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Introduction by the Organizers

Cyclic cohomology, since its discovery forty years ago in noncommutative differ-
ential geometry, has developed as a fundamental mathematical tool with appli-
cations in domains as diverse as analysis, algebraic K-theory, algebraic geometry,
arithmetic geometry, solid state physics and quantum field theory. The meeting
provided a user friendly introduction to sophisticated domains of applications such
as topological Hochschild and cyclic theory for ring spectra, Hopf algebra symme-
tries, de Rham-Witt complex, quantum physics etc, in which cyclic homology plays
the role of a unifying theme. In analysis where cyclic cohomology index formulas
are capturing the higher invariants of manifolds and where the group symmetries
are extended to Hopf algebra actions and where Lie algebra cohomology is greatly
extended to the cyclic cohomology of Hopf algebras which becomes the natural
receptacle for characteristic classes. In algebraic topology where the cyclotomic
structure obtained using the cyclic subgroups of the circle action on topological
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Hochschild homology gives rise to remarkably significant arithmetic structures in-
timately related to crystalline cohomology through the de Rham Witt complex as
well as to the Fontaine theory and the Fargues-Fontaine curve.

The main goal of the meeting was to create an interaction between the two
domains where the theory is most active: noncommutative geometry and analysis
on one hand and on the other the highly successful topological cyclic homology
(TC) and topological Hochschild homology (THH) introduced by Bokstedt, Hsiang
and Madsen in the world of ring spectra.

Already in the first talk by A. Efimov on the K-theory of inverse limits of DG
categories, appeared an obvious link between his treatment of projective limits
allowing one to go beyond the traditional finiteness conditions and the known
analysis notions of nuclear operators and of the Calkin algebra in infinite dimen-
sional Hilbert space.

The meeting served one important purpose which is to remove the language
barrier between the homotopy theorists and the analysts. Talks by members of
the two groups were alternating and hopefully understandable by both groups.
For instance the talk by M. Land (joint work with Nikolaus and Schlichting) on
the L-theory of C∗-algebras was easy to grasp by both groups. Besides analysis
talks dealing with pseudo-differential operator algebras such as talks by V. Nistor
and E. Schrohe, there was for instance a user friendly talk by W. van Suijlekom on
the role of cyclic homology in quantum field theory explaining his breakthrough
contribution with T. Nuland showing that the perturbations of the spectral action
are amazingly encoded by an entire cocycle whose cyclic properties survive at the
one loop level and are intimately related to the Ward identities of perturbative
expansions of gauge theories. Also L. Hesselholt gave an high level introduction to
some of the spectacular recent results on topological cyclic homology of Nikolaus-
Scholze, Bhatt–Morrow–Scholze, and Antieau–Mathew–Morrow–Nikolaus and ex-
plained how the Fargues-Fontaine curve and its decomposition into a punctured
curve and the formal neighborhood of the puncture naturally appears from var-
ious forms of topological cyclic homology and maps between them. E. Getzler’s
talk was the prototype of result understandable by both groups, he showed that
a cosimplicial generalization of the Chern character in the negative cyclic com-
plex yields an explicit formula for the Chern character in the completed de Rham
complex of the derived stack of perfect complexes of a compact CY algebra A.

Another domain where the interaction between the two groups was maximal is
the use of the Γ-rings of G. Segal as the framework of algebra over the absolute
base. There was in particular a long discussion on the Wednesday evening in
order to improve the terminology: while in the book of Dundas-Goodwillie and
McCarthy on the local structure of algebraic K-theory the identity functor from
pointed sets to themselves is denoted by S for ”sphere spectrum” (see 2.1.2 page
67), the use of this terminology seemed to conflict with the standard use of the
term in homotopy theory and it was suggested that the notation F1 (for the field
with one element) would be more appropriate for this absolute base. Algebra
over this base is highly successful in that it provides a natural extension of the
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structure sheaf of SpecZ to its Arakelov compactification SpecZ, as a subsheaf
of the constant sheaf Q using the generalization of abelian groups obtained by
viewing an abelian group A as a covariant functor HA from the category of finite
pointed sets to the category of pointed sets which assigns to X the pointed set of
A-valued divisors onX which are 0 on the base point. The functoriality is obtained
by taking the sum over the preimage of a point. The power of this construction
is that it gives a Riemann-Roch theorem for Arakelov divisors (see the report of
A. C. on joint work with C. Consani). It allows to envisage as a far reaching goal
that cyclic homology (in the guise of the de-Rham Witt or crystalline cohomology)
should give access to the sought for cohomology of SpecZ displaying the zeros of
the Riemann zeta function as eigenvalues of the Frobenius.

The titles and abstracts of the talks below display the wide variety of topics covered
in the meeting.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

K-theory of inverse limits

Alexander I. Efimov

We prove a general result on the commutation of K-theory with inverse limits.
Before formulating a general statement, we formulate its application to formal
affine schemes.

Let R be a (commutative) noetherian ring and I ⊂ R an ideal. Clausen and
Scholze [2] defined a category Nuc(RÎ) of nuclear solid modules over RÎ , which is
a dualizable presentable category. Below we always consider the non-connective
K-theory spectra.

Theorem 1 (E.). We have an equivalence (of spectra)

(1) Kcont(Nuc(RÎ)) ≃ lim←−
n

K(R/In).

Here by Kcont denotes the continuous K-theory, which is defined for dualizable
presentable categories in [1, 3].

Note that the naive K-theory of perfect complexes on formal schemes is not a
reasonable invariant. The main reason is that the restriction functor to an open
subscheme is not a localization in the categorical sense. This is because the ring-
theoretic localization does not commute with completion, e.g. Z[x][[y]][x−1] 6∼=
Z[x, x−1][[y]]. For the same reason the naive K-theory of formal schemes does not
satisfy Zariski descent.

On the other hand, if one defines K-theory of (say, affine) formal schemes as
in the RHS of (1), then the issue with the localization disappears and Zariski
descent works fine. It turns out that considering the category Nuc instead of Perf
also provides a solution to the same problem: the restriction to an open subset now
becomes a categorical localization. The basic properties of continuous K-theory
hence also imply that Kcont(Nuc) satisfies Zariski descent.

Theorem 1 states that the two approaches to the definition of K-theory of formal
schemes give the same result. Below we provide some details and formulate a more
general result about K-theory of inverse limits.

1. K-theory of large categories

It is well-known that the usual K-theory vanishes for stable ∞-categories with
countable direct sums due to Eilenberg swindle argument applied to the identity
functor (it is sufficient to have countable sums of copies of any object). However,
it turns out that one can define a reasonable version of K-theory for presentable
cocomplete∞-categories under additional assumption of being dualizable (equiva-
lently, compactly assembled). For simplicity we consider DG (differential graded)
categories (although the Z-linear structure is irrelevant here).
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One of the definitions of a presentable DG category is the following. C is
presentable if there exists a DG ring A and an A-module M such that

C ≃ D(A,M) :=M⊥ = {X ∈ Mod-A | RHomA(M,X) = 0} ⊂ Mod-A.

We call a functor F : C → D between such DG categories continuous if it commutes
with small direct sums. We denote by dgcatcontZ the∞-category of presentable DG
categories and continuous functors.

There is a natural symmetric monoidal structure on dgcatcontZ – the Lurie tensor
product, which we denote by −⊗̂−. The internal Hom is given by Funcont(C,D) –
the full subcategory of Fun(C,D) formed by continuous functors.

Definition 2. A presentable DG category C is dualizable if it is a dualizable object
in the symmetric monoidal category (dgcatcontZ , ⊗̂).

The following is due to Lurie.

Theorem 3 (Lurie). Let C be a presentable DG category. TFAE:
(i) C is dualizable.
(ii) There is a short exact sequence

0→ C → Mod-A
−⊗AB−−−−→ Mod-B → 0,

where A→ B is a homological epimorphism of DG rings, i.e. B ⊗L

A B
∼−→ B.

(iii) The Yoneda embedding YC : C → Ind(C) has a twice left adjoint.

We call a continuous functor F : C → D strongly continuous if its right adjoint is
continuous. We denote by dgcatdualZ ⊂ dgcatcontZ the (non-full) subcategory formed
by dualizable categories and strongly continuous functors. We have a fully faithful
embedding

dgcattrZ →֒ dgcatdualZ , A 7→ Mod-A.
Here dgcattrZ denotes the ∞-category of small pre-triangulated Karoubi complete
DG categories.

Let C be a dualizable category. Choose a homological epimorphism A → B,
such that C ≃ ker(Mod-A→ Mod-B). We would like to define

Kcont(C) := Fiber(K(A)→ K(B)).

Note that we need to check that this does not depend on the choice of A → B,
and also we need to see the functoriality of Kcont(C) in C (with respect to strongly
continuous functors).

The most natural way to do it is via the so-called continuous Calkin category.
Define Calkcont(C) to be the Karoubi closure of the image of Cone(Y LLC → YC) :
C → Ind(C). This allows to define

Kcont : dgcatdualZ → Sp, Kcont(C) := ΩK(Calkcont(C)).

See [1, 3] for details.
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2. Mittag-Leffler sequences of categories and the main result

We now define the notion of a Mittag-Leffler inverse sequence of dualizable cate-
gories.

Definition 4 (E.). Let (Cn)n≥0 be an inverse sequence of dualizable categories,
so that the transition functors Fnm, n ≥ m, are strongly continuous. Denote by
FRnm the right adjoint functors. We say that (Cn)n is a (secondary) Mittag-Leffler
inverse system of DG categories if the following conditions hold:

1) For any n ≥ 0, the inverse sequence (FknF
R
kn)k≥n is essentially constant in

the category Funcont(Cn, Cn).
2) For any n,m ≥ 0, the functor (lim←−k≥n,m FkmF

R
kn) : Cn → Cm is strongly

continuous and has a left adjoint.

If the sequence (Cn) is given by (Mod-An)n, where A0 ← A1 ← . . . is an inverse
sequence of DG rings, then conditions 1) and 2) are translated into the following:

1)’ For any n ≥ 0, the sequence An⊗Ak
An is essentially constant in An-Mod-An;

2)’ For any n,m ≥ 0, the An-Am-bimodule lim←−k≥m,n An⊗Ak
Am is perfect over

Aopn and over Am.

Example 5. One can check that the inverse sequence of DG rings (Z[x]/xn)n≥1

(concentrated in degree zero) satisfies the conditions 1)’ and 2)’. From this it is
easy to deduce that for a noetherian commutative ring R and an ideal I ⊂ R
the inverse system (Mod-R/In)n≥1 is pro-equivalent to a Mittag-Leffler system
(here Mod- stands for the DG category of homotopically projective complexes of
modules).

It turns out that Mittag-Leffler sequences of categories behave extremely well
with respect to inverse limits, so that the terminology is justified. This is expressed
in the following results. We denote by lim←−

dual the inverse limit taken in dgcatdualZ

(it is quite different from the inverse limit in dgcatcontZ ). We ignore set-theoretic
issues for simplicity.

Theorem 6 (E.). Let (Cn)n be a Mittag-Leffler sequence of dualizable categories.
1) The functor lim←−n Cn → lim←−nCalk

cont(Cn) is a homological epimorphism.

2) We have a short exact sequence

0→ lim←−
n

dualCn → Ind(lim←−
n

Cn)→ Ind(lim←−
n

Calkcont(Cn))→ 0.

Theorem 7 (E.). Let (Cn)n be a Mittag-Leffler sequence of dualizable categories.
Then the natural map

Kcont(lim←−
n

dualCn)→ lim←−
n

Kcont(Cn)

is an equivalence of spectra.
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Remark 8. For a noetherian affine formal scheme Spf(RÎ) we have a fully faithful
strongly continuous functor

Nuc(RÎ) →֒ Ñuc(RÎ) := lim←−
n

dualMod-R/In.

It can be shown that it induces an equivalence on the continuous K-theory.
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On the index of G-invariant operators and cyclic homology

Victor Nistor

Recall that a linear operator T : X → Y acting between Banach spaces X and Y
is a Fredholm operator if, by definition, the two linear spaces

ker(T ) := T−1(0) and coker(T ) := Y/TX

are finite dimensional. Then, its (Fredholm) index ind(T ) is defined by

(1) ind(T ) := dimker(T )− dim coker(T ) ∈ Z .

Let us assume that P is a pseudodifferential operator of order m on a com-
pact, smooth manifold M acting from sections of a Hermitian vector bundle E to
the sections of a Hermitial vector bundle F . (This will be the case throughout
this report.) If P is elliptic, then P : Hs(M ;E) → Hs−m(M ;F ) is Fredholm
[13, 17, 18, 19, 21] (see also the earlier work of Mihlin). Its index is then given
by the Atiyah-Singer index formula. (Here Hs is the sth Sobolev space.) Fred-
holm operators have any applications in areas such as Hodge theory, Index theory,
Differential Geometry, Spectral Theory, and Partial Differential Equations.

Let G be a compact Lie group. If our linear operator T ∈ L(X,Y ) is also
G-invariant, then both ker(T ) and coker(T ) will be G–modules and, as such, they
decompose as a direct sum of their isotypical components, which are parameterized

by Ĝ, the set of isomorphism classes of irreducible representations of G, namely:

(2) indG(T ) := [ker(T )]−[coker(T )] ∈ R(G) :=
{ ∑

α∈Ĝ

kα[α] | kα ∈ Z
}
≃ Z(Ĝ) .

More precisely, let mα(T ) := (dimα)−1
[
dim

(
ker(T )α

)
− dim

(
coker(T )α

)]
, then

(3) indG(T ) :=
∑

α∈Ĝ

mα(T ) [α] ∈ R(T ) .

Consider the case when T = P , our order m pseudodifferential operator. This
leads us to the following problem.
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Problem 1. Determine the cofficients mα(P ).

A formula for indG(P )(g), the value at g ∈ G of the (character of the) G-
equivariant index indG(P ) of P is given by the Atiyah-Segal-Singer formula. Of
course

(4) indG(P )(g) :=
∑

α∈Ĝ

mα(P ) Tr(α(g)) ,

from which, in principle, one could determine the coefficients mα(P ).
Let us take a closer look at the coefficients mα(T ). For any linear G-invariant

map L : V →W of G-modules V and W , let

(5) πα(L) : Vα →Wα

be the restriction of L to the α-isotypical components of the corresponding mod-
ules. Then we also have

(6) mα(T ) =
ind
(
πα(T )

)

dimα
.

Again for T = P , our order m pseudodifferential operator, this then leads to the
following problems.

Problem 2. Given α ∈ Ĝ, determine the index ind
(
πα(T )

)
.

Of course, it may happen that πα(P ) is Fredholm without P being so, in which
case, it still makes sense to ask for the index of πα(P ). In any case, this leads to
one of the main problem (and result) that we will discuss here, namely:

Problem 3. Given α ∈ Ĝ, determine necessary and sufficient conditions for
πα(P ) to be Fredholm.

In this note, we state a complete solution to the last problem and we discuss
also the second problem. For the last problem, it is enough to assume that E = F .
For all problems it is enough to assume that m = 0. It would be interesting to
study these problems also for the case G non-compact, starting with the case of
proper actions.

The results reported in this note have been published or accepted for publication
[1, 2, 3, 4]. They are joint works with Alexandre Baldare, Moulay Benameur,
Rémi Côme, and Matthias Lesch. The author thanks Alexandre Baldare, Moulay
Benameur, Alain Connes, and Joachim Cuntz for useful discussions.

1. Statement of the main result

In order to state our solution to the last problem, we need to introduce several
definitions (most of which are not new). We shall let S∗M denote the set of unit
vectors in the cotangent space T ∗M of M . If P is of order zero, then its principal
symbol is determined by its restriction to S∗M and does not depend on the choice
of metric on M , so we shall write

(7) σ0(P ) ∈ C∞(S∗M ; End(E)) .
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Of course, as in the case when there is no group G, our main result will involve
the principal symbol. In addition to that, the main new ingredients specific to the
G-equivariant case are the following:

(1) the transverse cosphere bundle S∗
GM ⊂ S∗M ;

(2) the principal orbit bundle M0; and
(3) the space of “blocks” Ξ (which, we will see, is closely related to primitive

ideal spectrum of the algebra C∞(S∗
GM ; End(E))G).

1.1. The transverse cotangent space T ∗
GM and S∗

GM . The first new ingre-
dient for the case of the action of a general group G is the transverse cotangent
space T ∗

GM (due to Atiyah).

Definition 4. The G-transverse cotangent space of M is

T ∗
GM :=

{
ξ ∈ T ∗M | ξ restricts to 0 on the orbits Gx of G

}
.

If G = 1, then, of course, T ∗
GM = T ∗

1M = T ∗M .

Theorem 5 (Atiyah ’73, Atiyah-Singer). If σm(P ) is invertible on T ∗
GM \0, then,

for each α ∈ Ĝ, ker(P )α and coker(P )α are finite dimensional.

1.2. The principal orbit bundle. The “second ingredient” for general G is the
principal orbit bundle. To define it, we need to introduce first the stabilizer Gx of
a point x in a G-space:

(8) Gx := { g ∈ G | g · x = x } .
Theorem 6 (Tom Dieck). Suppose that M/G is connected. Then, there exists
a dense open subset M0 ⊂ M such that ∀x ∈ M0 the stabilizers Gx are minimal
and conjugated.

The set M0 is called the principal orbit bundle. A consequence is that, for all
x′ ∈M , there exists x ∈M0 such that

Gx ⊂ Gx′ .

Moreover, if x, y ∈M0, then Gx and Gy are conjugated.
From now on we assume that M/G is connected and we fix a minimal stabiliser

subgroup G0 ⊂ G.
1.3. The action of the stabilizers and the “block decomposition”. Sim-
ilarly, for ξ ∈ T ∗M , we consider the stabilizer Gξ := {g ∈ G | g · ξ = ξ}. We
let

(9) S∗
GM := T ∗

GM ∩ S∗M := T ∗
GM ∩ {‖ξ‖ = 1}

and call it the G-transverse cosphere bundle. Using it, we can now introduce the
third ingredient, that is the space of blocks Ξ:

(10) Ξ :=
{
(ξ, ρ) ∈ S∗

GM × Ĝξ | (Eξ)ρ 6= 0
}
.

The definition of the space of blocks is motivated by the following simple but
important remark.
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Remark 7. Let P ∈ Ψm(M ;E) be a G-invariant pseudodifferential operator, as
always in this report.

(1) Its principal symbol σm(P ) is also G-invariant.
(2) Gξ acts on Eξ, and hence

σm(P )(ξ) ∈ End(Eξ)
Gξ ≃

⊕

ρ∈Ĝξ

End(Eξρ)
Gξ ,

a direct sum of matrix algebras, or blocks, and these blocks are parametriz-
ed by Ξ, in the sense that End(Eξρ)

Gξ 6= 0 if, and only if, (ξ, ρ) ∈ Ξ.
(3) Let us define

(11)

{
σ̂m(P ) : Ξ → ∪(ξ,ρ)∈ΞEnd(Eξρ)

Gξ

σ̂m(P )(ξ, ρ) := πρ
(
σm(P )(ξ)

)
∈ End(Eξρ)

Gξ .

We thus see that P is elliptic if, and only if, the function σ̂0(P )(ξ, ρ) is invertible
for all (ξ, ρ) ∈ Ξ.

1.4. α-ellipticity and statement of the main result. Let us fix α ∈ Ĝ. We
have seen in the previous subsection that P : Hs(M ;E)→ Hs−m(M ;E) is Fred-
holm if, and only if, σ̂m(P )(ξ, ρ) is invertible for all (ξ, ρ) ∈ Ξ. Clearly, in general,
a weaker condition on σ̂m(P )(ξ, ρ) will be needed in order to conclude that πα(P )
is Fredholm.

Notation 8. For each α ∈ Ĝ, we let

Ξα :=
{
(ξ, ρ) ∈ Ξ | G0 ⊂ Gξ and Hom(ρ, α)G0 6= 0

}
.

We can now state the main result.

Theorem 9 (Baldare–Côme–Lesch–Nistor). Let P be a G-invariant pseudodif-
ferential operator. The restriction πα(P ) is Fredholm if, and only if, σ̂m(P ) is
invertible on Ξα.

See [2, 3, 4].

2. Index and cyclic homology

A consequence of the last result is that ind(πα(P )) (and hence also the multiplicity

mα(P ) of α ∈ Ĝ in the G-index indG(P ) ∈ R(G)) depends only on the restriction
of σm(P ) to Ξα. Moreover, it is known [5, 6] that mα(P ) = φ(σ0(P )|Ξα) for
a suitable cyclic cocycle φ. Let C∞(Ξα) be the algebra of restrictions to Ξ of
functions in C∞(S∗M ; End(E))G, the algebra of G-invariant symbols.

Definition 10. Let A be a Fréchet, complex topological algebra with a fixed
continuous Banach norm. Let A be its completion in this norm. We shall say
that A is a Connes algebras if the following two maps (defined for j ∈ Z/2Z) are
isomorphisms:

(1) Kj(A)→ Kj(A) and
(2) Ch : Kj(A)⊗ C→ HPj(A).
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This definition implies a suitable choice of completion of the cyclic complex
defining the (topological) periodic cyclic homology HPj(A). Also, one has to
make a suitable choice of a topological (so homotopy invariant) K-theory functor.
The map Ch is the Chern–Connes–Karoubi character [5, 6, 7, 8, 14, 22].

Theorem 11 (Baldare–Benameur–Nistor). The algebras C∞(S∗M ; End(E))G and
C∞(Ξα) are Connes algebras.

The proof is as in [1], in particular, it builds on the techniques and ideas devel-
opped in [15] and [20]. The framework is that of m-algebras [9, 10] and the proof
uses excision in periodic cyclic homology [11, 12, 16]. The following proposition
plays an important role in the proof.

Proposition 12. Let X be a smooth, compact manifold with corners and Y ⊂ ∂X
be a union of closed faces of the boundary. Let F → X be a smooth bundle of simple
algebras. Let C∞0 (X,Y ;F) := {f ∈ C∞(X ;F) | f |Y = 0} and

C∞∞(X,Y ;F) := {f ∈ C∞(X) | f vanishes of infinite order on Y } .
Let C∞∞(X,Y ;F) ⊂ I ⊂ C∞0 (X,Y ;F) be a closed subalgebra of C∞0 (X,Y ;F). Then
I is a Connes algebra.
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[20] M. Solleveld. Some Fréchet algebras for which the Chern character is an isomorphism. K-

theory, 36:275–290, 2005.
[21] M. Taylor. Partial differential equations II. Qualitative studies of linear equations, volume

116 of Applied Mathematical Sciences. Springer, New York, second edition, 2011.
[22] B. Tsygan. Homology of matrix Lie algebras over rings and Hochschild homology. Uspekhi

Math. Nauk., 38:217–218, 1983.

Order-Preserving Automorphisms of Shubin Type
Pseudodifferential Operators

Elmar Schrohe

(joint work with Robert Hesse, Ryszard Nest)

In 1976, J.J. Duistermaat and I.M. Singer proved the following statement [3]:

Theorem 1. Let X, Y be C∞ manifolds, H1(S∗X,C) = 0. Then every order-
preserving isomorphism i : L∞(X)→ L∞(Y ) is of the form

i(P ) = A−1PA

for some invertible elliptic properly supported Fourier integral operator A : C∞(Y )
→ C∞(X).

Duistermaat and Singer consider scalar-valued, classical, properly supported
pseudodifferential operators on the (not necessarily closed) manifolds X and Y .
They denote by Lm(X), m ∈ Z, the space of all such operators of order ≤ m on
X and by L∞(X) the union over all m; correspondingly for Y .

Recall that an operator T : C∞
c (Y )→ C∞(X) is properly supported, if on the

support {(x, y) : KT (x, y) 6= 0} of the Schwartz kernel KT of T , the projections
(x, y) 7→ x and (x, y) 7→ y are proper maps. Pseudodifferential operators on X
with proper support extend to continuous maps C∞(Y ) → C∞(X), so that they
can indeed be composed. A pseudodifferential operator can always be made prop-
erly supported by adding an operator with smooth Schwartz kernel, i.e. without
changing the terms in the asymptotic expansion of its symbol.

In an article published in 2017, Mathai and Melrose [5] took up the subject.
Assuming that X and Y are closed manifolds, they established a corresponding
result for pseudodifferential operators acting on sections of vector bundles over
X and Y , respectively. Moreover, they showed that, as a consequence of Beals’
characterization of pseudodifferential operators [1], the condition H1(S∗X,C) = 0
on the first cohomology group of the cosphere bundle of X is dispensable.
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Results. In my talk, I reported on joint work in progress with R. Hesse (Han-
nover) and R. Nest (Copenhagen) on a corresponding assertion for Shubin type
pseudodifferential operators.

A Shubin type pseudodifferential operator of order m ∈ Z on Rn is a pseudodif-
ferential operators P = op (p), whose symbol p is a smooth function on Rn × Rn

satisfying the estimates

(1) |Dα
ξD

β
xp(x, ξ)| ≤ Cα,β(1 + |x|+ |ξ|)m−|α|−|β|

for all multi-indices α, β with suitable constants Cα,β .
Such a symbol is called classical, if it has an asymptotic expansion

p ∼
∞∑

j=0

pm−j ,(2)

where pm−j is a symbol of order m − j that is positively homogeneous of degree
m− j in (x, ξ) for |(x, ξ)| ≥ 1, i.e.

pm−j(λx, λξ) = λm−jpm−j(x, ξ), λ ≥ 1, |(x, ξ)| ≥ 1.

We call σ(P ) := pm the principal symbol of P . Moreover, we denote by Ψm,
m ∈ Z, the space of Shubin type pseudodifferential operators of order ≤ m on
Rn and let Ψ =

⋃
mΨm, Ψ−∞ =

⋂
mΨm. The class Ψ−∞ consists of integral

operators with Schwartz kernel in S (Rn × Rn). See [8] for more details.
One should note an immediate consequence of (1): In the asymptotic expan-

sion formula for the symbol r of the composition op p ◦ op q of two Shubin type
pseudodifferential operators:

r(x, ξ) ∼
∞∑

|α|=0

1

α!
∂αξ pD

α
x q

the order of ∂αξ pD
α
x q decreases by two units as |α| increases by one unit. In

particular, for classical symbols, the expansions for the terms of even and odd
order do not mix.

The result we propose is:

Theorem 2. Let n ≥ 2 and i : Ψ → Ψ be an order-preserving automorphism
of Ψ(Rn) (i.e., i(Ψm) = Ψm). Then i is given by conjugation with an invertible
elliptic Shubin type Fourier integral operator A : S (Rn)→ S (Rn) :

i(P ) = A−1PA.

The operator A is unique up to nonzero scalar multiples.

The concept of ‘Shubin type’ Fourier integral operators will be explained, below.

Background. Our motivation for this investigation comes from joint work with
Anton Savin (RUDN, Moscow) [6], [7]. We studied algebras of operators that are
finite sums

D =
∑

g

PgΦg,
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where the Pg are Shubin type pseudodifferential operators and g 7→ Φg is a rep-
resentation of a Lie group G by quantized canonical transformations Φg. In the
cases at hand, we considered representations of the unitary group U(n) by opera-
tors in the complex metaplectic group (identifying Rn × Rn with Cn) and of Cn

by Heisenberg-Weyl operators, so that the above operator algebras are of the form
Ψ ⋊ G for a subgroup G of U(n) and Cn ⋊ U(n), respectively. The question to
what extent G could be enlarged leads to the question what the automorphisms
of Ψ are, and in this context the preservation of order is a natural requirement.

Ideas. Following roughly the same strategy as Duistermaat-Singer and Mathai-
Melrose, there are five main steps in the proof.

(A) It is a consequence of Eidelheit’s lemma, see [3, Lemma 3], that there
exists an invertible continuous operator A : S (Rn) → S (Rn) unique up
to a nonzero scalar multiple such that

i(P ) = A−1PA.(3)

The continuity of A follows without any continuity assumption on i.
(B) The isomorphism i induces a canonical transformation

C : T ∗Rn \ {0} → T ∗Rn \ {0},

i.e. a symplectomorphism that is homogeneous of degree 1 in (x, ξ) (note
that in contrast to the situation in [3] and [5] we only delete the point 0,
not the zero section). The principal symbols of P and i(P ) then satisfy

σ(i(P )) = σ(P ) ◦ C−1, P ∈ Ψ.(4)

To see this, we observe the following: Since i is order-preserving, it induces
an automorphism on Ψ0/Ψ−1 ∼= C∞(S2n−1) and thus also on the maximal
ideals, which are the kernels of the point evaluation maps. Hence i induces
a bijection

C : S2n−1 → S2n−1

that is smooth together with its inverse, since it maps smooth symbols to
smooth symbols. We obtain (4) for P ∈ Ψ0.

Next we recall that there exists an invertible operator Λ ∈ Ψ1 with
positive principal symbol λ. Its image under i then also is invertible of
order 1; a spectral argument shows that its principal symbol, say µ, is also
positive, see [5, p.19]. Moreover, every P ∈ Ψ1 can be written in the form
ΛQ for some Q ∈ Ψ0. Considering next Ψ1/Ψ0 and using the fact that

σ([P1, P2]) =
1

i
{σ(P1), σ(P2)}, P1, P2 ∈ Ψ,

one can show that C has an extension to a canonical transformation on
T ∗Rn \ {0} via µ = λ ◦ C−1.

As a consequence, one obtains (4) for all P ∈ Ψ1 and then, since the
principal symbol map is multiplicative, for all P .
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(C) There exists an elliptic Fourier integral operator F , which, near every point
(C(x0, ξ0), (x0, ξ0)) in the graph of C is given by a Schwartz kernel KF of
the form

KF (x, y) ≡
∫
eiϕ(x,y,θ)b(x, y, θ) dθ mod S (Rn × Rn).

The phase φ is positively 2-homogenous in (x, y, θ) and describes the graph
of C near (C(x0, ξ0), (x0, ξ0)), while b is an amplitude in the Shubin calcu-
lus. We call these Shubin type Fourier integral operators. The ellipticity
implies that there exists another Shubin type Fourier integral operator
F#, associated with the graph of C−1 such that

FF# − I and F#F − I
are operators with Schwartz kernels in S (Rn × Rn).

Under more global aspects, such operators have been considered by
Helffer [4], see also [2] for a more restricted class. Helffer showed a Egorov
type theorem for these operators. It implies that for P in Ψm

P − F#i(P )F ∈ Ψm−2.

Moreover, a Beals type argument shows that AF and F#A−1 are (a priori
not necessarily classical) Shubin type pseudodifferential operators.

(D) The above approximation of i can be improved. Following an iteration
scheme devised by Duistermaat and Singer, we find an elliptic Shubin
type pseudodifferential operator Q with parametrix Q# such that

P −Q#F#i(P )FQ ∈ Ψ−∞.(5)

(E) Combining (5) with (3) we see that

Q#F#A−1PAFQ− P ∈ Ψ−∞.

Let E = AFQ and Ẽ = Q#F#A−1. Then EẼ − I, ẼE − I ∈ Ψ−∞ and

PE − EP, ẼP − PẼ ∈ Ψ−∞, P ∈ Ψ∞.

We finally show that this implies that E = cI + R for some c 6= 0 and
R ∈ Ψ−∞. It is here that we make use of the assumption n ≥ 2.

Composing the identity AFQ = cI +R from the right with Q#F# and
noting that FQQ#F# = I + S for some S ∈ Ψ−∞, we see that

A = c(Q#F# +RQ#F#)−AS.
Since RQ#F# and AS are in Ψ−∞, A is an invertible Fourier integral
operator of Shubin type.
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Characteristic classes in derived geometry

Ezra Getzler

In the work of Bott, Shulman and Stasheff [2], characteristic classes are realized
as closed differential forms on the simplicial manifold

NkGL(N) = GL(N)k.

The complex of differential forms on a simplicial manifold is the total complex of
the double complex

Ωp,q(X•) = Ωp(Xq)

with de Rham and Čech differentials. This is a filtered complex, with the Hodge
filtration

F pΩ∗(X•) =
⊕

p′≥p

Ωp
′,∗−p′(X•).

In his thesis [4], Shulman gave an explicit formula for the universal differential form
on N•GL(n) associated to an invariant polynomial P on the Lie algebra gl(n) of
degree r. We start with the Maurer–Cartan one-form g−1dg ∈ Ω1(GL(N), gl(N))
with values in the Lie algebra. Let ∆k be the k-simplex

∆k = {(t0, . . . , tk) ∈ [0, 1]k | t0 + · · ·+ tk = 1}.
On ∆k ×GL(N)k+1, we consider the connection 1-form

θk = t0g
−1
0 dg0 + · · ·+ tkg

−1
k dgk ∈ Ω1(∆k ×GL(N)k+1, gl(N)),

with curvature

Fk = dθk +
1

2
[θk, θk].

Integration of the differential form

P
(
−Fk/2π

)
∈ Ω2r(∆k ×GL(N)k+1).

over the k-simplex gives a basic form of degree 2r − k on GL(N)k+1, inducing a
closed differential form on N•GL(N). Shulman’s main result is that this form lies
in F rΩ2r(GL(N)).

In our talk, we extended this story to derived geometry, at least in the spe-
cial case P (A) = Tr(Ak), using a cosimplicial generalization of Connes’s Chern
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character in negative cyclic homology. Consider a differential graded algebra A:
in the application, this will be the endomorphisms End(V ) of a finite-dimensional
graded vector space V . We assume that A is finite-dimensional in each degree, and
bounded below (with respect to the cohomological grading). Let C be a differen-
tial graded coalgebra: in the application, C will be the (unnormalized) simplicial
chains on a simplicial set finite in each dimension.

The graded morphisms from C to A form a differential graded algebra, and
we form the differential graded Lie algebra [C,A] by truncation to dimensions
≥ 1. The Maurer-Cartan locus MC(C,A) = V (dµ + 1

2 [µ, µ] | µ ∈ [C,A]1) of
[C,A] is an affine variety, the space of twisting cochains from C to A; this may
be identified with the space of homomorphisms of differential graded algebras
from the bar construction BC to A. The differential graded Lie algebra may be
thought of as a derived schemeMC(C,A) thickening MC(C,A) — we call it the
derived Maurer–Cartan locus. Its ring of functions O(MC(C,A)) is the Chevalley–
Eilenberg algebra of cochains on the differential graded Lie algebra [C,A].

Consider the cosimplicial category

[n] 7→ [[n]],

where [[n]] is the groupoid with objects {0, . . . , n}, and one morphism between each
two objects. Let ∆n be the nerve of [[n]]: its k-simplices are paths i0 . . . ik on the
n-simplex, where iℓ ∈ {0, . . . , n}. In the case n = 0, we have ∆0 = ∆0, while for
n = 1, the simplicial set ∆1 plays the same rôle in the study of ∞-categories that
∆1 plays in the study of ∞-groupoids (i.e. Kan complexes).

Applying the (unnormalized) chain functor, we obtain a cosimplicial differential
graded coalgebra:

C•,∗ = C−∗(∆•).

The derived stack of perfect complexes is the inductive limit over V of the simplicial
derived schemes

V 7→ MC(C•,End(V )).

Note that if V is a vector space concentrated in degree 0, then MC(C•,End(V ))
is the nerve of the general linear group GL(V ).

The (completed) de Rham complex ofMC(C•,End(V )) is the product

Ωk(MC(C•,End(V ))) =
∞∏

q=0

Ωk−q(MC(Cq,End(V ))).

Instead of constructing the Chern character as a differential form on MC(C•,
End(V )), we construct a cycle in the negative cyclic complex of the cosimplicial
algebra O(MC(C•,End(V ))):

CNk(O(MC(C•,End(V )))) =

∞∏

q=0

CNk+q(MC(Cq ,End(V ))).

Since End(V ) is finite-dimensional, there is a morphism of cosimplicial differential
graded algebras

BC• → O(MC(C•,End(V ))) ⊗ End(V ),
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familiar from the theory of derived representation schemes, and hence morphisms
of negative cyclic chain complexes

CN∗(BC
•)→ CN∗(O(MC(C•,End(V ))) ⊗ End(V ))

→ CN∗(O(MC(C•,End(V )))) ⊗ CN∗(End(V ))

→ CN∗(O(MC(C•,End(V )))).

The second morphism is the cyclic Alexander–Whitney map of Hood and Jones [3]
(for which an explicit formula may be found in Bauval [1]), and the third morphism
is induced by the supertrace on End(V ).

In our talk, we gave an explicit formula for the Chern character as a cycle
in CN0(BC

•). This is the image of a cycle in the negative cyclic homology of
the cosimplicial category [n] 7→ k[[n]], calculated using homological perturbation
theory. Details will appear in a forthcoming article.
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L-theory of C∗-algebras

Markus Land

(joint work with T. Nikolaus and M. Schlichting)

The purpose of this talk was to explain and expand on the following theorem.

Theorem 1. Let A be a real C∗-algebra. Then there are canonical isomorphisms

(1) L0(A) ∼= KO0(A),

(2) L1(A) ∼= KO1(A)/η = Coker(KO0(A)
η→ KO1(A)),

(3) L2(A) ∼= KO6(A)[η] = Ker(KO6(A)
η→ KO7(A)), and

(4) L3(A) ∼= KO7(A).

Since the L-groups are 4-periodic, i.e. for all n ∈ Z we have Ln+4(A) ∼= Ln(A),
this describes all algebraic L-groups.

Here, a real C∗-algebra is an involutive Banach algebra over R, satisfying

(1) the C∗-identity ||x∗x|| = ||x||2 for all x ∈ A, and the requirement that
(2) for all x ∈ A, the element 1+ x∗x is invertible (in the unitalisation of A if

A does not have a unit).

Examples are norm and ∗-closed subalgebras of B(H), the bounded operators on
a real Hilbert space H (in fact, all examples are of this kind), continuous C2-
equivariant C-valued functions on a compact Hausdorff space X equipped with
a C2-action C(X ;C)C2 , where C2 acts on C by complex conjugation (in fact,
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all commutative unital examples are of this kind) and group C∗-algebras C∗
(r)G

obtained by completing the real group ring RG in appropriate C∗-norms.
By KO∗(A) we denote the real topological K-groups of such a real C∗-algebra

A. These can be constructed from the topological category of finitely generated
projective A-modules and are 8-periodic by real Bott periodicity. More specifically,
KO∗(A) is a graded module over the graded commutative ring KO∗ = KO∗(R)
which is given by

KO∗ = Z[η, x, β±1
R ]/(η3, 2η, ηx, x2 = 4βR) with |η| = 1, |x| = 4, |βR| = 8.

I then spent some time indicating what the algebraic L-groups are. In fact, these
are defined more generally for any ring R equipped with an involution. To begin,
let us first consider ǫ = ±1 and make the following purely algebraic definition. We
defineW ǫ(R), the ǫ-symmetric Witt group of R, to be given by the abelian monoid
of isomorphism classes of ǫ-symmetric unimodular forms over Proj(R) modulo the
submonoid generated by metabolic forms. Here,

(1) An ǫ-symmetric form over Proj(R) consists of a pair (P, β) of a finitely gen-
erated projective R-module P and an element β of HomR⊗R(P ⊗ P,R)C2

where C2 acts on the Hom set by flipping the factors of P ⊗P and acting
via ǫ on R. Concretely, this means that β(x, y) = ǫ · β(y, x) and that

β(rx, sy) = rβ(x, y)s, where (−) denotes the involution in R.
(2) Such a form (P, β) is called unimodular if the canonically associated map

β♯ : P → P∨ = HomR(P,R), given by xmapstoβ(x,−), is an isomorphism.
(3) A unimodular form (P, β) is called metabolic if there exists a direct sum-

mand inclusion ι : L → P such that ι∗(β) = 0 and such that the induced
sequence

0 −→ L −→ P
β♯

∼= P∨ −→ L∨ −→ 0

is exact.
(4) We note that (P, β)⊕(P,−β) is metabolic: As L we can choose the diagonal

embedding of P into P ⊕ P . Consequently, W ǫ(R) is indeed an abelian
group.

Now, The L-groups appearing in the above theorem are Ranicki’s projective
symmetric L-groups, which turn out to be a direct generalisation of the above
defined algebraic Witt groups. Concretely, Ln(R) is given by the abelian monoid of
isomorphism classes of ǫ-symmetric n-dimensional unimodular forms over Perf(R)
modulo the submonoid generated by metabolic forms. Here,

(1) Perf(R) denotes the stable∞-category of perfectR-modules, (this is equiv-
alent to the localisation of finite chain complexes of finitely generated pro-
jective R-modules at quasi-isomorphisms). In this context,

(2) an n-dimensional ǫ-symmetric form is a pair (P, β) where P is a perfect
module and β is an element of Hn(HomR⊗R(P ⊗ P,R)hC2), where all
tensors are to be read as derived tensor products, and the superscript
hC2 refers to homotopy fixed points of the analogous C2-action on the
Hom-complex.
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(3) (P, β) is called unimodular if the canonical map β♯ : P → P∨[−n] =
HomR(P,R[−n]) is an equivalence. Here [−n] denotes the appropriate
shift functor in Perf(R), and finally

(4) (P, β) is called metabolic if there exists a map ι : L→ P in Perf(R) and a

null-homotopy 0
α≃ ι∗(β) such that the induced diagram

L P
β♯

≃ P∨[−n]

0 L∨[−n]
is a pullback diagram.

Fact 1.

(1) As described above, the L-groups are canonically 4-periodic. The isomor-
phism is implemented (on the level of the underlying object) by the 2-fold
shift functor in Perf(R). We have L∗(R) = Z[b±1] with |b| = 4.

(2) There is a canonical mapW ǫ(R)→ Lǫ−1(R). This map is an isomorphism
if 2 ∈ R×, in particular for (unital) C∗-algebras.

(3) If 2 ∈ R×, the odd L-groups can also be described purely algebraically in
terms of linking forms or formations over R.

(4) For any two rings R,R′ we have a canonical isomorphism Ln(R × R′)
∼=→

Ln(R)× Ln(R
′). In particular, when we define

Ln(A) = Ker(Ln(A
+)→ Ln(R))

for possibly non-unital C∗-algebras A, we have not changed the definition
of L-theory on unital algebras (up to isomorphism).

Remark. For our purposes, it is important to note that both the topological
K-groups and the algebraic L-groups are in fact given by the homotopy groups of
topological K-theory and algebraic L-theory spectra KO(A) and L(A), respectively.
We shall also use the connective topological K-theory ko(A) = τ≥0KO(A) obtained
from the (periodic) spectrum KO(A) by setting all negative homotopy groups to
be zero. Moreover, both KO and L are canonically lax symmetric monoidal when
viewed as functors C∗Alg → Sp, the symmetric monoidal structure essentially
being induced by tensor products of finitely generated projective modules and uni-
modular symmetric forms, respectively. The functor ko then inherits a canonical
symmetric monoidal structure from KO.

Some motivation. Let me briefly explain where some of the motivation for
studying L-theory of C∗-algebras comes from.

(1) It is known that both the Baum–Connes conjecture and the L-theoretic
Farrell–Jones conjecture imply the Novikov conjecture. Our original mo-
tivation was to study the precise relation between these conjectures. Since
the BCC and the FJC are determined by the assembly maps for spectrum
valued functors associated to KO(−) and L(−), this really amounts to
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studying the relation between the two functors KO,L: C∗Alg→ Sp. This
relation was essentially worked out for complex C∗-algebras and for real
C∗-algebras after inverting 2, i.e. for KO[ 12 ] and L[ 12 ] in [1], but the precise
integral relation for real C∗-algebras was left open in loc. cit.

(2) As a second curious point, the signature operator gives rise to a genus on
oriented bordism with values in KO[ 12 ] while the Sullivan–Ranicki orien-

tation provides a genus with values in L[ 12 ]. Understanding the precise
relationship between these two genera requires to fix a canonical compar-
ison between KO[ 12 ] and L[ 12 ], and in our new joint paper with Nikolaus
and Schlichting, we discuss this relation as well.

Being homotopy theorists, it may come as no surprise that our approach to
proving Theorem 1 above is by homotopy theoretic means. Indeed, we derive it
from the following spectral version of it:

Theorem 2. There is a unique lax symmetric monoidal transformation τ : ko→
L. The induced map

ko(A)⊗ko(R) L(R)→ L(A)

is an equivalence for every C∗-algebra A.

Deriving Theorem 1 from Theorem 2 still requires an observation, namely a
suitable presentation (in small degrees) of τ≥0L(R) as a ko(R)-module spectrum.

To prove Theorem 2, we wish to use KK-theoretic tools. For this, I briefly
recalled the relevant properties of KK-theory: Kasparov constructed an additive
category KK and a functor C∗Alg → KK. Let us then consider the following
situation:

C∗Alg KK

C
F

F̄

Fact 2.

(1) The canonical restriction functor Fun(KK, C) → Fun(C∗Alg, C) is fully
faithful. In other words, either a functor F factors through KK (and if so
in a unique way, denoted by F̄ ) or it doesn’t.

(2) Higson then showed that if C is additive, and the functor F above is K-
stable and split-exact, then F factors through KK and its induced functor
F̄ is again additive.

(3) It was shown early on that KK admits a canonical triangulated structure.
One would like to then have a variant of Higson’s result in case C is tri-
angulated. However, a functor being triangulated is not a property of a
functor so such an analog is more subtle to obtain. ∞-categories help in
this respect. Based on various earlier results in KK-theory, Nikolaus and
I showed in [1] that the ∞-categorical localisation KK∞ = C∗Alg[KK−1

eq ]
of C∗Alg at the KK-equivalences is a stable ∞-category. Moreover, we
showed that if C as above is stable, and F is K-stable a semi-exact, then
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F̄ is an exact functor of stable ∞-categories. Here, semi-exact means that
F sends short exact sequences with cpc split to fibre sequences in C.

(4) Using this, we showed that KO(−) ≃ mapKK∞
(R,−). Thus, studying

transformations out of K-theory is controlled by the Yoneda lemma. One
result we proved using such KK-theoretic tools is that there is a canonical
equivalence KO[ 12 ] ≃ L[ 12 ], and we constructed a map as in Theorem 2 for
complex C∗-algebras.

To use such KK-theoretic tools we then need to know that L-theory factors
through KK. As indicated, our previous work [1] treated only the case of complex
C∗-algebras, or needed to invert 2. Whether or not L-theory is (integrally) KK-
invariant was left open in loc. cit. The following theorem settles this.

Theorem 3. The functor L: C∗Alg → Sp factors through an additive functor
KK → Sp. Moreover, there is a canonical equivalence L(−) → ko(−)tC2 after
2-adic completion.

Indeed, the functor L: KK→ Sp is not exact and the second part of Theorem
3 gives a formula for the failure of exactness. This formula is also used in our
proof of Theorem 2, which in addition uses topological Grothendieck–Witt the-
ory and a fibre sequence relating (connective) topological K-theory, topological
Grothendieck–Witt theory, and L-theory.
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Riemann-Roch for SpecZ

Alain Connes

(joint work with C. Consani)

The main result [5] is the arithmetic Riemann-Roch formula (1) for SpecZ, the
one point compactification of SpecZ. We endow SpecZ with a structure sheaf
constructed as a subsheaf of the constant sheaf Q using the following generalization
of abelian groups. It is obtained by viewing an abelian group A as a covariant
functor HA from the category of finite pointed sets to the category of pointed sets
which assigns to X the pointed set of A-valued divisors on X which are 0 on the
base point. The functoriality is obtained by taking the sum over the preimage of
a point.

Let D be an Arakelov divisor on SpecZ. Then

(1) dimS[±1]H
0(D)− dimS[±1]H

1(D) =

⌈
degD + log 2

log 3

⌉′
− 1L.

On the (topological) right-hand side of (1), ⌈x⌉′ denotes the odd function on R

that agrees with the ceiling function on positive reals. The set L ⊂ R is the union,
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for k ≥ 0, of the intervals (log 3k

2 , log
3k+1

2 ): L has finite Lebesgue measure. The
symbol 1L denotes the (degree) indicator function: this is zero unless degD ∈ L in
which case it is 1. The numbers dimS[±1]H

i(D) on the (cohomological) left-hand
side are integers providing the dimension of the cohomology of D, as a module
over the spherical group ring S[±1]. The notion of dimension and the definition
of the cohomologies are based on the universal arithmetic over S[±1] which we
developed using Segal’s Gamma rings in [1, 2, 3, 4]. This new perspective allows
us to parallel Weil’s adelic proof of the Riemann-Roch formula for function fields
including the use of Pontryagin duality. We comment on the comparison with
the asymptotic Riemann-Roch formula of S. Lang [6] (foreseen by A. Weil in [7])
relating log#H0(D) and degD + log 2, when degD → ∞. The first novelty is
that unlike log#H0(D), dimS[±1]H

i(D) are non-negative integers. Secondly, the

cohomological side of (1) implements explicitly (the dimension of) H1(D), thus
it goes well beyond the arithmetic Riemann-Roch formula for Q, where H1(D)
is either undefined or set to equate H0(K − D), for an expected Serre duality.
All the more: (1) is an exact formula and not an asymptotic statement. All
these advancements derive from the new understanding of SpecZ as a curve over
the absolute ring S[±1]. The third relevant fact is that on the topological side
of the Riemann-Roch formula the traditional sum degD + log 2 is now divided
by log 3 ∼ 1.09861, and there also appears an exceptional set L ⊂ R of finite
Lebesgue measure |L| = log

∏
(1 + 3−n) ∼ 1.14099. The Euler characteristic of D

is a non-decreasing function of degD, while the topological side in (1) drops by 1
if degD ∈ L. Except for the set L, this topological side is invariant under Serre’s
duality which replaces D with K −D (degK = −2 log 2), since the function ⌈x⌉′
is odd.
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On the K-theory of Z/pn

Achim Krause

(joint work with Ben Antieau, Thomas Nikolaus)

In recent work, we develop new methods to study the K-theory of rings such as
Z/pn. Previously, these have been computed only up to degree 2p − 2, [3]. For
the similar ring Fp[x]/x

n, a complete computation is known [2]. We can make the
following comparison:

Fp[x]/x
n Z/pn

K0
∼= Z same

i > 0: Ki finite torsion same
tors. prime: K2i−1[1/p] ∼= Z/(pi − 1) same

to p K2i−2[1/p] ∼= 0 same
p-power: K2i−2(Fp[x]/x

n;Zp) = 0 K2i−2(Z/p
n;Zp) ∼= 0 for i < p,

tors. but K2p−2(Z/p
n;Zp) = Z/p

|K2i−1(Fp[x]/x
n;Zp)| = pi(n−1) |K2i−1(Z/p

n;Zp)|
|K2i−2(Z/pn;Zp)|

= pi(n−1)

The mysterious part is thus entirely given by the p-power torsion, equivalently
the p-complete K-theory of Z/pn. Our first result is an explicit algorithm to
compute these groups:

Theorem 1. For each i and n, there is an explicit 3-term cochain complex of the
form

Zin−1
p → Z2(in−1)

p → Zin−1
p

with H0 ∼= 0, H1 ∼= K2i−1(Z/p
n;Zp), H

2 ∼= K2i−2(Z/p
n;Zp) (for i > 1).

The explicit description of the maps in this complex is in terms of prismatic
cohomology, but can be made explicit enough to implement in a computer algebra
system. We have done so, and obtain explicit tables (currently for p = 2, i ≤ 16
and n ≤ 5, to be extended). One striking pattern is that, while the pattern of
vanishing of even K-groups observed for Fp[x]/x

n only holds for Z/pn in degrees
< 2p− 2, it does actually restart in large degrees!

Theorem 2 (Even Vanishing Theorem). For i large enough (i ≥ p2

(p−1)2 (p
n− 1)),

we have:

K2i−2(Z/p
n;Zp) = 0

|K2i−1(Z/p
n;Zp)| = pi(n−1).

Remark 3. More generally, our methods apply to rings of the form OK/mn, where
K is a p-adic number field, i.e. a finite extension of Qp. This generalizes both
Z/pn and Fp[x]/x

n.

Our approach is based on trace methods, which we quickly review. For any ring
R, we have its Hochschild homology HH(R), which comes with extra structure,
in the form of a degree +1 differential, the Connes operator. In terms of this
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structure, one defines refinements of HH, negative cyclic and periodic homology
HC−(R) and HP(R), with a canonical map HC−(R)→ HP(R).

We can think of Hochschild homology as being formed relative to Z. In higher
algebra, there is a deeper base: The initial commutative ring spectrum is given by
the sphere spectrum S. Viewing our ordinary ring R as a ring spectrum, one can
form Hochschild homology relative S, which is called topological Hochschild ho-
mology THH(R) = HH(R/S). The analogue of the Connes operator is given by an
action of S1 on THH(R), and TC−(R) and TP(R) can be defined in terms of that
action. One genuinely new piece of structure is that there is a cyclotomic Frobenius
map ϕ : TC−(R;Zp)→ TP(R;Zp) in addition to the canonical map. The equalizer
of these two maps is denoted TC(R;Zp) and called (p-typical) topological cyclic
homology1. There is a trace map K(R)→ THH(R) roughly taking every projec-
tive module to the trace of its identity, it lifts to a map K(R;Zp) → TC(R;Zp),
the cyclotomic trace. The situation is summarized in the following diagram:

K(R;Zp) TC(R;Zp)

TC−(R;Zp) TP(R;Zp)

THH(R;Zp)

ϕ

can

Here TC(R;Zp) is the fiber of the difference of the two middle horizontal maps.
In good cases, the map K∗(R;Zp)→ TC∗(R;Zp) is an isomorphism in nonneg-

ative degrees. A special case of [1] implies that this is the case for R = Z/pn.
Thus, it suffices to understand TC(Z/pn;Zp). The aforementioned computations
of K∗(Fp[x]/x

n) in all degrees, and K∗(Z/p
n) in degrees ≤ 2p− 2, also follow this

approach, but use topological methods to control THH, TC− and TP. We will
employ a more algebraic perspective.

In ordinary Hochschild homology, HH(R) is closely related to the algebraic dif-
ferential forms Ω∗

R/Z. HP(R) incorporates the Connes operator, which corresponds

to the de Rham differential, and is closely related to HdR(R). Finally, HC−(R)
interpolates between the two: It is closely related to HdR(R) with its Hodge filtra-
tion, which is the filtration obtained by truncating the de Rham complex (whose
associated graded terms recover Ω∗).

Prismatic cohomology, recently discovered and developed in [4], [5], [6] plays
an analogous role for TP and TC−. Specifically, they construct a filtration on
TP(R;Zp) and TC−(R;Zp), whose i-th associated graded (shifted by −2i) is given
by ∆̂R{i} and N≥i∆̂R{i}. Here ∆̂R is (Nygaard-completed) prismatic cohomology
of R, {i} denotes the Breuil-Kisin twist, and N≥i the i-th stage of the Nygaard
filtration. Without going more into detail here what these things are precisely,
crucially they are defined in purely algebraic terms.

1Unfortunately, the name is potentially confusing: This is not the direct generalisation of
what is called cyclic homology in the ordinary setting!
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From the fiber sequence

TC(R;Zp) TC−(R;Zp) TP(R;Zp)
can−ϕ

one obtains a filtration on TC(R;Zp), whose i-th associated graded (shifted by
−2i) is the i-th syntomic complex Zp(i)(R), defined as the fiber of

can− ϕ : N≥i∆̂R{i} → ∆̂R{i}.
It turns out both terms here are concentrated in degree −1 in the case R = Z/pn.
So the fiber is concentrated in degrees −1, −2, so they cannot interact in the
spectral sequence recovering TC∗. We getK2i−1(Z/p

n;Zp) ∼= TC2i−1(Z/p
n;Zp) ∼=

H1(Zp(i)(R)), and analogously for K2i−2 and H2. This is the source for Theorem
1, alternatively one can phrase Theorem 1 as giving a equivalence between Zp(i)(R)
and the complex given there.

This description arises from the following steps:

(1) We describe a descent mechanism exhibiting ∆̂R as cosimplicial limit of
relative variants. This is based on ideas in [7], [8], but depends crucially on
extended functoriality of relative prismatic cohomology, which we found.

(2) Making the formalism of prismatic envelopes of [5] explicit, we obtain
generators-and-relations descriptions for all terms involved in the cosim-
plicial diagram of step (1). This shows that the cochain complex obtained
from step (1) has cohomological dimension 1, in total, this allows us to

describe each of ∆̂R{i}, N≥i∆̂R{i} as 2-term complex, and so the fiber
Zp(i)(R) as total complex of a square.

(3) A filtration argument allows us to replace the infinitely presented terms
in the square by terms of finite type, explicitly giving

Zp(i)(R) ∼= Tot




Zin−1
p Zin−1

p

Zin−1
p Zin−1

p




The proof of Theorem 2 is based on further investigating when the two maps
into the lower right corner are jointly surjective.

References

[1] Dundas, Bjørn and Thomas G. Goodwillie and Randy McCarthy. “The local structure of
algebraic K-theory.” Springer vol. 18 (2012).

[2] Hesselholt, Lars, and Ib Madsen. “Cyclic polytopes and the K-theory of truncated polyno-
mial algebras.” Inventiones mathematicae 130.1 (1997): 73-98.

[3] Angeltveit, Vigleik. “On the algebraic K-theory of Witt vectors of finite length.” arXiv
preprint arXiv:1101.1866 (2011).

[4] Bhatt, Bhargav, Matthew Morrow, and Peter Scholze. “Topological Hochschild homology

and integral p-adic Hodge theory.” Publications mathématiques de l’IHÉS 129.1 (2019):
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Prolate spheroidal operator and Riemann zeta function

Henri Moscovici

(joint work with Alain Connes)

1.1. The differential operator called “prolate spheroidal” (because it first ap-
peared from separation of variables in the Laplacian for the prolate spheroid) is
given by the expression

(Wλξ)(x) = −∂x(λ2 − x2)∂xξ(x) + (2πλ)2x2ξ(x), ξ ∈ C∞(R), λ > 0, ∂x =
d

dx
.

It has the remarkable property of simultaneously commuting with the projection
Pλ(ξ) = ξ | [−λ, λ] and with the Fourier transform

F(ξ)(x) =

∫

R

e−2πixyξ(y)dy, ξ ∈ L2(R);

it therefore commutes with the projection P̂λ = F−1PλF too, hence also with the
integral operator

(
P̂λPλξ

)
(x) =

1

π

∫ λ

−λ

sin
(
2πλ(x − y)

)

x− y ξ(y)dy.

In early 1960s the latter operator sat at the heart of the bandwidth concentration
problem in signal processing, and its commutation with Wλ amounted to what
David Slepian later [6] called the “lucky accident” which allowed him and his
collaborators H. Pollak and H. Landau at Bell Labs to solve that problem “com-
pletely, easily and quickly” in 1961. Indeed, as solutions of a second-order ODE,
the regular eigenfunctions of the restriction of Wλ | [−λ, λ] were known, and they

allowed computing the eigenvalues of P̂λPλ. The same PSWFs (prolate spheroidal
wave functions) played a key role in relation with the Riemann zeta function, in
A. Connes semi-local trace formula [1, 2] and in his joint papers with C. Consani
[3, 4].

Although a natural self-adjoint extension Wsa of Wλ (viewed as a differential
operator on the entire real line with core the Schwartz space S(R)) was introduced
by Connes [1] in 1998, its full spectrum remained unexplored until recently, when
its investigation carried out in [5] revealed another surprising feature of the prolate
spheroidal operator: besides the positive eigenvalues (corresponding to the PSWFs
and their Fourier transforms), Wsa admits a negative spectrum, whose ultraviolet
behavior closely matches that of the squares of the zeros of the Riemann zeta
function.
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1.2. The precise statements of our main results are as follows.

Theorem 1 (Self-adjoint extension).
(i) The closure Wmin of Wλ : S(R)→ S(R) has deficiency indices (4; 4).

(ii) Wmin has a unique self-adjoint extension Wsa commuting with Pλ and P̂λ.
(iii) DomWsa consists of ξ ∈ DomWmax satisfying the boundary condition:

lim
x→±λ

(λ2 − x2)∂xξ(x) = 0,

lim
x→±∞

(
x sin(2πλx)∂xξ

+ −
(
2πλx cos(2πλx)− sin(2πλx)

)
ξ+
)
= 0,

lim
x→±∞

(
x cos(2πλx)∂xξ

− +
(
2πλx sin(2πλx) + cos(2πλx)

)
ξ−
)
= 0,

where ξ = ξ+ + ξ−, ξ± ∈ Dom(W±
max), with ± signifying restriction to even, resp.

odd functions.
(iv) SpecWsa is discrete and unbounded on both sides; the positive eigenval-

ues of Wsa are double (with possibly finitely many exceptions), and the negative
eigenvalues are simple.

Denote by Sλ,λ the Sonin space, which consists of the functions ξ ∈ L2(R) satis-

fying Pλ(ξ) = 0 = P̂λ(ξ).

Theorem 2 (Sonin space). The eigenfunctions corresponding to the negative
eigenvalues of Wsa belong to the Sonin space Sλ,λ; they generate it up to at most
finite codimension.

LetW ′
sa = (I−Pλ)Wsa on H = (I−Pλ)L2(R) decomposed asW ′

sa =W ′
sa

+⊕W ′
sa

−

with respect to the orthogonal decomposition H = H+ ⊕H− into even, resp. odd
functions. By restriction of functions, H± ∼= L2(λ,∞).

Denoting ∇ := p1/4∂xp
1/4, consider the Riccati equation

p1/2(x)∂w(x) + w(x)2 = −q(x) +
(
p′′(x)

4
− p′(x)2

16p(x)

)
, x ∈ (λ,∞);

Theorem 3 (Darboux factorization). The solutions of the Riccati equation
are of the form wz = ∇u

u with u = u1 + zu2, where u1, u2 linearly independent
real solutions of (Wλu)(x) = 0, x ∈ (λ,∞), z ∈ C \ R, and the map z 7→ wz is a
homeomorphism of C \ R onto the space of solutions. Furthermore, Wλ|(λ,∞) =
(∇+ w)(∇− w).
Theorem 4 (Dirac-type operators). With w denoting a solution of the Riccati
equation, let D/w be the operator defined by

D/w =

(
0 ∇+ w

∇− w 0

)
,

with domain

DomD/w :=

{(
ξ

ξ̃

)
; ξ ∈ DomW ′

sa
+
, (∇+ w)(ξ̃) ∈ DomW ′

sa
+
}
.
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Then

(i) D/
2
w =

(
W ′

sa
+

0

0 W ′
sa

+
+ 2∇w

)
with the diagonal terms isospectral opera-

tors; W ′
sa

+
is self-adjoint and W ′

sa
+
+ 2∇w is quasi-Hermitian.

(ii) SpecD/w = {±√µ | µ ∈ SpecW ′
sa

+}, independently of w.

Recall Riemann’s estimate for the counting function of the zeros:

N(E) ∼ E

2π

(
log

(
E

2π

)
− 1

)
+O(logE), as E →∞.

Theorem 5 (Ultraviolet behavior of the Dirac spectrum). Spec2D/ is dis-
crete, simple and contained in R ∪ iR. The imaginary eigenvalues are symmetric
under complex conjugation and the function ND/ (E), counting those of positive
imaginary part less than E, has the asymptotic behavior

ND/ (E) ∼ E

2π

(
log

(
E

2π

)
− 1

)
− logE

2π
+O(1), as E →∞.

1.3. Final remark. The Sonin space S1,1 was shown in [3] to be the root of Weil’s
positivity at the Archimedean place, for test functions supported in the interval

[2−1/2, 21/2]. The operator Wsa commutes with Pλ and P̂λ, and the above result
suggests that its restriction to S1,1 essentially captures the contribution of the
Archimedean place to the Riemann zeta spectrum.
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Index theory and cyclic (co)homology with a view towards secondary
index theory

Thomas Schick

(joint work with Paolo Piazza, Vito Zenobi)

The Chern character is a well known transformation from (topological) K-theory
of (Fréchet) algebras to cyclic homology. There are explicit formulas for the Chern
character of the algebraic index of an elliptic differential operator.

https://arxiv.org/pdf/2106.01715.pdf
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Given a smooth manifold M with fundamental group Γ, Higson and Roe [3]
introduced a short exact sequence of C∗-algebras whose associated long exact
sequence in K-theory. After natural identifications, this K-theory sequence is of

the form · · · → SΓ
∗ (M̃)→ K∗(M)→ K∗(C

∗
redΓ)→ · · · and combines information

about topology (in terms of the K-homology ofM), analytic index (living in the K-
theory of the group C∗-algebra of Γ), and secondary structural information about
geometric reasons for the vanishing of indices. Here, we refer in particular to
positive scalar curvature metrics which imply that the index of the Dirac operator
is zero, or to homotopy equivalence which imply that the difference of signature
indices is zero.

Zenobi [5] gives a new definition of the Higson-Roe sequence as the K-theory
sequence of (relative) algebras of pseudodifferential operators. These algebras are
much smaller than the ones of Higson and Roe and therefore much more amenable
to define invariants out of the K-theory groups.

In the talk, we report on some of the work achieved in [4]. There, we de-
velop a corresponding theory of relative cyclic homology (in the form of de Rham
homology) and obtain in the end a commutative diagram of Chern character maps

· · · // K∗−1(C
∗
redΓ)

s //

ChΓ

��

SΓ
∗ (M̃)

c //

Chdel
Γ

��

KΓ
∗ (M̃) //

Che
Γ

��

· · ·

· · · j∗
// H∗−1(AΓ) ι // Hdel

∗−1(AΓ)
δ // He

∗(AΓ)
j∗

// · · ·

Here AΓ is any dense and holomorphically closed Fréchet subalgebra of C∗Γ,
The Chern character map is obtained via intermediate cyclic/de Rham homology
groups which are relative, and uses the full force of the developed theory of relative
non-commutative de Rham homology.

If Γ is hyperbolic we derive explicit formulas for the pairing of ChdelΓ of a
secondary index and cyclic group cohomology (supported away from the identity
element). Using this, we deduce lower bounds on the size of the moduli space of
Riemannian metrics of positive scalar curvature.

Related work has been carried out independently by Deeley and Goffeng [2] and
Chen, Wang, Xie and Yu [1].
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Topological cyclic homology

Lars Hesselholt

The organizers asked me to give an introduction to topological cyclic homology
and to recent developments, and this talk was my attempt to do so.

Every cohomology theory on an∞-category Geom of “geometric” objects should
arise in three steps as follows. Firstly, we should define a functor

Catex∞
E

// C
from the∞-category of small stable∞-categories and exact functors to some stable
∞-category, and show that this functor is a localizing invariant in the following
sense. The ∞-category Catex∞ is not stable, but it is pointed by the ∞-category 0.
Now, the statement that E is a localizing invariant1 means that:

(1) E(0) ≃ 0;
(2) E takes bicartesian squares in Catex∞ to (bi)cartesian squares in C; and
(3) E takes exact functors that become equivalences after idempotent completion

to equivalences.

We should also promote E to a lax symmetric monoidal functor, so that it induces
a functor from the ∞-category of small stably symmetric monoidal ∞-categories
to that of commutative algebras in C,

CAlg(Catex∞)
E

// CAlg(C).
Secondly, we should define a functor

Geom
V⊗

// CAlg(Catex∞)

that to a geometric object X assigns a small stably symmetric monoidal ∞-
category V(X)⊗ of “modules” of some kind.2 For instance, to a scheme X , we
assign the small stably symmetric monoidal ∞-category Perf(X)⊗ of complexes
of perfect OX -modules. Thirdly, we should define a “movitic” filtration

· · · // Filn+1E(X) // FilnE(X) // Filn−1E(X) // · · ·
on the composite functor E(X) ≃ E(V(X)). The nth graded piece grnE(X) is
now the desired cohomology of X of weight n.

The final third step has so far been more an art than a science. However, a recent
paper by Hahn–Raksit–Wilson [6] defines the “even” filtration on CAlg(Sp) and
shows that it recovers the “motivic” filtration on p-adic topological cyclic homology
(in all its variants) defined by Bhatt–Morrow–Scholze [3], as well as the refinements
thereof on non-completed topological cyclic homology defined independently by

1There is an initial localizing invariant, whose target, by definition, is the stable ∞-category
NMot of noncommutative motives, envisioned by Kontsevich. This initial localizing invariant is
a “noncommutative algebraic cycles functor” and it is basically impossible to understand.

2 In analytic situations, the requirement that V(X)⊗ be small is too restrictive. Efimov’s
lecture at the conference concerned this issue.
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Morin [8] and Bhatt–Lurie [2]. In the case, where E = TP is periodic topological
cyclic homology, the resulting cohomology theory is prismatic cohomology.

Shifting gears, I discussed anima or animated sets and the fact that these are
discrete objects, as opposed to anything resembling a topological space. This is
much clarified by the condensed mathematics of Clausen–Scholze [4], which unite
“analytic” or “continuous” phenomena and “animated” or “derived” phenomena
in the ∞-category of condensed anima. So anima are discrete, but have inner
symmetries that make them animated. Among anima, sets are the static anima,
whereas among condensed sets, sets are the discrete condensed sets.

Cond(An) ≃ An(Cond)

Cond An

Set

static

||②②
②②
②②
②


-

<<②②②②②②②

discrete

""❊
❊❊

❊❊
❊❊

Q1

bb❊❊❊❊❊❊❊

""❊
❊❊

❊❊
❊❊

Q1
discrete

bb❊❊❊❊❊❊❊ ||②②
②②
②②
②


-
static

<<②②②②②②②

The inclusions of static objects are right adjoints and preserve limits, but not
colimits, whereas the inclusions of discrete objects are left adjoints and preserve
colimits, but not limits.

The fact that all anima are discrete informs the definition of the six-functor
formalism on An that encodes algebraic topology. In his thesis, Mann [7] has given
a precise definition of a what a six-functor formalism is, along with an omnibus
theorem for producing this structure starting from classes of “local isomorphisms”
and “proper” maps. In the (trivial) case of anima, we declare *every* map to be
a local isomorphism, and we say that a map is proper if its fibers are compact
projective anima a.k.a. finite sets. So to a map of anima f : T → S, we have four
functors among ∞-categories of presheaves of spectra

SpS SpT

f!

|| f !≃ f∗

//

f∗
bb

with f ! ≃ f∗ the restriction along f and with f! and f∗ the left and right Kan
extensions along f . The∞-categories SpS and SpT are generated under small col-
imits by compact objects. The “homology” functor f! preserves compact objects,
but the “cohomology” functor f∗ does not. Nikolaus–Scholze [10] show that there
is an essentially unique map f∗ → fT∗ to a “Tate cohomology” functor that takes
compact objects to zero. Its fiber preserves colimits, and therefore, necessarily is
of form f!(Df ⊗ −) for some “dualizing” object Df .

3

Cyclic homology is naturally formulated in the stable ∞-category of spectra
with U(1)-action. The Lie group U(1) is not relevant, only its underlying group

3The dualizing object Df is not f !(1) and does not appear to have an interpretation within

the six-functor formalism.
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in anima, or equivalently, the pointed connected anima s : 1→ BU(1) such that

U(1)
s′ //

s′

��

1

s

��

1
s // BU(1)

is a cartesian diagram of anima. Since Connes’ category Λ is a model for BU(1),
we can use the ∞-category of (co)cyclic spectra as a model for the ∞-category of
spectra with U(1)-action. Now, in the case of the unique map of anima

BU(1)
f

// 1,

we have Df ≃ Su(1) ≃ S1. Hence, for X ∈ SpBU(1) a spectrum with U(1)-action,
the defining fiber sequence for Tate cohomology takes the form

Σf!(X) // f∗(X) // fT∗ (X).

For example, if X ≃ HH(A/R), then this recovers Connes’ sequence

ΣHC(A/R)
B

// HC−(A/R)
I

// HP(A/R)

with “boundary” map S.
To recall the Nikolaus–Scholze [10] definition of a cyclotomic spectrum, let p be

a prime number. As U(1) is abelian, the map p : U(1) → U(1) that to z assigns
zp is a group homomorphism, or equivalent, is induced by a map

BU(1)
p

// BU(1)

of pointed anima. Now, a cyclotomic spectrum is pair (X, (ϕp)) of a spectrum
with U(1)-action X and a family, indexed by the set of prime numbers, of maps of
spectra with U(1)-action ϕp : X → pT∗ (X) from X to its Tate cohomology along
the map p : BU(1)→ BU(1). From the cartesian square of anima

BCp
i //

g

��

BU(1)

p

��

1
s // BU(1)

and base-change, we obtain the equivalence

s∗pT∗ (X) ≃ gT∗ i∗(X)

between the underlying spectrum of the spectrum with U(1)-action pT∗ (X) and the
Tate cohomology of the spectrum with Cp-action i

∗(X) underlying the spectrum
with U(1)-action X . Nikolaus–Scholze organize cyclotomic spectra into a stably
symmetric monoidal ∞-category CycSp, equipped with a conservative symmetric

monoidal “forgetful” functor to SpBU(1).
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Topological Hochschild homology is a localizing invariant

Catex∞
THH

// CycSp,

and topological cyclic homology is defined in [10] as the localizing invariant

Catex∞
TC

// Sp

obtained by composing THH with the functor CycSp → Sp corepresented by the
tensor unit. The construction of THH is given in [9], but the composite functor

CAlg(Sp)
Perf

// CAlg(Catex∞)
THH

// CAlg(CycSp)

may be described more easily. We have the (multiplicative) adjunction

CAlg(Sp)
s! //

CAlg(Sp)BU(1),
s∗

oo

where the left Kan extension s! takes a commutative algebra in spectra R to
the free commutative algebra in spectra with U(1)-action s!(R) that it generates.
Base-change identifies the underlying commutative algebra in spectra with

s∗s!(R) ≃ s′!s′∗(R) ≃ R⊗U(1),

the colimit in commutative algebras in spectra of the constant diagram with value
R indexed by the anima U(1). Now, by Nikolaus–Scholze [10], we have

THH(R) ≃ (s!(R), (ϕp))

where, to define the Frobenius maps ϕp, we consider the diagram of pointed anima

1

t

  ❆
❆❆

❆❆
❆❆

❆

id

��

s

##

BCp
i //

g

��

BU(1)

p

��

1
s // BU(1).

The Nikolaus–Scholze “Tate diagonal” is a map of commutative algebras in spectra

R
δ // gT∗ t!(R)

and this map is the primordial Frobenius.4 It gives a map

R
δ // gT∗ t!(R)

η
// gT∗ i

∗i!t!(R) ≃ gT∗ i∗s!(R) ≃ s∗pT∗ s!(R)

4By abuse notation, I also write gT∗ for the functor between ∞-categories of commutative
algebras induced by the lax symmetric monoidal functor gT∗ .



2024 Oberwolfach Report 35/2022

of commutative algebras in spectra, whose adjunct

s!(R)
ϕp

// pT∗ s!(R)

is the desired map of commutative algebras in spectra with U(1)-action.
Finally, I discussed the motivic filtrations of the negative and periodic versions

of topological cyclic homology, which both are given by the Hahn–Raksit–Wilson
even filtration [6]. The canonical map of commutative algebras in spectra

TC−(R) ≃ f∗(THH(R)) // TP(R) ≃ fT∗ (THH(R))

induces a map of commutative algebras in filtered spectra

Fil⋆ev TC
−(R) // Fil⋆ev TP(R),

which, in turn, induces a map of commutative algebras in graded spectra

gr⋆ev TC
−(R) // gr⋆ev TP(R).

Replacing TC−(R) and TP(R) by HC−(R) and HP(R), Antieau [1] has identified
the cofiber with the Hodge truncated derived de Rham cohomology of R/Z,

grnev HC
−(R) // grnev HP(R)

// LΩ<nR/Z.

By analogy, Morin [8] defines the Hodge truncated derived de Rham cohomology
of R/S to be the cofiber

grnev TC
−(R) // grnev TP(R)

// LΩ<nR/S,

and finds a remarkable relation to earlier work with Flach [5] on special values of
the zeta function ζ(X, s) defined by Serre [11] of a regular scheme X , proper over
Spec(Z). This earlier work expresses5 the special value ζ∗(X,n) in terms of:

(1) The determinant det(RΓW,c(X,Z(n))) of Weil-étale cohomology.
(2) The determinant det(RΓ(X,LΩ<nX/Z)) of derived DR cohomology of X/Z.
(3) An archimedean correction factor, concocted from the Hodge cohomology

of the generic fiber.

The remarkable discovery in [8] is that (2) and (3) precisely combine to give

det(RΓ(X,LΩ<nX/S).

This is a quantitative statement to the effect that the sphere spectrum “knows”
the archimedean place!

5Both Serre’s definition of the zeta function and the Flach–Morin formula for its special
values depend on conjectures that are very far from being proved.
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The Novikov conjecture, operator K theory,
and diffeomorphism groups

Sherry Gong

(joint work with Jianchao Wu, Zhizhang Xie, Guoliang Yu)

The Novikov conjecture is a central conjecture in manifold topology that states
that the higher signatures of closed oriented smooth manifolds are invariants under
orientation-preserving homotopy equivalences. In the case of aspherical manifolds,
the Novikov conjecture can be seen as an infinitesimal version of the Borel conjec-
ture, which states that if two closed orientable aspherical manifolds are homotopy
equivalent, then they are homeomorphic.

One powerful approach to the Novikov conjecture uses noncommutative geom-
etry and the C∗ algebras of groups. The key to this approach is that by a theorem
of Kasparov, the Novikov conjecture follows from the rational strong Novikov con-
jecture, which states that the rational Baum-Connes assembly map is injective.

This approach has been used to show the Novikov conjecture for many classes of
groups, including hyperbolic groups [1], groups coarsely embeddable into Hilbert
spaces [5, 2, 4], and groups acting properly and isometrically on simply connected
and non-positively curved manifolds [3].

Our results generalize the latter to groups acting on metric spaces that are
not finite dimensional manifolds, but have a property that is a generalization of
negative curvature.

In particular, let us define a Hilbert-Hadamard space to be a complete CAT(0)
space with tangent cones isometrically embeddable into Hilbert spaces. A sep-
arable Hilbert-Hadamard space X is called admissible if there is a sequence of
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convex subsets isometric to finite-dimensional geodesically complete Riemannian
manifolds, whose union is dense in X .

Then we show the following:

Theorem 1 (Jianchao Wu, Guoliang Yu, G.). If a countable group G acts prop-
erly on an admissible Hilbert Hadamard space, then the rational strong Novikov
conjecture holds for G.

The main application of this result is to subgroups of the group of volume
preserving diffeomorphisms of a compact manifold: Let N be a manifold with a
volume form ω. Let Diff(N,ω) denote the volume preserving diffeomorphisms of
N . Consider the function λ+ : Diff(N,ω)→ R≥0 given by

λ+(φ) =

(∫
log (‖Dφ‖)2 dω

)1/2

Let λ be the length function on Diff(N,ω) given by

λ(φ) = max{λ+(φ), λ+(φ−1)}.
Then we say that a group Γ ⊂ Diff(N,ω) is geometrically discrete if λ(γi) → ∞
whenever γi →∞, that is for any R > 0, λ(γ) > R except for a finite subset of Γ.

The main application of the above theorem is then the following:

Corollary 2. The rational strong Novikov conjecture holds for any geometrically
discrete countable subgroup of Diff(N,ω).

We extend this to subgroups of the group of (not necessarily volume preserving)
diffeomorphisms. Given a probability measure µ and a metric g, we have a length
function,

λµ,g : Diff(N)→ [0,∞) ,

ϕ 7→
(∫

N

((
log ‖Dxϕ‖g

)2
+
(
log
∥∥Dxϕ

−1
∥∥
g

)2)
dµ

) 1
2

.

We say that a group Γ ⊂ Diff(N) is µ-discrete if λµ,g(γi) → ∞ whenever
γi →∞.

In order to generalize the above result to µ-discrete subgroups of Diff(N), we
generalize the above theorem by considering a more general object than an ad-
missible Hilbert Hadamard space, called an admissible continuous field of Hilbert
Hadamard spaces, and show the following theorem.

Theorem 3 (Jianchao Wu, Zhizhang Xie, Guoliang Yu, G.). If Γ is a countable
group that acts isometrically and metrically properly on an admissible continuous
field of Hilbert Hadamard spaces, then the rational strong Novikov conjecture holds
for Γ.

Finally, we deduce the following.
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Corollary 4. If Γ is a µ-discrete countable subgroup of Diff(N) for a regular Borel
probability measure µ on N , then the rational strong Novikov conjecture holds for
Γ.
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What is de Rham cohomology?

Benjamin Antieau

Work of Raksit [7] and of Moulinos–Robalo–Toën [6] gives a universal property for
the HKR filtration on Hochschild homology and the Hodge filtration on Hodge-
complete derived de Rham cohomology in terms of filtered derived commutative
rings. It is possible to extend this result to the non-Hodge complete case and also
to a closely related theory I call derived infinitesimal cohomology.

1. The discrete de Rham complex

Let k be a commutative ring and let R be a k-algebra. The discrete de Rham
complex is the commutative differential graded k-algebra

Ω•
R/k : R

d−→ Ω1
R/k

d−→ Ω2
R/k → · · · .

This cdga is strict because odd-degree elements square to zero.
The discrete de Rham complex admits a natural universal property. The for-

getful functor

CAlgk
A• 7→A0

←−−−−− scdgak

admits a left adjoint: Ω•
−/k. This tells us what the discrete de Rham complex is:

it is the universal way of turning a commutative k-algebra into a strict cdga over
k. This implies that the construction is not ad hoc. It also explains the precise
structure on the discrete de Rham complex: it is a strict cdga over k.

There are major defects to using Ω•
−/k as the basis for a cohomology theory.

First, the category of strict cdgas over k does not admit a ‘nice’ homotopy the-
oretical localization at quasi-isomorphisms, unless Q ⊆ k. Second, the theory
is poorly behaved for general singular commutative k-algebras. For example, for
non-smooth k-algebras, the natural Hochschild–Kostant–Rosenberg map [4]

Ω∗
R/k → HH∗(R/k)



2028 Oberwolfach Report 35/2022

typically fails to be an isomorphism. Or, for smooth commutative C-algebras,
there is a natural isomorphism H∗(Ω•

R/k)
∼= H∗

sing((SpecR)(C),C). This is typi-

cally not true in the singular case.
The solution to these problems is to use derived de Rham cohomology. This

theory is constructed as the left Kan extension LΩ−/k in the diagram

CAlgfppolyk

Ω−/k
//

��

CAlg(D(k))

CAlgk,

LΩ−/k

77

where CAlgfppolyk is the category of finitely presented polynomial algebra over k
and Ω−/k is the functor to E∞-algebras over k which takes such a polynomial
algebra to the E∞-ring underlying the discrete de Rham complex.

If k ⊆ Q, then Ωk[x1,...,xn]/k ≃ Q for any n. It follows that the top functor in
the left Kan extension diagram above is the constant functor on Q. Therefore,
LΩR/k ≃ k for any R, as long as k contains Q.

This motivates introduction of a certain completion of derived de Rham coho-
mology. For any commutative ring R, the de Rham complex ΩR/k, viewed as an

E∞-algebra over Z, admits a Hodge filtration F⋆HΩR/k where FiHΩR/k → ΩR/k is

the morphism in D(k) underlying Ω•≥i
R/k → Ω•

R/k. This makes F⋆HΩR/k into an E∞-

algebra in FD(k) = Fun(Zop,D(k)), the stable ∞-category of decreasing filtered
complexes.

This Hodge filtration left Kan extends to a Hodge filtration F⋆HLΩR/k. By

construction, griHLΩR/k ≃ LΩiR/k[−i], the derived ith exterior power of LR/k

placed in homological degree −i. The completion L̂ΩR/k defined as

lim
i

LΩR/k

FiHLΩR/k

is Hodge-complete derived de Rham cohomology.
A theorem of Bhatt [2], extending work of Hartshorne and Grothendieck, is

that for a finite type C-algebra R, one has an isomorphism

H∗(L̂ΩR/k) ≡ H∗
sing((SpecR)(C),C);

that is, Hodge-complete derived de Rham cohomology computes the singular co-
homology of the space of complex points of SpecR.

Question. What is derived de Rham cohomology?
As it stands, derived de Rham cohomology is given as a construction. What
structure does it have? And, is it in some sense universal with respect to that
structure? We are particularly interested in answers to this question that integrate
the Hodge filtration. This talk explains the answer to these questions, closely
following and somewhat extending [7].
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2. Coherent cochain complexes

The stable ∞-category of filtered k-module spectra1 is the functor ∞-category

FD(k) = Fun(Zop,D(k))

of arbitrary functors from the opposite of the ordered set of integers to D(k).
Similarly, the stable ∞-category of graded complexes is the functor category

GrD(k) = Fun(Zdiscrete,D(k)),

where now Zdiscrete is viewed as a set.
These admit natural, pointwise t-structures where a filtered k-module spectrum

F⋆M is (co)connective is if each is, and similarly for GrD(k). The hearts of these
t-structures are

FModk and GrModk,

the abelian categories of filtered k-modules2 and graded k-modules, respectively.
We can build filtered spectra out of graded spectra in three ways.

(1) The forgetful functor FD(k) → GrD(k) which sends a filtered object
F⋆M to the graded object F⋆M , i.e., by forgetting the transition maps, is
monadic and realizes FD(k) as a category of modules over a graded ring
spectrum. As what is needed to go from a graded ring spectrum to a
filtered ring spectrum are the transition maps, it is possible to show that
the associated ring spectrum is k[t−1], the discrete graded commutative
ring where t has weight −1. So, FD(k) ≃ Modk[t−1](GrD(k)). This is the
Rees construction.

(2) Alternatively, we can take the associated graded functor gr⋆ : FD(k) →
GrD(k). This functor factors through the completion FD(k) → F̂D(k).
There is extra structure on the associated graded pieces

griM =
FiM

Fi+1M
.

The fiber sequences

gri+1M → FiM

Fi+1M
→ griM

induce boundary maps

· · · → gr0M
d−→ gr1M [1]

d−→ gr2M [2]→ · · · .
Moreover, there are naturally present nullhomotopies for each composition
d2. Let D− be the graded exterior algebra k(0) ⊕ k[−1](1). (A more
natural description will appear later as the shearing down of the graded
circle.) Then, it is possible to prove that the associated graded functor

1I will distinguish carefully between chain complexes or cochain complexes and their homo-
topy types. The latter are objects in the derived ∞-category D(k), a stable ∞-category whose
homotopy category is the familiar triangulated derived category of k. Objects of D(k) are called
Z-module spectra.

2For us, the transition maps in a filtered k-module need not be injective.
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F̂D(k) → GrD(k) factors through ModD−
(GrD(k)) → GrD(k) and that

the associated map F̂D(k)→ ModD−
(GrD(k)) is an equivalence. We will

call this functor the E1-functor.
(3) Taking the notion of cochain complex suggested above more seriously,

define, following Ariotta [1], a pointed category Ξ where the objects consist
of the union of the integers and a basepoint ∗, which is initial and final.
The morphisms between integers are given by

HomΞ(m,n) =





{id, ∗} if n = m,

{d, ∗} if n = m− 1,

{∗} otherwise.

In particular, d2 = ∗ whenever this makes sense. Ariotta proves that there
is an equivalence

Fun∗(Ξ
op,D(k)) ≃ F̂D(k).

The structure of a pointed functor from Ξop to D(k) is homotopy coher-
ent way of constructing graded complexes with differentials d together
with nullhomotopies for d2 which are compatible to all higher homotopies.
These are thus called coherent cochain complexes.

The Beilinson t-structure on filtered complexes introduced by Beilinson and
studied in [3] is most elegantly seen from perspective (3) above. It is the pointwise
t-structure on coherent complexes. The heart consists of the complete filtered
complexes F⋆M such that griM [i] is in the heart of the standard t-structure on
D(k). The heart itself is the abelian category Ch•(k) of cochain complexes of
k-modules.

A cochain complex M• is viewed as a complete filtered k-module spectrum
as follows. For each i ∈ Z, let M≥i be the k-module spectrum associated to the
cochain complexM•≥i. These assemble into a filtered k-module given by i 7→M≥i.

Another way to look at the Beilinson t-structure is that a (complete, exhaustive)
filtered k-module spectrum F⋆M is in the heart if and only if it ‘is’ the stupid
filtration associated to a cochain complex model for M .

3. Spectra with S1-action

Let T = k[S1] be the group algebra of the circle over k; it is an object of D(k)
which computes the integral homology of S1. It also admits the structure of a
bicommutative bialgebra, encoding the multiplication arising from S1 and the
comultiplication present on chains on any space (or anima).

The ∞-category of k-module spectra with S1-action can be realized either as
the functor ∞-category Fun(S1,D(k)) or as the module category ModT(D(k)) =
D(T). In the latter case it is important to note that the symmetric monoidal
structure arises from the comultiplication on T.
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A classical understanding of Hochschild homology, in the commutative case, is
a theorem of McClure–Schwänzl–Vogt [5], who proved3 that the left adjoint of the
forgetful functor

CAlg(D(k))← CAlg(D(T))

is given by HH(−/k), Hochschild homology relative to k with its natural S1-
action. Here, CAlg(D(k)) for example refers to the ∞-category of commutative,
or E∞, algebra objects in D(k). This is a homotopy coherent of the notion of
a commutative k-algebra. If k is a Q-algebra, then CAlg(D(k)) is equivalent to
the homotopy theory of commutative differential graded k-algebras and quasi-
isomorphisms.

The Hochschild–Kostant–Rosenberg theorem [4] gives a tantalizing and well-
studied connection between Hochschild homology and de Rham cohomology. It
says that if R is a smooth commutative k-algebra, then HH∗(R/k) ∼= Ω∗

R/k.

Moreover, the S1-action on HH(R/k) induces an operator (often called the “B-
operator”) HH∗(R/k)→ HH∗+1(R/k) which is identified under the HKR isomor-
phism with the de Rham differential.

In order to make this connection more precise and expansive, we introduce
derived commutative rings.

4. Derived commutative rings

Recall that an animated commutative k-algebra is an object of the ∞-category
sCAlgk[W

−1], the ∞-categorical localization of the 1-category of simplicial com-
mutative k-algebras at the weak equivalences. The forgetful functor

D(k)≥0 ← sCAlgk[W
−1] : U

admits a left adjoint LSymk making the adjunction monadic. So, animated com-
mutative rings are LSymk-algebras in D(k)≥0.

The ∞-category of animated commutative rings admits a universal property:
any functor F : sCAlgk[W

−1] → C to an ∞-category C which preserves sifted
colimits is left Kan extended from its restricted to finitely presented polynomial
k-algebras. Conversely, any functor on finitely presented polynomial k-algebras
can be uniquely extended to a functor on sCAlgk[W

−1] which preserves sifted
colimits. This is Quillen’s philosophy of nonabelian derived functors.

A crucial observation, due to Mathew and Bhatt, is that the monad ULSymk

formally extends, via Goodwillie calculus methods, to a monad on the entire de-
rived ∞-category; we write ULSymk for this extension as well. At heart this
extension exists because ULSymk is a direct sum ⊕r≥0LSym

r
k and each LSymr

k,
which computes the derived symmetric powers following Illusie, is polynomial in
an appropriate sense.

By definition, a derived commutative k-algebra is a ULSymk-algebra in
D(k). Let DAlgk be the ∞-category of these algebras. It admits a forgetful
functor to CAlg(D(k)); this forgetful functor preserves limits and colimits and

3They worked more generally in the context of E∞-ring spectra and THH.
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hence admits both left and right adjoints. The forgetful functor is an equivalence
if k is a Q-algebra.

As an example, note that if X is a topological space, then the E∞-algebra
C•(X, k), which is typically not a cdga, can be given the structure of a derived
commutative k-algebra, by writing C•(X, k) ≃ limX k and using that the forgetful
functor preserves limits.

5. Putting it all together

The first point is that the theorem of McClure, Schwänzl, and Vogt extends to
derived commutative rings. Namely, there is a good ∞-category of derived com-
mutative rings with circle action DAlg(D(T)) and Raksit proves in [7] that the
left adjoint to the forgetful functor

DAlg(k)← DAlg(D(T))

is given by HH(−/k). In particular, if R is a derived commutative k-algebra,
then HH(R/k), defined a priori by considering R only as an E∞-ring, admits a
natural derived commutative ring structure and that the circle action preserves
this structure. Moreover, this package has a natural universal property.

To bring filtrations into play, let Tfil = τ≥⋆T, the Whitehead (or Postnikov)
tower of T. This is a filtered k-module spectrum with Fi(Tfil) ≃ 0 for i > 1,
F1(Tfil) ≃ k[1], and Fi(Tfil) ≃ T for i ≤ 0.

There is a good notion of filtered derived commutative rings obtained by declar-
ing that LSymr

kins
iP ≃ insirLSymkP when P is a finitely presented projective k-

module; here insiM denotes the filtered k-module with Fj insiM = 0 for j > i and
M for j ≤ i, with transition maps given by the identity for j ≤ i. The free objects
on insiP are in other words filtered polynomial rings on generators of weight i.

The notion of filtered derived commutative rings above is not the only possible
notion, so I will call them the infinitesimal filtered derived commutative
rings.

The dual object T∨
fil naturally admits the structure of a grouplike E∞-object

in infinitesimal filtered derived commutative rings. This lets us make precise an
∞-category DAlginf(FD(Tfil) of infinitesimal filtered derived commutative rings
with Tfil-action.

Raksit proves that the natural forgetful functor DAlgk ← DAlginf(FD(Tfil)),
which forgets both the filtration and the filtered circle action, admits a left ad-
joint HHfil(R/k) which recovers the Hochschild–Kostant–Rosenberg filtration on
Hochschild homology.

Raksit also introduces what I will call crystalline complete filtered derived

commutative rings yielding an∞-category DAlgcrys(F̂D(k)). He proves that the
gr0-functor

DAlgk ← DAlgcrys(F̂D(k))

admits a left adjoint given by F⋆HL̂ΩR/k, Hodge-filtered, Hodge-complete derived
de Rham cohomology.
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Here is a souped up version of HKR proved by Raksit. It involves the shearing
down operator on graded k-module spectra. This is the operation which takes a
graded k-module spectrum M(⋆) to M(⋆)[−2⋆]. Shearing down induces a sym-
metric monoidal autoequivalence of GrD(k). The shearing down Tgr[−2⋆] of the
associated graded of the filtered circle is precisely the graded Hopf algebra D−

encountered above. At heart, shearing is responsible for the difference between
infinitesimal and crystalline filtered derived commutative rings.

Raksit proves that there is a composition of functors

DAlginf(FD(Tfil))
gr⋆−−→ DAlginf(GrD(Tgr))

[−2⋆]−−−→ DAlgcrys(GrD(D−))

≃ DAlgcrys(F̂D(k)),

which takes HHfil(R/k) to F⋆HL̂ΩR/k. In other words,

HHgr(R/k)[−2⋆]

with its residual Tgr[−2⋆] ≃ D− action recovers F⋆HL̂ΩR/k.
Work in progress of my own aims to further elucidate the nature of crystalline

filtered derived commutative rings. Here is a summary.
There is an extension of the crystalline LSym monad from the complete filtered

derived category to all of FD(k). The left adjoint of DAlgk
gr0←−− DAlgcrys(FD(k)) is

F⋆HLΩ−/k, i.e., non-Hodge-complete derived de Rham cohomology with its Hodge
filtration.

There is a map of map of monads LSyminf
k → LSymcrys

k . In particular, every
crystalline filtered derived commutative ring is infinitesimal. This in turns that
the underlying E∞-ring is derived.

There is a left adjoint to

DAlgk
gr0←−− DAlginf(FD(k)),

which I call derived infinitesimal cohomology F⋆HΠR/k. The graded pieces of the

Hodge filtration are no longer LΛiLR/k ≃ LΩiR/k, but rather LSym
i(LR/k[−1]).

The map of monads from the infinitesimal to the crystalline induces a crystal-
lization functor

� : DAlginf(FD(k))→ DAlgcrys(FD(k)).

In particular, playing around with adjoints, there is a canonical map

F⋆HΠR/k → F⋆HLΩR/k,

adjoint to an equivalence �
(
F⋆HΠR/k

)
≃ F⋆HLΩR/k.

An amusing example is that F⋆HΠFp/Zp
≃ p⋆Zp, the p-adic integers with the

p-adic filtration. The crystallization � (p⋆Zp) is thus F⋆HLΩR/k, which can be
identified up to p-completion with Zp〈x〉/(x−p) with the divided power filtration,
where Zp〈x〉 is the free divided power algebra on a generator x.

Finally, in the smooth case, infinitesimal cohomology recovers the cohomology
of Grothendieck’s infinitesimal site.
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On noncommutative crystalline cohomology

Boris Tsygan

A noncommutative generalization of differential forms and De Rham cohomology
in characteristic zero is Hochschild and cyclic homology [1], [2], [6], [10]. One
of its versions, periodic cyclic homology, generalizes crystalline cohomology in
characteristic zero [4]. In positive or mixed characteristic, if one wants to generalize
cohomology theories of schemes to noncommutative setting, to get the full extent
of the theory one has to use topological methods such as [8]. However, in recent
years it became apparent that significant part of the theory can be done using
variations on the usual definitions (i.e. working with modules over a base ring
rather than with spectra).

In the talk, we present four recent approaches along these lines. The first is due
to Kaledin [5]. It is based on the construction of noncommutative Witt vectors
and generalizes the Deligne-Illusie construction of crystalline cohomology.

The second is due to Petrov and Vologodsky [9] and the third is from [7]. Both
emulate the classical approach, due to Grothendieck and Berthelot, of taking an
Fp-algebra and trying to lift it to a Zp-algebra, and applying some variation of
the construction of the De Rham complex to it. In [9], this idea is realized by
computing derived periodic cyclic homology, i.e. replacing an Fp-algebra by a
DG resolution which is flat as a Zp-module and computing the periodic cyclic
homology of the latter. This requires a subtle final step of reducing the result by
tensoring by Zp over the derived periodic cyclic homology of Fp. The subtlety is
that the latter is not a ring. In [7], we lift an Fp-algebra to a Zp-module with a
multiplication that is associative only modulo p. The differential in the periodic
cyclic complex is now square zero only modulo p. However, we show how it can be
flattened and transformed into a square zero differential.

Finally, the fourth approach, by Cortiñas, Cuntz, Meyer, Mukherjee, and
Tamme, is based on non-Archimedean topological and bornological methods and
generalizes the construction of Monsky and Washnitzer.
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We also discuss how the first three approaches can be compared. We note that
all of them are based on the same idea: take some version of a complex computig
periodic cyclic homology in characteristic p, and lift it to a complex over Zp. (In
Kaledin’s case, this is because noncommutative Hochschild-Witt complex deforms
the limit of twisted Hochschild complexes of pn-fold tensor powers of the algebra,
and the latter compute the usual Hochschild homology). A better understanding
of the full algebra of operations on Hochschild and cyclic complexes, probably
involving higher Hochschild cochain complexes of Kontsevich and Vlassopoulos,
should provide a common framework for the three constructions.
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Cyclic cocycles in the spectral action

Walter D. van Suijlekom

(joint work with Teun van Nuland)

The spectral action [2, 3] is one of the key instruments in the applications of
noncommutative geometry to particle physics. With inner fluctuations [8] of a
noncommutative manifold playing the role of gauge potentials, the spectral action
principle yields the corresponding Lagrangians. Indeed, the asymptotic behavior
of the spectral action for small momenta leads to experimentally testable field
theories, by interpreting the spectral action as a classical action and applying the
usual renormalization group techniques. In particular, this provides the simplest
way known to geometrically explain the dynamics and interactions of the gauge
bosons and the Higgs boson in the Standard Model Lagrangian as an effective
field theory [4] (see also the textbooks [9, 14]). More general noncommutative
manifolds (spectral triples) can also be captured by the spectral action principle,
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leading to models beyond the standard model as well. As shown in [11], if one
restricts to the scale-invariant part, one may naturally identify a Yang–Mills term
and a Chern–Simons term to elegantly appear in the spectral action. From the
perspective of quantum field theory, the appearance of these field-theoretic ac-
tion functionals sparks hope that we might find a way to go beyond the classical
framework provided by the spectral action principle. It is thus a natural question
whether we can also field-theoretically describe the full spectral action, without
resorting to the scale-invariant part.

Motivated by this, we study the spectral action when it is expanded in terms of
inner fluctuations associated to an arbitrary noncommutative manifold, without
resorting to heat-kernel techniques. Indeed, the latter are not always available and
an understanding of the full spectral action could provide deeper insight into how
gauge theories originate from noncommutative geometry. Let us now give a more
precise description of our setup.

We let (A,H, D) be an finitely summable spectral triple. If f : R → C is a
suitably nice function we may define the spectral action [3]:

Tr(f(D)).

An inner fluctuation, as explained in [8], is given by a Hermitian universal one-form

A =

n∑

j=1

ajdbj ∈ Ω1(A),(1)

for elements aj , bj ∈ A. The terminology ‘fluctuation’ comes from representing A
on H as

V := πD(A) =

n∑

j=1

aj [D, bj ] ∈ B(H)sa,(2)

and fluctuating D to D + V in the spectral action. The variation of the spectral
action under the inner fluctuation is then given by

Tr(f(D + V ))− Tr(f(D)).(3)

As spectral triples can be understood as noncommutative spinc manifolds (see [10])
encoding the gauge fields as an inner structure, one could hope that perturbations
of the spectral action could be understood in terms of noncommutative versions
of geometrical, gauge theoretical concepts. Hence we would like to express (3) in
terms of universal forms constructed from A. To express an action functional in
terms of universal forms, one is naturally led to cyclic cohomology. As it turns out,
hidden inside the spectral action we will identify an odd (b, B)-cocycle (ψ̃1, ψ̃3, . . .)
and an even (b, B)-cocycle (φ2, φ4, . . .) for which bφ2k = Bφ2k = 0, i.e., each
Hochschild cochain φ2k forms its own (b, B)-cocycle (0, . . . , 0, φ2k, 0, . . .). On the

other hand, the odd (b, B)-cocycle (ψ̃2k+1) is truly infinite (in the sense of [7]).
The key result is that for suitable f : R→ C we may expand

Tr(f(D + V )− f(D)) =

∞∑

k=1

(∫

ψ2k−1

cs2k−1(A) +
1

2k

∫

φ2k

F k

)
,(4)
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in which the series converges absolutely. Here ψ2k−1 is a scalar multiple of ψ̃2k−1,
Ft = tdA + t2A2, so that F = F1 is the curvature of A, and cs2k−1(A) =∫ 1

0 AF
k−1
t dt is a generalized noncommutative Chern–Simons form.

As already mentioned, a similar result was shown earlier to hold for the scale-
invariant part ζD(0) of the spectral action. Indeed, Connes and Chamseddine [11]
expressed the variation of the scale-invariant part in dimension ≤ 4 as

ζD+V (0)− ζD(0) = −
1

4

∫

τ0

(dA+A2) +
1

2

∫

ψ

(
AdA+

2

3
A3

)
,

for a certain Hochschild 4-cocycle τ0 and cyclic 3-cocycle ψ.
Interestingly, a key role in our extension of this result to the full spectral action

will be played by multiple operator integrals. It is the natural replacement of
residues in this context, and also allows to go beyond dimension 4. For our analysis
of the cocycle structure that appears in the full spectral action we take the Taylor
series expansion as a starting point. In previous works this has been studied in
great detail using multiple operator integrals, as traces thereof are multilinear
extensions of the derivatives of the spectral action. This viewpoint is also taken
in [12, 13], where multiple operator integrals are used to investigate the Taylor
expansion of the spectral action. Indeed, multiple operator integrals can also be
used to define cyclic cocycles, because of some known properties of the multiple
operator integral that have been proved in increasing generality in the last decades
(e.g., in [1, 5, 15, 12, 13]). In our [15] we have pushed these results even further,
by proving estimates and continuity properties for the multiple operator integral
when the self-adjoint operator has an s-summable resolvent, thereby supplying the
discussion here with a strong functional analytic foundation.

There are two interesting possibilities for application of our main result and
the techniques used to obtain it. The first application is to index theory. The
analytically powerful multiple operator integration techniques used for the absolute
convergence of our expansion also allow us to show that the found (b, B)-cocycles
are entire in the sense of [6]. This makes it meaningful to analyze their pairing
with K-theory, which is found to be trivial [15].

The second application is to quantization. In [16] we have taken a first step
towards the quantization of the spectral action within the framework of spectral
triples. Using the asymptotic expansion of the spectral action and some basic
quantum field theoretic techniques, we have proposed a one-loop quantum effective
spectral action and showed that it satisfies a similar expansion formula, featuring
in particular a new pair of cyclic cocycles.
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How to compute the dimension of spectral triple? Alain Connes’
question on spectral asymptotics

Fedor Sukochev

(joint work with D. Zanin)

Compact spectral triple is called d-dimensional if (D2 + 1)−
d
2p ∈ Lp,∞ for every

p > 0. Here, Lp,∞ is the collection of all infinitesimals of order 1
p .

Locally compact spectral triple is called d-dimensional if π(a)(D2 + 1)−
d
2p ∈

Lp,∞ for every p > 0 and for every a ∈ A, where π is the ∗-representation of the
algebra A from the spectral triple definition.

Computing the dimension of a non-compact spectral triple is quite an involved
task. The most efficient device up to date is the so-called Cwikel-type estimate.
Corresponding theory is developed by Cwikel [2], Birman and Solomyak [1], Weidl
[4] and, in the most general shape, in the recent paper [3] by Levitina, Sukochev
and Zanin. The cited results provide rather pleasing estimates in the pre-critical
(i.e. p > 2) and post-critical (i.e. p < 2) case. However, the most difficult case
p = 2 is still a challenge.

Physicists are also interested in estimates for the operators Mf (1 − ∆)−
d
4 in

Euclidean setting (here, Mf is a multiplication operator by a function f) and re-
late them to Cwikel-Lieb-Rozenblum inequalities estimating the number of bound
states (eigenvalues outside essential spectrum) of Schroedinger operators. This
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motivated a fundamental paper by Solomyak (1994), who proved that, on a d-
dimensional torus with even d

(1) ‖(1−∆)−
d
4Mf (1−∆)−

d
4 ‖1,∞ ≤ cd‖f‖L logL.

Here, ‖ · ‖1,∞ denotes weak l1-quasi-norm and L logL is the so-called Zygmund
space on Td (i.e., Orlicz space with Orlicz function t→ t log(e + t)).

Our aim is multi-fold

• to extend (1) to odd dimension. [DONE]
• to extend (1) to Euclidean setting. [Proved to be impossible. However, a
satisfactory replacement is found.]
• to develop the technique which would allow proving the Solomyak-type
results in NCG settings [This remains an open problem even for the non-
commutative torus.]

We also discuss the spectral asymptotics of the operator (1−∆)−
d
4Mf (1−∆)−

d
4 .

During 2017 conference ”Noncommutative Geometry: State of the Art and Future
Prospects”, Alain Connes asked whether spectral asymptotics for such operators
can be proved directly (that is, without involving heavy machinery of singular
traces). The answer appears to be positive.

If f ∈ L logL(Td) and if ∆ is the Laplacian on Td, then there exists a limit

lim
t→∞

tµ
(
t, (1−∆)−

d
4Mf (1−∆)−

d
4

)
= cd‖f‖1.

If f ∈ L logL(Rd) is such that
∫

Rd

|f(s)| · log(1 + |s|)ds <∞

and if ∆ is the Laplacian on Rd, then there exists a limit

lim
t→∞

tµ
(
t, (1−∆)−

d
4Mf (1−∆)−

d
4

)
= cd‖f‖1.

Similar assertion is available for compact Riemannian manifolds. Let (X, g)
be a d-dimensional Riemannian manifold and let νg and ∆g be the Riemannian
volume and the Laplace-Beltrami operator. If f ∈ L logL(X, νg), then there exists
a limit

lim
t→∞

tµ
(
t, (1−∆g)

− d
4Mf (1−∆g)

− d
4

)
= cd‖f‖1.

As far as we know, those results appear to be the best possible up to date.

References

[1] M. Birman and M. Solomyak. Estimates on singular values of intergal operators. Russian
Math. Surveys, 32(1) (1977), 15–89.

[2] M. Cwikel, Weak type estimates for singular values and the number of bound states of
Schrödinger operators. Ann. of Math. (2), 106(1) (1977), 93–100.

[3] G. Levitina, F, Sukochev, D. Zanin, Cwikel estimates revisited, Proc. Lond. Math. Soc. (3)
120 (2020), no. 2, 265–304.

[4] T. Weidl., Another look at Cwikel’s inequality., In Differential operators and spectral theory,
volume 189 of Amer. Math. Soc. Transl. Ser. 2, (1999) 247–254.



2040 Oberwolfach Report 35/2022

Determinants, K1(Var), and point counting

Inna Zakharevich

Let k be a field. The Grothendieck ring of varieties K0(Vark), is defined to have
underlying group

K0(Vark) :=
free ab. gp gen by
varieties over k

/
∀ closed immersions Y →֒X

[X ] = [Y ] + [X\Y ].
Here, a variety over k is a reduced separated scheme of finite type over k. In
other words, the underlying group of the Grothendieck ring of varieties encodes
the geometric process of cutting out a closed subvariety of X and declaring that X
is equal to the subvariety plus the complement. The product structure is induced
by the Cartesian product of varieties:

[X ][Y ] := [X × Y ].

This ring was first introduced in Grothendieck’s letter to Serre [Groth, p174-175]
discussing the conjectural abelian category of motives. The idea is that this ring
is a first approximation to what the K0 of this category should be, as it encodes
the ways in which cohomological invariants split varieties.

In [Zak], the notion of a Grothendieck spectrum of varieties K(Vark), a spec-
trum whose π0 is K0(Vark) and whose higher homotopy groups are related to
other decomposition invariants, is introduced. The spectrum is formed using alge-
braic K-theory and thus is functorial with respect to well-behaved combinatorial
functors of categories. In particular, there are two immediate functors of interest:

FinSet→ Vark Vark → FinSet
S 7−→∐

S Spec k X 7−→ X(k)

Since the composition of these two functors is the identity on FinSet, a copy of the
sphere spectrum splits off of K(Vark), thereby showing that the higher homotopy
groups of K(Vark) are in general nontrivial. In [CWZ] it is further shown that
when |k| ≡ 3 (mod 4) the group K1(Vark) 6≡ π1S, by showing that an element
represented by the automorphism x 7→ 1/x of P1 represents a nontrivial element
in K1(Vark)/π1S. However, two important questions are left unanswered:

(1) For any finite field k, is it always the case that K1(Vark) 6∼= π1S?
(2) The spectrum K(VarK) is an E∞-ring spectrum [Cam], and thus its ho-

motopy groups form a graded ring. Is the map

K0(Vark)⊗ π1S→ K1(Vark)

surjective? In other words, do there exist elements in K1(Vark) that can-
not be represented by permutations of varieties?

If the answer ot the second question is yes, the answer to the first question must
also be yes, and thus we focus on the second question.

In this talk we discuss a method for answering these questions using a souped-up
version of point counting. The basic model of point counting is the functor on the
right above, taking each variety to its set of k-points. However, a variety contains
all of the information of points over all extensions of the base field. Instead of
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mapping to the category of finite sets, we instead map to the category of almost-
finite sets, AFSet. These sets are introduced in [DS88]. An almost-finite set is

a set S together with an action of Ẑ (the profinite completion of the integers),
satisfying the extra condition that every orbit is finite and the fixed-point set of
any nontrivial subgroup is finite. TheK-theory of almost-finite sets is well-defined,
and is naturally equipped with a map

K(AFSet)→
∏

n≥1

Σ∞
+ BZ/n.

In particular, after applying π1 we obtain a homomorphism

K1(AFSet)→
∏

n≥1

(Z/2⊕ Z/n).

It turns out that whenever an element of K1(Vark) is in the image of the map
in question (2) above, it must lie in the subgroup

∏
n≥1(Z/2⊕ 1). Moreover, ele-

ments with nontrivial Z/n-coordinate can be detected by analyzing permutations
of points in degree-n extensions.

This leads to the following theorem answering question (2) in the affirmative,
at least for fields of characteristic not equal to 2:

Theorem 1 (Zakharevich). Let k be a finite field and let b = ord2(|k| − 1). Then
the automorphism of A1 induced by scaling by a primitive 2b-th root of unity is not
in the image of the map

K0(Vark)⊗ π1S→ K1(Vark).
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Nonarchimedean local and analytic cyclic homology

Devarshi Mukherjee

(joint work with Guillermo Cortiñas and Ralf Meyer)

Cyclic homology in the positive characteristic setting has witnessed intense activity
in recent years. One motivation, particularly in the commutative setting, is to find
better approximations to algebraic K-theory using trace methods. Our main mo-
tivation is in finding an invariant of noncommutative Fp-algebras that specialises
to a homotopy invariant de Rham theory in the commutative case, namely, rigid
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cohomology. Using such an invariant of Fp-algebras, we then construct invariants
of noncommutative topological Zp-algebras, that behave in a manner similar to
periodic and local cyclic homology for locally convex topological C-algebras.

Our construction is based on the Cuntz-Quillen approach to periodic cyclic
homology (see [3]), which was established to prove excision and nilinvariance of
the theory. Their approach replaces the usual (B − b)-bicomplex of a Q-algebra
R computing HP with the X-complex of the tensor algebra T(R) =

⊕∞
n=0R

⊗n.
Now suppose we have a complete, torsionfree Zp-algebra D. In [2], we build a
certain completed tensor algebra extension

0→ J (R)→ T (R)→ R→ 0,

obtained by applying the tube algebra construction to the usual tensor algebra
extension 0 → J(R) → T(R) → R → 0. Here, completions take place in the
category of complete bornological Zp-modules, which we use as our framework for
homological algebra in functional analytic contexts, just as in the Archimedean
setting (see [4]). The analytic cyclic homology of R is defined as the 2-periodic
complex

HAtf(R) = X(T (R)⊗Qp);

taking values in the derived category of the quasi-abelian category
←−−−−−−−
Ind(BanQp). This

functor satisfies homotopy invariance HA
tf(R) ∼= HA

tf(R⊗Zp[t]
†) with respect to

the Monsky-Washnitzer algebra of overconvergent analytic functions on the unit
disc. It also satisfies matricial stability, nilinvariance, and excision with respect to
linearly split extensions of complete bornological algebras.

Next, in [5], we define analytic cyclic homology HA(A) for algebras A over
the residue field Fp. It is constructed by lifting such an Fp-algebra to a complete,
bornologically torsionfree Zp-module, whose reduction mod p is the fine bornology,
that is the bornology generated by finitely generated Zp-submodules. A canonical
lifting of this kind is the free Zp-module ZpA with the fine bornology. This again
induces the tensor algebra extension 0 → I → Zp〈A〉 → A → 0, using which we
can mimic the definition of analytic cyclic homology for torsionfree Zp-algebras.
This process yields a chain complex valued functor

HA : {Fp-algebras} → Der(
←−−−−−−−
Ind(BanQp))

that again satisfies homotopy invariance with respect to polynomial homotopies,
matricial stablility and excision for extensions of Fp-algebras. Crucially, the func-
tor we define is independent of choices of liftings to complete, torsionfree Zp-
modules that reduce mod p to the fine bornology. In particular, we prove that if
0→ pD → D → A→ 0 is a dagger algebra lifting that reduces mod p to the fine
bornology, then HA(A) ∼= HA

tf(D).
We then address (in [6]) the technical condition concerning the class of algebras

whose reductions mod p are the fine bornology. These are called nuclear bornologi-
cal algebras, and their bornologies are described by collections of convergent power
series with coefficients in l∞(N,Zp). Denote a torsionfree bornological Zp-module
D with this bornology by D′. We show importantly that if D is a dagger algebra,
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then so is D′ - with the additional property of inherting the fine bornology mod p.
This change of bornology is used to define the local cyclic homology functor

HL : {Dagger algebras} → Der(
←−−−−−−−
Ind(BanQp)), D 7→ HA(D′);

which by construction and Theorem 5.9 in [5], only depends on its reduction mod
p. In other words, we have HL(D) ∼= HA(D/pD). Finally, using mainly the
formal properties of our functors, we compute local and analytic cyclic homology
for Leavitt path algebras and smooth curves over Fp; in the latter case, our theory
coincides with Berthelot’s rigid cohonology.
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Metric inequalities with scalar curvature via the Dirac operator

Rudolf Zeidler

(joint work with Simone Cecchini)

In classical Riemannian comparison geometry, positive lower bounds on sectional
and Ricci curvature have concrete consequences such as global upper bounds on
volumes and distances. In contrast, the study of positive scalar curvature from a
geometric perspective is much more subtle. However, recently Gromov proposed
a number of conjectures (compare [3, 4]) which—in specific situations—predict
concrete metric inequalities under lower scalar curvature bounds reminiscent of
classical comparison geometry. This includes Gromov’s width conjecture:

Conjecture 1 ([4, 11.12, Conjecture C]). Let M be a closed connected manifold
of dimension n − 1 6= 4 such that M does not admit a metric of positive scalar
curvature. Let g be a Riemannian metric on V = M × [−1, 1] of scalar curvature
bounded below by n(n− 1) = scalSn . Then

width(V, g) ≤ 2π

n
,

where width(V, g) := distg(∂−V, ∂+V ) is the distance between the two boundary
components of V with respect to g.
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There are essentially two main tools to study scalar curvature. One is based
on geometric measure theory and the use of minimal hypersurfaces going back
to Schoen and Yau. The other, closer in spirit to methods of non-commutative
geometry, uses the spinor Dirac operator D and the corresponding Schrödinger–
Lichnerowicz formula D2 = ∇∗∇ + scal

4 which connects spectral properties of the
Dirac operator to scalar curvature.

Gromov’s first result on Conjecture 1 was a proof for the torus and related
manifolds via minimal hypersurface methods, and subsequently a general proof
for n ≤ 7 [3] (see also Räde [5]). The first main result given in the talk showed
that Conjecture 1 can also be addressed via the Dirac method. More precisely,
Conjecture 1 holds wheneverM admits an obstruction to the existence of positive
scalar curvature metrics based on a generalized index invariant associated to the
spinor Dirac operator on the universal covering:

Theorem 2 ([6, 2, 7]). Let M be a closed connected manifold of non-vanishing
Rosenberg index απ1M (M) ∈ KO∗(C

∗π1M). Then for every Riemannian metric
g on V =M × [−1, 1] of scalar curvature bounded below by n(n− 1) = scalSn , we
have width(V, g) < 2π

n . In particular, Conjecture 1 holds for all simply-connected
manifolds M of dimension ≥ 5.

The proof of this result is based on a modification of the spinor Dirac operator
D, essentially of the form B = D + f(x)ǫ, where x : V → R is a distance function,
f : R→ R a suitable real-valued function and ǫ the Clifford generator correspond-
ing to an auxilliary one-dimensional vector space endowed with an inner-product
of negative signature. Then there are two main ingredients, one topological, and
one geometric. The topological is that—roughly speaking—the index of the op-
erator B can be interpreted as a pairing between the Bott element dual to the
embedding M ⊂ V and the K-homological fundamental class of V , and thereby
yields the index of M . The geometric ingredient is that B satisfies a version of
the Schrödinger–Lichnerowicz formula such that its invertibility is governed by the

dominant energy condition (DEC) of a suitable initial data set (V, g, k = − 2f(x)
n g)

(in the sense of relativity). Finally, the function f may be chosen such that the
DEC is satisfied strictly if the distance exceeds the threshold 2π/n and a lower
scalar curvature bound ≥ n(n−1) is maintained, thereby leading to a contradiction
to non-vanishing of the index.

It turns out that the function f used in this argument is closely related to the
mean curvature in certain model warped product metrics. Taking this observation
to its conclusion lead to the joint work with Cecchini [1], where we studied Con-
jecture 1 and related questions via boundary conditions on the mean curvature.
This also allowed rigidity statements in certain situations:

Theorem 3 ([1]). Let (V, g) be a Riemannian spin band, that is, a compact spin
manifold V together with a decomposition ∂V = ∂−V ⊔∂+V into non-empty unions

of components, such that Â(∂−V ) 6= 0 and scalg ≥ n(n − 1). Then the following
holds:
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(1) If Hg ≥ − tan(nl/2) for some 0 < l < π/n, then

width(V, g) = distg(∂−V, ∂+V ) ≤ 2l.

(2) If, in addition, equality in the above estimate is attained, then V is iso-
metric to M × [−l, l],

g = cos(nx/2)2/ngM + dx2,

for some spin manifold (M, gM ) that admits a parallel spinor.
(3) In particular, width(V, g) < 2π/n.

In addition, our results on the related long neck problem (compare [3, p. 87,
Long neck problem]) were presented:

Theorem 4 ([1]). Let (M, g) be a compact connected n-dim. Riemannian spin
manifold with boundary such that scalg ≥ n(n − 1) on M , where n ≥ 2 is even.
Let f : M → Sn be a smooth area non-increasing map. Suppose that for some
0 < l < π/n the following estimates hold:

• distg(∂M, supp(df)) ≥ l.
• Hg ≥ − tan(nl/2) on ∂M ,

Then the mapping degree of f is zero.

One crucial observation in the latter two theorems is that as l→ π/n, the lower
mean curvature bound in the hypotheses of both theorems tends to −∞. In other
words, as l approaches this threshold and assuming that there is a non-trivial index
invariant or mapping degree, the mean curvature must explode somewhere at the
boundary.

Finally, we discussed new extremality and rigidity results for annuli in space
forms:

Theorem 5 ([1]). Let n ≥ 3 be odd, κ ∈ R and (Mκ, gκ) be the n-dimensional
simply connected space form of curvature κ. Consider the annulus around a base-
point p0 ∈Mκ

At−,t+ = {p ∈Mκ | t− ≤ dgκ(p, p0) ≤ t+},
where 0 < t− < t+ < t∞ with t∞ = π/

√
κ if κ > 0 and t∞ = +∞ otherwise.

Then any Riemannian metric g on At−,t+ such that

• g ≥ gκ,
• scalg ≥ scalgκ = κn(n− 1),
• Hg ≥ Hgκ = ± ctκ(t±),

must satisfy g = gκ.

References

[1] S. Cecchini and R. Zeidler, Scalar and mean curvature comparison via the Dirac operator,
Geom. Topol. (to appear)

[2] S. Cecchini, A long neck principle for Riemannian spin manifolds with positive scalar cur-
vature, Geom. Funct. Anal. 30, No. 5, 1183–1223 (2020)

[3] M. Gromov, Four Lectures on Scalar Curvature, arXiv:1908.10612v3 [math.DG]



2046 Oberwolfach Report 35/2022

[4] M. Gromov, Metric inequalities with scalar curvature, Geom. Funct. Anal. 28, No. 3, 645–
726 (2018)
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Interior Kasparov products for ̺-classes on Riemannian
foliated bundles

Vito Felice Zenobi

Let us consider a smooth closed manifold M along with a spin foliation F . Let G
be the monodromy groupoid overM associated to (M,F). We can associate to G
a long exact sequence in K-theory of C*-algebras

(1) · · · → K∗(C
∗(G× (0, 1)))→ K∗(G

[0,1)
ad )→ K∗(AG)→ · · ·

where AG is the Lie algebroid of G and G
[0,1)
ad := AG × {0} → G × (0, 1) is the

so-called adiabatic deformation of G.
Let g be a metric onAG and letDg be the longitudinal Dirac operator associated

to it. It’s symbol defines a class [σ̂] in K∗(AG) and, through the boundary map,
its higher index class Ind(Dg) in K∗(C

∗(G)), both independent of g.
If g has positive scalar curvature (psc), the Lichnerowicz formula implies that

Dg is invertible and then that the index vanishes. So Ind(Dg) is an obstruction to
the existence of longitudinal psc metrics on (M,F).

When g is a longitudinal psc metric we can define a canonical lift ̺(g) of [σ̂],

which lives in K∗(G
[0,1)
ad ) and it is a well defined invariant on the set P+(M,F)

of concordance classes of longitudinal psc metrics, see [2]. Recall that two psc
metrics g0 and g1 are concordant if there exists a psc metric g on (M,F)× (0, 1),
of product type near the boundary, whose restriction to (M,F) × {i} is gi, with
i = 0, 1.

Let ι : F0 → F1 be an inclusion of spin foliations over a manifold M and let G
and H the monodromy groupoid associate to F0 and F1, respectively. Moreover
let us fix two metrics g0 on F0 and g1 := g0 ⊕ gN on F1, where gN is a metric on
the normal bundle of the inclusion. In [1], the authors constructed a lower shriek
map ι! ∈ KKn (C

∗(G), C∗(H)) and prove a product formula for the index classes
of the following sorts:

(2) Ind(Dg0)⊗ ι! = Ind(Dg1).

In [3] we extend the construction of the lower shriek maps given by Hilsum and
Skandalis to adiabatic deformation groupoid C*-algebras: we construct an asymp-

totic morphism (ι
[0,1)
ad )! ∈ En

(
C∗(G

[0,1)
ad ), C∗(G

[0,1)
ad )

)
, where G and H are the

monodromy groupoids associated with F0 and F1 respectively. Furthermore, if
both g0 and g1 are psc metrics and F0 and F1 are Riemannian foliated bundles,
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we prove the following interior Kasparov product formula for foliated ̺-classes
associated with longitudinal metrics of positive scalar curvature

(3) ̺(g0)⊗ (ι
[0,1)
ad )! = ̺(g1).

This formula implies that if g1 and g′1 are non-concordant longitudinal psc metrics
on F1, then g0 and g′0 are non-concordant as longitudinal psc metrics on F0,
which can be seen as an higher secondary version of Connes’ Theorem. Two main
problem stay open:

• proving formula (3) for general foliations, namely not only Riemannian
foliated bundles;
• finding under which assumptions the product in (3) is injective; injectivity
would imply interesting rigidity results, namely that if any two longitudinal
psc metrics g0 and g′0 are non-concordant on F0, then g1 and g′1 remain
non-concordant longitudinal psc metrics on F1 even if there is a priori
more room to construct a concordance between them.
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Excision and the K -theory of pushouts

Georg Tamme

(joint work with Markus Land)

It is a classical result of Suslin and Wodzicki that algebraic K-theory satisfies
excision on C∗-algebras [9, 8] . Another important result is the theorem of Cuntz
and Quillen asserting that periodic cyclic homology satisfies excision on Q-algebras
[3]. However, in general K-theory does not satisfy excision. Instead, one can
measure the failure of excision in algebraic K-theory by trace methods (see [2, 6,
4, 5]). Another approach, which works more generally for any localizing invariant,
is the following [7].

Theorem A. To any pullback square of ring spectra

(1)

A B

A′ B′
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one can canonically associate a ring spectrum A′ ⊙B′

A B together with a map

A′ ⊙B′

A B → B′ and a commutative diagram of ring spectra

(2)

A B

A′ A′ ⊙B′

A B

refining (1) in the obvious sense. Any localizing invariant F sends square (2) to a

pullback square of spectra. Moreover, the underlying spectrum of A′ ⊙B′

A B is the
relative tensor product A′ ⊗A B.

Thus, the failure of excision for a localizing invariant F on the square (1) is now

translated into the failure of the map F (A′⊙B′

A B)→ F (B′) being an equivalence. I
indicated how this implies the excision results of Suslin–Wodzicki, Cuntz–Quillen,
Cortiñas, and Geisser–Hesselholt. As an example, if A = R is any ring, A′ = R[x],
B = R[y], B′ = R[x, x−1] with the maps given by x 7→ x, y 7→ x−1, the ring

spectrum A′ ⊙B′

A B turns out to be a discrete ring isomorphic to the Toeplitz ring
R〈x, y〉/(yx− 1).

Now let A′ ← A0 → B be a diagram of ring spectra. Put M = B ⊗A0
A′ and

A := A′ ×M B. It turns out that A is canonically a ring spectrum and also that
the analog of Theorem A holds in this more general setting. In this case, we have
a formula for the ring spectrum A′ ⊙MA B :

Theorem B. In the above situation, the canonical map A′ ∐A0
B → A′ ⊙MA B is

an equivalence of ring spectra. In particular, for any localizing invariant F , there
is a pullback square of spectra

F (A) F (B)

F (A′) F (A′ ∐A0
B).

As an illustration, I discussed the following example. Let R be a discrete ring,
and let G and H be groups. Put A0 = R, A′ = R[G], and B = R[H ]. Then
M ∼= R[G×H ] and for the pullback A we obtain that π0(A) = R, π−1(A) is a free
R-module, and all other homotopy groups of A vanish. The pushout is given by
R[G] ∐R R[H ] = R[G ∗H ]. If R is regular, stably coherent, then a recent result
of Burklund and Levy on the K-theory of coconnective ring spectra implies that
the canonical map K(R) → K(A) is an equivalence [1]. Thus, in this situation,
we obtain a cartesian square of spectra

K(R) K(R[H ])

K(R[G]) K(R[G ∗H ]).

This recovers a result of Waldhausen [10].
Finally, I indicated a proof of Theorems A and B.
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Algebraic K-theory of the second truncated Brown-Peterson spectrum

Eva Höning

(joint work with Gabriel Angelini-Knoll, Christian Ausoni, Dominic Leon Culver,
John Rognes)

Let BP 〈2〉 be a second truncated Brown-Peterson spectrum equipped with the
E3-ring structure of Hahn-Wilson [3]. Let TC denote topological cyclic homology.
We outline a proof of the following theorem [1]:

Theorem 1. Let p ≥ 7. There is a preferred isomorphism

V (2)∗TC(BP 〈2〉) ∼= P (v3)⊗ E(∂, λ1, λ2, λ3)

⊕ P (v3)⊗ E(λ2, λ3)⊗ Fp{Ξ1,d | 0 < d < p}
⊕ P (v3)⊗ E(λ1, λ3)⊗ Fp{Ξ2,d | 0 < d < p}
⊕ P (v3)⊗ E(λ1, λ2)⊗ Fp{Ξ3,d | 0 < d < p}

of P (v3)⊗E(λ1, λ2, λ3)-modules. This is a finitely generated and free P (v3)-module
on 12p+ 4 explicit generators in degrees −1 ≤ ∗ ≤ 2p3 + 2p2 + 2p− 3.

Here, V (2) is the Smith-Toda complex, and P (−) and E(−) are the polynomial
and exterior algebra over Fp.

The theorem confirms the original, strong form of the chromatic redshift con-
jecture of Rognes [4] for BP 〈2〉 at p ≥ 7. It also determines the mod (p, v1, v2)
homotopy of the algebraic K-theory of BP 〈2〉.

One ingredient of the proof of Theorem 1 is the following proposition:
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Proposition 2. The images of the classes α1 ∈ π2p−3(S), β
′
1 ∈ π2p2−2p−1V (0),

γ′′1 ∈ π2p3−2p2−1V (1) and v3 ∈ π2p3−2V (2) in V (2)∗THH(BP 〈2〉)hS1

are detected
in the homotopy fixed point spectral sequence

E2 = P (t)⊗ V (2)∗THH(BP 〈2〉) = P (t)⊗ E(λ1, λ2, λ3)⊗ P (µ3)

=⇒ V (2)∗THH(BP 〈2〉)hS1

by tλ1, t
pλ2, t

p2λ3 and tµ3.

The statement about β′
1 and γ′′1 can be proven from that of α1 using homotopy

power operations for E2 ring spectra R

P k : π2k−1R→ V (0)2pk−1R(1)

P k : V (0)2k−1R→ V (1)2pk−1R.(2)

For E∞ ring spectra the operations (1) were already constructed by Ausoni and
Rognes in their work about the Adams summand BP 〈1〉 [2]. The operations lift
the Dyer-Lashof operations in mod p homology and satisfy a homotopy Cartan
formula under additional assumptions.

Using Proposition 2 and the fact that the classes α1, β
′
1, γ

′′
1 and v3 map to

zero in V (2)∗THH(BP 〈2〉)tCp one can determine the differentials in the spectral
sequence

E2 = E(u1)⊗ P (t±)⊗ V (2)∗THH(BP 〈2〉) =⇒ V (2)∗THH(BP 〈2〉)tCp .

One gets that the Frobenius map

ϕp : V (2) ∧ THH(BP 〈2〉)→ V (2) ∧ THH(BP 〈2〉)tCp

is (2p2 + 2p− 3)-coconnected. This provides the starting point to compute

V (2)∗THH(BP 〈2〉)hCpn and V (2)∗THH(BP 〈2〉)tCpn+1

by an inductive argument. Passing to the limit, one gets to V (2)∗THH(BP 〈2〉)hS1

and V (2)∗THH(BP 〈2〉)tS1

. One can then compute the maps

can, ϕhS
1

p : V (2)∗THH(BP 〈2〉)hS1 → V (2)∗THH(BP 〈2〉)tS1

defining TC and prove Theorem 1.
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elliptic cohomology, arXiv:2204.05890.

[2] Ch. Ausoni, J. Rognes, Algebraic K-theory of topological K-theory, Acta Math. 188 (2002),
no. 1, 1–39.

[3] J. Hahn, D. Wilson, Redshift and multiplication for truncated Brown-Peterson spectra, to
appear in Annals of Mathematics.

[4] J. Rognes, Algebraic K-theory of finitely presented ring spectra (2000),
https://www.mn.uio.no/math/personer/vit/rognes/papers/red-shift.pdf .

https: //www.mn.uio.no/math/personer/vit/rognes/papers/red- shift.pdf


Non-Commutative Geometry and Cyclic Homology 2051

A bicategorical interpretation for crossed products and
Cuntz-Pimsner algebras

Ralf Meyer

(joint work with Suliman Albandik, Alcides Buss, Camila Fabre Sehnem, and
Chenchang Zhu)

Many interesting C*-algebras are defined as a crossed product for a group action on
a C*-algebra. Here an action of a groupG on a C*-algebraA is a homomorphism α
from G to the automorphism group of A. For various purposes, we would like to
consider more general group actions. For instance, in the study of the Farrell–Jones
conjecture, a key tool are group actions up to homotopy, where the homomorphism
condition αgαh = αgh is replaced by a homotopy, and higher homotopies as well.
These higher homotopies may be encoded succinctly by a principal bundle over
the classifying space BG of G with fibre A. A drawback of these actions up to
homotopy is that there is no way to define a crossed product C*-algebra for them.
How can we generalise group actions so that the crossed product C*-algebra may
still be defined? I have studied this question and its ramifications for several years,
with various coauthors.

It is useful to start from the crossed product B = A⋊G and observe some extra
structure on it. Namely, it is graded by the group G. View A⋊G as a completion
of the space of finitely supported functions G→ A and let Bg ⊆ B be the subspace
of functions supported in the singleton {g}. This is a closed subspace of B, and the
*-algebra structure on B is defined so that Bg ·Bh ⊆ Bgh and B∗

g = Bg−1 . When
we remember only the Banach spaces Bg with the multiplication and involution
maps that they inherit from B, then we get a Fell bundle. Given a Fell bundle
(Bg)g∈G, the direct sum

⊕
Bg carries a canonical *-algebra structure, and the

C*-completion of
⊕
Bg is the analogue of the crossed product for a Fell bundle.

Thus we may view Fell bundles as generalised group actions. Here the C*-algebra
on which the action takes place is the unit fibre A :=Be for the unit element e ∈ G.

Actually, it is better to view Fell bundles as generalised partial actions, where
a partial action of G on A only gives isomorphisms between ideals in A, not on A
itself. Each fibre Bg becomes a Hilbert A-bimodule using the multiplication maps
Be×Bg → Bg, Bg×Be → Bg and the inner products x∗y, xy∗ ∈ Be for x, y ∈ Bg.
Such a Hilbert bimodule gives a Morita–Rieffel equivalence between the two-sided
ideals in A that are spanned by the inner products x∗y and xy∗, respectively. That
is, it is a partial Morita–Rieffel equivalence on A. A Fell bundle is called saturated
if these ideals are equal to A for all g ∈ G. Then each Bg is a Morita–Rieffel
self-equivalence of A. The multiplication maps Bg×Bh → Bgh in the Fell bundles
are a crucial ingredient, which we should not forget. To encode these as well, we
consider a bicategory that has C*-algebras as objects, Hilbert bimodules as arrows,
and bimodule maps that are isometric for both inner products as 2-arrows. The
composition of arrows is given by the balanced tensor product of Hilbert bimodules.
A bicategory homomorphism from G, viewed as a bicategory to this bicategory
of Hilbert bimodules is equivalent to a saturated Fell bundle over G (see [2]).



2052 Oberwolfach Report 35/2022

(The more general bicategory morphisms also allow partial actions, but we must
add some technical extra conditions to the standard definition of a bicategory
morphism to get exactly the right concept. The issue is to recover the involution
of a Fell bundle from the inner products xy∗ and x∗y that it defines. This only
works under extra conditions.)

The crossed product for a group action is defined by a universal property, and
an analogous universal property works for the “crossed product” C*-algebra of a
Fell bundle. This universal property becomes that of a (bi)limit in a suitable bi-
category. To understand such universal properties, we must enlarge our bicategory
because we need *-homomorphisms such as the inclusion of A into its crossed prod-
ucts to be arrows. When we combine *-homomorphisms with Hilbert bimodules,
we get C*-correspondences. A C*-correspondence A← B is a Hilbert B-module E
with a nondegenerate *-homomorphism from A to the C*-algebra of adjointable
operators on E. If we insist on Hilbert bimodules that are full on the left, then the
*-homomorphism has values in the C*-algebra of compact operators on E. Such
C*-correspondences are called proper.

In my earlier papers, I viewed a C*-correspondence as an arrow from A to B,
but I have found since then that it is better to treat it as an arrow from B
to A. A homomorphism from G to the C*-correspondence bicategory is still the
same as a saturated Fell bundle because the equivalences in the C*-correspondence
bicategory are exactly the Morita–Rieffel equivalences and a homomorphism from
a group to a bicategory maps all arrows in G to equivalences.

Now it turns out that the crossed product C*-algebra B of a Fell bundle or
group action satisfies the universal property of a limit in the C*-correspondence
bicategory. The limit is universal for bicategorical cones. Such a cone under the ho-
momorphism (Bg) consists of a C*-correspondence F : Be ← D and isomorphisms
of correspondences ug : Bg ⊗Be F → F for all g ∈ G, satisfying some coherence
conditions. The isomorphism ug is equivalent to a Toeplitz representation Tg of Bg
by adjointable operators on F with the extra nondegeneracy property that the lin-
ear span of Tg(bg) · x for bg ∈ Bg, x ∈ F is dense in F ; this translates to ug being
surjective. It turns out that this is exactly the same as a representation of the
Fell bundle on F by adjointable operators or, in other words, a C*-correspondence
B ← D. It is remarkable that the limit in a bicategory becomes “bigger” than
the original diagram. In contrast, if we take the limit for a group action on a
set, we get the subset of fixed points, while the colimit is the set of orbits. In a
bicategory, however, the cone comes with extra data – the unitaries ug above –
instead of extra conditions.

Now let us go beyond the group case. What is a homomorphism from, say,
a monoid M to the C*-correspondence bicategory, and what would its limit look
like? These questions are mostly answered in [1]. A homomorphism fromM to the
C*-correspondence bicategory is the same as a product system overM . (With the
conventions used in [1], it is a product system over the opposite monoid instead,
and the limit becomes a colimit instead.) Assume that the product system is
proper, meaning that the left actions in the C*-correspondences are by compact
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operators. Then a cone over the diagram with summit D turns out to be the same
as a Cuntz–Pimsner covariant representation of the product system by adjointable
operators on a Hilbert D-module F . Thus the Cuntz–Pimsner algebra of the
product system is a bicategorical limit. If the product system is not proper, then
it is unclear whether a limit exists. Certainly, the Cuntz–Pimsner algebra is not a
limit any more.

Already the case of the monoid of natural numbers is interesting. In this case,
a homomorphism or product system is determined by a single C*-correspondence
E : A← A. Many interesting C*-algebras are defined as the Cuntz–Pimsner alge-
bra of such a single C*-correspondence. This includes the C*-algebras of (regular)
graphs, (regular) topological graphs, self-similar groups, or self-similar graphs. In
these cases, the C*-algebra A is much simpler than the final C*-algebra, and the
Cuntz–Pimsner algebra definition offers a lot of tools to study it. The case when
the C*-correspondence is not proper is more complicated. The most interesting
aspect in the construction of a Cuntz–Pimsner algebra is the Cuntz–Pimsner co-
variance condition, which only makes sense for an element of A that acts on E by
a compact operator. To get the most interesting Cuntz–Pimsner algebra, Katsura
proposed to ask the Cuntz–Pimsner covariance condition on the largest ideal in A
that acts on E faithfully and by compact operators. This rather careful choice is
not just coming from bicategory theory.

What bicategory theory can explain is the relative Cuntz–Pimsner algebra con-
struction, where we specify the ideal on which we ask the Cuntz–Pimsner covari-
ance condition as part of the data (see [3]). The limit construction for diagrams
is right adjoint to the inclusion of constant diagrams. To get a more general con-
struction, we may consider a larger subcategory of “nice” diagrams and consider
a reflector to that subcategory. The Cuntz–Pimsner algebra carries a canonical
gauge action by the circle group, which is equivalent to a grading by the group
of integers. This grading is always “semi-saturated”, so that it is determined by
its subspaces of degree 0 and 1. These form another C*-algebra B and a Hilbert
bimodule over B, which usually is not saturated. Thus the Cuntz–Pimsner alge-
bra construction, together with the gauge action, may be interpreted as mapping
a C*-correspondence A ← A to a Hilbert bimodule B ← B. Hilbert bimodules
form a subbicategory in the C*-correspondence bicategory. In [3], we also add an
ideal in A to the data to be able to choose the ideal on which the Cuntz–Pimsner
covariance condition is imposed. Then we carefully choose a bicategory of such
decorated self-correspondences and a subbicategory, so that the Cuntz–Pimsner
algebra construction is a reflector to that subbicategory.
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