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Introduction by the Organizers

The Oberwolfach Mini-Workshop 2240a, Zero-Range and Point-Like Singular Per-

turbations: For a Spillover to Analysis, PDE and Differential Geometry, organised
by Vladimir Georgiev (Pisa) and Alessandro Michelangeli (Bonn) took place on
2-8 October 2022 in hybrid on-side and online form, and was structured in semi-
nar presentations and an amount of round table discussions. The 13 speakers, of
which 11 on-site and 2 online, came from universities from France, Germany, Italy,
Portugal, Serbia, and Spain.

This meeting was aimed at promoting and facilitating the transfer of techniques,
tools, and open problems from the field of contact interactions and pertur-

bations of differential operators supported on subsets with non-trivial

co-dimension, an increasingly active mainstream of mathematical physics (in
particular, operator and spectral theory and quantum mechanics), to intimately
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related applications and mathematical challenges in the area of partial differential
equations, and neighbouring sectors of analysis, PDEs, and differential geome-
try. The latter areas are naturally involved when one investigates the heat or
Schrödinger evolution flow generated by singular-perturbed Hamiltonian of rel-
evance, the associated standing waves, or when one transposes the problem in
the language of stochastic processes generated by such operators, or again when
point-like singular-perturbed PDE’s are placed on relevant manifold (typically,
almost-Riemannian structures).

Inter-particle interactions of virtually zero range (‘contact interactions’) became
a natural tool when in the 1930’s quantum mechanics began to be applied to the
newly observed nuclear phenomena, as the decrease by a factor 10−5 from the
atomic to the nuclear scale made it plausible to model the interaction among nu-
cleons as a delta-like interaction. In 1932 Wigner [77] calculated that the nuclear
forces must be of very short range and very strong magnitude, leading first Bethe
and Peierls [21, 22], then Thomas [76], Fermi, [42], and Breit [28] to describe the
neutron-proton scattering, and then some 20 years later, in 1955, Ter-Martirosyan
and Skornyakov [74] to describe the three-body problem with zero-range interac-
tion, by means of the Schrödinger equation in the approximation of a two-body
potential of very short range, virtually null. Whereas nuclear physics obviously
developed into a much finer corpus of knowledge, the ‘delta-like’ idealisation re-
mained for some decades an efficient tool for a formal first-order perturbation
theory in application to atomic physics [40]. Modern advances in the manipu-
lation of cold atoms have today conferred the zero-range modelling a renewed
topicality, owing to the experimental possibility of tuning the interaction’s effec-
tive scattering length to very large values and the interaction’s effective range to
zero, by means of a magnetically induced Feshbach resonance [71, Section 5.4.2].
Ultra-cold gases in the so-called ‘unitary regime’ (infinite scattering length and
zero-range) are nowadays well preparable and intensively studied (see [30, 27, 69]
and references therein).

An intense mathematical activity, at the crossroads of functional analysis, oper-
ator theory, and spectral theory paralleled the above physical developments, often
being triggered by the latter, until the present days. This includes: the rigorous
constructions of self-adjoint Hamiltonians for two-, three-, and N -body quantum
systems with zero-range interactions [18, 65, 75, 39, 32, 61, 62, 63, 33, 60, 16, 58, 59,
67, 68, 15, 56], the study of their spectral properties [64, 8, 66, 62, 63, 79, 17, 56],
the approximation by means of ordinary Schrödinger operators with potentials
supported at very short scales [8, 9, 13, 50, 14], among other themes, with tools
and techniques from spectral and scattering theory, self-adjoint extension schemes,
and the like.

Notably, each of the above subjects has witnessed and is witnessing both fabu-
lous, technically ingenious breakthroughs, and almost desperate, deep open prob-
lems. And most importantly, for the purposes of the Mini-Workshop, many math-
ematical questions that are central in the math-phys field sketched above naturally
involves specific techniques from, and naturally give rise independent problems in
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the realm of neighbouring subjects such as the theory of partial differential equa-
tions, differential geometry, and stochastic processes, where several studies have
been already initiated.

Let us survey two main representative lines around which the workshop’s discus-
sions unfolded.

Subject line I – Linear and non-linear Schrödinger and heat equations

with point-like Laplace perturbation. This is a natural and active continua-
tion, in the field of PDE, of the quantum mechanical problem of the time evolution

of particle systems subject to mutual zero-range interaction. The prototypical ob-
ject of interest is the singular-perturbed Laplacian −∆α on L2(Rd), d ∈ {1, 2, 3},
which is a self-adjoint extension of −∆|C∞

0
(Rd\{0}), namely of the free Laplacian

initially restricted to smooth functions that vanish in the vicinity of the origin. The
parameter α ∈ R ∪ {∞} measures, through a suitable expression, the scattering
length of the quantum particle that feels the non-trivial interaction supported at
x = 0 (or, re-interpreting the x-variable as a relative variable, the scattering length
in the two-body interaction of zero range). For example, in d = 3 dimensions,

dom(−∆α) =
{
u ∈ L2(R3)

∣∣∣u = f +
f(0)

4πα+ 1

e−|x|

|x| with f ∈ H2(R3)
}
,

(−∆α + 1)u = (−∆+ 1)f

(1)

(dom ≡ domain). The realisation with α = ∞ is nothing but the self-adjoint
Laplacian on the H2-domain. This naturally leads to considering linear and non-
linear Schrödinger equations

i∂tu = −∆αu ,(2)

i∂tu = −∆αu+ g(u) ,(3)

for non-linearities of physical relevance such as

(4) g(u) = λ|u|pu , g(u) = (w ∗ |u|2)u
(for suitable λ, p > 0 and w : R3 → R). For the linear problem, in all dimensions,
the explicit propagator is known [7, 36], and dispersive and Strichartz estimates
[41, 51, 38], as well as the completeness of the wave operators [38, 31, 78] have been
recently proved. In dimension d = 1 the point-like nature of the singularity has
the explicit structure −∆+δ(x) (in the sense of sum of quadratic form, where δ(x)
is the Dirac distribution), thereby allowing for an accurate analysis of (2)-(3) in
terms of local and global well-posedness, blow-up, scattering, asymptotic stability,
solitons, standing waves, ground state [5, 37, 2, 4, 3, 10, 12, 53, 52, 34, 11, 54,
55, 35]. The same questions in the case of dimension two or three encounter a
much more uncharted territory, with very recent characterisations [49, 29] of the
adapted (i.e., singular-perturbed) fractional Sobolev spaces

(5) Hs
α(R

3) := dom
(
(−∆α + λ1)

s
2

)
, s > 0 ,

for λ > 0 large enough, the proof of local and global well-posedness for certain
three-dimensional [5, 29] and two-dimensional [1, 44] singular-perturbed NLS. This
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leaves an ample room open for improvements and unanswered questions concerning
solution theory, standing waves, scattering, stability and instability, etc., when
d = 2, 3. Part of the workshop focussed on this, as well as on the counterpart
issues for the linear and non-linear heat equation with point-like perturbation.

Subject line II – Dispersive and scattering properties of the Schrödinger

and heat flow on degenerate Riemannian manifold of Grushin type. This
is another natural and active spin-off, in the field of Riemannian geometry and
analysis of PDEs on manifold, of the problem of a quantum particle subject to
the zero-range interaction supported in a region of non-trivial co-dimension, which
is in fact a region where the metric blows up. The study of a quantum particle
on degenerate Riemannian manifolds, and the problem of the purely geometric
confinement away from the singularity locus of the metric, as opposite to the
dynamical transmission across the singularity, has recently attracted a considerable
amount of attention in relation to Grushin structures and to the induced confining
effective potentials on cylinder, cone, and plane (as in the works [70, 23, 26, 73,
25, 43, 46, 24, 72, 47, 20, 45, 48]), as well as, more generally, on two-step two-
dimensional almost-Riemannian structures [23, 20, 19], or also generalisations to
almost-Riemannian structures in any dimension and of any step, and even to sub-
Riemannian geometries, provided that certain geometrical assumptions on the
singular set are taken [43, 73]. On a related note, a satisfactory interpretation
of the heat-confinement in the Grushin cylinder is known in terms of Brownian
motions [24] and random walks [6]. The prototypical playground is the Grushin-
type manifold Mα ≡ (M, gα), for given α ∈ R, with

M = R
−
x × Ry + R

+
x × Ry (Grushin plane) ,

M = R
−
x × S

1
y + R

+
x × S

1
y (Grushin cylinder)

(6)

and with metric

(7) gα = dx⊗ dx + |x|−2α dy ⊗ dy ,

thus with associated Laplace-Beltrami operator

(8) ∆α =
∂2

∂x2
+ |x|2α ∂2

∂y2
− α

|x|
∂

∂x
.

For such models, the geometric quantum confinement in each half-cylinder cor-
responds to the essential self-adjointness of −∆α in L2(M, |x|−α dx ∧ dy) on its
minimal domain of smooth functions supported away from the singularity; the
quantum transmission between the two halves of M corresponds instead to the
lack of essential self-adjointness, in which case the type of transmission is gov-
erned by the Schrödinger equation induced by a self-adjoint extension of −∆α.
We underline the fundamental novelty of the quantum setting, where depending
on the boundary conditions for ∆α the particle may or may not trespass the sin-
gularity locus, whereas instead classically Mα is always geodesically incomplete
(the classical particle reaches the boundary in finite time). Next to the recently
established identification of the α-regimes of essential self-adjointness or lack-of,
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the classification of the self-adjoint extensions of −∆α, and the study of their spec-
tral and scattering properties [46, 72, 47, 45], the relevant problem arises of the
dispersive and scattering properties of the Schrödinger and heat flow on Mα. For
concreteness in the case of the Grushin cylinder (compact y-variable), one can see
[45, 48] that in each Fourier mode conjugate to y one is led to the study of PDEs
of the form

(9)





i∂tu = −∂2xu+ α(α+2)
4x2 u ,

u0(t)
− = u0(t)

+ with u±0 (t) := lim
x→0±

|x|α2 u(t, x) ,
u1(t)

− = −u1(t)+with u±1 (t) := lim
x→0±

|x|−(1+α
2
)(u(t, x)− |x|−α

2 u±0 (t)) ,

u(0, x) = ϕ(x) with ϕ ∈ L2(R)

in the unknown u ≡ u(t, x), with t ≥ 0 and x ∈ R \ {0}: a free Schrödinger equa-
tion except for the non-trivial boundary conditions of contact interaction at x = 0
(a signature of a non-trivial left↔right transmission protocol). Similar considera-
tions hold for the associated heat equation. Along a completely open programme
recently proposed and advertised in [48], the next crucial challenges are the study
of dispersive, smoothing, and Strichartz estimates for linear problems of the type
(9), as well as the well-posedness, ground states, scattering, stability/instability
of the associated non-linear equations.

The Mini-Workshop aimed at gathering a small number of mathematicians of var-
ious degrees of expertise, with an amount of direct or indirect scientific links al-
ready transversely present among them, and who are carriers of the mathematical-
physical, differential-geometric, functional-analytic, and differential equation the-
oretic backgrounds, with the general goal of discussing the setup and the perspec-
tives of ongoing and future investigations in each of the above fields, all stemming
from, or intimately motivated by the grand picture of zero-range and contact in-
teractions sketched in the previous Section. At the end of a week of mutual and
profitable exchanges, this little group of already mildly connected researchers was
meant to import into their own network of collaborations the corpus of general
motivations, cross-disciplinary stimuli, technical tools, and bibliographic references
discussed in the workshop. In this respect, the event set the basis of future larger
meetings among neighbouring mathematical communities.
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Generalised solutions to non–linear Schrödinger equations

with singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2620

Jens Wirth (joint with Jonas Brinker, Michael Ruzhansky)
Operators on Groups and Non-Commutative Fourier Transforms . . . . . . 2621





Zero-Range and Point-Like Singular Perturbations 2613

Abstracts

Two-dimensional systems with non-linear point interactions

Riccardo Adami

Non-linear point interactions were introduced two decades ago in order to describe
localised phenomena like trapping, beatings, concentration of wave packets, and
so on. Seminal studies focussed on one and three-dimensional systems, leaving
untouched the more technical two-dimensional case up to two years ago. We
review the results and comment on the specific features exhibited by this case,
together with open problems.
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[1] R. Adami, F. Boni, R. Carlone, L. Tentarelli, Ground states for the planar NLSE with a
point defect as minimisers of the constrained energy, Calc. Var. 61 (2022) 195

Self-adjoint extensions for the curvature Laplacian on

Grushin manifolds

Ivan Beschastnyi

I discuss some results from an ongoing project with H. Quan (University of Wash-
ington), in which we study the curvature Laplacian on curved high-dimensional
analogues of the α-Grushin planes. We are able to prove that all self-adjoint prop-
erties of the Laplacian are encoded in a second order polynomial, which can be
easily read off from the equation itself. In particular, we can determine whether
the operator is essentially self-adjoint by computing its discriminant and construct
all of its self-adjoint extensions from its roots.

NLS ground states with singularities

Filippo Boni

We investigate the existence of ground states at fixed mass of the L2-subcritical
non-linear Schrödinger equation with a point interaction. First, the problem is
considered in dimension two and three. We prove that ground states exist for
every value of the mass and, up to a multiplication by a phase factor, they are
positive, radially symmetric, decreasing along the radial direction and present a
singularity where the interaction is placed. In order to obtain qualitative features
of the ground states, we refine a classical result on rearrangements and move to
equivalent variational formulations of the problem. Then, we present some future
developments, among them the possibility of generalising similar models on hybrid
structures.
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Geometric confinement of the curvature Laplacian on almost

Riemannian manifolds

Ugo Boscain

Two-dimensional almost-Riemannian structures of step 2 are natural generalisa-
tions of the Grushin plane. They are generalised Riemannian structures for which
the vectors of a local orthonormal frame can become parallel. Under the 2-step
assumption the singular set Z, where the structure is non-Riemannian, is a one-
dimensional embedded submanifold. While approaching the singular set, all Rie-
mannian quantities diverge. A remarkable property of these structures is that the
geodesics can cross the singular set without singularities, but the heat and the
solution to the Schrödinger equation (with the Laplace-Beltrami operator ∆ can-
not. This is due to the fact that (under a natural compactness hypothesis), the
Laplace-Beltrami operator is essentially self-adjoint on a connected component of
the manifold without the singular set. In the literature such a counter-intuitive
phenomenon is called geometric confinement.

For the heat equation an intuitive explanation of this fact can be given in terms
of random walks. For the Schrödinger equation an intuitive explanation is more
subtle, as the evolution of a quantum particle on a manifold can be done in several
non-equivalent way.

In this talk I describe the evolution (and the confinement) of a quantum particle
described by the curvature Laplacian −∆+ cK (here K is the Gaussian curvature
and c > 0 a constant) which originates in coordinate-free quantisation procedures
(as, for instance, in path-integral or covariant Weyl quantisation).
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About Schrödinger and Dirac operators with scaling critical potentials

Luca Fanelli

(joint work with Luz Roncal, and Nico Michele Schiavone)

Lower-order perturbations of the free Hamiltonians usually appear in Quantum
Mechanics, ad models describing the interaction of a free particle with an external
field. In some cases, the perturbation lies at the same level as the free Hamiltonian,
and the resulting conflict can generate interesting phenomena. We will introduce
the Inverse Square and Coulomb potentials as toy models, and describe the main
features of the complete Hamiltonians from the point of view of Fourier Analysis,
Spectral Theory, and dispersive evolutions. In this talk, the potentials will usually
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belong to C, which is responsible of a lack of symmetry, and we hence are in the case
of non-self-adjoint Hamiltonians. In the recent years, there is a growing interest
devoted to this kind of operators, and it is quite surprising that it started around
25 years ago, after almost one century since the advent of Quantum Mechanics.
Motivated by needs of Nuclear Physics, Scholtz-Geyer-Hahne [12] suggested an
interesting model in which observables are represented by operators which are not
necessarily self-adjoint, but merely quasi-self-adjoint” (roughly speaking, similar
to self-adjoint operators). In this case, it is sufficient to change the inner product in
the base Hilbert space, with the help of a metric operator related to the similarity,
to end back in the usual Hermitian case. Later on, Bender-Boettcher [2] noticed
that a large class of non-self-adjoint operators still possesses a real spectrum, and
renewed the interest to the topic.

In the recent papers [4, 6, 7], we proved by purely real analytic methods some
uniform resolvent estimates for the free Hamiltonian, inspired to the pioneer results
by Kato and Yajima in [11]. Those are uniform version over the complex plane of
some weighted variant of the so called Hardy-Rellich inequality, which has been
recently investigated in [3] with a particular interest on the sharp constants. In
this talk, we will present the recent results obtained in [8], concerned with the
analogous questions in the sub-Riemannian setting of the Heisenberg Group. Some
interesting open problems related with the spectrum of mass-less Dirac operators
and the sharp constants of the uniform resolvent estimates will also be introduced.
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Pointed sub-Laplacians in three dimensions and Hardy inequalities

Valentina Franceschi

The aim of this seminar is to present recent results on the essential self-adjointness
of pointed sub-Laplacians in three dimensions. We show that, unlike the Euclidean
case, pointed sub-Laplacians (associated with smooth measures) are essentially
self-adjoint in dimension 3. To this purpose, we focus on the case of the 3D
Heisenberg sub-Laplacian, and we show its essential self-adjointness by exploiting
non-commutative Fourier transform techniques. We then generalise the result
to a class of three-dimensional sub-Riemannian manifolds. In connection with
the main result, we present a discussion on Hardy inequalities in the Heisenberg
group: contrary to the Euclidean case, a radial Hardy inequality, i.e., a Hardy
inequality taking into account only the directional derivative with respect to the
sub-Riemannian distance, does not hold in this context for any dimension. This
underlines again a difference with respect to the Euclidean case, where essential
self-adjointness of pointed Laplacians can be derived from Hardy inequalities.
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The Laplace-Beltrami operator on the Grushin Cylinder

Matteo Gallone

(joint work with Alessandro Michelangeli, Eugenio Pozzoli)

When a quantum particle is constrained on an orientable Riemannian manifold,
one challenging problem that arises naturally is the question of the so-called ‘geo-
metric quantum confinement’. This is the possibility that a particle whose initial
wave-function is supported inside some portion of space may remain confined in
such a region for all times when evolving according to the unitary group gen-
erated by the free Hamiltonian. This occurrence is related to the presence of
singularities in the metric and to the (essential) self-adjointness of the Laplace-
Beltrami operator. The prototypical example of space exhibiting this phenomenon
is the ‘Grushin-like cylinder’, that is, roughly speaking, a cylinder with metric
ds2 = dx2 + |x|−2αdy2. In this talk I consider this manifold and present the clas-
sification of a physically interesting sub-family of self-adjoint realisations of the
Laplace-Beltrami operator in the regime where it is not essentially self-adjoint. I
discuss the advantages of the usage of the Krĕın-Vǐsik-Birman self-adjoint exten-
sion theory.
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Boundary conditions, product formulae and classical limit

Marilena Ligabò

(joint work with Paolo Facchi, Fabio Deelan Cunden, Giancarlo Garnero)

In this seminar some connection between (classical and quantum) boundary con-
dition and product formulae will be illustrated. The starting point of this pre-
sentation is a result concerning a parametrisation of all the possible self-adjoint
extensions of the Laplace operator on a bounded domain in terms of unitary oper-
ators at the boundary [1]. Then, using the Trotter product formula, a composition
law for quantum boundary conditions will be defined [2]. Furthermore, the link
between the occurrence of boundary conditions and frequent measurements on a
quantum system will be discussed. This phenomenon is due to the existence of a
one-parameter unitary group obtained as the limit of the Zeno product formula
(defined by intertwining the time evolution group with an orthogonal projection)
[3, 4]. The limiting dynamics is called Zeno dynamics and the corresponding gen-
erator is called Zeno Hamiltonian. Finally, it will be shown that the classical limit
of a Zeno dynamics obtained in a cavity quantum electrodynamics experiment
[5, 6] induces a change of topology in the classical phase space [7].

References
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[4] P. Facchi, M. Ligabò, Quantum Zeno effect and dynamics , Journal of Mathematical Physics
51 (2010), 022103.

[5] J. M. Raimond, C. Sayrin, S. Gleyzes, I. Dotsenko, M. Brune, S. Haroche, P. Facchi, and
S. Pascazio, Phase Space Tweezers for Tailoring Cavity Fields by Quantum Zeno Dynamics,
Phys. Rev. Lett. 105 (2010), 213601.

[6] J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes,
M. Brune, S. Haroche, Quantum Zeno dynamics of a field in a cavity, Physical Review A
86 (2012), 032120.

[7] F. D. Cunden, P. Facchi, M. Ligabò, Classical limit of a truncated momentum operator, in
preparation (2022).



2618 Oberwolfach Report 44/2022

The NLS equation with a point interaction in two and three

dimensions

Diego Noja

(joint work with Claudio Cacciapuoti and Domenico Finco)

The NLS equation with a power non-linearity and point interaction is described
by the Cauchy problem

i∂tψ = Hαψ + g|ψ|p−1ψ p > 1, g = ±1

where Hα is the abstract Schrödinger-like singular perturbation of the Laplacian
known as point interaction or delta potential, sometimes improperly written as
Hα = −∆ + αδ. The model is well studied in dimension one but only recently
the two and three dimensional cases have been considered by several authors. In
the talk, after a review of the definition, construction and properties of point
interactions especially relevant to the applications in the nonlinear setting, the
well-posedness of the Cauchy problem will be treated, as regards the known facts
and reviewing also some still open problems. Moreover, some asymptotic prop-
erties of the model will be discussed, and in particular as regards the blow-up
for strong non-linearities in dimension two. Namely, it will be shown that in two
dimensions and in the super-critical regime p > 3 large sets of initial data undergo
blow-up and that the standing waves are strongly unstable, in the sense that ar-
bitrarily close (in the energy norm) to any standing wave there exist blowing-up
initial data.
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On the square of Laplacian with inverse square potential

Mario Rastrelli

(joint work with Vladimir S. Georgiev)

The aim of the talk is to show an explicit characterisation of the domain of the
scaling-invariant perturbation of the Laplacian, the operator A = −∆+ β

|x|2 , and

of its square. For the domain of A, we require β > n(n−4)
4 that is the necessary

condition for essentially self-adjointness of the operator [8, 9]. For A2 it is still

not clear what happens when β = 8 + n(n−4)
4 . It is also more difficult to give an

expression of the domain in even dimensions, when n < 8, due to the problems
that arise with weighted Rellich inequalities. The description of D(A) gives to us
a Rellich type inequality that can be used to study Schrödinger operators with
singular potential of the inverse-square type [5], that hold even if n = 3, 4. The
characterisation of D(A2) improve this last result, giving to us a weighted version
of the inequality.
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Non-linear Schrödinger equations with point interactions:

results and perspectives

Raffaele Scandone

(joint work with Vladimir Georgiev, Alessandro Michelangeli)

In this talk I review recent advances in the study of non-linear Schrödinger equa-
tions with delta-like potentials. After introducing a suitable functional framework,
the notion of sub-critical non-linearity, and a class of dispersive-type estimates, I
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discuss some results concerning the global well-posedness and the existence (and
symmetries) of standing waves. The last part of the talk is devoted to open ques-
tions and future research perspectives.

Generalised solutions to non–linear Schrödinger equations

with singularities

Ivana Vojnović

(joint work with Nevena Dugandžija, Alessandro Michelangeli)

We consider Schrödinger equations of Hartree and cubic type in three spatial
dimensions and its approximations of singular, point-like perturbations.

As approximants to the Hartree equation, we analyse the equation of the form

(1) i∂tuε = −∆uε + Vεuε + (w ∗ |uε|2)uε ,
for ε ∈ (0, 1]. Here Vε is a real-valued potential and is meant to represent a
singular, delta-like profile centred at x = 0.

We assume that

(2) Vε(x) :=
1

εσ
V
(x
ε

)
,

for a given measurable function V : R3 → R and a given σ ≥ 0.
The corresponding nets of approximate solutions represent generalised solutions

for the singular-perturbed Schrödinger equation. The behaviour of such nets is
investigated for σ ∈ [0, 3].

We also study a generalised solution in the Colombeau algebra GC1,H2 for cubic
and Hartree equation with delta potential, which correspond to the case σ = 3
in (2). In the case of the Hartree equation with delta potential compatibility
between the Colombeau solution and the solution of the classical Hartree equation
is established. More precisely, we prove that

(3) lim
ε↓0

‖uε − u‖L∞([0,T],L2(R3)) = 0 ,

where Colombeau solution is represented by net (uε) and u is the unique solution
in C(R, L2(R3)) to the Cauchy problem

i∂tu = −∆u+ (w ∗ |u|2)u
with initial datum a ∈ L2(R3).
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Operators on Groups and Non-Commutative Fourier Transforms

Jens Wirth

(joint work with Jonas Brinker, Michael Ruzhansky)

The study of differential and more general pseudo-differential operators is usually
based on Euclidean Fourier transform

f̂(ξ) =

∫

Rn

e−2πix·ξf(x) dx, f ∈ S(Rn),

which allows to treat differential operators p(D) =
∑

|α|≤m aαD
α, D = i

2π∂ in

terms of their symbols p(ξ). More generally, for σA(x, ξ) ∈ C∞
b (Rn)⊗̂OM (Rn) one

considers operators of the form

Af(x) =

∫

Rn

e2πix·ξσA(x, ξ)f̂(ξ) dξ.

For details on pseudo-differential operators and their calculus see [1] and [2]. Al-
though, (almost) any operator can be treated in such a way, the translation in-
variance of the constant coefficient differential operators is built into the calculus.

Sometimes it is advantageous to treat operators based on different symmetries
and therefore use non-commutative analogues of the classical Fourier transform.

The non-commutative Fourier transform. For a locally compact type-I group

G we denote by Ĝ the set of equivalence classes of irreducible unitary representa-

tions ξ : G→ L(Hξ) and for each [ξ] ∈ Ĝ define

f̂(ξ) =

∫

G

f(x)ξ(x)∗ dx

as non-commutative Fourier transform. For sufficiently nice functions f̂(ξ) is of

trace class and there exists a unique measure on Ĝ, the Plancherel measure µ,
such that the inversion formula

f(x) =

∫

Ĝ

trace(f̂(ξ)ξ(x)) dµ(ξ)

holds true. Again this can be used as starting point to develop a pseudo-differential
calculus, for details see e.g. [6]. It is worth looking at some examples to see how
such a calculus will look like and what benefit it brings.
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Compact groups. If G is compact, irreducible representations [ξ] ∈ Ĝ are finite-
dimensional, i.e. Hξ ≃ Cdξ , and the inversion of non-commutative Fourier trans-
form reduces to Peter–Weyl theorem

L2(G) =
⊕

[ξ]∈Ĝ

span{ξij | ξ(x) = (ξij(x))1≤i,j≤dξ
}

in the form of series representations

f(x) =
∑

[ξ]∈Ĝ

dξ trace(f̂(ξ)ξ(x)).

For G a compact Lie group any linear continuous operator A : C∞(G) → D′(G)
can be represented in terms of a matrix-valued symbol

σA(x, ξ) = ξ(x)∗(Aξ)(x),

where A is applied to the matrix entries ξij , as series

Af(x) =
∑

[ξ]∈Ĝ

dξ trace(f̂(ξ)σA(x, ξ)ξ(x)).

Again symbols encode properties of the operator and allow for a full symbolic
calculus under appropriate conditions, see [4] and [5]. To mention a typical ex-
ample, Hörmander class pseudo-differential operators defined in local coordinates
allow a global characterisation in terms of such global symbols. The operator A is
pseudo-differential of order m and type (ρ, δ) if

sup
x∈G

‖∂αx△β
ξσA(x, ξ)‖op ≤ Cα,β〈ξ〉m−ρ|β|+δ|α|

holds true with 〈ξ〉 =
√
1 + λξ given in terms of the Laplace eigenvalue λξ on the

eigenfunctions ξij , an admissible selection of left-invariant vector fields ∂x and an
admissible selection of first order difference operators △ξ. First order difference
operators by itself are defined in terms of the non-commutative Fourier transform,

△f̂ = q̂f ,

using differentiable functions q : G→ C vanishing to first order in the identity ele-
ment 1 ∈ G and admissibility for a selection of such difference operators essentially
means that their differentials in the identity span the full cotangent space.

The Heisenberg group. On the Heisenberg group Hn = R2n+1 with group law

(x, ξ, τ) • (y, η, σ) = (x+ y, ξ + η, τ + σ +
1

2
(y · η − x · ξ))

irreducible representations are characterised by Stone–von Neumann theorem. Of
interest for us are only the Schrödinger representations

ρλ(x, ξ, η) = e2πiτ+πiλx·ξMξTλx
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parametrised by λ ∈ R× = R \ {0} and given in terms of translations Tx and
modulationsMξ on the Hilbert space L2(Rn). The Haar measure of the Heisenberg
group is given by Lebesgue measure and the Fourier inversion formula is given by

f(x) =

∫

R×

trace(f̂(λ)ρλ(x, ξ, τ))|λ|n dλ, f̂(λ) = f̂(ρλ).

For more details, in particular on the resulting pseudo-differential calculus, see
[7]. The main difference to the case of compact groups is that symbols σA of
pseudo-differential operators A are by itself unbounded operators on the repre-
sentation space L2(Rn) and should better by itself be seen as Weyl quantised
pseudo-differential operators. The following table collects examples for this:

operator on Hn symbol as operator on Rn Weyl symbol

∂xj
− 1

2ξj∂τ
√
|λ|∂yj

√
|λ|ηj

∂ξj +
1
2xj∂τ i

√
λyj i

√
λyj

∂τ iλ iλ
Lsub |λ|2 ∑n

j=1(∂
2
uj

− u2j) −|λ|2 ∑n
j=1(y

2
j + η2j )

Symbols of pseudo-differential operators are again characterised in terms of smooth-
ness and difference conditions. Now difference operators are in fact also differential
operators acting on Weyl symbols

function on Hn difference operator on Rn difference operators on symbols

xj |λ|−1/2 ad yj |λ|−1/2∂ηj

ξj −iλ−1/2 ad ∂yj
−iλ−1/2∂yj

τ · · · ∂λ − 1
2λ

∑n
j=1(yj∂yj

+ ηj∂ηj
)

and in essence from these operators it can be seen that symbols of Hörmander
class pseudo-differential operators on Rn are in fact itself parameter-dependent
pseudo-differential operators with symbols from Shubin classes.

Smooth orbit characterisations. Properties of operators A on a Hilbert space
H can be encoded into smoothness properties of the orbit

x 7→ π(x)∗Aπ(x)

with respect to unitary representations π : G→ L(H). It is well-known that C∞-
smoothness of such orbits with respect to Schrödinger representations characterise
pseudo-differential operators with symbols from S0

0,0, see [3]. In [8], [9] this is
generalised to ultra-differential smoothness for actions of compact and also for
homogeneous groups.
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