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ABSTRACT. Machine learning has become an highly active field of research,
but its mathematical underpinnings are still hardly understood. This work-
shop identified key challenges, and it discussed potential solutions. Bringing
together a diverse group of researchers, the workshop established different
views on the topic based on notions from statistics, probability theory, and
optimization.
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Introduction by the Organizers

Statistical learning and machine learning have achieved remarkable empirical suc-
cess recently in science and engineering applications, including computer vision,
neural language processing, game playing, robotics control, and even protein fold-
ing. Despite their enormous success in practice, these learning methods often
differ significantly from classical statistical learning, and their generalizability and
robustness are poorly understood. The disparity has inspired a recent flurry of
theoretical research activity in the intersection of probability, statistics, and opti-
mization, with the aim of exploring statistical interpretations of deep learning and
beyond. This workshop identified and discussed two key challenges that permeate
machine learning at the cutting edge, but that have been only lightly studied in pre-
vious mathematical literature: 1. Robustness, that is, providing a more complete
mathematical characterization of the performance of various machine learning al-
gorithms (and possibly newly devised ones) when training and/or test data are
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contaminated by adversarial mechanisms. 2. Generalizability and transferability,
that is, developing new statistical insights for the generalization performance of
over-parameterized models by exploring the prolific interplay between model com-
plexity, sample size, structural (implicit and explicit) biases/regularization, and
different kinds of distribution shifts between the training and test data.

The workshop had 13 visiting participants from different countries, and four
online participants. The workshop was a blend of researchers with various back-
grounds yet a common interest in mathematical research. The heart of the work-
shop was the discussions of open problems; the following abstracts give an overview
of these problems.
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Abstracts

Minimax hypothesis testing
SIVARAMAN BALAKRISHNAN

The broad goal of the minimax hypothesis testing framework is to characterize the
complexity of various hypothesis testing problems by placing them in a framework
which parallels that of minimax statistical estimation. Perhaps, the most classical
hypothesis testing problem is that of goodness-of-fit testing. Here, we are given
samples X1,..., X, ~ P and would like to distinguish the hypotheses:

H() P = P(),
Hy: PPy and p(P, Py) > €,

where P; is some family of structured distributions. The goal here is usually to
characterize the critical radius €, — which is roughly the value €, for which there
exists a non-trivial test to distinguish null from alternate. These are relatively
well-studied problems (for common collections of distributions P;), and what is
most surprising is that often the critical radius is much smaller than the minimax
rate for estimation, i.e. we can often distinguish null from alternate using many
fewer samples than we would need to estimate distributions in these collections.

I’'m most interested in understanding better fuzzy versions of this hypothesis
testing problem, i.e. suppose now we are interested in distinguishing;:

Hy: P e Pyand p(P, Py) < vy,
Hy: P e Py and p(P, Py) > €,

where Py is also a family of structured distributions (potentially, identical to P).
Now our goal is to characterize sequences (n, v,, €,) for which there is a non-trivial
test to distinguish these (and of course, to identify such tests).

Here are some more concrete questions that I am interested in (together with
some brief motivation):

(1) Suppose we pick Py and P; to be the family of identity covariance Gaus-
sians. In this case, the problem is relatively well-studied when the distance
p corresponds to the KL-divergence (i.e. the metric of interest simply mea-
sures the ¢9 distance between means).

I believe that the case where p instead corresponds to the ¢, distance
(for p # 2) between means is already unresolved.

One reason why I think this problem is interesting is that tests which are
optimal when v,, = 0 (for instance, the x? test) are provably sub-optimal
when v, > 0 (which to me is both surprising and interesting).

Another reason why I find this problem fascinating is that lower bound
constructions are often much more subtle. In the classical case (when
v, = 0) lower bounds are obtained from lower bounds for distinguishing
the simple null from a mixture under the alternate. In the case when
vy > 0, we need to construct mixtures under both the null and alternate
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which match a large number of moments (and these are inherently much
more challenging to design and analyze).

(2) Similarly, the case when Py and P; are classes of smooth densities (say
Holder with parameter ) is to my knowledge unresolved.

(3) Another broad motivation for studying problems of this form comes from
using fuzzy testing as a bridge to understanding estimation problems.

There are two directions that I think would be interesting to pursue.
First, it seems natural that as v,, gets large, the rate at which the critical
radius will need to scale will begin to look like the functional estimation
rate for estimating the functional p(P, Py). It would be interesting to try
to characterize (in some generality) how rates transition from testing rates
to functional estimation rates (often the latter are much slower than the
former).

The other direction which I think might be fruitful to explore is to try to
study problems in which the local-minimax rate for functional estimation
exhibits some interesting heterogeneity. In more detail, we understand for
some problems (testing in multinomial and density models with v, = 0)
the critical radius exhibits a strong dependence on Py, and this dependence
reveals some aspects of the local geometry of the testing problem. On the
other hand, it is completely unknown if such effects arise in functional
estimation (i.e. does the rate for estimating p(P, Py) depend strongly on
Py or not?). Studying fuzzy testing problems may lead to some answers
to this question as well.

Breaking the sample complexity barrier in reinforcement learning
YUXIN CHEN

A central objective of reinforcement learning (RL) is to search for a policy—based
on a collection of noisy data samples—that approximately maximizes cumulative
rewards, without direct access to a precise description of the underlying environ-
ment. Fmerging RL applications necessitate the design of sample-efficient solu-
tions in order to accommodate the explosive growth of problem dimensionality.
Given that the state space, the action space and the time horizon could all be
unprecedentedly enormous, it is often infeasible to request a sample size exceeding
the fundamental limit set forth by the ambient dimension in the tabular setting
(which enumerates all combinations of state-action pairs). Consequently, how to
make the best of use of data samples becomes one of the most pressing issues in
contemporary RL, particularly in sample-starved applications where data collec-
tion is expensive, time-consuming, or even high-stake (e.g., online advertisements,
autonomous systems).

Despite a large body of research dedicated to understanding the sample effi-
ciency of RL, however, most of existing results suffered from an enormous sample
complexity barrier that prevents one from obtaining a complete trade-off curve
between sample complexity and statistical accuracy. For instance, even with an
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idealized simulator, the state-of-the-art theory on prior RL methods requires the
total sample size to exceed a huge (but unnecessary) threshold, thus restricting
their practicality for sample-limited applications. A similar or even higher bar-
rier emerged in prior theory for both online exploratory RL and offline RL. In
stark contrast, however, no information-theoretic lower bounds developed thus far
preclude us from attaining reasonable learning accuracy when going below the
above sample complexity barrier. Such issues are already present in the simplest
tabular settings, not to mention more complex scenarios that involve complicated
function approximation (e.g., neural networks). Addressing these issues requires
substantial expansion of the statistical and algorithmic foundation of RL.

Fortunately, the recent advancement in high-dimensional statistics provides a
powerful and versatile toolbox to help accomplish the above goal. In this talk, I
use two recent examples to illustrate the utility of high-dimensional statistics in
settling the sample complexity of reinforcement learning.

Breaking the sample size barrier in the presence of a simulator. Assuming
access to an idealized simulator of the unknown environment, our recent work
[1] makes progress towards establishing a comprehensive understanding of the
fundamental statistical limit as well as how to achieve it efficiently. Consider an
infinite-horizon ~-discounted Markov decision process (MDP) with state space S
and action space A, and one can acquires samples for any state-action pair by
querying the simulator. The aim is to achieve the desired sample efficiency with
minimal calls to the simulator. However, all prior algorithms (both model-based
and model-free) incurred a huge burn-in cost, and hence are not guaranteed to be
efficient in sample-starved scenarios. Motivated by the inadequacy of prior theory,
we take an important step towards closing the gap between achievability results
and information-theoretic lower bounds, where the model-based (a.k.a. plug-in)
approach turns out to be unreasonably effective. We propose a randomly perturbed
model-based algorithm, and demonstrate its statistical optimality for the full range
of accuracy level. To the best of our knowledge, this provides the first guarantee
in a simulator setting that is optimal for the entire range of sample sizes (beyond
which finding a meaningful policy is information theoretically impossible).

Settling the sample complexity in offline/batch RL. The next story is con-
cerned with offline or batch RL, which learns using pre-collected data without
further exploration. Effective offline RL would be able to accommodate distribu-
tion shift and limited data coverage. However, prior algorithms or analyses either
suffer from sub-optimal sample complexities or incur high burn-in cost to reach
sample optimality, thus posing an impediment to efficient offline RL in sample-
starved applications. Our recent work [2] demonstrates that the model-based (or
”plug-in”) approach achieves minimax-optimal sample complexity without any
burn-in cost for tabular Markov decision processes (MDPs). Concretely, consider
a y-discounted infinite-horizon MDP with S states and effective horizon ﬁ, and
suppose the distribution shift of data is reflected by some single-policy clipped
conceintrability coefficient C*. We prove that the sample complexity scales as

% in order to yield € accuracy, where € can take any value between 0 and
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% (thus achieving minimax optimality for the full e-range). Our algorithms are
” pessimistic” variants of value iteration with Bernstein-style penalties, and do not
require sophisticated variance reduction. Finally, our analysis is established upon
a powerful “leave-one-out” decoupling argument that finds its roots in probability

and random matrix theory.

The above two examples only reflect a tip of an iceberg. There are many other
scenarios (e.g., online RL, multi-agent RL, partially observed RL) whose sam-
ple complexity has yet to be determined. I would like to invite experts from
high-dimensional statistics to contribute to the very rich set of problems in rein-
forcement learning.

REFERENCES
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Robustness of deep learning-based signal reconstruction: Partial
results and open directions

REINHARD HECKEL

Deep learning-based methods give state-of-the-art performance for imaging tasks
such as denoising and reconstructing an image from few and noisy measurements.
Those tasks are traditionally solved with hand-crafted methods such as sparse
regularization. Neural networks give higher accuracy and faster reconstruction
speed, and are therefore replacing classical sparsity-based methods in imaging
applications.

However, there are concerns that those improvements in performance come at
the price of robustness. We and others investigated the robustness of a variety of
methods empirically, and found no evidence of neural networks being less sensitive
to worst-case perturbations and distribution shifts than classical methods [1].

However, it is still an open problem to characterize the robustness of neural
networks for signal reconstruction for worst-case and for distribution shifts. In
this note, we describe open problems on the worst-case robustness and on charac-
terizing the robustness with regard to distribution shifts.

Worst-case robustness. Consider an estimator f that takes as input a mea-
surement y € R™ of an signal (often an image) x € R™. The worst-case risk for
such an estimator is defined as

RF(f) :E(x,y) max |‘f(y_|'e)_x|‘§ s

llell2<e

where expectation is over a distribution of image and corresponding measurement
(x,y),and worst-case robustness is measured with respect to a worst-case ¢3 per-
turbation.
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An important open problem is to characterize optimal worst-case estimators
for different signal models and for different worst-case noise models. This will
enable to quantify accuracy-robustness tradeoffs and give insights into the design
of worst-case robust estimators, and how to learn them from data.

Here is what we know for a simple linear setup. Consider a denoising problem
where the goal is to estimate a signal x from a noisy measurement y = x+z. Here,
the signal x is drawn uniformly from a d-dimensional subspace and z is additive
Gaussian noise with variance ¢2. It can be shown that an optimal linear worst-
case estimator for this setup has the form f(y) = a(o,¢)UUTy, where UU7T is an
orthogonal projection onto the signal subspace, and a(o,¢€) € (0,1) is a shrinkage
factor depending on the noise variance and on the worst-case perturbation, as
measured by e. This result implies that for this simple linear model, learning
via robust optimization is equal to learning via regularization with jittering, i.e.,
training with additive noise in the input. An interesting question is whether such
relations between robust optimization and certain types of regularization also hold
in more general setups.

Distribution shifts. Machine learning systems are often applied to data that is
drawn from a different distribution than the training distribution. Recent work
has shown that for a variety of classification and signal reconstruction problems,
the out-of-distribution performance is strongly linearly correlated with the in-
distribution performance [2]. If this relationship or more generally a monotonic
one holds, it has the important consequence that an estimator that is better in
distribution than another is also better on out-of-distribution data.

In recent work, we have show that under a simple co-variate shift model, for
a large class of estimators based on regularized empirical risk minimization, a
monotonic performance relationship holds between in- and out-of-distribution risk,
denoted by Rp and Rg, holds [3]. Specifically, Rp(f) = g(Rg(f)) holds for a class
of estimators f € F, and for a fixed monotonic function g that depends on the
problem and the distributions P and Q.

In contrast, most classical results on distribution shifts focus on deriving bounds
that guarantee that the difference of in- and out-of-distribution risk is small, i.e.,
|Rp(f) — Ro(f) < 4, for some § depending on the problem and the distance
between the distributions.

An interesting research direction is to derive precise relations between the per-
formance of in- and out-of-distribution performance for classes of distributions
and estimators, in order to understand the out-of-distribution generalization per-
formance of estimators better.

REFERENCES
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Multi-group learning
DANIEL Hsu
(joint work with Christopher Tosh)

Multi-group learning [3] generalizes the standard framework for statistical learning
by asking for a predictor f: X — ) with small conditional risks

R(f1g) = E[(f(X),Y)] X €g]

for all g from a family of groups G. (Here, £: Y x Y — R is a loss function, like
zero-one loss, squared error, etc., and (X,Y) is a random example taking values
in X x ).) Groups, i.e., subsets of X, might represent different demographic
subpopulations when the input space is composed of features about individuals,
so it may be important to pay attention to the average loss per group, rather
than just in aggregate over the whole population. We would like a single predictor
that has “small” conditional risk for all groups simultaneously. How small the
conditional risk is for a group g may depend on how many training data /N, that
one has for a group g—if we have very little training data for a group, we will not
expect to guarantee very small conditional risk for that group—and we also only
consider the excess conditional risk relative to what is achievable by some known
reference class of predictors H.

(If the groups in G were disjoint, we could obtain a separate predictor h, € H
for each g € G, and then combine them into a single predictor in an obvious way.
But we do not want to assume that groups are disjoint.)

The question is whether there is a simple learning strategy for this multi-group
generalization of the statistical learning setup (ideally as simple as empirical risk
minimization) that produces a simple predictor f such that, with high probability
over the realization of training data (which is assumed to be an IID sample from
the distribution of (X,Y")), for all groups g € G,

o
R(f | g) < inf R(h|g)+ Bne.n,

where Bp,g n, is an excess conditional risk bound that may be a function of
H, G, N;. The “best” method we know (from [4]) is based on using an online
learning algorithm [1] for the sleeping experts problem [2], combined with online-
to-batch post-processing. This gives an excess risk bound for group g of the
form +/log(|H||G|)/Ng. (The log|H| can be replaced by VC dimension of H, up
to another logarithmic factor.) But it produces a complicated predictor: it is an
ensemble of n predictors (where n is the total sample size), each of which is already
potentially more complicated than any individual reference predictor from H.
We know of other methods (also from [4]) that produce simpler predictors—
e.g., short decision lists over predictors from the reference class H—but they have
suboptimal excess conditional risk bounds. Is there an algorithm that produces
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simple predictors that are near-optimal? (For example, does a simpler online-to-
batch conversion work, like just taking the last iterate? Or, is there a batch version
of the online algorithm for sleeping experts?)
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Threshold channels and potential applications
VARUN JOG

Let p and ¢ be supported on an alphabet of size k and let D be a small number.
Suppose we are interested in channels with input size k£ and output size D. Since
D is much smaller k, this can be thought as quantizing the original support. Let
the output distributions be p and §. We can ask the question in [1]: among all
channels (among all quantizers), which is the best one in terms of maximizing the
f-divergence between the output distributions? (Say KL or Hellinger distance for
concreteness.)

This problem is relevant when one is trying to compress; i.e., reduce the support
size of distributions while simultaneously preserve some key statistical properties.
For example, when doing hypothesis testing, the probability of error or sample
complexity are captured by the KL divergence or Hellinger distance, respectively.
Maximizing these divergences identifies the optimal way to do hypothesis testing
on a reduced support size. One might also be interested from a quantization point
of view; see [2] for an information theoretically optimal approach to quantizing,.

The data processing inequality from information theory gives that Dy(p||q) >
D¢(pl|G). In my talk, I discussed reverse data processing inequalities; i.e., how
much f-divergence can be preserved by using the best possible channel. I presented
two results in this direction that I shall describe below.

In recent (as yet unpublished) work, we showed that the best channel lies in a
family of “threshold channels”. These channels are defined by D — 1 thresholds,
0 <7 <--- < 7vp-1, and the threshold channel is a deterministic channel that
maps {7 : ’q’—z € [vi—1,7:) to symbol i. Here, we take y9 = 0 and yp = +0c0. that are
defined by thresholding the likelihood ratios. This result is very general, in that
it holds for all f-divergences, and it is even valid in a ”post-processing” setting
where the output of the best channel is cascaded with an arbitrary fixed channel.

Our second result was to show to analyze the performance of an almost optimal
threshold channel and show that the f-divergence is preserved (up to logarithmic)
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factors with even D = 2 as long as the f-divergence is symmetric and satisfies
some regularity conditions.

The open problems presented in this talk derive from the results as well as the
mathematical techniques we developed. One general question was, given the opti-
mality of threshold channels in hypothesis testing and its properties with regards
to post-processing, are there other problems in statistics where threshold channels
are optimal? I suspect threshold channels have appeared in other contexts in sta-
tistics but they have not been recognized as such. For instance, the optimal test
for robust hypothesis testing is known to be a clipped likelihood ratio test. This
can be thought of as a threshold channel. The two main mathematical techniques
we developed were a reverse Markov inequality and a quantized version of Jensen’s
inequality. Both inequalities appear to be quite fundamental. The reverse Markov
inequality may have some application to anti-concentration inequalities that could
be worth exploring. The quantized Jensen’s inequality provided a novel approach
to clustering, where arbitrary convex loss functions on n points may be minimized
to distinguish different clusters in the points.

REFERENCES
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Open problems in data segmentation algorithms
CrLAUDIA KIRCH

Data segmentation methodology or multiple change point analysis has received
considerable attention due to its importance in time series analysis and signal
processing, with applications in a variety of fields including natural and social sci-
ences, medicine, engineering and finance. This popularity can partly be explained
by the fact that the assumption of piecewise stationarity underlying change point
analysis, is one of the simplest forms of departure from stationarity while at the
same time, it is found to be reasonable for many applications.

The field combines many interesting and challenging aspects in particular prob-
abilistic aspects with questions of (mini-max) optimality but also computational
challenges related to effective optimization techniques and questions of computa-
tional complexity.

Traditionally, change point analysis focused on the at-most-one-change situa-
tion, where the aim is to develop testing procedures for the null hypothesis of no
change point versus the alternative of one change point. Such methodology has
been and continues to be developed for all kinds of time series models way be-
yond univariate changes in the mean such as nonlinear (auto-)regressive models,
integer-valued time series or robust statistical methodology (see e.g. the survey
articles [2, 4, 5] or Section 4.1 in [3]). In particular, using method-of-moments
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approaches allows to derive change point tests for any parametric model or ro-
bust change point tests in a very similar fashion as for changes in the mean, even
though the mathematical analysis is naturally more involved. It is worth mention-
ing that said analysis can be conducted without the underlying model assumption
to be correct and corresponding tests can be shown to hold their size and have
sufficient power in such situations. In this case, the model can be thought of as
a proxy to develop a change point test with good statistical properties as long as
the best-approximating models differ before and after the change.

As one instance of more complex data, there has been a recent surge of interest
in the development of change point methodologies for high-dimensional data (see
e.g. Section 4.2 in [3]). One line of works deals with changes in functional data,
i.e. data that can be modelled as a (discretisation of an underlying) curve. In this
case, such a curve is thought of as an element of a Hilbert (or sometimes Banach)
space as the basis of the corresponding mathematical analysis. As such, it is
typically rather well behaved in contrast to a panel data setup, which is effectively
a multivariate setup, where the number of components is of similar or even greater
order than the number of time points - typically with no natural ordering between
components. In this case, asymptotic considerations are usually carried out as
a double asymptotic letting both the number of time points and the number of
components grow to infinity. Most developed change point methodology for panel
data works particularly well for sparse changes, i.e. changes that only occur in
relatively few of the components (see e.g. Section 3.4 in [1]).

Based on these testing procedures one can typically also obtain an estimator
with favorable statistical properties for the unknown time of the change — the
change point. As soon as one moves away from the single change to a multiple
change situation such estimators can often (depending on the weighting scheme
used in testing) still be used for example in combination with binary segmentation
procedures, however, the corresponding estimators are often less favorable.

This brings us to data segmentation procedures, which aim at segmenting the
data into stretches that are (approximately) stationary translating into a multiple
change point problem (the points between stationary stretches). In contrast to
the above methodology, testing is no longer the main interest (although it can be
used e.g. to give certain guarantees such as controlling the family-wise-error-rate).
Indeed, the power behavior of associated tests (if existent at all) is typically less
good than for the above tests — even in the presence of more than one change point,
while localisation properties for the change point estimators are typically better.
The largest body of literature focusing on multiple change point detection from
a mathematical perspective deals with the detection and localization of multiple
change points in the mean of univariate data: The canonical segmentation problem.
Existing methodology can broadly be distinguished into (a) methodology based
on optimizing a suitable information criterion and (b) methodology making use of
change point tests. From a theoretical point of view, it is of particular interest to
understand the separation as well as localization rate of a given procedure. Here,
the separation rate contains the information how big the signal (magnitude of the
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change, distance between change points) needs to be in order to be detectable by
this procedure, while the localisation rates entails the information how close the
corresponding estimator is to the true change point. In both cases, the information
can be given in a multiscale (being more general) or merely in a homogeneous way,
depending on whether the procedure allows different changes to have different
behavior (in the sense of the relation between the magnitude of the change and
the distance to the next neighboring change point). From a computational point of
view, the computational complexity of the corresponding algorithm is of particular
interest.

A thorough understanding on theoretical and computational performance of
different data segmentation methods for the canonical segmentation problem forms
the basis for the methodological development in more complex situations - similarly
as tests for more complex situations are related to the mean change problem.
Furthermore, the challenges arising from the high-dimensionality are orthogonal
to those arising from the presence of multiple change points. Consequently, in the
coming years, it will be of particular interest to combine different developments
from these three areas of change point analysis, i.e. develop and analyse data
segmentation algorithms for more complex possibly high-dimensional time-series
data.
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A universal estimation property of the Tukey median
GUILLAUME LECUE

During the last decade, several estimators of a mean vector or location parameters
have been constructed and were proved to satisfy the very same statistical estima-
tion bound as the empirical mean in the ideal i.i.d. Gaussian model even though
the data given to these procedures were heavy-tailed and adversarially corrupted.
There is a property of the empirical mean which has not receive a lot of attention
and that we want to study: the empirical mean achieves the deviation-minimax
optimal rate for the mean vector estimation problem with respect to any pseudo-
norm. Our aim is to show that the Tukey median also enjoys this property on top
of being robust to contamination (a property the empirical mean does not have).
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Universal property of the empirical mean. Let us first recall the universal estima-
tion property satisfied by the empirical mean in the Gaussian model.

Let S be a symetric set of R? and denote by ||| : z € R? — sup,cg(v,z) the
associated pseudo-norm. Let G1,...,Gy be N i.i.d. N (p*,X) Gaussian vectors in
R? (with mean p and covariance matrix ¥) and denote by Gy = (1/N) Ef\; G
their empirical mean. It follows from the Borell-TIS inequality (Theorem 7.1 in
[2] or pages 56-57 in [3]) that for all 0 < § < 1, with probability at least 1 — 4,

||GN _ M*Hs = Sug<U,GN — M*) < Esug@, Gy — ,U*> + og+/2log(1/4)
vE vE

where o5 = sup,cg \/E<v, Gn — u*>2 is called the weak variance. It follows that
with probability at least 1 — ¢,
_ . <(2V/28)  sup,eq |[2V%0 log(1/9)
VN VN
where £*(2£1/25) = sup ((G,z) : « € £V/25) = EHEl/QGHS, for G ~ N(0,1,),
is the Gaussian mean width of the set £/2S. In particular, in the case where

S = BY, we recover in (1) the classical subgaussian rate for the mean estimation
w.r.t. the /4-norm

[I%]]., log(1/é
o) T, 12l oe0/%)

Moreover, the rate achieved by the empirical mean for the mean estimation prob-
lem w.r.t. ||-||g is deviation-minimax optimal as proved in the following result

Theorem 1. [1] Let S be a symmetric subset of R? such that span(S) = R?. If
f 2 RN4 — R s an estimator such that for all u* € R? and all 6 € (0,1/4],
]P’fy* [l <7r*] >1— 6 where ]P’fy* is the probability distribution of a sample
of N i.i.d. Gaussian vectors N (u*,%) then

log2 *(SY28) sup,cg||SV%0], [log(1/6)
r* > max ) :
og(5/0) VN 12 VN

It follows from the upper bound (1) and the deviation-minimax lower bound
from Theorem 1 that the subgaussian rate for the problem of mean estimation in
RY w.r.t. ||| is given (up to absolute constant') by

. 0*(SY28) sup,eg || S]], v/log(1/0)
(3) rg(0) := max , .
VN VN
Moreover, the empirical mean is an estimator achieving this deviation-minimax

optimal rate whatever the norm ||-||¢ is. This is a fundamental property of the
empirical mean and one may ask several question related to this property:

n this work, we do not consider the important problem of getting sharp optimal constants.
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a) is there any other estimator enjoying this univsersal estimation property?

b) is this property satisfied by the empirical mean is due to the fact that the
empirical mean is a sufficient statistics (and that it is somehow better than
any other estimator)?

c) is it possible to extend this result beyond the Gaussian case? is it possible
to extend this property even when some data are not all Gaussian and
may have been corrupted even in the worse corruption model which is
the e-adversarial corruption model? (and up to which proportion € of
corruption?)

It is the aim of this work to answer these questions. Our two main tools to
solve these questions will be the Tukey depth and the Median-of-Means principle.
Expected result for the Tukey median. We would first like to prove the following
result.

Theorem 2. We assume that a fraction € of the N Gaussian vectors G1,...,Gy
has been corrupted by an adversary. We denote by Xi,...,Xn the resulting
adervsarially corrupted dataset given to the Tukey median i defined as

N
fi € argmin,,cga D(p) where D(u) = sup % ZI ((X; — p,v) > 0)
veR? i=1

For all 6 € (0,1), with probability at least 1 — 0,
i = 1llg < 2r5(0) + €

where r5(d) is the deviation-minimax rate of convergence for the ||-||g define in

(3)-

Then we will consider some Median-of-means versions of the Tukey median to
solve the heavy-tailed problem.
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Open problems: Covariate shift in non-parametric regression
over RKHSs

NICOLE MUCKE

Classical non-parametric regression over RKHSs. The goal of non-paramet-
ric regression is to predict a real-valued response Y based on a covariate X, being
a random variable with values in a measurable space X. It is assumed that the
pair (X,Y’) comes from an unknown distribution P and X has marginal Px. We
refer to Px as the source distribution. For each fixed x € X, the optimal estimator
in a mean-squared sense is given by the regression function f*(z) := E[Y|X = 1],
that is,
fre argmin R(f), Re(f):=E[Y - f(X))?],
fEL2(X,Px)

where the expectation is taken with respect to the distribution P.

To find an estimator fD for f*, we are given an i.i.d. training sample D =
(X1,Y1), ..., (X0, Yy)) € (X x V)", i.e. D ~ P". the overall aim is to prove
optimal minimax bounds for the excess risk

Re(fp) = Re(f*) = 1fp = F*llT2y) »

with high probability.

A common way to build estimators are by means of regularization and to re-
strict the search of an estimator to reproducing kernel Hilbert spaces (RKHS) H,
associated to some bounded kernel K. Classical methods arise from the large class
of spectral regularization methods {gx}x, with A > 0 being the regularization pa-
rameter. Note that these methods include, among others, (kernel) ridge regression
(KRR), gradient descent, PCA, accelerated gradient methods like heavy ball and
Nesterov acceleration. Minimax optimal bounds for these class of methods over
RKHSs are well understood and have been established in [1], [2]. They crucially
rely on structural assumptions, e.g. on an a-priori smoothness of the target f*,
expressed in terms of the kernel integral operator Tp : L*(X,Px) — L*(X,Px)
and on a proper decay of the eigenvalues of Tp, expressed in terms of the effective
dimension t7[Tp(Tp + A) 1]

Covariate shift. A widely adopted assumption in supervised learning is that
the training and test data are sampled from the same distribution. Such a no-
distribution-shift assumption, however, is frequently violated in practice.

In the covariate shift version of the above problem, the target distribution Qx
is different from the source distribution Px. The main goal is to find an estimator
fD trained on D ~ P™ whose excess risk with respect to Qx is small, i.e.

Ro(fp) = Ra(f*) = 1fo = F 1720y

is small with high probability. To this end, it may be useful to assume that Px is
in some sense ”close to” Qx.

State of the art. Research in RKHSs with covariate shift is rather scarce. Here,
we mention the work [3] that analyses KRR with proper reweighting in terms of
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the likelihood ratio p(z) = ZEQ, x € X (existence assumed). Here, it is assumed
that both, Px,Qx are absolutely continuous w.r.t. the Lebesgue measure with

densities p, ¢, respectively. Under the assumptions

(1) SUP, e x |p($)| S B ) B> 0or

(2) Epx[p(2)’] < 7%, 7>0
the authors derive near optimal rates of convergence. In particular, it is assumed
that f* € Hx and that K has uniformly bounded eigenfunctions. Explicit rates
for finite rank kernels and under polynomially decaying eigenvalues are presented.

Open research. There are many open and important problems that need to
be addressed. Based on the works [1], [2] I aim to generalize weighted KRR to
the broader class of spectral regularization kernel methods and to derive best
possible error bounds for the excess risk w.r.t. the target distribution. On my
way, refined bounds under refined a-priori smoothness assumptions (rather than
f* € Hk) are to be established. A major drawback of the above mentioned
work is that the estimator that is given cannot be calculated in practice as it
depends on the unknown likelihood ratio. A key step is to estimate a proper
weighting based on additional unlabeled data w.r.t. Qx that can simultaneously be
used to derive early stopping rules for gradient based methods (or more generally
adaptive regularization). A major step will be to bound an adapted notion of the
effective dimension, namely tr[Tg(Tp+x)"']. Here, it is necessary to control the
perturbation of eigenvalues of Ty for distributions Qx in a vicinity of Px for an
appropriate metric.
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Early stopping for iterative statistical learning
MARKUS REISS
(joint work with Gilles Blanchard, Marc Hoffmann, Laura Hucker)

We discuss the power of early stopping for iterative learning methods as a reg-
ularisation method. For the prototypical example of a projection estimator on
m-~dimensional singular spaces of the singular value decomposition of the design
or kernel matrix we analyse the bias-variance tradeoff along the subspace dimen-
sion m, which is sought to be chosen adaptively by a data-driven choice m. This
choice shall be based only on the first iterates (projections on smaller subspaces)
and their residual norm. To do so, traditional model selection approaches like
AIC, BIC, penalized least-squares or Lepski’s method fail.
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We prove an oracle inequality for prediction error loss, when the stopping rule
is based on the residual norm / the in-sample training error in analogy with the
discrepancy principle of numerical analysis. At noise level o and in dimension D we
face an additional 2v/D-term in the oracle inequality which is due to estimating
the (unknown) size ||e||> of the i.i.d. noise variables (€i)1<i<p by its expected
value 02D. A lower bound shows that this payment for sequential adaptation is
problem-immanent. In particular, early stopping using a test or validation set
cannot overcome this payment.

The extension to estimation (or reconstruction) error requires to rely on mini-
max results because the oracles in prediction and estimation error may differ too
much. A two-stage procedure is proposed where after having stopped (and at least
mo = V/D iterations have been performed) a model selection step on the so far
calculated estimators is added. For the prototype problem the stopping rule and
in particular the two-stage procedure show excellent finite-sample properties.

The results can be generalized to other linear spectral methods, in particular
gradient descent (Landweber method). There are more technicalities involved and
the constants in the bounds deteriorate slightly, but the general picture remains.
The results presented can be found in [1] and [2].

For nonlinear methods like the popular choices of conjugate gradient or partial
least squares (CG/PLS) methods the theory becomes more difficult in particular
because no simple bias-variance tradeoff can be formulated. Nevertheless, basing
results on an w-wise stochastic error, monotone upper bounds and a corresponding
oracle, it is possible to establish similar results in prediction error for early stopping
of the CG/PLS iterations. The highly non-trivial analysis of the estimation error
is ongoing work in collaboration with Laura Hucker. A general literature survey
on related early stopping results for kernel learning and L2-boosting or matching
pursuit is given.
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Mitigating multiple descents: A general framework for model-agnostic
risk monotonization
ALESSANDRO RINALDO
(joint work with Pratik Patil, Arun Kumar Kuchibothla and Yuting Wei)

Modern machine learning models deploy a large number of parameters relative to
the number of observations. Even though such overparameterized models typically
have the capacity to (nearly) interpolate noisy training data, they often generalize
well on unseen test data, seemingly defying the widely-accepted statistical wisdom
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that interpolation will generally lead to over-fitting and poor generalization. See,
e.g., the survey papers by [1] and [2] for related references.

A closely related and equally striking feature of overparameterized models is
the so-called “double/multiple descent” behavior of the generalization error curve.
The non-monotonic behavior of the generalization error suggests the jarring con-
clusion that, in high dimensions, increasing the sample size might actually yield
a worse generalization error. In contrast, it is highly desirable to rely on pre-
diction procedures that are guaranteed to deliver, at least asymptotically, a risk
profile that is monotonically increasing in the aspect ratio. The ubiquity of the
double and multiple descent phenomenon in over-parameterized settings begs the
question:

Is it possible to modify any given prediction procedure in order to achieve a
monotonic risk behavior?

We answer this question in the affirmative by demonstrating a simple, general-
purpose framework that takes as input an arbitrary learning algorithm and returns
a modified version whose out-of-sample risk will be asymptotically no larger than
the smallest risk achievable beyond the aspect ratio for the problem at hand.

To illustrate the type of guarantees we obtained, we provide an informal ver-
sion of one of our results. Adopting a standard regression framework, we as-
sume that the data D, = {(X1,Y1),...,(Xn,Y,)} are comprised of n i.i.d. pairs
of a p-dimensional covariate and a response variable from an unknown distribu-
tion. Using D,,, suppose one fits a predictor f — a random function that maps
z € R? — f(z) € R. Given a loss function £: R x R — Rs, we evaluate the
performance of f by its conditional predictive risk given the data, defined by
R(f;Dy) = E[{(Yo, f(X0)) | Dy, where (Xo,Yp) is an unseen data point, drawn
independently from the data generating distribution.. We are interested in the
limiting behavior of the risk under the proportional asymptotic regime in which
n,p — oo with the aspect ratio p/n converging to a constant v € (0,00). for a
wide variety of problems and procedures. We devise a modification of the original
procedure f that results into a new procedure f zerostep  called zero-step procedure
whose asymptotic risk profile is provably monotonic in .

Theorem 1 (Informal monotonization result). Suppose there exists a determinis-
tic function R (-; f) : (0, 00] = [0, 00] such that for any ¢ € (0, 0] for any dataset
D,, consisting of m i.i.d. observations with p,, features, R(f; Dp) — Rde“’r(-;f),
whenever m, p,, — oo and py/m — ¢. Then, under mild assumptions on R,
the loss function £, and the data generating distribution, the procedure fzerosmp
satisfies

R(fzerostep; ’Dn) — min RdEt('; f) £> 0
¢y

asn,p — oo and p/n — v € (0,00).

Figure 1 illustrates the above result for the minimum /¢s-norm least squares
estimator [3] and the minimum ¢;-norm least squares estimator [4]. The light-blue



Mathematical Foundations of Robust and Generalizable Learning 2679

Minimum £;-norm least squares Minimum £;-norm least squares

Original procedure Original procedure
——Our procedure

Null risk

Prediction risk
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Aspect ratio (y = p/n)

FIGURE 1. Monotonized asymptotic conditional prediction risk
of the zero-step procedure for the minimum /¢o-norm and #;-norm
least squares procedures. The figure in the left panel follows the
setup of Figure 2 of [3], and the figure in the right panel follows
the setup of Figure 3 of [4] (at sparsity level = 0.01). Both settings
assume isotropic features and a linear model with noise variance
02 = 1 and linear coefficients of squared Euclidean norm p? = 4.
Note that the risk is lower bounded by ¢? = 1 and the risk of the
null predictor (null risk) is p* + 0% = 5.

lines show the asymptotic risk profiles of the two procedures, which are non-
monotonic as they diverge to infinity around the interpolation threshold of 1, at
which the sample size and the number of features are equal. The red lines depict
the risk profiles of the zero-step procedure fzeros“’p, which corresponds to the map

7€ (0,00) = gng“(C; f)-

The above function is a monotonically non-decreasing function of -, regardless of
whether « — RI*(; f) is non-monotonic. Furthermore, since

min BY(G f) < RY(; f), for all y > 0,
=2

the asymptotic risk of fzerosmp is no worse than that of f .

The assumptions required in the theorem are very mild, and apply to a broad
range of procedures and settings. The requirements on the loss functions are also
mild and can be verified for common loss functions.

An interesting open problem is that of establishing some form of optimality for
the monotonized risk.
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Sharp adaptive similarity testing with pathwise stability for
ergodic diffusions

ANGELIKA ROHDE
(joint work with Johannes Brutsche)

Within the nonparametric diffusion model, we develop a multiple test to infer
about similarity of an unknown drift b to some reference drift by: At prescribed
significance, we simultaneously identify those regions where violation from simi-
larity occurs, without a priori knowledge of their number, size and location. Here,
a drift b is said to be similar to by at tolerance > 0 within some interval I if

bo(z) —n < b(z) < bo(x)+n Vrel.

Our main results presented in the talk are the following:

(i) Based on a multiscale statistic and for any significance level a € (0,1), we
construct a threshold level such that the resulting test ¢7. for the null hypothesis
Hj of similarity at tolerance n satisfies

lim sup sup Ey¢r < a,
T—oo bEH)
where T denotes the time horizon of the diffusion’s observation. Note that this is a
substantially stronger statement than the pointwise relation lim sup;_, . Ey¢rh < a
for all b € Hy. For the derivation, we construct a random variable Y,

- that provably dominates the test statistic uniformly on the similarity hy-
pothesis in stochastic order asymptotically and

- whose distribution depends continuously on the level 5 of similarity, and
Yy equals the limiting distribution of the test statistic under the simple
null.

The cornerstone of the construction of Y, is the identification of the weak limit of
the multiscale test statistic uniformly in b € Hy.

(ii) We prove optimality and adaptivity for the similarity test in the minimax
sense. We exemplarily consider the case of alternatives belonging to some Holder
class H (B, L), where deviations are measured in weighted supremum norm which
is the equivalent to weighted risk definitions in sharp adaptive drift estimation.
Our similarity test is shown to be rate-optimal in the minimax sense, adaptive in
both the unknown parameters § and L, optimal in the constant for the regime
B < 1 and here, even sharp adaptive in L. The hypotheses construction in the
proof of the lower bound involves a delicate fixed point problem as the drift itself
appears in the invariant density which pops up in the deviation measure between
null and alternative.
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(iii) We address the problem of stability for fractional diffusion models where
the driving Brownian motion is replaced by a fractional Brownian motion with
Hurst index H € (0,1). Note that H = 1/2 corresponds to standard Brownian
motion. We prove that the test statistic built from observations in the fractional
diffusion model has strong performance properties as the fractional driving noise
approaches Brownian motion in the following sense:

- The test is uniformly over the hypothesis of similarity of approximate level
e

- We prove that the minimax optimality is preserved in a certain sense as
the fractional driving process approaches Brownian motion.

As our test statistic involves a stochastic integral which is not even defined for
fractional diffusion observations a priori, we first introduce a pathwise continuation
of the statistic as a function of the data that is continuous with respect to the
topology of uniform convergence. Then, uniformly over the similarity hypothesis,
we prove that the test statistic built from observations for fractional driving noise
converges for H — 1/2 in probability to that built for standard Brownian motion.
The preservation of minimax properties relies on L (P)-convergence of likelihood
ratios of the fractional diffusion model to those of the standard model. This
derivation is based on (deterministic) fractional calculus.

Margin maximization with shallow ReLU networks
MATUS TELGARSKY
(joint work with Ziwei Ji)

This family of open problems is concerned with low-norm deep networks in clas-
sification settings where moreover the model is powerful enough to perfectly label
the data.

Background. In more detail, this perfect labeling or realizability assumption
in the classical linear regression setting is captured by the ordinary least squares
solution

. 1 9
min §||w|\
s.t. Xw=1y;

in particular, both this solution (realized by either the pseudoinverse or by gradient
descent) not only perfectly labels the data, but moreover has the lowest possible
norm. The classification variant is similar, and corresponds to the SVM:

1
min §||w|\2
st. yo (Xw)>1,

where the notation “®” refers to element-wise product. This family of open prob-
lems will focus on the second version, for classification, but superficial intuition
carries over to both.
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For deep networks, it is natural to consider a similar problem:

1
) min L u?
st. yo (F(X;w)) > 1,

where F'(z;w) denotes the output of a neural network architecture with input
x € R? and parameters w € R?, and F(X;w) overloads this to a batch of data
X € R™ 4, The choice of norm is arbitrary so far, but still it is natural to consider
the properties of the solution given by eq. (1). A related question is a smoothed
and unconstrained analog given by

In)_, —yi (3
weRP Hw||2

A surprising fact, proved in parts by work of Kaifeng Lyu and Jian Li [1], and also
Ziwei Ji and Matus Telgarsky [2], is that gradient descent on standard networks
will lead to eq. (2) increasing monotonically and ultimately to a KKT point of

eq. (1).

Problems. There are many immediate questions related to egs. (1) and (2), and
the behavior of gradient descent.

1. When does gradient descent globally maximize eq. (1)?

In certain extreme settings, under many assumptions, this is known to be true,
however it is unknown if this has any reflection on practice. Indeed, it seems that
practice is in general much more modest.

To build towards a much more modest open problem, then, consider the Neu-
ral Tangent Kernel or near initialization regime, where network weights are only
allowed to move a constant distance from initialization as measured by Frobenius
norm. With sufficient width, this setting still allows for universal approximation,
however the predictors are significantly different than those reached later in train-
ing. This leads to the second question.

2. Under which circumstances does gradient descent reach a set of parameters
which is in a strong sense better than that reached in the near-initialization
regime, when measured with expressions similar to either eq. (1) or eq. (2)?

The final question is a purely technical curiosity relating to the choice of norm
in egs. (1) and (2), and variants which appeared in recent work.

3. Consider a two-layer network with weights (a,V) € R™ x R™*9, Under
which circumstances can the squared norm %|jwl||* be replaced with the
tighter quantity ||a||-||V||? Furthermore, is there an even tighter expression
which can also be used in the same places (e.g., gradient descent and its
resulting test error) and can honor the cancellation occurring within large
weight matrices?
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Gradient flow, Laplace transforms, and infinitesimal steepest descent:
Partial results and open directions

RYAN J. TIBSHIRANI

Implicit regularization is currently a topic of key interest in the machine learning
community, as many modern techniques for training neural networks do not use
explicit regularization and yet still seem to have the ability to generalize in terms
of out-of-sample predictive accuracy. Theory lags far behind current practice, and
an important task for the statistics and machine learning community is to explain
and understand the precise mechanism of implicit regularization.

One of the simplest and also one of the most widely-used techniques that falls
into the general category of implicit regularization is early stopping. The foun-
dations of this idea date back at least 30 years in machine learning, where early-
stopped gradient descent was found to be effective in training neural networks,
and at least 40 years in applied mathematics, where the same idea (here known as
early-stopped Landweber iterations) was found to be effective in ill-posed linear
inverse problems. Various authors have made connections between /{5 regulariza-
tion and the iterates generated by gradient descent (when applied to different loss
functions of interest), and several dozens of papers have been written on this topic
(including several by attendees of the current workshop) starting in the mid 2000s
through to the current day.

In [1], the author and collaborators adopted a continuous-time perspective and
considered gradient flow, the path traced out by gradient descent iterates as the
step size goes to zero. For a differentiable loss function f, this is characterized by
the differential equation

i(t) = -V 1 (6(1))

subject to the initial condition (say) 6#(0) = 0. When f(0) = %HY — X3, the
least squares loss of a response vector Y on a predictor matrix X, this differential
equation is a linear dynamical system and has an analytical solution. We showed
that, under to the calibration ¢ = 1/A between the time in gradient flow and the
tuning parameter in ridge regression, these estimates trace out risk curves that are
within a universal multiplicative constant of each other (with very little assump-
tions on the data model). In other words, if one believes that ridge regression
”does well” in a particular problem setting—either practically or theoretically—
then early-stopped gradient descent should also ”do well”.

The current talk revisits this connection and develops an even more precise
relationship between gradient flow and ridge regression. The following result can
be easily verified using elementary arguments.
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Proposition 1. For any gwen response vector Y and feature vector X, and loss
Junction f(0) = 5||Y =X 3|3, let O(\) be the corresponding ridge regression solution
with parameter X\, and 6(t) denote the gradient flow solution at time t, initialized

at 0(0) = 0. Then for any A > 0,
BN = A~ L{B@ IOV,

where L{g(t)}(s) denotes the Laplace transform of a function t — g(t) evaluated

at the input parameter s. Equivalently, letting Ty ~ Exp(1/)), a random variable
with an exponential distribution with mean 1/, it holds that

0(A) = E[0(T)]-

This relationship is interesting, because averaging the iterates from gradient
descent—particularly from stochastic gradient descent—is common practice and
frequently observed to perform well and provide variance stabilization. This propo-
sition explains that in the simple but fundamental least squares setting, averaging
along the gradient flow path with exponentially-decaying weights ezactly repro-
duces ridge regression. It also shows where the calibration ¢ = 1/X comes from—if
instead of averaging along the gradient flow path, we were to choose just one point
to best match ridge regression, then we may as well take the mean 1/ of the
Exp(1/)) distribution governing the relationship.

Several open directions are suggested by this relationship. In particular:

(1) Does the Laplace transform reveal an analogous relationship for stochastic
gradient descent, which can be described by the infinitesimal dynamics:
dO(t) = =V f(0(t))dt + 2(0(t))/2dw,,
where W, is a standard Brownian diffusion process, and ¥(6(t)) a partic-
ular covariance matrix depending on 6(t)?
(2) The same question, but now for generalized linear models?

Also of great interest is to study the precise relationship between infinitesi-
mal steepest descent and explicit regularization. In [2], we studied the statistical
performance of iterates from steepest descent on a loss f with respect to a regu-
larizer g. In light of the above, it is worth revisiting this from the continuous-time
perspective. The infinitesimal dynamics here would be:

0(t) € 99" (— V£(0(1))),
a subdifferential inclusion.
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