt, f ∈ C∞
c (R).

Letting p = s′, q = r′, and Bp = Ar in (1), we obtain

(2) ‖Ef‖Lq(Rd) ≤ Bp‖f‖Lp(R), q = d(d+1)
2 p′, 1 ≤ p < d(d+1)+2

2 ,

and results about extremizers for E imply the analogues for R by duality. The
argument follows an outline established by Stovall in [5] for the case of the restric-
tion problem for paraboloid, but new difficulties are encountered in the case of the
moment curve, due to both the geometry of separated sets and some inconvenient
inequalities for the exponents relevant to the problem.

Open questions include both the identity of the extremizers, perhaps only in
the case p = 2 and also analogous results for higher degree curves.
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Global solutions for 1D cubic defocusing dispersive equations

Daniel Tataru

(joint work with Mihaela Ifrim)

This work is devoted to a general class of one dimensional NLS problems with
a cubic nonlinearity. The question of obtaining scattering, global in time solu-
tions for such problems has attracted a lot of attention in recent years, and many
global well-posedness results have been proved for a number of models under the
assumption that the initial data is both small and localized. However, except for
the completely integrable case, no such results have been known for small but
non-localized initial data.

Here we consider instead the much more difficult case where the initial data
which is just small, without any localization assumption. Then it is natural to
restrict the analysis to defocusing problems, as focusing one-dimensional cubic NLS
type problems typically admit small solitons and thus, generically, the solutions
do not scatter at infinity. For this class of problems formulate the following broad
conjecture:

Conjecture 1. One dimensional dispersive flows with cubic defocusing nonlin-
earities and small initial data have global in time, scattering solutions.

Our objective is to prove the first global in time well-posedness result of this
type, assuming a Schrödinger type dispersion relation and a cubic nonlinearity
with a smooth and bounded symbol. As part of our results, we also prove that our
global solutions are scattering at infinity in a very precise, quantitative way, in the
sense that they satisfy both L6 Strichartz estimates and bilinear L2 transversality
bounds. This is despite the fact that the nonlinearity is non-perturbative on large
time scales. Our method is based on a robust reinterpretation of the idea of
interaction Morawetz estimates, developed almost 20 years ago by the I-team.

Our estimates are new even in the case of the classical cubic NLS problem;
there they improve earlier estimates of Planchon and Vega.
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Dyadic Rectangles

Alex Volberg

(joint work with N. Arcozzi, I. Holmes, P. Mozolyako, P. Zorin-Kranich)

Weighted Carleson embedding (weighted paraproduct estimates in another lan-
guage) lies in the core of various harmonic analysis and PDE results. Not much is
known about it in multi-parameter situation, while one parameter is completely
understood. I will formulate several new results on weighted multi-parameter Car-
leson embedding on multi-trees and their corollaries as embedding of Hilbert spaces
of analytic functions on poly-discs. I will also formulate corresponding Poincaré
inequalities on multi-trees and poly-discs. Some of those results are final, but even
embedding of Hardy space on bi-disc is not completely described. My presentation
is based on the series of joint works with various coathors: N. Arcozzi, I. Holmes,
P. Mozolyako, P. Zorin-Kranich.

W. Rudin meets E.M. Stein

James Wright

(joint work with Odysseas Bakas, Valentina Ciccone)

In this talk we review the theories developed by W. Rudin from the 1950s about
various thin sets (for example, Sidon sets, Paley sets, Λ(q) sets) in classical Fourier
series and show that these theories have an equivalent formulation as a problem
in Fourier restriction theory which was developed by E.M. Stein in the 1970s.

For any set Λ ⊂ Zn, we denote by CΛ(Tn) the closed subspace of continuous

functions f ∈ C(Tn) on the n-torus Tn whose fourier coefficients f̂(n) = 0 for
all n /∈ Λ. Similarly we define the closed subspace Lp

Λ of Lp(Tn), p ≥ 1 functions
which are fourier supported in Λ. Finally we denote by PΛ the dense subspace of
trigonometric polynomials with frequency support in Λ.

(S) A set Λ ⊂ Zn is called a Sidon set if CΛ(Tn) ⊂ A(Tn); in other words, every
continuous function which is fourier supported in Λ automatically has an absolutely
convergent fourier series. In [1], Rudin developed the theory of Sidon sets and laid
out a programme to find an arithmetic characterisation of such sets. He intimated
that the key to this characterisation is the following analytic improving property
for Sidon sets: L2

Λ ⊂ F or

(1) ‖f‖F ≤ C ‖f‖L2 holds for all f ∈ PΛ
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where F = exp(L2)(Tn) is the exponential square integrable class. In [3], Pisier
showed that indeed (1) gives a characterisation of Sidon sets and he did this
for any compact abelian group. In his phd thesis, O. Bakas extended Pisier’s
work to product spectral sets Λ = Λ1 × · · · × Λn ⊂ Zn where each Λj ⊂ Z is a
Sidon set. Such product sets are characterised by the inequality (1) where now
F = exp(L2/n)(Tn).

(P) A set Λ ⊂ Zn is called a Paley set if L2
Λ ⊂ BMO(Tn) or

(2) ‖f‖F ≤ C ‖f‖L2 holds for all f ∈ PΛ

where F = BMO(Tn) is the space of functions on Tn with bounded mean oscil-
lation. In his Ph.d. thesis, O.Bakas extended work of W. Rudin in [2] from T to
Tn showing that Λ is a Paley set if and only if supR∈R #(Λ ∩ R) < ∞ (here the
supremum is taken over all dyadic rectangles R).

(q) For q > 2, a set Λ ⊂ Zn is called a Λ(q) set if L2
Λ ⊂ Lq(Tn) or

(3) ‖f‖F ≤ C ‖f‖L2 holds for all f ∈ PΛ

where F = Lq(Tn).

A well-known fourier restriction result from the 1970s states that for f ∈ Lp(R2n)
and p < 4/3, one can make sense of the restriction of the fourier transform of f to
Tn as an Lq density on Tn for a certain range of q; in fact, the a priori bound

‖f̂‖Lq(Tn) ≤ C ‖f‖Lp(R2n)

holds holds if and only if q < p′/3 and 1 ≤ p < 4/3. This was established on T
(the n = 1 case) by Fefferman-Stein and also Zymund in the early 1970s but their
arguments extend readily to the n-dimensional case Tn as observed by E. Prestini
and M. Christ. To express our characterisation of Sidon/Paley/Λ(q)/etc... sets as
a fourier restriction bound, it is more convenient to use the equivalent formulation
in terms of the fourier extension operator: let σ denote surface measure on Tn and
define the extension operator

Eg(x) := ĝdσ(x) =

∫

Tn

g(ω)e−2πix·ω dσ(ω),

taking functions on Tn and extending it via the fourier transform to a function
on R2n. Finally, viewing R2n ≃ Cn, we denote by BR = DR × · · · ×DR the n-fold
product of complex discs of radius R.

Our main theorem is the following.

Theorem Suppose Λ ⊆ Zn and let F = E∗ be the dual of a Banach space of
functions E. We assume F continuously embeds into Lq(Tn) for some q > 4. The
following two bounds are equivalent.

(B1) There is a constant AΛ such that

‖f‖F (Tn) ≤ AΛ ‖f‖L2(Tn) for all f ∈ PΛ(T
n).
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(B2) There is a constant CΛ such that for all R > 0,
∥∥Eg‖L4(BR) ≤ CΛ (logR)n/4

∥∥g
∥∥
E(Tn)

for all g ∈ PΛ(T
n).
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Lens counting, circular maximal functions, and restricted projections

Joshua Zahl

Planar incidence geometry studies the intersection patterns of arrangements of
curves in the plane. I will discuss how ideas from this area, and specifically the
theory of lens counting, can be used to prove sharp Lp bounds for rough circular
maximal functions, and also resolve a conjecture of Fassler and Orponen on re-
stricted projections from a C2 curve. This is joint work with Malabika Pramanik
and Tongou Yang.

Reporter: Rajula Srivastava



1800 Oberwolfach Report 31/2022

Participants

Dr. David Beltran

Department of Mathematics
University of Wisconsin-Madison
480 Lincoln Drive
Madison WI 53706
UNITED STATES

Prof. Dr. Jonathan Bennett

School of Mathematics
The University of Birmingham
Edgbaston
Birmingham B15 2TT
UNITED KINGDOM

Dr. Stefan Buschenhenke

Mathematisches Seminar
Christian-Albrechts-Universität Kiel
Heinrich-Hecht-Platz 6
Kiel 24118
GERMANY

Prof. Dr. Anthony Carbery

School of Mathematics
University of Edinburgh
King’s Buildings
Peter Guthrie Tait Road
Edinburgh EH9 3FD
UNITED KINGDOM

Prof. Dr. Emanuel Carneiro

ICTP - The Abdus Salam International
Centre for Theoretical Physics
Mathematics Section
Strada Costiera, 11
34151 Trieste
ITALY

Prof. Dr. Michael Christ

Department of Mathematics
University of California, Berkeley
Berkeley CA 94720-3840
UNITED STATES

Valentina Ciccone

Hausdorff Center for Mathematics
Mathematical Institute
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Michael G. Cowling

School of Mathematics and Statistics,
University of New South Wales
Sydney NSW 2052
AUSTRALIA

Polona Durcik

Chapman University
Orange 92866
UNITED STATES

Dr. Daniel Eceizabarrena

Department of Mathematics and
Statistics
University of Massachusetts Amherst
Amherst, MA 01003-9305
UNITED STATES

Marco Fraccaroli

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Dorothee Frey

Fakultät für Mathematik
Institut für Analysis
Karlsruher Institut für Technologie
(KIT)
Englerstraße 2
76131 Karlsruhe
GERMANY



Real Analysis, Harmonic Analysis and Applications 1801

Dr. Felipe Goncalves

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Prof. Dr. Philip Gressman

Department of Mathematics
David Rittenhouse Laboratory
University of Pennsylvania
209 South 33rd Street
Philadelphia PA 19104-6395
UNITED STATES

Dr. Jonathan Hickman

Room 5322,
James Clerk Maxwell Building,
The King’s Buildings,
School of Mathematics,
University of Edinburgh
Peter Guthrie Tait Road,
Edinburgh EH9 3FD
UNITED KINGDOM

Dr. Marina Iliopoulou

School of Mathematics and Statistics
The University of Birmingham
Edgbaston
Birmingham B15 2TT
UNITED KINGDOM

Prof. Dr. Herbert Koch

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn 53115
GERMANY

Prof. Dr. Sanghyuk Lee

School of Mathematical Sciences
Seoul National University
1 gwanak-ro, gwanak-gu
08826 Seoul
KOREA, REPUBLIC OF

Dr. Zane Li

Department of Mathematics
Rawles Hall
Indiana University
831 East 3rd Street
Bloomington, IN 47405
UNITED STATES

Fred Lin

Hausdorff Center for Mathematics
Universität Bonn
Villa Maria
Endenicher Allee 62
53115 Bonn
GERMANY

Dr. Dominique Maldague

Department of Mathematics
Massachusetts Institute of
Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Dr. Alessio Martini

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino
ITALY

Dr. Mariusz Mirek

Department of Mathematics
Rutgers University
Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway NJ 08854-8019
UNITED STATES

Gevorg Mnatsakanyan

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY



1802 Oberwolfach Report 31/2022

Prof. Dr. Detlef Müller

Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
Heinrich-Hecht-Platz 6
24118 Kiel
GERMANY

Dr. Giuseppe Negro

Instituto Superior Técnico
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