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Introduction by the Organizers

The workshop A Geometric Fairytale full of Spectral Gaps and Random Fruit
was organised by Joachim Kerner (Hagen), Matthias Täufer (Hagen), and Pavlo
Yatsyna (Espoo). In addition to the three organizers, fourteen researchers from
all over the world attended the workshop. Based on recent advances in spectral
geometry (e.g. related to Pólya’s conjecture) and in the field of Bose–Einstein
condensation in random environments (related to the Kac–Luttinger conjecture),
the aim of the workshop was to bring together researchers from those and related
fields in order to stimulate further research along those lines. More explicitly,
it appears that the fields involved would benefit a great deal from a stronger
connection between them.
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A classical problem in spectral geometry is to study the eigenvalues of the two-
dimensional Laplacian

−∆ = − ∂2

∂x2
− ∂2

∂y2

on a bounded domain Ω ⊂ R2 and subject to Dirichlet boundary conditions. The
eigenvalues 0 < λ1(Ω) ≤ λ2(Ω) ≤ . . . form a sequence of real numbers tending
to infinity and constitute the spectrum of the self-adjoint operator −∆. One
goal is then to derive (good) upper and lower bounds on the lowest eigenvalue
λ1(Ω) in terms of geometrical quantities of Ω such as volume, inradius, etc.; a
famous inequality in this context is named after Rayleigh, Faber, and Krahn.
Alternatively, one might ask to derive such bounds for the so-called spectral gap

λ2(Ω) − λ1(Ω) .

On a quantum-mechanical level, the spectral gap measures the smallest amount of
energy that is necessary to excite a particle occupying the ground state associated
with λ1(Ω). The spectral gap is also an important quantity from a mathematical
point of view and we shall refer to the proof of the so-called fundamental gap
conjecture by B. Andrews and J. Clutterbuck as an example of this fact.

Quite interestingly, it turns out that understanding the asymptotic behaviour of
the eigenvalues of the (Dirichlet-)Laplacian is crucial in order to conclude so-called
Bose–Einstein condensation (BEC) in a gas of non-interacting bosons, or to say
something about its type. BEC is an important quantum-mechanical phenomenon
that might occur in bosonic many-particle systems (typically at low temperatures
if at all); indeed, a current goal in mathematical physics is to prove existence
of BEC in a three-dimensional Bose gas with (suitable, strong) particle-particle
interactions in the thermodynamic limit. It should be noted that, in various
scaling-limits, existence of BEC could already be proved and a lot of progress has
been achieved in the last twenty-some years. Now, going back to non-interacting
Bose gases, one might ask whether BEC exists also in a random environment and
of what type it is. Of course, the same question is sensible for a Bose gas with
interactions and it is one hope that, starting with this workshop, there will be
progress regarding this question in the near future. In any case, random here
can mean that the domain Ω ⊂ Rd on which one considers the d-dimensional
(Dirichlet-)Laplacian is a domain that is generated via a random process. For
example, based on a Poisson point process, one may randomly distribute balls of
radius R > 0 in space and then consider the (Dirichlet-)Laplacian on the random
domain

ΩL,ω := (−L/2,+L/2)d \
⋃

j

BR(xj(ω)) .

Here, xj(ω) ∈ Rd is the random centre of the j-th ball BR(xj(ω)). Now, the
spectral gap λ2(ΩL,ω)−λ1(ΩL,ω) is also random and depends, in addition, on the

side-length of the cube (−L/2,+L/2)
d
. The Kac–Luttinger conjecture then makes

a statement about the type of BEC (so-called type-I BEC with a sole macroscopic
occupation of the ground state) on ΩL,ω and in d = 3. At this point, we just
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mention that, in order to prove this conjecture, one has to show that the spectral
gap does not converge to zero too fast in the limit L→ ∞. Also, it is interesting to
mention that the recent proof of the Kac–Luttinger conjecture by A. S. Sznitman
employs a quantitative version of the Rayleigh–Faber–Krahn inequality which is
one indication of the strong link between the fields represented at the workshop.

Of course, spectral geometric considerations are not limited to domains in Eu-
clidean space but also play an important role in the context of other mathematical
structures such as graphs (or lattices), quantum graphs and manifolds. Due to
advances in nano-technology, it has become increasingly important to understand
spectral properties of such structures. Therefore, investigations of spectral gaps
beyond classical topics might prove fruitful in the future.
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Abstracts

A variational formulation for Dirac Operators in bounded domains

and applications to spectral geometric inequalities

Rafael D. Benguria

(joint work with Pedro S. Antunes, Vladimir Lotoreichik, Thomas
Ourmières-Bonafos)

Consider Ω ⊂ R2, a C∞ simply connected domain, and let n = (n1, n2)T be the
outward pointing normal on ∂Ω.

The Dirac operator with infinite mass boundary conditions in L2(Ω,C2) is defined
as,

DΩ ≡
(

0 −2 i ∂z
−2 i ∂z̄ 0

)
.

Here,
dom(DΩ) = {u = (u1, u2)T ∈ H1(Ω,C2)|u2 = in u1 on ∂Ω}.

We have set n = n1 + i n2 and

∂z =
1

2
(∂1 − i∂2) , ∂z̄ =

1

2
(∂1 + i∂2) .

The Dirac operator with infinite mass boundary conditions is self-adjoint [6, 2].
Its spectrum is symmetric with respect to the origin, consisting of eigenvalues of
finite multiplicity, with,

... ≤ Ek(Ω) ≤ · · · ≤ −E1(Ω) < 0 < E1(Ω) < . . . Ek(Ω) ≤ . . .

The following geometrical bound was proved in [3],

E1(Ω) ≥
√

2π

|Ω| ,

where |Ω| is the area of the domain Ω. By analogy with the Rayleigh-Faber–Krahn
inequality it is natural to conjecture (see, [1], Conjecture 1):

Dirac–Rayleigh–Faber–Krahn–Conjecture

(1) E1(Ω) ≥
√

π

|Ω| E1(D),

where D is the unit disk, and one expects equality if and only if Ω is a disk.

In Sections 7 and 8 of our recent article [1] we present strong numerical evidence
supporting this conjecture. Nevertheless this conjecture is still open.

In [1] we prove the following isoperimetric upper bound on E1(Ω).

Theorem 1. Let Ω ⊂ R2 be a C∞ simply connected domain. Then we have

(2) E1(Ω) ≤ |∂Ω|
πr2i + |Ω|E1(D),

with equality if and only if Ω is a disk.
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Here |Ω| is the area, |∂Ω| the perimeter and ri the inradius of the domain Ω.

What we actually prove is

Theorem 2. Let Ω ⊂ R2 be a C∞ simply connected domain. Then we have

E1(Ω) ≤ |∂Ω| +
√
|∂Ω|2 + 8πE1(D)(E1(D) − 1)(πr2i + |Ω|)

2(πr2i + |Ω|)
with equality if and only if Ω is a disk.

Theorem 1 follows from Theorem 2 using πr2i ≤ |Ω| ≤ |∂Ω|2/(4π).
The proof of Theorem 2 is obtained by combining a new variational characteriza-
tion of E1(Ω), inspired by min-max techniques for operators with gaps introduced
in [5], and the classical proof of Szegő about the first nontrivial Neumann eigen-
value of the Laplacian in R2 [7].

Consider the quadratic form

qΩE,0(u) ≡ 4

∫

Ω

|∂z̄u|2 dx− E2

∫

Ω

|u|2 dx+ E

∫

∂Ω

|u|2 ds,

with dom
(
qΩE,0

)
= C∞(Ω̄,C).

For E > 0, qΩE,0 is bounded below with dense domain and we consider qΩE the

closure in L2(Ω) of qΩE,0. Then, we define the first min-max level,

µΩ(E) = inf
u

qΩE(u)∫
Ω
|u|2 dx .

where the infimum is taken over dom(qΩE) \ {0}. Then we have the following
variational characterization ofthe first non–negative eigenvalue.

Theorem 3. [1] E > 0 is the first non–negative eigenvalue of DΩ if and only if
µΩ(E) = 0.

Heuristics: Let (u, v)T ∈ dom(DΩ) be an eigenfunction with eigenvalue E. In Ω
the eigenvalue equation reads,

−2i∂zv = E u, −2i∂z̄u = E v.

Assuming the equations are valid up to the boundary, using the infinite mass
boundary conditions, we get the following boundary condition on u,

n̄∂z̄u+
E

2
u = 0, on ∂Ω.

Now from the equations for u and v we get,

−4∂z∂z̄u = E2u, in Ω.

Taking the scalar product with u, integrating by parts, and using the boundary
condition formally gives qΩE(u). This is the reason for introducing qΩE .

In order to use the function µΩ(E) to estimate E1(Ω) we need the following:

Lemma 4. [1]. The map µΩ : E ≥ 0 → µΩ(E) satisfies:
i) µΩ(E) is a continuous and concave function on R+.
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ii) We have µΩ(0) = 0, and there exists EΩ
∗ > 0 such that for all (0, EΩ

∗ ), µΩ(E) >
0.

To prove the Theorem 2 we construct an adequate test function for qΩE [1]. We do
so following the strategy of [7], transplanting the eigenfunction of the unit disk in
Ω using a conformal map. We then use our Lemma 3.

Remark. It is interesting to note that our upper bound on E1(Ω) given by (2)
and the conjectured Rayleigh–Faber–Krahn inequality for the Dirac operator with
infinite mass boundary condition given by (1) together with the onvious inequality
|Ω| ≥ π r2i would imply one of the Bonnesen inequalities [4], namely,

|Ω| ≤ ri (|∂Ω| − π ri) .
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Principal frequencies and inradius

Lorenzo Brasco

(joint work with Francesca Bianchi)

Let 0 < s < 1 and let Ω ⊆ RN be an open set. We consider its first eigenvalue of
the fractional Dirichlet-Laplacian of order s, defined by

λs1(Ω) = inf
ϕ∈C∞

0
(Ω)

{
[ϕ]2W s,2(RN ) : ‖ϕ‖L2(Ω) = 1

}
.

Here functions C∞
0 (Ω) are considered to be extended by 0 outside Ω and the

quantity [ · ]W s,2(RN ) is the Sobolev-Slobodeckĭı seminorm, given by

[ϕ]2W s,2(RN ) =

∫∫

RN×RN

|ϕ(x) − ϕ(y)|2
|x− y|N+2 s

dx dy, for every ϕ ∈ C∞
0 (RN ).

The case of the classical Dirichlet-Laplacian is formally recovered in the limit as s
goes to 1, by recalling the celebrated Bourgain-Brezis-Mironescu formula, i.e.

lim
sր1

(1 − s) [ϕ]2W s,2(RN ) = CN

∫

RN

|∇ϕ|2 dx, for every ϕ ∈ C∞
0 (RN ).
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see [8, Corollary 3.20]. This can be made more precise, by using Γ−convergence
arguments, see [6, Theorem 1.2].

We aim at proving estimates on λs1(Ω), in terms of simple geometric features of
the open set Ω. In particular, we focus on the planar case (i.e. we take N = 2)
and we want to compare λs1(Ω) with the inradius of Ω. The latter is defined by

rΩ = sup
{
r > 0 : ∃ a disk of radius r ⊆ Ω

}
.

By using the scaling properties of λs1 and its monotonicity with respect to set
inclusion, it is easily seen that we have

λs1(Ω) ≤ λs1(B1)

(
1

rΩ

)2 s

, where B1 = {x ∈ R
2 : |x| < 1}.

One may wonder whether it is possible to “revert” this estimate. In other words,
we inquire whether it is possible to bound λs1 from below in terms of the inradius
only, up to some universal constant multiplicative factor.

Already in the case of the classical Dirichlet-Laplacian, this is known to be false
in general, but it becomes feasible under specific geometric and/or topological
assumptions. For example, we can prove such an estimate in the following cases:
for open convex sets (this is a result by Hersch, see [11]); for simply connected
open sets (this is due to Makai [12] and, independently, to Hayman [10], see also
Ancona [1] and Bañuelos & Carroll [2] for different proofs); or for open sets with
given topology. By the latter, we mean multiply connected sets of order k, with
k ∈ N \ {0}, i.e. open planar sets whose complement has k connected components
(in the one-point compactification of R2). In this case, the relevant lower bound on
the first eigenvalue is due to Osserman [13] and Taylor [14], with different proofs.
We also mention Croke [7] for a refinement of Osserman’s method and Graversen
& Rao [9] for a slightly suboptimal result, using probabilistic techniques.

Coming back to the fractional case, Hersch’s result has been extended to the
case of λs1 by Bañuelos, Lata la and Méndez-Hernández, see [3]. In [4, 5], we
show that it is possible to extend to the fractional case the results for simply and
multiply connected sets, as well. Precisely, we have the following result:

Theorem. Let 1/2 < s < 1, there exists a constant ϑs > 0 such that for every
Ω ⊆ R2 open multiply connected set of order k ∈ N \ {0}, we have

(1) λs1(Ω) ≥ ϑs
ks

(
1

rΩ

)2 s

.

Moreover, the constant ϑs has the following asymptotic behaviours

ϑs ∼ (2 s− 1)2, for sց 1

2
and ϑs ∼

1

1 − s
, for sր 1.

We also show, by constructing suitable examples, that the estimate (1) is opti-
mal:

• in its dependence on s, as sր 1;
• in its dependence on k, as k → ∞.
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In particular, from (1) it is possible to recover the Osserman-Taylor result for the
classical Dirichlet-Laplacian, by taking the limit as sր 1 and using the Bourgain-
Brezis-Mironescu formula.

The restriction s > 1/2 is optimal, since in [4] we show that such an estimate is
not possible for 0 < s ≤ 1/2. As for the asymptotic behaviour of ϑs at the critical
threshold s = 1/2, in the simply connected case (i.e. for k = 1) we can improve
the asymptotics above to

ϑs ∼ 2 s− 1, for sց 1

2
,

which is sharp, as showed in [5]. We conjecture that this should be the optimal
behaviour of ϑs for k ≥ 2, as well.

The proof of the result above is constructive, thus the constant obtained in the
lower bound (1) can be made explicit. However, this is not likely to be optimal.
Thus, the previous result naturally leads to the following

Open problem. Let 1/2 < s < 1 and k ∈ N \ {0}. Find the sharp constant Ts,k
in (1), i.e. determine the value of the following shape optimization problem

Ts,k = inf

{
λs1(Ω) (rΩ)2 s :

Ω ⊂ R2 open multiply connected set
of order k, with rΩ < +∞

}
.

We point out that, already for the case of the classical Dirichlet-Laplacian and for
simply connected sets (i.e. for k = 1), this is a major open problem.
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Elements of random convex geometry

Pierre Calka

(joint work with Y. Demichel, N. Enriquez, A. Goldman and J. E. Yukich)

The talk surveys some of the models, recent questions and results related to ran-
dom convex geometry in the Euclidean setting. We concentrate on particular
problems which satisfy the following pattern: first, we consider a random point
set of R

d, d ≥ 2, which is almost surely locally finite, second we use this point
process to construct graphs, partitions or random (convex) sets by a deterministic
procedure and finally we analyse some asymptotic configuration in a broad sense.

The choice of the distribution of the point process is crucial as the interac-
tion between the random points should be reflected by the properties of the con-
structed geometric shape. We opt classically for the Poisson point process, i.e. an
interaction-free point process in Rd which has the fundamental property that the
numbers of points falling inside disjoint Borel subsets of Rd are independent and
Poisson distributed. In particular, when the property of translation-invariance is
added, the Poisson point process is characterized by only one real parameter called
the intensity which is the mean number of points per unit volume.

We describe below two classical deterministic constructions based on a homo-
geneous Poisson point process in the Euclidean space: the Poisson-Voronoi tes-
sellation and the convex hull of a Poisson input. They lead to random geometric
models which we comprehend through their asymptotic behavior: in the first case,
we investigate rare configurations in the partition while in the second case, we
describe the obtained shape when the size of the input goes to infinity.

Large Poisson-Voronoi cells

A well-known geometric construction consists in partitioning Rd into convex poly-
topes through the Voronoi procedure associated with the homogeneous Poisson
point process of intensity 1. More precisely, we associate to any Poisson point
its cell, i.e. the set of points of Rd which are closer to that particular Poisson
point, called its nucleus, than to any other Poisson point. A conjecture stated by
D. G. Kendall in the forties in the particular case of the plane and proved by D.
Hug and R. Schneider in a very general setting [6] claims that the large cells of
the tessellation should be almost circular. In a common work with A. Goldman
[5], we calculate the mean of the spectral function of the Dirichlet-Laplacian of
the typical Poisson-Voronoi cell and deduce in particular that the first eigenvalue
λ1(C) of the typical cell C has the same asymptotic distribution function as the
first eigenvalue of its inball centered at its nucleus, i.e. when t→ 0,

logP(λ1(C) ≤ t) ∼ −4πj20t
−1
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λ

(a) The cell Kλ when K is an ellipse (b) The elongated cell C(λ)

where j0 is the first positive zero of the Bessel function J0. This result is another
confirmation of the spherical shape of the large cells.

A derived problem concerns the behavior of a planar Poisson-Voronoi cell Kλ

conditioned on containing a large multiple λK of a fixed shape K, see Figure (a).
With Y. Demichel and N. Enriquez [1], we provide precise asymptotic estimates
for the mean number of vertices, mean defect area and mean defect perimeter
in the spirit of A. Rényi & R. Sulanke’s work for random convex hulls [7]. For
instance, there exist explicit constants c1 and c2 depending only on K such that
when λ→ ∞

E(Vol2(Kλ \ (λK))) ∼
{
c1λ

2
3 if K has a C2-boundary

c2λ if K is a polygon
.

In a companion work, we focus on the neighboring elongated cells around the large
cell Kλ. More precisely, we consider a simplified model where the Poisson points
are located in the lower half-plane and study the typical Poisson-Voronoi cell C(λ)

whose maximal height is λ > 0, see Figure (b). We prove that up to rescaling,

C(λ) has a limiting shape, i.e. if F (λ)(x, y) = (λ−
1
3 x, λ−1y), x ∈ R, y > 0 and Z(λ)

is the Voronoi nucleus associated with Cλ,

F (λ)(C(λ) − Z(λ))
D−→ C(∞)

where C(∞) is a random apeirogon whose distribution is encoded by an explicit
Markov chain in R2, see [2].

Typical and maximal fluctuations of random convex hulls

We consider the convex hull Kλ of the intersection of a homogeneous Poisson point
process of intensity λ > 0 in R

d with a convex body K of Rd with a C2 boundary
and positive Gaussian curvature, see e.g. Figure (c).

The asymptotics of its global characteristics, such as its number of faces or
its defect volume have been largely investigated since A. Rényi & R. Sulanke’s
seminal paper [7]. In a common work with J. E. Yukich [3], we adopt a slightly
different approach by considering the set of facets of Kλ and studying both the
typical and maximal distributions of two functionals of those facets: the distance
to the boundary ∂K and the (d − 1)-dimensional volume. In particular, we de-
rive limit distributions for both the maximal local roughness MLR(Kλ), which is
the maximal distance from a facet of Kλ to ∂K, and the maximal facet volume
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(c) The random polytope Kλ when K is an ellipse

MFV (Kλ). Indeed, under some general assumptions on K, there exist explicit
constants ai and bi depending only on dimension d and on K such that

MLR(Kλ) = λ−
2

d+1 (a0(a1 logλ+ a2 log(logλ) + a3 + ξλ))
2

d+1

and

MFV (Kλ) = λ−
d−1

d+1 (b0(b1 logλ+ b2 log(logλ) + b3 + ψλ))
d−1

d+1

where both variables ξλ and ψλ converge to the Gumbel distribution, i.e. for t ∈ R,

lim
λ→∞

P(ξλ ≤ t) = lim
λ→∞

P(ψλ ≤ t) = e−e
−t

.

Our calculations also show that the model belongs to a so-called KPZ universal-
ity class where the denomination comes from the celebrated Kardar-Parisi-Zhang
equation [4]. Additional results concern the location and shape of the facet which
reaches the maximal volume: we prove that the Gauss curvature at the point on
∂K which is the closest to the facet with maximal volume converges to the min-
imum of the Gauss curvature along the boundary of K. Moreover, we obtain an
explicit limit distribution for the location of that closest boundary point. Similar
results occur for the location of the facet which maximizes the distance to ∂K.
Finally, in the case of the facet with maximal volume, we prove that up to affine
transformation, its shape converges to the shape of a regular simplex.

References

[1] P. Calka, Y. Demichel & N. Enriquez, Large planar Poisson-Voronoi cells containing a given
convex body, Ann. H. Lebesgue 4 (2021), 711–757.

[2] P. Calka, Y. Demichel & N. Enriquez, Elongated Poisson-Voronoi cells in an empty half-
plane, Adv. Math. 410 (2022).

[3] P. Calka & J. E. Yukich, Fluctuation theory of random convex hulls, in preparation (2023).

[4] I. Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices:
Theory and Applications 1 (2012)

[5] A. Goldman and P. Calka, On the spectral function of the Poisson-Voronoi cells, Ann. Inst.
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Spectral gap condition for type-I Bose–Einstein condensation in

random potentials

Wolfgang Spitzer

(joint work with Joachim Kerner, Maximilian Pechmann)

We consider non-interacting bosons in a non-negative random potential Vω in Rd,
ω ∈ Ω, d ∈ N, where (Ω,A,P) is some probability space. The single particle
energy is described by the random Schrödinger operator

hω := −∆ + Vω ≥ 0 , ω ∈ Ω ,

defined as self-adjoint operators on (a suitable domain of) L
2(Rd). Almost surely

(with respect to P), the infimum of the spectrum of hω will be 0 in our models.
Equilibrium states of the Bose gas are parametrized by the temperature T > 0

and the constant (particle) density ρ > 0 or by T and the so-called chemical
potential µ < inf spec(hω) = 0. Instead of T we use β := 1/T > 0.

We need to start with a microscopic description and consider N bosons inside
the box Λ = (−L/2, L/2)d ⊂ R

d for some L > 0. Since we keep the particle
density ρ fixed we choose L such that ρ = N/Ld, and thus L = LN = (N/ρ)1/d.

The operator hN = hN,ω := hω ↾ Λ reduced to the box Λ (with some boundary

conditions) has discrete, random eigenvalues EjN = EjN,ω such that 0 ≤ E1
N ≤

E2
N ≤ E3

N ≤ · · · with normalized eigenfunctions ϕjN = ϕjN,ω ∈ L
2(Λ), j ∈ N. The

(effective) one-particle operator on L
2(Λ) (in the grand-canonical ensemble),

0 ≤ DN,β,µ :=
1

exp(β(hN − µ)) − 1
=
∑

j≥1

1

exp(β(EjN − µ)) − 1︸ ︷︷ ︸
=:nj

N

|ϕjN 〉〈ϕjN |

describes the physics of the Bose gas in equilibrium. We call njN the expected oc-

cupation number of bosons in the state ϕjN at inverse temperature β and chemical
potential µ. The value of µ = µN,ω < E1

N is uniquely chosen such that the total

number of bosons in Λ, N = traceDN,β,µ =
∑

j≥1 n
j
N , or that the particle density,

(1) ρ =
N

|Λ| =
1

Ld

∑

j≥1

1

exp(β(EjN − µ)) − 1
=

1

Ld

∑

j≥1

njN .

Our main concern is the fate of the fraction of random occupation numbers, njN/N

(or equivalently of njN/L
d), in the thermodynamic limit N → ∞. If there is a ĉ ∈ N

such that in probability

(2) lim sup
N→∞

njN
N

{
> 0 if j = 1, . . . , ĉ
= 0 if j ≥ ĉ+ 1

then we call this type-I Bose–Einstein condensation (BEC) in probability.
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We introduce the random integrated density of states N I
N and the random

density of states measure NN : For E ∈ R, let

#{j ∈ N : EjN < E}
|Λ| =: N I

N (E) =:

∫

(−∞,E)

dNN (Ẽ) .

This allows us to rewrite (1) in the form

ρ =

∫

R

dNN (E)

exp(β(E − µ)) − 1
.

Assuming that the random measure NN converges vaguely to some non-random
measure N∞ as N → ∞ then we define the critical density (as a function of β)

ρcrit(β) := sup
µ<0

∫ ∞

0

dN∞(E)

exp(β(E − µ) − 1
=

∫ ∞

0

dN∞(E)

exp(βE) − 1
.

It turns out that in many random models as the one we present below, the cor-
responding (non-random) integrated density of states, N I

∞, satisfies a Lifshitz-tail
behavior (see e.g. [5]) at the bottom of the spectrum of hω, that is, as E ↓ 0

(3) N I
∞(E) ≈ exp[−CE−d/2] ≪ E ,

for some constant C > 0. This implies that the critical density ρcrit(β) is finite in
any spatial dimension d ≥ 1, contrary to the free case (Vω = 0), where this critical
density is finite only if d ≥ 3. If the density ρ > ρcrit(β), then the remaining
Ld(ρ−ρcrit(β)) particles in Λ have to occupy the low energy states. Indeed (see [3,
Theorem 4.1] and [2, Theorem 2.5]), using (3), it is not difficult to prove a weaker
form of BEC called g(eneralized) BEC introduced by Girardeau, that is,

(4) P

(
lim
E↓0

lim sup
N→∞

∑

j∈N:Ej

N
≤E

njN
N

> 0
)

= 1 .

This by itself does not imply type-I BEC and other possibilities may occur (type-II
and type-III, see [2] and references to M. van den Berg, J.T. Lewis, and J.V. Pulé).

Let us now describe the random model that was studied by Kac and Lut-
tinger [1]. To this end, let X = {ξk} denote a Poisson point process on Rd of
intensity ν > 0 with random points ξk = ξk(ω) ∈ Rd for ω ∈ Ω and some proba-
bility space (Ω,A,P) so that for A ⊂ Rd with Lebesgue measure |A| <∞,

P

(
ω ∈ Ω : #{X(ω) ∩ A} = m

)
=

(ν|A|)m
m!

exp(−ν|A|) , m ∈ N0 .

Let u : Rd → [0,∞) be a fixed single-site (usually, compactly supported) po-
tential and γ > 0. Then, we define the random potential

(5) Vω(x) := γ
∑

k

u(x− ξk(ω)) , ω ∈ Ω , x ∈ Rd .

A special case of interest is when u = 1B(0,a), the indicator function of the closed
ball B(0, a) with center 0 and radius a ≥ 0, particularly the limit γ → ∞ so that

(6) hω = −∆ ↾
(
R

d \
⋃

k

B(ξk(ω), a)
)
,
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supplied with Dirichlet boundary conditions. This is the hard obstacle model for
which Kac and Luttinger proved gBEC in the sense of (4) and conjectured that
only the ground state is macroscopically occupied, that is, type-I BEC with ĉ = 1.

In order to prove type-I BEC we assumed properties of the integrated density of
states N I

N , N I
∞ (see [2, Assumptions 2.2]) to hold and of the spectral gap for general

random Schrödinger operators hω (see [2, (2.10)]. For the first set of conditions
we most crucially assumed (cf. (3)), amongst other conditions, that there is some
η ∈ (0, 1) and some c1 > 0 such that limN→∞N1−ηN I

∞

(
c1/(ln(N))2/d

)
= 0.

Then we defined the events ΩĉN ⊂ Ω so that (i) E ĉ+1
N − E1

N ≥ c2N
−1+η and (ii)

E1
N ≤ c3/(ln(N))2/d. The (spectral) gap condition is now the following: there

exist constants ĉ ∈ N, 0 < c2, c3 < c1 such that limN→∞P(ΩĉN ) = 1. If these
conditions are all satisfied and if ρ > ρcrit(β) then our main result in [2] says that
for ε > 0

lim
N→∞

P

(∣∣∣ 1

N

ĉ∑

j=1

njN − ρ− ρcrit(β)

ρ

∣∣∣ < ε

)
= 1

and limN→∞P
(
njN/N ≥ ε

)
= 0 for all j ≥ ĉ+1, that is, type-I BEC in probability.

We also verified that the gap condition is satisfied in the one-dimensional hard
obstacle model (6) with a = 0 for any ν > 0 with ĉ = 1; this should extend to any
a > 0. Recently, Alain-Sol Sznitman [6] proved that the gap condition also holds
in the higher dimensional hard obstacle model (6) for any a > 0 and any ν > 0,
also with ĉ = 1. In fact, he proved a much stronger result with a presumably
optimal logarithmic scaling of the energy gap. The conditions on N I

∞ were known
to be satisfied [5].

Altogether this implies for ρ > ρcrit(β) type-I BEC in probability with ĉ = 1
in the hard obstacle model (6) in all dimensions d ≥ 1. This solves the nearly 50
year old conjecture of Kac and Luttinger. An open problem concerns type-I BEC
in the soft obstacle model (5) for 0 < γ <∞, see [4] for a result in dimension one.
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On the spectral gap in the Kac–Luttinger model and

Bose–Einstein condensation

Alain-Sol Sznitman

In this talk we report on the results of the preprint [1].We consider the Dirichlet
eigenvalues of the Laplacian among a Poissonian cloud of hard spherical obstacles
of fixed radius in large boxes of Rd, d ≥ 2. In a large box of side-length 2ℓ centered
at the origin, the lowest eigenvalue is known to be typically of order (log ℓ)−2/d.
We show in [1] that with probability arbitrarily close to 1 as ℓ goes to infinity, the
spectral gap stays bigger than σ(log ℓ)−(1+2/d), where the small positive number
σ depends on how close to 1 one wishes the probability. Incidentally, the scale
(log ℓ)−(1+2/d) is expected to capture the correct size of the gap. Our result involves
the proof of new deconcentration estimates. Combining this lower bound on the
spectral gap with the results of Kerner-Pechmann-Spitzer [2], we infer a type-I
generalized Bose–Einstein condensation in probability for a Kac–Luttinger system
of non-interacting bosons among Poissonian spherical impurities, with the sole
macroscopic occupation of the one-particle ground state when the density exceeds
the critical value.
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Nodal count via topological data analysis

Iosif Polterovich

(joint work with Lev Buhovsky, Jordan Payette, Leonid Polterovich, Egor
Shelukhin and Vukašin Stojisavljević )

Consider the Laplace–Beltrami operator ∆ on a compact connected n-dimensional
Riemannian manifold M . If ∂M 6= 0, we assume for simplicity the Dirichlet
boundary conditions. The spectrum of the Laplacian is discrete, and the eigen-
values form a sequence 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · ր +∞. The corresponding
eigenfunctions fj, ∆fj = λjfj , form an orthonormal basis in L2(M).

Let Zf denote the nodal (i.e. zero) set of a function f . A nodal domain of f
is a connected component of the set M \ Zf . Nodal patterns of Laplace eigen-
functions have fascinated researchers since Chladni’s experiments with vibrating
plates at the turn of the XIXth century. In particular, it has been observed that
these patterns tend to exhibit increasingly complex behaviour as λj → ∞. A
fundamental result providing the control of the number of the nodal domains of
an eigenfunction is the following theorem due to R. Courant.

Theorem 1 (R. Courant, 1923) A Laplace eigenfunction fj has at most j nodal
domains.
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Denote by m0(f) the number of nodal domains of f . Together with Weyl’s law,
Courant’s theorem implies

(1) m0(fj) = O
(
λ
n/2
j

)
.

There have been many attempts to find an appropriate generalization of this state-
ment in various directions: to linear combinations of eigenfunctions (the so-called
Courant–Herrmann conjecture, see [2] and references therein), to their products
[1], to other operators, to higher topological invariants of nodal domains. However,
using the construction obtained in [3] one can show that none of these generaliza-
tions hold in a straighforward sense [4]. Still, it turns out that these and other
extensions of Courant’s theorem can be obtained if one counts the nodal domains
in a coarse way, i.e. ignoring small oscillations.

Following [7] we say that a nodal domain Ω of a function f is δ-deep for some
δ > 0 if maxΩ |f | > δ. Let m0(f, δ) be the number of δ-deep nodal domains of a
function f , and W k,p(M) be the Sobolev space of integer order k based on Lp(M).

One of our main results shows that m0(f, δ) is controlled by the appropriate
Sobolev norms of f .

Theorem 2 ([4]) Let f ∈ W k,p(M) for some k > n
p , where n = dimM . Then,

for any δ > 0,

m0(f, δ) ≤ Cδ−
n
k ‖f‖

n
k

Wk,p ,

where the constant C depends only on M,k, p.

The proof of this result uses multiscale polynomial approximation in Sobolev
spaces and the theory of persistence barcodes originating in topological data analy-
sis. In particular, our methods develop some ideas of [8, 5, 6]. Note that Theorem 2
can be extended to persistent Betti numbers of arbitrary degree

mr(f, δ) = dim Im (Hr({|f | > δ}) → Hr(M \ Zf )) ,

where Hr stands for the r-th homology group with coefficients in a field.
Theorem 2 admits various applications for eigenfunctions of elliptic differential

and pseudo-differential operators. We present one of them below, which gives a
coarse version of the Courant–Herrmann conjecture mentioned above.

Let Fλ denote the subspace spanned by all eigenfunctions with eigenvalues ≤ λ.
Given an L2-normalized f ∈ Fλ, one can use elliptic regularity to control ‖f‖Wk,2

in terms of λ. This implies

Theorem 3 ([4]) Let M be as above and k > n
2 be an integer. Then for any δ > 0

and any f ∈ Fλ with ‖f‖L2 = 1,

m0(f, δ) ≤ Cδ−
n
k (λ+ 1)

n
2 ,

where the constant C depends only on M and k.

Note that the exponent of λ is sharp and is consistent with estimate (1). In
two dimensions, versions of this result have been proved earlier in [7, 6].

One can also obtain a counterpart of Theorem 2 for the coarse zero count, i.e.
for the number of connected components of the set {|f | < δ} which contain zeros of
f . This result implies, in particular, a coarse version of Bézout’s theorem for linear
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combinations of Laplace eigenfunctions [4]. Here, following the idea of Donnelly
and Fefferman, the analogue of the degree of a polynomial is given by the square
root of the corresponding eigenvalue.
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Bose–Einstein Condensation beyond the Gross–Pitaevskii Regime

Christian Brennecke

(joint work with Arka Adhikari and Benjamin Schlein)

Understanding the low-energy properties of the weakly interacting Bose gas is a
challenging problem in mathematical physics. In this talk, we consider N inter-
acting bosons that move in Λ = T3 and whose energies are described by

(1) HN =

N∑

j=1

−∆xj
+

∑

1≤i<j≤N

N2−2κv(N1−κ(xi − xj)),

acting in L2
s(Λ

N) =
⊗N

sym L
2(Λ), the space of wave functions that are invariant

under permutations of the particle coordinates (as appropriate for bosons). Here,
κ ∈ (0, 1/43) is assumed to be small, but positive and the unscaled potential
v ∈ L3(R3) is assumed to be radially symmetric, pointwise non-negative and of
compact support. Observe that, by a simple change of variables, the system is
equivalent to a system of particles moving in a box of side length L = N1−κ and
interacting with the unscaled potential v(·). In other words, the limit N → ∞
corresponds to taking a joint infinite number of particles and low density limit:
the particle density equals in the rescaled system ρ = N2−3κ → 0 as N → ∞.

Heuristically, one may think of the ground state energy EN to be equal to
N(N − 1)/2, the number of pairs of N particles, times the ground state energy
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of two bosons. After changing to relative and center of mass coordinates, and a
change of variables to rescale the potential N2−2κv(N1−κ.), we thus expect that
(2)

EN =N1+κ inf
{∫

R3

|∇f |2+
1

2
v|f |2 : lim

|x|→∞
|f(x)| = 1

}
(1+o(1))=4πaN1+κ(1+o(1)),

where a denotes the scattering length of v. Eq. (2) is well-known and has been
proved (for more general systems in the thermodynamic limit) rigorously in [11].

Moreover, extending the arguments from [9, 10] to small values of κ > 0, one
can also show that the unique, positive ground state ψN ∈ L2

s(Λ
N ) of the system

exhibits complete Bose–Einstein condensation (BEC) into the zero momentum
mode ϕ0 ≡ 1|Λ ∈ L2(Λ). Mathematically, this means that

(3) lim
N→∞

〈ϕ0, γ
(1)
N ϕ0〉 = 1

where γ
(1)
N = tr2,...,N |ψN 〉〈ψN | denotes the one-particle reduced density of ψN .

A proof of (3) in the usual thermodynamic limit is a major open problem in
mathematical physics. The goal of [1] is to provide instead a novel proof of (3)
in the simpler scaling regimes (1), extending the methods of [7, 2, 3, 4, 5] (see
[8] for an alternative approach) and providing strong quantitative control on the
expected number of excitations N+, defined by

N+ =
N∑

i=1

(1 − |ϕ0〉〈ϕ0|)xi
,

and on its higher moments N k
+, for k ∈ N. Such strong quantitative control can be

used to determine the excitation spectrum above EN , for sufficiently small values
of κ > 0 (see [1, 6] for the details).

Proving BEC is intimately related to studying the fluctuations of HN around
the leading order contribution 4πaN1+κ to EN , and thus also to the construction
of suitable trial states that model the ground state. In [1], we approximate

ψN ≈ C
∏

1≤i<j≤N

(
1 +

1

N
η(xi − xj)

)
exp

(
1

2

∑

p∈PL

τpb
∗
pb

∗
−p − h.c.

)
ϕ⊗N
0

≈ exp

(
1

2N

∑

r∈PH ,p,q∈PL

ηr a
∗
p+ra

∗
q−rapaq − h.c.

)
exp

(
1

2

∑

p∈PL

τpb
∗
pb

∗
−p − h.c.

)
ϕ⊗N
0

=: U exp

(
1

2

∑

p∈PL

τpb
∗
pb

∗
−p − h.c.

)
ϕ⊗N
0 .

(4)

for suitable coefficients (ηp)p∈2πZ3 (related to the two-body scattering problem)
and (τp)p∈2πZ3 , (determining a quasi-free ground state after correlations have been
removed) so that our key task is to analyze the renormalized Hamiltonian UHNU

∗,
with the unitary map U defined in (4) (using the standard formalism of second
quantization). A careful analysis shows that extracting the two-body correlations
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via U leads, on the level of the Hamiltonian, to the renormalization of the sin-
gular potential N3−3κNκv(N1−κ(·)) with Fourier coefficients Nκv̂(·/N1−κ) to a
regularized potential with Fourier coefficients

Nκv̂(·/N1−κ) → 8πaNκ1P c
H

(·).

Here, PH denotes a suitable set of large momenta; in particular, its complement
P cH is of finite support. Once the renormalization is established with sufficiently
strong control on the errors, standard arguments imply the lower bound

HN ≥ 4πaN1+κ + c

N∑

i=1

(1 − |ϕ0〉〈ϕ0|)xi
−O(N43κ)

for some c > 0, which implies the leading order order contribution to EN as in (2)
as well as complete BEC as in (3) (recalling that κ ∈ (0, 1/43)).

References

[1] A. Adhikari, C. Brennecke, B. Schlein. Bose–Einstein Condensation Beyond the Gross–
Pitaevskii Regime. Ann. Henri Poincaré 22, 1163-1233 (2021).
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Upper bounds for the ground state energy of dilute Bose gases

Serena Cenatiempo

(joint work with G. Basti, A. Giuliani, A. Olgiati, G. Pasqualetti, B. Schlein)

We consider N bosons in the three dimensional torus ΛT = [−T/2, T/2]3, inter-
acting via a two-body non negative, radial and compactly supported potential V
with scattering length a. In the units where the particle mass is set to m = 1/2
and ~ = 1, the Hamilton operator has the form

(1) HT = −
N∑

i=1

∆xi
+

∑

1≤i<j≤N

V (xi − xj)

and acts on the Hilbert space L2
s(Λ

N
T ), the subspace of L2(ΛNT ) consisting of func-

tions which are symmetric with respect to permutations of the N particles. We are
interested in the limit N, T → ∞ with ρ = N/|ΛT | fixed, known as thermodynamic
limit. Let us denote by E(N, T ) the ground state energy of the system described
by (1). Then the specific ground state energy, defined by

(2) e(ρ) = lim
N,T→∞, ρ=N/Td

E(N, T )

T d

admits the following expansions in the dilute limit ρa3 ≪ 1:

(3) e(ρ) = 4πρ2a
[
1 +

128

15
√
π

√
ρa3 + o

(√
ρa3
)]
.

Remarkably (3) depends on the interaction only through the scattering length a.
Indeed the same expansion is expected to hold for a gas of N hard spheres in the
three dimensional torus ΛT , whose ground state energy is defined as

(4) Ehc(N, T ) = inf
〈Ψ,∑N

j=1 −∆xj
Ψ〉

‖Ψ‖2
with the infimum taken over all Ψ ∈ L2(ΛNT ), symmetric with respect to permuta-
tions of the N particles and satisfying the hard-sphere condition Ψ(x1, . . . , xN ) =
0, if there exist i, j ∈ {1, . . . , N}, i 6= j, with |xi − xj | < a.

The expansion (3) has been first predicted in [6, 13] under the assumption that
systems described by (1) exhibit a macroscopic occupation of the zero momentum
mode, a phenomenon known as Bose–Einstein condensation. Even though a proof
of condensation in the thermodynamic limit is still beyond reach of the current
available methods, upper and lower bounds compatible with (3) have been recently
shown for non negative interactions [16, 10, 11, 2] (interestingly the conditions
under which the lower bound can be shown are more general, and include the
hard spheres gas [11], while the upper bound requires V ∈ L3(R3)). In fact, to
make the heuristics from [6, 13] rigorous, it is sufficient to show the occurrence
of condensation on sufficiently large - but finite - length scales L ≪ T . More
precisely it is possible to derive lower (resp. upper) bounds compatible with (3)
starting from the analysis of the problem on finite size boxes ΛL with side length
L = (ρa)−1/2(ρa3)−α with α > 0 (resp. α > 1/2), see e.g. [1].
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Aim of this talk is to describe trial states resolving the asymptotic expansion (3)
at different orders. A pioneering observation due to [5, 7, 12] is that to get an upper
bound for the Hamiltonian (1) (a similar observation holds for (4)), it is enough
to modify the non interacting ground state Ψa=0

N (x1, . . . , xN ) ≡ 1, by adding
correlations produced by two-body scattering events. We consider

(5) ΨN (x1, . . . , xN ) =

N∏

i<j

fℓ(xi − xj)

where a ≪ ℓ≪ T is a parameter that will be fixed later and fℓ is the ground state
solution of the Neumann problem

(6)

(
−∆ +

1

2
V

)
fℓ = λℓfℓ

on the ball |x| ≤ ℓ, and with the normalization fℓ(x) = 1 for |x| = ℓ. States as in
(5) are highly correlated. However for ℓ = ρ−1/3 the computation of their energy
is easy (see e.g. [4]) and one obtains the upper bound e(ρ) ≤ 4πρ2a

(
1+C(ρa3)1/3

)

first derived in [8]. A careful analysis of the cancellations between the expectation
of the energy of ΨN and its norm allows to take into account of correlations among
particles at distances up to ℓ = κ(ρa)−1/2 with κ ≪ 1, this leading to an upper
bound of the form e(ρ) ≤ 4πρ2a

(
1 + C(ρa3)1/2

)
which also holds for hard sphere

bosons [3].
An alternative route to build a trial state matching (3) is to model correlations

among particles via unitary operators acting on the bosonic Fock space

F(ΛT ) =
⊕

n≥0

L2
s(Λ

n
T ) =

⊕

n≥0

L2(ΛT )⊗sn .

On this space, we model a condensate with an expected number of particles N0 via
a coherent state, namely by acting with the operator WN0

= exp[
√
N0a

∗
0−

√
N0a0]

on the vacuum state Ω in F(ΛT ). Then we act on the coherent state with the
unitary operator Tν = exp[B(ν)] with

(7) B(ν) =
∑

p∈(2π/T )Zd

p6=0

(
νpa

∗
pa

∗
−p − ν̄papa−p

)
,

where for p ∈ (2π/T )Zd the operator a∗p is defined by

(
a∗pΨ

)(n)
(x1, . . . , xn) =

1√
n

n∑

j=1

eip·xj

√
|ΛT |

ψ(n−1)(x1, . . . , xj−1, xj+1, . . . xn) ,

and ap is its adjoint. Operators of the form Tν as above model the scattering
from the condensate of pairs of particles with opposite momenta p,−p. In fact one
could interpret a∗pa

∗
−p as obtained by a quartic operator a∗pa

∗
−pa0a0 by replacing

both operators a0 by the constant factor
√
N0 (this substitution, first introduced

in [6] and known as c-number substitution, can in fact be rigorously justified).
Trial states of the form Ψν,N0

= TνWN0
Ω are easy to deal with, being the action

of Tν and WN0
on the operators a∗p, ap explicit. Choosing the correct νp one
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can show that they have to the leading order the correct ground state energy.
However, as shown in [9, 15], they cannot capture the sub-leading correction. To
reach the precision of (3) one needs to further apply the exponential of a cubic
expression in the creation and annihilation operators a∗p and ap, which can be
thought as obtained by applying the c-number substitution to an operator of the
form a∗r+va

∗
−rava0. The main challenge to be overcome is that the action of this

operator is not explicit; moreover it is not possible to expand the exponential
of the cubic operator who is expected to give the correct correction unless we
consider small boxes with side length of the order (ρa)−1/2(ρa3)−α with α <
1/3. In [2] we developed new ideas allowing to perturb the state Ψν,N0

by the
exponential of a cubic operator on the large boxes needed to derive a result valid
in the thermodynamic limit. Compared to [16] our trial state applies to a larger
class of potential and is substantially simpler.
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The Bose gas in a box with Neumann boundary conditions

Chiara Boccato

(joint work with Robert Seiringer)

We consider a gas of N interacting bosons trapped in a box Λ = [−L/2, L/2]3

described through the Hamiltonian

(1) HN = −
N∑

i=1

∆i + κ

N∑

i<j

V (xi − xj)

acting on L2
s(Λ

N ), the space of permutation symmetric wave functions in L2(ΛN ).
We impose Neumann boundary conditions on Λ. The interaction potential V is
nonnegative, spherically symmetric, compactly supported and bounded, and κ is
a positive coupling constant. We call a the scattering length of V , defined through
the two-body problem (written in the relative coordinates)

(2)
[
−∆ +

κ

2
V (x)

]
f0(x) = 0

with the boundary condition that f0(x) → 1, as |x| → ∞ (in (2), ∆ indicates the
Laplacian on R3). The solution f0, outside the support of V , takes the form

(3) f0(x) = 1 − a

|x| ,

where a is the scattering length of κV .
We focus on the dilute Bose gas, where the parameter ρa3 is small (ρ = N/|Λ|

is the density of the gas). We define the ground state energy of (1) as

E(N,L) = inf
ψ∈L2

s(Λ
N ), ‖ψ‖=1

〈ψ,HNψ〉,

and the ground state energy per particle in the thermodynamic limit as

(4) e(ρ) = lim
N,L→∞
ρ=N/|Λ|

E(N,L)

N
.

In the dilute regime the first two terms of the expansion of e(ρ), for small ρa3, are
known:

(5) e(ρ) = 4πρa

[
1 +

128

15
√
π

(ρa3)1/2 + o((ρa3)1/2)

]
.

This is the Lee-Huang-Yang formula, proved in [12, 9, 10, 2]. This expression shows
the universality of the model, because the ground state energy only depends on
the scattering length and no other detail of the interaction is important. Another
relevant regime for the Bose gas is the Gross–Pitaevskii regime, where the box
length L is proportional to the number of particle N , which is a large parameter
(this is also a dilute regime). In this limit, an analogue of the Lee-Huang-Yang
formula and the excitation spectrum of the Hamiltonian have been obtained in [4].
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In the thermodynamic limit, one of the crucial difficulties one has to face is
the absence of an energy gap. A way to address this issue consists in partitioning
the thermodynamic limit volume in cells of side length ℓ and studying a localized
problem in each cell. The length ℓ needs to be chosen as a suitable function of
ρ (which remains fixed in the thermodynamic limit) and large enough to provide
the desired precision in the ground state energy. To obtain a lower bound for e(ρ),
since V is positive, we can neglect interactions between particles in different cells.
Neumann boundary conditions are imposed in each cell, which guarantees that the
Laplacian on Λ is estimated from below by the sum of the Laplacians restricted
to each cell. Adding the lower bounds in the different cells and minimizing over
all the possible ways of distributing the particles in the cells we obtain the lower
bound

(6) E(N,L) ≥ inf
{nk}:

∑
k nk=N

ℓ−2
M3∑

k=1

en,ℓ,

where en,ℓ is the ground state energy of

(7) Hn,ℓ = −
n∑

i=1

∆i + κ

n∑

i<j

ℓ2V
(
ℓ(xi − xj)

)

acting on L2
s(Λ

n
1 ), where Λ1 = [−1/2, 1/2]3, with Neumann boundary conditions

(notice the rescaling of lengths).
We present now results from [6]. The first result deals with the localized problem

described by (7); it is an estimate on the ground state energy of Hn,ℓ and a bound
on the rate of Bose–Einstein condensation in the constant wave function ϕ0 = 1.

Theorem 1. Let V be positive, compactly supported, spherically symmetric and
bounded. Assume that κ > 0 is a fixed, small enough constant independent of all
parameters and nℓ−1 ≤ 1. Then, the ground state energy en,ℓ of Hn,ℓ is such that

(8)
∣∣∣en,ℓ − 4πa

n2

ℓ

∣∣∣ ≤ C
(n
ℓ

+
n2

ℓ2
ln(ℓ)

)

for a constant C > 0 depending only on V and κ.
Furthermore, let ψn ∈ L2

s(Λ
n
1 ) be a normalized wave function, with

〈ψn, Hn,ℓψn〉 ≤ en,ℓ + ζ

for some ζ > 0. Let γ
(1)
n = Tr2,...,n|ψn〉〈ψn| be the one-particle reduced density

matrix associated with ψn. Then there exists a constant C > 0 depending only on
V and κ such that

(9) 1 − 〈ϕ0, γ
(1)
n ϕ0〉 ≤ C

( ζ
n

+
1

ℓ

)

where ϕ0(x) = 1 for all x ∈ Λ1.

From Theorem 1, we can easily deduce an estimate for the ground state energy
of HN in (1) in the thermodynamic limit, as stated in the following corollary.
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Corollary 2. Let V satisfy the same assumptions as in Theorem 1 and κ > 0 be
small enough. Then there exists a constant C > 0 such that e(ρ) satisfies

e(ρ) ≥ 4πaρ
(

1 − C(ρa3)1/2 ln(1/ρ)
)

(10)

for ρ small enough.

If we take n = ℓ, we recover the Gross–Pitaevskii regime. The ground state
energy (8) presents a logarithmic correction in the error term that was not present
in the periodic case, studied in [3, 5]. This is optimal and is intrinsic to the Neu-
mann boundary conditions. The rate in n for Bose–Einstein condensation in (9)
instead coincides with the rate obtained in the periodic case (and it is optimal).
The lower bound (10) is not optimal (as showed in [9] and as we can see from
(5)), but the method to achieve it is new and offers several advantages. Here the
lower bound for e(ρ) simply follows by Neumann bracketing from the study of the
localized problem in the cell, and no further localization procedure is necessary
(while [9] deals with a modified kinetic energy, simulating the Neumann Laplacian
in a periodic boundary conditions setting). The strategy to prove Theorem 1 is
similar to [3, 5]; the lack of translation invariance however makes the description
of correlations much more complicated. We describe correlations through the so-
lution of an analogue of the two-body problem (2). In the Neumann setting, the
two-body problem naturally lives in a six-dimensional space, and there is no decou-
pling in center of mass and relative coordinates. The solution cannot be explicitly
computed, and precise estimates need to be obtained to control the many-body
analysis. Corollary 2 follows from (8) upon the choice ℓ ∼ ρ−1/2. Taking ℓ larger
would lead to a better precision in (10) (the choice ℓ ≃ ρ−1/2−ε leads to (5), as
showed in [9]). This however requires a more precise study of Hn,ℓ with larger n/ℓ.
Such study has been done so far only in the translation invariant setting [1, 8, 7].
The extension to the Neumann case would provide an alternative proof of a lower
bound for the Lee-Huang-Yang formula (5); moreover, obtaining the excitation
spectrum in the cells of side length ρ−1/2−ε with Neumann boundary conditions
would allow to extend the Lee-Huang-Yang formula to positive temperature, im-
proving the leading order results [11, 13].
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Bose–Einstein condensation in 1D noninteracting Bose gases with soft

Poissonian obstacles

Maximilian Pechmann

(Conventional) Bose–Einstein condensation (BEC) is a macroscopic occupation
of a one-particle state and occurs, under certain circumstances, in bosonic par-
ticle systems. In the case of noninteracting Bose gases (bosonic particle systems
without interparticle interaction), a necessary but not sufficient requirement for
the occurrence of BEC is the presence of generalized Bose–Einstein condensation
(g-BEC). This broader definition only requires a macroscopic occupation of an
arbitrarily small energy band of one-particle states [1, 2, 3, 4, 11]. Depending
on the quantity of macroscopically occupied one-particle states in the condensate
one then distinguishes three types: Type-I g-BEC is said to occur if the number
of macroscopically occupied one-particle states is finite but at least one. If there
are infinitely many macroscopically occupied one-particle states, the condensation
is said to be of type II. Lastly, a generalized condensate in which none of the
one-particle states are macroscopically occupied is called a type-III g-BEC. Show-
ing the occurrence of g-BEC is easier than the occurrence of BEC and involves
verifying that a certain critical density is finite as a main step. Proving BEC
or, similarly, determining the type of g-BEC, however, seems to require fairly ac-
curate knowledge about the gaps between the eigenvalues of the corresponding
one-particle (random) Schrödinger operator at the bottom of the spectrum [2, 9],
which is often difficult to obtain. Note that the definition of type-I g-BEC is more
restrictive than our definition of BEC.

Random potentials are known to be able to trigger and enhance the occurrence
of g-BEC in noninteracting Bose gases, see, for example, [11] and [8, Appendix A].
Thus, the study of Bose gases in such potentials is of great interest. This holds
especially true for Poisson random potentials as they are commonly used to model
systems with structural disorder. Although it is believed that repulsive interac-
tions between the particles eventually need to be taken into account, exploring
noninteracting Bose gases with respect to BEC is nevertheless an important first
step and of independent interest [11].
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The Kac–Luttinger conjecture presumes that g-BEC in noninteracting Bose
gases in Poisson random potentials that have compactly supported, nonnegative
measurable functions as their single-site potentials is generally of type I or II, that
is, BEC occurs [6, 7, 12]. To the best of our knowledge, however, the type of g-
BEC in random potentials at positive temperatures has previously been rigorously
determined only for one-dimensional Poisson random potentials whose single-site
potentials consist of the Dirac delta function δ. The Luttinger–Sy model [14, 15]
has a Poisson random potential on R with, informally, a single-site potential of
the form γδ where γ = ∞, that is, one has Dirichlet boundary conditions at all
atoms of each realization of the Poisson random measure. This model is easier
to explore, because the singularity of this random potential eliminates quantum
tunneling effects [5, p. 3]. It has been proved that in this Luttinger–Sy model
a type-I g-BEC, where only the ground state of the corresponding one-particle
random Schrödinger operator is macroscopically occupied, occurs in probability
and in the rth mean, r ≥ 1, in [9], and in a slightly different setting P-almost surely
[12], if and only if the particle density is larger than a critical density. In addition,
it has been shown that in the Luttinger–Sy model with finite interaction strength,
that is, in the case of a Poisson random potential on R with, informally, a single-
site potential of the form γδ with γ > 0, a type-I g-BEC occurs with probability
arbitrarily close to one for particle densities larger than a critical density as long as
one allows sufficiently many one-particle states to be macroscopically occupied [8].
Despite their singularities, Poisson random potentials on R with such single-site
potentials, and in particular the infinite potential strength of the Luttinger–Sy
model, are believed to be good approximations with respect to the occurrence of
BEC for noninteracting Bose gases in more realistic Poisson random potentials
on R, such as ones that have nonnegative, bounded functions as their single-site
potentials [10, p. 14], [12, p. 8].

In the work [16], we explore this last statement, that is, we study one-dimension-
al noninteracting Bose gases in Poisson random potentials on R with soft obstacles,
that is, with single-site potentials that are nonnegative, compactly supported, and
bounded measurable functions with respect to the occurrence of BEC in the ther-
modynamic limit and in the grand-canonical ensemble at positive temperatures.
For this model, we confirm the Kac–Luttinger conjecture in the following sense.
Under the assumption that the particle density is larger than a finite critical den-
sity, we prove: A type-I g-BEC in which only the ground state is macroscopically
occupied occurs with a probability arbitrarily close to one if the random potential
has a, in a certain sense, sufficiently large strength. The probability for this kind
of condensation converges to one and, consequently, such a type-I g-BEC occurs
in probability and in the rth mean, r ≥ 1, if the strength of the Poisson random
potential converges in a certain sense but arbitrarily slowly to infinity in the ther-
modynamic limit. One also obtains a probability arbitrarily close to one for the
occurrence of type-I g-BEC in the case of a Poisson random potential of any fixed
strength. However, our upper bound for the number of macroscopically occupied
one-particle states depends on the strength of the random potential and thus may
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be a large (yet finite) number in this case. As a side note we mention that the
same results hold true for the Luttinger–Sy model with finite interaction strength,
and we thus confirm and extend the results in [8] while using a different, more
direct method.

Lastly, the Kac–Luttinger conjecture in the sense of a type-I g-BEC occurrence
in probability has now also been confirmed in the case of hard Poissonian obstacles
in dimensions d ≥ 2, in the very recent work [17]. We would also like to mention
that in any dimensions the physical intuition favors the occurrence of type-I g-BEC
in probability in the case of soft Poissonian obstacles as well [11, 12]. It is because
particles in the condensate should have an energy of almost zero. Consequently, a
finitely tall hill (soft obstacles) should appear as infinitely tall (as hard obstacles)
for these particle. This open problem remains to be proven.
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Spectral Estimates for Infinite Quantum Graphs

Noema Nicolussi

(joint work with A. Kostenko)

An infinite metric graph G is obtained from a locally finite combinatorial graph
Gd = (V , E) by identifying its edges e ∈ E with intervals of certain lengths ℓ(e) > 0,
e ∈ E . Schrödinger operators on metric graphs are often called quantum graphs or
quantum graph operators. The Kirchhoff Laplacian H provides the analog of the
Laplace–Beltrami operator in this setting. It is an unbounded, self-adjoint and
non-negative operator in the L2-space L2(G) of the infinite metric graph G. A
natural question is to find spectral estimates, that is, estimates for the infimum of
the spectrum

λ0(H) = inf{λ|λ ∈ σ(H)}
in terms of geometric data of the metric graph G. In the following, we discuss
estimates in terms of isoperimetric constants, which were recently proved in [4].

The use of isoperimetric constants for spectral estimates has a long tradition
and applies to several geometric settings. Such estimates were first obtained for
manifolds by Cheeger [2] and Buser [1]. A Cheeger estimate for finite metric graphs
(i.e. finitely many vertices and edges) was proved in [5]. For infinite combinatorial
graphs Gd = (V , E), a definition of isoperimetric constant αcomb(Gd) and Cheeger
estimate for the discrete graph Laplacian were established in [3].

In [4], the isoperimetric constant of an infinite metric graph G was defined as

α(G) := inf
G̃

area(∂G̃)

Vol(G̃)
,

where the infimum is taken over all finite, connected subgraphs G̃ = (Ṽ , Ẽ) of G.

Moreover, vol(G̃) is the Lebesgue volume of G̃ ⊂ G, ∂G̃ ⊂ V is the topological

boundary, and area(∂G̃) :=
∑

v∈∂G̃ #{e ∈ Ẽ|e is adjacent to v}. The following

estimates can be viewed as the analogs of the results in [1, 2].

Theorem 1 ([4]). Let G be an infinite metric graph. Then

(1)
1

4
α(G)2 ≤ λ0(H) ≤ π2

2

α(G)

infe∈E ℓ(e)
.

The main discovery is the combinatorial structure of the isoperimetric constant
α(G), which is defined by taking the infimum over subgraphs. It allows to investi-
gate α(G) by methods from discrete geometry and combinatorics, see [4]. Moreover,
this combinatorial structure does not appear in the isoperimetric constant of finite
metric graphs [5].

In particular, one may establish connections between α(G) and the isoperimet-
ric constant αcomb(Gd) of the underlying combinatorial graph Gd = (V , E) of G.
Among others, this leads to the following result.

Corollary 1 ([4]). Let G be an infinite metric graph. If αcomb(Gd) > 0, then the
following equivalences hold.
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• λ0(H) > 0 if and only if supe∈E ℓ(e) <∞.
• The spectrum of H is purely discrete if and only if for every ε > 0, there
are only finitely many edges with ℓ(e) ≥ ε.

On the other hand, if αcomb(Gd) = 0 and infe∈E ℓ(e) > 0, then λ0(H) = 0.

The isoperimetric constant αcomb(Gd) is a central object in spectral graph theory
and the study of random walks. In particular, the positivity of αcomb(Gd) has
been studied for several classes of graphs. E.g., for a Cayley graph Gd of a finitely
generated group Γ, αcomb(Gd) = 0 exactly when Γ is amenable. From this point
of view, the above result connects the investigation of λ0(H) to a well-studied
problem in discrete geometry.
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A Discovery Tour in Random Riemannian Geometry

Lorenzo Dello Schiavo

(joint work with Eva Kopfer and Karl-Theodor Sturm)

Let (M, g) be a (connected, smooth) n-dimensional Riemannian manifold of
bounded geometry, and denote by ∆g its Laplace–Beltrami operator. The Frac-
tional Gaussian Field h := hs,m on M with regularity parameter s ∈ R and mass
parameter m > 0 is the centered Gaussian field of distributions on M with corre-
lation

Cov
[
〈h | φ〉, 〈h | ψ〉

]
=
〈
(m2 − 1

2∆g)
−1φ

∣∣ψ
〉

for every pair of test functions φ, ψ on M .
When M is additionally compact, the same construction makes sense also in the

massless case m = 0, in which case h is only defined up to additive constants. The
same construction of massless Fractional Gaussian Fields is in fact possible also
when M = Rd is a standard Euclidean space, in which case the whole family of
such fields (parametrized by s and n) is well studied, see the survey [3]. It includes,
e.g.: white noise, fractional Brownian motions, Gaussian Free Fields, log-correlated
Gaussian fields, the membrane model, the odometer for the sandpile model, and
a variety of other interesting objects.



3084 Oberwolfach Report 53/2022

For s > 0, the above covariance operator is an integral operator, represented
by the fractional massive Green kernel

Gs,m(x, y) :=
1

Γ(s)

∫ ∞

0

e−m
2tts−1 pt(x, y) dt

defined via the standard heat kernel pt of M . The regularity properties of the
kernel Gs,m play a key role in establishing regularity properties of the fields h• via
Kolmogorov–Chentsov estimates and the noise distance of the fields

ρs,m(x, y) := E
[
|h•(x) − h•(y)|2

]1/2

=
[
Gs,m(x, x) +Gs,m(y, y) − 2Gs,m(x, y)

]1/2
.

As it turns out, for s > n/2 the random field h• : ω 7→ hω is in fact a random
continuous function on M , and we study the random perturbation g• : ω 7→ gω :=
e2h

ω

g of the reference metric g by a conformal factor h•. When n = 2, the critical
case s = n/2 —here beyond our scope— corresponds to the celebrated Liouville
Quantum Gravity, addressed in [2] for even n ≥ 2.

In [1] we rather study how basic objects related to the random Riemannian
manifold (M, g•) change under the influence of the noise. These include:

• geometric quantities, e.g.: intrinsic distance, diameter, volume;
• functional-analytic quantities, e.g.: spectral bound (in the case of non-

compact M), or spectral gap (in the case of closed M);
• probabilistic objects, e.g.: heat kernels, Brownian motions and their

Dirichlet forms.

We show how to quantify these dependencies in terms of key parameters of the
noise and discuss explicit examples on spheres, tori, and hyperbolic spaces.

Funding: Research supported by: Austrian Science Fund (FWF) grants F65; Eu-
ropean Research Council (ERC) grants 716117 and 694405; Deutsche Forschungs-
gemeinschaft through the project ‘Random Riemannian Geometry’ within the SPP
2265 ‘Random Geometric Systems’.
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Mathematics of magic angles

Simon Becker

(joint work with Mark Embree, Tristan Humbert, Jens Wittsten,
and Maciej Zworski)

Magic angles are a hot topic in condensed matter physics: when two sheets of
graphene are twisted by those angles the resulting material is superconducting,
see Fig. 1.

Figure 1. Left: Moiré pattern for twisting angle θ = 5◦.
Right: One moiré fundamental cell, with (A=red, B=blue) and
(A’=green, B’=black) indicating vertices of single honeycomb lat-
tices of graphene, respectively.

The mathematics is described by a matrix-valued Dirac-type operator

H =

(
0 D(α)∗

D(α) 0

)
with D(α) =

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)

whose spectral properties are thought to determine which angles are magical. It
comes from a 2019 PR Letter by Tarnopolsky–Kruchkov–Vishwanath [4]. The
parameter α is inversely proportional to the twisting angle of the lattices. The
potential U is the tunnelling potential of the electron hopping from the upper to
the lower layer satisfying basic honeycomb symmetries

U(z + a) = ω̄a1+a2U(z) and U(ωz) = ωU(z) where

ω = e2πi/3 and a = a1ζ1 + a2ζ2 with ζj =
4πiωj

3
.

The mathematics behind this is an elementary blend of representation theory (of
the Heisenberg group in characteristic three), Jacobi theta functions and spectral
instability of non-self-adjoint operators (involving Hörmander’s bracket condition
in a very simple setting), see [1].

The Hamiltonian H is periodic with respect to the lattice Λ = 3ζ1Z + 3ζ2Z.
Thus, by applying the Bloch-Floquet transform, we study

Hk =

(
0 D(α)∗ + k

D(α) + k 0

)
: H1(C/Λ) → L2(C/Λ).
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Figure 2. Magic parameters α

A magic angle α is then characterized by the flat-band condition

α is magic ⇔ 0 ∈
⋂

k∈C

Spec(Hk) ⇐ 1/α ∈ Spec(Tk)

where Tk = (2Dz̄ − k)−1

(
0 U(z)

U(−z) 0

)
for any/some k ∈ C \ Λ∗.

Recent mathematical progress includes the proof of existence of generalized
magic angles and computer assisted proofs of existence of real ones [5] and ana-
lytical progress on the existence and distribution of magic angles [2, 3], see Fig. 2.
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Spectral gaps on domains in hyperbolic space, and on metric trees

Julie Clutterbuck

(joint work with Theodora Bourni, Xuan Hien Nguyen, Alina Stancu,
Guofang Wei, Valentina-Mira Wheeler, Mitchell Wolswinkel, Huateng Zhu)

We consider the Dirichlet eigenvalue problem: On a bounded domain Ω ⊆Mn,

−∆u+ V u = λu in Ω

u = 0 on ∂Ω.

Here V ≥ 0 is a convex potential. The eigenvalues are

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

The spectral gap is Γ(Ω, V ) = λ2 − λ1. Here we are concerned with finding lower
bounds on the gap, and the corresponding optimal domains and potentials.

Theorem 1. For bounded convex domains in Rn of diameter D,

Γ(Ω, V ) ≥ Γ(ID, 0)

where ID is the interval of length D.

This was independently conjectured by several people [3, 15, 16]. It was proved
by Lavine for n = 1, and by Andrews–Clutterbuck for n > 1 [1, 10].

Naturally one is curious about domains in manifolds. In the case of the sphere,
this was resolved by Dai, He, Seto, Wang, Wei, and Zhang (in various subsets)
[8, 9, 13]:

Theorem 2. For a convex Ω ⊆ Sn with D = diameter(Ω),

Γ(Ω, 0) ≥ 3π2/D2.

However in the corresponding case in hyperbolic space (ie constant negative
curvature) we find that the spectral gap can be arbitrarily small:

Theorem 3 (Bourni–Clutterbuck–Nguyen–Stancu–Wei–Wheeler [5, 6]). For all
D > 0, and ǫ > 0, there exists a convex domain Ω ⊂ Hn with diameter D and

λ2 − λ1 ≤ ǫ

D2
.

Some comments on this result follow. In both Rn and Sn, the first Dirichlet
eigenfunction on convex domains is log-concave. A function f is log-concave if
log f is concave. Log-concavity implies that the curvature of the level sets of f is
positive, and so implies the convexity of the super-level sets of f . It is a result of
Brascamp-Lieb [7] that for convex domains in Rn, the first eigenfunction is log-
concave; the analogous result for domains in Sn was used by Dai et al in their
work on the spectral gap. Log-concavity is crucial to the spectral gap results in
Rn and Sn.
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However Shih [14] has an example of a convex domain in H2 where u1 is not
log-concave. In the upper half space model for H2, we can use separation of
variables

u(r, θ) = f(r)h(θ).

If −∆u = λu, then

r2frr + rfr = −µf r ∈ (1, R)

hθθ + λ(csc θ)2h = µh θ ∈ (θ0, θ1)

with Dirichlet boundary conditions. Here µ couples the two equations together
and has a discrete set of possible values.

In the upper half-space model, geodesics are vertical lines and half-circles cen-
tred on y = 0, so this is convex. Shih very carefully estimated the first eigen-
function, and was able to show that, if one chooses the proportions of the domain
carefully, then there is a point where D2 log u1 > 0.

We used a similar construction to show that for this kind of domain, the ground
state can have two distinct maxima. Not only are the superlevel sets of u not
convex— they are not even connected. The two sides of the domain can be sepa-
rated by a region of very small area which allows the first eigenfunction u1 and the
second eigenfunction u2 to be very close in absolute value, although u2 changes
sign. This implies that λ1 and λ2 are very close, and so the spectral gap is small.

In subsequent work, members of our team showed that even using stronger
notions of convexity is not enough to permit a lower bound of the kind found in
Rn or Sn:

Theorem 4 (Nguyen–Stancu–Wei [11]). For any geodesic ball B ⊂ Hn

Γ(B, 0) ≤ C(n)

D2
.

Moreover, for any horoconvex domain Ω ⊂ Hn with diameter D sufficiently large,

Γ(Ω, 0) ≤ C(n)

D2
.

Spectral gap for the Schrödinger operator on metric trees. Motivated by
the previous results, we consider tree graphs as having an (appropriately defined)
negative curvature, and study the spectral gap (in a forthcoming paper). There has
been extensive work on this problem in recent years: see the survey by Berkolaiko
and Kuchment [4], and for trees specifically, Rohleder [12] among others.

For a tree graph G we consider the eigenvalue problem

−f ′′
i + V fi = λifi on edges

f(vj) = 0 at each vertex vj of degree 1
∑

k

fνk(vj) = 0 at each vertex vj of degree 2 or more,

where we take the sum over edges ek incident to vj , and subscript νk denotes the
derivative along a path along edge ek concluding at the vertex vj .



A Geometric Fairytale full of Spectral Gaps and Random Fruit 3089

We consider potentials V that are edgewise convex, in the sense that along any
path in G, V is convex. This is a quite restrictive condition. For such graphs we
are able to show that the minimiser of the spectral gap must be edgewise affine
(that is, affine along each edge, and continuous across vertices).

Theorem 5 (Clutterbuck–Wolswinkel–Zhu). Let G be a tree graph. For every
edgewise convex potential V , there is a convex, edgewise affine function LV such
that

Γ(G, V ) ≥ Γ(G, LV ).

The methods here are those of [2, 10] for intervals, extended to graphs.
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