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Abstract. In this context of wave scattering, both semiclassical analysis and
numerical analysis share the same goal – that of understanding the behaviour
of the scattered wave – but these two fields operate largely in isolation, mainly
because the tools and techniques of the two fields are largely disjoint. In
recent years there have been promising examples of successful collaboration
at the interface of semiclassical analysis and numerical analysis, to the mutual
benefit of both fields. This workshop sought to capitalise on these successes
by bringing together members of the semiclassical-analysis and numerical-
analysis communities and catalysing activity at this interface.
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Introduction by the Organizers

The scattering and propagation of waves have been studied by mathematicians
for many years. This activity has been motivated by a plethora of applications in
science and industry, many involving waves in the mathematically-difficult high-
frequency limit. Semiclassical analysis (SCA), as a branch of microlocal analysis,
rigorously analyses partial differential equations with large (or small) parameters.
In the context of high-frequency wave scattering, SCA seeks to describe precisely
the extent to which the dynamics of scattered waves is influenced by the scattering
of classical Newtonian point particles in the same geometry; this relationship is
a version of the correspondence principle of quantum mechanics. On the other
hand, the goal of numerical analysis (NA) in this context is to design numerical
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methods for computing the scattered wave that are accurate, efficient, and robust,
and prove theorems guaranteeing these properties.

This workshop sought to capitalise on recent successful collaborations at the
interface of SCA and NA, to the mutual benefit of both fields, by bringing together
members of the SCA and NA communities and catalysing activity at this interface.

The first day consisted of three introductory talks on NA (given by Simon
Chandler-Wilde, Andrea Moiola, and Martin Gander), aimed primarily at the au-
dience members from the SCA community, and 3 introductory talks on SCA (given
by Jeffrey Galkowski, Maxime Ingremeau, and Dean Baskin), aimed primarily at
the audience members from the NA community.

A key question in the NA wave problems is: what are appropriate bases in which
to represent Helmholtz solutions at high frequency? Correspondingly, a large num-
ber of talks touched on aspects of this question. Hongkai Zhao described bounds
on the approximate separability of the Helmholtz Green’s function in free space,
giving lower bounds on the number of degrees of freedom required to approximate
Helmholtz solutions. Two complementary talks by David Lafontaine and Markus
Melenk showed that the hp-finite-element method (hp-FEM) (a method based on
approximation using piecewise polynomials of increasing degree on meshes with
decreasing meshwidth) does not suffer from the pollution effect (i.e., is quasi-
optimal with a choice of the number of degrees of freedom ∼ kd, where k is
the wavenumber and d is the dimension). There were then several talks on the
design/use of problem-adapted bases for the Helmholtz equation: the talk by
Théophile Chaumont-Frelet described a new method using coherent states in a
least-squares framework to solve Helmholtz equation, needing only ∼ kd−1/2 de-
grees of freedom. Melissa Tacy discussed, from an SCA point of view, the design
of such problem-adapted bases using ideas from harmonic analysis. Fatih Ece-
vit described the state-of-the-art in hybrid asymptotic methods for scattering by
smooth strictly convex obstacles; these methods are based on the Melrose–Taylor
parametrix for such scattering problems, and Oana Ivanovici described new results
describing the influence of diffraction on dispersive estimates for solutions to the
wave equation in the same context.

One established common area of interest between SCA and NA is in the study of
resonances, often using complex scaling/perfectly-matched layers to approximate
the “outgoing” radiation condition. Anne-Sophie Bonnet-Ben Dhia focused on
these questions in the context of wave guides, and, in particular, new questions
about reflectionless modes. Monique Dauge and Zöıs Moitier focused on resonances
in the classic setting of transmission by a penetrable obstacle, but now also covering
the topical case of negative-index materials. Stefan Sauter presented new results on
localised Helmholtz solutions created by penetrable obstacles varying on the scale
of the wavelength. Laurence Halpern and Jeffrey Rauch described the resolution
of long-standing open questions about stability of perfectly-matched layers for
Maxwell’s equations in the time domain.

Another use of absorbing boundary conditions (such as perfectly-matched lay-
ers) is in domain-decomposition methods, and the talk of Thomas Beck described
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results on the use of impedance boundary conditions in the context of a hierarchical
non-overlapping domain-decomposition method.

A theme running through several talks was that of integral equations: Carolina
Urzúa-Torres discussed space-time boundary integral equations for the wave equa-
tion, Charles Epstein discussed boundary integral equations for time-harmonic
Maxwell’s equations in the context of superconductors, Stéphanie Chaillat de-
scribed simulating underwater explosions via boundary-element methods coupled
with finite-element methods, and Martin Costabel presented the first numerical-
analysis of the popular Discrete Dipole Approximation method (involving volume
integral equations).

Whilst the majority of the talks concerned direct scattering problems (where the
task is to find the scattered wave given the obstacle and incident wave), Leonardo
Zepeda-Nunez showed that the inverse Liouville scattering problem is asymptot-
ically equivalent to the generalized inverse Helmholtz scattering problem in the
high-frequency regime.

Finally, two talks dealt with novel problems related to numerical analysis arising
from applications from mathematical physics. Clotilde Fermanian-Kammerer dis-
cussed the issues involved with dimension-reduction for complex quantum systems
by splitting into weakly interacting subsystems. Alexander Strohmaier and Alden
Waters discussed recent work on the analysis of the celebrated Casimir effect,
which permits numerical analysis of Casimir energies via the Boundary Element
Method.

Acknowledgement: The workshop organizers acknowledge the support of the MFO
for D. Obovu and J. Zou under the “Oberwolfach Leibniz Graduate Students”
program and the support of the Simons Foundation for B. Engquist under the
“Simons Visiting Professors” program.
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Abstracts

Numerical analysis at the semiclassical analysis/numerical analysis
interface: issues and case studies

Simon Chandler-Wilde

(joint work with Euan Spence)

1. Introduction

This is the first of three talks that kicked off this programme, introducing issues
and problems at the interface between semiclassical analysis (SCA) and numerical
analysis (NA) from the NA side, and exhibiting opportunities at the SCA/NA
interface through case studies.

1.1. The model problem. We focus on a model problem of obstacle scattering
in time-harmonic acoustics. Let Ω− ⊂ Rd (d ≥ 2) be a bounded Lipschitz open
set (the obstacle) such that Ω := Rd \ Ω− is a connected Lipschitz domain. The
scattering problem we consider is: given k > 0 (the wavenumber) and an incident
plane wave uI(x) := eikx·d, travelling in the direction of the unit vector d, find
u ∈ C2(Ω) ∩H1

loc(Ω) such that

(1) ∆u+ k2u = 0 in Ω, u = 0 on Γ := ∂Ω,

and such that the scattered field uS := u − uI satisfies the standard Sommerfeld
radiation condition (SRC)

∂ru
S(x) − ikuS(x) = o

(
r(1−d)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r.

Both SCA and NA seek to understand u, and solution operators, for the above
problem. The key NA goal is: compute u for fixed but arbitrarily large k, to
arbitrarily high accuracy, as efficiently as possible.

1.2. The Galerkin method. The standard Galerkin method (GM) for solving
the above problem starts from a variational formulation: find v ∈ H (some complex
Hilbert space) such that

(2) a(v, w) = F (w) ∀w ∈ H,
where a(·, ·) and F (·) are, respectively, some continuous sesquilinear form and
continuous anti-linear functional on H. We choose a sequence (HN )∞N=1 of finite
dimensional subspaces of H, and, for each N ∈ N, seek vN ∈ HN such that

(3) a(vN , wN ) = F (wN ) ∀wN ∈ HN .

To solve our model problem by the GM there are three choices to make:

i) The variational formulation, notably whether to use a domain-based for-
mulation or a boundary-based formulation; see §2 below.

ii) The choice for HN . We discuss classical piecewise-polynomial (finite ele-
ment) subspaces in §3; choices adapted to (1) are discussed in the articles
by Ecevit, Chaumont-Frelet, and Moiola in this volume.
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iii) How to solve the linear system associated to (3); see the discussion in the
article by Gander.

2. Variational formulations

2.1. Domain-based. The standard domain-based variational formulation is set
in a bounded Lipschitz domain ΩR with Ω− ⊂ ΩR ⊂ Ω (commonly ΩR := Ω∩BR,
where BR := {x ∈ Rd : |x| < R}, for some R > 0). The unknown is v := u|ΩR ∈
H := H1

0 (ΩR), where H
1
0 (ΩR) is the closure in H1(ΩR) of DR := {φ|ΩR : φ ∈

C∞
0 (Ω)}. To obtain (2) multiply the Helmholtz equation (1) by w ∈ DR and

integrate by parts. This gives (2) for w ∈ DR, so, by density, for all w ∈ H, where

a(v, w) :=

∫

ΩR

∇v · ∇w̄ − k2vw̄ −
∫

ΓR

DtNk(γv)γw̄ ds,(4)

F (w) :=

∫

ΓR

(
∂nu

I −DtNk(γu
I)
)
γw̄ ds ∀v, w ∈ H,

γ : H1(ΩR) → H1/2(∂ΩR) is the standard trace operator and ΓR := ∂ΩR \ Γ
is the exterior boundary of ΩR. DtNk denotes the exact Dirichlet to Neumann
(DtN) map for the domain Ω+

R := R
d \ ΩR ∪ Ω− exterior to ΓR. Thus, for g ∈

H1/2(ΓR), DtNkg = ∂nu, where u ∈ C2(Ω+
R) ∩ H1

loc(Ω
+
R) is the unique solution

to the Helmholtz equation (1) in Ω+
R that satisfies the SRC and u = g on ΓR. If

ΓR = ∂BR the action of DtNk can be calculated by separation of variables, but,
even when ΓR = ∂BR, it can be attractive, for efficiency, to approximate DtNk

by a local absorbing boundary condition approximating the SRC, the simplest of
which is the impedance boundary condition1

(5) ∂nu− iku = 0 on ΓR,

or to approximate DtNk using PML (complex scaling in a layer around ΩR with
u = 0 on the outer boundary); see [7] and the references therein.

2.2. Boundary-based. Alternatively one can derive a variational formulation (2)
via a boundary integral equation (BIE) formulation. The so-called direct route to
a BIE is Green’s representation theorem [2, Thm. 2.21], that, for x ∈ Ω,

uS(x) = −
∫

Γ

(
Φ(x, y)∂nu

S(y)− ∂n(y)Φ(x, y)γu
S(x)

)
ds(y)

= −
∫

Γ

(
Φ(x, y)∂nu

S(y) + ∂n(y)Φ(x, y)u
I(x)

)
ds(y),

where we’ve used the boundary condition (1) to obtain the 2nd expression, and
Φ(x, y) is the Helmholtz fundamental solution, Φ(x, y) = exp(ik|x−y|)/(4π|x−y|)
for d = 3. Taking Dirichlet, Neumann, or impedance traces in the above equation
gives a BIE (see, e.g., [2, §2.5, 2.6]), in operator form

(6) A∂nu
S = f,

1Note that (1) with the SRC replaced by (5) is a classic NA model problem.



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2519

where A is a linear combination of boundary integral operators (BIOs) and the
identity that is a bounded linear operator on some Hilbert spaceH (H = H−1/2(Γ)
and L2(Γ) are common choices). This leads to (2) with v = ∂nu

S and a(v, w) :=
(Av,w)H, F (w) := (f, w)H, where (·, ·)H is the inner product on H.

3. Piecewise polynomial spaces HN for FEM/BEM

The standard NA choice for HN is a space of piecewise polynomials. We construct
on the bounded domain G (G = ΩR or Γ) a meshM, a finite collection of relatively
open disjoint elements τ ⊂ G, such that G = ∪τ∈Mτ . The standard setup is
that each τ is the image of a fixed reference element R under a diffeomorphism
χτ : R → τ (standard choices for R are a unit cube or a unit simplex, e.g., [9]).
We choose p ∈ N∪{0}, denote by Pp the set of polynomials of (total or coordinate)
degree ≤ p on R (e.g., [9]), and define HN to be the set of wN : G→ C such that,
for each τ ∈ M, wN |τ = P ◦ χ−1

τ , with P ∈ Pp. Without further constraint the
functions in this space HN are, generically, discontinuous at the boundary of each
τ . If needed to ensure HN ⊂ H (e.g., if H = H1

0 (ΩR)) we also require that each
wN ∈ C(G). We term the GM (3) with this HN the finite element method (FEM)
when G = ΩR, the boundary element method (BEM) when G = Γ.

This construction is made for each N ∈ N. With the hope of achieving that
the GM solution vN → v it is standard to require that i) h := max diam(τ) → 0
as N → ∞ (this termed the h-FEM/BEM); or ii) p → ∞ (p -FEM/BEM); or
iii) h → 0 and p → ∞ simultaneously (hp -FEM/BEM). Crucial (and this is
very much an endeavour at the SCA/NA interface) are sharp bounds for the best
approximation error minwN∈HN ‖v − wN‖H as a function of Ω, k, h and p. By
the Whittaker-Nyquist-Shannon criterion we expect that dim(HN ) ∼ km, where
m is the dimension of G (m = d if G = ΩR, = d − 1 if G = Γ) should be
necessary and sufficient to ensure minwN∈HN ‖v−wN‖H remains small as k → ∞.
That G is lower dimensional is a significant advantage for the boundary-based
formulation, but the linear system associated to (3) is dense rather than sparse as
in the domain-based formulation.

4. NA of the Galerkin method

The major goal in the NA of a particular Galerkin method is to prove quasi-
optimality, that, for some constant Cqo > 0 independent of N ,

(7) ‖v − vN‖H ≤ Cqo min
wN∈HN

‖v − wN‖H,

at least for all sufficiently large N , where v and vN are the solutions of (2) and
(3), respectively. The standard framework where this holds is where a(·, ·) is both
continuous and coercive, i.e., for constants Ccont, Ccoer > 0,

(8) |a(u,w)| ≤ Ccont‖u‖H‖w‖H and |a(w,w)| ≥ Ccoer‖w‖2H ∀u,w ∈ H.
By Céa’s lemma (an extension of Lax-Milgram), it follows from (8) that (3) has
exactly one solution vN ∈ HN for all N ∈ N and (7) holds with Cqo = Ccont/Ccoer.
One reason why the FEM for Helmholtz is “hard” from an NA perspective is
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that a(·, ·), given by (4), is not coercive; if w vanishes on ΓR then a(w,w) =
‖∇w‖2L2(ΩR) − k2‖w‖2L2(ΩR) whereas ‖w‖2H = ‖∇w‖2L2(ΩR) + ‖w‖2L2(ΩR).

5. Case studies at the SCA/NA interface

We finish with three examples of work at this interface.

5.1. Hybrid NA-asymptotic methods. Consider our model problem when Ω−

is C∞ and strictly convex. Melrose and Taylor [11] through SCA methods studied
the k → ∞ asymptotics of ηslow(x) := k−1∂nu(x)/e

ikx·d, for x ∈ Γ, especially
near shadow boundaries. Combining these results with NA, Dominguez, Graham
and Smyshlyaev [5] showed, in 2D, that a k-dependent mesh and dim(HN ) ∼ k1/9

keeps ‖ηslow − vN‖L2(Γ) small as k → ∞, where vN is a GM solution to a BIE
formulation; this is improved to kε, ∀ε > 0, in [6], and see the article by Ecevit.

5.2. “Pollution” in FEM/BEM. If a(·, ·) is only compactly perturbed coercive
(see, e.g., [3, §2.2]), then, provided (2) is uniquely solvable, (7) holds for N ≥ N0,
for some sufficiently large N0, but how do Cqo and N0 depend on k? To control
minwN∈HN ‖v−wN‖H, dim(HN ) ∼ kd is sufficient for h-FEM, but dim(HN ) ≫ kd

is needed for (7) with Cqo independent of k, the so-called “pollution effect” [1].
For h-BEM there is no pollution if Ω is C∞ and non-trapping [8]. Similarly, (7)
holds for hp-FEM/BEM with Cqo independent of k provided p ∼ log k; see [10, 7]
and the references therein, and the articles by Lafontaine and Melenk.

5.3. k-dependence of BIOs. A great SCA/NA question is how do the condition
numbers cond(A) := ‖A‖‖A−1‖ of the BIOs A arising in (6) depend on k (and Ω),
and how does this translate to discretisations of A? A recent review is [4, §6.5].
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Non-polynomial methods for the Helmholtz equation

Andrea Moiola

Classical numerical schemes such as the finite and the boundary element methods
(FEM and BEM) approximate the solutions of boundary value problems (BVPs)
with piecewise-polynomial functions. On the other hand, several schemes that use
non-polynomial basis functions have been developed. This talk surveys some of
these methods in the case of the homogeneous Helmholtz equation (HHE) ∆u +
k2u = 0 with k > 0. (Many of the methods and the results are available also for
vector problems, i.e. for linear time-harmonic electromagnetic and elastic waves.)

Motivation. The use of polynomial approximating functions is appealing because
polynomials (i) are easy and cheap to manipulate and evaluate, both analytically
and on a computer, (ii) can approximate any target function u, with rates that
only depend on the regularity of u and that are very well understood. On the other
hand, piecewise-polynomial spaces are typically not adapted to the special PDE
under consideration: e.g. the same discrete spaces are used for approximating both
Helmholtz and Laplace BVPs. Non-polynomial approximating functions allow
to construct discrete spaces that are better adapted to the PDE, with the final
goal of achieving better accuracy with fewer degrees of freedom (DOFs). This is
particularly relevant for high-frequency problems, where classical methods often
fail to deliver acceptable accuracy at affordable cost.

Trefftz methods. Trefftz methods are numerical methods that use basis func-
tions that, in each element of a mesh, are particular solutions of the PDE to be
approximated. They can be of Galerkin or collocation type. Since the HHE does
not admit non-trivial polynomial solutions, Trefftz methods for this equation nec-
essarily use non-polynomial basis functions. A survey of Trefftz methods for the
HHE is in [4]. Typical Trefftz basis functions (in 2D, for simplicity) [4, §3] are:

• plane waves (PWs) eikd·x, where d ∈ R2 is a unit vector;
• circular waves, or Fourier–Bessel functions, Jℓ(kr)e

iℓθ , with (r, θ) the polar
coordinates in the plane, Jℓ the first-kind Bessel function, ℓ ∈ Z;

• angular waves, with the same expression of circular waves but ℓ /∈ Z;

• fundamental solutions and multipoles H
(1)
ℓ (kr)eiℓθ;
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• evanescent plane waves (EPWs) eikd·x, where d ∈ C2 is a complex vector
with d ·d = 1 (they propagate in direction ℜd and their amplitudes decay
exponentially in the orthogonal direction);

• “waveband” Herglotz functions
∫ ϕ2

ϕ1
eikx·(

cosϕ
sinϕ)dϕ.

Analogue bases exist for 3D problems. PWs are usually preferred because of
their simplicity and the low evaluation cost (they are just complex exponentials).
Moreover, it is possible to compute integrals of (products of derivatives of) PWs
over polytopes analytically [4, §4.1], greatly reducing the need for quadrature rules,
which are very expensive for high-frequency problems.

Trefftz-DG. Differently from polynomials, Trefftz basis functions cannot be eas-
ily matched on interfaces between mesh element. Thus Trefftz methods typically
employ discrete functions that are discontinuous across elements: continuity and
boundary conditions are imposed weakly by the variational formulation in a dis-
continuous Galerkin (DG) setting. Numerous variations of this approach have been
developed, see [4, §2]. Some of these Trefftz-DG methods are provably well-posed
and quasi-optimal for any choice of Trefftz discrete space, as a consequence of
coercivity in a skeleton norm. The ultra-weak variational formulation (UWVF) of
[2] is a Trefftz-DG method originally written as a domain-decomposition scheme.

Approximation. A key ingredient in the design and the analysis of a Trefftz
method is the ability of the discrete space to approximate general Helmholtz so-
lutions. An explicit integral operator (Vekua operator) maps Helmholtz solutions
to harmonic functions on the same domain and circular/spherical waves to har-
monic polynomials. This allows to deduce error bounds for the approximation of
Helmholtz solutions by circular/spherical waves from similar results for the ap-
proximation of harmonic functions by harmonic polynomials. Together with the
Jacobi–Anger expansion, this implies error bounds for the approximation by PWs,
with convergence rates in the element size and in the number of PWs (h and p
convergence). The decay of the error in the number of DOFs is faster than the
analogous one for polynomial spaces. This is because PWs are a more specialised
tool: they are able to approximate only Helmholtz solutions and very good at this.

Instability. All Trefftz methods for the HHE, in particular those based on PWs,
suffer from a strong instability: when the discrete space is enriched, numerical
cancellation in machine arithmetic prevents from obtaining the theoretical conver-
gence rates. This is the main obstacle that so far prevented the widespread use of
Trefftz schemes and is usually blamed on the ill-conditioning of the linear system
to be solved. Several recipes have been devised to tackle this instability, [4, §4.3].
In [6] it is shown that it is impossible to approximate general Helmholtz solutions

in the unit disc with small-coefficient representations
∑M

m=1 vmeikdm·x in any PW
basis, thus cancellation in computer arithmetic computations is unavoidable.

Evanescent PWs. A possible solution to the instability of Trefftz schemes is
the use of judiciously chosen evanescent plane waves as basis functions. In [6], it
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is proved that all Helmholtz solutions on the unit disc are continuous superposi-
tions of EPWs u(x) =

∫
{d∈C2,d·d=1}

v(d)eikd·xdd and the coefficient function v in

this representation is bounded in a weighted L2 norm. Finite-dimensional EPW
spaces are constructed according to a rule coming from sampling theory and it is
shown numerically that this allows to overcome the instability barrier and obtain
arbitrarily accurate and robust approximations in machine arithmetic.

Partition of unity method (PUM). A way (different from DG) to enforce
inter-element continuity is to use as basis functions products between PWs (or
other Helmholtz solution with good approximation properties) and partition of
unity functions, such as linear or bilinear FEM bases. This provides non-Trefftz
H1-conforming methods and allows to use standard variational formulations, [5].

MFS. Trefftz schemes have been often used as “meshless methods”, i.e. using
basis elements that are solution of the given PDE over the whole computational
domain Ω, [4, §2.4]. A special case is the “method of fundamental solutions”

(MFS), where u(x) is approximated by
∑#DOFs

j=1 ajH
(1)
0 (k|x−yj |), with nodes yj

in the complement of Ω. The MFS is simple and can be highly accurate, but the
choice of the nodes yj is delicate and strongly affects stability and accuracy, [1].

Quasi-Trefftz. For problems with smooth variable coefficients, Trefftz discrete
spaces cannot be constructed in practice. Quasi-Trefftz schemes have been devised:
the basis functions are approximate solution of the PDE, i.e. they are solution “up
to some order” in Taylor-polynomial sense. Different types of quasi-Trefftz meth-
ods for Helmholtz have been designed, involving polynomials, modulated plane
waves and “generalised plane waves” (exponentials of polynomials).

HNA-BEM. BEMs rephrase Helmholtz BVPs as boundary integral equations
(BIEs) and approximate some traces of the BVP solution on the domain boundary.
Non-polynomial BEMs approximate scattering problems by exploiting geometric
optics (GO) and the geometric theory of diffraction (GTD), which give information
on the solution in the high-frequency limit k → ∞. These methods are thus called
“hybrid numerical-asymptotics” (HNA). GO and GTD allow to write scattering
problem solutions as sum of waves with different amplitudes and phases: u(x) ∼∑J

j=1 vj(x)e
ikφj (x). HNA methods use the phases eikφj(x) provided by GO/GTD

and approximate the amplitudes vj(x) with piecewise polynomials.
For instance, let Ω− be a sound-soft convex polygonal scatterer and choose

a BIE whose solution (to be approximated) is the normal derivative ∂nu of the
acoustic field. On a side of Ω− of length L, ∂nu(x(s)) = Ψ(s)+v+(s)eiks+v−(L−
s)e−iks, where Ψ is a known GO term and x(s) is the arclength parametrisation
of the side. The functions v± are singular only at s = 0. Piecewise-polynomial
spaces on meshes graded towards the polygon corners give exponential-in-DOF
convergence and a cost that, in practice, is independent of the wavenumber.

HNA-BEMs deliver excellent accuracy and efficiency, backed by a rigorous the-
ory, but their scope of application is still quite limited. An excellent survey of
HNA-BEM for Helmholtz scattering problems in two dimensions is [3].
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[5] J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and
applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), 289–314.

[6] E. Parolin, D. Huybrechs, A Moiola, Stable approximation of Helmholtz solutions by evanes-
cent plane waves, arXiv:2202.05658 (2022).

Iterative Solvers for Helmholtz Problems by Domain Truncation

Martin J. Gander

(joint work with Hui Zhang)

My presentation introduced the participants from semi-classical analysis to the
numerical analysis of iterative solvers for time harmonic wave propagation. I
started with two problems related to a given matrix A ∈ Rn×n: solving linear
systems, and computing eigenvalues and eigenvectors,

Au = f , Aφj = λjφj , j = 1, 2, . . . , n.

The first problem is mathematically trivial, one can use Gaussian Elimination
(1798), which leads to a factored form LUu = f , L and U lower and upper trian-
gular, and one then solves the linear system in two steps: Lv = f , and Uu = v.
The computational cost is O(n3) for the LU-factorization, and O(n2) for the tri-
angular solves, and the computation finishes in a finite number of steps. There is
no such method to compute in a finite number of steps the eigenvalues and eigen-
vectors when n > 4 (Galois theory for polynomials of degree> 4). Nevertheless we
can obtain the result also in O(n3), like for solving the linear system of equations,
because there is a very efficient iterative method, the QR algorithm, for solving
the eigenvalue problem approximately!

When solving the prototype problem for time harmonic wave propagation,
namely the Helmholtz equation

(1) ∆u+ ω2u =
∂2u

∂x2
+
∂2u

∂y2
+ ω2u = f,

a finite difference discretization (based on Taylor expansions with step size h to
approximate the derivatives) leads to a linear system with the equations for uij ≈
u(xi, yj) at each grid point (xi, yj), xi = ih, yj = jh, given by

(2) −(ui,j−1+ui−1,j−4ui,j+ui+1,j+ui,j+1)+ω
2h2uij = h2fij , fij := f(xi, yj).

The complexity of direct solvers based on Gaussian elimination for such problems
is shown in Fig. 1, theoretically and also running Matlab on my Laptop.
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LU cost d = 1 d = 2 d = 3

using banded O(n) O(n2) O(n7/3)

using sparsity O(n) O(n3/2) O(n2)

dense matrix O(n3) O(n3) O(n3)
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Figure 1. Theoretical and measured complexities of sparse di-
rect LU-factorizations for Helmholtz finite difference matrices.

Since iterations made the hard eigenvalue problem as easy as the linear system,
one can wonder if one can solve the discretized Helmholtz problem (2) faster by
iteration than by Gaussian elimination. Basic iterative methods for linear systems
split the matrix A into two other matrices, A =M−N ,M invertible, and starting
with u0 ∈ Rn iterate for k = 0, 1, 2, . . .

(3) Muk+1 = Nuk + f .

Jacobi’s Method (1845) uses M := D = diag(A), N = D −A, which leads to

(4) uk+1 = D−1(D −A)uk +D−1f = uk +D−1(f −Auk),

and thus the error ek := u− uk satisfies

(5) ek+1 = ek −D−1Aek = (I −D−1A)k+1e0.

The cost is O(n) per iteration for Laplace/Helmholtz problems, and one can show
for Laplace problems one needs O(n2) iterations for convergence and thus O(n3)
overall cost for such sparse problems, worse than the direct solvers in Fig. 1.

To improve this, a Krylov method finds a better residual polynomial pk+1,

(6) ek+1 = pk+1(D
−1A)e0

with pk+1(D
−1A) much smaller than (I−D−1A)k+1 in (5). For example Conjugate

Gradients (CG) finds a pk that minimizes the energy norm ||ek||D−1/2AD−1/2 , and
GMRES minimizes ||D−1(f−Auk)||2. For Laplace type problems, CG reduces the
number of iterations to O(n), so we still have O(n2) overall cost, and for Helmholtz
problems convergence is much worse, see [1].

Another improvement is multigrid, which uses a damped Jacobi iteration

(7) uk+1 = uk + γD−1(f −Auk), γ ∈ (0, 2)

to remove high frequency error components very efficiently for Laplace problems
and γ = 2

3 . One then performs a few damped Jacobi steps on the fine grid, and
once the error is smooth corrects it on a coarser, cheaper grid which now can
well represent the smooth error. Doing this recursively, the number of iterations
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Figure 2. From left to right: Block Jacobi unknowns on the grid;
general domain decomposition of the square into 9 subdomains;
block L and U factors giving an optimal Schwarz method.

needed becomes O(1) for Laplace problems, and thus the overall solution cost is
now O(n), much better than the direct solvers in Fig. 1, but again for Helmholtz
problems multigrid does not work at all [1].

One can finally use a better preconditioner M in the splitting A =M −N , in-
stead ofM = D. For example Gauss-Seidel usesM = tril(A), the lower triangular
part, but this also requires O(n2) iterations for Laplace problems already. Using
M = LU from Gaussian elimination gives e1 = (I − (LU)−1A)e0 = 0, optimal

convergence in one step! Thus approximate LU -factorizations A ≈ L̃Ũ are inter-
esting, but also fail for Helmholtz [1]. One can also use preconditioning with a
Block Jacobi method,

(8)

[
A11

A22

] [
u1

k+1

u2
k+1

]
= −

[
A12

A21

] [
u1

k

u2
k

]
+

[
f1

f2

]
,

which gives the parallel Schwarz method of Lions (1988), see Fig. 2 (left),

(9)
(∆ + ω2)u1

k+1 = f1 in Ω1, (∆ + ω2)u2
k+1 = f2 in Ω2,

u1
k+1 = u2

k on Γ1, u2
k+1 = u1

k on Γ2,

that needs also O(1) iterations for Laplace problems if the overlap does not de-
pend on the mesh parameter h, like multigrid. Block Gauss-Seidel would just be
alternating Schwarz, using in the last line of (9) u1

k+1.
Schwarz Methods by Domain Truncation use better transmission conditions

than the Dirichlet values in (9). For a 3×3 decomposition as for example in Figure

2 (second from the left), with Ω̃ij non-overlapping, and Ωij enlarged overlapping
subdomains, the method, also called optimized Schwarz method, is

(10)
(∆ + ω2)uk+1

ij = f in Ωij , i, j = 1, 2, 3,

Biju
k+1
ij = Biju

k
lm on Ωij ∩ Ω̃lm l,m = 1, 2, 3, l,m 6= i, j.

The transmission operators Bij are optimized based on the intuition that the
subdomain solution is like a truncated solution part of the global solution, and one
thus either uses absorbing boundary conditions (ABCs, going back to the seminal
work by Engquist and Majda (1977)), or Perfectly Matched Layers (PML) going
back to Beranger (1994). The best possible choice of Bij comes from an exact



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2527

block-LU decomposition, and the sparsity pattern for the 3 × 3 decomposition is
shown in Figure 2 (right). The method then converges in one iteration, like for
the LU-decomposition we saw earlier, but we do not yet understand what these
operators are. If the decomposition was just into strips, the operators would be
the transparent ones involving the Dirichlet to Neumann (DtN) operators, see [2].
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A short introduction to semiclassical analysis

Dean Baskin, Jeffrey Galkowski, Maxime Ingremeau

Semiclassical analysis is a set of techniques designed to study the asymptotic be-
haviour of some partial differential equations with a small parameter ~ > 0. Most
of the time, these equations are linear, and the semiclassical parameter ~ is related
to the typical wavelength of the solutions of the equation. A standard example
of an equation to which semiclassical techniques can be applied is the Helmholtz
equation

−~
2∆u− u = f,

possibly with variable coefficients. In particular, the limit ~ → 0, corresponding
to rapidly oscillating solutions, is very singular.

The aim of this mini-lecture is not to replace a proper course on semiclassical
analysis (which would require much more time), but rather to present the kind of
tools semiclassical analysis can offer (and highlight their interest to the applied
mathematician), as well as to give a flavour of semiclassical proofs. In particular,
the theorems were never presented in their most general version, and the proofs
were rather sketchy. For more precise statements and their proofs, there are many
good references, including [1], [3], [4] and [2, Appendix E].

In the first part of the lecture, J. Galkowski describes the kind of equations
which can be studied using semiclassical analysis, and the kind of results it could
give. He explains the importance of thinking in phase-space R2d , by describing at
the same time a function in position and Fourier space. To do this, it is convenient
to use pseudodifferential operators, which are operators Op~(a) which

• depend on a symbol a(x, ξ) which is a (smooth) function on R2d;
• act on functions on R.

When the symbol a depends only on the x variable, then Op~(a) is just the
multiplication by a. When a is a polynomial in ξ with coefficients independent
of x, then Op~(a) is a differential operator with constant coefficients, obtained by
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replacing each ξj by h
i ∂xj ; more generally, when a depends only on ξ, Op~(a) is a

Fourier multiplier.
For instance, the Helmholtz operator u 7→ −~2∆u− u can be seen as a pseudo-

differential operator with symbol |ξ|2 − 1.
The main properties of pseudodifferential operators are recalled, concerning

their boundedness properties, and how they can be composed, and the properties
of their commutators.

In the second part of the lecture, M. Ingremeau explains how one can tell
that an operator is globally invertible, and find an approximate expression for its
inverse, if its symbol is non-vanishing: this applies for instance to operators like

−~
2∆u+ u,

possibly with variable coefficients.
When trying to solve a partial differential equation like

(1) P~u = f,

it is often the case that the symbol of P~ vanishes, so that P~ can only be inverted
in some region of phase-space where the symbol is non-zero: this is the content of
microlocal ellipticity. To solve an equation like (1), we must thus ensure that f is
localized in the region of phase-space where P~ is invertible. The correct notion of
localization in phase-space is that of wavefront set, which measures, around every
point x, the set of directions ξ in which the function f can oscillate at scales ≈ h.

In the last part of the lecture, D. Baskin presents theorems about the
wavefront set of a solution of a partial differential equation.

If u is a solution of

P~u = 0,

where P~ is a pseudodifferential operator with symbol p, then the wavefront set of
u must be included in {(x, ξ) ∈ R2d; p(x, ξ) = 0}.

A more precise result is the propagation of singularities, saying that the wave-
front set is invariant by the Hamiltonian flow induced by the symbol p.

In other words, imagine that the solution u has some oscillations (at scale ~)
near x0 in the direction ξ0. Suppose you take (x0, ξ0) as initial datas for Newton’s
equation with an energy p, and obtain a trajectory (xt, ξt)t∈R. Then for each
t ∈ R, u has oscillations near xt in the direction ξt.

A precise statement of this result, as well as a sketch of proof, is given in the
case where p = |ξ|2 − 1, so that P~ = −~2∆− 1.
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Why is high frequency Helmholtz equation difficult to solve?

Hongkai Zhao

The minimum number of terms needed in a separable approximation for a Green’s
function reveals the intrinsic complexity of the solution space of the underlying
differential equation. It also has implications for whether low rank structures ex-
ist in the linear system after numerical discretization. The Green’s function for
a coercive elliptic differential operator in divergence form was shown to be highly
separable [1] and efficient numerical algorithms exploiting low rank structures of
the discretized systems were developed. In this presentation we study the approx-
imate separability of the Green’s function of the Helmholtz equation in the high
frequency limit. We show (1) lower bounds based on an explicit characterization
of the correlation between two Green’s functions and a tight dimension estimate
for the best linear subspace to approximate a set of decorrelated Green’s func-
tions, (2) upper bounds based on constructing specific separable approximations,
(3) sharpness of these bounds for a few case studies of practical interest.

Define the Green’s function of the Helmholtz equation

(1) ∆xG(x,y) + k2n2(x)G(x,y) = δ(x− y), x,y ∈ R
d.

The approximate separability of G(x,y) is defined as the following: given two
sets X,Y ⊆ Ω ⊆ Rd and ǫ > 0, there is a smallest N ǫ such that there are
fl(x), gl(y),x ∈ X,y ∈ Y, l = 1, 2, . . . , N ǫ

(2)

∥∥∥∥∥G(x,y) −
Nǫ∑

l=1

fl(x)gl(y)

∥∥∥∥∥
X×Y

≤ ǫ, x ∈ X,y ∈ Y,

where ‖ · ‖X×Y is the norm of some function space to which G, fl, gl belong.
If one views G(x,y) as a family of functions in some function space defined on

X with norm ‖ · ‖X and parameterized by y ∈ Y (the role of x and y can be
reversed), this is related to the Kolmogorov n-width 1 for this family of functions
in the function space. Any linear subspace of the function space that approximates
this family of functions to the tolerance ǫ has a dimension of at least N ǫ and the
space spanned by fl(x), l = 1, 2, . . . , N ǫ is an optimal one.

Our main results [2] are:

• A characterization of the correlation (or angle) between two Green’s func-
tions of the Helmholtz equation in the high frequency limit: there is some
α ≥ 0,

(‖G0(·,y1)‖2‖G0(·,y2)‖2)−1

∣∣∣∣
∫

X

G0(x,y1)G0(x,y2)dx

∣∣∣∣ . (k|y1 − y2|)−α

1Kolmogorov n-width of a set S in a normed space W is its worst-case distance to the best
n dimensional linear subspace Ln:

dn(S,W ) := inf
Ln

sup
f∈S

inf
g∈Ln

‖f − g‖W ,
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as k|y1−y2| → ∞, where α depends on dim(X) and the locations of y1,y2

with respect to X .
• Lower and upper bound estimates for the approximate separability for
the Green’s functions of the Helmholtz equation in the high frequency
limit: for two fixed compact manifolds X,Y with dim(X) ≥ dim(Y ) = s
and α being the smallest number (least decorrelation rate) for any pair
y1,y2 ∈ Y as defined above, one has

N ǫ
k &





k2α, α < s
2 ,

ks−δ, α ≥ s
2 ,

and

N ǫ
k . ks+δ,

as k → ∞ for any δ > 0. Both estimates are sharp if α ≥ s
2 , which

occurs in many practical situations, e.g., X,Y are boundaries (dim(X) =
dim(Y ) = s = 2) of scatterers in three dimensions.

• Explicit estimates for the approximate separability of the Green’s func-
tions of the Helmholtz equation and their sharpness for situations that are
commonly used in practice. These include cases with fixed X,Y , which are
not highly separable, and highly separable cases with k dependent X,Y ,
e.g., the setting for the butterfly algorithm.
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Decompositions that are well adapted to non-constant coefficient PDE

Melissa Tacy

In both numerical and harmonic analysis it is frequently advantageous to express
solutions to PDEs as sum a (or integral) of “simple” component/analysis functions.
For example the Fourier transform

F [u] =

∫
e−i〈x,ξ〉u(x)dx

decomposes u into plane wave components. For a decomposition to be useful
the component functions should be well adapted to the PDE, ideally the com-
ponent functions should solve, or approximately solve, the PDE. This has the
effect of producing sparse decompositions useful in both analysis and numerical
reconstruction.
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When working with constant coefficient PDE the Fourier transform has a num-
ber of natural advantages. For example consider

(1) P (D)u = 0 or P (D)u = small

where P is a differential operator with symbol

p(ξ) =
∑

|α|≤N

cαξ
α.

Approximate solutions, u, to (1) have the property that their Fourier transform
must be supported near the set {ξ | p(ξ) = 0}. Therefore we can choose a set of
component functions that incorporate this geometry. For example if P (D) = −∆−
λ2 a well-adapted set of component functions defined via their Fourier transform
might be allowed to be quite coarse away from |ξ| = λ (as solutions to the PDE
should not include a large contribution from these terms) but should be more
refined near |ξ| = λ. What about non-constant coefficient PDE?

Here we cannot simply use the Fourier transform however we can use some ideas
from microlocal analysis to build well adapted component functions for general
PDE from those adapted to simple constant coefficient equations. One of the early
successes of microlocal analysis was developing a technique turning complicated
PDE into simple ones via an application of a Fourier integral operator FIO. In [1]
Fefferman describes this as “the algorithm of the 70s”. Here we describe it within
the semiclassical context. Suppose u is an approximate solution to a semiclassical
pseudodifferential equation

p(x, hD)u = small p(x, hD)u =
1

(2πh)n

∫
e

i
h 〈x,ξ〉p(x, ξ)u(y)dydξ.

The pseudodifferential calculus tells us that if p(x, ξ) is bounded away from zero,
p(x, hD) is invertible. Therefore good solutions to p(x, hD)u = 0 must be semi-
classically microlocalised near the set {(x, ξ) | p(x, ξ) = 0}. Now suppose that
this set is locally a graph (as is often the case). In the phase space setting we
can define maps that straighten out {(x, ξ) | p(x, ξ) = 0} to become {ξ1 = 0}.
The set {ξ1 = 0} is associated with the very simple PDE, hDx1v = 0. Can we
then quantise any of the phase space maps to work on the level of operators? The
theory of semiclassical FIOs tells that in this case we can. That is we can produce
an operator W so that

hDx1W =Wp(x, hD)

and that (in this case) W is unitary. We now have an algorithm for solving the
non-constant coefficient equation.

(1) First microlocalise to regions where {(x, ξ) | p(x, ξ) = 0} is locally a graph.
It may be necessary to solve on a number of different pieces and later glue
the solutions together.

(2) Produce a semiclassical FIO, W , satisfying hDx1W =Wp(x, hD).
(3) Let v =Wu, then v is a approximate solution to hDx1v = 0.
(4) Solve for v, then invert to find u.
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Figure 1. The FIO converts a general pseduodifferential equa-
tion p(x, hD)u = 0 into the simple differential equation hDx1v =
0.

Let’s see what happens when we combine FIOs with an analysis/synthesis sys-
tem. That is let Λ be a parameter space and φλ an analysing function with analysis
operator

Tλ[v] = 〈v, φλ〉.
Suppose further that we have a synthesis procedure

v(x) =

∫
Tλ[v]φλdµ(λ)

for some suitable measure µ on Λ. Now if we applyW−1 we have (at least formally)

u =

∫
Tλ[v][W

−1φλ](x)dµ(λ).

So we can think of this as a synthesis for u in terms of the functions W−1φλ. If
the φλ functions are well-adapted to hDx1 the resultant functions W−1φλ will be
well-adapted to p(x, hD). This way of thinking about developing component func-
tions is very flexible. There are many systems of functions that are well adapted
to hDx1 . For example either the Fourier transform or the wavelet transform. Any
combination of these can generate component functions well-adapted to p(x, hD)
via an application of a semiclassical FIO. The choice of decomposition will then
depend very much on the features of the system under study. For example the
wavelet type transforms have an advantage (over the Fourier transform) of local-
ity which can be useful when we need to treat inherently local features, such as
boundaries or corners.
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Complex frequency spectra in waveguides: trapped modes, scattering
resonances and reflectionless modes

Anne-Sophie Bonnet-Ben Dhia

(joint work with Lucas Chesnel, Vincent Pagneux)

1. Definition of trapped modes and reflectionless modes

We consider for simplicity the case of a 2D acoustic waveguide occupying the strip
R× (0, 1), with a compactly supported perturbation of velocity. In time-harmonic
regime (e−iωt), the acoustic pressure u satisfies the equations

(1) ∆u+ k2(1 + ρ)u = 0 in Ω and
∂u

∂ν
= 0 on ∂Ω,

where k = ω/c (c being the sound velocity) and ρ ∈ L∞(Ω) is a compactly sup-
ported function. To fix ideas, we suppose that ρ(x, y) = 0 if |x| > 1.

Problem (1) can be considered as an eigenvalue problem where k2 is the eigen-
value and u the eigenfunction. More precisely, one can define several eigenvalue
problems by adding to equations (1) conditions on u at infinity. Let us define two
physically relevant possibilities.

Trapped modes. Trapped modes correspond to solutions of (1) such that u ∈
L2(Ω), u 6= 0. From a spectral point of view, trapped modes correspond to eigen-
values that are embedded in the essential spectrum of the self-adjoint operator
A = −(1 + ρ)−1∆u on L2(Ω) with Neumann boundary conditions. As embedded
eigenvalues, they are both difficult to study and to compute numerically, which
gave rise to a huge literature (see for instance [1]). We denote by T the set of
(real) values of k for which trapped modes exist.

Reflectionless modes. A less usual point of view [2, 3] is to consider a second
family of modes which correspond to real values of k such that (1) has a solution
u 6= 0 which is ingoing on the left-hand side of the perturbation and outgoing on
its right-hand side. This can be formulated as follows:

u(x, y) =
∑

n2π2<k2

A±
n cos(nπy)eiβnx +

∑

n2π2>k2

B±
n cos(nπy)e−βn|x| for |x| > 1

where βn =
√
k2 − n2π2 for n2π2 < k2 and βn =

√
n2π2 − k2 for n2π2 > k2.

If the coefficients A±
n are not all zero, such modes correspond to configura-

tions where an incident wave (superposition of propagating modes) coming from
the left interacts with the perturbation without producing any reflection. As a
consequence, all the energy is transmitted from the left to the right, and the per-
turbation is non detectable, with this experiment, by an observer located far on its
left-hand side. We denote by N the set of (real) values of k for which reflectionless
modes exist.

By definition, if the coefficients A±
n vanish, the above solution is a trapped

mode, so that T ⊂ N .
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An important remark is that, due to energy conservation, trapped modes fre-
quencies can be characterized as real values of k such that (1) has a solution u 6= 0
which is outgoing on both sides of the perturbation. This definition is very sim-
ilar to that of reflectionless modes. The only difference is the behavior of u on
the left-hand side of the perturbation: outgoing for trapped modes, ingoing for
reflectionless modes.

2. Complex-scaling

Classical complex-scaling. A classical method to compute trapped modes is to
introduce a complex scaling [4]. To do that, we consider the following complex-
scaled operator

Aαu = −(1 + ρ)−1

(
α(x)

∂

∂x

(
α(x)

∂u

∂x

)
+
∂2u

∂y2

)

where the complex-scaling function α is defined as follows, for some θ ∈ (0, π/2):

α(x) = 1 if |x| < 1 and α(x) = e−iθ if |x| > 1.

One can show that the spectrum of Aα (still with Neumann boundary condi-
tions) as a non-selfadjoint unbounded operator of L2(Ω), is the (disjoint) union
of a discrete spectrum σdisc(Aα) and an essential spectrum σess(Aα), this latter,
characterized by Weyl sequences, being as follows:

σess(Aα) = ∪n≥0{n2π2 + e−2iθt2; t ∈ R}.
The interest is that now, trapped modes correspond to real isolated eigenvalues of
Aα that can be computed easily:

T = {k|k2 ∈ σdisc(Aα)} ∩R.

In addition, we find some complex discrete eigenvalues that correspond to the
so-called complex scattering frequencies [5].

Conjugate complex-scaling. We use a similar idea to compute reflectionless
modes. But since the behavior of u is different between trapped modes and reflec-
tionless modes on the left-hand side of the perturbation, we modify the complex-
scaling there. More precisely we use two conjugated complex-scaling parameters
on both sides of the perturbation. This leads to define the following operator (still
with Neumann boundary conditions)

Aα̃u = −(1 + ρ)−1

(
α̃(x)

∂

∂x

(
α̃(x)

∂u

∂x

)
+
∂2u

∂y2

)

where the complex-scaling function α̃ is defined as follows:

α̃(x) = α(x) if x > −1 and α(x) = eiθ if x < −1.

Now the essential spectrum is symmetric with respect to the real axis:

σess(Aα̃) =
⋃

n≥0

{n2π2 + e2iθt2; t ∈ R} ∪ {n2π2 + e−2iθt2; t ∈ R}.
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In general (see [2] for pathological counter-examples), the remaining part of the
spectrum is discrete, and reflectionless modes coincide with discrete real eigenval-
ues of Aα̃:

N = {k|k2 ∈ σdisc(Aα̃)} ∩ R.

In addition, we find some complex discrete eigenvalues, which are, for reflectionless
modes, analogous to scattering resonances for trapped modes.

3. Numerical illustrations

For computations, the waveguide is truncated, and a Neumann condition is im-
posed on the artificial boundaries. The effect of the truncation is a discretization
of the essential spectrum. Below are the k-spectra obtained with both classical
and conjugated complex scaling, for θ = π/4, in the case of a rectangular non
penetrable obstacle located in the middle of the waveguide.

The results are as expected from the theory. The branches of essential spec-
trum are clearly identifiable. With classical complex-scaling, there are two real
eigenvalues with k ∈ (0, π) corresponding to trapped modes, that also appear
with conjugated complex-scaling. But for this latter case, there are many other
real eigenvalues, corresponding to reflectionless modes. Note that the existence of
trapped modes is due to the symmetry of the geometry with respect to the hori-
zontal mid-axis of the waveguide. Thanks to the other symmetry, with respect to
the vertical axis, and to the choice of complex conjugated complex-scaling param-
eters, the problem with conjugated complex-scaling is PT -symmetric. This is the
reason of the symmetry of the second spectrum with respect the real axis.
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Stability and Perfection of PML for Maxwell’s Equations on
Rectangular Solids

Laurence Halpern, Jeffrey Rauch

This talk, shared by the two authors, presents some results from our analysis of
Perfectly Matched Layers and Initial Boundary Value Problems in a rectangular
solid Q. The critically important case is Maxwell’s equations with a smaller rect-
angular domain of interest QI containing the supports of the currents and charges,
and smooth absorptions σj(xj) supported in Q \ QI . We presented the following
results.

1. The proof of perfection from [2] in the case that Q = R3 and the coefficients of
the underlying operator are constant on the complement of QI. Though perfection
for such time domain problems is much stated, to our knowledge this is the only
proof of perfection. We show that if the Bérenger layers define a problem that is
at least weakly well posed, then the layer is perfectly matched. The proof uses
three key elements that recur in other contexts. The proof proceeds by Laplace
transform with Laplace transform variable τ . When τ is real, perfection is a
consequence of a conjugation by a change of variable that is real for τ ∈ R+. The
identity of perfection follows for general τ by analytic continuation.

It is notable that perfection follows by an analyticity argument. It is analyticity
in τ that is a consequence of causality. It is not analyticity in x, that is not available
in these hyperbolic problems.

2. An example from [4] is presented showing that the standard Bérenger Layers
have non trivial reflections when the underlying operator has coefficients with non
vanishing derivative in the normal direction at ∂QI . This is done for discontinuous
absorptions by constructing an infinitely accurate geometric optics solution with
a high frequency wave approaching the interface at ∂QI . The geometric optics
solution reveals a non vanishing reflection coefficient one order smaller in 1/k
than the principal reflection of standard absorbing boundary conditions. This
proves that one can not simply apply Bérenger’s plane wave argument to problems
with frozen coefficients. In keeping with the topic of the meeting the two scale
expansions of geometric optics are examples of semiclassical analysis. Qualitatively
similar results hold if it is a jth normal derivative that is discontinuous.

3. In this meeting we announced for the first time our stability theorem for PML
for Maxwell’s equations in the time domain truncated at a rectangular box on which
standard absorbing boundary conditions (ABC) are imposed.

The analysis proceeds by Laplace transform. The key existence step is made for
a carefully constructed boundary value problems for a system of complex Hemholtz
equations. The problem is difficult for several reasons.

First, it inherits difficults of the real Helmholtz equations. For example, the
boundary conditions on the different faces of ∂Q are different. For a second ex-
ample, a weak formulation of (div,curl) type is used because it is adapted to the
ABC. The (div,curl) Dirichlet integral is less positive than the classical Dirichet
form.
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• When τ is complex the Helmholtz problem lacks positivity and symmetry
properties present when τ is real. The estimates involve a subtle dance involving
the real and imaginary parts of an associated quadratic form.

• The quadratic form yields boundary terms that cannot be simply absorbed
by terms of favorable sign. They require a generalizations of trace estimates of
the sort introduced by Jerison and Kenig [5] for harmonic functions in Lipschitz
domains and by Mitrea [6] for Maxwell. Real coordinate stretching and analytic
continuation from the reals is used again.

• Uniqueness was the hardest part of our analytis of symmetric hyperbolic
problems with trihedral corners in [3]. Uniqueness for the Maxwell PML with
ABC is reduced by an analytic continuation argument to a uniqueness of the
Laplace transform for τ large real. That can be proved by the strategy in [3] using
the H1/2 estimate of [1]. Shorter still is to use the recent H1 estimate of [7].
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High frequency limit for the inverse scattering problem.

Leonardo Zepeda-Nunez

(joint work with Qin Li, Shi Chen, and Zhiyan Ding)

The wave-particle duality of light has been one of the greatest enigmas in the
natural sciences since antiquity: one of the earlier works can be traced back dating
back to Euclid’s treatise in light, Catoptrics (280 B.C.). In a nutshell, light can
be either described as an electromagnetic (EM) wave governed by the Maxwell’s
equations, or as a stream of particles, called photons, governed by the radiative
transport equation (RTE).

Although the advent of quantum mechanics at the onset of the last century
partially solved the riddle, due to computational considerations, light continues to
be modeled either as a particle or as a wave depending on the target application.
One of such applications are inverse problems, which can be roughly described as
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reconstructing unknown parameters within a domain of interest by data comprised
of observations on its boundary.

Unfortunately, the properties of the inverse problems are highly dependent on
the specific modeling of the underlying physical phenomena, even though, in prin-
ciple, they share the same microscopic description. In particular, the stability of
the inverse problem, i.e., how sensitive is the reconstruction of the unknown pa-
rameter to perturbations in the data, is surprisingly disparate [6, 3], thus creating
an important gap between the wave and particle descriptions, which we seek to
bridge in this talk.

We consider a time-harmonic wave-like description governed by the Helmholtz
equation given by

(1)
(
∆+ k2n

)
u(x) = 0 ,

where u is the wave field, and n(x) is the refractive index of the medium.
We also consider a particle-like description governed by the Liouville equation,

which is a simplified RTE, given by:

(2) v · ∇xf −∇xn · ∇vf = 0 ,

where f(x, v) is the distribution of photon particles, and n is still the refractive
index. The Liouville equation describes the trajectories of photons via its charac-
teristics: ẋ = v and v̇ = −∇xn.

Following the wave and photon descriptions, we define the forward problem
as calculating either the wave-field, or the photon distribution from the refractive
index by solving either the Helmholtz or the Liouville equations. The wave-particle
duality, when translated to mathematical language, corresponds to the fact that
the solutions obtained by the Helmholtz and Liouville equations are asymptotically
close when k → ∞, see [1].

We consider a modified full aperture inverse scattering problem: we seek to
reconstruct an unknown environment within a domain of interest by probing it
with tightly concentrated monochromatic beams originated from the boundary of
the domain, in which the response of the unknown medium to the impinging beam
is measured at its boundary. This measurement is performed by a measurement
operator that is model-specific and plays an important role in the stability. When
the beam is modeled as a wave, i.e., using the Helmholtz equation as a forward
model, we call this process generalized Helmholtz scattering problem, and when
the beam is modeled as a flux of photons, i.e., using the Liouville equation as a
forward model, we refer to this process as the Liouville scattering problem (often
called as the optical tomography problem).

Although the two different formulations seek to solve the same underlying phys-
ical problem, our understanding of the two inverse problems seems to suggest dif-
ferent stability properties. The traditional inverse scattering problem, using either
near-field or far-field data is ill-posed: small perturbations in the measurements
usually lead to large deviations in the reconstructions [4, 5], whereas, the inverse
Liouville equation is well-conditioned: a small perturbation is reflected by a small
error in the reconstruction [7].
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Thus the observation that the stability for both problems is different seems to be
at odds with the fact that the Liouville equation and the Helmholtz equation are
asymptotically close in the high-frequency regime. We show that this can be fixed
by modifying the sampling operator. The new formulation dubbed the generalized
inverse scattering problem, converges to the Liouville inverse problem in the high-
frequency limit. The convergence from the Helmholtz equation to the Liouville
equation is conducted through the Wigner transform [8], and the convergence
of the measuring operators is achieved through the Husimi transform [2]. Both
convergences are obtained asymptotically in the k → ∞ limit. This convergence
allows us to conclude the following:

The inverse Liouville scattering problem is asymptotically equivalent to the gener-
alized inverse Helmholtz scattering problem in the high-frequency regime.

In this talk we will formulate the statement above in a mathematically precise man-
ner, and we provide extensive numerical evidence supporting it. We connect the
two seemingly distinct inverse problems, and suggests that in the high-frequency
regime, probing an unknown object with a single frequency is already enough for
its reconstruction, with properly prepared data in the generalized inverse scat-
tering setting. This partially answers the stability question regarding the inverse
scattering. This can be viewed as the counterpart of the asymptotic multiscale
study conducted in the forward setting. In particular, semi-classical limit is a the-
ory that connects quantum mechanical and the classical mechanical description:
the proposed formulation for the inverse scattering problem can be regarded as
taking the (semi-)classical limit in the inverse setting.

The new inverse wave scattering formulation coupled with PDE-constrained
optimization seems to be empirically less prone to cycle-skipping, i.e., convergence
to spurious local minima [10], than its standard counterparts [9]. We finally show
several experiments showcasing this property of the formulation in different set
ups.
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Relative traces and numerical computation of spectral functions

Alexander Strohmaier, Alden Waters

The relative trace for the Laplace operator
We consider a (non-empty open) bounded smooth domain Ω ⊂ R

d, d ≥ 2 with
connected exterior which is the union of two connected components Ω1 and Ω2.
To this scenario one can associate four unbounded self-adjoint operators in L2(Rd).
These operators are as follows:

(1) the operator ∆ defined by the Dirichlet quadratic form on H1
0 (R

d \ ∂Ω)
(2) the operator ∆1 defined by the Dirichlet quadratic form on H1

0 (R
d \ ∂Ω1)

(3) the operator ∆2 defined by the Dirichlet quadratic form on H1
0 (R

d \ ∂Ω2)
(4) free Laplacian ∆0 with form domain H1(Rd) and domain H2(Rd).

Throughout we fix m ≥ 0. For s ∈ R define

(∆ +m2)s, (∆1 +m2)s, (∆2 +m2)s, (∆0 +m2)s

by the functional calculus for unbounded self-adjoint operators. Assuming s > 0
or m > 0 these are densely defined operators whose domain contains the dense
subset C∞

0 (Rd \ ∂Ω). In particular, the operator

Ds = (∆ +m2)s − (∆1 +m2)s − (∆2 +m2)s + (∆0 +m2)s

is densely defined and contains C∞
0 (Rd \ ∂Ω) in its domain. It is known that

(∆ +m2)s − (∆0 +m2)s

is a trace-class operator if m > 0, s < − d
2 . We have shown in [1] that the operator

Ds is much better behaved and is trace-class for any s > 0. We call tr(Ds) the
relative trace of the operator (∆ +m2)s. In particular it has a unique bounded
extension to all of L2(Rd). Moreover, its trace can be computed in terms of
Fredholm determinants of single layer operators, as follows:

tr(Ds) =
2s

π
sin(πs)

∫ ∞

m

λ2s−1 λ√
λ2 −m2

Ξ(iλ)dλ.

Here Ξ(λ) is a holomorphic function in the upper half plane that decays expo-
nentially fast along the positive imaginary axis. The function Ξ(λ) continuously
extends to a neighborhood of 0 in R. Hence, the integral is absolutely convergent.
This function Ξ(λ) can be expressed in terms of layer potentials. To this end, let
Sλ : L2(∂Ω) → L2(∂Ω) be the single layer operator, i.e. the integral operator on
∂Ω whose integral kernel is the free Green’s function at frequency λ. Similarly, we
have the single layer operators of the individual objects Sj,λ : L2(∂Ωj) → L2(∂Ωj).
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The function Ξ is defined as the Fredholm logarithmic determinant of the operator
Sλ ◦ (S1,λ ⊕ S2,λ)

−1, i.e.

Ξ(λ) = log det(Sλ ◦ (S1,λ ⊕ S2,λ)
−1).

Application in quantum field theory: One reason why this formula is
significant is that for s = 1

2 the trace 1
2 tr(D 1

2
) has a physical interpretation.

It is the Casimir energy, or vacuum energy, of the scalar field of mass m with
Dirichlet boundary conditions. Its variation when one of the objects is moved
rigidly was shown to be the Casimir force as computed from the stress energy
tensor in quantum field theory of the free scalar field, as proved in [3]. The above
relative trace tr(Ds) is therefore a way to rigorously define a finite Casimir energy
and allow for numerical computations of it. Indeed, such formulae were used in the
physics literature to compute the Casimir forces between objects, starting from
a different microscopic description of the effect in terms of fluctuating surface
current. The theory also relates these quantities to the Duistermaat-Guillemin
trace formula in a rigorous manner, and we refer to [4] for a detailed analysis of
the connection.

The relative trace in the Maxwell setting: The situation for Maxwell’s
equations is more complicated, but of course actual Casimir forces are due to
interactions of the photon field with the material and hence are described by
Maxwell’s equations. We are now reporting on the results obtained in [5] where
we specialise to dimension three but allow for domains with reduced regularity. In
this section therefore Ω ⊂ R3 is a bounded strongly Lipschitz domain, again with
connected exterior, and consisting of two connected components Ω1 and Ω2. Now
∆ denotes the Laplace operator with relative boundary conditions acting on vector
fields. These boundary conditions roughly require the tangential component of the
vector-field to vanish, and the divergence to satisfy Dirichlet boundary conditions.
These boundary conditions correspond to Maxwell’s equations in a domain where
∂Ω is a perfect conductor. As before one can then define ∆,∆1,∆2, and ∆0.
We also have the second order differential operator δd = curl curl. Here d is the
differential, and δ the codifferential and we have identified 1-forms and vector-
fields. If Ω is smooth, let

H− 1
2 (Div, ∂Ω) = {f ∈ H− 1

2 (∂Ω, T ∂Ω)| Div ∈ H− 1
2 (∂Ω)}.(1)

This space can also be defined by local coordinate charts in the Lipschitz case.
Recall that Hs(Rd) is invariant under Lipschitz mappings if |s| ≤ 1. Let γt be
the continuous extension of the map f 7→ (ν × f)|∂Ω and Gλ(x, y) the standard
Green’s function in R3 for the Helmholtz equation. We now let Lλ denote the
standard electric field boundary layer operator for the Maxwell equations acting

on the trace space H− 1
2 (Div, ∂Ω). This operator is defined as

Lλ = γtL̃λ where L̃λa = 〈curlcurlGλ(x, ·), a〉L2(∂Ω)(2)

and a ∈ H− 1
2 (Div, ∂Ω).
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The main result of [5] is that the relative operator

Ds = ∆sδd−∆s
1δd−∆s

2δd +∆s
0δd

is trace-class in L2(R3,C3) for any s > −1 and its trace is computed as

tr(Ds) =
2(s+ 1)

π
sin (π(s+ 1))

∫ ∞

0

λ2s+1Ξ(iλ)dλ,

where Ξ is a function holomorphic in the upper half plane and near zero given by

Ξ(λ) = log det
(
Lλ ◦ (L1,λ ⊕ L−1

2,λ)
−1

)
, on H− 1

2 (Div, ∂Ω).

The well defined quantity 1
2 tr(D− 1

2
) is expressed in terms of the Maxwell layer

potential operators. The careful analysis of these operators at λ = 0 shows that for
the relative trace the pole cancellation occurs which makes the object well defined.
The quantity 1

2 tr(D− 1
2
) is important because it corresponds to the physical Casimir

energy of the quantum photon field between perfect conductors. Forthcoming
numerical experiments using BEM++ method can compute this object quickly
and efficiently.
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Separation of scales: Dynamical approximations for composite
quantum systems

Clotilde Fermanian Kammerer

(joint work with Irene Burghardt, Rémi Carles, Benjamin Lasorne,
Caroline Lasser)

We present different results obtained in collaboration with chemists [1] and [2].

Composite quantum-dynamical systems. We consider systems that can be
partitioned into weakly interacting subsystems, similar to system-bath type situ-
ations, according to

i∂tψ = Hψ, ψ|t=0 = ψ0

with
H = Hx +Hy +W (x, y), (t, x, y) ∈ R× R

n × R
d,

Hx = −1

2
∆x + V1(x), Hy = −1

2
∆y + V2(y)
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We assume that the initial data has some tensor structure

ψ0(x, y) = ϕx
0(x)ϕ

y
0(y)

and we investigate a coupling regime that is partially flat, i.e., slowly varying with
respect to one set of variables:

‖∇yW (x, y)‖L∞ ≪ 1 or ‖∇x∇yW (x, y)‖L∞ ≪ 1.

It corresponds for example to reactive molecular fragments embedded in a large
molecular bath (a protein, or a solvent).

The ansatz. We use a factorized wave function ansatz

ψapp(t, x, y) = eiS(t) ϕx(t, x)ϕy(t, y)

which corresponds to replacing the interaction term W by an adequate potential.
We consider two schemes of dimension reduction: one based on Taylor expansion

(collocation)
Wbf (x, y) =W (x, 0) +W (0, y)−W (0, 0)

and the other one based on partial averaging (mean-field)

Wmf (t, x, y) = 〈W 〉y(t, x) + 〈W 〉x(t, y)− 〈W 〉(t)
with

〈W 〉 =
∫
Rn+d W (x, y) |ϕx(t, x)ϕy(t, y)|2 dxdy∫

Rn+d |ϕx(t, x)ϕy(t, y)|2 dxdy ,

〈W 〉x =

∫
Rd W (x, y) |ϕx(t, x)|2 dx∫

Rd |ϕx(t, x)|2 dx ,

〈W 〉y =

∫
Rn W (x, y) |ϕy(t, y)|2 dy∫

Rd |ϕy(t, y)|2 dy .

In the collocation case, the action is taken as S(t) = tW (0, 0) and in the mean-field
cas as

S(t) =

∫ t

0

〈W 〉(s) ds.

Dirac-Frenkel variational principle. The mean-field approximation stems

from a Dirac Frenkel variational principle using the manifold

M =
{
u = ϕx ⊗ ϕy | ϕx ∈ L2

x, ϕ
y ∈ L2

y

}
.

One projects the solution on the manifold M with the constraints ∂tu(t) ∈ Tu(t)M
and

〈v, i∂tu(t)−Hu(t)〉 = 0, ∀v ∈ Tu(t)M.

The observation that the tangent to M in u is

TuM =
{
vx ⊗ ϕy + ϕx ⊗ vy | vx ∈ L2

x, v
y ∈ L2

y

}
, u = ϕx ⊗ ϕy

leads to the formula for Hmf (see [3, 4]).

The approximation. We analyzed in [1] the error for the wave function and for
the action of observables, obtaining comparable estimates for both approaches:
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‖ψ(t)− ψapp(t)‖L2 ≤
{

const. ‖∇yW‖L∞‖ϕx
0‖L2

x

∫ t

0 ‖yϕy(s)‖L2
y
ds

const. ‖∇x∇yW‖L∞

∫ t

0
‖xϕx(s)‖L2

x
‖yϕy(s)‖L2

y
ds

These estimates hold under very general assumptions that can be easily relaxed:

• Assumptions on the potential:

V1 ∈ C∞(Rn;R), V2 ∈ C∞(Rd;R), W ∈ C∞(Rn+d;R).

• Assumptions on the data:

ϕx
0 ∈ S(Rn;C), ϕy

0 ∈ S(Rd;C) (hence ψ0 ∈ S(Rn+d;C)).

One can also obtain estimates in Sobolev weighted spaces.

Numerical realizations. Numerical studies are presented in [2] to assess er-
ror estimates for a separable (Hartree) approximation for dynamically evolving
composite quantum systems which exhibit distinct scales defined by their mass
and frequency ratios. Specifically, we consider a representative two-dimensional
tunneling system where a double well and a harmonic coordinate are cubically
coupled.

V1(x) =
x2

2

( x
2ℓ

− 1
)2

, V2(y) =
ω

2
y2, W (x, y) =

ε2

2
xy2.

The initial data is taken as a Gaussian

ψ0(x, y) = (2π)−1/2ω−1/4e−
x2

2 − y2

2ω .

In the formula above ω is the frequency ratio, ε the mass ratio and ℓ the distance
between the wells.

The time-dependent Hartree approximation is compared with a fully correlated
solution, for different parameter regimes

ε = ω

√
α− 1

2ℓ
, α ∈

{
1

4
,
1

3
,
1

2
,
3

4
,
2

3
, 1

}
.

The impact of the coupling and the resulting correlations are quantitatively as-
sessed in terms of a time-dependent reaction probability along the tunneling coor-
dinate. We will show that the numerical error is correctly predicted on moderate
time scales by a theoretically derived error estimate.

Quantum-classical systems. Further, we also study in [1] the situation where
one of the sets of variables is semiclassically scaled in the variable y:

Hy = −ε
2

2
∆y + V2(y).

We derive a quantum-classical formulation for initial data that have a semi-classical
component in the y variable

ψ0(x, y) = ϕx
0(x) g

ε(y), gε(y) = (2π)−d/2ε−d/4 Exp

(
−|y − q0|2

ε
+
i

ε
p0 · (y − q0)

)
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We use an ansatz of the form

ψ(t, x, y) = ψε
1(t, x) e

i
εS(t)+ i

εp(t)·(y−q(t)) u2

(
t,
y − q(t)√

ε

)

with action S(t) and trajectories q(t), p(t) that are either classical trajectories or
variational ones.

Conclusion. The present study is the first step towards a general analysis of scale
separation in the context of tensorized wavefunction representations as considered
in MCTDH and G-MCTDH schemes (see [5])

ψapp(t, x, y) =
∑

j,ℓ

ajℓ(t)ϕ
(x)
j (t, x)ϕ

(y)
ℓ (t, y)

where the families (ϕ
(x)
j (t))j≥1 and (ϕ

(y)
ℓ (t))ℓ≥1 satisfy orthonormality or rank

conditions and the complex coefficients akℓ(t) gauge constraints.

References

[1] I. Burghardt, R. Carles, C. Fermanian Kammerer, B. Lasorne and C. Lasser, Separation
of scales: a quantum-classical approach for complex systems and a system-bath ansatz, J.
Phys. A: Math. Theor. 54 (2021) 414002.

[2] I. Burghardt, R. Carles, C. Fermanian Kammerer, B. Lasorne, C. Lasser, Dynamical ap-
proximations for composite quantum systems: Assessment of error estimates for a separable
ansatz, J. Phys. A: Math. Theor. 55 (2022) 224010.

[3] C. Lasser and C. Lubich, Computing quantum dynamics in the semiclassical regime, Acta
Numer. 29 (2020), 229–401.

[4] C. Lubich, From quantum to classical molecular dynamics: reduced models and numerical
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A survey on high-frequency scattering relating to smooth
convex scatterers

Fatih Ecevit

1. Single scattering

The two-dimensional single scattering problem for a plane wave uinc(x, k) = eik α·x

impinging on a smooth compact convex obstacle K has been the content of exten-
sive research in the last twenty years.

High-frequency integral equation methodologies aimed at frequency indepen-
dent simulations, in this connection, are almost entirely related to the Dirichlet
boundary condition [4, 12, 5, 10, 9]. These methods rely on the Melrose-Taylor
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asymptotic expansion [13, 11]

η(x, k) = eik α·xηslow(x, k) ∼ eik α·x
∑

p,q≥0

ap,q(x, k)(1)

= eik α·x
∑

p,q≥0

k
2−2p−3q

3 bp,q(x)Ψ
(p)(k

1
3Z(x))

where η is the unknown normal derivative of the total field on ∂K. Here bp,q
and Ψ are complex-valued smooth functions; Ψ(τ) ∼ ∑∞

j=0 ajτ
1−3j as τ → ∞,

and it rapidly decreases in the sense of Schwartz as τ → −∞; and Z is a real-
valued smooth function reflecting the geometry of the scattering problem. More
precisely, it is positive on ∂KIL = {x ∈ ∂K : α · ν(x) < 0} (ν is the exterior
unit normal), negative on ∂KSR = {x ∈ ∂K : α · ν(x) > 0}, and vanishes to
first order on ∂KSB = {x ∈ ∂K : α · ν(x) = 0}. Recently developed Galerkin
boundary element methods [10, 9] based on a detailed study of the asymptotic
expansion (1) demand an O(kǫ) increase, for any ǫ > 0, in the number of degrees of
freedom to maintain accuracy with increasing frequency. Moreover, these methods
are frequency independent when a sufficient number of terms in the asymptotic
expansion (1) is incorporated into integral equation formulations [6].

The Neumann boundary condition has been considered only recently [8]. The
Melrose-Taylor asymptotic expansion in this case [13, 8] takes on the form of a
fourfold asymptotic series

η(x, k) = eik α·xηslow(x, k)(2)

∼ eik α·x
∑

p,q,r≥0
ℓ≤−1

k−
1+2p+3q+r+ℓ

3 +(ℓ+1)− bp,q,r,ℓ(x) (Ψ
r,ℓ)(p)(k

1
3Z(x))

where η is the unknown total field on the boundary ∂K, t− = min{t, 0}, bp,q,r,ℓ
are complex-valued smooth functions, Z is the same function as in the Dirichlet
case, and Ψr,ℓ are complex-valued smooth functions with an asymptotic expansion
Ψr,ℓ(τ) ∼ ∑∞

j=0 ar,ℓ,jτ
1+ℓ−2r−3j as τ → ∞, and they rapidly decrease in the sense

of Schwartz as τ → −∞. The Galerkin boundary element methods developed in
[8] display the same characteristics as in their Dirichlet counterparts [10, 6, 9].

As stated above, in (1) and (2), the behavior of the functions Ψ and Ψr,ℓ is
characterized as a decay in the sense of Schwarz as τ → −∞. A rigorous precise
description, in connection therewith, remains as an important open problem as
this would allow for not only the construction of better approximations on ∂KSR

but also the derivation of asymptotic expansions for occluded multiple scattering
problems.

2. Multiple scattering

High-frequency scattering problems in the exterior of a disjoint unionK =
⋃N

j=1Kj

of smooth compact convex obstacles Kj gives rise to a variety of non-trivial sub-
problems. In this case, the multiple scattering formulation can be based either on
a Neumann series decomposition applied to integral equations [11, 1, 7], or directly
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on partial differential equation formulations [2]. In both cases, an important sub-
problem is the derivation of asymptotic expansions of multiple scattering iterations
{ηm}m≥0 relating to an arbitrary sequence of obstacles {Km}m≥0 ⊂ {K1, . . . ,KN}
with Km+1 6= Km; ηm is the unknown normal derivative of the m-th total field on
∂Km for the Dirichlet boundary condition, and it is the m-th total field on ∂Km

for the Neumann case. As shown in [11, 1, 2], for each of these conditions the
unknown ηm admits a phase extraction in the form

ηm(x, k) = eik φm(x)ηslowm (x, k)

where the phase φm is the optical ray distance as a result of m-reflections,

ηslowm (x, k) ∼
∑

p,q≥0

ap,q,m(x, k) =
∑

p,q≥0

k
2−2p−3q

3 bp,q,m(x)Ψ(p)(k
1
3Zm(x))

for the Dirichlet boundary condition, and

ηslowm (x, k) ∼
∑

p,q,r≥0
ℓ≤−1

ap,q,r,ℓ,m(x, k)

=
∑

p,q,r≥0
ℓ≤−1

k−
1+2p+3q+r+ℓ

3 +(ℓ+1)− bp,q,r,ℓ,m(x) (Ψr,ℓ)(p)(k
1
3Zm(x))

for the Neumann case; the function Zm is the same in both cases and has the same
geometric structure as the function Z appearing in (1) and (2).

For the Dirichlet case, rate of convergence formulas for multiple scattering itera-
tions ηm confined to periodic orbits were derived based on explicit representations
of the leading order terms a0,0,m in the form of iterated continued fractions on illu-
minated regions [11, 1]. In two dimensions [11] these rate of convergence formulas
imply, for instance, for a two periodic orbit

ηm+2

ηm
≈ 1√

(1 + d κ1) (1 + d κ2)

(
1 +

√
1− 1

(1 + d κ1) (1 + d κ2)

)

where d is the distance between the scatterers, and κj are the curvatures at the
distance minimizing points. In three dimensions [1], the asymptotic rate of conver-
gence depends on the distance, the principal curvatures at the distance minimizing
points, and the relative rotational angle between the principal directions. These
rate of convergence formulas, as justified by numerical tests, are accurate within
errors of O(k−1) with increasing frequency. Yet, a completely rigorous proof re-
lating to the actual densities ηm remains as an open problem.

Acceleration of convergence of the multiple scattering series has also been con-
sidered [3]. The approach in [3] was based on a novel modification of a Krylov
subspace method coupled with a preconditioning technique relying on Kirchhoff
approximations. In configurations consisting of more than two scatterers, the
problem of collectively computing the exponentially increasing number of single
scattering returns entering in the Neumann series iterations remains as an open
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problem. While, perhaps, this issue can be resolved using the stabilization of mul-
tiple scattering ray paths, computation of the remaining infinite tail in the multiple
series scattering poses an additional difficulty since the series may actually diverge.
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Efficient approximation of high-frequency Helmholtz solutions by
semiclassical Gabor wavelets

Théophile Chaumont-Frelet

(joint work with Victorita Dolean, Maxime Ingremeau)

The numerical solution of high-frequency scattering problems, although being cen-
tral in a large number of applications, remains to this day a computational chal-
lenge. This is largely due to the fact that standard numerical tools based on
piecewise polynomial approximations require (at least) a constant number of de-
grees of freedom (DOFs) per wavelength. Thus, considering a wavenumber k,
and a domain in R

d with diameter ℓ, polynomial-based methods require about kℓ
DOFs in each space dimensions.
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More concretely, finite element methods require about (kℓ)d DOFs to represent
with a uniform accuracy as the frequency increased [2]. Despite the large number
of required DOFs, the advantages of finite element methods is that they lead to a
sparse matrix and readily apply in heterogeneous media.

When the Green’s function is available, the Helmholtz problem can be reformu-
lated as a boundary integral equation. Then [3], boundary element methods may
be employed to accurately represent the solution with only (kℓ)d−1 DOFs. How-
ever, the resulting discretization matrix is dense, and it is in general not possible
to account for heterogeneous media.

The purpose of the present work is to introduce a new family of basis func-
tions that (i) easily operate in heterogeneous media, (ii) lead to essentially sparse
Galerkin matrices and (iii) correctly represent high-frequency solutions to scatter-
ing problem with (kℓ)d−1/2 DOFs.

The proposed method relies on semi-classical Gabor wavelets, namely, functions
of the form

Ψk,m,n(x) :=

(
k

π

)d/4

e−
k
2 |x−

√
π/km|2eik

√
π/kn·x, m,n ∈ Z

d

as basis functions. Crucially, each of these shape functions is micro-localized
around a single point in phase space. Specifically, Ψk,m,n is concentrated around

the point
√
π/km whereas its semi-classical Fourier transform is localized around√

π/kn. We may thus think about this family of basis functions as a Cartesian

grid of R2d with lattice points spaced by about k−1/2.
The key idea of the proposed method is that the micro-localization proper-

ties of the shape functions may be combined with micro-localization properties of
high-frequency solutions, which are explicitly known from semi-classical analysis.
Specifically, it is known that the solution of a high-frequency scattering problem
is concentrated around the characteristic set

Σ := {(x, ξ) ∈ R
2d; p(x, ξ) = 0}

of the symbol p associated with the Helmholtz problem. The symbol itself is
explicitly known from the coefficients describing the propagation medium, so that
the hypersurface Σ is explicitly available. We can thus define a discretization space
by selecting the shape functions micro-localized close to Σ.

Our main result is that, given an arbitrarily small ε > 0, the discretization
space

W := Vect

{
Ψk,m,n;

∣∣∣∣p
(√

π

k
m,

√
π

k
n,

)∣∣∣∣ ≤ k−1/2+ε

}

contains (kℓ)d−1/2+ε DOFs while ensuring that

min
w∈W

‖∇(u− w)‖L2 ≤ Cε,

uniformly in k, where u is the solution to the scattering problem [1].
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Decompositions of high-frequency Helmholtz solutions and application
to the finite element method

David Lafontaine

(joint work with Jeffrey Galkowski, Euan A. Spence, Jared Wunsch)

Motivation and informal statement of our results. We are interested in
the Helmholtz equation in the exterior of an obstacle O, with Dirichlet boundary
condition and Sommerfeld radiation condition at infinity (corresponding to the
fact that we are looking for an outgoing wave)





∆u+ k2u = f in Rd\O,
u = 0 on ∂O,
∂ru− iku = o(r−(d−1)/2) as r → ∞.

A popular choice to solve numerically such an equation is the hp-finite element
method (hp-FEM), where one decreases the meshsize h and increases the poly-
nomial degree p of the approximation, both depending on the frequency k of the
solution, to obtain accuracy. A natural question in this framework is the following:
what is a condition on h, p, and k for these methods to converge? As the solution
oscillates at scale k−1, we should need at least a number of degrees of freedom
#DOF & kd. Is it enough ?

Melenk and Sauter [MS10, MS11] gave a positive answer to this question when
the obstacle is analytic (see also [MPS13] and [EM12] for the interior impedance
problem). They have shown that, under the conditions

hk

p
≤ C1, p ≥ C2 log k,

the solution to the discrete problem exists, is unique, and is quasi-optimal (that
is, it is the best possible approximation of the solution by a piecewise polynomial,
up to a multiplicative constant). In particular, under these conditions, one can
construct h and p so that the number of degrees of freedom of the problem verifies

#DOF ≃
( p
h

)d
. kd.

In other words, hp-FEM applied to this setting does not suffer from the pollution
effect that plagues the h-FEM (where p is left constant), for which one needs
strictly more degrees of freedom than kd to maintain accuracy [BS00].
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The proof of Melenk and Sauter [MS10, MS11] is based on a decomposition of
the Helmholtz solutions

(⋆) u = uH2 + uA,

where uH2 verifies better estimates in the frequency k than u, and uA verifies the
same estimates in k as u but is analytic. The idea is that uH2 contains the high
frequencies (& k) of the solution, and uA the low frequencies (. k). Their proof of
the decomposition (⋆) is based on explicit computations that cannot be generalised
in a straightforward way to more general problems, such as the Helmholtz equation
with variables coefficients, despite the large interest for such a problem.

In the works [LSW22, GLSW21, GLSW22], we tackled the question of under-
standing the frequency-decomposition (⋆) in the most general possible situation.
We obtained the following results.

(1) In [LSW22], we obtained the decomposition (⋆) for the variable C∞ coef-
ficients equation in Rd.

(2) Then, in [GLSW21], we have shown such a decomposition in the very
general black-box scattering framework of Sjöstrand-Zworski.

(3) Finally, in [GLSW22], we extended this result to the problem truncated
with a Perfectly Matched Layer (PML).

In particular, one can apply our results to show that hp-FEM applied to the
equation

(a) without obstacle and with variable C∞ coefficients,
(b) posed in the exterior of an analytic obstacle and with variable C∞ coeffi-

cients which are analytic near the obstacle,

does not suffer from the pollution effect, both for the outgoing problem and PML.

Some ideas behind the proofs of the results [LSW22, GLSW21, GLSW22].
The decomposition in Rd for the C∞ variable-coefficients equation [LSW22] is
obtained by projecting the solution u, spatially truncated in the ball B(0, R) where
we seek to obtain the decomposition, on its high (& k) and low (. k) Fourier
modes. In other words, we define

uH2 := ΠHigh(ϕu), uA := ΠLow(ϕu),

where ϕ ∈ C∞
c is equal to one in B(0, R), ΠLow is defined as a Fourier multiplier

truncating in Fourier variables ≤ µk for some µ ≫ 1, and ΠHigh := I − ΠLow.
Thanks to its Fourier localisation, it is immediate to see that uA is analytic, and
even entire, using Parseval identity. On the other hand, the bound on uH2 is
obtained using semiclassical ellipticity: for µ large enough, uH2 lives in phase-
space where the equation is invertible modulo negligible terms.

Attempting to generalize this method [LSW22] to setups including boundaries,
we run into technical issues involving the extension of solutions to the whole space
when trying to use frequency projections defined from Fourier multipliers. In-
stead, we have another idea: rather use frequency projections defined through the
functional calculus. In other words, we define

ΠHigh = (1− ψ)(P ), ΠLow := ψ(P ),
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where P is the operator associated with our Helmholtz equation Pu + k2u = f
and ψ ∈ C∞

c (R), and uH2 and uA will be defined as previously. This idea has
two immediate advantages: these projections commute with the equation, and we
can now try to work with an operator P as general as possible. Taking advantage
of the later, we will work in the very general black-box scattering framework of
Sjöstrand and Zworski [SZ91], where in addition to some suitable compatibility
conditions, P is only assumed to be a self-adjoint operator coinciding with the
Laplacian outside “the black-box” B(0, R0), where it is left unspecified. Following
this idea, we were able to show a very general, albeit abstract decomposition result,
reading in an informal way:

Theorem 1 (Main abstract decomposition from [GLSW21], informal version). Let
P be a black-box scattering operator of Sjöstrand-Zworski. We make the following
assumptions.

(H1) The solution operator associated with the Helmholtz equation is polynomi-
ally bounded in the frequency k.

(H2) One has an estimate quantifying the regularity of P “inside the black-box”
B(0, R0).

Then, any solution u of the Helmholtz equation (P+k2)u = k2f can be decomposed
as

u = uH2 + uA.

Where

• uH2 verifies a black-box version of the estimate

‖u‖L2 + k−m‖u‖Ḣm . ‖f‖L2.

• uA verifies the same estimates in k as u but is regular. This regularity is
dictated by the regularity of the underlying problem as measured by (H2).

The bound on uH2 relies once again on ellipticity : near the black-box, we are
able to show an abstract ellipticity result from functional-calculus abstract ma-
nipulations; whereas away from the black-box, the functional calculus coincides
with the semiclassical pseudo-differential calculus up to negligible terms as ob-
served by Sjöstrand [Sj97], and we are able to use genuine semiclassical ellipticity
as in [GLSW21]. On the other hand, the regularity bounds on uA follow from the
morphism property of the functional calculus together with the estimate (H2).

As the assumption (H1) (arising similarly in [LSW22]) always holds outside a
set of frequencies of arbitrarily small measure [LSW21], the key to apply such
a result to concrete Helmholtz problems is to find a suitable estimate of type
(H2). For example, outside an analytic Dirichlet obstacle for the equation with
C∞ variable-coefficients which are analytic near the obstacle, we are able to use as
(H2) an heat-flow estimate (more precisely, we combine a folklore estimate tracing
back to [Fri69] with the more recent [EMZ17]) to obtain a decomposition in this
set-up, allowing us to show the sharp convergence result for hp-FEM.

Whereas we first obtained these results for the outgoing Helmholtz solutions,
the corresponding PML problems have the substantial additional difficulty that
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the scaled Laplacian is a non self-adjoint operator. In [GLSW22], building on the
outgoing case and the recent progress [GLS21] on PML accuracy, we were able
to obtain strictly analogous results in such a setup, using frequency cut-offs de-
fined via the non-scaled calculus as in [GLSW21] together with the (semiclassical)
ellipticity of PML in the scaling region.
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Regularity by decomposition for the Helmholtz equation in
heterogeneous media

Jens Markus Melenk

(joint work with M. Bernkopf, T. Chaumont-Frelet, I. Perugia, A. Rieder)

On a bounded domain Ω ⊂ R
d, d ∈ {2, 3}, we consider the Helmholtz equation

−∇ · (A(x)∇u) − k2n2(x)u = f in Ω.(1)

Here, Ω has an analytic boundary Γ := ∂Ω, A ∈ L∞(Ω,Rd×d) is pointwise sym-
metric positive definite with 0 < amin I ≤ A(x) for x ∈ Ω and n ∈ L∞(Ω) with
0 < nmin ≤ n(x) for x ∈ Ω. Furthermore, A and n are piecewise analytic, i.e., Ω
can be decomposed as Ω = ∪J

j=1Pj where each open Pj has an analytic boundary,

and A, n are analytic on Pj for each j ∈ {1, . . . , J}. We set Γint :=
(
∪J
j=1∂Pj

)
\Γ.

We assume that k ≥ k0 > 0. Our regularity results will involve classes of piecewise
analytic functions so that for open sets ω ⊂ Rd we denote

A(M,γ, ω) := {u ∈ C∞(ω) | ‖Dαu‖L2(ω) ≤Mγ|α|max{k, |α|+ 1}|α| ∀α ∈ N
d
0}.

Analyticity classes of functions on Γ can be defined as traces of functions from an
analyticity class in a neighborhood of Γ.

1. Bounded domains

The simplest setting is to equip (1) with the impedance boundary condition

(2) n ·A∇u − iku = g on Γ

for some g ∈ L2(Γ). Here, n stands for the outer normal vector. Problem (1), (2)
is understood in the weak sense, i.e., to seek u ∈ H1(Ω) such that

(3) B(u, v) :=

∫

Ω

(A(x)∇u)·∇v−k2
∫

Ω

n2(x)uv+ik

∫

Γ

uv = ℓ(v) :=

∫

Ω

fv+

∫

Γ

gv

for all v ∈ H1(Ω). We assume polynomial well-posedness of the problem (1), (2),
i.e., there are C > 0, θ ≥ 0 independent of k such that the solution u satisfies

(4) ‖u‖1,k := ‖∇u‖L2(Ω) + k‖u‖L2(Ω) ≤ Ckθ
[
‖f‖L2(Ω) + k1/2‖g‖L2(Γ)

]
.

Given a closed VN ⊂ H1(Ω), the Galerkin approximation uN ∈ VN to u is given
by the condition

(5) ∀v ∈ VN : B(uN , v) = ℓ(v).

Introducing the adjoint solution operator S∗
k by the condition

∀v ∈ H1(Ω): B(v, S∗
kf) =

∫

Ω

vf

and the adjoint approximation property

η := sup
f∈L2(Ω)

inf
v∈VN

‖S∗
kf − v‖1,k
‖f‖L2(Ω)



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2555

one can show (see, e.g., [6, 7]) quasioptimality of the Galerkin error ‖u − uN‖1,k
provided that kη is sufficiently small. To quantify η, k-explicit regularity asser-
tions for the solution of Helmholtz problems (note: S∗

kf solves again a Helmholtz
problem akin to (1), (2)) are necessary. We have, generalizing [6, 7]:

Theorem 1. There are constants C, γ > 0 independent of k such that the solution
u of (1), (2) can be decomposed as u = uH2 + uA with

‖uH2‖H2(Ω\Γint) ≤ C
[
‖f‖L2(Ω) + ‖g‖H1/2(Γ)

]
, uA ∈ A(Ckθ , γ,Ω \ Γint).

As a corollary, one obtains for the choice VN = Sp,1(T ) of piecewise (mapped)
polynomials of degree p on a mesh T of width h (under assumptions on the mesh
spelled out in [6, 7, 1]) the following result:

Corollary 2 ([6, 7, 1]). Given c2 > 0 there are C, c1 > 0 independent of k such
that the scale resolution condition

(6)
kh

p
≤ c1 and p ≥ c2 log k

implies existence of the discrete approximation uN ∈ Sp,1(T ) together with

(7) ‖u− uN‖1,k ≤ C inf
v∈Sp,1(T )

‖u− v‖1,k.

Remark 3. Key to the proof of Cor. 2 is the decomposition of Thm. 1. The
technique to prove Thm. 1 and Cor. 2 applies to several other time-harmonic wave
propagation problems: the boundary condition (2) can be replaced by an exact
Dirichlet-to-Neumann map, by second order absorbing boundary conditions, or
by a fixed width PML, [1]. In the following section, we discuss in more detail a
numerically realizable coupling procedure. Corresponding decomposition results
for Maxwell’s equation can be found in [5, 4].

2. k-explicit analysis of a FEM-BEM coupling

For d ∈ {2, 3} we consider the heterogeneous Helmholtz equation

(8) −∇ · (A(x)∇u)− k2n2u = f in Rd, u satisfies Sommerfeld rad. cond.

with A of the form A(x) = a(x) I for a scalar function a, supp(A− I), supp(n− 1),
supp f ⊂ Ω, and A, n are piecewise analytic as above. Again, we assume that (8) is
polynomially well-posed, i.e., the solution u satisfies, for some C > 0 independent
of θ ≥ 0

(9) ‖u‖1,k ≤ Ckθ‖f‖L2(Ω).

[3, 2] proposes a three-field FEM-BEM coupling strategy to solve the full space
problem (8). With single layer, double layer, adjoint double layer and hypersin-
gular operators Vk, Kk, K

′
k, Wk for the Helmholtz equation and the three fields
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(u, um, uext) ∈ H1(Ω)×H−1/2(Γ)×H1/2(Γ) it reads as follows in strong form:

−∇ · (A(x)∇u) − k2n2(x)u = f in Ω,(10a)

n · (A∇u) + iku− um = 0 on Γ,(10b)

Bku
ext + ikA′

ku
ext −A′

ku
m = 0 on Γ,(10c)

u−
[
(
1

2
+Kk)uext − Vk(u

m − ikuext)

]
= 0 on Γ,(10d)

where Bk := −Wk−ik(12−Kk) and A′
k := 1

2+K
′
k+ikVk. The weak formulation on

H1(Ω)×H−1/2(Γ)×H1/2(Γ) satisfies a G̊arding inequality so that a convergence
analysis based on duality arguments is possible, [3, 2]. For a k-explicit analysis
of conforming or discontinuous Galerkin discretizations, the key ingredient is the
following “regularity by decomposition” result for an adjoint equation:

Theorem 4 ([8]). There are constants C, γ, β ≥ 0, and a neighborhood O of
Γ (all independent of k) such that the following holds: Let (u, um, uext) solve for
given (R,Rm, Rext) ∈ L2(Ω)×H3/2(Γ)×H1/2(Γ) the system

−∇ · (A(x)∇u) − k2n2(x)u = R in Ω,

n · (A(x)∇u) + iku+ um = 0 on Γ,

Wk + ik(
1

2
−K ′

k)− ik(
1

2
+Kk + ikVk)u

ext − ((
1

2
+K ′

k) + ikVk)u
m = Rext on Γ,

−u+ (
1

2
+Kk + ikVk)u

ext + Vku
m = Rm on Γ.

Then, (u, um, uext) = (uH2 , umH2 , uextH2) + (uA, u
m
A |Γ, uextA |Γ) with

‖uH2‖H2(Ω\Γint) + ‖umH2
‖H1/2(Γ) + ‖uextH2

‖H3/2(Γ)

≤ C
[
‖R‖L2(Ω) + ‖Rm‖H3/2(Γ) + ‖Rext‖H1/2(Γ)

]

and uA ∈ A(CkβD, γ,Ω\Γint), u
m
A , uextA ∈ A(CkβD, γ,O), where D := ‖R‖L2(Ω)+

‖Rm‖L2(Γ) + ‖Rext‖H−1/2(Γ).

Let T be a mesh of width h on Ω satisfying the conditions set out in [6, 7, 1]
and let TΓ be the trace mesh on Γ. As described in [3], let Sp,1(T ) ⊂ H1(Ω)
and Sp,1(TΓ) be the spaces of piecewise (mapped) polynomials of degree p based
on the meshes T , TΓ, respectively, and let Sp−1,0(TΓ) ⊂ L2(Γ) be the space of

piecewise (mapped) polynomials of degree p−1 based on TΓ. Set ṼN := Sp,1(T )×
Sp−1,0(TΓ)×Sp,1(TΓ). With Thm. 4, one can show the following quasi-optimality

result for the Galerkin approximation (uN , u
m
N , u

ext
N ) ∈ ṼN :

Theorem 5 ([8]). Assume the hypotheses of Thm. 4. Then, given c2 > 0 there is
c1 > 0 such that under the scale resolution condition (6) the conforming hp-FEM
discretization of (10) is quasi-optimal, i.e., the discrete solution (uN , u

m
N , u

ext
N ) ∈
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ṼN exists and satisfies, for some C > 0 independent of k

‖u− uN‖1,k + ‖um − umN‖H−1/2(Γ) + ‖uext − uextN ‖H1/2(Γ)

≤ C inf
v∈ṼN

‖u− v‖1,k + ‖um − v‖H−1/2(Γ) + ‖uext − v‖H1/2(Γ).

Remark 6. See [8, 2] for the extension to a hp-DGFEM discretization in Ω with
corresponding best approximation result.
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A Class of Parameter Configurations for Localization of Waves

Stefan Sauter

(joint work with Céline Torres)

1. Introduction

The numerical simulation of high frequency scattering problems is a topic of
vivid research in numerical analysis. Besides the difficulties related to the “el-
liptic aspect” of the problem such as, e.g., singularities due to non-smooth bound-
ary/coefficients, additional difficulties are related to the highly oscillatory behavior
of the solution which strongly depends on the wavenumber and the coefficients in
the underlying PDE. In this exposition, we consider the Helmholtz problem with
variable wave speed as our model problem and present a class of parameter con-
figurations where the wave is in near-resonance.
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2. Setting

We consider the Helmholtz Equation on a bounded Lipschitz domain Ω ⊂ Rd with
boundary ∂Ω. The underlying energy space is H := H1 (Ω). The weak formulation
of the problem reads: For given F ∈ H′, find u ∈ H such that

(1) B (u, v) = F (v) ∀v ∈ H,
where the sesquilinear form B : H×H is given by

B(u, v) := (∇u,∇v)L2(Ω) −
(ω
c
u, v

)
L2(Ω)

− (Tku, v)L2(∂Ω)

and Tk denotes the DtN operator. The right-hand side is given via functions
f ∈ L2 (Ω) and g ∈ L2 (∂Ω) by F (v) = (f, v)L2(Ω) + (g, v)L2(∂Ω). The frequency

parameter ω is assumed to satisfy ω ≥ ω0 > 0. Further, we assume that c ∈ L∞ (Ω)
and that there exists 0 < cmin ≤ cmax <∞ such that cmin ≤ c ≤ cmax.

In [4, Conj. 2] the following conjecture has been formulated.

Conjecture. For any bounded Lipschitz domain Ω ⊂ R
d, c ∈ L∞(Ω), with 0 <

cmin ≤ c ≤ cmax <∞, ω ≥ ω0 > 0 it holds

(2)

(∫

Ω

|∇u|2 +
(ω
c

)2

|u|2
) 1

2

≤ Cstab

(
‖f‖2L2(Ω) + ‖g‖2L2(∂Ω)

) 1
2

,

with

(3) Cstab ≤ C1 exp (C2ω) ,

C1, C2 > 0 depending on cmin, cmax and Ω.

3. Parameter configurations for an exponentially growth of Cstab

Let Ω be the unit ball in R3. Next we define a wave speed c in L∞ (Ω) with
0 < cmin ≤ c ≤ cmax such that the stability constant Cstab in (2) grows expo-
nentially in ω. The coefficient c and the frequency ω will be correlated. Let
Ωj := {x ∈ Ω | rj−1 < ‖x‖ < rj}, 1 ≤ j ≤ n + 1, denote circular layers in Ω for
some partitioning 0 = r0 < r1 . . . < rn+1 = 1 of the radial direction and define,
for some c0 > 0 and relative jump height q ∈ ]−1, 1[, the coefficient

(4) c|Ωj
:= cj := c0

(
1 + (−1)

j
q
)

in Ωj, 1 ≤ j ≤ n+ 1.

Theorem 1. Let f = 0 and g = g0/ (2
√
π) for some g0 ∈ R. For any c0 > 0,

q ∈ ]−1, 1[, n ∈ N0 define cℓ as in (4) and set

ω :=
π

2

n+1∑

ℓ=1

cℓ, rj :=
π

2ω

j∑

ℓ=1

cℓ for 1 ≤ j ≤ n+ 1.

Then, the solution u has an exponentially growing stability constant:
√
π

2

(
1 + q

1− q

)⌈n/2⌉

|g0| ≤ ‖u‖H1(B1),k
≤ Cαω |g0| for some α = α (q) > 1.(5)



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2559

For a proof we refer to [5, §4.2]. In the same geometrical setting for the wave
speed c as described above, but with general jumping coefficients cj , the same
upper bound as in (5) is valid and can be found in [5, §3].

Other configurations of different nature with exponential growing stability con-
stant are presented in [1], [2], [3].
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Quantitative bounds on Impedance-to-Impedance operators

Thomas Beck

(joint work with Yaiza Canzani, Jeremy L. Marzuola)

Impedance-to-Impedance operators

The hierarchichal Poincaré-Steklov method is a non-overlapping domain decompo-
sition method which can be used to approximate the Dirichlet-to-Neumann oper-
ator and scattering solutions of the Helmholtz equation in inhomogeneous media.
This method involves first partitioning the domain into a hierarchical collection
of boxes of varying scales, then obtaining an approximation of an appropriately
chosen elliptic operator on the boundary of the leaf sub-domains at the finest level
of the partition, and finally a merge process to recover the desired operator on the
original domain.

One choice of boundary operator to approximate on the leaf sub-domains is
the Dirichlet-to-Neumann operator [7], [6], [4]. Another option, which does not
introduce artificial resonances into the problem is to use impedance-to-impedance
operators [2], [5], [9]. The impedance-to-impedance (ItI) operator of a domain Ω,
which we denote by RΩ, is defined by

RΩg = (∂νu− iku)
∣∣
∂Ω
.

Here g ∈ L2(∂Ω) and u ∈ H1(Ω) solves the boundary value problem
{
∆u+ k2V u = 0 in Ω,

∂νu+ iku = g on ∂Ω.
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In the above, V is the potential, ν is the outward pointing unit normal on ∂Ω,
and k > 0 is the frequency. The traces (∂νu+ iku)

∣∣
∂Ω

and (∂νu− iku)
∣∣
∂Ω

are
denoted as the incoming and outgoing impedance data on ∂Ω.

A version of the hierarchical Poincaré-Steklov method has been implemented by
Gillman, Barnett, and Martinsson [5], and their method requires the invertibility
of the following merge operator: Consider the case where Ω is the rectangle [0, 2]×
[0, 1], made up of the two unit squares S1 = [0, 1]× [0, 1], S2 = [1, 2]× [0, 1], with
common edge A = {1} × [0, 1]. As shown in [5], the ItI operator, RΩ, of the
rectangle can be recovered from those of the two squares, provided that the merge
operator I −R1R2 is invertible. Here Rj are ItI operators defined on the common
edge A, given by Rjf = (∂νvj − ikvj)

∣∣
A
, where





∆vj + k2V vj = 0 in Sj ,

∂νvj + ikvj = 0 on ∂Sj\A,
∂νvj + ikvj = f on A.

See Figure 1 for the set-up of the operators Rj . The invertibility of this merge
operator holds for the numerical computations in [5].

A
S1 S2Ω S1

A
ν = +∂x

∂νv1 + ikv1 = 0

∂νv1 + ikv1 = f

Figure 1. The impedance problem satisfied in the definition of
R1

Invertibility of the merge operator

We obtain invertibility properties of I − R1R2 under the following non-trapping
assumption on the potential V .

Assumption. The potential V ∈ C1([0, 2]× [0, 1]) satisfies

2V (x, y) + (x − 1, y)·∇V (x, y) ≥ c

for all (x, y) ∈ Ω, for some constant c > 0.

Under this assumption, the merge operator

I −R1R2 = (I −R1)(I +R2) + (R1 −R2)

satisfies the following quantitative estimates in the frequency k, where we define
the weighted H1-Sobolev norm H1

k(A) by,

‖h‖H1
k(A) := ‖kh‖L2(A) + ‖∂τh‖L2(A) .
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Theorem 1 ([1]). Provided that V satisfies the assumption above, the operator

I −R1R2 : L2(A) → H1
k(A)

is a bijection, with a bounded inverse. Moreover, given δ > 0, there exist constants
c∗ > 0, c∗δ > 0, such that for f ∈ L2(A) and all k > 0,

‖(I −Rj)f‖H1
k
(A) ≥ c∗ ‖kf‖L2(A) ,

‖(I +Rj)f‖L2(A) ≥ c∗δ(1 + k)−3(1+δ) ‖f‖L2(A) .

In the theorem above, it is not possible to replace the space H1
k(A) by L2(A),

and the operator I+Rj is not uniformly bounded from below, as an operator from
L2(A) to itself.

Remark 1. The estimates on I ± Rj also hold more generally for ItI operators
defined on an edge A of a convex polygon.

Remark 2. A version of Theorem 1 also holds for the obstacle problem, where a
convex obstacle with Dirichlet boundary conditions are placed in the squares Sj .

The operators I ±Rj appearing in Theorem 1 satisfy

(I −Rj)f = 2ikvj
∣∣
A
, (I +Rj)f = 2∂νvj

∣∣
A
.

Therefore, the estimates in the theorem correspond to obtaining Dirichlet and
Neumann trace estimates on one side of the square for solutions of boundary value
problems with prescribed incoming impedance data. A key ingredient in the proof
of the theorem is thus the following trace estimate, which uses techniques from
[8], [3].

Proposition 1 ([1]). Let V ∈ C1(Ω) satisfy the assumption above. Let w be
L2(Sj)-normalized and satisfy

(∆ + k2V )w = h in Sj , ∂νw = 0 on ∂Sj ,

for some function h ∈ H1(Sj), and k > 1. Then, there exists a constant c > 0,
independent of k, such that, if ‖h‖H1

k(Ω) ≤ ck2, then
∫

∂S\A

|w|2 ≥ c.
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Fast Boundary Element Methods to simulate underwater explosions
and their interactions with submarines (a nice problem to illustrate a

lot of modern numerical tools for waves)

Stéphanie Chaillat

(joint work with Marc Bonnet, Bruno Leblé, Damien Mavaleix-Marchessoux,
Alice Nassor)

Assessing the impact of a remote underwater explosion on a submerged structure
(submarine) is an important naval engineering problem. An underwater explosion
mainly induces two distinct phenomena: a ”shock wave” followed by an oscillating
bubble of gas (see Fig. 1). The goal of this presentation was to show how to create
an efficient numerical method that accounts for the effects of both phenomena on
submerged structures.

Initial

bursting

point

Depth

Incident

pressure

Time

pm

First bubble

pulse
Second bubble

pulse

Primary wave

T

exp

Figure 1. Schematic representation of the bubble motion and
the pressure history after [6].

Due to the unbounded nature of the ocean and the complex mechanical be-
havior of the submarine we want to take into account, it is natural to consider
a Boundary Element Method/Finite Element Method (BEM/FEM) coupling for
both the modeling of the shock wave and the oscillating bubble of gas (Fig. 2).
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Figure 2. FEM/BEM coupling to simulate an underwater ex-
plosion.

Oscillating bubble of gas. In a first part, I have presented the modeling of
the second stage of the underwater event: the oscillating bubble of gas. Hence,
an incompressible potential flow is induced by the oscillations of the gas bubble
created by the remote blast. The BEM is the best-suited approach for handling
potential flow problems in large fluid domains (idealized as unbounded), whereas
the FEM naturally applies to the transient structure analyses. To perform the
FEM-BEM coupling we use a sub-cycling approach that alternates fluid and solid
analyses with Neumann boundary conditions. The transient nature of the coupled
analysis and the recourse to sub-cycling together make the overall procedure rely
on a large number of BEM potential flow solutions, while the complexities of the
wet surface and of the solid transient response imply a need for large BE models
for the flow potential. This combination of reasons mandates accelerating the
BE component. I have shown the feasibility and effectiveness of coupling the
Hierarchical-matrix accelerated BEM (H-BEM) [3] and the FEM for the fluid-
structure interaction (FSI) problems of interest. The same integral operators can
be used at all time instants in spite of the expected global motion of the submarine,
a feature that the H-BEM can exploit to full advantage. I have finally shown the
validation of this numerical procedure on a complex configuration representative
of target applications [5].
Shock wave. In a second part, I have considered the more challenging problem of
the modeling of the shock wave stage and its interaction with the structure. Hence,
3D rapid transient acoustic problems are known to be difficult to solve numerically
when dealing with large geometries, because numerical methods based on geometry
discretisation, such as the BEM or the FEM, often require to solve a linear system
(from the spacial discretisation) for each time step. We have proposed a numerical
method to efficiently deal with 3D rapid transient acoustic problems set in large
exterior domains. Using the Z-transform and the convolution quadrature method
(CQM) [1], a straightforward way to reframe the problem to the solving of a
large amount of frequency-domain BEMs is derived. Then, taking advantage of
a well-designed high-frequency approximation (HFA), the number of frequency-
domain BEMs to be solved is drastically reduced, with little loss of accuracy. The
complexity of the resulting numerical procedure turns out to be O(1) in regards to
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the time discretisation and O(N logN) for the spacial discretisation, the latter being
prescribed by the complexity of the used fast BEM solver [4]. I have presented the
validation of this procedure with the scattering of an abrupt wave by a realistic
geometry (Fig. 3).

Standoff point

Figure 3. Illustration of the efficiency of the Z-BEM procedure
for a scattering problem with a realistic geometry.

I have finally shown a naive approach to consider the FSI problem. It consists
at iteratively solving the BEM-FEM coupling by alternating Neumann solutions
in each domain. Unfortunately this simple approach fails (does not converge). We
can show that the transient BEM-FEM coupling based on Neumann-Neumann it-
erations is problematic since energy estimates indicate that each iteration degrades
the regularity of boundary traces (unlike in the elliptic case) [2]. To avoid this
issue, an iterative algorithm based on Robin boundary conditions for the coupled
elastodynamic/acoustic problem has been developed and proved to converge.
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Z-transform and high-frequency approximations for large-scale 3D transient wave problems,
Int. J. Numer. Meth. Engng., 121 (2020), 4734-4767.

[5] D. Mavaleix-Marchessoux, M. Bonnet, S. Chaillat, B. Leblé, H-matrix accelerated BEM-
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Static currents in type I superconductors: Numerical methods and the
λL → 0 limit

Charles Epstein

(joint work with Leslie Greengard, Manas Rachh)

In [3] we gave a Debye source representation (see [1]) for solving static problems
connected to type-I superconductors. We assume that the superconducting mate-
rial is homogeneous and isotropic, occupying a bounded region Ω. The boundary
of Ω, ∂Ω, is assumed to be a smooth, connected surface of genus g, embedded in
R3. Within Ω there is a magnetic field, which we describe as a 2-form η−,

(1) η− = η−1 dx2 ∧ dx3 + η−2 dx3 ∧ dx1 + η−3 dx1 ∧ dx2,
and a current, which we describe as a 1-form j−,

(2) j− = j−1 dx1 + j−2 dx2 + j−3 dx3.

According to the London equations, see [5] these satisfy the first order system:

(3) d∗η− = j− and dj− = − 1

λ2L
η− within Ω.

These equations preceded the BCS theory of superconductivity, see [6], by over 2
decades. Recall that, on p-forms in R

3, the formal adjoint of d is d∗ = (−1)p ⋆
d⋆, where ⋆ is the Hodge-star operator defined by the Euclidean metric. These
equations imply that

(4) dη− = 0 and d∗j− = 0.

The constant λL is called the London penetration depth. It measures the thick-
ness of the current carrying portion of a superconducting material. In real mate-
rials this length is very small, typically ranging from 50 to 500nm. In the com-
plementary region there is a static magnetic field ηtot, which satisfies the usual
equations of magnetostatics

(5) dηtot = 0 and d∗ηtot = 0 in Ωc.

The current j− is supported in a (thin) neighborhood of ∂Ω. As there is no
current sheet on the boundary, the physically reasonable boundary conditions are

(6) η−|∂Ω = ηtot|∂Ω and ⋆ η−|∂Ω = ⋆ηtot|∂Ω.
That is the normal and tangential components of the magnetic field are continuous
across the boundary. This boundary condition and d ⋆ ηtot = 0 imply that

(7) d∂Ω[⋆η
−|∂Ω] = 0,

that is ⋆η−|∂Ω is a closed 1-form on ∂Ω. The London equation shows that inj
− =

0 is equivalent to d∂Ω[⋆η
−|∂Ω] = 0, hence the current is tangent to ∂Ω. The

magnitudes of both η−(x), and j−(x) decay like e
− dist(x,∂Ω)

λL .
In the standard “scattering” problem for this set-up the magnetic field in Ωc

is split into an incoming magneto-static field ηin, and an outgoing scattered field,



2566 Oberwolfach Report 43/2022

η+. The field η+ is defined in all of Ωc; the assumption that η+ is an outgoing
field means that

(8) ‖η+(x)‖ = o(‖x‖−1).

The incoming field is a solution to Maxwell’s equations generated by sources that
are a positive distance from Ω. Hence in a neighborhood of ∂Ω we have that

ηtot = ηin + η+.

The boundary conditions can therefore be written as:

(9) η−|∂Ω − η+|∂Ω = ηin|∂Ω and ⋆ η−|∂Ω − ⋆η+|∂Ω = ⋆ηin|∂Ω.
If ∂Ω is of genus g > 0, then these conditions need to be augmented with the

flux conditions: Assume that ∂Ω is connected and has genus g, then there are g
A-cycles {A1, . . . , Ag}, which bound surfaces {SA1, . . . , SAg} contained within Ω,
and g B-cycles {B1, . . . , Bg}, which bound surfaces {SB1 , . . . , SBg} contained in
Ωc. Since [⋆ηtot]|∂Ω = [⋆η−]|∂Ω are closed 1-forms, their integrals over a cycle in
∂Ω depend only on the homology class of the cycle. It follows from the boundary
condition, and Stokes theorem that

(10)

∫

Bj

⋆η− =

∫

Bj

⋆ηtot =

∫

SBj

d ⋆ [ηin + η+] = 0,

provide that ηin is defined in a contractable neighborhood of Ω. If not, then

(11) bj =

∫

Bj

⋆η− =

∫

Bj

⋆ηtot =

∫

Bj

⋆ηin,

which may not be zero, but is determined by ηin.
On the other hand the fluxes

(12) a=j

∫

Aj

⋆ηtot =

∫

Aj

⋆η− =

∫

SAj

d ⋆ η− =

∫

SAj

⋆j−, for j = 1, . . . , g,

are not determined a priori, and in fact, constitute additional data that must be
specified to get a unique solution. As ηin is defined in a neighborhood of Ω, and
∂SAj = Aj , Stokes theorem shows that

(13)

∫

Aj

⋆ηtot =

∫

Aj

⋆η+.

In this talk we consider two aspects of the theory of type I superconductors,
which are essential to use it in physically interesting situations:

(1) We give the a Debye source representation for the solution of the scatter-
ing problem, which is adequate for λL > 10−2. This is explained in [3].
It requires the solution of the Laplace-Beltrami equation on ∂Ω. A new
approach to this difficult problem is given in [7].
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(2) We analyze the behavior of solutions to the boundary value problem out-
lined above as λL → 0+. This is a singular limit, and we give a precise
description of the solution for very small, but physically reasonable λL.
This entails analysis of a boundary value problem for the PDE

dd∗η−λL
+

1

λ2l
η−λL

= 0 in Ω,

assuming that dη−λL
= 0.
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Space-time Boundary Integral Equations for the Wave Equation

Carolina Urzúa-Torres

(joint work with Daniël Hoonhout, Olaf Steinbach, Marco Zank)

In this talk, we discuss the work from [2], where we propose a new approach
to boundary integral equations (BIEs) for the wave equation. Unlike previous
attempts, our mathematical formulation allows us to show that the associated
boundary integral operators are continuous and satisfy inf-sup conditions in trace
spaces of the same regularity, which are closely related to standard energy spaces.
This property is crucial from a numerical point of view, as it establishes the foun-
dations to derive sharper error estimates and paves the way to develop efficient
adaptive space-time boundary element methods.

We also present the stable discretization of the proposed boundary integral
equations, so far only implemented in 1D. We report new preliminary results for
the double layer operator and also explain what happens with the weakly singular
operator. We conclude the presentation by noting that the use of a modified
Hilbert transform gives us ellipticity [4] and hence unconditionally stability for
the related Galerkin discretization [3].
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1. New approach to time-domain BIEs for the wave equation

We begin by summarizing the main results of [2]. Let Ω ⊂ Rn, n = 1, 2, 3,
with boundary Γ := ∂Ω. We assume Ω to be a bounded Lipschitz domain. Let
0 < T < ∞. We define the space-time cylinder Q := Ω × (0, T ) ⊂ Rn+1, and
its lateral boundary Σ := Γ × [0, T ]. We denote the D’Alembert operator by
� := ∂tt −∆x, and write the interior Dirichlet initial boundary value problem for
the wave equation as

(1)
�u(x, t) = f(x, t) for (x, t) ∈ Q,
u(x, t) = g(x, t) for (x, t) ∈ Σ,

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ Ω.

Let O ⊆ Rm, m ∈ N. We stick to the usual notation for the space L2(O)
of Lebesgue square integrable functions; and the Sobolev spaces Hs(O). For a
Hilbert space X we denote its dual space by X ′.

We consider the spaces

H1
0,(0, T ;L

2(Ω)) :=
{
v ∈ L2(Q) : ∂tv ∈ L2(Q), v(x, 0) = 0 for x ∈ Ω

}
,

H1
,0(0, T ;L

2(Ω)) :=
{
v ∈ L2(Q) : ∂tv ∈ L2(Q), v(x, T ) = 0 for x ∈ Ω

}
.

With these, we introduce

H1,1
;0, (Q) := L2(0, T ;H1(Ω)) ∩H1

0,(0, T ;L
2(Ω)),

H1,1
;,0 (Q) := L2(0, T ;H1(Ω)) ∩H1

,0(0, T ;L
2(Ω)),

with their corresponding graph norms. Next, we consider the Banach space

H(Q) :=
{
u = ũ|Q : ũ ∈ L2(Q−), ũ|Ω×(−T,0) = 0, �ũ ∈ [H1

0 (Q−)]
′
}
,

with the norm ‖u‖2H(Q) := ‖u‖2L2(Q) + ‖�ũ‖2
[H1

0(Q−)]′
(we refer to [2, Page 4] for

further details). By completion, we define the Hilbert space

H;0,(Q) := H1,1
;0, (Q)

‖·‖H(Q) ⊂ H(Q).

Now we turn our attention to the required trace spaces and operators. We
begin by introducing the lateral interior trace operator γiΣ : u 7→ u|Σ as continuous
extension of the trace map defined in the pointwise sense for smooth functions.

Let us consider the spaces

H
1/2
0, (Σ) := L2(0, T ;H1/2(Γ)) ∩H1/2

0, (0, T ;L2(Γ)),

H
1/2
,0 (Σ) := L2(0, T ;H1/2(Γ)) ∩H1/2

,0 (0, T ;L2(Γ)),

with H
1/2
0, (0, T ;L2(Γ)) and H

1/2
,0 (0, T ;L2(Γ)) defined by interpolation. Then we

have the following result [2, Lemmas 3.1 and 3.2]:

Lemma 1. The mappings

γiΣ : H1,1
;0, (Q) → H

1/2
0, (Σ), γiΣ : H1,1

;,0 (Q) → H
1/2
,0 (Σ),

are continuous and surjective.
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Additionally, we define the lateral trace space

H0,(Σ) :=
{
v = γiΣV for all V ∈ H;0,(Q)

}

with the norm ‖v‖H0,(Σ) := inf
V ∈H;0,(Q):γi

ΣV =v
‖V ‖H(Q) .

Finally, we are in the position to present the main result of [2, Sec. 5].

Theorem 1. The boundary integral operators

V : [H
1/2
,0 (Σ)]′ → H0,(Σ), W : H0,(Σ) → [H

1/2
,0 (Σ)]′,

1

2
Id±K : H0,(Σ) → H0,(Σ),

1

2
Id±K

′ : [H
1/2
,0 (Σ)]′ → [H

1/2
,0 (Σ)]′,

are continuous and satisfy their corresponding inf-sup stability conditions.

2. Stable discretization of the double layer operator

We consider the following variational problem for the double layer operator K:
Find w ∈ H0,(Σ) st

〈
(
−1

2
Id+K

)
w, v〉Σ = 〈g, v〉Σ, ∀v ∈ [H0,(Σ)]

′,(2)

where 〈· , ·〉Σ denotes the duality pairing induced by the extension of the L2(Σ)-
inner product.

We pursue a Galerkin discretization with the following discrete trial and test
boundary element spaces:

S1
0,(Σh) ⊂ H0,(Σ), S1

0,(Σh) ⊂ [H0,(Σ)]
′,

where S1
0,(Σh) is spanned by space-time piecewise linear basis functions with zero-

initial conditions.
We test this discretization numerically in 1D with Ω := (0, 3), and T = 6. For

this, we compare with the following exact solution for (1)

u(x, t) =

{
1
2 | sin(π(x− t))|, x ≤ t,

0 else.
(3)

The obtained results are displayed in Table 1, where N denotes the number of
elements used to discretize the lateral boundary. We reconstruct the solution u on
the interior domain plugging w in the double layer potential. We point out that
the expected convergence rate is achieved for the measured error.

3. Stable discretization of the weakly singular operator

We confirmed the observation done in [1] that the weakly singular operator V dis-
cretized with piecewise constant basis functions is in general not stable. However,
as predicted in [4] and later shown in [3], one achieves unconditionally stability in
1D when composing V with a modified Hilbert transform.
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N ‖u− uh‖H1(Q) eoc
64 9.22E+00 -
128 4.36E+00 1.08
256 2.11E+00 1.05
512 1.04E+00 1.02
1024 5.16E-01 1.01
2048 2.57E-01 1.01
4096 1.28E-01 1.00

Table 1. Numerical results for (2) using S1
0,(Σh) for test and

trial discrete spaces.
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Imaginary part of resonances in the scattering by transparent or
negative obstacles, part I

Monique Dauge

(joint work with Zöıs Moitier)

1. Framework

Motivated by various devices in optoelectronics [1], we investigate transmission
operators

(1) P : u 7→ Pu := − div
(1
ε
∇u

)
in R

2

where ε accounts for relative electric permittivity.

a) Outside a smooth bounded domain Ω ⊂ R
2, ε ≡ 1 (for air or vacuum).

b) Inside the “cavity” Ω, ε is a function εc smooth up to the boundary.
c) At the interface ∂Ω, ε has a jump.

Ω represents either

(i) A dielectric micro cavity and εc > 1 in Ω
(ii) A negative metallic nano-cavity Ω and εc < 0 in Ω.



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2571

We study scattering resonances k of P .
In the book [4] Dyatlov and Zworski state a generalization of the notion of

scattering resonances to the framework of the black box formalism. This formalism
is described in [4, §4.1] and can be summarized as follows:

A family of self-adjoint operators {P (h)}0<h≤1 on a Hilbert space H and with
domain D is called a semiclassical black box Hamiltonian if

a) Outside a bounded region B of Rd, P (h) coincides with −h2∆ and D
coincides with the Sobolev space H2

b) The resolvent 1B(P (h) + i)−1 cut-off inside this region B, is compact.

This definition also makes sense when the parameter h is fixed. According to
[4, Theorem 4.5], the spectrum of a black box Hamiltonian P satisfies

a) Its continuous spectrum coincides with [0,+∞)
b) Its point spectrum is a discrete real sequence {zn}N−≤n≤N+ with possible

accumulation points at ±∞ (if N± = ±∞)

Resonances are classically defined via a meromorphic continuation of the resol-
vent (P − z)−1. As parametrization of the spectral parameter z we choose (like
[4]) the frequency k = +

√
z (where +

√
stands for the square root with positive

imaginary part). With C± = {k ∈ C| ± Im k > 0}, the resolvent k 7→ (P − k2)−1

of a black box Hamiltonian P as an operator H → D is meromorphic in C+.
[4, Theorem 4.4] states that the resolvent k 7→ (P − k2)−1 as an operator

Hcomp → Dloc has a emphmeromorphic continuation from C+ to

(i) C \ R− = C+ ∪ (0,+∞) ∪ C− in any dimension d,
(ii) C if the dimension d is odd,
(iii) the logarithmic plane Λ = exp−1(C \ {0}) if d is even.

The poles of k 7→ (P − k2)−1 in C− are called (scattering) resonances.
A scattering resonance k is associated with a resonance mode u ∈ Dloc that is

solution to the equation (P − k2)u = 0, completed with the outgoing radiation
condition that is a condition on the asymptotic of u as |x| → ∞. When P = −∆
outside B (i.e. h = 1) and the dimension d is 2, u expands in polar coordinates
(r, θ) using Hankel functions of first and second kind

(2) u =
∑

m∈Z

(
amH(1)

m (kr) + bmH(2)
m (kr)

)
eimθ.

Since H
(1)
m and H

(2)
m are exponentially decreasing and increasing, respectively, in

C+, the outgoing radiation condition consists in stating that bm = 0 for anym ∈ Z.

2. Results

For P a transmission operator (1) in the plane we have two disjoint situations in
which P is a black box Hamiltonian:

(i) if εc > 1 on Ω, and then P has no point spectrum,
(ii) if εc < 0 on Ω and εc(γ) 6= −1 ∀γ ∈ ∂Ω, and then the point spectrum of P

is an unbounded sequence of negative eigenvalues zn = k2n, with kn ∈ iR+.
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The underlying spaces are H = L2(Ω) and D = {u ∈ H1(R2), Pu ∈ L2(R2)}.
We highlight some results of [2, 3] on asymptotics of resonances with small

imaginary parts by considering the case when Ω is a disc (with R its radius), and
εc a constant, which allows a classification of resonances and eigenvalues according
to the polar mode index m present in (2), the inverse of which plays the role of a
semiclassical parameter (h = 1

m ).
We have a construction of quasi-resonances k(m) modulo O(m−∞) with explicit

expansions, whose first terms are:

(i) If εc = n2
c
> 1, for each j = 1, 2, . . . exists a distinct family m 7→ kj(m)

(3) kj(m) =
m

Rnc

[
1 +

aj
2

( 2

m

) 2
3 − 1

2nc

√
εc − 1

( 2

m

)
+O(m− 4

3 )
]

in which −a1 > −a2 > . . . are the zeros of the Airy function.
(ii) If εc = −η2

c
< −1, exists one family m 7→ k(m)

(4) k(m) =
m

Rηc

√
−εc − 1

[
1 +

εc + 1

2ηc

1

m
+O(m−2)

]

The quasi-resonances are real positive. In case (i) the corresponding (quasi)modes
are so-called Whispering Gallery Modes (WGM) and concentrate to the boundary
at scale m−2/3 while in case (ii) they concentrate at scale m−1, cf plasmons.

For any m ≥ 1, exists a true resonance k∗(m) such that

(5) k∗(m) = k∗(m) +O(m−∞),

where ∗ stands for any j in case (i) and is void in case (ii).
With quasi-resonances at hand, the proof relies on an application of [6] once

a supplementary spectral assumption on corresponding black box operators is
proved, obvious for positive εc, and proved in [5] for negative εc.

Resembling asymptotics to (3) and (4) hold for square roots (pure imaginary
numbers) of negative eigenvalues when εc is negative. We illustrate all these results
by graphs of computed resonances in three representative cases.
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Imaginary part of resonances in the scattering by transparent or
negative obstacles, part II

Zöıs Moitier

(joint work with Monique Dauge)

Scattering resonances have negative imaginary part. However, the quasi-resonances
k∗(m) in Part I are real positive. Therefore, a corollary of the quasi-resonances
to resonances theorem is that Im k∗(m) = O(m−∞). In few cases, we have more
precise decay rate. For 1d Schrödinger equations of the form −u′′ + m2V u =
k2u if the potential V is analytic (puits dans l’isle) [2] proves that Im k(m) ∼
−cm−3/2 e−2S0m with c, S0 > 0 as m→ +∞. In [1], for the discontinuous poten-
tial V (x) = (1+x2)1[−1,1](x) the authors prove that Im k(m) ∼ −4π−1m−3/2 e−m

with S0 > 0 as m→ +∞.

1. Numerical experiments

The difficulty to see this exponential decay is that the real part of the resonances
are proportional to m, so we can only compute k∗(m) when Im k∗(m)/Re k∗(m) is
greater than machine precision. To go beyond the usual precision, we use quadru-
ple precision with a method that also works with variable coefficients, namely finite
difference method with a six stage extrapolation to get the desired precision. With
a Julia program, we get the results Fig. 1. In our setting, using a Schrödinger
analogy, we can formally find an expression for the values of S0:

S0 =

∫ λ
−1/2
0

R

√
r−2 − λ0 dr where λ0 = lim

m→+∞

Re k∗(m)2

m2
.
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(a) εc = 2.25 (b) εc = −2.25 (c) εc = 2.25 (d) εc = −2.25

Figure 1. On Fig. 1a and 1b, we have the imaginary part Im k∗(m) with respect
to m. On Fig. 1c and 1d, we have the slope log|Im k∗(m+1)|− log|Im k∗(m)| with
respect to 1/m that should converge to −2S0.

2. Conjectures

We present two conjectures supported by numerical experiment. The first one on
the distribution of scattering resonances in the negative case.

• If −1 < εc < 0, for any β > 0, there are at most finitely many resonances
lying in the strip −β ≤ Im k < 0.

• If εc < −1, for any β > 0, resonances lying in the strip −β ≤ Im k < 0 are
the plasmonic resonances k(m) (except possibly a finite number).

The second conjecture applies to the imaginary part of the scattering resonances
close to the real axis: There holds, for some computable S0 accounting for tun-
neling effect, that Im k∗(m) ∼ e−2S0m. This conjecture can also be formulated for
smooth variable coefficient εc.
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Dispersive estimates for the wave equation outside a general strictly
convex obstacle in R

3

Oana Ivanovici

1. Introduction

We are concerned with localization properties of solutions to hyperbolic PDEs,
especially problems with a geometric component: how do boundaries influence
spreading and concentration of solutions.

Studying the same hyperbolic or dispersive equations on manifolds (curved ge-
ometry, e.g., variable metric) started in part with Bourgain’s work on KdV and
Schrödinger on the torus, and then expanded in several different directions, all of
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them with low regularity requirements (e.g. Staffilani & Tataru, Burq, Gérard &
Tzvetkov for Schrödinger, Smith, Bahouri & Chemin, Klainerman & Rodnianski
and Smith & Tataru for wave equations). Even though the boundary-less case has
been well understood for some time, obtaining results for the case of manifolds with
boundary has been surprisingly elusive and the problem of whether such estimates
can be extended to the case of manifolds with boundary has preoccupied many
outstanding mathematicians (such as C. Sogge, H. Smith, N. Burq, G. Lebeau,
D. Tataru) in recent years. Besides harmonic analysis tools, the starting point for
these estimates is the knowledge of a parametrix for the linear flow, which turns
out to be closely connected to propagation of singularities. It should be noted that
parametrices have been available for the boundary value problem for a long time
(see Eskin, Melrose & Sjöstrand, Melrose & Taylor) as a crucial tool to establish
propagation of singularities for the wave equation on domains. However, while
efficient at proving that singularities travel along the (generalized) bicharacteristic
flow, they do not seem strong enough to obtain dispersion, as they are not pre-
cise enough to capture separation of wave packets traveling with different initial
directions.

Despite considerable progress in recent years, we still have limited knowledge
of dispersive effects occuring near the boundary. Going beyond this recent ac-
tivity requires new tools. In fact, to be able to deal with important applications
to nonlinear problems and control theory it is crucial to obtain quantitative
refinements concerning the propagation of singularities near the boundary.

1.1. What is dispersion ? This property of a wave to spread out as time goes by,
while keeping its energy conserved, is called dispersion: it measures the amplitude
of a wave.

There are two useful ways to measure dispersive decay: the dispersive estimates
and the Strichartz estimates.

• The dispersive estimates measure the uniform decay properties as a func-
tion of time for a localized data. For instance, if the data is a Dirac at
a point Q0 ∈ Rd, and if the frequency 1/h is large, then the dispersive
estimates in Rd read as follows :

(1) sup
∣∣∣χ(hDt)e

±it|
√

|∆
Rd

|(δQ0 )
∣∣∣ ≤ Ch−d min

(
1,

(
h

t

) d−1
2 )

,

where h ∈ (0, 1) is a small parameter and χ ∈ C∞([1/2, 2]) a smooth
function supported near 1. For the wave equation, this property holds
in Rd or on manifolds without boundary as long as time is less than the
injectivity radius. When there is a boundary, these estimates may not hold
anymore as above (they hold with a loss in the right hand side of (1)),
because optical rays, issued from the same source point, may refocus and
give rise to caustics, which are points where the light is singularly intense.

• On the other hand, when the data is not localised but just in L2, we cannot
have uniform decay, so the goal is to measure average decay (in time and
space). This is what Strichartz estimates are for.
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We call admissible indices the pairs (q, r) such that q, r ≥ 2, (q, r, α) 6=
(2,∞, 1), 1

q ≤ α(12 − 1
r ).

Consider the wave equation: (∂2t −∆)u = 0, u|t=0 = u0, ∂tu|t=0 = u1,
then the Strichartz estimate reads as

h(d−α)( 1
2−

1
r )‖χ(hDt)u‖Lq([0,T ],Lr

x)
. ‖u0‖L2 + ‖hu1‖L2 .

Known results: in Rd with flat metric (wave and Schrödinger): Strichartz,
Pecher, Ginibre-Velo, Lindblad & Sogge, Keel &Tao...; if ∂Ω = ∅ (wave):
Kapitanski, Mockenhaupt, Seeger & Sogge, Smith, Bahouri & Chemin,
Tataru...; if ∂Ω = ∅ (Schrödinger): Staffilani & Tataru, Burq, Gérard &
Tzvetkov...

On manifolds without boundary, the Strichartz estimates can be ob-
tained by interpolation between the dispersive estimates and the energy
conservation. When there is a boundary, the results obtained in this way
may not be sharp: in fact, the loss in the dispersive estimates may be
intermittent in time, so some of it may dissapear when averaging in time.

The decay properties of waves are closely related to the structure of the geodesic
flow, therefore we can distinguish two main situations: of geodesically convex
and geodesically concave domain. As mentioned before, a loss in dispersion is
informally related to the presence of caustics, which occur when optical rays are
non longer diverging from each other: as such, in order to study dispersion, the
first thing we need to understand is the structure of the wave front.

1.2. Geometry of the wavefront and light cones. One of the most striking
features of solutions to the wave equation is the geometrical character of propaga-
tion. The statement on propagation of singularities for the wave flow has two main
ingredients: locating singularities of a distribution, as captured by the wave front
set (which measures where the wave is singular and in which direction), and de-
scribing the curves along which they propagate, namely the generalized geodesics.
The simplest example is the propagation of a spherical wave, whose singularities
are located on the sphere of radius |t| (t is the elapsed time), centered at the source
point, like in the figure below. For a variable coefficients metric, one can make
good of this heuristic as long as two different light rays emanating from the source
do not cross: in other words, as long as t is smaller than the injectivity radius.
One may then construct short time parametrices for the wave, using oscillatory
integrals, where the (non degenerate) phase encodes the geometry of the wave
front.

Wavefront (WF) ∼ the “sphere” of radius t centered
at the source point; if non-empty boundary, the WF
can become a very degenerate object developing large
number of singularities of different types in arbitrarily
small times.

In the case of a non-empty boundary, the main difficulties arise from the behav-
ior of the singularities near it: it becomes essential to understand the geometry
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of wave front: the underlying light cones (where the space-time singularities lie)
might undergo dramatic changes compared to the usual flat ones, because of mul-
tiple reflections that generate caustics and cluster points (where light is singularly
intense).

We distinguish several situations:

• transverse: rays reflect according to “angle of incidence equals angle of
reflection”, like a billiard ball;

• tangency to a strictly convex obstacle: rays carrying WF tangent to a
convex obstacle can stick to it and re-release energy near the “shadow
region”, producing diffractive effects (e.g. the Poisson spot);

• glancing inside a strictly convex: The “sphere” of radius t, i.e. the locus
of end points of generalized geodesics (broken or gliding rays) of length
t, soon degenerates and develops singularities in arbitrarily small times,
depending on the frequency and the distance to the boundary of the source.

• tangency, no convexity: if the ray has infinite order tangency with the
boundary, even deciding what should be the continuation of a ray striking
the boundary is difficult...

A caustic/cluster point/ singularity in the wavefront should yield losses
in dispersion. In fact, at large frequency, our goal is to obtain an approximate
solution to the wave equation as a sum of oscillatory integrals, located near the
wave front, and whose phase functions encode the geometry of the WF. When
the WF is smooth, these phase functions have no degenerate critical points and
therefore the corresponding L∞ bounds are the same as in Rd. On the other hand,
if the WF has singularities (of cusp, swallowtail, butterfly type etc), then these
phase functions have degenerate critical points of different orders (2, 3, 4, etc)
which involve losses the L∞ estimates. It turns out that the possible dispersive
or Strichartz estimates that can be obtained should reflect the geometry of the
domain and especially its boundary.

Understanding dispersion requires a deep knowledge of the geometry of the
wave front which become a very degenerate object. If the boundary is strictly
convex, between every two consecutive reflections, the wave packets refocus, the
wave shrinks in size and its maximum increases. With G. Lebeau and F. Planchon,
we showed that the wave front develops a large number of swallowtail and cusp
singularities in arbitrarily small times.

However, understanding the wave front it is not sufficient! rays can stick to the
boundary and re-release energy near the ”shadow region”, producing diffractive
effects (e.g. the Poisson-Arago spot). We have recently shown that in the exterior
of a sphere in dimensions 4 or higher light intensity at the Poisson spot is stronger
than in the illuminated region, quite an unexpected result.

For general domains, there have been important contributions by many experts
in the field (see for example [Blair, Smith & Sogge] and [Smith & Sogge] and refer-
ences therein). Essentially all the positive results are based on a clever reduction
from a boundary problem to a boundary less one, by extending the metric across
it and use techniques developed for low regularity metrics (see [Smith 98],



2578 Oberwolfach Report 43/2022

[Tataru 02], etc). This tric allows to deal with any kind of boundary but is blind
by design to the full effect of dispersion (so very far from sharp, essentially because
it reduces to wave packets which cross the boundary once, while the bad things
appear just after the first reflection!).

1.3. Concave boundaries. From now on we will focus on the case of a smooth,
strictly concave boundary. Our goal in this work is to obtain dispersive estimates
for the wave equation with the Dirichlet boundary condition outside a general
strictly convex obstacle in R3.

1.3.1. The geometry of the wave front outside a convex obstacle with smooth bound-
ary. The geometry of the wavefront outside a convex obstacle :

• (part of) a circular front of directly
propagated singularities

• a curved front of singularities re-
flected off the obstacle in accordance
with Snell’s law.

Most crucially, if C∞ boundary there are NO singularities behind the obstacle

in the ”shadow region”, as a consequence of the parametrix construction of [Melrose
& Taylor]. In particular, there are no geometric singularities (in the sense of a
peak of light), but we may have diffractive effects.

However, the rules of the geometric optics are no longer so simple when we are
not on a domain with smooth boundary: in this case singularities may indeed go
into the shadow region.

1.3.2. What about the diffractive effects ?

An incoming (incident) ray that is tangent to the boundary splits into two
branches: one branch goes along the shadow boundary (without being deviated)
while the other travels along the boundary and radiates surface diffracted rays into
the shadow region, so the boundary acts as a secondary source. Because of this
radiation, the intensity on the surface decays exponentially with distance along the
ray. The transition and the shadow regions are reached by rays that are creeping
on the boundary surface (following boundary geodesics).

A result stated by Keller (and proved by [Hargé & Lebeau, 1994] in case of C∞

boundaries) states that rays can carry a non-negligeble amount of energy when
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travelling on the surface of the boundary only for a time/distance at most τ−1/3,
where τ is the frequency. After that, the amount of energy becomes exponentially
small.

If the boundary is perfectly circular (a ball), light waves bend around its sides:
the perfect symmetry of the obstacle means that all light waves should interact
constructively in the exact center of the shadow behind it, where one should see a
bright spot (the Poisson spot).

The Poisson spot is due to diffraction, contradicting the prediction of geometri-
cal optics and also that of the particle theory of light. It played an important role
in the discovery of the wave nature of light and is a common way to demonstrate
that light behaves as a wave.

Study of diffraction: first by Grimaldi (1665) (who named it), Huygens, New-

ton, Delisle and Maraldi (1715), Fresnel, Poisson ; experiment by Arago, (1818)
which led to the wave theory of light.

2. Dispersive estimates for waves outside a ball in Rd

The main difficulty comes from rays which hit the boundary without being de-
viated: for this diffractive regime we already have a strong and very useful tool
at our disposal (the Melrose & Taylor parametrix); on the other hand this sit-
uation seemed to have been quite well understood and many (sharp) positive
results in that direction had been established lately ([Zworski 1990], [Smith &
Sogge 1995], [Ivanovici 2008] or, in the radial case, [Li, Smith & Zhang 2012]).
However, whether dispersion did hold remained an open question, even for the
exterior of a sphere (for which explicit formulas exist, involving special functions).
In [Ivanovici & Lebeau 2020] we obtained the validity of sharp dispersive estimates
for the wave equation (and also for the classical Schrödinger equations, for which
we had to overcome an additional difficulty related to its infinite speed of prop-
agation) outside any strictly convex obstacle in R3. Moreover, we showed that
in higher dimensions d ≥ 4, counterexamples to dispersion do exist, even (and
especially) in the simplest case of the exterior of a sphere.

Theorem 1. [I. & Lebeau, 2020]) Let Ωd = Rd \Bd(0, 1).

• The dispersive estimates for the wave equation with Dirichlet condition
inside Ω3 hold true.

• If d ≥ 4, these estimates fail at the Poisson spot. If Q±(r) denote
the source and the observation points at (same) distance r from the ball,
symmetric w.r.t. the center of the unit ball Bd(0, 1) of Rd with d ≥ 3,
taking r ∼ h−1/3, t ∼ 2h−1/3 yields

∣∣∣(χ(hDt)e
i2h−1/3

√
|∆|(δQ+)

∣∣∣(Q−) ∼
1

hd

( h

2h−1/3

)− d−1
2

h−
d−3
3 .

This shows that for d ≥ 4, light intensity at the Poisson spot is stronger
than in the illuminated region.
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Theorem 2. (2022) Let Ω = R3 \ Θ, Θ strictly convex obstacle. The dispersive
estimates for the wave equation with Dirichlet condition inside Ω hold true.

Stability analysis of the DDA for Dielectric Scattering

Martin Costabel

(joint work with Monique Dauge, Khedijeh Nedaiasl)

1. Background

In computational physics concerned with the dielectric scattering of time-har-
monic electromagnetic waves (absorption of light by dust particles in interstellar
clouds, scattering of light by gold nanoparticles or red blood cells, simulation
of optical tweezers etc.), DDA (Discrete Dipole Approximation) has been a very
popular method for almost 50 years [1, 2]. This is a discretization method for
strongly singular volume integral equations that is very simple to implement, fast
and apparently reliable. It is, however, virtually unknown in the mathematical
community. Thus there is still no published proof of the stability (and hence,
convergence) of this method. On the way to such a stability proof, recently some
partial results have been obtained that show that the question is non-trivial. The
DDA can be described as a Delta-Delta Approximation (Dirac deltas as both test
and trial functions), but it does not fit in the known framework of projection
methods. Some tools that are not standard in numerical analysis have to be used
for its analysis.

2. Volume integral equation and discretization

Applying a Lippmann-Schwinger style perturbation idea to the time-harmonic
Maxwell scattering by a penetrable object described by a permittivity (or refractive
index) differing from a constant value only in a compact subset Ω of R3, one arrives
at the volume integral equation 1

ηu−Aκu = Einc with

Aκu(x) = −∇ div

∫

Ω

gκ(x− y)u(y) dy − κ2
∫

Ω

gκ(x− y)u(y) dy .

Here gκ(x) = eiκ|x|/(4π|x|) is the Helmholtz fundamental solution, u = ηE is the
polarization vector function, and η = εr − 1 with the relative permittivity εr. For



Semiclassical Analysis and Numerical Analysis of Wave Scattering Problems 2581

the DDA one chooses a regular cubic grid (xm)m∈Z3 of meshwidth h and replaces
the strongly singular volume integral equation by the system

(1) λum − h3
∑

xn∈Ω,n6=m

K(xm − xn)un = fm

with suitably chosen λ. Here K = −(∇ ⊗ ∇ + κ2I)gκ(x) is the kernel of the
integral operator Aκ. One expects that the system matrix in (1) approximates the
operator Aκ − 1

3 I.

3. Some stability results

Writing the system (1) in the form (λI−T h
κ )U = F , stability means here a uniform

resolvent estimate ‖(λI − T h
κ )

−1‖ ≤ C with C independent of h. Such stability
results (publications in preparation) have been presented in the talk in three cases
using different techniques: The quasi-static case (κ = 0), non-real frequencies
(κ ∈ C \ R), and real frequencies (κ > 0).

3.1. The quasi-static case κ = 0. In this case, the kernel K is positively homo-
geneous of degree −3. Therefore the matrix elements h3K(xm − xn) = K(m− n)
are independent of h, and the matrix T h

0 is a finite section of an infinite block
Toeplitz matrix T , which has the symbol

F (t) =
∑

m∈Z3,m 6=0

K(m)eim·t (t ∈ R
3) .

This Fourier series is not absolutely convergent, and to find precise bounds or
even to prove that F is bounded requires some work. We found that the Ewald
summation method can be applied. It writes F as the sum of a rapidly conver-
gent Fourier series and a slowly convergent one that can be transformed into a
rapidly convergent series via the Poisson summation formula. One obtains the
boundedness of F and a fast method to evaluate it numerically.

For κ = 0, the integral operator and the matrix T are selfadjoint, their numerical
range is therefore a real interval, the convex hull of the spectrum. For A0 this is
known [3] to be [0, 1] (corresponding to negative permittivities εr), for T one finds
numerically (by computing maximal and minimal eigenvalues of F (t)) an interval
[Λ−,Λ+] strictly larger by about 20% than the expected interval [−1/3, 2/3].

Theorem 1. For κ = 0, the method (1) is stable in the ℓ2 norm for λ ∈ C \
[Λ−,Λ+]. The method does not provide a spectral approximation of the volume
integral operator, and for λ ∈ [Λ−,Λ+] \ [−1/3, 2/3] (corresponding to very small
or very large positive εr), the method is unstable, whereas the corresponding volume
integral equation is well posed.

In the corresponding two-dimensional case, the expected interval is [−1/2, 1/2],

and one can prove that the spectrum of T is [−Λ+,Λ+] with Λ+ ≥ Γ( 1
4 )

4

32π2 = 0.5471...
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3.2. Non-zero frequencies. For κ 6= 0, the infinite Toeplitz matrix is no longer
independent of h, depending rather on κh.

If κ is non-real, one can still use Ewald’s method and obtain explicit bounds
for the numerical range of T h

κ , implying stability of the DDA for λ outside of the
subset of C described by these bounds. Compared with the numerically obtained
spectrum of T h

κ , these bounds become less and less sharp as argκ2 approaches
zero.

Finally, for real positive κ, the infinite Toeplitz matrix T no longer defines a
bounded operator in ℓ2(Z3), and so far only estimates for the imaginary part of
the DDA system matrices were obtained, by using a representation of the Green
function by plane waves that is related to the so-called Optical Theorem. This
implies stability for certain ranges of non-real εr.

4. Open question

From numerical computations of the eigenvalues of the matrices T h
κ , one sees that

apart from accumulation of eigenvalues around the real interval [Λ−,Λ+], there is
a discrete set of non-real eigenvalues of the volume integral equation that seem to
be well approximated as h → 0, so that whereas DDA does not strictly speaking
provide a spectrally correct approximation, it does so outside of a rather small set
in the complex plane. To describe this behavior correctly and to find a way how
to prove it is currently an open problem.
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Università degli studi di Pavia
Via Ferrata, 5
27100 Pavia
ITALY

Dr. Zois Moitier

Fakultät für Mathematik
Institut für Analysis
Karlsruher Institut für Technologie
(KIT)
Englerstraße 2
76131 Karlsruhe
GERMANY

Prof. Dr. Serge Nicaise

LAMAV
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Institut de Mathématiques d’Orsay
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