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Introduction by the Organizers

The workshop “Topological and differential expansions of o-minimal structures”
was organised by:
Paola D’Aquino, Professor, Università della Campania, Italy,
Pantelis Eleftheriou, EPSRC Early Career Fellow, University of Leeds, UK,
Omar León Sánchez, Senior Lecturer, University of Manchester, UK,
Françoise Point, Professor, Université de Mons, Belgium.

We had 16 participants, all of them experts in model theory and its applica-
tions to other areas of mathematics. Within the participants, we had 3 experts
in complex exponentiation, 3 experts in the model theory of differential fields, 3
experts in expansions of topological fields by operators, 4 experts in tame expan-
sions of o-minimal structures, and 3 experts in geometric fields and neostability
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theory. Participants presented their recent research work during the scheduled
morning and afternoon talks. The time after lunch and dinner permitted lively
discussions where collaborations were initiated and/or further developed. There
were 14 talks, including three survey talks, one on complex exponentiation and
Zilber’s quasi-minimality conjecture, one on strongly minimal sets in differentially
closed fields with an eye for applications to diophantine geometry, and one on a
classification project on expansions of an o-minimal dense linear order that do not
define all bounded projective sets, up to various notions of tameness.

The overarching theme of the workshop was model-theoretic tame geometry, a
new and exciting branch of mathematical logic with far reaching applications both
in mathematics and in other areas. It has become one of the most active fields of
research in model theory, and an almost indispensable tool for the study of many
problems in algebra, real and complex geometry, number theory and analysis.

One of the (more specialised) focus was that of structures with NIP (not the
independence property). This subject has had enormous growth in recent years.
On the one hand, these structures include the two most established and extreme
cases of model theoretic study, stable and o-minimal structures, and, on the other
hand, they have found surprising applications to areas such as combinatorics and
machine learning. Some of the presentations discussed how NIP structures can be
obtained and how, in certain cases, NIP can be transferred to tame expansions.
In other talks, descriptions of definable groups in NIP contexts were presented;
this was quite interesting as such a sharp description is unavailable in general NIP
theories (in contrast to the stable and o-minimal settings).

A second focus was the model-theoretic study of (topological) fields with a
generic derivation. In particular, the model theory of closed ordered differential
fields (CODF) was a recurrent topic, or rather prototype, in several discussions.
Results vastly generalising what is known for CODF were a common theme in
interconnected talks, some on differential expansions of topological fields of char-
acteristic 0 with an open theory, respectively smooth theory and some differentially
large fields (considering also the characteristic p case). On the other hand, there
were several expositions of fields equipped with additional structure (of a topolog-
ical flavour, say a valuation in a Hardy field) where there is a strong interaction
between the derivation and the given structure.

The third focus was on fields with exponentiation, and in particular, on Zilber’s
program on a model theoretic analysis of (C, exp) the complex exponential field
(still to be fully understood), in connection with the quasi-minimality conjecture
for (C, exp). Zilber identified a possible axiomatization of (C, exp) where a crucial
role is played by Schanuel’s conjecture in transcendental number theory. Modulo
Schanuel’s conjecture the strong exponential-algebraic closure axiom is the only
axiom still unknown to be true in (C, exp). This requires that certain algebraic
complex varieties intersect the graph of exponentiation in generic points. Modulo
Schanuel’s conjecture many special cases of this axiom have been established in
the last years by several authors. Recent results on the exponential closure for
complex algebraic varieties corresponding to systems of exponential sum equations
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were reported. The proofs of these results use diophantine geometry, and in the
latest results also tropical geometry arguments have been used.





Topological and Differential Expansions of o-minimal Structures 3009

Mini-Workshop: Topological and Differential Expansions of o-
minimal Structures

Table of Contents

Philipp Hieronymi
Tameness beyond o-minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3011

Pantelis E. Eleftheriou (joint with Aris Papadopoulos)
An unbounded version of Zarankiewicz’s problem . . . . . . . . . . . . . . . . . . . . . 3014

Françoise Point
Definable groups in tame theories of differential topological fields . . . . . . 3017

Antongiulio Fornasiero
Generic derivations on topological fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3020

Alexander Berenstein (joint with Christian d’Elbée and Evgueni Vassiliev)
Vector spaces with a dense-codense generic module . . . . . . . . . . . . . . . . . . . 3021

Alexi Block Gorman (joint with Jason Bell)
Expansions by r-regular sets of reals: the real additive group versus the
real field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3023

Elliot Kaplan (joint with Nigel Pynn-Coates)
Monotone T -convex T -differential fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3024

James Freitag
Forking degree and the Borovik-Cherlin conjecture . . . . . . . . . . . . . . . . . . . . 3028

Omar León Sánchez
Some well behaved classes of differential fields . . . . . . . . . . . . . . . . . . . . . . . 3030
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Domination in hesenlian valued fields of equicharacteristic zero . . . . . . . . 3044





Topological and Differential Expansions of o-minimal Structures 3011

Abstracts

Tameness beyond o-minimality

Philipp Hieronymi

At the heart of model theory lies the observation there are certain objects that
have to be considered tame, and others that have to be considered wild. Many
foundational results in logic concerned the existence of objects considered wild.
Gödel’s proof of the undecidability of the theory of (N,+, ⋅) established that this
structure is wild from a logical viewpoint. Such results are negative in spirit point-
ing to the limitations of mathematical reasoning. However, model theorists also
found a vast number of mathematical structures that exhibit no such wildness,
and for often very different reasons are tame. General frameworks for such tame
structures have been developed and their properties have been studied extensively.
This program of identifying and analyzing tame classes of structures whose model
theory can be understood, became to be known as the geography of tame mathe-
matics, and in its various forms has dominated model theory throughout the last
sixty years.

Here we discuss this program in the context of expansions of the real field. Al-
though it is similar in spirit to Shelah’s classification theory, the aim here is to
classify structures over a fixed universe in terms of geometric properties of their
definable sets rather than theories in terms of their combinatorial properties or
numbers of models. While classification theory is motivated by Morley’s theorem,
our tame program here originated in the tremendous success of o-minimality.

Let R denote the real field (R,+, ⋅), and consider a collection X of subsets of

various Rn. We are studying the expansion of R by predicates for each X ∈ X ,
that is (R, (X)X∈X ). We say two expansions R1 and R2 are interdefinable if
they define the same sets with parameters.

Näıve Goal. Classify expansions of R up to interdefinability.

As Miller put it, the Näıve Goal is “too vague at best and intractable at worst.”
So instead of classifying expansions up to interdefinability, we aim to sort such
expansions in classes according to the geometric tameness of their definable sets.
We focus on geometric tameness of the definable sets rather than model-theoretic
tameness of the structure and its theory. Thus is a rather a definability-theoretic
enterprise than a model-theoretic one.

Fix an expansion R of R. When we say a set is definable, we mean definable
in R possibly with parameters. The core tameness notion that gave rise to this
systematic study of tameness in expansions of R is o-minimality. We say R is o-
minimal if every definable subset of R either has interior or is finite. O-minimality
was isolated by van den Dries in order to prove important results from semi-
algebraic geometry in this generality, and developed by Pillay and Steinhorn as
a tameness notion in the setting of dense linear orders. Among the many results
that transfer from the semi-algebraic geometry are the monotonicity theorem for
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definable functions and the cell decomposition theorem. It is not our goal to
discuss o-minimal structures, rather we focus on surveying the larger framework
of geometric tameness on R. For that, we note that o-minimality implies model-
theoretic tameness; something that fails for all other tameness notions considered
here. By the cell decomposition theorem, if a structure is o-minimal, then every
elementarily equivalent structure is also o-minimal. Furthermore, an o-minimal
structure is NIP, even dp-minimal, and distal. In model-theoretic universe, o-
minimality plays a similar role in the ordered setting as strong minimality in the
stable setting.

The tameness conditions we consider are of the following form: every definable
subset of R has interior or is small. In the case of o-minimality small means
finite. A subset of R is finite if and only it is closed, bounded and discrete. Thus
the most obvious first step towards weaker notions of smallness, is to drop one of
the three conditions, say boundedness. We say R is weakly d-minimal if every
definable subset of R either has interior or is finite union of discrete sets. We say
R is d-minimal if for every m ∈ N and every definable subset A ⊆ Rn+1 there is
N ∈ N such that for all x ∈ Rm either Ax has interior or is the union of N discrete
sets. In the case of weak d-minimality, being small means being the finite union of
discrete sets. It is an easy exercise to see that if small is defined as discrete, then R
is actually o-minimal. It is an open question whether weak d-minimality implies
d-minimalilty1. As pointed out in [10], it follows from van den Dries [2] that

(R,2Z) is d-minimal, and this is the typical example of a d-minimal structure.
In contrast to o-minimality, d-minimality only implies geometric tameness, but
not model-theoretic tameness. Let (R,2Z)# be the expansion of (R,2Z) by every
subset of every cartesian power of 2Z. By Friedman and Miller [7], the expansion

(R,2Z)# is d-minimal, yet defines an isomorphic copy of (Z,+, ⋅). Thus its theory
is undecidable, and it fails Shelah-style combinatorial tameness conditions like NIP
and NTP2.

Of course, we can further increase the class of sets we want to consider small. We
say R is noiseless if every definable subset of R either has interior or is nowhere
dense. As a tameness condition, this noiselessness is first studied in [10], although
the name noiseless was only suggested later by Miller2. It is not easy to see that
there are expansions of R that are noiseless, but not d-minimal. A good example
of a set without interior that is not a finite union of discrete sets, is a Cantor

set3. Friedman et al. [6] produce a Cantor set K such that every definable subset

of R either has interior or is Hausdorff null. Hence (R,K) is noiseless.

1When Miller introduced d-minimality in [10], he expected this not to be case.
2The rationale behind the name is that the condition is equivalent to the statement that R

does not define a set X such that X ∩ I is dense and co-dense in an interval I ⊆ R. More inline
with the aforementioned conditions, Fornasiero [3] used the term i-minimal (for interior-minimal)
instead.

3A Cantor set is a compact, nonempty subset of R that has neither isolated nor interior points.
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So what about wildness? Consider (R,Z). Not only is its theory undecidable by
Gödel, it defines every Borel subset, and hence every projective subset of Rn. Thus
geometrically wild phenomena like space-filling curves and nowhere differentiable
continuous functions appear in this structure. The question whether every set
definable in (R,Z) is Lebesgue measurable, is independent of ZFC. Because of
such complications, the nondefinability of Z is clearly necessary for an expansion
of R to be considered tame. Miller has championed a research program determining
whether this nondefinability is also sufficient to enforce some form of well-defined
tameness in such expansions. This is an ambitious program as it is far from obvious
that any geometric pathologies can be ruled out. The most ambitions conjecture
is that the open core4 of such a structure is noiseless. Substantial progress has
been made towards this conjecture in [3,4,8], in particular regarding the antifractal
nature of closed sets in such structures. This can not be detailed here, but these
results provide evidence for the viability of the following program:

Miller’s tameness program. Can we classify expansions of R that do not define
Z, up to some common notion of tameness?

Progress in this program will surely also give new insights about the precise nature
of o-minimality. We focus here on expansions of R, but similar questions make
perfect sense and produce similar answers for expansions of (R,<,+) (see [5, 9]).
There is also a much older (predating o-minimality by multiple decades) similar
program on studying expansions of (N,+), see Bès [1] for an excellent survey.
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An unbounded version of Zarankiewicz’s problem

Pantelis E. Eleftheriou

(joint work with Aris Papadopoulos)

Basit-Chernikov-Tao-Starchenko-Tran [1] proved, among others, a linear version of
Zarankiewicz’s problem, Theorem 2 below. Let us first fix some notation/termino-
logy. We letM = ⟨M, . . . ⟩ be a structure and E ⊆Md1×⋅ ⋅ ⋅×Mdr an r-ary relation.
By a grid, we mean a set of the form B = B1 × ⋅ ⋅ ⋅ ×Br, where each Bi ⊆Mdi. If B
is finite, we write nB =max ∣Bi∣. So ∣B∣ ≤ nr

B. We are interested in classes of grids
whose intersections with E have better asymptotic bounds than nr

B.

Definition 1. Let C be a class of finite grids.We say that E has linear Zarankiewicz
bounds (Z-bounds) for C if there is α ∈ R>0, such that for every B ∈ C,

∣E ∩B∣ ≤ αnr−1
B .

(The terminology is motivated by the fact that if E is the edge relation of a graph
on B (so r = 2), these bounds are indeed linear.)

Let us call E k-free, where k ∈ N, if E contains no complete k-grid B; that is,
a grid B with all ∣Bi∣ = k. (If we saw E as the edge relation of a hypergraph on
Md1 × ⋅ ⋅ ⋅ ×Mdr , then ‘k-free’ is what is known in the literature as ‘Kk,...,k-free’.)

Theorem 2 ([1]). Let M = ⟨M,<, . . . ⟩ be an o-minimal structure. Then the
following are equivalent:

(1) For every definable relation E, if E is k-free for some k ∈ N, then E has
linear Z-bounds.

(2) M does not define an infinite field (equivalently, M is ‘linear’.)

In work in progress, we extend this theorem so that (2) weakens to having no
definable field on the whole of M , as follows. Let us first give a definition.

Definition 3. Let M = ⟨M,<,+, . . . ,0⟩ be an o-minimal expansion of an ordered
group, and m ∈M>0. We call a grid B ⊆Md1 × ⋅ ⋅ ⋅ ×Mdr m-distant, if for every i
and x, y ∈ Bi, ∣x − y∣ <m. (Here, ∣x − y∣ denotes the distance ∑di

j=1 ∣xj − yj ∣.)

Theorem 4 ([5]). Let M = ⟨M,<,+, . . . ,0⟩ be an o-minimal structure. Then the
following are equivalent:

(1) For every definable relation E, there is m ∈M>0, such that if E is k-free
for some k ∈ N, then E has linear Z-bounds for the class of all m-distant
finite grids.

(2) M does not define an unbounded field (equivalently, there is no definable
field on M ; equivalently, M is ‘semibounded’.)

Examples of o-minimal semibounded structures include any o-minimal expan-
sion of the real ordered group by bounded sets, such as the restriction of multipli-
cation, analytic functions, or exponential, to bounded domains.

Remark 5. More can be said:
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● E does not have to be k-free, but only free of m-distant complete k-grids.
● In case M is sufficiently saturated, the phrase ‘there is m’ can be placed
before E; that is, the same m works for all E.

In the rest of this document we sketch the proof of Theorem 4(2)⇒(1), for M
semibounded nonlinear (if linear, then any m ∈ M>0 would yield the result, by
Theorem 2).

This is done in three steps. Before describing them, let us note that Theorem 2
was proved in [1] by exploiting the fact that acl in M is weakly locally modular if
and only if M is linear ([2]). In Step I, we extract from [1] an abstract version of
Zarankiewicz’s problem for a sufficiently saturated structureM, a closure operator
cl and a class of finite grids C satisfying certain conditions (Theorem 6 below). In
Step II, we apply this abstract version to a semibounded o-minimal structure, the
short closure operator scl from [4] and the class C of all tall finite grids. This
proves Theorem 4 for a sufficiently saturated M. In Step III, we deduce Theorem
4 for any M, by moving to a saturated elementary extension, and applying a trick
for replacing sufficiently distant grids by tall grids.

STEP I: We extract from [1] the following theorem:

Theorem 6. Let M be a sufficiently saturated structure, cl ∶ P(M) → P(M)
a pregeometric closure operator whose induced independence relation ∣⌣ satisfies
extension and non-degeneracy, and C a class of finite grids. Denote by cl-dim(X)
the corresponding dimension of definable sets. Assume the following conditions:

(C1) (Weak Local Modularity). For all small sets A,B ⊆ M (that is,
smaller than saturation cardinality of M), there is some small C ⊆ M
such that:

C ∣⌣
∅

AB and A ∣⌣
cl(AC)∩clBC

B.

(C2) (cl-Definability). Let a, b ∈ M . If a ∈ cl(Ab), then there is an A-
definable set X that contains (a, b), such that for every (a′, b′) ∈ X, we
have a′ ∈ cl(Ab′).

(C3) (C-Uniform Bounds) Let {Xb}b∈I be a definable family of sets in M r.
Then there is N ∈ N such that for every b ∈ I and every Y ∈ C, if
cl-dim(Xb) = 0 and Y ⊆Xb, then ∣Y ∣ ≤N .

Then: for every definable relation E, if E is k-free for some k ∈ N, then E has
linear Z-bounds for C.

For M linear, cl = acl and C the class of all finite grids, the above theorem gives
Theorem 2.

STEP II: Here we verify the conditions of Theorem 6 in the semibounded setting.
Let us recall some notions from semibounded geometry ([4, 6]). Let
M = ⟨M,<,+, . . . ,0⟩ be an o-minimal semibounded structure which is not lin-
ear. Then there is an interval R ⊆M , such that M defines a field with domain R.
For A ⊆M , we denote

scl(A) = dcl(AR).
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Call an interval I short if I is in definable bijection with R. Call a definable set
X ⊆Mn short if it is in definable bijection with a subset of Rn. It is proved in [4]
that a definable set is short if and only if scl-dim(X) = 0. Call an element a ∈M
short if (0, ∣a∣) is short, and tall otherwise.

We define here a grid B to be tall if it is m-distant for some tall m.

Theorem 7. Conditions (C1) – (C3) hold for M semibounded nonlinear, cl = scl
and C the class of all tall finite grids. Hence, for m tall, Theorem 4 holds.

Proof. (C1) We prove that dcl(−R) = dcllin(−dcl(R)), where dcllin is the definable
closure operator in the reduct Mlin = ⟨M,<,+,0,{λ}λ∈Λ⟩, where Λ is the set of all
partial ∅-definable (in M) endomorphisms of ⟨M,<,+,0⟩. Since dcllin is weakly
locally modular, so is dcl(−R).

(C2) essentially follows from [4], whereas the proof of (C3) exploits the fact that
definably connected short definable sets cannot contain two elements x, y whose
difference x − y is tall. �

STEP III: To obtain Theorem 4 for any M, we need the following proposition.
We take a saturated elementary extension N ofM and consider the interpretation
EN of E ⊆Mn in N . Denote again E = EN . By cone decomposition ([3, 4]), we
may assume E is a cone (essentially E = S + V , where S is short and V is linear
and unbounded.) Take any m ∈M>0 such that S ⊆ (−m,m)n. (The precise choice
of m is a bit more elaborate, and we omit the details.)

Proposition 8. Let B be an m-distant finite grid. Then there is a tall finite grid
B′ such that ∣E ∩B∣ = ∣E ∩B′∣ and nB′ ≤ nB.

We can now finish as follows. Let α ∈ R>0 witness the linear Z-bounds of E for
the class of all tall finite grids in N , provided by Theorem 4. It follows that for
any m-distant finite grid B,

∣E ∩B∣ = ∣E ∩B′∣ ≤ αnr−1
B′ ≤ αn

r−1
B ,

as needed.
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Definable groups in tame theories of differential topological fields

Françoise Point

1. Topological fields (of characteristic 0) and tame theories T .

Let L be a (possibly multi-sorted) language containing the ring language Lrings ∶=
{+,−, ⋅,0,1} together with a symbol for the inverse function { −1} (Lfields). Let
τ denote a definable topology (given by an L-formula χ); τ is assumed to be
Hausdorff, non discrete and cartesian products are endowed with the product
topology. A tame L-theory T of topological fields (K,τ) (of characteristic 0) is
a complete, geometric L-theory, namely acl satisfies the exchange. We denote by
dim the dimension induced by acl on definable sets (automatically, one has the
elimination of ∃∞ [13]).

In [11] and [5], we considered open theories of topological fields (of characteristic
0) by further requiring that on the field sort L is a relational extension of Lfields

(plus possibly additional constants) and definable sets are finite unions of Zariski
closed sets intersected with definable open sets. In that case, acl coincides with the
field algebraic closure and dim coincides with the topological dimension. As exam-
ples of open theories T , we have the theory of real-closed fields, p-adically closed
fields, algebraically closed valued fields (of characteristic 0), real-closed valued
fields and using a multi-sorted language, Henselian valued fields of characteristic
0 [8].

In [6], we obtained a cell decomposition theorem, where a cell is either a de-
finable open set, a finite set, or graphs of continuous correspondences which are
closed under the projection under initial subsets of coordinates. (Correspondences
are needed since one doesn’t necessarily have finite Skolem functions).

Theorem 1. [6] Let T be an open L-theory of topological fields and let K be a
model of T . Let X be an A-definable subset of Kn, then X is a finite disjoint
union of A-definable cells.

2. Existentially closed differential expansions

We consider the theory Tδ of differential expansions of models of T by a derivation
δ, on which we impose no interactions with the topology; Tδ ∶= T ∪ {δ(x + y) =
δ(x) + δ(y), δ(xy) = xδ(y) + δ(x)y}. One axiomatizes the existentially closed
models of Tδ, under an additional condition of largeness on T . For T = RCF , it
was done by M. Singer [18], who described the theory of closed ordered differential
fields (CODF ). Then by M. Tressl [19] in a general setting using the notion of
large fields [17].

Let T ∗δ be the theory Tδ together with the following scheme of axioms (DL):
for K ⊧ Tδ, for every differential polynomial P (x) ∈ K{x} in one variable, of

order m ⩾ 1, for y = (y0, . . . , ym), we have that for any neighbourhood W of 0 in
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Km+1, letting P ∗ is the algebraic polynomial associated with P ,

(∀y)((P ∗(y) = 0 ∧ s∗P (y) ≠ 0)→ ∃x(2.1)

(P (x) = 0 ∧ sP (x) ≠ 0 ∧ (δ̄m(x) − y) ∈W, ))(2.2)

where sP denotes the separant of P (sP ∶= ∂δm(x)P (x)) and s∗P ∶= ∂yn
P ∗.

When consistent, the theory T ∗δ axiomatizes the theory of existentially closed
models of Tδ [11]; [5]. Furthermore if T is r.e. and T ∗δ is complete, it is decidable.

We get transfer from T to T ∗δ of the properties: quantifier elimination, com-
pleteness, NIP, [11], [6] , distality [4], see also [2], NTP2 [16]. Also note that if
K ⊧ T ∗δ , then the subfield CK is dense and co-dense in K and CK ⪯L K. So some
of our transfer results can be applied to dense (elementary) pairs of models of T
[9].

Next we improve a cell decomposition theorem proven for CODF [3] and show
a general transfer result for elimination of imaginaries. A useful notion is the one
of of linked triple: we associate with an Lδ-definable set X , an L-definable set
where tuples consisting of successive derivatives (up to some order) of elements of
X are dense. It enables us to first show that T ∗δ has L-open core [6] (property
introduced in [7]), then to define a δ-cell and show that every Lδ-definable subset
in a model of T ∗δ is the disjoint union of finitely many δ-cells [6].

Theorem 2 ([6]). Suppose that T admits elimination of imaginaries in an expan-
sion LG of L. Then the theory T ∗δ admits elimination of imaginaries in LG

δ
.

The proof uses the open core property of T ∗δ and the properties of the dimension
on L-definable subsetsX in models of T , in particular that dim(Fr(X)) < dim(X).

3. Finite-dimensional definable groups

Let X ⊂ Kn be an Lδ(k)-definable set, k a differential subfield of K. One
may define a (well-behaved) δ-dimension [12] and when dimδ(X) = 0, one de-
fines ord(X) ∶= max{ord(a/k) ∶ a ∈ X}, where ord(a/k) ∶= trdegkk{a}, where
k{a} = k(∇∞(a)) and ∇∞(a) is the infinite tuple consisting of successive deriva-
tives of the tuple a.

Theorem 3 ([15]). Let K ⊧ T ∗δ and assume that K is sufficiently saturated. Let
G ∶= (Γ, f×, f−1, e) be an Lδ-definable group in K (possibly with parameters) with
Γ ⊂Kn. Assume that dimδ(G) = 0. Then a large subset of some linked triple for Γ
is the domain of L-definable group G ∶= (G,F×, F−1), in which G embeds with dense
image and the group operation F× (respectively F−1) coincides with f× (respectively
f−1) on differential tuples.

Let V ⊂ Ks, s > 0, be a K-irreducible affine variety and denote by τ(V ) ⊂ K2s

the prolongation (or torsor) of V . In particular we have for a ∈ V , then ∇(a) =
(a, δ(a)) ∈ τ(V ).

Let W be an L-definable subset of K of the form ⋃i∈I Vi ∩Oi, where I is finite,
Oi a definable open subset of Ks, Vi ⊂ Ks a K-irreducible affine variety, equal to
the Zariski closure of Vi ∩Oi. Then the prolongation of W , τ(W ) ∶= ⋃i∈I τ(Vi) ∩
(Oi ×Ks).
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In models of Tδ, we will use the notion of a δ-compatible L(∅)-definable C1-
function as introduced by A. Fornasiero and E. Kaplan [10] for o-minimal expan-
sions of the field of reals. We also need to extend this notion to functions whose
domains are not open sets.

Definition 4 ([20]). Let f be a definable map from D ⊂ Km to Kn. Then f

is a δ-compatible definable C1-map if there are an open set D ⊂ U ⊂ Km and a
δ-compatible C1-definable map F ∶ U → Kn such that F ↾ D = f . Further for
x ∈ D, we define f δ(x) as F δ(x). If the map F is C2, the map f δ ∶ D → Km is
again a definable C1-map δ-compatible.

Denote by (IFTA)P the implicit function theorem restricted to polynomial
functions. Recall that K is a ℵ1-saturated (non-discrete) valued field, an im-
plicit function theorem holds for power series K[[x, y]] [1]; it relies on Weierstrass
preparation theorem. In particular it shows that K satisfies (IFTA)P .

Let K be a model of T ∗δ where (IFTA)P holds. Let f be an L-definable function
f ∶Kn ⇉Km. Then f is a δ-compatible definable C1-map.

Following [14], but replacing regular maps by δ-compatible definable C1-maps,
we extend definable maps on LK-definable sets to maps on their prolongations.

Let G ∶= (G,⋆, −1) be an L-definable group and suppose there an L-definable
group section s ∶ G → τ(G), namely letting π the projection from τ(G) to G,
we have π(s(g)) = g for any g ∈ G. Then the pair (G, s) is called an L-definable
D-group.

Theorem 5. [15] Let K be a model of T ∗δ where (IFTA)P holds. Let G be an
Lδ-definable group with dimδ(G) = 0. Then there is an L-definable D-group (G, s)
and an Lδ-group embedding from G to G whose image is {g ∈ G∶s(g) = ∇(g)}.
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Generic derivations on topological fields

Antongiulio Fornasiero

Let K be a first-order structure expanding a field, in a language L. We assume
that K is endowed with a definable topology (in the sense of [Pil87]), making it a
topological field (more precisely, the topology should be a V-topology).

In this context, it makes sense to say that a definable set X ⊆ Kn is a C1-
manifold.

Definition 1. A derivation on K is a function δ ∶K →K such that

δ(x + y) = δx + δy
δ(xy) = xδy + yδx.

We say that δ is compatible with the structure of K if the following happens:
For every X ⊆ Kn such that X is a C1 manifold which is L-definable over the
empty set, and for every ā ∈X , δā is tangent to X in ā.

If T is the theory of K, we denote by T δ the L(δ)-theory expanding T by the
axioms imposing that δ is a compatible derivation (and call any δ satisfying those
axioms a T -derivation).

We will give some sufficient conditions on T for T δ to have a model completion.
Those conditions will include the case studied in [FK20] for compatible derivations
on o-minimal structures; related questions were studied in [KP19] and [ST20]
among other.

Definition 2. Let X ⊆ Kn. The dimension of X , denoted by dim(X), is the
largest integer d such that, after some permutation of variables, Πd(X) has non-
empty interior inside Kd, where Πd ∶ Kn → Kd is the projection onto the first d
coordinates.
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The main novelty is the following definition:

Definition 3. Let f ∶ Kn ⇀ Km be a partial function. We say that f is L∅d
(locally definable without parameters) if:

● f is L(K)-definable;
● the domain of f is an open subset U of Kn;
● there exist an open set V ⊆Km and a ∅-definable set X , such that

Γ(f) =X ∩ (U × V ).
We call K a smooth structure (and its theory T a smooth theory) if it satisfies

the following conditions:

(1) dim is a dimension function (in the sense of [vdD89]). We denote by cl
the associated matroid, and by K∗ the monster model.

(2) Let a ∈ K∗ and b̄ ∈ K∗n. If a ∈ cl(b̄), then there exists a C1 L∅d partial
function f ∶K∗n ⇀K∗ such that a = f(b̄)

Theorem 4. If T is smooth and model complete, then T δ has a model completion
T δ
g .

An axiomatization of T δ
g is given by the following axiom scheme:

For every X ⊆Kn ×Kn which is L-definable with parameters, if dim(Πn(X)) = n,
then there exists ā ∈Kn such that (ā, δā) ∈X .

Theorem 5. If K is smooth, then every set which is L-definable (with parameters)
is a finite disjoint union of definable C1 manifolds.
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Vector spaces with a dense-codense generic module

Alexander Berenstein

(joint work with Christian d’Elbée and Evgueni Vassiliev)

This talk brings together ideas of dense-codense expansions of geometric structures
[1–3] with ideas about generic expansions by groups by D’Elbée [4].

The framework is the following. Suppose that F is a field of characteristic zero
and that R is a subring of F. Let L0 = {+,0,{λ⋅}λ∈F} and let L ⊃ L0 be an
extension. Let T be an L-theory expanding the theory of vector spaces over F
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which has quantifier elimination in L for which dcl = acl = spanF and such that it

eliminates the quantifier ∃∞. We will denote R̂ = Frac(R), the fraction field of R.
Let G be a unary predicate and for each formula φ(x⃗) in the language LR−mod =

{+,0, (r⋅)r∈R} of R-modules, let Pφ(x⃗) be a new predicate. Let LG be the expan-
sion of L by G and Pφ for all formula φ in LR−mod. We will consider pairs (V,G)
in the language LG such that V ⊧ T and that also satisfy the following first order
conditions:

(1) G is a proper R-submodule of the universe, and for all a⃗ ∈ V , Pφ(a⃗) holds
if and only if a⃗ ∈ G and G ⊧ φ(a⃗) as an R-module.

(2) If λ1, . . . , λn ∈ F are R̂-linearly independent, then for all g1, . . . , gn ∈ G

λ1g1 + ⋅ ⋅ ⋅ + λngn = 0 Ô⇒ ⋀
i

gi = 0.

(3) (Density Property) for all r ∈ R∖{0}, rG is dense in the universe. This is a
first order property that can be axiomatized through the scheme: for every
L-formula φ(x, y⃗), add the sentence ∃∞xφ(x, y⃗)→ ∃x(φ(x, y⃗) ∧ rG(x));

(4) (Extension/co-density property) for any L-formulas φ(x, y⃗) and ψ(x, y⃗, z⃗)
and n ≥ 1, the following sentence

(∃∞xφ(x, y⃗) ∧ ∀z⃗∃≤nxψ(x, y⃗, z⃗))→ ∃x(φ(x, y⃗) ∧ ∀z⃗(G(z⃗)→ ¬ψ(x, y⃗, z⃗))).
We write TG for the theory consisting of the models (V,G) satisfying the scheme

(1), (2), (3), (4) and let (V,G) ⊧ TG. We will say a tuple a⃗ ∈ V is G-independent
if dim(a⃗/G(V )) = dim(a⃗/G(V ) ∩ a⃗), the idea being that all information that G
provides about a⃗ is coded in a⃗∩G(V ). With these ingredients we get then a good
description of types:

Theorem 1. Suppose (V,G), (W,G) are models of TG, a⃗ ∈ V and b⃗ ∈ W are

G-independent tuples, tpL(a⃗,G(a⃗)) = tpL(b⃗,G(b⃗)) and tpR−mod(G(a⃗)) =
tpR−mod(G(b⃗)). Then tpLG

(a⃗) = tpLG
(b⃗).

Since all module formulas can be reduced to boolean combinations of existential
formulas, if T has quantifier elimination, we obtain as a corollary that the theory
TG is near model complete.

Using the result above to characterize the induced structure on G we can show
our main preservation result:

Theorem 2. Suppose Th(V ) has stable (respectively NIP, simple, NTP2, NSOP1)
then so is Th(V,G).
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Expansions by r-regular sets of reals: the real additive group versus

the real field

Alexi Block Gorman

(joint work with Jason Bell)

1. Introduction

A finite automaton is a machine with finitely many states, some subset of which
are called accept states, with the remaining states being reject states. The machine
takes finite-length strings over a finite alphabet Σ as inputs, and, beginning at a
“start state” it moves from state to state based its transition function as it reads
the string from left-to-right. The machine then either accepts or rejects a string
depending upon whether or not it arrives in an accept state after it has finished
reading the word.

Büchi automata differ from classical finite automata in that they take infinite-
length strings over Σ as input. Though otherwise like finite automata, a Büchi
automaton accepts a string w ∈ Σω if a run of the automaton on input w enters
some accepting state infinitely often. For both kinds of automata, we say that an
automaton recognizes a set X (either a subset of Σ∗ or, if it is a Büchi automaton,
a subset of Σω) if every element of X is accepted by the automaton, and every
element of Xc, the complement, is not accepted.

Below, let r ∈ N be greater than one, and set [r] ∶= {0, . . . , r − 1}. We also let
[r]ω denote the set of all functions from the ordinal ω to the set [r].
Definition 1. Say that A ⊆ [0,1] is r-regular if there is a Büchi automaton A
with alphabet {0, . . . , r − 1} that recognizes a set L ⊆ {0, . . . , r − 1}ω such that
(wi)i<ω ∈ L if and only if there is x ∈ A such that

x =
∞

∑
i=0

wi

ri+1
.

Moreover, if this holds say that A recognizes A.

Definition 2. Say that A ⊆ [0,1] is r-sparse if it is r-regular, the automaton A
recognizes A, and the set of strings in {0, . . . , r − 1}n with an infinite prolongation
that is accepted by A grows at most polynomially in n.

Below, set RA ∶= (R,<,+,0,1,A), and set Rr,ℓ ∶= (R,<,+,0,1, r−ℓN).
Theorem 3. Let r > 1 be a natural number, and suppose A ⊆ [0,1] is r-sparse.
Then A is ∅-definable in Rr,ℓ, and the set r−N is ∅-definable in RA.

Conversely, we also show the following:

Theorem 4. If A ⊆ [0,1] is r-sparse, the structures RA and Rr,1 define the same
sets.

Recall that X ⊆ Rd is called a Cantor set if it is compact, has not isolated
points, and no interior. From d-minimality, we can conclude that for an r-sparse
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set A the structure RA does not define a Cantor set. Below, for X ⊆ R let dH(X)
denote the Hausdorff dimension of X .

Theorem 5. If A is a closed r-regular subset of [0,1] such that 0 < dH(A) < 1,
then there is a Cantor set definable in RA.

The above theorem demonstrates the connection of fractal dimension, namely
Hausdorff dimension, to definability of a more “pathological” set, in this case a
Cantor set. The definition of a “Cantor set” here is a compact subset of R that has
no isolated points and no interior. What makes a Cantor set “pathological” in this
setting is that work of Hieronymi and Walsberg in [1] shows that the expansion
of (R,<,+,0) by a Cantor set is not model-theoretically tame. Connecting their
work the theorem above, we obtain a theorem that solidifies the notion that for
these structures, tameness in the model-theoretic sense and tameness in the sense
of fractal geometry completely coincide.

Theorem 6. For A ⊆ [0,1]d an r-regular set such that dH(πi(A)) < 1 for all
i ∈ [d], the following are equivalent:

(1) A is r-sparse;

(2) dH(πi(A)) = 0 for all i ∈ [d];
(3) RA is d-minimal;
(4) RA has NIP;
(5) RA has NTP2.

Note that in this final theorem, we have dropped the assumption that A is
closed, illustrating how well the topological closures of these r-regular sets reflect
or control the behavior of even the non-closed r-regular sets.

References

[1] P. Hieronymi and E. Walsberg, Fractals and the monadic second order theory of one suc-
cessor. ArXiv Mathematics e-prints, 2019.

Monotone T -convex T -differential fields

Elliot Kaplan

(joint work with Nigel Pynn-Coates)

Let T be a complete, model complete o-minimal theory extending the theory RCF
of real closed ordered fields in an appropriate language L ⊇ {0,1,+, ⋅,−,<}. We
assume that T is polynomially bounded: for every definable unary function f ,
there is some n ∈ N such that ∣f(x)∣ < xn for all sufficiently large x. All of the
theorems below also hold for power bounded T .

Let K ⊧ T . A T -derivation on K, introduced by Fornasiero and the first
author [5], is a map ∂∶K →K which satisfies the identity

∂f(u) = ∂f

∂Y1
(u)∂u1 +⋯+

∂f

∂Yn
(u)∂un.
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for all u = (u1, . . . , un) ∈ Kn and all L(∅)-definable functions f which are C1 at
u. Let K = (K, ∂) be a T -differential field, that is, as a model of T equipped
with a T -derivation. We say that ∂ is generic if for all L(K)-definable functions

f ∶U → K with U ⊆ Kn open, there is a ∈ K with (a, a′, . . . , a(n−1)) ∈ U and

a(n) = f(a, . . . , a(n−1)), where a(n) = ∂
n(a). The theory of generic T -differential

fields is the model completion of the theory of T -differential fields [5]. Note that
any generic derivation is linearly surjective: for any a0, . . . , ar ∈K, not all zero,
there is y ∈K with a0y + a1y′ + . . . + ary(r) = 1.

A T -convex valuation ring, defined by van den Dries and Lewenberg [2], is a
convex subset O ⊆ K such that f(O) ⊆ O for all continuous L(∅)-definable func-
tions f ∶K →K. Suppose that K is equipped with both a T -convex valuation ring
O and a T -derivation ∂, and suppose in addition that K has small derivation:
the unique maximal ideal O of O is closed under ∂. Then we call K a T -convex
T -differential field. We may naturally view the residue field res(K) ∶= O/O as
a T -differential field; See [2, Remark 2.16] and [10, Section 3]. Any T -derivation
is a derivation and any T -convex valuation ring is a convex valuation ring; the
converse holds if T = RCF.

Example 1. Suppose R admits an expansion to a modelR ⊧ T . AnR-Hardy field

is a Hardy field H which is closed under all R-definable functions; see [3, Section
5]. The subring of germs of bounded functions is a T -convex valuation ring of H,
and the usual Hardy field derivation is a T -derivation. The maximal ideal (the
germs of functions which tend to zero) is closed under this derivation, so H is a
T -convex T -differential field.

Example 2. Let Tan be the elementary theory of Ran, the expansion of R by
all functions which are real analytic on a neighborhood of [−1,1]n, restricted to
[−1,1]n. This theory is model complete, o-minimal, and polynomially bounded [1,
6]. The following are examples of Tan-convex Tan-differential fields:

(1) The field of Puiseux series ⋃n>0R((t1/n)), ordered so that 0 < t < R>. This
field admits a canonical expansion to a model of Tan where each restricted
analytic function is interpreted via Taylor expansion. The convex hull of
R is a Tan-convex valuation ring. Put x ∶= 1/t. Then the derivation “with
respect to x”, which maps ∑q rqx

q to ∑q rqqx
q−1, is a Tan-derivation.

(2) The field T of logarithmic-exponential transseries also admits a canonical
expansion to a model of Tan using Taylor expansion [4, Corollary 2.8].
The convex hull of R in T is Tan-convex and the usual derivation on T is
a Tan-derivation.

(3) Let k = (k, ∂k) be a Tan-differential field and let Γ be a divisible ordered
abelian group. Consider the Hahn field k[[tΓ]], ordered so that 0 < t <
k
>. We expand k[[tΓ]] to a model of Tan using Taylor expansion (see

[9, Proposition 2.13] for details), and we let O be the convex hull of k, so
O is Tan-convex. Let c∶Γ → k be an additive map. We use c to define a
Tan-derivation ∂ on k[[tΓ]] as follows:

∂∑
γ

fγt
γ ∶= ∑

γ

(∂kfγ + fγc(γ))tγ .
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This derivation is the unique Tan-derivation which extends ∂k, commutes
with infinite sums, and satisfies the identity ∂tγ = c(γ)tγ for each γ ∈ Γ.
Let us denote this expansion of k[[tΓ]] by k[[tΓ]]an,c.

A T -convex T -differential field K is said to be monotone if ∂a/a ∈ O for each
a ∈ K. Note that monotonicity implies small derivation. While some R-Hardy
fields are monotone, any maximal R-hardy field is not. The field of Puiseux series
and the Hahn series fields k[[tΓ]]an,c in Example 2 are monotone, but T is not.

Theorem 3. The theory of monotone T -convex T -differential fields has a model
completion. This model completion is complete, and it has quantifier elimination so
long as T has quantifier elimination and a universal axiomatization. A monotone
T -convex T -differential field K is a model of this model companion if:

(1) K is nontrivially valued: O ≠K.
(2) The induced derivation on the residue field res(K) is generic.
(3) K is T ∂-henselian: the induced derivation on res(K) is linearly surjective

and for every L(K)-definable function f ∶Kr → K, if a ∈ K is an approx-

imate zero of the function y ↦ y(r) − f(y, . . . , y(r−1)), and if this function
is well-approximated by a linear differential operator on a neighborhood of
a, then it has an actual zero in this neighborhood.

Defining precisely what an “approximate zero” and a “well-approximated func-
tion” are in the definition of T ∂-henselianity is a bit beyond the scope of this ex-
tended abstract. It is worth mentioning that our definition is inspired by Rideau’s
definition of σ-henselianity for analytic difference valued fields [11].

Underpinning Theorem 3 is an Ax-Kochen/Ershov theorem for monotone T ∂-
henselian T -convex T -differential fields. To formalize this AKE theorem, we recall
that the the field of exponents of T is, roughly speaking, the subfield Λ ⊆ K
consisting of those λ ∈ K for which the map x ↦ xλ∶K> → K> is L(∅)-definable.
For example, the field of exponents of Tan is Q [1]. We consider 3-sorted structures
K = (K,k,Γ;π, v, c) where

(1) K and k are T -differential fields and Γ is an ordered Λ-vector space.
(2) v∶K× → Γ is a surjective valuation, and the corresponding valuation ring

O ∶= {a ∈K ∶ a = 0 or v(a) ≥ 0} is T -convex.
(3) The derivation on K is monotone, and π∶O → k induces a T -differential

field isomorphism res(K)→ k.
(4) c∶Γ → k is Λ-linear, and for all γ ∈ Γ there is a ∈ K> with va = γ and

π(a†) = c(γ).
Any monotone T -convex T -differential fieldK admits an expansion of this form:

take k and Γ to be the differential residue field and value group of K, take π and
v to be the natural quotient maps, and for γ ∈ Γ, set c(γ) ∶= π(s(γ)†) where
s∶Γ →K> is a Λ-linear section of v.

Theorem 4. Suppose K and K∗ are T ∂-henselian. If (k,Γ; c) ≡ (k∗,Γ∗; c∗), then
K ≡ K∗. If K ⊆ K∗ and (k,Γ; c) ≼ (k∗,Γ∗; c∗), then K ≼ K∗.
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This theorem is closely related to earlier work of Scanlon [12] and Hakobyan [8].
The proof relies on the following key ingredients.

(A) Lifting the differential residue field: If K is T ∂-henselian, then K contains a
T -differential subfield E ⊆ O such that the restriction of the residue map to
E is a T -differential field isomorphism onto res(K).

(B) Uniqueness of spherical completions: If K is monotone and res(K) is linearly
surjective, then K has a unique spherically complete immediate T -convex
T -differential field extension. The existence of a spherically complete imme-
diate T -convex T -differential field extension, even without the assumption of
monotonicity, was shown by the first author [10].

The proofs of (A) and (B) use the Jacobian property in an essential way. This
property, shown to hold for models of T by Garćıa Ramı́rez [7], tells us that
L(K)-definable functions are locally well-approximated by linear functions. We
can use Theorem 4 to completely characterize the T ∂

an-henselian monotone Tan-
convex Tan-differential fields up to elementary equivalence:

Corollary 5. Let K be a monotone Tan-convex Tan-differential field with differen-
tial residue field k and value group Γ. If K is T ∂

an-henselian, then K is elementarily
equivalent to some Hahn field model k[[tΓ]]an,c.
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Forking degree and the Borovik-Cherlin conjecture

James Freitag

1. The Borovik-Cherlin conjecture

Given a definable set X , how transitively can a definable group action on X be?
The Borovik-Cherlin conjecture proposes an answer to this question in the setting
of finite Morley rank for the notion of generic k-transitivity. A definable group
action (G,X) is generically k-transitive if the induced diagonal action of G on Xk

has an orbit O such that Xk∖O has Morley rank less than the Morley rank of Xk.
The Borovik-Cherlin conjecture predicts that if G acts definably and generically
k-transitively on X , then k ≤ RM(X)+ 2, and if equality holds, then the action is
definably isomorphic to the action of PGLn on Pn−1.

Generic k-transitivity weakens the classical notion of k-transitivity by replacing
the condition that there be an orbit O in Xk which is everything except the gen-
eralized diagonals to asking that there is a large orbit. Of course, many variations
are possible. For instance, in the o-minimal context, replacing Morley rank by o-
minimal dimension, the analog of the Borovik-Cherlin conjecture was established
by [10].1 One can formulate the problem the problem directly in the Kolchin topol-
ogy (where large means Kolchin dense). In the finite rank case for the Kolchin
topology, the analog of Borovik-Cherlin has been solved by work in progress of
Freitag, Jimenez, and Moosa.

In a series of recent works, [6–8], the relationship between transitivity of binding
groups and forking was exploited. More general versions of this work are expected
to require new cases (e.g. outlined above) of Borovik-Cherlin type problems.

2. The forking degree

Let T be a superstable theory, and p(x) be a complete type over A relative to
the theory T with RU(p) > α. Then we define the α-forking degree of p to be the
least n such that there is a Morley sequence a1, . . . , an in the type of p such that
p has a forking extension q over A ∪ {a1, . . . , an} with RU(q) ≥ α. We denote the
α-forking degree of p by Fα(p).

In a series of recent works, the special case when α = 1 was considered, in which
case the notion is called the degree of nonminimality. In [8], under mild assump-
tions on the theory, the degree of nonminimality was shown to be bounded by
RU(p) + 2, assuming the truth of the Borovik-Cherlin conjecture. Additionally,
the existence of some bound depending only on the rank of the type p, rather
than the type itself was shown to follow from work of Borovik and Cherlin [1].
The Borovik-Cherlin conjecture was verified for algebraic groups of characteristic
zero, and the case was shown to be sufficient to obtain the bound unconditionally
for types in the theory of differentially closed field of charactistic zero and com-
pact complex manifolds. In [7] ideas from [8] to show transcendence results for
solutions of a differential equation and families of compact complex manifolds. In

1Interestingly, [10] predates the Borovik-Cherlin conjecture.
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[6], the bounds for differentially closed fields and compact complex manifolds were
improved to show the degree of nonminimality is at most two. When the type is
defined over the constants, the degree of nonminimality was shown to be at most
one in these theories.

The original central motivation for investigating the degree of nonminimality
was to develop a general purpose method for establishing the minimality of differ-
ential equations. In that direction, [5] resolved a long-standing problem of Poizat
to show that generic differential equations of sufficiently high degree are strongly
minimal. In [9], a new proof of the strong minimality of various Painlevé equa-
tions was given. In [3], a new short proof of the strong minimality of the equations
satisfied by automorphic functions of triangle groups is given. In each of these
applications, the degree of nonminimality plays a crucial role.

3. Problems and questions

We hope the following questions and problems give significant interesting direc-
tions for future work around forking degree and variants of the Borovik-Cherlin
conjecture.

(1) Can one control α-forking degree for arbitrary (perhaps infinite) ordinals
using an appropriate version of the Borovik-Cherlin conjecture?

(2) Generalizations of generic k-transitivity have been studied in the context
of algebraic group actions. For instance, [4] studied actions of PGL which
have a dense orbit in products of (not necessarily the same) Grassmanni-
ans, while [11] studied when the action of an algebraic group has finitely
many orbits, a stronger condition than generic transitivity. Are there natu-
ral model theoretic applications for these stronger or more general variants
of the Borovik-Cherlin setup?

(3) Formulate and prove a version of the Borovik-Cherlin conjecture in the
context of supersimple groups and apply the results via the theory ACFA
to functional transcendence results for solutions of difference equations.

(4) In [6–8], the functional transcendence applications always allowed for the
reduction to the case in which any binding group associated with the
bounds could be assumed to be definably primitive. Bounds for the sizes
of bases (see e.g. [2]) are naturally associated with internality problems,
where sometimes taking the definable quotients which allow for reduction
to the primitive case is a more delicate matter. Can definable primitivity
of the binding group be related to currently studied notions from geometric
stability theory, differential algebraic geometry or some notion from the
theory of compact complex manifolds?

(5) Formulate and prove versions of Borovik-Cherlin for Kolchin polynomials
in various settings. Borovik and León-Sánchez conjecture (private com-
munication) that if X is definable in DCF0,m and G acts definably with
generically n-transitive action then n is at most M + 2 with M the sum of
the absolute value of the coefficients of the Kolchin polynomial of X.
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Some well behaved classes of differential fields

Omar León Sánchez

We let Lδ denote the language of differential fields. Recall the following Lδ-axioms
for the theory DCF0 of differentially closed fields in characteristic zero (due to L.
Blum).

Theorem 1. Let (K,δ) be a differential field of characteristic zero. Then, the
following are equivalent:

(1) (K,δ) is differentially closed
(2) for every pair of nonzero differential polynomials f, g ∈K{x} with ord(g) <

ord(f) there exists a ∈K with f(a) = 0 and g(a) ≠ 0.
In this presentation we consider two modifications of these axioms: one yields

the class of differentially large fields in characteristic zero, and the second moves
in the direction of positive characteristic introducing the class of separably differ-
entially closed fields.

1. Differentially large fields

In this section all fields are of chacteristic zero. Recall that a field K is large if
every K-irreducible algebraic variety with a smooth K-point has a Zariski-dense
set of K-points; equivalently, K is existentially closed (e.c.) in the Laurent series
field K((t)).



Topological and Differential Expansions of o-minimal Structures 3031

For a differential polynomial f ∈ K{x}, we denote by f∗ the (algebraic) poly-
nomial in ord(f) + 1 variables obtained by symply viewing f in the variables
x, δx, δ2x, . . . . Also, recall that sf denotes the separant of f ; namely, the partial
derivative of f with respect to δnx where n = ord(f).

Consider the following first-order conditions:
(B0) for every pair of nonzero differential polynomials f, g ∈ K{x} with ord(g) <
ord(f), if the algebraic system

f∗ = 0, g∗ ≠ 0, s∗f ≠ 0

has a solution, then there exists a ∈K with f(a) = 0 and g(a) ≠ 0.
The following result describes the models of the theory B0 (in the case the field

involved is large).

Theorem 2 (Leon Sanchez and Tressl, 2019). Let K be a large field of character-
istic zero. Then, the following are equivalent

(1) (K,δ) ⊧ B0

(2) for every differential field extension (L, δ), if K is e.c. in L (as fields)
then (K,δ) is e.c. in (L, δ) (as differential fields).

(3) (K,δ) is e.c. in (K((t)), δ), where the derivation in K((t)) is the unique
extension of δ that commutes with meaningful sums and δ(t) = 1.

(4) for every K-irreducible D-variety (V, s), if V has a K-point, then (V, s)#
has a K-point.

(5) for every K-irreducible D-variety (V, s), if V has a smooth K-point, then
(V, s)# has Zariski dense many K-points.

A large field (of characteristic zero) equipped with a derivation satisfying any
of the equivalent conditions of Theorem 2 is said to be differentially large. For
further details on differentially large fields, in particular explicit constructions of
them, the reader is advised to consult [1].

The theory B0 does have some model-theoretic transfer properties... let us be
more precise. Recall that the theories ACF0, RFC, p-CF, Psf0(c) are all examples
of model-complete theories of large fields. Now let T be an arbitrary model-
complete theory of large fields of characteristic zero (in the language of fields
possibly extended by some constant symbols, like in the case Psf0(c)).

Theorem 3.

(1) T ∪B0 is model-complete (in the language Lδ).
(2) If T has q.e. (in some expansion by definitions), then T ∪B0 has q.e. (in

the same expansion).
(3) If T is stable, then T ∪B0 is DCF0.
(4) If T has NIP, then T ∪B0 has NIP. In particular, CODF has NIP, as we

know.

Here are some interesting questions:

(1) Is there a transfer principle for NSOP or NTP? How about elimination of
imaginaries?
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(2) Suppose (L, δ) is an extension of (K,δ). Also, assume K and L are large,
L/K is a finite extension, and (L, δ) is differentially large. Does it follow
that (K,δ) is differentially large?

2. Separably differentially closed fields

In this section all fields are of characteristic p > 0. Consider now the following
modification of Blum’s axioms:
(B1) for every pair of nonzero differential polynomials f, g ∈ K{x} with ord(g) <
ord(f) and sf ≠ 0 there exists a ∈K with f(a) = 0 and g(a) ≠ 0.

If to B1 we add the first-order condition CK = Kp (where CK denotes the
δ-constants of (K,δ)), we recover the axioms of C. Wood of DCFp differentially
closed fields of characteristic p > 0. However, without the axiom CK = Kp, the
class of models of B1 contains more than differentially closed fields. What the
next result shows is that this new class is the differential analogue of separable
closed fields.

Theorem 4 (Ino and Leon Sanchez). Let (K,δ) be a differential field of charac-
teristic p > 0. Then, the following are equivalent:

(1) (K,δ) ⊧ B1

(2) for every extension (L, δ), if L/K is separable (as fields) then (K,δ) is
e.c. in (L, δ) (as differential fields).

(3) (K,δ) is constrainedly closed (in the sense of Kolchin in positive charac-
teristic).

A differential field satisfying any of the conditions of Theorem 4 is called sepa-
rably differentially closed. By condition (1) they form an elementary class and the
theory is denoted SDCFp.

As in the algebraic case (where the theory SCFp is not complete), the theory
SDCFp is not complete. What we need to specify is the what we call the differential
degree of imperfection. Namely, for each differential field (K,δ) there is a unique
ǫ ∈ N0 ∪ {∞} such that

[CK ∶Kp] = pǫ.
The number ǫ is called the differential degree of imperfection of (K,δ). After
adding a sentence specifying the differential degree of imperfection, we denote the
theory by SDCFp,ǫ.

Theorem 5. For each ǫ ∈ N0∪{∞}, the theory SDCFp,ǫ is consistent and complete.

We note that SDCFp,0 has the same models as DCFp.
There is a natural language in which the theory SDCFp,ǫ has quantifier elimi-

nation – using the differential-lambda functions – . For a differential field (K,δ)
a subset A ⊆ K is said to be differentially p-independent if A ⊆ CK and the p-
monomials of A are linearly independent over Kp. For each n ∈ N, define the
differential-lambda functions ℓn,i ∶Kn ×K →K for i = 0, . . . , pn − 1 as follows: for
(ā, b) ∈Kn×K, ℓn,i(ā, b) = 0 if one of the entries of (ā, b) is not in CK or if ā is not
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differentially p-independent or if (ā, b) is differentially p-independent; otherwise,
they are uniquely defined by

b = (ℓn,0(ā, b))p m0(ā) + ⋅ ⋅ ⋅ + (ℓn,s(ā, b))p ms(ā)
where the mi(ā)’s are the p-monomials of (a1, . . . , an) and s = pn − 1.

After expanding the language by the differential-lambda functions and writing
axioms expressing the above defining properties, we denote this theory by SDCFℓ

p,ǫ.

Theorem 6. The theory SDCFℓ
p,ǫ admits quantifier elimination, is stable (but not

superstable), and prime model extension exist and are unique (up to isomorphism).

This is the starting point of an investigation of separably differentially closed
fields, there are several direction of exploration. For instance,

(1) What other model theoretic properties does SDCF have? (taking the cue
from SCF)?

(2) Can we describe types of SDCFℓ
p,ǫ in terms of separable ideals in some

differential polynomial ring? Is there a form of Zilber’s dichotomy in this
context?
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Groups of automorphisms of saturated models are simple

Zoé Chatzidakis

(joint work with T. Blossier, C. Hardouin, A. Martin-Pizarro)

1. Introduction

D. Lascar proved in 1995 a very striking and surprising result: Aut(C/Qalg) is
simple ([6]). It was actually the continuation of an earlier paper (1992, [5]), on
automorphism groups of countable saturated strongly minimal structures, and
where the result was announced assuming ℵ1 = 2ℵ0 . The proof given in the 1992
paper used very much topology (Polish group, Baire category), the proof in the
1995 paper was much more combinatorial.

Other similar results were proved by K. Tent and M. Ziegler on the isometry
group of the Urysohn space (2013, [7]). (Simplicity of that group modulo the
normal subgroup of bounded isometries). R. Konnerth (2002, [4]) extended Las-
car’s result to the automorphism group of any uncountable saturated differentially
closed fields U of characteristic 0 which fix all elements of U which are differentially
algebraic over Q. (I.e., what we call below cl(∅)).

We wanted to extract from the proof of Lascar and of Konnerth what makes
things works, and how this can be used to extend the existing results to other
fields with operators. This is done by listing several fundamental properties, and
proving a few lemmas. It also builds on existing work by four authors (in various
combinations).
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2. Fields with operators

Our theory T is a complete theory of fields (in the language {+, ⋅,0,1, −1}, with a
good notion of dimension or rank, and with some operators, i.e., in the language we
have functions Kn →K, which satisfy certain properties. Here are the structures
we will discuss more in detail:

(1) The theory of algebraically closed fields of a given characteristic. No op-
erator. ACFp with p = 0 or p a prime.

(2) The theory of differentially closed fields of characteristic 0, one or several
commuting derivations are the operators. DCF0, DCF0,m.

(3) The theory of existentially closed difference fields of characteristic 0, with
prescribed action of the automorphism σ on Q̄. The operators are σ and
σ−1. ACFA.

(4) Separably closed fields, together with the λ-functions as operators. I did
discuss that example in more details, and why our results might or might
not apply.

We use very much the existence (and uniqueness) of the generic type of the
additive group, its precise description in the four examples. The generics of exam-
ples 1-3 are regular, but not those of example 4. There are good notions of basis
in examples (1-3) and (4b).

We use these types to define a notion of closure, denoted cl. This notion, in
contrast with algebraic closure, depends on the ambient model, and the closure of
∅ may be uncountable. In examples 1-3 it is easy to describe: cl(A) is the set of
elements which satisfy some non-trivial algebraic/differential/difference equation
with coefficients in the structure generated by A (-/difference/differential field).
In example 4b, it is the maximal subfield of the ambient model which does not
increase the p-basis. In example 4a, it is harder to describe, and to tell the truth,
we do not have a nice description of it. The non-regularity of the generic is what
poses problem.

The theories of examples 1,2 and 4 are stable, so that uncountably saturated
models exist (with some restriction on the cardinalities in example 4). The theories
of example 3 are however unstable, with IP and the maximal number of types over
any set. However, essentially the only source of instability comes from the fixed
field, and under suitable saturation hypotheses on the fixed field of the algebraically
closed difference field K, the results of Shelah on existence and uniqueness of κ-
prime models over K do extend ([3]).

3. The result

Theorem 1. Let T be one of the theories (1-3), M a model of T , and κ ≥ ℵ1.
Assume that M is κ-prime over A ∶= clM(∅). Then Aut(M/A) is simple.

In particular we have:

Corollary 2. Let T be one of the theories (1-3), M an uncountable model of T
which is saturated. Then Aut(M/clM(∅)) is simple.
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A notion playing an important role in the proof is that of unbounded auto-
morphism. Lascar [6], then Blossier, Hardouin and Martin-Pizarro [1], show that
the only bounded automorphism of a κ-saturated model M are the identity and
powers of the Frobenius; so the only bounded automorphism which fixes cl(M) is
the identity.

Both results are then direct consequences of

Theorem 3. Let U be κ-prime over clU(∅), with T as in (1-3). Let τ ∈ Aut(U/cl(∅))
be unbounded. Then every ν ∈ Aut(U/cl(∅)) can be written as the product of four
conjugates of τ and τ−1.

Question. I believe that Theorem 3 should extend to the theory of separably
closed fields with infinite degree of imperfection, with countably many new con-
stants for p-independent elements. The stability of the theory should help, as will
the fact that any algebraically closed set is a model (so that we don’t have prob-
lems with imaginaries). However the non-regularity of the generic type might be
challenging.
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Around Zilber’s quasiminimality conjecture

Jonathan Kirby

This is an extended abstract for a survey talk given in Oberwolfach on 1st Decem-
ber 2022.

About 25 years ago, Zilber stated:

Conjecture 1. [Zil97]The complex field with the exponential function, ⟨C;+,⋅, exp⟩,
is quasiminimal (QM): every definable subset is countable or co-countable. (De-
finable here means definable with parameters.)

This conjecture has sparked a lot of activity over that time. For example,
Zilber’s part of the Zilber-Pink conjecture and the related work on functional
transcendence came out of his early work towards the quasiminimality conjecture.
Recently there has been significant progress towards proving the conjecture itself.
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In this talk I surveyed some of the work around the conjecture, including the
recent result of Gallinaro and myself that the complex field equipped with complex
power functions is quasiminimal.

Theorem 2 (Gallinaro, Kirby, forthcoming).
For λ ∈ C, let Γλ = {(exp(z), exp(λz)) ∣ z ∈ C}, the graph of the multivalued map
w ↦ wλ. Then the structure

⟨C;+, ⋅,−,0,1, (Γλ)λ∈C⟩
is quasiminimal.

1. Quasiminimality

The complex field Cfield is well-known to be minimal : every definable subset of C
is finite or co-finite, and indeed strongly minimal : the same is true of every model
of its first-order theory, which is ACF0.

It is well-known that strongly minimal theories are uncountably categorical,
(model-theoretic) algebraic closure is a pregeometry, and all models are prime
over a basis of the pregeometry.

Quasiminimality as defined in Conjecture 1 corresponds to minimality. There
is a stronger property:

Definition 3. An uncountable structure M is quasiminimal in the sense of au-
tomorphisms (QMAut) if for all reducts M0 of M to countable languages, and all
countable subsets A of (the underlying set of) M0, there is a co-countable orbit
of Aut(M0/A).
This still corresponds to minimality, not strong minimality. There is a yet stronger
property, called Quasiminimal Excellence (QME), defined by Zilber [Zil05a], im-
proved in [Kir10] and [Bal09] and then substantially simplified in [BHH+14]. I
refer the reader to the last of these for the simplest definition. Putting the work
of these papers together we get

Theorem 4. If M is uncountable and QME then its Lω,ω1
(Q)-theory is uncount-

ably categorical, the “countable closure” operator is a pregeometry, and models of
that theory are prime over bases of this pregeometry.

So we have QME Ô⇒ QMAut Ô⇒ QM. A natural question was asked during
the Oberwolfach meeting:

Question 5. Suppose ∣M∣ ⩾ ℵ2 and M is QM. Must it be QME?

A counterexample for ∣M∣ = ℵ1 is given by the dense linear order ω1 ×lex Q<,
which is QMAut but not QME. This structure is approximated by countable sub-
structures in a fundamentally different way, via the linear order ω1, whereas in
the excellent case one approximates by the directed partial order of all countable
subsets of some uncountable basis. Work of Pillay and Tanovic [PT11] may be
relevant here.
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2. Variant conjectures

In Zilber’s conjecture, one can replace the complex exponential function with a
Weierstrass ℘-function, or equivalently by the exponential map of an elliptic curve.
More generally, one could consider the exponential map of an abelian variety, or
a semiabelian variety, or indeed any commutative complex algebraic group.

One could even consider the exponential maps of all such groups together in one
structure. All these conjectures seem fairly equally plausible and equally difficult.
The Ax–Schanuel theorem [Ax71,Ax72] gives a strong structural result in all these
cases.

While we now have an Ax–Schanuel theorem for the modular j-function [PT16],
the domain of that is the upper half-plane so ⟨C;+, ⋅, j⟩ and similar examples are
far from quasiminimal.

Koiran asked if the expansion of the complex field by all unary entire complex
functions is QM, and Wilkie noted that we have no counterexample. This appears
to be a much harder conjecture than the group case.

The work of Fatou and Bieberbach from the 1920s mentioned in [Zil97] gives
examples of holomorphic f ∶ C2 → C2 whose image is open but not dense, and they
cannot be definable in a QM structure.

3. Some results

It is immediate that CZ ∶= ⟨C;+, ⋅,Z⟩, and even CZIP ∶= ⟨C;+, ⋅,Z, (z,n) ↦ zn⟩, the
complex field with a predicate for Z and the function of raising complex numbers
to integer powers, are QMAut, because they have the same automorphisms as the
pure field, and indeed they are QME.

Zilber [Zil02b] gave a theory of a generic function on a field, which turns out to
be the theory of an ultrapower of polynomials of degree tending to infinity [Koi05].
Any such entire function is QM, for topological reasons. Wilkie [Wil05] used power
series with sparse rational coefficients to construct entire functions, which he called
Liouville functions after Liouville’s construction of transcendental numbers, and
partly showed they are generic in Zilber’s sense, before Koiran [Koi03] finished the
proof.

Towards Conjecture 1, Wilkie made progress around an Oberwolfach meeting
in 2003, which led to an announcement of the proof of quasiminimality of raising
to the power i in 2008, although that is still unpublished. During a long visit to
Oxford in 2004, Macintyre was working both on ideas to proof the conjecture and
to provide a counterexample.

Boxall [Box20] showed that certain existential formulas in the language of ex-
ponential rings must define countable or co-countable sets in Cexp.

4. Zilber’s exponential field Bexp

Zilber [Zil05b] constructed a QME exponential field, Bexp, using the Hrushovski–
Fräıssé amalgamation-with-predimensionmethod together with the excellence tech-
nique. It is the unique model of cardinality continuum of some Lω,ω1

(Q)-expressible
axioms:
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(1) Algebraic properties of Cexp: ACF0, exp is a surjective homomorphism
from the additive to the multiplicative group of the field, and the kernel
is τZ for a transcendental τ .

(2) Schanuel’s conjecture: for any tuple z̄ we have td(z̄, exp(z̄)) ⩾ ldimQ(z̄).
(3) Strong Exponential-Algebraic Closedness (SEAC): For any algebraic sub-

variety V ⊆ Gn
a ×Gn

m which is free and rotund, and defined over a finitely
generated subfield A, there is (z̄, exp(z̄)) ∈ V , generic in V over A. If we
drop the genericity clause, this is called Exponential-Algebraic Closedness
(EAC).

(4) The natural pregeometry, exponential-algebraic closure, has the countable
closure property: the closure of a finite set is countable. (This is true in
Cexp, proved using the Ax–Schanuel property.)

For more details about the axioms and the logic needed to express them, see
[Kir13].

A strengthening of Conjecture 1 is:

Conjecture 6. Cexp ≅ Bexp. More precisely, Cexp is a model of the axioms
above. Equivalently, Schanuel’s conjecture is true in Cexp and Cexp is Strongly
Exponentially-Algebraically Closed.

D’Aquino, Macintyre and Terzo [DMT10, DMT14, DMT16] have done some
analysis of what known properties of Cexp with analytic proofs can also be proved
algebraically for Bexp.

Although Schanuel’s Conjecture seems well out of reach, proving EAC, or prov-
ing SEAC assuming Schanuel’s conjecture to get the genericity of solutions, seems
more plausible. Several people have made progress:

Marker [Mar06] proved the n = 1 case. In unpublished work, Mantova and
Masser proved the n = 2 case. Brownawell and Masser [BM17] proved the case of
EAC where the projection of V onto Gn

a is dominant. See also [DFT18]. Another
proof of this was given in [AKM22] where a similar result for the exponential maps
of abelian varieties was also given.

While working on the construction of Bexp, Zilber was also trying to understand
issues of uniformity needed to give first-order axioms, and this led him to his
Conjecture on Intersections of subvarieties with Tori, or CIT, now known as the
multiplicative part of the Zilber–Pink Conjecture [Zil02a]. Conditional on this
CIT, [KZ14] gives an axiomatisation of the first-order theory of Bexp.

In another direction, in 2008 I started a project with Martin Bays and Juan
Diego Caycedo to do an analogous construction to Bexp but of a Weierstrass ℘-
function. While Caycedo eventually left the project, this work led Martin and
me to the papers previously mentioned on QME classes and eventually to [BK18]
where we rewrote and generalised the construction of Bexp to give our B℘ and
many other similar constructions. In that paper we also gave a strategy to prove
Conjecture 1 by showing:

Theorem 7. If Cexp satisfies EAC then it is QME.
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Using this method, and the density of the rationals in the reals, I was able to
prove:

Theorem 8. [Kir19] Let Γ = {(z, exp(z + q + 2πir)) ∣z ∈ C, q, r ∈ Q}. Then the
“blurred exponential field” ⟨C;+, ⋅,Γ⟩ is QME.

5. Complex Powers

As part of his PhD thesis [Gal22b], see also [Gal22a], Gallinaro recently proved
that the part of EAC which relates to complex powers is true. Specifically, if V
is of the form L ×W where L ⊆ Gn

a is given by C-linear equations and W ⊆ Gn
m is

any algebraic variety, and L ×W is free and rotund, then there is z̄ ∈ L(C) such
that exp(z̄) ∈W (C).

The proof of Theorem 2 goes by using this EAC result together with the ana-
logue of Theorem 7 for the powers setting, which is forthcoming.

In fact we prove QME for a slightly more expressive structure which also turns
out to be easier to work with: the exponential sums language of Zilber from
[Zil03, Zil11]. Given a countable subfield K of C, he considers the two-sorted
structure

CK ∶= (CK-VS

exp
Ð→ Cfield)

where the left sort has just the K-vector space structure and the right sort has the
field structure. The induced structure on the right sort is that of ⟨C;+, ⋅, (Γλ)λ∈K⟩,
but not all automorphisms of that sort lift to the covering sort. Terms in vari-
ables from the first sort naturally correspond to complex exponential sums with
exponents in K.
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Exponential-Algebraic Closedness

Francesco Paolo Gallinaro

This talk focuses on a case of the Exponential-Algebraic Closedness Conjecture.
This conjecture, due to Boris Zilber, predicts sufficient conditions for systems of
exponential sums equations to have solutions in the complex numbers.

Definition 1. Let V ⊆ Cn × (C×)n be an algebraic subvariety.
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V is free if the projection of V to Cn is not contained in any translate of a linear
subspace of Cn defined over Q and the projection of V to (C×)n is not contained
in any translate of an algebraic subgroup of (C×)n.

For a subspace Q ≤ Cn defined over Q, denote by πQ ∶ Cn × (C×)n → Cn/Q ×
(C×)n/ exp(Q) the algebraic quotient map.
V is rotund if for every subspace Q ≤ Cn, dimπQ(V ) ≥ n − dimQ.

Conjecture 2 (Exponential-Algebraic Closedness Conjecture). Let V ⊆ Cn ×
(C×)n be an algebraic subvariety.

If V is free and rotund, then there is a point in V of the form (z, exp(z)).
The model-theoretic relevance of the conjecture is that by work of Bays and

Kirby it implies the Quasiminimality Conjecture, another conjecture due to Zilber,
which predicts that every subset of C that is definable in the language of rings
expanded by a symbol for the exponential function is countable or cocountable;
for more details see [1] and [3]. This conjecture has been discussed in the talk of
Jonathan Kirby.

Many cases of the Exponential-Algebraic Closedness Conjecture have now been
solved. This talk will focus on the following.

Theorem 3. Let L ≤ Cn be a linear subspace, W ⊆ (C×)n an algebraic subvariety.
If L×W is free and rotund, then there is a point in L×W of the form (z, exp(z)).
The systems of equations which correspond to varieties of this form are systems

of exponential sums equations. For example, we may consider the equation exp(z)+
exp(iz) + 1 = 0. Solving this equation is the same as finding points of the form
(z, exp(z)) in the variety L ×W , where

L ∶= {(z, iz) ∣ z ∈ C}
and

W ∶= {(w1,w2) ∈ (C×)2 ∣ w1 +w2 + 1 = 0}.

1. Tropical Geometry

The method of proof relies on tropical geometry, a realtively young branch of
mathematics which studies combinatorial features of certain objects from algebraic
geometry; for example, it has many connections to toric geometry. We review some
material from the textbook [2].

Tropical geometry allows us to encode the behaviour of a subvariety of (C×)n
into finitely many real semilinear objects. Let us make this more precise through
the notion of initial form.

Definition 4. Let f = ∑u∈S cuz
u be a complex Laurent polynomial (so S is a

finite subset of Zn and cu ∈ C for each u ∈ S), w ∈ Rn.
The initial form of f with respect to w is the polynomial

inw(f) = ∑
u∈S′

cuz
u

where S′ ∶= {u ∈ S ∣ u ⋅w ≥ u′ ⋅w for all u′ ∈ S}.
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In simple terms, the initial form of a complex polynomial “forgets” all the
monomials in f except for the ones whose exponents have maximal scalar product
with w.

Given an ideal I in the ring of Laurent polynomials in n variables and w ∈ Rn,
we denote by inw(I) the ideal generated by the initial forms with respect to w of
the polynomials in I. This is called the initial ideal of I with respect to w.

Definition 5. Let W ⊆ (C×)n be an algebraic subvariety, I the ideal of Laurent
polynomials which vanish on W .

The tropicalization of W is the set

{w ∈ Rn ∣ inw(I) ≠ ⟨1⟩}.
Since in the ring of Laurent polynomials the units are the monomials, this

corresponds to saying that for no polynomial f ∈ I we have that inw(f) is a
monomial.

Fundamental results in tropical geometry give the following facts.

1. The tropicalization of W is a finite union of semilinear sets.
2. To each of this semilinear sets corresponds an algebraic subvariety of (C×)n

which is invariant under multiplication by a positive-dimensional algebraic
subgroup of (C×)n. These are called the initial varieties of W .

The initial varieties are the varieties that W “looks like” as its points approach
0 or ∞. As an example, consider the variety W cut out in (C×)2 by f(w1,w2) =
w1 + w2 + 1 = 0. The point (1,1) is in its tropicalization, as the initial form of f
with respect to it is w1+w2: the initial variety associated to (1,1) is the subvariety
of (C×)2 defined by w1 + w2. As a matter of fact, when points in W have very
large absolute value, then the monomial 1 is negligible in the polynomials f , and
therefore the points have to be “close” to points which satisfy w1 +w2 = 0.

2. Outline of the Proof

The proof distinguishes between two cases: the case in which L is defined over the
reals and the case in which it is not.

If L is defined over R, then (under freeness) we have that exp(L) is dense in
exp(L) ⋅Sn1 (S1 denotes the unit circle in C×). Rotundity of L×W implies that the

function δ ∶ L×W → (C×)n which maps (l1, ..., ln,w1, ...,wn) to ( w1

exp(l1)
, ..., wn

exp(ln)
)

can be assumed to be open without loss of generality. These facts imply that it is
sufficient to solve the system “up to absolute value”, that is, we just need to find
a point (l,w) ∈ L ×W such that δ(l,w) ∈ Sn1 . This is achieved through a theorem
of Khovanskii.

If L is not defined over R, then we use the theory of tropical compactifications :
we can find an initial variety Wτ of W such that L ×Wτ is still rotund, and a
sequence of points in exp(L) ∩Wτ which diverges in (C×)n, in a suitable toric
variety has a limit which is also a limit of points on W . We can then show that
this sequence gives approximations of points in W ∩ exp(L), which turn out to
exist.
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A definable (p, q)-theorem for NIP theories

Itay Kaplan

Definition 1. Say that a set system (X,F) has the (p, q)-property for q ≤ p < ω if
for any F ⊆ F of size ∣F ∣ = p there is some F0 ⊆ F such that ∣F0∣ = q and ⋂F0 ≠ ∅.

Fact 2 (The (p, q)-theorem). [Mat04] There exists a function Npq ∶ N2 → N such
that for any q ≤ p < ω, if (X,F) is a finite set system with the (p, q)-property
such that every s ∈ F is nonempty and VC∗(F) < q, then there is X0 ⊆ X of size
∣X0∣ = Npq(p, q) such that X0 ∩ s ≠ ∅ for all s ∈ F .

Model theoretically, this implies that if φ(x, y) is NIP then for any VC∗(φ) <
q ≤ p and n ∶= Npq(p, q), if B is a finite set of y-tuples such that {φ(x, b) ∣ b ∈ B}
has the (p, q)-property then there are n elements a0, . . . , an−1 such that for all
b ∈ B there is some i < n for which φ(ai, b) holds.

This theorem turned out to be tremendously useful in the model-theoretic study
of NIP. For instance, it was instrumental in the proof of the uniform definability
of types over finite sets (UDTFS) in NIP theories by Chernikov and Simon [CS15],
in their study of definably amenable NIP groups [CS18] and more recently in the
proof that honest definitions exist uniformly for NIP formulas [BKS22].

In order to phrase a definable version of the (p, q)-theorem, we use the following
definition.

Definition 3. Let M be a structure. Say that a pair of formulas (φ(x, y), ψ(y))
overM has the (p, q)-property if F ∶= {φ(x, b) ∣ b ∈ ψ(M)} is a family of nonempty
sets with the (p, q)-property: for every choice of distinct p elements F , some q of
them have a nonempty intersection.

The following is a corollary of the (p, q)-theorem, formulated in [CS15, Propo-
sition 25] (see also [Sim14, beginning of Section 2]).

Fact 4. Suppose that T is NIP and that M ⊧ T . Assume that φ(x, y) and ψ(y)
are formulas over M and that (φ,ψ) has the (p, q)-property for VC∗(φ) < q ≤ p.
Then there are sets W0, . . . ,Wn−1 ⊆ Sy(M) for n ∶= Npq(p, q) such that ⋃i<nWi =
{p ∈ Sy(M) ∣ ψ(y) ∈ p} and for each i < n, {φ(x, b) ∣ tp(b/M) ∈Wi} is consistent.

For example consider the family F of rays in DLO (i.e., Th(Q,<)): sets defined
by x > a or x < a. It is easy to see that the dual VC-dimension of F is 1 (given
any two rays, if they intersect, then their union is everything). In the context of
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Fact 4, F can be formalized by setting φ(x, y, z1, z2) = ((z1 = z2 → x > y) ∧ (z1 ≠
z2 → x < y)) and ψ(y, z1, z2) = (y = y). Then (φ,ψ) has the (3,2) property: every
three rays must intersect. Given any model M , let W0 be the set of types of pairs
(a, a) over M and W1 be the set of types of pairs (a, b) over M where a ≠ b. In
other words, we cover F by positive and negative rays.

Note that in this case, W0,W1 are clopen: they come from definable sets over
M . Our main theorem says this is not an accident.

Theorem 5. Suppose that T is NIP, M ⊧ T and that φ(x, y), ψ(y) are formulas
over M . Assume that (φ,ψ) has the (p, q)-property for VC∗(φ) < q ≤ p. Then
there are formulas ψ0(y), . . . , ψn−1(y) over M such that ψ(y) is equivalent to the
disjunction ⋁i<n ψi(y) and for each i < n, {φ(x, b) ∣ b ∈ ψi(M)} is consistent.

We also consider a uniform version of Theorem 5, i.e., varying the model M .

Theorem 6. Suppose that T is NIP, and that φ′(x, y, z), ψ′(y, z) are two for-
mulas without parameters. Then for any q ≤ p < ω there is n < ω and formulas
ψ0(y,w), . . . , ψn−1(y,w) such that the following hold.

Suppose that M ⊧ T and c ∈Mz. Let φ(x, y) = φ′(x, y, c) and ψ(y) = ψ′(y, c).
If (φ,ψ) has the (p, q)-property and VC∗(φ(x, y)) < q then for some d0, . . . , dn−1 ∈
Mw, ψ(y, c) is equivalent to the disjunction ⋁i<n ψi(y, di) and for each i < n, the
set {φ(x, b) ∣ b ∈ ψi(M,di)} is consistent.

References

[BKS22] Martin Bays, Itay Kaplan, and Pierre Simon. Density of compressible types and some
consequences. J. Eur. Math. Soc. (JEMS), 2022. accepted.

[CS15] Artem Chernikov and Pierre Simon. Externally definable sets and dependent pairs II.
Trans. Amer. Math. Soc., 367(7):5217–5235, 2015.

[CS18] Artem Chernikov and Pierre Simon. Definably amenable NIP groups. J. Amer. Math.
Soc., 31(3):609–641, 2018.
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Domination in hesenlian valued fields of equicharacteristic zero

Mariana Vicaŕıa

Henselian valued fields are structures at the heart of algebra and number theory,
and during the last decades there has been a significant interplay between them
and model theory. One of the most striking results in the model theory of henselian
valued fields is the Ax-Kochen/ Ershov theorem which roughly states that the first
order theory of a henselian valued field of equicharacteristic zero or a henselian
valued field of mixed characteristic, unramified 1 and perfect residue field is com-
pletely determined by the first order theory of its residue field and its value group.
A natural philosophy follows from this theorem: model theoretic questions about

1A valued field is said to be unramified if its value group has a least positive element.
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the valued field itself can be understood by reducing them to its residue field, its
value group and their interaction in the field.

Model theory is a branch of mathematical logic that studies structures (that
is sets equipped with relations, functions and constants) and their definable sets,
that is the subsets of various cartesian powers that can be defined in terms of
these distinguished constants, relations and functions via the logical connectives
and quantifiers. For instance, in an algebraically closed field we distinguish the
constants 0 and 1 and symbols for the multiplication and the addition. This
particular case is well understood: the definable sets are exactly the constructible
sets, which are fundamental objects of algebraic geometry.

A fruitful application of the Ax-Kochen/ Ershov principle is illustrated by sev-
eral relative quantifier elimination results, that describe the class of definable sets
in a henselian valued field. For example, in [4] J. Pas proved field quantifier elim-
ination relative to the residue field and the valued group once angular component
maps are added to the language in the equicharacteristic zero case. Further studies
for the case where no angular map is added were done by S.A. Basarab and F.V.
Kuhlmann in [5], [6] (relative to the RVn sorts).

Modern model theory has been heavily influenced by S. Shelah’s remarkable
work in classification theory [13]. In the 1970s S. Shelah developed a tremen-
dously profound structure theory for the class of stable theories, in which no first
order formula can totally order arbitrarily large sets of tuples. The study of stable
theories initiated by S. Shelah, and later refined by many others, brought to the
picture tools and ideas that have been the key to solve many problems in other
branches of mathematics, such as the Mordell-Lang conjecture for function fields
proved by E. Hrushovski. The neostability program seeks to generalize Shelah’s
work to other dividing lines beyond stability, by identifying and studying bound-
aries between tame and wild first-order theories. In other words, model theory
studies dividing lines between prototypical tame structures like vector spaces and
the field of complex numbers, in which the definable sets are well understood, and
wilder structures for which there is no control, such as the ring of integers. This
program has been tremendously fruitful for several classes of theories, most notably
the simple theories, dependent theories and o-minimal theories . These develop-
ments have enriched the applications of model theory; the Pila-Wilkie theorem in
diophantine geometry is a prime example.

It is therefore very natural to attempt to establish which is the combinatorical
complexity of a henselian valued field. A very successful path of research addresses
this question by following the Ax-Kochen/ Ershov principle: tameness conditions
in the residue field and the value group transfer into the same tameness in the entire
henselian valued field. The first result in the literature is due to Delon: a henselian
valued field of equicharacteristic zero is dependent if and only if its residue field
and its value group are dependent. It is a well known result by Gurevich and
Schmitt that any pure ordered abelian group is dependent, so Delon’s translates
to: a henselian valued field of equicharacteristic zero is dependent if and only if its
residue field is dependent. Further results were deeply understood later on: the
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dp-minimal case in [9], the strongly dependent case in [8], the distal case in [10],
the NTP2 case in [11] and [12], among many others.

The model theoretic study of henselian valued fields took a leap forward with
the sequence of papers of Haskell, Hurshovski and Macpherson in [2] and [3], where
they develop the theory of stable domination, an abstract theory that formalizes
how a structure is governed by its stable part. Their prime example is the theory
of algebraically closed valued fields (ACVF), which is a dependent theory due to
Delon’s theorem; but where classical machinery of stability has been lifted to give
a broader insight of the behavior of these structures and represented the initial
grounds to develop tame geometry in ACVF. Applications of stable domination
include the classification of definable abelian groups in ACVF by Hrushovski and
Rideau-Kikuchi in [7] and the deep theory of Berkovich spaces of Hurshovski and
Loeser in [15].

In [2] Haskell, Hurshovski and Macpherson provide a complete characterization
of the stable part of the structure, and prove that it coincides with the linear sorts,
which carry a k-vector space structure, where k is the residue field. We recall some
of the definitions and results for sake of completeness.

Definition 1 (Linear sorts). For any parameter set C, let V Sk,C be the many
sorted structure whose sorts are the k-vector spaces red(s) where s ∈ dcl(C) ∩ S.

● Each sort red(s) is equipped with its k-vector space structure.
● In addition, V Sk,C has as ∅-definable relations any C-definable relation
on products of the sorts.

Proposition 2. Let K ⊧ ACV F and D a C-definable subset of Keq. Then:

● D is k-internal if and only if D is stable and stably embedded,
● If D is k-internal, D ⊆ dcl(C ∪ V Sk,C).

In later work of Haskell, Ealy and Maricova (see [1]) the following notion of
domination, which generalizes the one present in [2]:

Definition 3. Let T be a complete first order theory and let S and Γ be stably
embedded sorts, and C ⊆ A,B be sets of parameters in the monster model C.

(1) the type tp(A/C) is said to be dominated by the sort S, if whenever S(B) is
independent from S(A) over S(C) then that tp(A/CS(B)) ⊢ tp(A/CB).

(2) the type tp(A/C) is said to be dominated by the sort S over Γ if the type
tp(A/CΓ(A)) is dominated by the sort S.

In [1] domination results for the setting of real closed convexly valued fields
are obtained, which suggests that the presence of a stable part of the structure
is not fundamental to achieve domination results and indicates that the right no-
tion should be residue field domination or domination by the internal sorts to the
residue field in broader classes of henselian valued fields. Later in [14], Haskell,
Ealy and Simon generalized the residue field domination results for henselian val-
ued fields of equicharacteristic zero with bounded Galois group. In their work,
it becomes clear that the key ingredients to obtain domination results are the
existence of separated basis and a relative quantifier elimination statement.
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Our main motivation arises from the natural question of how much further a
notion of residue field domination could be extended to henselian valued fields of
equicharacteristic zero. This is the first step towards obtaining a unifying model
theoretic theory of henselian valued fields, by lifting tameness conditions on the
residue field to the entire structure generalizing the theory of stable domination
applied to ACVF to simple domination, NSOP1-domination,etc.. to henselian
valued fields.

We fix some complete extension of the theory of henselian valued of equichar-
acteristic zero in the languange introduced by Achembrenner, Chernikov,Ziegler
and Gehther in [10]. We write C to indicate the monster model and we obtain the
following domination results for elments in the home-sort:

Theorem 4 (Vicaria). Let C ⊆ L be substructures of C with C a maximal model
of T . Then tp(L/C) is dominated by the value group and the residue sorts.

Theorem 5 (Vicaria). Let L be an elementary substructure of C and let C ⊆ L be
a maximal model of T . Then the type tp(L/C) is dominated over its value group
by the sorts internal to the residue field.

References

[1] C. Ealy, D. Haskell and J. Marikova, Residue field domination in real closed fields, Notre
Dame J. Formal Logic Volume 60, Number 3 (2019), 333-351.

[2] D. Haskell, E. Hrushovski and D. Macpherson, Stable Domination and Independence in Al-
gebraically Closed Valued Fields (Lecture Notes in Logic), Cambridge: Cambridge University
Press, (2007).

[3] D. Haskell, E. Hrushovski and D. Macpherson, Definable sets in algebraically closed val-
ued fields: elimination of imaginaries, Journal für die reine und angewandte Mathematik,
597,(2006), 175-236.

[4] J. Pas, On the angular component map modulo p. J. Symbolic Logic 55.3 (1990), pp.1125–
1129.

[5] S.A. Basarab, Relative elimination of quantifiers for Henselian valued fields, Ann. Pure
Appl. Logic 53.1 (1991), pp. 51–74.

[6] F.V. Kuhlmann, Quantifier elimination for Henselian fields relative to additive and multi-
plicative congruences, Israel J. Math. 85 (1994), pp. 277–306.

[7] E. Hrushovski and S. Rideau, Valued fields, metastable groups, Selecta Mathematica, (2019),
vol 25, no.3, 1–58.

[8] Y. Halevi, A. Hasson, Strongly dependent ordered abelian groups and Henselian fields. Isr.
J. Math. 232, 719–758 (2019). https://doi.org/10.1007/s11856-019-1885-3

[9] F. Jahnke, P. Simon, P. and E. Walsberg, Dp-minimal valued fields, The Journal of Symbolic
Logic, 82(1), 151-165. doi:10.1017/jsl.2016.15.

[10] M. Aschembrenner, A. Chernikov, A. Gehret, M. Ziegler, Distality in valued fields and
related structures, arxiv-preprint https://arxiv.org/pdf/2008.09889.pdf.

[11] A. Chernikov, Theories without the tree property of the second kind,Annals of Pure and
Applied Logic, vol 165, no.2, (2014), 695–723.

[12] P. Touchard, Burden in henselian valued fields, arXivpreprintarXiv:1811.08756.
[13] S. Shelah, Classification theory and the number of non-isomorphic models, Elsevier, (1990).



3048 Oberwolfach Report 52/2022

[14] C. Ealy, D. Haskell and P. Simon Residue field domination in some henselian valued fields,
pre-print.

[15] E. Hrushovski, F. Loeser. Non-Archimedean Tame Topology and Stably Dominated Types,

Princeton: Princeton University Press, 2016. https://doi.org/10.1515/9781400881222

Reporter: Alexi Block Gorman



Topological and Differential Expansions of o-minimal Structures 3049

Participants

Prof. Dr. Alexander Berenstein

Departamento de Matematicas
Universidad de los Andes
Bogotá D.C.
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