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Introduction by the Organizers

We mostly focus on media that are described by a linear elliptic operator in di-
vergence form, which may describe the conductive, elastic or viscous properties
of the medium. Quantitative stochastic homogenization means that we focus on
quantitative aspects of this theory, where there has been much recent progress.
The subject, which is motivated by materials science, combines the theory of lin-
ear partial differential equations (PDE) with hands-on probability theory, and also
has a life in computational mathematics and statistical physics.

We propose a program that starts with the general theory of oscillatory coefficients
(with its rational mechanics flavor), and then addresses the qualitative theory of
stochastic homogenization (with its functional analytic flavor). We then connect
to the topic of random walks in random environments. Quantitative stochas-
tic homogenization is intimately connected to elliptic regularity theory in Hölder
and Lp-spaces: Large-scale regularity emerges and helps in the quantification.
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Stochastic estimates are typically derived from spectral gap or from finite range
assumptions. The rate of the convergence depends on whether it is expressed in
terms of strong or weak topologies. All these topics are covered. We then branch
out to computational aspects, to the design of electro-magnetic (meta-)materials,
to applications in fluids, to boundary layer effects, and to wave propagation.
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Abstracts

Two-scale Expansion and Convergence

Harprit Singh, David Wiedemann

1. Two-scale expansion (by H. Singh)

We study the ǫ-dependent family of equations

(1) −∇ · (A(·/ǫ)∇uǫ) = f,

ˆ

Td

uǫ = 0

on the d-dimensional torus Td, where A = {ai,j}di,j=1 ∈ L∞(Td) is a symmetric1

matrix which is uniformly elliptic (i.e. there exists a constant λ0 > 0 such that

for every ξ ∈ Rd and almost every x ∈ Td one has
∑d

i,j=1 ai,j(x)ξiξj ≥ λ|ξ|2) and
f ∈ L2(Πd) satisfies

´

Td f = 0.
It follows by standard PDE arguments that this problem is well posed for ev-

ery ǫ > 0. The aim of the talk is to study the ǫ dependence of the solutions
{uǫ}ǫ∈(0,1) ∈ H1(Πd) as ǫ → 0. The centerpiece of the first half of the talk is
the two scale expansion ansatz :

(2) uǫ(x) ∼ u0(x, x/ǫ) + ǫu1(x, x/ǫ) + ǫ2u2(x, x/ǫ) + ... .

Formally writing y = x/ǫ, inserting the ansatz into (1) and equating powers of
epsilon (and ignoring the summands supressed in ...) one finds the following.

• The function u0(x, y) depends only on the fist variable, i.e. u(x, y) = u(x).
• If one defines the first order correctors {φi}di=1 as the solutions of

(3) −∇ · (A(·)∇φi) = ∇ · (A(·)ei) ,
ˆ

Td

φi = 0 ,

then u1(x, y) has the form

u1(x, y) =

d
∑

i=1

φi(y)
∂u0

∂xi
(x) .(4)

• If one defines the homogenized matrix Ā = {āi,j}di,j=1 as

(5) āi,j :=

ˆ

Td

〈A(y)(ej + φj(y)), ei〉 dy ,

then u0 solves the homogenized equation

(6) −∇ · (Ā∇u0) = f

with
´

Td u0 = 0. In particular Ā is elliptic, so that this equation is well
posed.

1The matrix being symmetric simplifies certain arguments, but is not crucial.
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Thus (at least heuristically)

uǫ(x) ∼ u0(x) + ǫ
d
∑

i=1

φi(x/ǫ)
∂u0

∂xi
(x) .

Indeed, in the second part of the talk we shall see that this is a good approximation.
Lastly, we mention that it is possible to follow the ansatz (2) to higher order

(encountering higher order correctors and higher order homogenised equations)
and refer to the main theorem of [1].

2. Two-scale convergence (by D. Wiedemann)

In this second part, we consider two-scale convergence introduced in [2] and [3],
which provides from the start a rigorous approach to periodic homogenisation. We
consider the weak formulation of (1) for a general domain Ω ⊂ Rd, zero Dirichlet
boundary conditions, a coefficient field a as above and a source term f ∈ L2(Ω),
i.e. we study uǫ ∈ H1

0 (Ω) such that
ˆ

Ω

a
(x

ǫ

)

∇uǫ(x) · ∇ϕ(x) dx =

ˆ

Ω

f(x)ϕ(x) dx(7)

for all ϕ ∈ H1
0 (Ω).

Classical Lp-theory only provides weak convergence of a
(

·
ǫ

)

⇀
´

Y a(y)dy and
weak-compactness results for uǫ, i.e. ∇uǫ ⇀ ∇u0 for ǫ → 0. Therefore, we can not
pass to the limit ǫ → 0 on the left-hand side of (7) by taking the product of the
limits. Two-scale convergence, nevertheless, allows one to pass to a limit.

A sequence uǫ in Lp(Ω), for p, q ∈ (1,∞), with 1
p + 1

q = 1, is said to (weakly)

two-scale converge to u0 ∈ Lp(Ω× Y ) (where Y = (0, 1)d) if

lim
ǫ→0

ˆ

Ω

uǫ(x)ϕ
(

x,
x

ǫ

)

dx =

ˆ

Ω

ˆ

Y

u0(x, y)ϕ(x, y) dy dx(8)

for all test functions ϕ ∈ Lq(Ω;C#(Y )). Motivated by strictly convex Banach
spaces, uǫ is said to strongly two-scale converge to u0 if, furthermore,

lim
ǫ→0

||uǫ||Lp(Ω) = ||u0||Lp(Ω×Y ) .

This notion is justified by the following compactness result. Let uǫ be a bounded
sequence in Lp(Ω) for p ∈ (1,∞). Then, there exists a subsequence uǫ and u0 ∈
Lp(Ω× Y ) such that uǫ two-scale converges to u0.

It can be shown, that the coefficients as well as the test functions of (8) strongly
two-scale converge. Thus, we can interchange the limit and the product, i.e. let
uǫ be a sequence in Lp(Ω) two-scale converging to u0 and vǫ a sequence in Lq(Ω)
strongly two-scale converge to v0 for p, q, r ∈ (1,∞) with 1

p + 1
q = 1

r . Then, uǫvǫ
two-scale converges to u0v0.

Having this property and the compactness result, we can pass to the limit ǫ → 0
in (7). However, this is not enough in order to derive a well posed limit problem,
since we lose the gradient structure for the two-scale limit of ∇uǫ. Therefore, we
consider the following two-scale compactness result for gradients (cf. [3]). Let uǫ
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be sequence which weakly converges to u0 in H1(Ω). Then, there exists u1 ∈
L2(Ω;H1

#(Y )/R) and a subsequence of ∇uǫ which two-scale converges to ∇xu0 +
∇yu1.

Homogenisation of (7) by two-scale convergence: Standard elliptic PDE
theory provides existence of a unique solution uǫ ∈ H1

0 (Ω) to (7) and uniform
boundedness in H1

0 (Ω). Therefore, we can pass to a subsequence such that uǫ

converges weakly to u0 ∈ H1(Ω). By the previous result, there exists u1 ∈
L2(Ω;H1

#(Y )/R) and a subsequence such that ∇uǫ two-scale converges to ∇xu0+

∇yu1. Moreover, we note that a
(

·
ǫ

)

strongly two-scale converges to a.

Finally, we test (7) with ϕ(x)+ǫϕ1

(

x, x
ǫ

)

for ϕ ∈ D(Ω) and ϕ1 ∈ D(Ω;C∞
# (Y ))

and note that ∇ǫϕ1

(

x, x
ǫ

)

= ǫ∇xϕ1

(

x, x
ǫ

)

+ ∇yϕ1

(

x, x
ǫ

)

. Thus, we can pass to
the limit in (7) and obtain the two-scale limit problem:
ˆ

Ω

ˆ

Y

a(y)(∇xu0(x) +∇yu1(x, y)) · (∇xϕ(x) +∇yϕ1(x, y)) dy dx =

ˆ

Y

f(x)ϕ(x) dx

for all ϕ ∈ D(Ω) and ϕ1 ∈ D(Ω;C∞
# (Y )) (and by density for all ϕ ∈ H1

0 (Ω) and

ϕ1 ∈ L2(Ω;H1
#(Y )/R)). It can be shown that the two scale limit problem has a

unique solution (u0, u1) ∈ H1
0 (Ω) × L2(Ω;H1

#(Y )/R), see [3], which implies that

the whole sequence converges. Moreover, by choosing ϕ = 0, we obtain (4). Then,
choosing ϕ1 = 0 and inserting (4) yields (6).

References

[1] Kamotski, Vladimir and Matthies, Karsten and Smyshlyaev, Valery P., Exponential Homog-
enization of Linear Second Order Elliptic PDEs with Periodic Coefficients, SIAM Journal
on Mathematical Analysis 38 (2007), 1565-1587.

[2] G. Nguetseng, A general convergence result for a functional related to the theory of homog-
enization, SIAM J. Math. Anal. 20 (1989), 608–623.

[3] G. Allaire, Homogenization and Two-scale Convergence, SIAM J. Math. Anal. 23 (1992),
1482–1518.

H-Convergence

Adina Ciomaga, Markus Schmidtchen

H-convergence was introduced by Spagnolo [1] under the name of G-convergence,
and later generalized by Tartar [4], Murat and Tartar [2] (see also [3]). It is
a type of convergence that allows to establish a general compactness result for a
family of uniformly elliptic and uniformly bounded operators, without making any
structural assumptions such as periodicity, randomness, ergodicity, etc.

Setting. Given two positive constants α, β > 0, let Mα,β denote the space of all
real-valued, uniformly coercive square matrices with uniformly coercive inverses,
i.e., matrices which satisfy

∀ξ ∈ R
N Aξ · ξ ≥ α|ξ|2 and A−1ξ · ξ ≥ β|ξ|2.
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Let D ⊂ RN be a bounded and open subset of RN . Consider a sequence of matrices
Aε ∈ L∞(D;Mα,β) with ε > 0, and introduce the following second order elliptic
PDE with homogeneous Dirichlet boundary condition:

(1)

{

−div (Aε(x)∇uε(x)) = f(x), in D
uε(x) = 0, on ∂D.

Facts. For any f ∈ H−1(D), the Lax-Milgram theorem provides a unique solution,
uε ∈ H1

0 (D), for problem (1), which satisfies the following weak formulation

∀ϕ ∈ H1
0 (D)

ˆ

D

Aε∇uε · ∇ϕdx = 〈f, ϕ〉H−1,H1
0 (D).

In view of the uniform coercivity of Aε, one obtains uniform bounds on the se-
quence of gradients, i.e.,

‖∇uε‖L2(D)N ≤ C

α
‖f‖H−1(D) ,

which implies the existence of a subsequence, still denoted by ε, and of a limiting
function u ∈ H1

0 (D), such that,

(2) uε ⇀ u, weakly in H1
0 (D).

On the other hand, the uniform coercivity of the inverse matrices implies uniform
boundness of Aε, and this, in turn, gives uniform bounds on the fluxes, i.e.

‖Aε∇uε‖L2(D)N ≤ C

αβ
‖f‖H−1(D) ,

hence there exists a subsequence and a limiting flux σ ∈ L2(D)N , such that,

(3) Aε∇uε ⇀ σ, weakly in L2(D)N .

Goal. The main challenge is to establish a relationship between the limit u ∈
H1

0 (D), provided by (2) and the limiting flux σ ∈ L2(D)N , provided by (3). More
precisely, one would like to show there exists an ‘average’ matrix A∗ such that
σ = A∗∇u. If this were true, one could pass to the limit in the equation and
identify u as a solution of

(4)

{

−div (A∗(x)∇u(x)) = f(x), in D
u(x) = 0, on ∂D.

This leads to the following definition of H convergence, for the coefficients of
an elliptic PDE, defined in terms of properties of the solution.

Definition 1 (H-convergence). Let (Aε)ε ⊂ L∞(D;Mα,β). We say that the
sequence Aε H-converges to a matrix A∗ ∈ L∞(D;Mα,β) if, for any f ∈ H−1(D),
the sequence uε of solutions of (1) satisfies

(5)

{

uε ⇀ u, weakly in H1
0 (D),

Aε∇uε ⇀ A∗∇u, weakly in L2(D)N ,

where u is the solution of the limiting problem (4).

This definition makes it now possible to establish the following sequential com-
pactness theorem.
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Theorem 1 (Main result). For any sequence (Aε)ε ⊂ L∞(D;Mα,β) there exists

a subsequence (Aε′ )ε′ and a homogenized matrix A∗ ∈ L∞(D;Mα,β), such that

Aε′ H-converges to A∗.

In contrast to the periodic setting, this compactness result does not provide any
explicit formula for the limit A∗. Indeed, in the periodic case, the entire sequence
convergences and the limit is given by the formula

A∗
ij =

ˆ

Y

A(y)(ei +∇φi(y)) · (ej +∇φj(y))dy,

for all i, j = 1 . . .N . Here, Y is the periodic cell, (ei)i=1,...,N a canonical basis of
R

N , and (φi)i=1,...,N ⊂ H1
#(Y ) is the family of periodic correctors, corresponding

to each direction ei, i.e., solutions of the periodic cell problems

(6) −divA(y)(ei +∇φi) = 0, in Y.

Introducing the perturbed test functions φε
i (x) = xi+εφi(ε

−1x) and re-scaling the
cell-problem, it is possible to see that A∗ is in fact a weak limit of the corresponding
fluxes

Aε∇φε
i ⇀

ˆ

Y

A(y)(ei +∇φi)dy = A∗ei, weakly in L2(D)N .

While weak H1-compactness of solutions (uε)ε and weak L2-compactness of the
fluxes (Aε∇uε)ε are readily obtained, the difficulty lies in the identification of the
limiting flux, which is a limit of a product of weakly convergent sequences. It is
well-known that the weak limit of a product need not agree with the product of the
weak limits. Using a compensated compactness method (the celebrated div-curl
lemma), it is possible to identify the product of the weakly convergent sequences.

Lemma 1 (Div-Curl). Let (fε)ε, (gε)ε ⊂ L2(D)N be uniformly bounded in L2(D)N.
Let f, g ∈ L2(D)N such that fε ⇀ f , gε ⇀ g, as ε → 0. Furthermore assume

(i) (div fε)ε is precompact in H−1(D),
(ii) (curl gε)ε is precompact in H−1(D)N×N .

Then, there holds

fε · gε −→ f · g, in D′(D).

Remark 1 (Properties of H-convergence).
We list some properties of H-convergence:

(1) A∗ does not depend on the right-hand side, f .
(2) the coercivity constants α, β > 0 are the same for A∗

(3) in the compactness proof it is necessary to extract a subsequence — this is
due to the dependence of the oscillation speed on ε, in some sense. In the
periodic setting, the whole sequence converges.

(4) If Aε H→ A∗, then any subsequence H-converges to the same limit, i.e.,

Aε′ H→ A∗.
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(5) Let Aε H→ A⋆, Bε H→ B⋆ and S ⊂ D, such that S̄ is compact in D. If
Aε|S = Bε|S, then A∗|S = B∗|S, i.e., H-convergence is local and H-limits
are unique.

(6) H-convergence can be applied no matter the boundary conditions
(7) H-convergence is metrisable
(8) the energy density and the energy converge, i.e.,

(Aε∇uε) · ∇uε → (A∗∇u) · ∇u,

in the sense of distributions, and
ˆ

D

(Aε∇uε) · ∇uεdx →
ˆ

D

(A∗∇u) · ∇udx.
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[1] S. Spagnolo, Sulla convergenza di soluzione di equazione paraboliche ed ellitiche, Ann. Sc.
Norm. Sup. Pisa 22 (1968), 577–597.

[2] F. Murat and L. Tartar, H-convergence. In Topics in the mathematical modelling of com-
posite materials, Progr. Nonlinear Differential Equations Appl., 3 (1997), 21–43.

[3] L. Tartar, The general theory of homogenization, Lecture Notes of the Unione Matematica
Italiana 7 (2009).

[4] L. Tartar, Quelques remarques sur l’homogeneisation, Proc. of the Japan-France Seminar
1976 ”Functional Analysis and Numerical Analysis”, Japan Society for the Promotion of
Sciences pp.469-482 (1978).

Probability measures on the space of coefficients, Γ-convergence, and
subadditive ergodic theorem.

Stefano Decio, Lorenzo Portinale

In order to study stochastic homogenization it is indispensable to have a σ-algebra
and a probability measure on the space of coefficients. Here we introduce a σ-
algebra that respects the topology of H-convergence, which in turn is convenient
for homogenization purposes; see [7] for the original source on the theory of H-
convergence, and [6] for its use in the context of stochastic homogenization. We
then define the fundamental properties of stationarity and ergodicity, which are
the minimal requirements for a qualitative theory of homogenization.

The probability space of coefficients. We want to treat equations of the
form ∇ ·A∇u = 0 in a domain D ⊂ Rd, where A is a matrix valued function (the
‘coefficient field’). We consider coefficients fields that are uniformly elliptic and
bounded; namely, for λ,Λ ≥ 0, let

Ωλ,Λ =
{

A : D → R
d×d : ξA(x)ξ ≥ λ|ξ|2, |A(x)ξ|2 ≤ Λξ ·A(x)ξ, ∀x ∈ D, ξ ∈ R

d
}

.

The topology T associated to H-convergence is generated by the functionals

Fh,h̃(A) =

ˆ

D

h̃ · (∇u,A∇u),

where A ∈ Ωλ,Λ , h, h̃ ∈ L2(D;Rd), and u is the solution to −∇·A∇u = ∇·h which
vanishes outsideD. That is to say, T is the coarsest topology on Ω for which all the
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functionals Fh,h̃ are continuous. We now let F be the Borel σ-algebra generated

by T . Then (Ωλ,Λ,F) is a measurable space, and we can consider probability
measures P on it. The triplet (Ωλ,Λ,F ,P) is a probability space of coefficents.

Remark 1. With the σ-algebra F , the evaluation map x → A(x) is measurable.

Stationarity and ergodicity. For y ∈ R
d, let Ty : Ωλ,Λ → Ωλ,Λ be defined

by TyA = A(· + y). Ty can be extended to F simply by setting, for E ∈ F ,
TyE = {TyA : A ∈ E}. Finally, for an integrable random variable F , we define
F y(A) = F (TyA).

Definition 1. We say that a probability measure P on (Ωλ,Λ,F) is stationary if
for all z ∈ Zd, F z and F have the same law for any integrable random variable F .

Definition 2. We say that a probability measure P on (Ωλ,Λ,F) is ergodic if
P[E] ∈ {0, 1} for any E ∈ F such that E = ∩z∈ZdTzE.

As mentioned above, stationarity and ergodicity are somewhat minimal require-
ments for a theory of homogenization: stationarity guarantees that the homoge-
nized matrix A is a constant coefficient matrix, while ergodicity guarantees that
it is a deterministic matrix.

The variational approach to homogenization. Periodic and stochastic
homogenization result can be obtained by means of study of correctors and via
compensated compactness. For symmetric diffusion coefficients, an alternative
approach to is to use a variational interpretation of the solutions of PDEs as
minimisers of integral functionals, and use the notion of Γ-convergence.

An example. Let D ⊂ Rd be an open and bounded subset of Rd and fix
u0 ∈ W1,2(D) which represents a boundary datum. Let u∗ ∈ W1,2(D) be solving

u∗ ∈ argmin
u

{

1

2

ˆ

D

〈A(x)∇u(x),∇u(x)〉 : u− u0 ∈ W1,2
0 (D)

}

,(1)

where A : Rd → Rd×d is a measurable, symmetric, and uniformly elliptic diffusion
operator (in particular A ∈ Ωλ,Λ). The associated Euler–Lagrange equation reads

{

∆u∗ = 0 onD ,

u∗ = u0 on ∂D .
(2)

This example shows the link between minimisation of integral functionals as in (1)
and solutions of the Laplace equation with Dirichlet boundary conditions in (2).

Γ-convergence topology. Fix p ∈ (1,+∞) and f : Rd × Rd → R which is
measurable in the first variable and convex in the second one. Assume there exist
c1, c2 ∈ (0,+∞) such that

c1|ξ|p ≤ f(x, ξ) ≤ c2|ξ|p , ∀x ∈ R
d, ξ ∈ R

d .(3)
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Denote by O the collection of all the open and bounded subset of Rd and define

F : Lp
loc(R

d)×O → [0,+∞]

(u,D) 7→







ˆ

D

f(x,∇u(x)) dx if u ∈ W1.p(D) ,

+∞ otherwise .

We denote by F = F(p, c1, c2) the class of all such functionals F .

Definition 3. We say that a sequence {Fn}n∈N ⊂ F is Γ-convergent to some
F ∈ F as n → ∞ if, for every D ∈ O, the following two conditions hold:

• For every un → u in Lp(D), one has that lim inf
n→∞

Fn(un) ≥ F (u).

• For every u ∈ Lp(D), there exists u∗
n → u in Lp(D) with lim sup

n→∞
Fn(u

∗
n) ≤ F (u).

Remark 2. As shown in [4], the Γ-convergence is in fact induced by distance on
the space F , which defines a topology τΓ. The obtained topological space (F , τΓ) is
compact, and for a given D ∈ O and u0 ∈ W1,p(D), the maps

F ∈ F 7→ m(F,D, u0) := min
{

F (u,D) : u− u0 ∈ W1,p
0 (D)

}

(4)

are continuous with respect to τΓ. Furthermore, if FN
τΓ−→ F and {u∗

n}n is such that

u∗
n ∈ argmin

{

FN (u,D) : u− u0 ∈ W1,p
0 (D)

}

, then {u∗
n}n is compact in Lp(D)

and any limit point u∗ satisfies u∗ ∈ argmin
{

F (u,D) : u− u0 ∈ W1,p
0 (D)

}

. In

particular, in the setting of quadratic integral functionals induced by elliptic dif-
fusion operators (as in the example above), the Γ-convergence turns out to be
equivalent to the H convergence for the operator, see e.g. [5, Proposition 1.7].

Homogenization of random integral functionals. Denote by ΣΓ the
Borel σ-algebra generated by τΓ. A random integral functional on F is given by

F : (Ω,Σ,P) → (F ,ΣΓ) measurable ,

where (Ω,Σ,P) is a given probability space. Consider the action of Zd and R+ on
F given by, for every z ∈ Zd, ε ∈ R+, D ∈ O, and u ∈ Lp(Rd),

(

τzF
)

(u,D) := F (u(· − z), D+ z) ,
(

ρεF
)

(u,D) := F
(1

ε
u(ε·), 1

ε
D
)

.

A random functional F is called stationary if the law of τzF is independent of z. It
is called ergodic if for every invariant set S = τzS ⊂ F one has P(F ∈ S) ∈ {0, 1}.
Theorem 1 ([3]). Let F be a random, stationary functional and set Fε := ρεF .

Then Fε
τΓ−→ Fhom as ε → 0 P-almost surely, where the limit functional is

Fhom(ω;u,D) =

ˆ

D

fhom(ω;∇u(x)) dx , ω ∈ Ω .

The limit density admits the following representation: for P-a.e. ω ∈ Ω, we have

fhom(ω; ξ) = lim
R→+∞

m(F (ω), lξ, QR)

Rd
, ξ ∈ R

d ,(5)
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where QR denotes the cube of size length R > 0, lξ(x) := ξ · x the linear map with
slope ξ, and m is the map defined in (4). If F is ergodic, then fhom(·, ξ) is P-a.e.
constant with value fhom(ξ) := EP[fhom(·, ξ)].
The proof of the previous theorem is based on the compactness of the Γ-convergence
topology [2, Theorem IV], and an application of the so-called subadditive ergodic
theorem, in the spirit of [1]. In particular, for ξ ∈ R

d one considers

µξ(ω)(D) := m(F (ω), lξ, D) , ω ∈ Ω , D ∈ O .

The subadditivity of µξ follows from the properties of the min and the fact that
F (ω) ∈ F . The stationarity (resp. ergodicity) of µ follows from the one of F .
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Construction of correctors

Mikhail Cherdantsev, Roberta Marziani

Correctors are the key objects in homogenisation. Given a : Rd → Rd×d uniformly
elliptic and ξ ∈ Rd the corresponding corrector φ is the unique solution to

(1) ∇ · a(∇φ+ ξ) = 0 in R
d,

having zero average on the unit ball. In the case of periodic homogenisation,
i.e., if a is periodic, the construction of correctors turns out to be rather simple.
Indeed it is sufficient to look for solutions to (1) in the periodic cell with periodic
boundary conditions for which existence and uniqueness is ensured by Poincaré’s
inequality together with Lax-Milgram theorem. Unfortunately the same argument
doesn’t apply to the case of stochastic homogenisation, i.e., when a belongs to the
sample space Ω of random matrix-valued variables and is stationary with respect to
some probability measure P. There are two approaches to constructing correctors
with stationary gradients in stochastic homogenisation: one based on infra-red
regularization [3], another on decomposition of a vector field in solenoidal and
potential parts, see [2, Chapter 7] and [1, Lemma 1].
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With the infra-red approach, in order to overcome the lack of coercivity in the
corrector problem (1) one modifies the problem by adding a “massive” term:

∇ · a(∇φT + ξ) +
1

T
φT = 0.

By Lax-Milgram lemma this problem has a unique solution such that both φT and
∇φT are stationary. Moreover, it satisfies the bound

E[|∇φT |2 +
1

T
|φT |2] ≤ C.

Passing to the limit as T goes to infinity, we observe that ∇φT converges weakly
to the stationary solution ∇φ of (1), whose potential, however, is no longer sta-
tionary in general (notice that the bound on φT blows up). Moreover ∇φ has zero
expectation and bounded second moment.

The second approach has a more probabilistic flavour and can be divided into
two main steps. The first one consists in lifting the corrector equation (1) to the
probability space. Precisely we look for a solution Φ ∈ L2

pot(Ω) to

(2) E[a(0)(Φ + ξ)Ψ] = 0 ∀ Ψ ∈ L2
pot(Ω).

Here L2
pot(Ω) denotes the Hilbert space of curl-free vector fields Ψ = (Ψi)

d
i=1 ∈

L2(Ω;Rd) having zero expectation (see [2, Chapter 7] for its precise definition).
Again by Lax-Milgram there exists a unique solution Ψ ∈ L2

pot(Ω) to (2). The

second step consists in showing that the stationary random field Φ̄(x, a) := Φ(a(x+
·)) is the gradient of a random variable φ(x, a) (with zero average on the unit ball)
which in turn satisfies (1).

The fact that φ has zero average on the unit ball together with the properties
of ∇φ imply sublinear growth at unfinity, that is, almost surely

(3) lim
R→∞

1

R2
−
ˆ

BR

|φ|2 = 0.

Having the sublinear corrector at hand, we can define the homogenised coeffi-
cients

ahomξ := E[a(∇φ + ξ)].

There is a number of ways to prove the convergence of solutions to the problem

−∇ · a(x/ε)∇uε = f, uε ∈ H1
0 (S),

to the solution to the homogenised one,

−∇ · ahom∇u0 = f, u0 ∈ H1
0 (S).

One has

uε ⇀ u0 weakly in H1(S) as ε → 0.

Moreover, the convergence of fluxes holds:

a(x/ε)∇uε ⇀ ahom∇u0 weakly in L2(S) as ε → 0.

Note that the above is exactly the H-convergence of a(x/ε) to ahom.
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Invariance principle for the random walk in random environment

Armand Bernou

Donsker invariance principle. Let (Yk)k≥0 be i.i.d. random variables of mean

0 and variance 1. Once properly rescaled, the random walk Xk =
∑k

ℓ=1 Yℓ behaves
like a Brownian motion. Here, D(0, 1) is the space of càdlàg functions from [0, 1]
to R endowed with the Skorohod metric that turns it into a Polish metric space.

Theorem 1 (Donsker’s, 1950’s). Let, for all t ∈ [0, 1], n ≥ 1, Xn
t :=

X[n2t]

n .
In D(0, 1), we have convergence in the sense of distributions towards a standard
Brownian motion with diffusion matrix Id (we write sBM(Id)) (Wt)t≥0:

(Xn
t )t∈[0,1]

d→ (Wt)t∈[0,1].

Let (e1, . . . , ed) be the canonical basis of R
d and E = {e1, . . . , ed,−e1, · · ·− ed}.

On the grid Zd, we put random conductances: at each site x ∈ Zd, the conductance
in direction e ∈ E is given by ae(x) with ae(x) in [b1, b2], 0 < b1 < b2 < ∞ although
those uniform ellipticity hypotheses can be relaxed. We impose a symmetry
condition:

ae(x) = a−e(x+ e), ∀x ∈ Z
d, ∀e ∈ E.

The random walk in random environment (RWRE) is a stochastic process (that
is, a collection of random vectors indexed by t ∈ R+) denoted (Xt)t≥0 that evolves
as follows: assume at time t ≥ 0, Xt = x with x ∈ Zd. We consider 2d random
clocks, τe with e ∈ E s.t. τe has exponential distribution with mean ae(x). Then

Xt+s = Xt, s ∈ [0,min
e∈E

τe], Xt+mine∈E τe = Xt +
(

argmine∈Eτe
)

i.e. the random walk moves in the direction indicated by the first ringing clock.
The increments of the RWRE are not i.i.d. because they depend on the con-

ductances. Can we still derive an invariance principle for the RWRE ? There are
two sources of randomness:

(1) the environment itself, since the ae(x), x ∈ Zd, e ∈ E are random.
(2) The random walks performed on a given environment, that is the way the

clocks described above ring (and how the RWRE thus behaves).
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Quenched results describe the behavior of the random walk in a given environment
a := {ae(x), x ∈ Zd, e ∈ E} in the space of environments N (see the next report),
while annealed results, on which we focus here, consider a distribution µ on N and
provide results for the annealed measure given, for any event A, by

P(A) =

ˆ

N

P a(A)µ(da).

Some notions about Markov processes. The RWRE is a Markov process,
and the argument of [1] and [2] rely on an abstract result concerning those.

Let us introduce a bit of probabilistic machinery. Let (Zt)t≥0 be a stochastic
process on (Ω,F ,P), Fs = σ(Zu, 0 ≤ u ≤ s) for all s ≥ 0 so that (Fs)s≥0 is the
canonical filtration of (Zt)t≥0. We say that (Zt)t≥0 is a Markov process if we have,

∀A ∈ F , P(Zt+s ∈ A|Ft) = P(Zt+s ∈ A|Zt), t, s ≥ 0.

In words, the information contained in Ft (i.e. everything that happened to the
process up to time t) is exactly as relevant to predict the future value Zt+s as the
value Zt itself, which is a priori a much smaller information. Markov processes ap-
pear in numerous contexts and share many key properties. We consider processes
with values in a state space (G,G) that are time-homogeneous. In particular one
can identify a transition kernel or transition semigroup (St)t≥0 such that

∀B ∈ G, St(z,B) = P(Zt ∈ B|Z0 = z).

From there we can also introduce the generator of the process, which is formally
L = ∂tS

t
|t=0 and the notion of stationary measure: if µ is a stationary measure for

(Zt)t≥0, and if Z0 ∼ µ (i.e. Z0 has distribution µ), then Zt ∼ µ for all t ≥ 0. The
precise formulation writes, for all B ∈ G,

ˆ

G

St(z,B)µ(dx) = µ(B).

The stationary measure µ is ergodic if for all B ∈ G such that St(z,B) = 1 for
all z ∈ B, µ(B) ∈ {0, 1}. This means that any absorbing set (i.e. a set that,
if reached, captures the process forever) is either somewhere where the process
spends all the time or no time when starting from the invariant measure. We will
need the notion of reversibility: the process is as likely to go from z to y in a time
t > 0 than it is to go from y to z. Mathematically, for all time t > 0

St(z, dy)µ(dz) = St(y, dz)µ(dy).

At last, roughly, a Markov process (Zt)t≥0 is a martingale if Zt ∈ L1 and if
E[Zt|Fs] = Zs almost surely, for all t ≥ s ≥ 0.

Theorem 2 ([1]). Let (Zt)t≥0 be a reversible Markov process with generator L
and stationary measure µ, write (Ft)t≥0 for the corresponding filtration. Assume
that µ is translation invariant and ergodic. Let X be a family indexed by closed
bounded intervals of R with values in Rd, anti-symmetric, i.e. if I = [a, b],

XI((Zs)s∈I) = −XI((Zb+a−s)s∈I).
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Assume that the following strong L1 limit exists,

lim
δ→0

1
δEµ

[

X[0,δ]

∣

∣F0

]

=: b(Z0)

and that the martingale Mt = Xt −
´ t

0
b(Zs)ds is square integrable. Defining

Dij = Cij + 2(bi,L−1bj), where C satisfies eTCe = Eµ[(e ·M1)
2], we have

1

n
X[0,n2t] → WD,

in the sense of finite-dimensional distributions, where WD is a sBM(D).

The idea here is that one can obtain an invariance principle when considering
increments related to a reversible process having a stationary distribution that
is mixing and translation invariant. The proof is based on [2] and is subtle: in
particular showing that all quantities admitting a drift b so that M is a square-
integrable martingale are such that (bi,L−1bj) is well-defined is difficult. One
can however relate to the usual central limit theorem: to be able to describe the
behavior at the limit one needs a second moment. The condition on the drift here
are analogous to this requirement.

An invariance principle for the RWRE. To conclude on the RWRE, it only
remains to find such a reversible process (Zt)t≥0 and the appropriate additive
functionals X . We introduce the process of the environment seen by the particle
(see [2]). Keeping the particle centered at 0 along the walk, and translating the
environment to compensate its jumps, how does the latter evolve ? We thus
consider the process (At)t≥0 with generator

Lf(a) =
∑

e∈E

ae(0)(f(S−ea)− f(a))

i.e. at rate ae(0), the environment a is replaced by the one translated by −e:
(S−ea)e′ (x) = ae′(x+ e) for all x ∈ Zd, a ∈ N, e, e′ ∈ E. If now µ is a distribution
on N ergodic and translation invariant, satisfying the symmetry assumption, then
the process (At)t≥0 with A0 ∼ µ is stationary, ergodic and reversible. How to
reconstruct the random walk from A? Coming back to the discrete setting, if
(Yn)n≥0 denote the successive positions of the random walk, we can introduce a
random time n∗(t) such that n∗(t) = n ifXt = Yn, as well as a discrete environment
process (Bn)n≥0. One can easily reconstruct (Yn)n≥0 from (Bn)n≥0: we have

Y0 = 0, Yn+1 = Yn + x if Bn+1 = S−xBn.

Once the chain (Yn)n≥0 is identified, one can rebuild (Xt)t≥0 from it. The previous
theorem then applies, and we find that for all bounded continuous functions F ∈
D(0,∞) the Skorohod space, setting

(Xn
t )t≥0 := ( 1nXn2t)t≥0, one has Eµ[F (Xn)] → E[F (WD)],

with WD is a sBM(D), where, writing 〈c〉µ =
´

N
c(a)µ(da) for c : N → R,

Dij = 2
〈

aei(0)δij

〉

µ
+ 2
〈

(

aei(0)− aei(−ei)
)

L−1
(

aej (0)− aej (−ej)
)

〉

µ
.(1)
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A comparison with the PDE viewpoint. In the PDE setting, focusing on the
diagonal terms for simplicity, the homogenized coefficient ā is given by

āei = E[a(0)ei] + E
[

a(0)∇φi(0)
]

,(2)

where φ is the corrector. With L the operator, the equation for the corrector
writes Lφi = div(aei). We can see here (see the discussion about the discrete
gradient), that considering ∇ to be the discrete gradient instead, formally, we
obtain φi(0) = L−1div(aei(0)) = −L−1(aei(0) − aei(−ei)). Coming back to (2),
we get for the second term, using the translation invariance and as expected

E[a(0)∇φi(0)] = E

[

(

aei(−ei)− aei(0)
)

φi(0)
]

= E

[

(

aei(0)− aei(−ei)
)

L−1
(

aei(0)− aei(−ei)
)

]

.
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Quenched invariance principle

Jean-Dominique Deuschel, Weile Weng

We show the quenched invariance principle for random walks in stationary and
ergodic environment, with speed that is symmetric (i.e. random conductance
model (RCM)) and having finite p-q moment. Precisely, let (Ω,F ,P) be a prob-

ability space for the random environment ω ≡ (ω(x, y))(x,y)∈ ~Ed
on (Zd, ~Ed), the

d-dimensional Euclidean lattice equipped with oriented edges. We consider d ≥ 2.
The random environment encodes the speed of the random walk. We assume

(A1) ω is positive, symmetric and finite

∀(x, y) ∈ ~Ed : 0 < ω(x, y) = ω(y, x) < ∞,

(A2) P is stationary and ergodic with respect to the space shifts (τx)x∈Zd ,
(A3) ω satisfies the following p− q moment condition

∀(x, y) ∈ ~Ed : E[(ω(x, y))p] < ∞,E[(ω(x, y))−q ] < ∞,

where p, q ∈ [1,∞], and 1
p + 1

q < 2
d .

Further let (Xt)t≥0 be the continuous time random walk of a particle that starts
from the origin of a P−distributed random environment ω and jumps at rate ω

to the nearest-neighbor sites. Let (X
(n)
t )t≥0 denote the diffusively scaled random

process, with X
(n)
t := 1

nXn2t, ∀t ≥ 0.
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Theorem 1 (Quenched invariance principle (QIP) [2]). Suppose d ≥ 2, and (A1),

(A2), (A3) are satisfied. Then for P−a.e. ω, (X
(n)
t )t≥0 converges weakly under the

quenched law Pω
0 to a Brownian motion on Rd with a deterministic non-degenerate

covariance matrix Σ.

In i.i.d. conductance setting (relaxation of (A2)), QIP has been studied, for
instance, for p = q = ∞ ([9]); q = ∞ and without p-th moment condition ([3], [1]);
percolation clusters, in particular, without q-th inverse moment condition ([5], [7]).
For more details on RCM see [6],[8]. Recently, under (A1), (A2), [4] shows QIP
while relaxing (A3) with 1

p + 1
q < 2

d−1 , d ≥ 3. For d = 2, QIP has been addressed

by [6] under the minimal moment condition p = q = 1.
One of the motivations to study QIP is that, it can be used to approximate

solutions to problems in continuous domain, such as Dirichlet problem for Laplace’s
equation, Poisson equation with zero boundary condition, and Cauchy problem for
heat equation with coefficients, where the Laplace operator in above mentioned
problems is replaced by the quenched generator (will be defined later).

We discuss essential elements in [2]’s proof for QIP.
First, the proof relies on the random process (ωt)t≥0, the process of the envi-

ronment viewed from the particle, i.e. ωt := τXt
ω, ∀t ≥ 0. (ωt)t≥0 is stationary

and ergodic in time with respect to P provided (A1), (A2), and the finiteness of
the first moment; and it is non-explosive Pω

0 − a.s., provided the finiteness of the
first inverse moment. The environment process has the generator L, with

LF (ω) =
∑

z∼0
ω(0, z)(F (τzω)− F (ω)),

for all F : Ω → R measurable and bounded.
Second, denote by Lω the quenched generator, with Lωf(x) :=

∑

y∼x ω(x, y)

(f(y) − f(x)), for f : Zd → R suitable. By Helmholtz type decomposition, the
trajectory Φ(ω,Xt) = Xt can be written as the sum of Φ(ω,Xt) and χ(ω,Xt),
such that for P− a.e. ω, ∀x ∈ Zd,

Lωχ(ω, x) = LωΠ(ω, x),

LωΦ(ω, x) = 0.(1)

In contrary to the convention in the homogenization community, we denote by
Φ(ω, ·) : Zd → Rd the harmonic coordinate, and by χ(ω, ·) : Zd → Rd the corrector.
An advantage of ω being symmetric is, χ,Φ are the orthogonal projection of Π via
L2
cov = L2

pot

⊕

L2
sol (also see [6, p. 328]).

By the property (1), Φ(ω,Xt) is a martingale under Pω
0 . With Helland’s FCLT

for martingales, one can show the diffusively scaled process M
(n)
t := 1

nΦ(ω,Xn2t),
t ≥ 0, converges weakly under Pω

0 to a Brownian motion with non-degenerate
covariance matrix Σ. On the other hand, QIP is attainable if χ(ω,Xt) vanishes
under the diffusive scaling, in particular, when it holds that

• (vanishing corrector) for P− a.e. ω,

(2) ∀T > 0 : lim
n→∞

sup
0≤t≤T

1

n
|χ(ω,Xn2t)| = 0, in Pω

0 .
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To show (2), it is sufficient to have

• (sublinearity of the corrector) for P− a.e. ω,

(3) lim
n→∞

1

n
sup

x∈B(n)

|χ(ω, x)| = 0,

where B(n) := {x ∈ Zd : |x| ≤ n}. For a finite subset D ⊂ Zd, r ∈ [1,∞], let
‖·‖r,D be the space-averaged ℓr norm: for f : Zd → R,

‖f‖r,D :=

(

1

|D|
∑

x∈D

|f(x)|r
)

1
r

.

The property (3) can be derived via a two-scale argument and spatial ergodic
theorem from two ingredients

• (quenched maximum inequality (QMI)) for f : Zd → R that is non-
negative and Lω-subharmonic onB(n), and η : Zd → [0, 1], with supp(η) ⊂
B(n − 1). Then there exist constants κ = κ(d, p, q) ∈ (12 ,∞) and C =

C(d, p, q) such that for all 1
2 ≤ σ′ < σ ≤ 1,

(4) max
x∈B(σ′n)

|f(x)| ≤ C

(

1 ∨ ‖µω‖p,B(n)‖νω‖q,B(n)

(σ − σ′)2

)κ

‖f‖2p∗,B(σn),

where p∗ is the Hölder conjugate of p, and µω(x) =
∑

y∼x ωz(x), ν
ω(x) =

∑

y∼x
1

ωz(x)
.

• (sublinearity of the corrector in space-averaged ℓ2ρ norm) for P− a.e. ω

(5) lim
n→∞

1

n
‖χ(ω, ·)‖2ρ,B(n) = 0,

where ρ := d
d−2+d/q .

To obtain (QMI), one apply a PDE technique called Moser iteration, together
with the following two estimates related to the quenched Dirichlet energy Eω,
with Eω(f, g) := 〈f,−Lωg〉ℓ2(Zd) =

∑

x∈Zd f(x)(−Lωg)(x), for all f, g : Zd → R

suitable.

• (weighted Soblolev inequality (WSI)) for f : Zd → R, η : Zd → [0, 1], with
supp(η) ⊂ B(n− 1), there exists a constant C = C(d), such that

‖(ηf)‖22ρ,B(n) ≤ C |B(n)| 2d ‖νω‖q,B(n)
Eω(ηf)

|B(n)| ,

• (quenched energy estimate (QEE)) let f, η be the same as in (QMI), then
we have for ∀p ∈ [1,∞], there exists a constant C

(6)
Eω(ηf)

|B(n)| ≤ C‖∇η‖2
ℓ∞(~Ed)

‖µω‖p,B(n)‖f2‖p∗,B(n).

The choice of ρ in (5) is intricate. On the one hand, ρ is chosen during the
fabrication of the (WSI) from the classical unweighted version, and an application
of Hölder’s inequality. On the other hand, it allows to perform Moser iteration
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for the purpose of (QMI) by utilizing a sequence of increasing exponents αk :=
( ρ
p∗
)k > 1, while 1/p+ 1/q < 2/d is equivalent to ρ > p∗.

Finally, we remark that for random walks in non-symmetric random environ-
ments, the QIP proof scheme in [2] is applicable to a class of doubly stochastic
environments.
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Statistical Mechanics: The ∇φ-model

Paul Dario, Florian Schweiger

1. Overview

The ∇φ model is a stochastic model of a d-dimensional interface in Rd+1. We
consider the lattice Zd with nearest-neighbor edges. Given a finite subset Λ of Zd,
the model is given by the probability measure

µΛ(dφ) =
1

ZΛ
exp






−

∑

x∼y
{x,y}∩Λ6=∅

V (φ(x) − φ(y))







∏

x∈Λ

dφ(x)
∏

x∈Zd\Λ

δ0(dφ(x))

(where we take 0-boundary values for simplicity). Here V is a function V : R → R

that is symmetric around 0 and grows sufficiently fast at ∞. The case V (a) = a2

2
corresponds to the discrete Gaussian free field (DGFF), the best-studied such
model. In the talk, we discussed a more general model, where we just assume that
V ∈ C2(R) and 0 < c− ≤ V ′′(a) ≤ c+ < ∞ for some constants c±. If d ≥ 3 (or
if d ≥ 2 and one passes to gradient fields) one can take the thermodynamic limit
Λ ր Zd that we denote by µ.
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This model is known in the literature as the ∇φ-model or the Ginzburg-Landau
model. It is expected that this model behaves similarly to the DGFF, and in
the last 25 years there has been an intense research effort to make this intuition
rigorous, starting with the pioneering works [1, 3] (see also [5] for an overview on
the topic).

The key tool for the study of the ∇φ model is the so-called Helffer-Sjöstrand
representation. One can understand this representation from a PDE perspective or
from a probabilistic perspective. Both viewpoints have in common that they show
a homogenization effect. Thus on large scales the ∇φ-model should behave like
a scalar multiple of the DGFF. This heuristic stands behind most of the rigorous
works on the ∇φ-model.

The PDE viewpoint was introduced by Naddaf-Spencer [1]. To state it, intro-
duce the vertical derivatives ∂xf(φ) :=

∂
∂φ(x)f(φ) and define the operator L (the

so-called Witten Laplacian) on functions u : RΛ × Λ → R defined by

Lu(x, φ) := −
∑

y

∂yu(x, φ) +
∑

y∼z

V ′(φ(z)− φ(y))∂yu(x, φ) +∇ · a∇u(x, φ)

where a((x, y)) := V ′′(φ(y)−φ(x)). Then one has (under mild regularity assump-
tions) the representation

Eµ(F (φ)G(φ)) = (DF (φ),L−1DG(φ))

where DF (φ) := (∂yF (φ))y∈Zd .
The probabilistic viewpoint was introduced by Deuschel-Giacomin-Ioffe [4] and

Giacomin-Olla-Spohn [2]. Using Duhamel’s formula, one can rewrite the preceding
PDE representation in terms of random walk in time-dependent random environ-
ment, and we will state a simplified version below.

2. Scaling limit of the model

To showcase how these methods are used, we present a result on the scaling limit
of the model. In the following statement and for f ∈ C∞

c (Rd), we denote by

(

f, (−∆)−1f
)

:=

ˆ

Rd×Rd

f(x)G(x − y)f(y)dx dy,

where G : Rd \ {0} → R is the standard Green’s function.

Theorem 1 (Scaling limit for the ∇φ model, d ≥ 3). Fix d ≥ 3 and let φ : Zd → R

be a random surface distributed according to the measure µ. Then, there exists a
constant a := a(d, V ) > 0 such that, for any f ∈ C∞

c (Rd),

1

L
d
2+1

∑

x∈Zd

f
( x

L

)

φ(x)
(law)−→
L→∞

N
(

0, a−1
(

f, (−∆)−1f
))

.

This result was originally proved, in greater generality, by Naddaf-Spencer [1]
and Giacomin-Olla-Spohn [2]. The proof sketched below is a simplified version
of [2].
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Sketch of proof. For L ∈ N and f ∈ C∞
c (Rd), we introduce the notation

SL :=
1

L
d
2+1

∑

x∈Zd

f
( x

L

)

φ(x).

The proof is decomposed in two steps:

(i) Proving convergence of the variance, i.e., showing that

(1) varµ [SL] −→
L→∞

a−1
(

f, (−∆)−1f
)

.

(ii) Proving that SL converges in distribution to a Gaussian random variable.

We only sketch the proof of (1). The argument relies on the Helffer-Sjöstrand
identity in its probabilistic version. Formally, the identity applied to the random
variable SL reads as follows

(2) varµ [SL] =

ˆ ∞

0

1

Ld

∑

x∈ 1
L
Zd

f (x)E
[

HL(L
2t, Lx)

]

dt.

where the function HL : (0,∞) × Z
d → R is defined to be the solution of the

discrete parabolic equation






∂tHL −∇ · a∇HL = 0 in (0,∞]× Z
d,

HL(0, ·) = f
( ·
L

)

in Z
d,

where the environment a is random, depends on the space and time variables
and is formally defined by a(t, (x, y)) := V ′′(φt(y) − φt(x)), where (φt)t≥0 is the
solution of the Langevin dynamics

(3)











dφt(x) :=
∑

y∼x

V ′(φt(y)− φt(x))dt +
√
2dBt(x) for (t, x) ∈ (0,∞)× Z

d,

φ0(x) = φ(x) for x ∈ Z
d.

where
{

Bt(x) : t ≥ 0, x ∈ Zd
}

is a collection of independent Brownian motions
and the initial condition φ is distributed according to µ independently of the
Brownian motions. The symbol E in (2) then refers to the expectation with respect
to the dynamics (φt)t≥0.

It can be proved (see [2, Lemma 4.2]) that the process (φt)t≥0 is ergodic with
respect to the space and time variables. This implies that the same ergodicity
property holds for the environment a and allows to prove the following homoge-
nization theorem: there exists a deterministic coefficient a := a(d, V ) > 0 such
that, if we let H̄ be the solution of the (continuous) parabolic equation

{

∂tH̄ − a∆H̄ = 0 in (0,∞]× R
d,

H̄(0, ·) = f in Z
d,

then the following convergence holds
ˆ ∞

0

1

Ld

∑

x∈ 1
L
Zd

∣

∣E
[

HL(L
2t, Lx)

]

− H̄(t, x)
∣

∣

2
dt −→

L→∞
0.
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Combining the previous result with (2), we obtain

varµ [SL] −→
L→∞

ˆ ∞

0

ˆ

Rd

f(x)H̄(t, x) dx = a−1
(

f, (−∆)−1f
)

,

completing the proof of (1).
�

References

[1] A. Naddaf, T. Spencer, On homogenization and scaling limit of some gradient perturbations
of a massless free field, Comm. Math. Phys. 183 (1997), no. 1, 55–84.

[2] G. Giacomin, S. Olla, H. Spohn, Equilibrium fluctuations for ∇φ interface model, Ann.
Probab. 29 (2001), no. 3, 1138–1172.

[3] T. Funaki, H. Spohn, Motion by mean curvature from the Ginzburg-Landau ∇φ interface
model, Comm. Math. Phys. 185 (1997), no. 1, 1–36.

[4] J.-D. Deuschel, G. Giacomin, D. Ioffe, Large deviations and concentration properties for ∇φ

interface models, Probab. Theory Related Fields 117 (2000), no. 1, 49–111.
[5] T. Funaki, Stochastic interface models, Lectures on Probability Theory and Statistics, vol-

ume 1869 of Lecture Notes in Math., pages 103–274. Springer, Berlin, 2005.

Variational approach to small convergence rates

Annika Bach

In this talk I presented a variational approach to quantitative stochastic homogeni-
sation of elliptic PDE introduced in [3] (see also [1, Chapter 2] and [2, Chapter
4]). In the case considered in this talk the coefficient fields a : Rd → Rd×d

sym are
assumed to be uniformly elliptic and symmetric, while the probability measure
on the sample space Ω of coefficient fields a (equipped with a suitable σ-algebra)
is assumed to be Zd-stationary, ergodic and with uniform range of dependence1.
The approach is then based on the variational formulation of Dirichlet problems
associated to the elliptic equation −∇ · a

(

x
ε

)

∇u(x) = 0. In particular, it uses
the characterisation of the homogenised coefficient field a as the limit of suitable
subadditive quantities. The latter have been introduced in [4] in the context of Γ-
convergence of random integral functionals. More precisely, for any open bounded
set with Lipschitz boundary and any direction p ∈ Rd one considers the quantity

(1) µ(U, p) := inf

{

1

|U |

ˆ

U

1
2a∇v · ∇v dx : v ∈ ℓp +H1

0 (U)

}

with ℓp(x) := p · x denoting the linear function with gradient p. Thanks to the
prescription of boundary conditions, µ( · , p) is subadditive as a set function for
every p ∈ Rd. Using subadditive ergodic theorems one can thus characterise the
homogenised coefficients via (see, e.g., [4, Theorem I] or [2, Section 1.4])

(2)
1

2
ap · p = lim

n→+∞
E
[

µ(Qn, p)
]

= inf
n∈N

E
[

µ(Qn, p)
]

,

1See [1, Chapter 10] for the case of non-symmetric coefficients, [3] and [1, Chapter 11] for the
nonlinear uniformly elliptic setting, and [2, Chapter 3 and 4] for weaker concentration properties
of the coeffiecient fields.
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where Qn :=
(

− 3n

2 , 3n

2

)d
. The last equality in (2) holds thanks to subadditivity,

which together with stationarity implies monotonicity of the expectation.
One can further rewrite (2) by the following observation: For every n ∈ N and

every p ∈ R the infimum defining µ(Qn, p) is realised for a unique a-harmonic
function vn,p ∈ ℓp + H1

0 (Qn). Moreover, p 7→ vn,p is linear, so that µ(Qn, ·) is
actually a quadratic form and may be written as µ(Qn, p) =

1
2a(Qn)p · p for some

coarse-grained coefficients a(Qn) ∈ Rd×d
sym . In this way, (2) states that a is approx-

imated from above by E
[

a(Qn)
]

. There is however no quantitative information in
this monotonicity argument

To obtain such information, the key idea in [3] is to couple µ with a superadditive
quantity, which should approximate a from below, and to control the difference
between the two quantities. More in detail, for any q ∈ Rd the authors consider
the optimisation problem

(3) µ∗(U, q) := sup

{

1

|U |

ˆ

U

(

q · ∇u− 1
2a∇u · ∇u

)

dx : u ∈ H1(U)

}

,

so that q · p− µ∗( · , q) is superadditive for every p, q and we have

(4) J(Qn, p, q) := µ(Qn, p) + µ∗(Qn, q)− q · p ≥ 0 for every n, p, q .

(4) almost looks like a duality relation between µ and µ∗. Indeed, if a was constant,
then µ and µ∗ would be dual to each other and we would have µ∗(Qn, q) =

1
2a

−1q ·q
and J(Qn, p, ap) = 0. Although the argument fails in the inhomogeneous case,
due to the homogenisation procedure one still expects that J(Qn, p, ap) → 0 as
n → +∞. This turns out to be true and the convergence can be made quantitative
in L1(Ω). In fact, it can be shown (see, e.g., [1, Proposition 2.8]) that there exist a
constant C > 0 and an exponent α ∈ (0, 1

2 ] (both depending only on the dimension
and the ellipticity contrast) such that

(5) E
[

J(Qn, p, ap)
]

≤ C3−nα for every n ∈ N and p ∈ B1.

One can read (5) as an algebraic decay of the expected duality defect between the
quantities µ and µ∗. As a consequence, it provides an algebraic rate of convergence
for the homogenisation error |a−a(Qn)| in L1(Ω), since an optimisation procedure
shows that |a− a(Qn)| ≤ C supp∈B1

J(Qn, p, ap). Thus, (5) also implies

(6) E
[

|a− a(Qn)|
]

≤ C3−nα .

Moreover, using the unit range of dependence, from (5) one can deduce path-wise
estimates on the homogenisation error, where at the cost of worsening the algebraic
control on the deterministic part one gets optimal estimates on the decay of the
tail distribution. In fact, for every s ∈ (0, d) one can find a constant C depending
now on the dimension, the ellipticity contrast, and on s such that

(7) P

(

|a− a(Qn)| ≥ C3−nα(d−s) + t
)

≤ C exp(−3nst)

for every n ∈ N and every t > 0 (cf. [1, Theorem 2.4 and Remark 2.5]) .
The key steps to obtain (5) are a control of the variance of ‖∇(un,q−vn,p)‖L2(Qn)

and based on that a control of the expected flatness of (un,q−vn,p), where un,q is a
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maximizer for µ∗(Qn, q). The control of the first quantity relies on the unit range
of dependence, while the second quantity is estimated using a multiscale Poincaré
inequality [1, Proposition 1.7 and Corollary 1.9] together with a decomposition of
scales argument. The latter techniques also allow to give a rate on the sublinearity
of the finite-volume correctors φn,p := vn,p− ℓp, as they provide suitably weighted
estimates of ‖φn,p‖L2(Qn) in terms of |a − a(Qm)| on scales m = 0 , . . . , n, which
in turn can be controlled thanks to (6) and (7). Eventually, the rate on the
sublinearity yields a rate of convergence for solutions uε of Dirichlet problems
associated to −∇ · a

(

x
ε

)

∇uε(x) = 0.
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Functional Calculus in Probability

Marco Barchiesi, Federico Sau

We provide a basic introduction to Malliavin calculus and how it naturally arises
as a useful quantitative tool in stochastic homogenization (see, e.g., [9, 7, 8, 4, 5, 6],
as well as some most recent extensions to more general settings [1, 2, 3]).

We start with a warm-up example, the so-called Efron-Stein inequality, which
can be stated as follows: for an i.i.d. sequence a = (az)z∈Zd and a smooth function
X = X(a) ∈ R, it holds

(1) Var [X ] := E
[

X2
]

− E [X ]2 ≤
∑

z∈Zd

E
[

(X − Ez [X ])2
]

,

where Ez [X ] := E [X | (aw)w 6=z] denotes conditional expectation . The variance
inequality (1) is a first instance of a concentration inequality for the random
variable X , controlling a global measure of deviation, i.e., Var[X ], in terms of

sums of mean local displacements E[
(

X − Ez [X ]
)2
]. In this sense, the quantity

DzX := X −Ez [X ] plays the role of “partial derivative” of X with respect to az.
Building on this rather intuitive discrete example, we focus our presentation

on the most standard context of Malliavin calculus in the “continuum” Gaussian
setting. We start with a Hilbert space H and a centered, translation-invariant
Gaussian field G = G(x) on Rd isonormal over H; then, we consider a sufficiently
rich class of random variables X = X(G) (namely, the cylindrical and smooth
ones); finally, for such functionals, we introduce the notion of Malliavin derivative
DX , a random H-valued element. The operator D is closable in the space of
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square-integrable random variables; in what follows, we let D1,2 — the infinite-
dimensional analogue of the most common Sobolev space W 1,2 — denote the
domain of its closure.

Along with the H-valued DX , we introduce the divergence operator D∗ as the
adjoint of D, and the corresponding infinite-dimensional Laplacian (or Ornstein–
Uhlenbeck operator) L := D∗D. Finally, on the Malliavin-Sobolev space D

1,2, we
present the Gaussian analogue of (1), i.e., the first-order Poincaré inequality: for
all square-integrable X = X(G) in D1,2, it holds

(2) Var [X ] ≤ E

[

‖DX‖2
H

]

.

This inequality proves to be useful in deriving quantitative Laws of Large Num-
bers: having a quantitative control of the smallness of DX would guarantee that
the random variable X is approximately constant with respect to the underly-
ing randomness. Log-Sobolev and second-order Poincaré inequalities hold in this
setting as well, and turn out to be effective when establishing higher-order mo-
ments estimates and quantitative Central Limit Theorems, respectively; we refer
the reader to [5, Sec. 4] for further details.

With inequality (2) in hand, we show one of its basic applications (more in-
volved applications in the context of quantitative stochastic homogenization will
be presented in subsequent sessions): the optimal decay for the spatial–average
random variable XR := 1

|BR|

´

BR
a, with a(x) := a0(G(x)), a0 ∈ C∞

c (R).
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Bounds on correctors

Laure Giovangigli, Lorenzo Marino

Let (Ω,F ,P) be a probability space. Let a : Ω × Rd → Md(R) be an ergodic
stationary uniformly elliptic field. For f ∈ C∞

c (Rd) and ε > 0, we consider uε

solution in W = {v ∈ H1(Rd),∇v ∈ L2(Rd)}/R of

(1) −∇ · a
( ·
ε

)

∇uε = ∇ · f in R
d.

Let ū denote the solution in W to the homogenized problem and (φ, σ) the ex-
tended correctors associated to (1) (Definition 2 in [2]).

Our goal is to prove the convergence of uε to its two-scale expansion ū +
εφi

(

·
ε

)

∂iū in W and estimate the rate of convergence.

The error zε := uε − ū− εφi

(

·
ε

)

∂iū verifies

(2) −∇ · a
( ·
ε

)

∇zε = ∇ · ε(aφi − σi)
( ·
ε

)

∇∂iū in R
d.

The convergence of zε is then a direct consequence of the sublinearity of the
extended corrector. In order to quantify this convergence, we need to establish
bounds on the correctors.

In the case of Gaussian coefficient fields a with integrable correlations, the
following estimates can be proven [1].

Theorem 1. Under the previous assumptions, for any r ∈ [1,+∞), there holds

(3) E
[

|∇(φ, σ)|2r
]

1
r . 1,

and the increments of the extended correctors are controlled as follows

(4) ∀x ∈ R
d, E

[

|(φ, σ)(x) − (φ, σ)(0)|2r
]

1
r . µ2

d(|x|),
where the function µd is defined as

µd(r) :=















√
1 + r if d = 1,

ln
1
2 (r + 2) if d = 2,

1 if d = 3.

.

We outline below the proof for the results on φ presented in [1]. The estimates
on σ can be proven following the same method.

Proof. Step 1 Let g ∈ C∞
c (Rd)). We first derive a representation formula for the

Malliavin derivative
∂

∂a

ˆ

g · ∇φ = ∇v ⊗∇w,

where w := φi + ei, i ∈ [|1, d|] and v is the solution in W of

−∇ · a∗∇v = ∇ · g in R
d.
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Step 2 We plug this representation formula into the Lr version of the spectral gap
and obtain thanks to an annealed Calderon-Zygmund estimate for r ≫ 1

(5) E

[

∣

∣

∣

∣

ˆ

g · ∇φ

∣

∣

∣

∣

2r
]

1
r

. E

[(
 

B1

|∇w|2
)r] 1

r
ˆ

|g|2.

Step 3 We apply a PDE argument, the Caccioppoli estimate, to control the r-th
moment of

ffl

B1
|∇w|2 by spatial averages of ∇w on large balls BR with R ≫ 1

(6) E

[(
 

B1

|∇w|2
)r] 1

r

. Rd(1− 1
r
)
E

[

∣

∣

∣

∣

 

BR

∇w

∣

∣

∣

∣

2r
]

1
r

.

Step 4 We choose g := 1BR
in (5) and use it to bound the rhs of (6).

E

[(

ffl

B1
|∇w|2

)r] 1
r

appears then both in the left and rhs and we can buckle to

obtain

(7) E

[(
 

B1

|∇w|2
)r] 1

r

. 1.

Thanks to a local regularity estimate, we can deduce (3) for φ. Combining (7) and
(5), we moreover get that the spatial averages of ∇φ present cancellations

(8) E

[

∣

∣

∣

∣

ˆ

g · ∇φ

∣

∣

∣

∣

2r
]

1
r

.

ˆ

|g|2.

Step 5 Lastly, we use (3) to get

(9) E





∣

∣

∣

∣

∣

φ(0)−
 

B1(0)

φ

∣

∣

∣

∣

∣

2r


 . E

[

 

B1(0)

|∇φ|2r
]

. 1.

Moreover, we have the following representation formula
 

B1(x)

φ−
 

B1(0)

φ =

ˆ

∇h · ∇φ,

where h is the decaying solution of

−∆h =
1

|B1|
(1B1(x) − 1B1(0)).

From (8) and classical potential theory, we then deduce

(10) E





∣

∣

∣

∣

∣

 

B1(x)

φ−
 

B1(0)

φ

∣

∣

∣

∣

∣

2r




1
r

.

ˆ

|∇h|2 . µ2
d(|x|).

Combining (9) and (10), we obtain (4). �

Equipped with the bounds on correctors established in Theorem 1, we can now
deduce from (2) the rate of convergence of zε in W [1].
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Corollary 1. Under the previous assumptions, the following estimate holds for
ε > 0

E

[

‖∇zε‖2L2(Rd)

]
1
2

. εµd

(

1

ε

)

.
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Large-scale C
1,α regularity

Cole Jeznach

Following the work in [1], we discuss large-scale Schauder theory for solutions to
random, divergence form elliptic operators in Rd. In what follows, we assume for
simplicity that we have a random field of uniformly elliptic, bounded coefficients
a(·) (with some constant λ > 1) on a probability space (Ω,P). Moreover, we
assume stationarity of the field of coefficients as well as ergodicity. First, let us
recall some results in the classical, deterministic setting.

Regularity theory for uniformly elliptic equations says roughly that if u ∈
H1(B1) is a solution to the divergence-form equation

−∇ · (A∇u) = 0, u ∈ H1(B1),(1)

then in the appropriate Hölder spaces, u gains one extra degree of differentiability

over the coefficients A. That is, if one knows that A ∈ Ck,α
loc (B1) for α ∈ (0, 1),

then u ∈ Ck+1,α
loc (B1) with appropriate estimates coming from A (there are also

results for solutions to the inhomogeneous problem, but again, for brevity, we
omit these). Let us also focus on the case k = 0, and assume for the future that

A ∈ C0,α
loc (R

n) and u is a solution to (1).
There are several methods to proving such Schauder estimates: one involves

potential theoretic estimates, the other maximum principles and Harnack inequal-
ities, and the last energy estimates for divergence-form equations. Morally speak-
ing, each of the proofs boils down to the fact that since the coefficients A are
Hölder continuous, at small scales A behaves quantitatively constant, and thus so-
lutions to (1) should behave like solutions to constant-coefficient divergence form
elliptic equations.

One way to approach the energy-method of Schauder estimates is to show decay
of the so-called “tilt-excess”: for 0 < r < R and BR(x0) ⊂ B1,

Exc(∇u;Br(x0)) ≤ C
( r

R

)2α

Exc(∇u;BR(x0))(2)

where, for any vector field g ∈ L2
loc,

Exc(g;B) = inf
ξ∈Rn

|B|−1
ˆ

B

|g − ξ|2 dx.(3)
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That this excess-decay implies that ∇u is locally C0,α follows readily from Cam-
panato’s Theorem (see, for example, Theorem 5.5 in [2]).

For the classical case of harmonic functions v (which are of course, analytic),
one has the the excess decay

Exc(∇v;Br(x0)) ≤ C
( r

R

)2

Exc(∇v;BR(x0))

and in fact, one can show this directly using Caccioppoli’s inequality, the mean-
value property of harmonic functions, and the fact that linear functions are har-
monic. For non-constant coefficient equations, the fact that linear functions are
not a-harmonic (i.e., do not solve −∇ · (a∇v) = 0) causes some difficulty in ex-
tending this proof. In the setting of homogenization, this is where the extended
first-order correctors come into play.

Under the assumptions of stationarity and ergodicity mentioned above, one can
prove (P-a.e.) the existence of the extended correctors. That is, almost surely
there are random tensor fields {φi}, {σijk} for which ∇(φ, σ) have bounded second
moment, zero expectation, are stationary, and which solve the corrector equations

−∇ · (a(ei +∇φi)) = 0

∇ · σi = qi

∆σijk = ∂jqik − ∂kqij

in all of Rd. Here and in the future ei is the standard ith basis vector of Rd,
qi = a(ei+∇φi)−ahomei, and ahom = E[a(ei+∇φi)] is the homogenized, constant
coefficient matrix.

In many ways, the functions xi + φi play the role that linear functions do for
harmonic functions. Indeed, the correct analogue for “tilt-excess” in this setting
is instead the distance of solutions (in energy norm) from a-linear functions. That
is, we set

Exca(∇u;B) = inf
ξ∈Rd

|B|−1
ˆ

B

|∇u− (ξ +∇φξ)|2 dx(4)

where φξ =
∑d

i=1 ξiφi. In particular, for this deviation from a-linear functions,
one can show the following quenched result, which holds P-a.e., depending only on
the realization of (φ, σ).

Theorem 1 ([1]). For each α ∈ (0, 1), there is a C > 0 depending only on d, α
and the uniform ellipticity bounds on the field a(·) so that for r∗ = r∗(C) defined
by

r∗ = inf{t > 0 : for all s > t, s−d−2

ˆ

Bs

∣

∣

∣

∣

(φ, σ) −
(
 

Bs

(φ, σ)

)∣

∣

∣

∣

2

dx ≤ 1/C},

the following holds. Whenever r∗ ≤ r ≤ R and u solves

−∇ · (a∇u) = 0 in BR,

then one has the excess decay

Exca(∇u;Br) ≤ C(r/R)2αExca(∇u;BR).
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On the one hand, it can be shown that the extended correctors satisfy

lim sup
R→∞

R−d−2

ˆ

BR

∣

∣

∣

∣

(φ, σ) −
(

|BR|−1

ˆ

BR

(φ, σ)

)∣

∣

∣

∣

2

dx = 0

almost surely, so then r∗ < ∞ almost surely and Theorem 1 gives a qualitative
statement on the C1,α regularity of u at large scales. On the other hand, if one
can obtain estimates on the size of r∗, then the conclusion of the Theorem can be
made quantitative.

As a final remark, the excess decay from Theorem 1 can be used to prove the
following Liouville-type theorem for global solutions with sub-linear growth at
infinity, as in the following result.

Corollary 1 ([1]). Suppose that u solves −∇·(a∇u) = 0 in Rd, and that for some
α ∈ (0, 1), one has

lim sup
R→∞

R−d−2α

ˆ

BR

u2 dx = 0.

Then almost surely, there is some ξ ∈ Rd and c ∈ R so that u(x) = c+x ·ξ+φξ(x),
almost everywhere in Rd.

References

[1] A. Gloria, S. Neukamm, and F. Otto, A regularity theory for random elliptic operators.

Milan J. Math. 88 (2020), no. 1, 99–170.
[2] M. Giaquinta and L. Martinazzi, An introduction to the regularity theory for elliptic systems,

harmonic maps and minimal graphs. Appunti. Scuola Normale Superiore di Pisa (Nuova
Serie) (2012).

Systematic Argument for Bounds on the Minimal Radius

Xiaoqin Guo, Peter Morfe

Recall that for a given stationary, ergodic coefficient field a : Rd → Rd×d, the
minimal radius r∗ > 0 is the random scale above which large-scale regularity
begins to kick in. More precisely, in [2], Gloria, Neukamm, and Otto define, for
an arbitrary A > 0, r∗ = r∗(A) as follows:

r∗(A) = inf

{

r > 0 | ∀R ≥ r, R−(d+2)

ˆ

BR

∥

∥

∥

∥

(φ, σ) −
 

BR

(φ, σ)

∥

∥

∥

∥

2

dx ≤ A−1

}

.

Ergodicity is enough to imply that r∗ < ∞ holds almost surely. In case a is a

“random checkerboard,” formal arguments readily suggest that 〈exp(C−1rβ∗ )〉 < ∞
only if β ≤ d. This integrability property was proven to hold in the regime β < d
by Armstrong and Smart [1]. In [2], the optimal exponent β = d was achieved.

Theorem 1. If a is a pointwise bounded and uniformly elliptic random field that
satisfies the logarithmic Sobolev inequality, then, for any A > 0, the minimal radius
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r∗ = r∗(A) defined as above satisfies the following exponential moment bound for
some C > 0 depending only on A, the ellipticity constants, and the dimension:

〈

exp
(

C−1rd∗
)〉

< ∞.

There are three main steps in the proof. In order to exploit the statistical
properties of the field a (in particular, the log-Sobolev inequality), one would like
to consider random variables that depend more-or-less only locally on a, whereas
the correctors φ and σ have a non-local dependence. Therefore, in the first step,
it is shown that the sub-linear growth of the correctors (φ, σ) can be controlled
by those of the massive correctors (φT , σT ) obtained by adding a massive cut-off

at scale
√
T . More precisely, in [2, Proposition 4.1], it is proved that if, for some

radius r∗∗ > 0 and exponent ν > 0, one has

(1)

ˆ

B√
T

1

T
‖(φT , σT )‖2 dx ≤

(

r∗∗√
T

)2ν

for
√
T ≥ r∗∗,

then this behavior transfers over to (φ, σ) in the sense that

R−(d+2)

ˆ

BR

∥

∥

∥

∥

(φ, σ) − |BR|−1

ˆ

BR

(φ, σ)

∥

∥

∥

∥

2

dx ≤ C
(r∗∗
R

)2ν

for R ≥ r∗∗.

Note, in particular, that this means r∗∗ controls r∗, i.e., r∗ ≤ Cr∗∗. The reason
such a statement is at least plausible is E(‖∇φT − ∇φ‖2) → 0 as T → ∞; the
proof exploits this observation using a combination of Campanato iteration and
large-scale regularity estimates.

The next step of the proof provides deterministic ingredients used in the final
probabilistic argument. To prove decay as in (1), it is shown that, for any 0 < t <
T , one has a bound

(2)

ˆ

Rd

1

T
‖(φT , σT )‖2ωT (x) dx ≤ C

ˆ

Rd

(

1

t
φ2
t +

1

t
‖gt‖2 + ‖∇gt‖2

)

ωT (x) dx,

where here ωT (x) = (CdA
dT

d
2 )−1 exp(−‖x‖/(AT )) is normalized to be a probabil-

ity density and the auxiliary corrector gt is defined so that the triple (φt, gt,∇gt)
serves as an approximate (homogeneous) H−1 norm of the gradient field ∇φT and
corresponding flux. The advantage of this last estimate is it holds for any t < T ,
the idea being that (1) can be obtained with high probability by treating the

behavior at scale
√
T as an approximately-independent sum of (T/t)d/2 random

variables.
Finally, concentration inequalities are applied to obtain the stochastic integra-

bility of the minimal radius. One defines a stationary field Ft by

Ft(x) =

ˆ

Rd

(

1

t
φt(y)

2 +
1

t
‖gt(y)‖2 + ‖∇gt(y)‖2

)

ωt(y − x) dy.

It turns out that Ft is uniformly bounded (in t) and well-localized (i.e, with a
rapid decay of the dependence on environments beyond distance

√
t). This can be
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exploited using the log-Sobolev inequality to show that Ft satisfies the following
concentration-type estimate

〈

I

{∣

∣

∣

∣

ˆ

Rd

[Ft(x)− 〈Ft〉]ωT (x) dx

∣

∣

∣

∣

> δ

}〉

≤ C exp



−C−1δ2

(√
T√
t

)d


 .

Furthermore, using sensitivity estimates (obtained by Widman’s hole-filling tech-
nique for uniformly elliptic equations in divergence form), the log-Sobolev inequal-
ity yields an algebraic decay of the average:

〈Ft〉 ≤ Ct−ǫ.

The theorem is proved upon combining these last two estimates with (1) and (2).
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Quenched and Annealed Calderón-Zygmund estimates

Christopher Irving, David Lee

A consequence of the large-scaleC1,1− regularity theory is that we obtain Calderón-
Zygmund type estimates for the inhomogenous problem

(1) −div a∇u = div g.

In the deterministic setting where a is continuous and uniformly elliptic, this
asserts that we have estimates in the Lp scales taking the form

(2)

ˆ

Rd

|∇u|p dx .

ˆ

Rd

|g|p dx

for 1 < p < ∞. In the setting of homogenization, we will see similar estimates
hold in the large scales, and also in a suitably averaged sense. We will present
two analogues of these Lp estimates following [2, 3]; the quenched and annealed
estimates.

We first fix some notation; we consider a probability space (Ω,F ,P) of λ-
uniformly elliptic coefficient fields. Let a be a instance of our random coefficient
field, and suppose the associated extended correctors (φ, σ) exist. Then for each
x ∈ Rn and C > 0 to be determined, we define the minimal radius as

(3) r∗(x,C) = inf

{

r > 0: ∀R ≥ r,
1

R2

 

BR(x)

|(φ, σ)−
 

BR(x0)

(φ, σ)|2 ≤ 1

C

}

.

We remark that if we assume our coefficient field is stationary and ergodic, with
respect to translations, then (φ, σ) exists and r∗ < ∞ for P-a.e.a. If this occurs,
we obtain the followed quenched, or “pathwise” regularity estimates.
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Theorem 1 (Quenched Calderón-Zygmund estimates). Let a be λ-uniformly ellip-
tic, and C0 > 0 so the large-scale regularity results in [3, Theorem 1] holds. Then
there exists a 1

8 -Lipschitz stationary field r∗ satisfying r∗(C0) ≤ r∗ ≤ r∗(3
d+2C0)

for which the following holds. Suppose u, g satisfies (1), then for any 1 < p < ∞
we have

(4)





ˆ

Rd

(

 

B∗(x)

|∇u|2
)

p
2

dx





1
p

.





ˆ

Rd

(

 

B∗(x)

|g|2
)

p
2

dx





1
p

,

where B∗(x) = Br∗(x)(x) and the implicit constant depends on d, λ, p only.

Here we cannot expect (2) to hold without assuming a is more regular. However
we know that regularity holds in sufficiently large scales, namely when r > r∗, so

we replace any f ∈ L2
loc(R

d) by

(5) f∗(x) :=

(

 

B∗(x)

|f |2 dx
)

1
2

.

We remark that it is useful to replace the minimal radius by a regularised version
r∗, but this is more of a technical step.

We will outline the proof, following the strategy in [2, Section 6]. This will
combine standard energy estimates (namely (1) with p = 2) together with uniform
estimates in the large scale that takes the form

(6)

 

Br

|∇u|2 .

 

BR

|∇u|2 for all r∗(x) ≤ r ≤ R.

The result then follows by an interpolation argument; a key technical tool will be
the following Calderón-Zygmund type estimate due to Shen [5], which is based on
ideas of Caffarelli & Peral [1]. One can also pass through a BMO estimate
as is done in [3, Section 3.7], however the approach we detail will also apply in the
annealed case.

We note that one can also obtain weighted estimates. In [3, Corollary 5] one
can allow for radial weights of type |x|γ which belong to the Muckenhoupt Ap

class. This follows from the corresponding unweighted estimates applied on annu-
lar domains, along with decay properties of a-harmonic functions that follow from
the mean value property (6).

Lemma 1. Let 1 ≤ p0 < p1 < ∞, and C0 > 0, θ ∈ (0, 1). Suppose we have
F,G ∈ Lp0 ∩ Lp1(Rd) with the property that for all balls B ⊂ R

d, there exists a
measurable decomposition F = FB,0 + FB,1 in B such that

(
 

B

|FB,0|p0

)
1
p0

≤ C0

(
 

θ−1B

|G|p0

)
1
p0

(7)

(
 

θB

|FB,1|p1

)
1
p1

≤ C0

(
 

B

|FB,1|p0

)
1
p0

.(8)
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Then for all q ∈ (p0, p1) we have

(9)

(
ˆ

Rd

|F |q
)

1
q

≤ C(d, p0, p1, q, θ, C0)

(
ˆ

Rd

|G|q
)

1
q

.

We will apply this with F = (∇u)∗ and G = g∗ using (5) to establish the case
p ≥ 2. For a ball B ⊂ R

n we decompose u to solve

(10) −div a∇uB,0 = div (g1B), −div a∇uB,1 = div (g1Rd\B).

Then FB,0 = (∇uB,0)∗ satisfies (7) with p0 = 2 by straightforward energy esti-
mates, and for FB,1 = (∇uB,1)∗ we use the mean value property (6) to show (8)
for any p1 > p, noting uB,1 is harmonic in B. The subquadratic case then follows
from a duality argument.

We can upgrade the quenched estimates by incorporating the stochastic inte-
grability, which gives rise to the annealed estimates.

Theorem 2 (Annealed Calderón-Zygmund estimates). Under the assumptions of
Theorem 1, for all 1 < q ≤ p < ∞ we have

(

ˆ

Rd

E

[

(

 

B∗(x)

|∇u|2
)

q
2

]
p
q

dx

)
1
p

.

(

ˆ

Rd

E

[

(

 

B∗(x)

|g|2
)

q
2

]
p
q

dx

)
1
p

.(11)

The proof uses a similar strategy as in the quenched case, appealing to Lemma
2. In particular one takes the same decomposition u = uB,0 + uB,1 specified by
(10), but now we estimate uB,0 using the quenched estimates in Lq.

The benefit of the annealed version is that, subject to moment bounds on r∗,
we can pass from the averages on the scale r∗ to the unit ball. In particular in [3,
Theorem 2], it is shown that if the coefficient field additionally satisfies a suitable
logarithmic Sobolev inequality (which is satisfied for instance in the Gaussian
setting), we have the moment bound E

[

exp
(

1
C rd∗

)]

< 2 for some C > 0. Using

this, for all δ ∈ (0, 1
2 ) we infer from the (11) that

(12)

(

ˆ

Rd

E

[

(

 

B1(x)

|∇u|2
)

q
2

]
p
q

dx

)
1
p

.δ

(

ˆ

Rd

E

[

(

 

B1(x)

|g|2
)

q+δ
2

]
p

q+δ

dx

)
1
p

,

where the implicit constant blows up at δ → 0. Here we have a loss in stochastic
integrability, which arises as we write

(13)

(

 

B∗(x)

|g|2 dx
)

1
2

≃
∞
∑

n=0

1{2n−1<r∗(x)≤2n+1−1}

(

 

B2n+1 (x)

|g|2 dx
)

1
2

.

This can be estimated using Hölder’s inequality and the moment bounds of r∗,
however we must pass to the Lq+δ-norm to do so.

The annealed estimates in particular serve as a powerful tool in the study of
quantitative stochastic homogenisation, such as in the study of fluctuations. This
will be discussed in future talks, and we will also refer the reader to the discussion
in [4].
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Pathwise structure of fluctuations

Quentin Goepfert

We consider, for f ∈ C∞
c (Rd), uǫ, the solution of:

−∇ · aǫ∇uǫ = ∇ · f
In stochastic homogenization, not only the oscillations of the solution uǫ are an im-
portant topic to study, but the fluctuations of macroscopic observable also matter.
One can think of

Fǫ :=

ˆ

g · ∇uǫ

for a deterministic mask g. To study this object, a first intuition would be to use
the two-scale expansion. Though, from work from Mourrat-Otto [1], Gu-Mourrat
[2] and Mourrat-Nolen [3], one knows that, in the Gaussian settings with integrable
covariance, both ǫ−d/2Fǫ and its two-scaling expansion

ǫ−d/2F̄ :=

ˆ

g · (ei +∇φi)∂iū

have Gaussian limits. But those two Gaussian limits differ. From that observation,
one can see that a new quantity must be studied in order to get information on
Fǫ. Note that the scaling ǫ−d/2 is quite natural and corresponds to the scaling of
the coefficient field aǫ itself.

It turns out that the quantity one needs to consider is the homogenization
commutator

Ξǫ[∇uǫ] := (aǫ − ā)∇uǫ

This quantity is remarkable in several ways. We can highlight three principles:

• Principle 1, the fluctuations of Fǫ (and of
´

g · aǫ∇uǫ) can be deduced
from the fluctuations of

´

g · Ξǫ[∇uǫ]. We have a direct link between Fǫ

and the commutator:
ˆ

g · (∇uǫ −∇ū) =

ˆ

∇v̄ · Ξǫ[∇uǫ]

where v̄ is the solution of:

−∇a∗∇v̄ = ∇ · g
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• Principle 2, the two-scale expansion of the commutator is precise in the
fluctuations scaling i.e the fluctuations of

´

g ·Ξǫ[∇uǫ] are a.s. close to the
fluctuations of

´

g ·Ξi(
·
ǫ )∂iū where Ξi := (a− ā)(ei+∇φi) is the so-called

standard homogenization commutator.
• Principle 3, Ξi is almost local w.r.t. a.

As a consequence of the first two principles, one can develop a a.s-theory of the
fluctuations governed by this intrinsic quantity Ξi. From the first two principles
and this remark, one can deduce that this initial problem of understanding the
complex object Fǫ can be reduced to the understanding of the standard homog-
enization commutator. Though, if this quantity were not easier to study, theses
principles and observations would be of no use in our main quest.

We remind that the difficulty of the studying of Fǫ comes from the non-local
dependency of aǫ. Indeed, a local variation of aǫ implies variations of Fǫ in the
whole domain (this can be computed thanks to Malliavin’s calculus). On the other
hand,

´

g · Ξǫ[∇uǫ] is much more local. It is local up to an error of magnitude ǫ.
Recalling that φ∗ is the adjoint of φ, the Malliavin derivative can be computed as:

DzΞǫ[∇uǫ] =
(

Id+∇φ(
·
ǫ
)∗
)

·Dzaǫ∇uǫ

− ǫ∇ ·
((

φ(
·
ǫ
)∗aǫ + σ(

·
ǫ
)∗
)

∇Dzuǫ + φ(
·
ǫ
)∗Dzaǫ∇uǫ

)

From that computation, one can see that the standard homogenization commu-
tator will be a good approximation of the commutator. Indeed, taking a look at
the main, local, part of Dz(Ξǫ[∇uǫ]− Ξi∂iū), one finds:

Dz(Ξǫ[∇uǫ]− Ξi∂iū) ≈
(

Id+∇φ(
·
ǫ
)∗
)

·Dzaǫ (∇uǫ − (ei +∇φi)∂iu0) ≈ O(ǫ)

The local, and non-local, error terms, are shown to be of the same magnitude
O(ǫ). This is summarized in the following theorem:

Theorem 1. In the Gaussian setting with integrable covariance, for p < ∞,

E

[∣

∣

∣

∣

ǫd/2
ˆ

g · Ξǫ[∇uǫ]− E[Ξǫ[∇uǫ]]− ǫ−d/2

ˆ

g · Ξi∂iū

∣

∣

∣

∣

p] 1
p

≤ C(p, g, f) ǫ×











1 if d > 2

| log ǫ|1/2 if d = 2

ǫ−1/2 if d = 1.

These results are rigorously shown in [4] in the simplified random conductance
model and shown in the continuous case in [5]. Furthermore, this results also apply
for non Gaussian fields (even when Malliavin calculus is not available), as long as
one has a multiscale functional inequality, with a weight that has a sufficient decay,
see [5, Remark 2.1].
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Scaling law of commutator

Georgiana Chatzigeorgiou

Our purpose is to describe the (large-scale) fluctuations of the solution to a linear
and uniformly elliptic equation in divergence form

∇ ·
(

a
( ·
ǫ

)

∇uǫ + f
)

= 0, in R
d

with random (stationary and ergodic) coefficient field. The pathwise theory of
fluctuations (see [3] for the i.i.d discrete case and [2] for the continuum underlying
Gaussian case) reduces this analysis to the characterization of the fluctuations of
the so-called standard homogenization commutator

Ξo
( ·
ǫ

)

:=
(

a
( ·
ǫ

)

− ā
)(

Id+∇φ
( ·
ǫ

))

where φ is the usual first order corrector and ā is the homogenized coefficient. The
main focus of this talk is to describe the scaling limit of this key quantity (as in
[1]).

In order to have access to Malliavin calculus, we consider a weakly correlated
(underlying) Gaussian coefficient field as follows.
Assumptions. We assume that the coefficient field a has the form

a(x) := a0(G(x))

where a0 ∈ C2
b (R)

d×d is such that the boundedness and ellipticity conditions are
satisfied and G is some real-valued centered stationary Gaussian random field
characterized by its covariance function c(x) := E(G(x)G(0)), which we assume to
have integrable decay at infinite, i.e. |c(x)| ∼ (1 + |x|)−β for some β > d.

Our main result is divided into the following two parts,

Theorem 1. For F ∈ C∞
c (Rd)d×d we denote by

Iǫ(F ) := ǫ−d/2

ˆ

Rd

F (x) : Ξo
(x

ǫ

)

dx.

(i) Limiting variance structure: There exists a constant four-tensor Q such
that

∣

∣

∣

∣

Var(Iǫ(F ))−
ˆ

Rd

F (x) : QF (x)dx

∣

∣

∣

∣

≤ C











ǫ, if d > 2, β ≥ d+ 1

ǫ| ln ǫ|1/2, if d = 2, β ≥ d+ 1

ǫβ−d, if d < β < d+ 1.
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Moreover we have a representation formula for the effective fluctuation tensor Q
in terms of the correctors. Let

Kijkl(x) :=E[(a0(G)(∇φ∗
j + ej) · (∇φi + ei))(x)

× (1 + L)−1(a0(G)(∇φ∗
l + el) · (∇φk + ek))(0)]

where L the infinite-dimensional Laplacian (or Ornstein-Uhlenbeck operator). Then
Q is given by

Qijkl :=

ˆ

Rd

Kijkl(x)c(x)dx.

(ii) Approximate normality:

(dW + dTV)

(

Iǫ(F )

Var1/2(Iǫ(F ))
;N
)

≤ C
ǫd/2| ln ǫ|
Var(Iǫ(F ))

.

where dW and dTV are the 2-Wasserstein and the total variation distance respec-
tively and N is a standard Gaussian law .

Remark 1. Observe that, if Q is non-degenerate then (i) and (ii) give us a CLT-
type result for Ξo

ǫ , namely it turns out that Ξo
ǫ converges in law to a (2-tensorial)

Gaussian white noise with covariance given by Q. However, as it is explained in [1],
Q could happen to be degenerate, but in the same work the authors give sufficient
additional conditions on the coefficient field under which the non-degeneracy of Q
is guaranteed.

The property that makes Ξo a particularly useful quantity when it comes to
fluctuations is the fact that it is an approximately local function of the coefficient
field which suggest that we could relate the large-scale behaviour of Ξo with that
of a itself. In our framework this property is seen on the level of the Malliavin
derivative of Iǫ(g) := ǫ−d/2

´

Rd g(x)Ξ
o
ij

(

x
ǫ

)

dx =
´

Rd gǫ(x)Ξ
o
ij (x) dx (here we take

F := gei ⊗ ej for convenience and set gǫ(x) := ǫd/2(ǫx)),

DIǫ(g) = a0(G)(∇φi + ei)⊗
(

(∇φ∗
j + ej)gǫ + φ∗

j∇gǫ +∇hǫj

)

with −∇·a∗∇hǫj = ∇·
(

(a∗φ∗
j − σ∗

j )∇gǫ
)

. We observe that the only non-local term
is the last one but since the right-hand side of the equation that hǫj satisfies is
given in terms of the derivative of gǫ, this term is expected to vanish in the limit as
ǫ → 0 (with order 1). To study the behaviour of hǫj one needs to invoke annealed
Calderón-Zygmund estimates (see [4] and [5]) together with moment bounds for
the corrector (see for instance [5]), tools that play central role in our analysis.

Once we have the aforementioned formula for DIǫ(g) we employ ingredients
from Malliavin calculus. For part (i), we use a tool which is very convenient
when one tries to characterize the limit of a variance, namely the Helffer-Sjöstrand
representation formula,

Cov[I, J ] = E

[
ˆ ˆ

c(x− y)DI(x)((1 + L)−1DJ)(y)dxdy

]
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where L the infinite dimensional Laplacian. For part (ii), we appeal to second-
order Poincaré inequality which measures the distance to a normal distribution in
terms of the second derivative,

(dW + dTV) (I;N ) ≤C E
1/4(||DI||4L2)

× E
1/4





(

sup
||ζ||L2=1

∣

∣

∣

∣

ˆ ˆ

ζ(x)ζ(y)D2I(x, y)dxdy

∣

∣

∣

∣

)4


 .

We refer to section 4 in [4], for more details on Malliavin calculus.
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Bourgain’s surprising result in stochastic homogenization

Mitia Duerinckx, Tobias Ried

Let A be a uniformly elliptic, stationary and ergodic random coefficient field, con-
structed on a probability space (Ω,P). Homogenization theory has been focussing
on the fine description of the solution ∇uε

f of the rescaled elliptic problem

−∇ · A( ·
ε )∇uε

f = ∇ · f, in R
d,

in the limit of fast oscillating coefficients ε ↓ 0, for a given deterministic force
field f ∈ L2(Rd)d. A different perspective on the topic has been recently initiated
by Sigal [6], based on the following observation (see [4]).

Lemma 1. There exist a bounded convolution operator Ā(∇) on L2(Rd) and a
bounded pseudo-differential operator F(·,∇) : L2(Rd) → L2(Rd ×Ω) with centered
stationary random symbol, related by Ā(∇) = E[A(Id+F(·,∇))], such that:

• the averaged solution E[∇uε
f ] satisfies

(1) −∇ · Ā(ε∇)E[∇uε
f ] = ∇ · f, in R

d;

• the deviation is described by

(2) ∇uε
f − E[∇uε

f ] = F( ·
ε , ε∇)E[∇uε

f ].
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This result is obtained as a simple consequence of stationarity and of the
Schur complement formula, starting from the block decomposition of the operator
L = −∇ ·A∇ on L2(Rd×Ω) with respect to projections P := E and P⊥ := Id−P ,

(3) L =

(

PLP PLP⊥

P⊥LP P⊥LP⊥

)

.

Homogenization can be reformulated in these terms as the regularity of the
symbols Rd → Rd×d : iξ 7→ Ā(iξ) and Rd → L2(Ω)d×d : iξ 7→ F(·, iξ) at iξ = 0.
Indeed, this regularity allows to transform the equation (1) for the averaged so-
lution perturbatively into the usual form of (higher-order) effective PDEs, and to
transform the relation (2) into (higher-order) two-scale expansions; see [3] for a
precise equivalence. Unlike the case of periodic homogenization, we recall that
two-scale expansions in the random setting cannot be pursued to arbitrary order,
corresponding to the problem of existence of higher-order correctors: under the
strongest mixing conditions, the two-scale expansion of the solution ∇uε

f is only

possible to accuracy O(εd/2) in L2(Rd × Ω), which implies that the symbols Ā
and F are a priori only (almost) of class Cd/2 at 0. This regularity is optimal
for F , but an improvement can be expected for Ā as it is an averaged quantity.
By refined homogenization techniques, the regularity of Ā has been shown in [2]
to be indeed at least twice better, that is, (almost) of class Cd. Very surprisingly,
Bourgain [1] and Kim and Lemm [5] proved in a perturbative regime that it is
actually four times better, that is, (almost) of class C2d, thus yielding an effec-
tive description of the averaged solution by an effective PDE to accuracy (almost)
O(ε2d). Still no understanding of this result is available by non-perturbative ho-
mogenization techniques, and it has led to formulate the following conjecture.

Conjecture (Bourgain–Spencer). If A satisfies strong enough mixing conditions,
then the symbol Ā is of class (almost) C2d in a neighborhood of 0.

The rest of this note is devoted to a brief description of Bourgain’s perturbative
argument. As in [1, 5], we focus on the discrete iid setting for simplicity (see [4] for
more general results): we consider the operator L = ∇∗A∇ on L2(Zd), where ∇
stands now for the discrete gradient and where A = {Ax}x∈Zd is a sequence of iid
uniformly elliptic random conductivities. The description of the averaged solution
still holds as above in that case, and we use the same notation Ā(∇) for the corre-
sponding convolution operator. The perturbative regularity result by Bourgain [1]
and Kim and Lemm [5] takes on the following guise.

Theorem 1 (Bourgain [1], Kim–Lemm [5]). Let d ≥ 2 and assume Ax = 1+ δBx

with ellipticity ratio δ ≪ 1 and with |Bx| ≤ 1 and E[Bx] = 0. Then we have
Ā(∇) = Id+Lδ where Lδ is a convolution operator on Zd with kernel satisfying

(4) |Lδ(x, y)| ≤ Cδ2〈x− y〉Cδ−3d, (〈x〉 := 1 + |x|)
for some universal constant C > 0, meaning that its symbol is of class C2d−Cδ.

This result is essentially optimal in the sense that the decay of the kernel cannot
be improved beyond 〈·〉−3d, as will be clear from the proof, but we emphasize that
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it does not solve the above conjecture even in the perturbative regime due to the
loss Cδ in the exponent. This indicates that the conjecture might, in fact, be false
and that the non-perturbative Cd regularity in [2] might be optimal in general.

The proof starts from the Schur complement formula for the block decom-
position (3), combined with a Neumann expansion, which allows to represent
(PL−1P )−1 = ∇∗(Id+Lδ)∇ with

(5) Lδ = δ
∑∞

n=1 δ
nL(n), L(n) := PB(KP⊥B)nP,

with the short-hand notation K := ∇△−1∇∗, and we then proceed by analyzing
this perturbation series. Expanding the composition of operators, the kernel for
the nth term in the series takes the form

(6) L
(n)(x0, xn) =

∑

x∈(Zd)n−1

PBx0K(x0 − x1)P
⊥Bx1 . . .K(xn−1 − xn)P

⊥Bxn
,

where the sum runs over all ‘paths’ x = (x1, . . . , xn−1) in Zd connecting x0 to xn.
A direct estimate of the series, using the pointwise decay |K(x, y)| . 〈x − y〉−d,
would yield

|L(n)(x, y)| ≤ Cn〈x − y〉−d log(2 + |x− y|)n,
where the logarithms come from estimating integrals with borderline decay. For
all η > 0, using log t ≤ η−1tη for t ≥ 1, this bound translates into

(7) |L(n)(x, y)| ≤ nn(Cη )
n〈x− y〉η−d.

The combinatorial factor nn destroys any possible use of this direct estimate in
the perturbation series. In [1], Bourgain made a more clever use of the global
structure of the paths, together with Calderón–Zygmund theory in form of the Lp-
boundedness of K, to show that this factor can, in fact, be removed.

Lemma 2 (Bourgain’s deterministic lemma). For all η ∈ (0, 1) and x 6= y,

|L(n)(x, y)| . η(Cη )
n〈x− y〉η−d.

Choosing η = 2Cδ, this bound can now be used to estimate the perturbation
series (5), to the effect of

|Lδ(x, y)| ≤ δη
∞
∑

n=1

(Cδ
η )n〈x− y〉η−d ≤ 2Cδ2〈x− y〉2Cδ−d.

To prove the stated decay (4), this naive bound needs to be improved by taking
advantage of stochastic cancellations. We indeed easily realize that many paths
do not contribute in the sum (6): for instance,

PB(x0)P
⊥B(x1) . . . P

⊥B(xn) = 0

whenever {x0, . . . , xj} ∩ {xj+1, . . . , xn} = ∅, for some 0 ≤ j ≤ n.

The sum in (6) can thus be restricted to the so-called ‘irreducible’ paths that
do not satisfy this condition. Further cancellations exist but are not needed in
the analysis. For x 6= y, we note for instance that there is no irreducible path
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with n ≤ 2 edges from x to y, and that for n = 3 the only irreducible path is
(x, y, x, y), that is,

x y

A simple combinatorial argument shows that an irreducible path from x to y can
always be decomposed into three disjoint paths from x to y. Evaluating the sum (6)
by summing separately over these three paths, a direct estimate as in (7) would
then yield the following, for all n ≥ 1 and η > 0,

|L(n)(x0, xn)| ≤ nn(Cη )
n〈x− y〉η−3d.

This captures the optimal decay 〈·〉−3d as stated in (4), but the factor nn again
makes this direct estimate useless in the perturbation series. Since the restriction
to irreducible paths breaks the special oscillatory structure of the composition of
Calderón–Zygmund kernels in (6), it is a priori unclear how to improve on such
direct estimates. In a nutshell, the main contribution of Bourgain’s work in [1] is
to show how simple enough restrictions on the summations still allow to appeal to
the Calderón–Zygmund theory.
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Numerical approaches to homogenization

Nicolas Clozeau, Marc Josien, Matti Schneider, Lihan Wang

The goal of this talk was to give a brief introduction to techniques which serve
as the basis for numerical computation of the effective conductivity matrix in
stochastic homogenization. The presentation had an overview character and was
intended to convey the underlying ideas, pointing the audience to the relevant
literature.

The contribution was split into four parts, and exclusively focused on numerical
homogenization of the linear operator −∇ · a∇, and mostly on the computation
of the constant homogenized coefficient ahom. The latter can be expressed thanks
to the correctors φi as (ahom)ij = 〈ei · a(∇φj + ej)〉.

For a start, even though the corrector equation is initially set on the whole
space, we discussed the necessity to work on domains of finite size due to practical
constraints – in general, on cells [0, L]d. This gives rise to the so-called Repre-
sentative Volume Element (RVE) approaches. Appropriate boundary conditions
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need to be applied, replacing the sublinearity condition on the whole-space correc-
tors. It can be shown [1, 2] in the general stationary and ergodic setting that for
the most commonly used boundary conditions – Dirichlet, Neumann and periodic
boundary conditions – the computed properties converge to the effective properties
when the size L of the cell goes to infinity.

When working on cells of finite size, the computed properties are still random
variables. Therefore, the error of the RVE method naturally decomposes into two
parts [3, 4]: a random error, which quantifies the fluctuations of the computed
properties around its mean, and a systematic error, which is deterministic and
quantifies the error introduced by working on cells of finite size. The scalings of
the systematic and the random error of the RVE method, which are generically
different, can be investigated numerically [3].

We wanted to estimate such scalings rigorously. We placed ourselves in the
simplest possible setting and restricted our analysis to periodized ensembles which
moreover admit a spectral gap inequality [4, 5], uniformly in the size of the cell.
Given the original (stationary ergodic) ensemble generating the coefficient field a,
a periodized ensemble can be seen as conditioning the original ensemble on the
coefficients a being periodic of period [0, L]d. Unlike the more naive strategy
consisting of taking a snapshot of the coefficient field a and then restricting it to
the cell, periodized ensembles are stationary. (However, periodizing might prove
impossible in practice.)

Under these assumptions, the random error scales with the central-limit theorem
scaling L−d/2, which is a direct consequence of inserting the spatially averaged
energy into the spectral gap inequality and invoking a uniform bound on the
quartic moment of the gradient of the corrector [4]. The systematic error scales as
L−d (possibly, up to logarithmic factors) [4], but the analysis is more subtle. We
discussed it in the second presentation for low spatial dimensions d ≤ 4. It requires
a coupling between the periodized ensembles and the whole-space ensemble, e.g.,
by requiring that both ensembles generate coefficient fields that coincide on half
of the cell. Then, the idea of Gloria et al. [4] is to benefit from the exponential
localization of the inverse massive operator ∇(1/T − ∇ · a∇)−1∇· by inserting a
massive term with prefactor 1/T into the equation of the corrector. On the level
of the massive equation, the difference between homogenized coefficients of both
ensembles is exponentially small in L/

√
T . Using the spectral gap assumption,

the difference between the massive and the non-massive homogenized coefficients
scales like T−d/2. Selecting the massive parameter T appropriately yields the
result.

The third part of our talk was concerned with reducing the variance of our
RVE approximation. This is of important interest for practical computations of
the effective tensor by Monte-Carlo methods, since the achieved accuracy depends
strongly on the magnitude of the fluctuations. We considered the Special Quasi-
random Structures (SQS) introduced by Le Bris et al. [6] which are based on
a suitable selection approach of the random structure. Due to stationarity and
ergodicity, every realization may be used to compute the effective conductivity
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(with probability one). However, in practice some realizations may be more suit-
able than others. The SQS conditions are a family of criteria which are cheap to
check numerically and select samples that realize certain statistical properties of
the entire material already on the small cell [0, L]d in an exceptionally accurate
way. For instance, in the case of random inclusions, the first SQS condition selects
a sample for which the volume fraction matches its statistical average (up to a
tolerance error). For general microstructures, SQS conditions can be derived in
a systematic way by a formal expansion of the effective tensor in terms of the
ellipticity contrast. The rigorous justification of variance reduction under the SQS
selection criteria was established by Fischer [7] for general random microstructures
with a finite range of dependence.

The final part of our presentation was concerned with computing multiscale
problems with low scale separation. More precisely, to solve for Dirichlet problem
−∇ · a∇u = f on a large domain QL with L ≫ 1, Armstrong et al. [8] provide
an iterative scheme for computing the sought solution, assuming that the effective
conductivity ahom was obtained beforehand. In particular, in each iteration step,
suppose we have an initial guess v of the solution, then we obtain v̂ by solving the
following three equations:































(

1

T
−∇ · a∇

)

u0 = f +∇ · a∇v,

−∇ · ahom∇ū =
1

T
u0,

(

1

T
−∇ · a∇

)

u1 =

(

1

T
−∇ · ahom∇

)

ū,

and finally, the field v̂ = v+ u0 + u1 should be a better approximation of the true
solution u compared to the field v we started out with. This method, similar to
the V-cycle in the multigrid method, is based on a decomposition of the contribut-
ing frequencies into low-frequency and high-frequency parts. The first equation
already contains the high-frequency parts of the error u−v; and to further approx-
imate the remaining error u − v − u0, one solves the homogenized equation that
accounts for its low-frequency component and finally add back high-frequency de-
tails in the third equation. By inverting only the homogenized operator−∇·ahom∇
and the massively corrected operator 1/T −∇ · ahom∇ (for large parameter T but
much smaller than L2), the algorithm reduces the condition number of the opera-
tors from L2 to T , thus substantially decreasing the computation cost. The result
of Armstrong et al. [8] shows that with high probability, the error ‖∇(v̂ − u)‖L2

of the new iterate is smaller than the error ‖∇(v − u)‖L2 of the old iterate for
sufficiently large parameter T , with a contraction rate independent of the param-
eter L but dependent on the field v. Furthermore, the recent result of Gu [9],
which was also a part of our presentation, shows that the contraction rate may
be bounded independently of the field v but with a logarithmic correction error
in the parameter L. Hence, as long as massive parameter T is larger than some
logarithmic power of the length-scale L, one can iterate the procedure and the
iterates converge to the correct solution with overwhelming probability.
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Bounds on homogenized coefficients, metamaterials

Kirill Cherednichenko, Patrick Dondl, Fatima Z. Goffi

It is a classical question to ask which homogenized properties can be achieved by
combining a number of individual materials in a composite. To be more concrete,
and following the general outline of [1], assume that a and b are given tensors
specifying for example the conductivity of two materials, and a fixed local volume
fraction θ of material a, find the set

Gθ = {Ahom : Aǫ = χǫa+ (1− χǫ)b
H→ Ahom, χǫ ∗

⇀ θ},
for any sequence of characteristic functions χǫ such that H-convergence holds. In
general, the characterization of the set Gθ, commonly referred to the G-closure
problem is an open, but a number of different bounds can be found.

Clearly, the harmonic and arithmetic mean are two such bounds (commonly
referred to as the Reuss and Voigt bounds, respectively, in the case of elasticity).
Those bounds are sharp in the sense that both can be achieved by a simple laminate
microstructure, i.e., a layered structure of the two materials. However, if in one
direction the Reuss bound is saturated, then in all other directions the Voigt bound
must be saturated. Thus, much shaper bounds can be found, for example, when
assuming that the homogenized material must be isotropic.

A great simplification comes from the fact that, instead of generalH-convergent
composite materials, it is enough to consider the case of periodic homogenization.
This was first shown by Tartar [2] in a special case. The general result was first
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proved by Dal Maso and Kohn in an unpublished manuscript, but a proof in full
generality – also extended to the nonlinear setting – can be found in [3].

Sharp bounds can be established using the so-called Hashin-Strikman varia-
tional principle [4], which was further developed by a number of authors. In some
special cases, in particular in the scalar case involving two isotropic materials, these
bounds do in fact characterize the G-closure [2, 5]. Generally, the Hashin-Strikman
bounds can be realized by a procedure of sequential lamination. Very different ho-
mogenized material properties can, however, be realized when one removes the
assumption that the contrast between the two materials remains bounded.

In physical and engineering applications, designing media with properties not
commonly found in nature has been the main rationale for the development of
metamaterials. The related story that began in the 1960s with a question on the
nature of material properties with changing sign [6] and has since had a major
impact no materials science, nanotechnologies, and applied mathematics. In op-
tics, light propagating through metamaterials is subject to negative refraction and
cloaking [7]. Other important applications are found in acoustics and mechanics,
in particular for sonar or seismic waves absorption. The key idea for metamate-
rial design is based on considering large periodic arrangements of sub-wavelength
inclusions, or cells. Each cell contains a combination of materials with varying
moduli and geometries.

The question of designing periodic heterogeneous structures is related to ho-
mogenisation, i.e. linking the mesoscopic structure of a metamaterial to a hy-
pothetical macroscopic homogeneous material. The latter is described by some
“effective” material parameters, which are spatially homogeneous. In the litera-
ture, a number of homogenisation techniques for metamaterials can be found. In
the mathematics community, most methods are based on asymptotic homogeni-
sation, utilising multiscale expansions or two-scale convergence [8, 9, 10]. Within
this approach, local constitutive relations have been considered, in which the elec-
tric displacement D and the magnetic field H depend on the macroscopic electric
field E and the magnetic induction B as follows (r ∈ R

3, t ≥ 0):

D(r, t) = E(r, t) +P[E,B](r, t),

H(r, t) = B(r, t)−M[B,E](r, t),

where P and M are electric polarisation and magnetisation, respectively. When
the wavelength and the spatial period are of the same order of magnitude, physi-
cists recommend to use nonlocal constitutive relations [11, 12], which for the elec-
tric displacement have the form of a convolution of the electric field and a response
function R :

D(r, ω) =

ˆ

R3

R(r− r′, ω)E(r′, ω) dr′,

where ω is the frequency. This relation describes the effective response of optical
metamaterials to an incident electric field.

In the context of wave propagation, metamaterials (acoustic, electromagnetic)
can be viewed as composite media with a dependence of the effective wavespeed on



Arbeitsgemeinschaft: Quantitative Stochastic Homogenization 2789

frequency. This is a general feature of (multi-component) composites in which the
wavelength becomes comparable to the spatial size for some of the components.

For example, for each ε > 0, z ∈ C \ R+, f ∈ L2(R3) consider the following
resolvent problem for u = uε :

−∇ · Aε(·/ε)∇u− zu = f,

where

Aε(y) =

{

ε2I, y ∈ Q1,

I, y ∈ Q0.

Here Q0 ⊂ Q := [0, 1)3 is such that dist(Q0, ∂Q) > 0 and Q0 ∪Q1 = Q.
For each ε > 0, define the set

U1
ε := ε

⋃

n∈Z3

(Q1 + n).

Denote by λj , ϕj the eigenvalues (arranged in the increasing order) and the nor-
malised eigenfunctions of the Dirichlet Laplacian on Q0.

Theorem 1. For R > σ > 0, there exists a constant C = C(R, σ) > 0 such that
one has

‖uε − uhom‖L2(U1
ε )

≤ Cε‖f‖L2(U1
ε )
,

where

(1) −∇ · Ahom∇uhom − β(z)uhom = f.

Here the matrix Ahom is obtained by classical homogenisation from the “perforated”
set U1

ε , and

β(z) := z + z2
∞
∑

j=1

〈ϕj〉2
λj − z

.

The function β (“Zhikov function” [14]) describes the effective time dispersion:
if one formally sets z = ω2, then the relation between the wavenumber k and
frequency ω for such an effective medium can be written as k2 = β(ω2). The
corresponding version of the wave equation for is obtained by taking the inverse
Fourier transform of (1) with respect to the frequency (W = W (x, t), x ∈ R3,
t ≥ 0):

Wtt −
ˆ ∞

0

a(τ)W (t − τ)dτ −∇ ·Ahom∇W = f,

where a is the inverse Fourier transform (in ω) of the function β(ω2)− ω2.
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Homogenization in Fluids – From Navier-Stokes to Brinkman

Peter Bella

We discuss homogenization of Poisson and Stokes equation in a domain finely
perforated by many small holes. Assuming homogeneous Dirichlet boundary con-
dition on the holes, the limiting problem depends on the size and distributions of
the holes. More precisely, denoting ε > 0 the (average) distance between the holes
and εα the scaling parameter for the radii, in the regime of tiny holes α > d

d−2 the
limiting problem as ε → 0 is the same – here d ≥ 3 denotes the dimension. In the
case of large holes α < d

d−2 solutions converge to zero, and their proper rescaling

(by a power of ε) converge to a limit described by the Darcy law.
Focusing on the critical case α = d

d−2 , we obtain the same limiting equation

(Poisson or (Navier)-Stokes equation) with an additional “friction” zeroth-order
term. For periodically arranged holes and scalar problem (Poisson equation)
this was shown by Cioranescu and Murat [2, 3], who called this additional term
“a strange term brought from somewhere else”. Instead of modifying (possibly
non-regular) weak solution, one modifies (truncate) the test function – a strategy
called an oscillating test function method [6]. The material being viscous, this
truncation produces a friction related to the capacity of the holes.

The vectorial case (Stokes system) deals with solenoidal (divergence-free) func-
tions, introducing additional difficulty when dealing with divergence-free trunca-
tions. In contrast to the scalar situation, where one can define truncation near
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each hole separately, take the minimum of those truncations and use that capacity
is subadditive, in the solenoidal case the modification near close-by holes is highly
non-trivial. The simpler case of periodically arranged holes was analysed long time
ago by Allaire [1], while the case of randomly arranged holes is quite recent (see
[4] for the Poisson and [5] for the Stokes problem) – the main difference being that
in the random case the holes might be very close to each other or even overlap
with positive probability.

In the random case, the idea is to split the holes into 2 groups – the good ones
which have enough space around them (i.e. one can “truncate” one hole without
modifying other trucations) and the bad ones, which are close to some other holes
(and possibly form clusters). The trick is then to show that the bad set is small in
the sense that their capacity (cost of truncation) goes to 0 and therefore does not
contribute to the limiting problem. As already mentioned, in the Stokes case one
needs to be more careful to preserve the divergence-free condition. In [5] this is
done by additionally splitting the bad holes into finitely-many groups of similarly
large holes and treating them group by group.
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Sedimentation of random suspensions

Shenglan Yuan

If the particles in the random suspension are heavier than the fluid, they fall by
gravity. The quantities of interest are the speed of sedimentation and its variance,
which are investigated in [3], and require linear analysis and stochastic cancella-
tions.
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Figure 1. Two-dimensional tank

The tank QL := (−L
2 ,

L
2 ]

d of side length L ≥ 1 with periodic boundary condi-
tions is filled with a (steady) Stokes fluid, together with a monodisperse collection
of disjoint spherical suspended particles,

IL :=
⋃

n

In,L,

where the particle In,L := B(xn,L) is the unit ball centered at xn,L and PL :=
{xn,L}n is a collection of positions in the tank QL; see Figure 1.

The fluid with the suspension is characterized by the following steady Stokes
equation

(1)























−△φL +∇ΠL = −αLe, in QL \ IL;
divφL = 0, in QL \ IL;
D(φL) = 0, in IL;
e|In,L|+

´

∂In,L
σ(φL,ΠL)ν = 0, ∀n;

´

∂In,L
Θν · σ(φL,ΠL)ν = 0, ∀n, ∀Θ ∈ Mskew.

Here, φL stands for the velocity of the fluid that is incompressible with divφL = 0
in the fluid domain QL \IL. It also describes the velocity of the particles with the
rigidity constraint

D(φL) = 0, in IL,
where D(φL) :=

1
2 (∇φL + (∇φL)

′) denotes the symmetrized gradient of φL. This
means that φL(x) = Vn,L + Θn,L(x − xn, L) inside each particle In,L, for some
translational velocity Vn,L ∈ Rd and some rotational velocity (skew-symmetric)
matrix Θn,L. The term ΠL represents the pressure in experiments. In the fluid,
−αLe accounts for the multiparticle backflow in the opposite direction to gravity
e ∈ Rd with the relevant factor αL := λL

1−λL
and the total volume fraction λL :=

L−d|IL|. The Cauchy stress tensor σ(φL,ΠL) = 2D(φL)−ΠLId appears through
the momentum equilibrium on particles, where ν denotes the outward unit normal
vector at particle boundaries. Moreover, φL and ΠL satisfy the vanishing average
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conditions
ˆ

QL

φL = 0,

ˆ

QL\IL

ΠL = 0.

Well-posedness for the steady Stokes system (1) is standard with φL ∈ H1
per(QL)

d

and ΠL ∈ L2
per(QL \ IL) based on [4].

We are interested in statistical properties of the effective sedimentation speed
and its variance. We compute the velocities of particles via the averaged boundary
values

Vn,L :=

 

In,L

φL.

The aim is to analyze the mean settling speed and the fluctuations of individual
velocities,

(2) V̄L :=
e

|e| · E[Vn,L], σL :=
∣

∣Var[Vn,L]
∣

∣

1
2 ,

in the large-volume limit L ↑ ∞.
A linear analysis allows to compute the scalings for the mean settling speed

and the velocity fluctuations by neglecting the multibody interactions in the dilute
regime λL ≪ 1. The Stokes model (1) can be formally reduced to φL ≈ φ◦

L,

(3) −△φ◦
L +∇Π◦

L =
(

∑

n

1In,L
− λL

)

e, divφ◦
L = 0, in QL,

and particle velocities are approximated by Vn,L ≈ V ◦
n,L :=

´

In,L
φ◦
L. For this

simplified linear model (3), the mean settling speed is estimated by

λL|e|V̄ ◦
L

L↑∞∼ E

[

∣

∣∇φ◦
L

∣

∣

2
]

= E

[∣

∣

∣

∑

n

∇UL(xn,L)
∣

∣

∣

2]

=
∣

∣

∣
Var
[

∑

n

∇UL(xn,L)
]∣

∣

∣
,

in terms of the periodic (locally averaged) Stokeslet,

−△UL +∇PL = (1B1(0) − L−d|B1(0)|)e, in QL.

The velocity fluctuations are calculated as

(σ◦
L)

2 ≈ |Var[φ◦
L]| =

∣

∣

∣Var
[

∑

n

UL(xn,L)
]∣

∣

∣.

The family (PL)L≥1 of point processes is constructed on some probability space
(Ω,P). It may have the following properties:
(Hδ) – General conditions:

• Periodicity in law : For all L ≥ 1, the point process PL is stationary
with respect to shifts, i.e., there exists a measure-preserving group action
{τL,x}x∈QL

of (Rd/LZd,+) such that Pω
L + x = PτL,xω

L for all x and ω.

• Stabilization : The restricted point set PL ∩K converges almost surely
as L ↑ ∞ for any compact set K ⊂ Rd. The limiting point process is
denoted by P , which is assumed stationary (on R

d) and ergodic, and we
denote by I := ∪nIn the corresponding particle suspension.
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• Hardcore condition : The point process PL has a minimal interparticle
distance

inf
m 6=n

|xm − xn|L ≥ 2(1 + δ) almost surely.

(Mix) – Mixing condition: The pair correlation function g2,L of PL is integrable
with

sup
L≥1

ˆ

QL

|x|2L|g2,L(x)|dx < ∞.

(Hap) – Mixing and hyperuniformity conditions: The sedimenting suspen-
sion still displays fast decaying correlation

sup
L≥1

ˆ

QL

|g2,L| < ∞,

and hyperuniformity holds in the sense that the total pair correlation h2,L satisfies

sup
L≥1

L2
∣

∣

∣

ˆ

QL

h2,L

∣

∣

∣ < ∞.

(Mix)
+
– Improved mixing condition: There is a non-increasing weight func-

tion π : R+ → R+ with π(ℓ) ≤ Cp〈ℓ〉−p for all p ≥ 1 such that the point process
(PL)L≥1 satisfies, for all σ(PL)-measurable random variables Y (PL),

Var[Y (PL)] ≤ E

[

ˆ L

0

ˆ

QL

(

∂osc
PL

Y (PL)
)2

dx〈ℓ〉−dπ(ℓ)dℓ
]

,

where the “oscillation” derivative ∂osc is defined by

∂osc
P,Bℓ(x)

Y (P) := sup ess
{

Y (P ′) : P ′|QL\Bℓ(x) = P|QL\Bℓ(x)

}

− inf ess
{

Y (P ′) : P ′|QL\Bℓ(x) = P|QL\Bℓ(x)

}

.

(Hap+) – Improved mixing and hyperuniformity conditions: For all L ≥ 1
the point process PL satisfies, for all σ(PL)-measurable random variables Y (PL),

Var[Y (PL)] ≤ E

[

ˆ L

0

ˆ

Rd

(

∂hyp
PL,Bℓ(x)

Y (PL)
)2

dx〈ℓ〉−dπ(ℓ)dℓ
]

,

where the “hyperuniform” derivative is determined by

∂hyp
PL,Bℓ(x)

Y (PL) = ∂mov
PL,Bℓ(x)

Y (PL) + L−1∂osc
PL,Bℓ(x)

Y (PL)

and the “move-point” derivative is given by

∂mov
P,Bℓ(x)

Y (P) := sup ess
{

Y (P ′) : P ′|QL\Bℓ(x) = P|QL\Bℓ(x), ♯P ′|Bℓ(x) = ♯P|Bℓ(x)

}

− inf ess
{

Y (P ′) : P ′|QL\Bℓ(x) = P|QL\Bℓ(x), ♯P ′|Bℓ(x) = ♯P|Bℓ(x)

}

.

Let the random point processes (PL)L≥1 satisfy (Hδ) for some δ > 0. The
intensity of PL is defined by ρL := E[L−d♯PL] with E[λL] = |B1(0)|ρL.
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Theorem 1. Under (Mix) and (Mix)+, the following bounds are expected to be
sharp,

V̄L

ρL|e|
.







1, d>2;

(logL)
1
2 , d=2;

L
1
2 , d=1;

and
σL

ρL|e|
.







1, d>4;

(logL)
1
2 , d=4;

L
1
2 , d=3;

respectively.

For a mixing ensemble of particles without long-range order, the mean settling
speed and velocity fluctuations are well-defined in the large-volume limit only in
dimensions d > 2 and d > 4, respectively. More precisely, the boundedness of V̄L

for d > 2 explicitly justifies Batchelor’s analysis [1]. The linear divergence of σ2
L

for d = 3 provides a rigorous version of the celebrated calculation by Caflisch and
Luke [2].

Theorem 2. Under (Hap) and (Hap+), the critical dimensions are shifted by
2,

V̄L

ρL|e|
. 1 and

σL

ρL|e|
.







1, d>2;

(logL)
1
2 , d=2;

L
1
2 , d=1;

respectively.

The linear analysis yields a good description of the nonlinear long-range inter-
actions, even by hyperuniform statistics. In particular, this rigorously illustrates
the screening of hydrodynamic interactions in dimension d = 3 from Koch and
Shaqfeh [5].
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Boundary Layers in Periodic Homogenization

Claudia Raithel

Consider the problem of obtaining homogenization rates for the Dirichlet problem:

−∇ · (a(·/ǫ)∇uǫ) = f in D,

u ≡ 0 on ∂D,
(1)
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where D ⊂ Rd is a bounded domain and d ≥ 2; f and a are smooth. We,
furthermore, assume that the coefficient field, a : R → Rd×d is uniformly elliptic
and bounded and Zd-periodic, in the sense that A(y+ξ) = A(y) for all y ∈ Rd and
ξ ∈ Zd. Recalling the standard 2-scale expansion in the absence of boundaries,

uǫ(x) = u0(x, x/ǫ) + ǫu1(x, x/ǫ) + ǫ2u2(x, x/ǫ) + ...,

we would expect that

‖uǫ − (u0(x) + ǫu1(x, x/ǫ))‖H1(D) ≤ Cǫ.(2)

Instead of (2), it is a classical result that

‖uǫ − (u0(x) + ǫu1(x, x/ǫ))‖H1(D) ≤ Cǫ1/2(3)

holds and that this estimate is in general optimal. This loss of ǫ1/2 is the result
of a boundary layer in which the full-space 2-scale expansion fails to give a good
approximation of uǫ – in particular, notice that uǫ − (u0(x) + ǫu1(x, x/ǫ)) 6= 0 on
∂D.

To remedy this issue it is standard to introduce a boundary layer correction

−∇ · (a(·/ǫ)∇ubl
1,ǫ) = 0 in D,

ubl
1,ǫ ≡ −u1(x, x/ǫ) on ∂D.

(4)

Using the energy estimate for the divergence form equation satisfied by uǫ −
(u0(x)+ǫ(u1(x, x/ǫ)+ubl

1,ǫ) – where u0 is the homogenized solution and u1(x, x/ǫ) =

φi(x/ǫ)∂iu0 – and that uǫ − (u0(x) + ǫ(u1(x, x/ǫ) + ubl
1,ǫ) = 0 on ∂D, one can then

easily show that

‖uǫ − (u0(x) + ǫu1(x, x/ǫ) + ubl
1,ǫ)‖H1(D) ≤ Cǫ.(5)

Clearly, the “corrected” two scale expansion including the boundary layer correc-
tion does a better job of approximating uǫ – however, a new problem is introduced
in the fact that ubl

1,ǫ itself solves (4), a Dirichlet problem with not only oscillating
coefficients, but also oscillating boundary data. Therefore, in order to give a good
approximation for uǫ, we must consider the homogenization of this “oscillating
Dirichlet problem”.

The homogenization of the oscillating Dirichlet problem (4) is much more subtle
than that of the standard Dirichlet problem (1). In particular, while the uǫ solving
(1) satisfy a uniform H1 estimate, due to the oscillating boundary data in (4) this
is not the case for the ubl

1,ǫ. The homogenization of (4) also turns out to be very
sensitive to the geometry of D – we now restrict ourselves to polygonal domains,
which may be expressed as the intersection of half spaces:

D = ∩N
k=1 {x : nk · x > ck} ,(6)

where nk are the inner-normal vectors and ck ∈ Rd. There are two main cases
that are studied in the literature: 1) When the nk are rational, studied by Allaire
and Amar [2] and, in a slightly different context, also by Vogelius and Santosa
[8, 9] and Vogelius and Moskow [7]. In [2] the authors consider the case that
D = [0, 1]d, constructing a second-order (interior) approximation of uǫ, but only
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along the sequence ǫn = 1/n. The results of Vogelius and coauthors imply that
the approximation of uǫ constructed in [2] depends on the sequence of ǫ. And, 2)
When the nk are diophantine. This case was first studied by Gérard-Varet and
Masmoudi [4] and led to considering uniformly convex domains [5, 1, 3, 6]. In
[3], Armstrong, Kuusi, Mourrat, and Prange are able to show convergence rates
in Lq, q ∈ [2,∞), for the homogenization of the oscillating Dirichlet problem on
uniformly convex domains that are essentially optimal for d ≥ 4. Following the
work of Shen and Zhuge [6] in which they were able to obtain better regularity for
the homogenized boundary data, the methods in [3] are also shown to yield the
optimal rates for d = 2, 3.

Returning to the setting of a polygonal domain (6), to address the homoge-
nization of (4) the solution is decomposed into contributions corresponding to the
various half-spaces used to define the domain. Each one of these contributions
vblǫ,k(x, x/ǫ) is found to solve a half-space problem

−∇y · (a(y)∇yv
bl
ǫ,k) = 0 in nk · y > ck/ǫ,

vblǫ,k ≡ −u1(x, y) on nk · y = ck/ǫ,
(7)

where x now only appears as a parameter. The aim is to show that these problems
are well-posed, and – more to the point – that the solutions vblǫ,k converge to
constants aǫ,k as nk ·y → ∞ with a suitable rate of convergence. The aǫ,k are then
used to construct the homogenized boundary data – this, of course, only makes
sense if the aǫ,k do not actually depend on ǫ.

In the case that the nk are rational, one can quite easily see that, while the
boundary layer tails vblǫ,k converge to constants, these aǫ,k do depend on ǫ. This is
due to how the half-space cuts the periodicity cell of the boundary data. When
the nk are instead diophantine, as treated by Gérard-Varet and Masmoudi [4], it
can be shown that the convergence of the boundary layer tails is faster than any
polynomial and, furthermore, that the aǫ,k are independent of ǫ. This yields the
existence of homogenized boundary data.
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Effective boundary and interface conditions

Sonia Fliss

In this talk, we are interested in explaining how we can derive

• effective boundary conditions in order to replace a rough boundary by a
flat one;

• effective interface conditions in order to replace heterogeneous thin layers.

These conditions are derived in general by studying the behaviour at infinity of
some boundary layers terms. The accuracy of such effective conditions depends
also on this behaviour. A lots of works in fluid mechanics (see among other [9,
2, 10, 19, 20, 5, 22]), for reaction-diffusion processes (see [21, 15]) or for wave
propagation phenomenon (see for instance [1, 14, 11, 13] ) address this question.
In general the boundary and/or the layer are periodic, only few works deals with
the random setting [7, 16, 12, 4].

Understanding these works is important in order to propose similar effective con-
ditions for the homogenization of heterogeneous media in presence of boundaries
or interfaces. For the homogenization of periodic media, effective boundary con-
ditions were derived in [3, 17, 18, 6] for Dirichlet problems, in [23] for Neumann
problems and in [8] for interface problems. To our knowledge, nothing similar
exists for the homogenization of random media.

References

[1] Abboud, Toufic, and Habib Ammari. “Diffraction at a curved grating: TM and TE cases,
homogenization.” Journal of mathematical analysis and applications 202.3 (1996): 995-1026.

[2] Achdou, Yves, Olivier Pironneau, and Frederic Valentin. “Effective boundary conditions
for laminar flows over periodic rough boundaries.” Journal of Computational Physics 147.1
(1998): 187-218.
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tion on domains with curved oscillating boundaries.” Applicable Analysis 85.05 (2006): 479-
502.

[23] Shen, Zhongwei, and Jinping Zhuge. “Boundary layers in periodic homogenization of Neu-
mann problems.” Communications on Pure and Applied Mathematics 71.11 (2018): 2163-
2219.

Homogenization of boundary conditions in fluids

Umberto Pappalettera, Jules Pitcho

We consider a two-dimensional rough channel

Ωǫ = Ω ∪ Σ ∪Rǫ

where Ω = R × (0, 1) is the smooth part, Rǫ is the rough part, and Σ = R × {0}
is their interface. The rough part has typical size ǫ and is given by

Rǫ =
{

x, x2 > ǫω
(x1

ǫ

)}

,

where ω : R → (−1, 0) is a random process on some probability space (P, C, π)
with smooth trajectories.
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In this channel, the fluid is modeled by the solution of the steady-state Navier-
Stokes equations:

(1)



























−∆u+ u · ∇u+∇p = 0, x ∈ Ωǫ,

div u = 0, x ∈ Ωǫ,
ˆ

σǫ

u1 = φ,

u|∂Ωǫ = 0,

where σǫ denotes any vertical cross-section of Ωǫ and φ > 0 is the flux across the
channel.

The problem we are interested in is the justification theNavier-slip boundary
condition, acting at the artificial boundary Σ, as the homogenized effect of the
rough boundary. More precisely, we want to justify that for some constant α the
solution of

(2)



























−∆u+ u · ∇u+∇p = 0, x ∈ Ω,

div u = 0, x ∈ Ω,
ˆ

σ

u1 = φ, u|x2=1 = 0,

(u1 − ǫα∂2u1, u2) = 0 at Σ,

provides an O(ǫ3/2| log(ǫ)|1/2) approximation in L2(P × Ω) of (1).
In the case when the irregularity ω is periodic, this was already proved in

[4]. The hypothesis of periodic irregularity of the boundary is unphysical and
technically easier, whereas [3] deals with the case when the irregularity ω ∈ P is
randomly distributed and stationary, with uniform bound given by

P := {ω : R → (−1, 0) such that ‖ω‖C2,ν ≤ K}
for some ν > 0 and K ∈ (0,∞). Here, we additionally require that the σ-fields

σ(s 7→ ω(s), s ≤ a) and σ(s 7→ ω(s), s ≥ b)

are independent under π for b− a ≥ κ, for some κ > 0.
The starting point for the justification of the Navier-slip boundary is a formal

expansion of uǫ:

uǫ(x) ∼ u0(x) + 6φǫv(x/ǫ) + . . .

The leading term u0 satisfies (1) with the no-slip condition u0 = 0 at Σ, and is
given by the Poiseuille flow:

u0(x) = (U(x2), 0), U(x2) = 6φx2(1− x2).

In the random setting, it was justified in [2] that no-slip boundary condition pro-
vides a O(ǫ) approximation of uǫ in L2. This however does not take into account
the behaviour of uǫ near the boundary, and is refined by a boundary layer corrector
ǫφv(x/ǫ) in the expansion. This corrector is defined on the rescaled domain

Ωbl = {x ∈ R
2 : x2 > ω(x1)},
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and satisfies the Stokes problem:

(3)











−∆v +∇q = 0, x ∈ Ωbl,

div v = 0, x ∈ Ωbl,

v(x1, ω(x1)) = −(ω(x1), 0).

The boundary condition on v is imposed to compensate the value of u0(x) at
boundary points. It is critical to observe that solutions of (3) have the following
representation formula

v(ω, y) =

ˆ

R

G(t, y2)v(ω, y1 − t, 0)dt

= −
ˆ

R

t∂tG(t, y2)
1

t

ˆ t

0

v(ω, y1 − s, 0)dsdt.

G is the matrix-valued Green function associated to the Stokes problem:

G(y1, y2) =
2y2

π(y21 + y22)
2

(

y21 y1y2
y1y2 y22

)

.

In conjuction with

1

t

ˆ t

0

v(ω, y1 − s, 0)ds → (α, 0),

which follows from from the ergodic theorem, this gives a strategy to prove the
following central limit theorem type of convergence

y2E [(v(·, 0, y2)− (α, 0))] → σ ≥ 0.(4)

Now, for n ∈ N, we denote by τn : ω(·) 7→ ω(·+ h) the translation operator on P ,
and we observe that the difficulty in obtaining (4) is that the random variables

Xn(ω) = F ◦ τn(ω), where F (ω) =

ˆ 1

0

(v(ω, t, 0)− α)dt,

are not independant. This is because of infinite speed of propagation of information
in the Stokes system. However, by obtaining a good decay of correlations on
the random variables Xn as n goes to infinity, we can still prove a central limit
theorem for non-independant random variables, from which (4) follows. The decay
of correlations on the random variables Xn is obtained using an argument of
homogenization of the Green’s function for the Stokes operator in a domain with
an oscillating boundary, in analogy with the work of Avellanada and Lin [1] for
homogenization of elliptic systems.

We then conclude by introducing the approximation

uǫ
app(ω, x) = u0(x) + 6ǫφv(ω, x/ǫ) + 6ǫφu1(ω, x) + 6ǫφrǫ(ω, x),
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where u1 and rǫ respectively solve






























u0 · ∇u1 + u1 · ∇u0 −∆u1 +∇p = 0, x ∈ Ω,

div u1 = 0, x ∈ Ω,
ˆ 1

0

u1 · e1dx2 = −α,

u1|y2=0 = 0, u1|y2=1 = −(α, 0),

and










rǫ(ω, x1, 0) = 0,

rǫ(ω, x1, 1) = α− v(ω, x1/ǫ, 1/ǫ),

div rǫ = 0, x ∈ Ω,

one can make use of (4) to prove both uǫ − uǫ
app and uN − uǫ

app to be of order

O(ǫ3/2| log(ǫ)|1/2) in L2(P × Ω), where uǫ is the unique solution of (1) and uN is
the unique solution of (2), thus implying the desired result.
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Homogenisation of the wave equation for long times

Matteo Capoferri, Mikhail Cherdantsev, Igor Velcic

The goal of this talk is to give an overview of the existing result on the homogenisa-
tion of the wave equation for long times, both in the periodic and in the stochastic
setting.

Working in Euclidean space Rd, for ε > 0 consider the initial value problem

(1)











(∂2
tt −∇ · a(·/ε)∇)uε = 0,

uε|t=0 = u0,

∂tuε|t=0 = 0,

for some sufficiently regular initial datum u0.
Suppose a is a [0, 1]d-periodic, bounded, uniformly elliptic symmetric matrix-

function on Rd. It is a classical result in homogenisation theory that, given T > 0,
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uε can be approximated on the time interval [0, T ] by the solution uhom of a non-
dispersive wave equation with constant coefficients:

(2)











(∂2
tt −∇ · ahom∇)uhom = 0,

uhom|t=0 = u0,

∂tuhom|t=0 = 0.

Efforts have been made over the years to improve the above results in two main
directions: (i) quantifying the rate of convergence of uε to uhom as ε → 0 and (ii)
increasing the time window in which the approximation holds.

For periodic problems, Dohnal–Lamacz–Schweizer [3, 4], using techniques re-
liant on the Bloch-wave decomposition in the homogenisation regime [5, 2], were
able to show the following.

Theorem 1 (Thms. 2.2 and 2.4 in [4]). Let uε be the solution of (1) for some
u0 ∈ H2(Rd), and let wǫ be the solution of the well-posed weakly dispersive equation

(3)











(∂2
tt −∇ · ahom∇)wε = ε2∇ ·Dhom∇∂2

twε − ε2Fhom∇⊗4wε,

wε|t=0 = u0,

∂twε|t=0 = 0,

where Dhom and Fhom are constant positive semi-definite symmetric tensors of
order two and four, respectively, which can be determined explicitly. Then, for
every T > 0 there exists a constant C = C(a, u0, T ) such that

sup
t∈[0,ε−2T ]

‖uε − wε‖L2(Rd)+L∞(Rd) ≤ Cε.

Remark 1. Note that, in fact, up to an additional error of order O(ε), wε can be
written down explicitly in terms of the coefficients in the analytic expansion near
the origin of the first Bloch eigenvalue and eigenfunction, cf. [4, Theorem 2.3 and
Eqn. (1.9)].

One calls (3) a higher order homogenised wave equation. It is worth emphasising
that for large times the interplay between the time derivative and the oscillatory
nature of the spatial part bring about dispersive effects, see [4].

Recently, Benoit–Gloria [1] developed new interesting techniques inspired by the
Bloch method (which is not applicable if the spatial operator is not periodic)
to obtain homogenisation results for long times in the stochastic setting. These
techniques consist in devising an approximate Bloch theory in the whole space.

The key observation here — one that comes from the periodic setting and, as
is shown, can be successfully adapted to the stochastic case — is that in the ho-
mogenisation limit all information important for a large time approximation up
to an O(ε)-error is contained in the expansion of the first Bloch eigenpair (ap-
proximate Taylor-Bloch eigenpair in non-periodic case) for small values of the
quasimomentum. Remarkably, the first order term in the expansion of the first
eigenfunction is precisely the first order homogenisation corrector. One can make
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a step further, and construct an expansion of any given order, provided that suf-
ficiently many higher order correctors (how many one needs depends on how far
one wants to go in time) are well defined.

Based on this expansion, one can write down a higher order homogenised wave
equation:











(∂2
tt + Lhom,ε,ℓ)wε,ℓ = 0,

wε,ℓ|t=0 = u0,

∂twε,ℓ|t=0 = 0.

Here Lhom,ε,ℓ is a positive elliptic operator whose order depends on ℓ with higher
order derivatives multiplied by appropriate powers of ε. Benoit–Gloria showed
that the solution wε,ℓ approximates uε up to times of order ε−α(ℓ)T , where α(ℓ) is
a positive number depending on ℓ (provided that the ℓ-th order corrector is regular
enough).

In case of periodic coefficients a ∈ L∞ there exist well defined correctors of
any order ℓ ∈ N, thus, once can construct an approximate solution up to any
prescribed scaling of time ε−αT , α > 0. The analogous statement is true for
quasi-periodic coefficients under the additional assumption that a is sufficiently
smooth. In purely stochastic setting, in general one can construct an approximate
solution up to times of order ε−d/2T only. The latter restriction stems from the fact
that one needs to verify the existence of higher order correctors with prescribed
growth.

Benoit–Gloria’s approach also works for more general initial conditions, in the
presence of forcing terms, and for systems of PDEs.
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École Polytechnique
Plateau de Palaiseau
91128 Palaiseau Cedex
FRANCE

Dr. Fatima Zohra Goffi

Karlsruher Institut f. Technologie (KIT)
Englerstrasse 2
76131 Karlsruhe
GERMANY

Dr. Xiaoqin Guo

Dept. of Mathematical Sciences
University of Cincinnati
7525 Baywind Dr,
P.O. Box 210025
Cincinnati OH 45242
UNITED STATES

Prof. Dr. Martin Hairer

Imperial College London
Department of Mathematics
SW72AZ London
UNITED KINGDOM



Arbeitsgemeinschaft: Quantitative Stochastic Homogenization 2807

Wei Huang

Institut für Mathematik
Freie Universität Berlin
Arnimallee 6
14195 Berlin
GERMANY

Christopher Irving

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY

Cole Jeznach

Department of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455
UNITED STATES

Dr. Marc Josien

DES/IRESNE/DEC/SESC/LM2C -
Bât.151
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