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Introduction by the Organizers

The workshop Model Theory: Combinatorics,Valued Fields and Neostability, or-
ganised by Itay Kaplan (Jerusalem), Silvain Rideau-Kikuchi (Paris), Katrin Tent
(Münster) and Frank Wagner (Lyon) was attended by 46 physical and 3 virtual
participants from all over the world. The meeting concentrated on the currently
most active areas in model theory 4 generalizations of the abstract tools appro-
priate for an expanding class of structures, as well as its applications to the recent
and fruitful interactions with asymptotic combinatorics, groups and valued ûelds:

(i) Neostability: NIP, NTP2 and NSOP1 theories;

(ii) Pseudoûnite combinatorics;

(iii) Applications to groups and valued ûelds.
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Since Hrushovski9s proof of the Manin-Mumford conjecture which sparked the
development of simplicity theory, progress in pure and in applied model theory
has gone hand in hand. Shelah9s forking independence notion was studied in ever
wider contexts 3 simple, NIP (also called dependent), NTP2 theories 3 and applied
to the study of still somewhat tame, but unstable algebraic structures, with an
increasing emphasis on identifying a stable part within. The study of pseudoûnite,
or more generally measurable structures, was inspired by the study of deûnable
sets over pseudoûnite ûelds by Chatzidakis, Macintyre and van den Dries, but
really took oû after Hrushovki9s work on approximate subgroups (which led to
their eventual classiûcation by Breuillard, Green and Tao). In the last couple of
years, another class of tame theories has been identiûed due to work by Chernikov,
Kaplan, Kim and Ramsey, namely NSOP1 theories. These carry an independence
notion (Kim-independence) very similar to forking independence, and while the
theoretical development now has reached a degree of maturity, applications to
algebra are just starting to be developed.

There were a total of 22 talks of 50 minutes each, ranging over a wide spec-
trum of model theory and its applications. Seven talks were in neostability theory,
developing the theory of new tame classes of structures, constructing examples
and analysing their ûne structure. Eight talks concerned the model theory of
ûelds with added structure (derivation, automorphism, valuation), as well as a
model-theoretic approach to tropical and real geometry. Two talks were about the
interactions with combinatorics, and two talks about model-theoretic dynamics,
leading to a new proof of Hrushovski9s classiûcation of inûnite approximate sub-
groups. Two talks concerned o-minimality, and one talk the Tarski problem for
hyperbolic groups.

Neostability. The talks in this section ranged from revisiting the old problem
of classifying reducts of algebraically closed ûelds (Hasson) via a description of
the automorphism groups of certain saturated structures (Chatzidakis) and a new
examples of properly NSOP1 and positively NIP algebraic theories (d9Elbée, Do-
browolski) to higher order stability theory (Chernikov, Valentin), where the usual
binary decomposition of variables into parameter and type variables is replaced by
a decomposition into three or more parts, thus replacing graphs in the underlying
combinatorics by hypergraphs. A particular highlight in this section was the talk
by Ramsey, who deûned a new independence notion, GS-independence (which,
in NSOP1 theories coincides with Kim-independence) and a new class of theories
where GS-independence is very well-behaved. This should give new insights both
to Kim-independence in NSOP1 theories, as well as extend neostabily-theoretic
methods to the new class of treeless structures.

o-minimality. The two talks in this section concerned the shatter function in an
o-minimal expansion of the ordered additive group of the reals, partially conûrming
a conjecture of Chernikov (Tran), and a characterization of those Lie groups which
are deûnable in some o-minimal expansion of R (Onshuus).



Model Theory: Combinatorics, Groups, Valued Fields and Neostability 93

Model-theoretic dynamics. In this section, there were two talks, one relating
the Ellis group of the G-ûow of ûnitely satisûable types of a group G with the Ellis
group of the G7-ûow of an elementary extension (Newelski). Krupinski gave a very
impressive talk, where he used topological dynamics on locally compact ûows to
give a much shorter and entirely new proof of Hrushovski9s Lie Model Theorem
for arbitrary approximate subgroups, viz. the existence of a quasi-homomorphism
from any approximate subgroup to some Lie group.

Combinatorics. There were two talks in this line of research, concerned with
generalizing and improving bounds on combinatorial results. One used an Elekes-
Szabó type theorem for algebraic group actions in order to characterize when there
are maximally (quadratically) many triple lines in a ûnite subset of a reducible
projective cubic surface with smooth components in the projective three space
over the complex numbers (Zou); the other relaxed the notion of stability to allow
perturbations by subsets of Loeb measure 0 in a pseudoûnite group, and deduced
the existence of squares and corners in dense subsets of Cartesian squares (Palać1n).

Fields. From early on, the model theory of (various expansions of) ûelds has
been closely linked both to the development of pure model theory and to the
applications of model theory in arithmetic and geometry. Talks in this section
covered a large spectrum of topics: a classiûcation of deûnably semisimple groups
interpretable in p-adically closed ûelds as linear up to ûnite kernel (Halevi), the
complex p-adic ûeld with the roots of the unit (Scanlon), Lang-Weil type bounds
for the number of rational points of diûerence varieties over ûnite diûerence ûelds
(Hils), residue ûeld domination in henselian valued ûelds of equicharacteristic 0
(Haskell), transfer theorems for NIP valued ûelds and a classiûcation of complete
NIP henselian ûelds (Anscombe), a new and deûnable notion of stratiûcation for
real or algebraiclaly closed ûelds of characteristic zero, ûner than the usual strat-
iûcation (Halupczok), and a ûniteness statement for algebras of functions over
skeleta in Berkovich analytiûcations of algebraic varieties via stable completions
of algebraic varieties (Loeser). A particular highlight was the talk of Jahnke, who
presented a model-theoretic approach to Scholze9s tilting method via ultraprod-
ucts, allowing for a transfer of many ûrst-order properties between a perfectoid
ûeld and its tilt (and conversely) and thus opening up a very promising direction
towards arithmetic geometry.

Hyperbolic groups. The model theory of free, and more generally hyperbolic
groups is an area where many model-theoretic statements 4 such as Tarski9s
problem 4 so far have only been shown using deep methods from geometric group
theory. In his talk André managed to present one such result in a very compre-
hensible way, namely a classiûcation of ûnitely generated hyperbolic groups up
to "#-elementary equivalence, together with an algorithm deciding whether two
ûnitely presented hyperbolic groups have the same "#-theory or not.
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Abstracts

Generic multiplicative endomorphism of fields

Christian d’Elbée

Let L be the language consisting of symbols +,2, ·,21 , 0, 1 together with », a
unary function symbol. We consider the L-theory T of L-structures (K, ») where
K is an algebraically closed ûeld and » : K ³ K is a multiplicative map, that is a
map satisfying »(x) = 0 if and only if x = 0 and » restricted to the multiplicative
group K× is a group endomorphism. Typical examples of such multiplicative
maps are the power functions pwn : x 7³ xn. In [3], the author proved that
the class of existentially closed models of T is elementary by giving a geometric
characterization of those and expressing this characterization by a set of ûrst-
order sentences, denoted ACFH. In this talk, the author presented various features
shared by models of ACFH.

Recall that NSOP1 theories were introduced DÇzamonja and Shelah in [5] and re-
ceived a considerable amount of attention lately both in the abstract development
of a suited notion close to Shelah9s forking (called Kim-forking) and in ûnding new
examples of strict (i.e. not simple) NSOP1 theories. The motivation for studying
ACFH is two-fold. First, the theory ACFH was constructed to cumulate generic-
ity from previous examples of strict NSOP1 theories (such as ûelds with generic
subgroups, ûelds with random maps), to feed in Shelah9s classiûcation project as
a new strict NSOP1 theory. Second, ACFH was meant to be a candidate for the
theory of nonstandard power functions (C, pw>), i.e. non-principal ultraproducts
of (Falg

p , pwnp) considered as models of T , ranging over some primes p * P . Al-
though ACFH does not capture the theory of nonstandard power functions, one of
the features shared by both theories is the ubiquity of deûnable pseudofinite-cyclic
groups (see below).

Denote by |alg# the algebraic independence in algebraically closed ûelds and cl»
the model-theoretic algebraic closure in ACFH, which is obtained by iteratively
taking ûeld-theoretic algebraic closure and direct image by ». An analysis of types
and higher amalgamation in ACFH yield that the ternary relation deûned by

A |»#
C

B ñó cl»(AC) |alg#
cl»(C)

cl»(BC)

satisûes the hypotheses of the characterisation of NSOP1 theories given by the work
of Chernikov-Kaplan-Ramsey in [1, 6]. Over models, the relation |»# coincides with
Kim-independence, an analogous of Shelah9s forking independence in the realm of
NSOP1 theories.

In simple theories, Shelah9s forking and Kim-forking coincide, but this is no
longer true in strict NSOP1 theories. Nonetheless, forking independence |f# can
be identiûed in the theory ACFH, it is obtained by 8forcing9 successively the base
monotonicity (on the right) and the extension property, denoted ( |»m# )7 = |f# . In

recent work, [4] an extension of the abstract theory of Kim-forking was developed
in NSOP1 theories where |f# satisûes the existence axiom, A |f#C

C for all C. It is
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an open problem whether the existence axiom always holds for forking in NSOP1

theories. The author gave indications that |f# satisûes existence in ACFH. Under
existence for forking, ACFH has elimination of imaginaries.

Given a model (K, ») of T and a polynomial P (X) = k0 + k1X + . . . knX
n *

Z[X ], one deûnes P (») to be the map x 7³ xk0»(xk1 ) . . . »(n)(xkn). We assume now
that (K, ») is a model of ACFH. Then the map P (X) 7³ P (») is an embedding of
the ring Z[X ] into the ring of deûnable multiplicative endomorphisms of (K, »),
whose image is denoted by Z[»]. For any Ç * Z[»], Ç is onto K ³ K, the
kernel G = kerÇ behaves like a generic multiplicative subgroup of K (see [2])
in particular, it satisûes the equation K = G + G (as sets). The question of
whether every deûnable endomorphism of (K, ») is in Z[»] was raised by the author.
Answering this question seems challenging in light of currently available methods
in NSOP1 theories.

A pseudofinite-cyclic group G is one which is elementary equivalent to an ul-
traproduct of ûnite cyclic groups. The following criterion was developed jointly
with I. Herzog:
Fact (d9Elbée-Herzog, [3, Appendix]) An abelian group G is pseudofinite-cyclic if
and only if for all prime p

#(G[p]) = #(G/pG) f p.

With this criterion, an application of Snake9s Lemma yields: for any ûeld K

with divisible multiplicative group, if Ç : K× ³ K× is a surjective multiplicative
group endomorphism, then kerÇ is pseudoûnite-cyclic. In particular, in any model
(K, ») of ACFH, kerÇ is a pseudoûnite-cyclic subgroup of K×, for Ç * Z[»] \ {0}.

Of course, the latter is also true for any nonstandard power function (C, pw>).
However G = ker pw> does not satisfy the equation G + G = C, so (C, pw>) is
not a model of ACFH, regardless of the choice of (np)p * NP .
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A finiteness result for tropical functions on skeleta

François Loeser

(joint work with Antoine Ducros, Ehud Hrushovski, Jinhe Ye)

Let F be a complete non-archimedean ûeld. Among the several frameworks avail-
able for doing analytic geometry over F , Berkovich9s is the one that encapsulates
in the most natural way the deep links between non-archimedean and tropical (or
polyhedral) geometry. Indeed, every Berkovich space X over F contains plenty of
natural <tropical= subspaces, which are called skeleta. Roughly speaking, a skele-
ton of X is a subset S of X on which the sheaf of functions of the form log |f |
with f a section of O×

X induces a piecewise linear structure; i.e., using such func-
tions one can equip S with a piecewise linear atlas, whose charts are modelled on
(rational) polyhedra and whose transition maps are piecewise aûne (with rational
linear part).

This deûnition is rather abstract, but there are plenty of concrete examples of
skeleta. The prototype of such objects is the <standard skeleton= Sn of (Gn

m)an,
that consists of all Gauss norms with arbitrary real parameters; the family

(log |T1|, . . . , log |Tn|)

induces a piecewise-linear isomorphism Sn c Rn.
Now if X is an arbitrary analytic space and if Ç1, . . . , Çm are quasi-ûnite maps

from X to (Gn
m)an, then

⋃
j Ç

21
j (Sn) is a skeleton by [1], Theorem 5.1 (it consists

only of points whose Zariski-closure is n-dimensional, so it is empty if dimX < n),
and Ç21

j (Sn) ³ Sn is a piecewise immersion for all j; of course, every piecewise-

linear subspace of
⋃

j Ç
21
j (Sn) is still a skeleton.

If S is a skeleton of an analytic space X and if f is a regular invertible functions
deûned on a neighborhood of S, then log |f | is a piecewise-linear function on S,
and our purpose is to understand what are the piecewise linear functions on S

that can arise this way in the algebraic situation.
Let us make precise what we mean. Let X be an algebraic variety over F , say

irreducible of dimension n; let us call log-rational any real-valued function of the
form log |f | for f a non-zero rational function on X , viewed as deûned over Uan

for U the maximal open subset of X on which f is well-deûned and invertible.
Let Ç1, . . . , Çm be (algebraic) quasi-ûnite maps from X to Gn

m (the corresponding
analytic maps will also be denoted Ç1, . . . , Çm). Let S be a subset of the skeleton⋃
Ç21
j (Sn) deûned by a Boolean combination of inequalities between log-rational

functions. Our main theorem is the following ûniteness result.

Theorem 1 (Berkovich setting). Let X be an irreducible algebraic variety over
F of dimension n and assume F is algebraically closed. Let S be as above. Then
there exists finitely many non-zero rational functions f1, . . . , f3 on X such that the
group of restrictions of log-rational functions to S is stable under min and max
and is generated under addition, substraction, min and max by the (restrictions of
the) functions log |fi| and the constants log |a| for a * F×.
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Let us insist on the assumption that F is algebraically closed: for a general F
the theorem does not hold, as shown by a counter-example due to Michael Temkin.

In fact, we do not work directly with Berkovich spaces but with the model-
theoretic avatar of this geometry, namely the theory of stable completions of alge-
braic varieties which was introduced by Hrushovski and the speaker in [2]. Thus,
what we actually prove is Theorem 2 which is a version of the result above in this
model-theoretic framework 3 the ûnal transfer to Berkovich spaces being straight-
forward.

Let us give some explanations. Let X be an algebraic variety over a valued

ûeld F . We denote by X̂ the stable completion of X . The standard skeleton Sn of

(Gn
m)an has a natural counterpart Ŝn and

⋃
Ç21
j (Ŝn) makes sense as a subset of

X̂ ; moreover, the inequalities between log-regular functions that cut out S inside⋃
Ç21
j (Sn) also make sense here, and cut out a subset Ŝ of

⋃
Ç21
j (Ŝn). This

subset is F -deûnably homeomorphic to an F -deûnable subset of �N for some N .

It follows moreover from its construction that Ŝ is contained in the subset X# of
X̂ consisting of strongly stably dominated types (or, otherwise said, of Abhyankar
valuations), and even in its subset X#

gen of Zariski-generic points. And now the
model-theoretic version of Theorem 1 is the following:

Theorem 2 (Model-theoretic setting). Let F be an algebraically closed field en-
dowed with a non-trivial valuation val : F ³ � * {>}. Let X be an irreducible
algebraic variety over F . Let § be an iso-definable subset of X#

gen which is �-

internal, that is, F -definably isomorphic to an F -definable subset of �N for some
N . There exists finitely many non-zero rational functions f1, . . . , f3 on X such
that the group of restrictions of val-rational functions to § is stable under min
and max and generated under addition, substraction, min and max by the (re-
strictions of the) functions val(fi) and the constants val(a) for a * F× (as the
terminology suggests, a val-rational function is a �-valued function of the form
val(f) with f rational, defined on the stable completion of the invertibility locus of
f).

Let us start with a remark. The �-internal subsets we are really interested in
for application to Berkovich theory seem to be of a very speciûc form (they are

deûnable subsets of
⋃
Ç21
j (Ŝn) for some family (Çj) of quasi-ûnite maps from X

to Gn
m) and our main theorem deals at ûrst sight with fare more general �-internal

subsets. But this is somehow delusive; indeed, we show that every �-internal

subset of X#
gen is contained in some ûnite union

⋃
Ç21
j (Ŝn) as above.

We are now going to describe roughly the main steps of the proof of our main
theorem.

Step 1. This ûrst step has nothing to do with valued ûelds and concerns general
divisible abelian ordered groups. Basically, one proves the following. Let D be
an M -deûnable closed subset of �n for some divisible ordered group M contained
in a model � of DOAG, let g1, . . . , gm be Q-aûne M -deûnable functions on �n,
and let f be any continuous and Lipschitz M -deûnable map from D to �, such
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that for every x in D there is some index i with f(x) = gi(x). Then under
these assumptions, f lies in the set of functions from D to � generated under
addition, substraction, min and max by the gi, the coordinate functions and M :
Here the Lipschitz condition refers to a Lipschitz constant in Zg0, so that it is
a void condition when M has no non-trivial convex subgroup and D is deûnably
compact, but meaningful in general.

Step 2. We start with proving a ûniteness result in the spirit of our theorem
under a weaker notion of generation. More precisely, we show the existence of
f1, . . . , f3 such the following weak version of our statement holds, with H denoting
the group of �-valued functions on § generated by the val(fi) and the constants
val(a) for a * F× : for every non-zero rational function g on X there exist finitely
many elements h1, . . . , hr of H such that § is covered by its definable subsets
{val(g) = val(hi)} for i = 1, . . . , r.

The key point for this step is the purely valuation-theoretic fact that an Ab-
hyankar extension of a defectless valued ûeld is still defectless, a result proved by
F.-V. Kuhlmann [3].

Step 3. One strengthens the statement of Step 2 by showing that the fi can even
be chosen so that all functions (val(g))|Υ as above are Lipschitz, when seen as
functions on val(f)(§) ¢ �m. This is done by using an interpretation of the
Lipschitz property in terms of coarsenings and reûnements of valuations.

Step 4. One proves that the set of functions on § of the form val(g) is stable under
min and max. This follows from orthogonality between the residue ûeld and the
value group sorts in ACVF.

Step 5. By the very choice of the fi, every function val(g)|Υ gives rise via the
embedding val(f)|Υ to a deûnable function on val(f)(§) that is piecewise equal to
one of the coordinate functions x1, . . . , x3 (Step 2) and is moreover Lipschitz (Step
3); it is thus (Step 1) equal to t(x1, . . . , x3, a) where t is a term in {+,2,min,max}
and a a tuple of elements of val(F×). Then val(g)|Υ = t(val(f1)|Υ, . . . , val(f3)|Υ, a)
and we are done.
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Very ampleness in strongly minimal sets

Assaf Hasson

(joint work with Benjamin Castle)

The present work studies structures interpretable in algebraically closed ûeld, and
how far they can be from constructible sets (with their full induced structure).
More precisely, the question we are studying is:

Problem. Let K be an algebraically closed ûeld, X ¦ Kn a deûnable set. Let
XZar be the full K-induced structure on X and X a reduct of XZar. When is X a
proper reduct of XZar?

To simplify the discussion we use the following terminology:

Definition.

(i) Let K be a structure. A K-relic is a structure X whose universe, X , is a
deûnable subset of Kn and whose atomic relations and functions are K-
deûnable.

(ii) If T is a theory then a T -relic is a K-relic for some K |= T .

(iii) A K-relic, X , is full if every K-deûnable subset of Xn (for all n) is X -
deûnable.

We will focus on the case of ACF-relics.

Let us consider some examples:
Examples.

(i) A special case: when is a reduct, X , of an algebraically closed ûeld full (i.e.,
ûeld addition and multiplication are X -deûnable).

4 If X is a full reduct of an algebraically closed ûeld, then X is not
locally modular.

4 The ACF-reduct consisting of the two ternary relations A(x, y, z) c
x2 + y2 = z2 and M(x, y, z) c2 x2y2 = z2 is not locally modular
(X/E is an algebraically closed ûeld for E(x, y) c x2 = y2). It is,
however, easy to check that X has many automorphisms that do not
preserve the underlying algebraically closed ûeld. Thus X is not a
full relic.

4 The ACF-reduct consisting of the binary function A(x, y) := x2 + y2

is easily seen to be full (in any characteristic other than 2).

(ii) If K |= ACF then the K-relic on K×{0}*K×{1} equipped with copies of
ûeld addition and multiplication in each copy of K (but no other structure)
is, clearly, not full, since the function (x, 0) 7³ (x, 1) is not deûnable.

The following question of Martin9s appears in [5]:

Question. Let K |= ACF0. Let X be a relic properly expanding (K, ·) or the
K-vector space structure on (K,+). Is X full?
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For the additive group the question was answered (positively) by Marker and
Pillay, [4]. We give (among others) a positive answer for the multiplicative case
as well.

Historically, Martin9s question arose as part of the study of Zilber9s restricted
trichotomy conjecture:

Conjecture. If K |= ACF and X is a non-locally modular strongly minimal
ACF-relic then X interprets a copy of K.

As can be seen from the above examples, Zilber9s conjecture alone does not suûce
for addressing our main question (and does not immediately address Martin9s
question). It is, however, key to the answer.

From now on we assume Zilber’s restricted trichotomy conjecture in
its formulation above1.

The main step in answering our main question is addressing it for strongly
minimal relics. As we have seen, non-local modularity is a necessary but not
suûcient condition. We now isolate a condition that is necessary and suûcient.
The deûnition (as well as the terminology) is inspired by the work of Hrushovski
and Zilber [3]2:

Definition. A strongly minimal structure M is a very ample if there exists an
almost faithful family of plane curves {Ct : t * T } such that for any distinct
x, y *M2 we have MR(Cx + Cy) fMR(T )2 2. Where:

(i) By a plane curve we mean a deûnable subset of M2 of Morley rank 1.

(ii) By an almost faithful family of plane curve we mean a family where for all
t * T the set {s * T : |Cs + Ct| =>} is ûnite. And,

(iii) Cx := {t * T : x * Ct}.

Our ûrst theorem is then:

Theorem. Let K be an algebraically closed ûeld, M a strongly minimal K-relic.
Then the following are equivalent:

(i) M is very ample.

(ii) M is isomorphic, outside a ûnite set, to the full structure induced on some
irreducible algebraic curve over K.

(iii) M is full.

From this we conclude, by a non-trivial induction on dimension:

1This a very mild assumption since the conjecture has been proved by Castle [1] in charac-
teristic 0, by Hasson and Sustretov for 1-dimensional relics ([2]) in all characteristics, and in a
yet unpublished work by Castle and Ye for high-dimensional ACVF-relics.

2It can be shown that in the context of Zariski Geometries the above definition of very
ampleness coincides with the one of Hrushovski and Zilber. The proof uses the main result of
[3].
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Theorem. Let K be an algebraically closed ûeld, Then a K-relic, M, is full if
and only if it is almost strongly minimal and and every strongly minimal set in
Meq is very ample.

Remarks.

(i) Any deûnable family of plane curves witnessing very ampleness of a strongly
minimal set obviously shows that this strongly minimal set is not locally
modular. So the very ampleness assumption (with the fact that all ACF
relics have ûnite Morley Rank) implies that a relic satisfying the assump-
tions is not 1-based.

(ii) As we have seen in the above examples, very ampleness is not preserved
under non-orthogonality. So the requirement that every strongly minimal
set is very ample is necessary.

(iii) Note that for ACF-relics unidimensionality does not imply almost strong
minimality.

(iv) In full generality, it is not clear how to verify that all strongly minimal sets
in Meq are very ample. There are, however, some special cases where this
can be veriûed:

a. Any strongly minimal expansion of a very ample strongly minimal set is
very ample.

b. Any non-locally modular strongly minimal set with elimination of imag-
inaries (in the home sort) can be shown to be very ample. In particular
any strongly minimal expansion of a ûeld is very ample.

c. A strongly minimal expansion of a divisible groups is very ample if and
only if it is not locally modular.

d. If X,Y are strongly minimal, X is very ample and Y is internal to X

then Y is very ample.

With all of the above we can answer Martin9s question:
Theorem. Let K be an algebraically closed ûeld, (G, ·) a divisible 1-dimensional
algebraic group over K. Let Glin be the expansion of (G, ·) by all K-deûnable
endomorphisms of G. Then any K-relic properly expanding Glin is full.

We leave open the following question:
Question. LetM be a non-locally modular strongly minimal set. Is there a very
ample strongly minimal set internal to M? More speciûcally: is there a deûnable
equivalence relation E on M such that M/E is very ample.

We suspect that Hrushovski9s amalgamation construction technique may provide
a counter-example, at least, to the weaker form of the above question.
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Simplicity of the automorphism group of some saturated structures

Zoé Chatzidakis

(joint work with Thomas Blossier, Charlotte Hardouin, Amador Martin Pizarro)

1. Introduction

The talk given in this workshop was very similar to the talk given two months
before during the Mini workshop 2248a Topological and Differential Expansions of
o-minimal Structures (27 November - 3 December 2022). The reader interested in
further details is referred to this report [4], or to the ArXiv preprint [2].

D. Lascar proved in 1995 a very striking and surprising result: Aut(C/Qalg) is
simple ([7]). It was actually the continuation of an earlier paper (1992, [6]), on
automorphism groups of countable saturated strongly minimal structures, and
where the result was announced assuming 51 = 250 . The proof given in the 1992
paper used topology (Polish group, Baire category), the proof in the 1995 paper
was much more combinatorial. These results were later extended to other types
of structures, using both methods - topological or combinatorial.

We wanted to extract from the second proof of Lascar what made things works, and
how this can be used to extend the existing results to other ûelds with operators.
This is done by listing several fundamental properties, and proving a few lemmas.
It also builds on existing work by the four authors (in various combinations).

2. Fields with operators

Our theory T is a complete theory of ûelds (in the language {+, ·, 0, 1,21, . . .}),
with a good notion of dimension or rank, and with some operators. Here are the
structures we will discuss more in detail:

(i) The theory of algebraically closed ûelds of a given characteristic. No oper-
ator. ACFp with p = 0 or p a prime.

(ii) The theory of diûerentially closed ûelds of characteristic 0, one or several
commuting derivations are the operators. DCF0, DCF0,m.
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(iii) The theory of existentially closed diûerence ûelds of characteristic 0, with
prescribed action of the automorphism Ã on Q̄. The operators are Ã and
Ã21. ACFA.

(iv) Separably closed ûelds, together with the »-functions as operators: (a) ûnite
degree of imperfection; (b) inûnite degree of imperfection.

(v) The theories T (X) of diûerential ûelds of characteristic 0 introduced by
Hrushovski and Itai [5], the derivation is the operator.

We very much use the existence (and uniqueness) of the generic type of the additive
group, and its precise description in the ûve examples. The generics of examples
1-3 and 5 are regular, but not those of example 4. There are good notions of bases
in examples (1-3), (4b) and 5.

We use these types to deûne a notion of closure, denoted cl. This notion, in
contrast with algebraic closure, depends on the ambient model, and the closure of
' may be uncountable.

The theories of examples 1,2 and 4,5 are stable, so that uncountably saturated
models exist (with some restriction on the cardinalities in example 4). The theories
of example 3 are however unstable. Under suitable saturation hypotheses on the
ûxed ûeld of the algebraically closed diûerence ûeld K, the results of Shelah on
existence and uniqueness of »-prime models over K do extend ([3]).

3. The result

Theorem 1. Let T be one of the theories (1-3), M a model of T , and » g 51.
Assume that M is »-prime over A := clM ('). Then Aut(M/A) is simple.

In particular we have:

Corollary. Let T be one of the theories (1-3), M an uncountable model of T which
is saturated. Then Aut(M/clM(')) is simple.

A notion playing an important role in the proof is that of unbounded automor-
phism. Lascar [7], then Blossier, Hardouin and Martin-Pizarro [1], show that the
only bounded automorphism of a »-saturated model M are the identity and pow-
ers of the Frobenius; so the only bounded automorphism which ûxes cl(M) is the
identity. Both results are then direct consequences of

Theorem 2. Let U be »-prime over clU ('), with T as in (1-3). Let Ç *Aut(U/cl('))
be unbounded. Then every ¿ * Aut(U/cl(')) can be written as the product of four
conjugates of Ç and Ç21.

I also discussed the possible extension to examples 4b and 5. Other examples may
arise.
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Ellis groups

Ludomir Newelski

(joint work with Adam Malinowski)

How does the (deûnable) topological dynamics of a group G change when we
extend the group elementarily? In particular are the related Ellis (semi)groups
related algebraically?

Assume G is an inûnite group. By a G-algebra we mean an algebra of subsets
of G closed under left translation by elements of G. Assume A is a G-algebra.
Then its Stone space S(A) is naturally a G-ûow and we consider the associated
Ellis semigroup E(S(A)) and its Ellis subgroups.

Definition.
(1) Given p * S(A) we deûne a homomorphism of G-algebras
dp : A ³ P(G) by dp(U) = {g * G : g21A * p}.
(2) We say that A is d-closed if A is closed under dp for every p * S(A).
(3) When A is d-closed we deûne a binary operation 7 on S(A) by

U * p 7 q ñó dqU * p

When A is d-closed, then (S(A), 7) is a left-continuous semigroup isomorphic
to the Ellis semigroup E(S(A)).

We work in the following combinatorial set-up. G z H are inûnite group
structures, A is a d-closed G-subalgebra of the algebra Def(G) of deûnable subsets
of G and B is a d-closed H-algebra containing A(H) for every A * A. Also we
assume that B|G := {B +G : B * B} equals A. We prove the following theorems.

Theorem 1. Assume there are generic points in S(B). Then the Ellis groups of
S(A) are homomorphic images of some subgroups of the Ellis groups of S(B).
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Theorem 2. Assume every minimal left ideal in S(B) is a group. Then the Ellis
groups of S(A) are isomorphic to some closed subgroups of the Ellis groups of
S(B).

The main motivation for the combinatorial set-up is the following model-theoretic
set-up, which is its special case. Assume G is an inûnite group deûnable in a model
M andN is a 7-elementary extension ofM . ThenG, H = G(N), A = Defext,G(M)
and B = Defext,G(N) satify the assumptions of the combinatorial set-up. We
compare the G-ûow Sext,G(M) = S(A) and and the H-ûow Sext,G(N) = S(B).
Theorems 1 and 2 translate to:

Theorem 12. Assume there are generic types in Sext,G(N). Then the Ellis groups
of Sext,G(M) are homomorphic images of some subgroups of the Ellis groups of
Sext,G(N).

Theorem 22. Assume every minimal left ideal in Sext,G(N) is a group. Then
the Ellis groups of Sext,G(M) are isomorphic to some closed subgroups of the Ellis
groups of Sext,G(N).

The assumptions of Theorems 1 and 2 are dual to each other, just like their
proofs. Theorem 19 was already proved in [2]. The proofs of Theorems 1 and 2
use the dual notions of weak heirs and weak coheirs. We elaborate on them. In
the stable case we provide a characterization in terms of local forking. Involved
in the proof of Theorem 1 is a variant of the Ellis structure theorem for some
left-continuous semigroups that are not necessarily compact. The results of this
talk appear in [1].
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Number of triple lines on reducible cubic surfaces and Elekes-Szabó
for algebraic group actions

Tingxiang Zou

(joint work with Martin Bays and Jan Dobrowolski)

The classical Orchard Problem asks the following question: given a set of n points
on a plane, what is the maximal number of lines each contains at least three distinct
points of this set. These lines are called triple lines. When n is large enough, the
best solution is given by choosing ûnite subgroups on an elliptic curve [4]. Elekes
and Szabó also studied this problem restricted to subsets on plane curves [3]. They
proved that if a curve contains arbitrary large ûnite sets with quadratically many
triples lines, then this curve must be a cubic curve. We investigated the spacial
version of this question.
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Let X be a (possibly reducible) cubic surface with smooth irreducible compo-
nents in P3(C): the projective three-space over complex numbers. We asked if it
is possible to have a sequence of ûnite sets An ¦ X(C) such that the size of An

goes to inûnity, and the number of distinct collinear triples in A3
n is cn|An|

2 with
limn³> log|An| cn = 0. Such a conûguration is possible when (An)n are concen-
trated on some projective plane Ã. For example when Ã is not contained in X ,
then Ã +X is a cubic curve, and one can ûnd quadratically many collinear triples
on a cubic curve as mentioned above. We asked if there are other possibilities.
And the answer is no, unless X is a union of three parallel planes.

The formulation of this problem can be simpliûed by taking ultraproducts and
deûne the coarse dimension based on non-standard counting, which captures the
exponent r in nr when n tends to inûnity.

Given an ultraproduct M :=
∏

i³U Mi, where U is a non-principal ultraûlter
on some countable index set I. A set A ¦ Mn is called internal if A =

∏
i³U Ai

for Ai ¦ Mn
i . We consider the nonstandard reals RU over the same ultraûlter

and the standard part map st : RU * {2>,>} ³ R * {2>,>}. Let ¿ * RU

with ¿ > r for all r * R, namely ¿ * RU
g0 \ R. Deûne the coarse dimension with

respect to ¿, δ¿, as a function on internal sets of M given by δ¿(A) := st log¿ |A|,
where |A| is the non-standard cardinality of A. An internal set A is called broad
if 0 < δ¿(A) <>.

Let K be an ultrapower of the complex numbers. We will ûx some ¿ * RU from
now on and simply denote δ¿ as δ. We have proved the following:

Proposition 1. Let X ¦ P3(K) be a cubic surface with smooth irreducible com-
ponents. Suppose X is not a union of three planes intersecting on a common
projective line. Let RX ¦ X3 be the relation defined as: (a, b, c) * RX if a, b, c
are three distinct collinear points on X which are not contained in a line con-
tained in X. Suppose there are A,B,C ¦ X such that δ(A) = δ(B) = δ(C) = 1
and δ(RX + (A × B × C)) = 2 then there is a projective plane Ã 6¦ X such that
δ(RX + (A×B × C) + Ã3) = 2.

This result shows that any large enough ûnite set on X which contains quadrat-
ically many collinear triples must concentrate on a plane not contained in X .

As a corollary, we get the ûnitary version of Proposition 1.

Proposition 2. For any ë > 0, there exists · > 0 and N0 * N with the following
properties. Let X ¦ P3(C) be a cubic surface with smooth irreducible components
which is not the union of three planes intersecting on a common projective line.
Let RX be the collinearity relation on X3. Suppose A ¦ X is a finite subset with
|A| =: N g N0 such that |RX + Ã

3 +A3| < N22ë for all projective planes Ã. Then
|RX + A

3| < N22·.

To prove Proposition 1 in the case when X is reducible, i.e. a union of three
planes or a union of a smooth quadric surface and a plane, we established an
Elekes-Szabó type theorem about algebraic group actions deûned over ûelds of
characteristic 0.
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To state the result, we need to deûne a condition called wgp on broad internal
sets, which is a tool for analyzing internal broad subsets of algebraic varieties.

A broad internal subset A of an absolutely irreducible variety V = V (K) is
called in weak general position (wgp) if δ(A+W ) < δ(A) for any proper subvariety
W of V .

Proposition 3. Let K be an ultrapower of C. Let G = G(K) be an algebraic
group acting on an irreducible variety X = X(K) by regular maps defined over
some algebraically closed countable subfield F f K. Let � be the graph of the
action, namely,

� = {(x, g, x2) : x, x2 * X, g * G, x2 = g(x)}.

Let Y and Z be irreducible (over F ) subvarieties of G and X respectively, and
H be the connected algebraic subgroup of G generated by Y . Suppose further that
no non-trivial element of H fixes Z pointwise.

If there are broad internal sets A wgp in Y and B wgp in Z, such that

δ(� + (B ×A×B)) = δ(A) + δ(B),

then H is nilpotent.

The key step to prove the above proposition is to build a coarse approximate
subgroup in H . By the understanding of coarse approximate subgroups in alge-
braic groups over ûelds of characteristic 0 [2], we know A is essentially contained
in a nilpotent group. More precisely, by the results about wgp coarse approximate
subgroups studied in [1], we deduce that H must be nilpotent.
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Definably semisimple groups interpretable in p-adically closed fields

Yatir Halevi

(joint work with Assaf Hasson and Kobi Peterzil)

A valued ûeld (K, v) is p-adically closed if it is elementarily equivalent to a ûnite
extension of Qp.

It is well known [4], that every deûnable ûeld in a p-adically closed ûeld is
deûnably isomorphic to a ûnite extension of the ûeld. In previous papers [2, 3], we
have shown that every interpretable inûnite ûeld is deûnably isomorphic to a ûnite
extension of the ûeld. Furthermore, we show that every inûnite interpretable group
has unbounded exponent and that if it is dp-minimal then it is abelian-by-ûnite.
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We present here a general result on deûnably semisimple groups interpretable in
a p-adically closed ûeld. We say that a deûnable group G is definably semisimple
if it has no inûnite abelian deûnable normal subgroup.

Our main result is the following.

Theorem.[1] Let G be an interpretable group in a p-adically closed field K. If
G is definably semisimple then it has a finite normal subgroup H E G for which
G/H is definably K-linear.

Our results pass through local analysis of interpretable groups which we outline
here.

Proposition. Let G be an infinite interpretable group. Then there exists a finite
normal subgroup H E G, an infinite definable subset X ¦ G/H and a definable
injection f : X ³ Dn, where D is either K, � or K/O, where O is the valuation
ring and � is the value group.

Thus, up to a quotient by a ûnite normal subgroup, we may pull back (local)
algebraic and topological properties from D to G.

Assume for simplicity that H = {e}. Using the function f we may pull back
certain infinitesimal type-deûnable subgroups from D to G. If D is either � or
K/O we can use this to ûnd an inûnite abelian deûnable subgroup of G. Thus if G
is deûnably semisimple necessarily D = K. Now using the inûnitesimal subgroup
and the fact that in K every deûnable function is locally diûerentiable, we can
ûnd a deûnable local diûerentiable Lie group in G. Now, using Lie theory and the
adjoint map we ûnd a homomorphism from G to Mn(K) with ûnite kernel.
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On the Tarski problem for all hyperbolic groups

Simon André

Around 1945, Tarski asked whether non-abelian free groups are elementarily equiv-
alent. This famous problem remained open for more than ûfty years, and was
ûnally solved positively by Sela in [8] (see also [5] by Kharlampovich and Myas-
nikov). Then, Sela extended his work to torsion-free hyperbolic groups, and clas-
siûed the ûnitely generated groups that are elementarily equivalent to a given
non-abelian torsion-free hyperbolic group G: a ûnitely generated group G2 is el-
ementarily equivalent to G if and only if there exist two isomorphic subgroups
H ¢ G and H 2 ¢ G2 such that G and G2 are hyperbolic towers over H and H 2

respectively (see for instance [4, 6, 9] for the deûnition of a tower).
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The main goal of the talk was to present a partial generalization of this classiû-
cation to all hyperbolic groups, possibly with torsion. The notion of a hyperbolic
group was introduced by Gromov in [3], and has been a fundamental object of
study in inûnite group theory ever since. Recall that a geodesic metric space
is said to be hyperbolic if there exists a constant · g 0 such that any geodesic
triangle &(x, y, z) is ·-slim, meaning that for any point p on the side [x, y], the
distance from p to [x, z]* [z, y] is at most · (i.e. [x, y] is contained in the union of
the ·-neighborhoods of [x, z] and [z, y]). A group G is said to be hyperbolic if it
acts by isometries, properly discontinuously and cocompactly (i.e. with compact
quotient) on a proper geodesic hyperbolic metric space. Note that this deûnition
implies that the groupG is ûnitely generated (by the famous Milnor-ÇSvarc lemma).
Equivalently, a ûnitely generated group G is hyperbolic if its Cayley graph (with
respect to some, or equivalently any, ûnite generating set of G) is a hyperbolic
metric space.

We say that two groups are "#-equivalent if they satisfy the same "#-sentences,
i.e. the same ûrst-order sentences of the form

"x1 · · · "xm#y1 · · · #yn Ë(x1, . . . , xm, y1, . . . , yn),

where Ë is a quantiûer-free formula with m + n free variables. Informally, our
main result (Theorem 1 below) states that a hyperbolic group G and a ûnitely
generated group G2 are "#-equivalent if and only if there is a ûnite sequence of
moves joining them, each move consisting in adding or removing generators and
relations from the normalizer of some ûnite subgroup in a very speciûc manner.
These moves are of three types, which we call HNN-equivalence, O-equivalence
and QH-equivalence (see Deûnition 1).

Theorem 1. Let G be a hyperbolic group, and let G2 be a finitely generated group.
Then G and G2 are "#-equivalent if and only if there exists a finite sequence of
groups G0 = G, . . . , Gn c G

2 for some integer n g 0 such that for every i < n, the
groups Gi and Gi+1 are HNN-equivalent or O-equivalent or QH-equivalent.

Remark 2. The groups Gi and Gi+1 are "#-equivalent for every i < n.

Remark 3. It can be seen that HNN-equivalence, O-equivalence and QH-equi-
valence preserve hyperbolicity. Hence, as a corollary of Theorem 1, we recover
the main result of [1] (previously proved by Sela in the absence of torsion, see [9,
Theorem 7.10]): if a finitely generated group G2 is "#-equivalent to a hyperbolic
group G, then G2 is hyperbolic.

It is worth pointing out that, for torsion-free groups, we recover Sela9s classi-
ûcation. Indeed, in the absence of torsion, an HNN-equivalence simply consists
in doing a free product with Z or collapsing a free factor isomorphic to Z in a
free product decomposition, and a QH-equivalence consists in building or collaps-
ing a hyperbolic ûoor in the sense of [4, 6, 9]. Moreover, O-equivalence is a new
phenomenon that only appears in the presence of torsion.

We give below a slightly imprecise deûnition of the three types of equivalence
that appear in the statement of Theorem 1.
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Definition 1. Let G be a finitely generated group and let H be a subgroup of G.
We say that G is a ûoor over H if there exists a finite subgroup F of H such that:

— G splits as an amalgamated product of the form H 7NH(F ) NG(F );
— NH(F ) is infinite;
— the set of finite subgroups of H normalized by NH(F ) has a maximum for

inclusion (this is always the case when G is a hyperbolic group), and this
maximum is F ;

— one of the following three conditions holds:

(i) NH(F ) has a subgroup isomorphic to the free group of rank 2, and
NG(F ) is obtained from NH(F ) by adding a stable letter centralizing
F (in other words, G is simply the HNN extension of H over the
identity of F ). We say that G is an HNN-ûoor over H.

(ii) NH(F ) has a subgroup isomorphic to the free group of rank 2, and
NG(F ) splits as a graph of groups & with two vertices, one of which
is NH(F ), and the other is a finite extension

1³ F ³ Q³ Ãorb
1 (O)³ 1

where O denotes a two-dimensional hyperbolic compact connected orb-
ifold without mirrors, and the edge groups of & coincide with the
preimages in Q of the boundary and conical subgroups of Ãorb

1 (O);
some additional technical conditions are required (such as the exis-
tence of a particular retraction r : G � H). We say that G is a
QH-ûoor over H.

(iii) NH(F ) is virtually cyclic infinite, the embedding NH(F ) �³ NG(F )
used to define the amalgamated product G = H 7NH(F ) NG(F ) maps
non-conjugate finite subgroups to non-conjugate finite subgroups, and
moreover there exists an embedding NH(F ) �³ NG(F ) that maps
non-conjugate finite subgroups to non-conjugate finite subgroups. In
addition, we suppose that there exists a splitting of H in which NH(F )
is not elliptic. We say that G is an O-ûoor over H.

If G2 is a finitely generated group, we say that G and G2 are HNN-equivalent
(respectively QH-equivalent, O-equivalent) if G is an HNN-floor (respectively a
QH-floor, an O-floor) over a subgroup H ¢ G isomorphic to G2, or vice versa.

Sela proved in [8] that the ûrst-order theory of a non-abelian free group Fn ad-
mits a uniform quantiûer elimination down to the Boolean algebra of "#-sentences:
for any ûrst-order sentence Ë in the language of groups, there exists a Boolean
combination × of "#-sentences, independent of the rank n, such that Ë is true in
Fn if and only if × is true in Fn. Since non-abelian free groups are "#-equivalent
(see [2], [7] or [8, Theorem 3]), it follows that they are elementarily equivalent. For
a ûxed non-elementary torsion-free hyperbolic group H , Sela proved a similar uni-
form quantiûer elimination (we refer to the discussion after the proof of Propostion
7.8 in [9]): for every ûrst-order sentence Ë, there exists a Boolean combination ×

of "#-sentences such that, for every ûnitely generated group G which is either a
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free product G = H 7 Fn (for some n g 0) or a hyperbolic tower over H , Ë is
true in G if and only if × is true in G. Since H and G are "#-equivalent (see [9]),
they are elementarily equivalent. In particular, it follows that two torsion-free hy-
perbolic groups are "#-equivalent if and only if they are elementarily equivalent.
For hyperbolic groups with torsion, we expect a similar uniform elimination of
quantiûers, and we formulate the following conjecture.

Conjecture 4. Any two hyperbolic groups are "#-equivalent if and only if they
are elementarily equivalent.

Note that if one believes this conjecture, then the classiûcation 1 is in fact a
classiûcation up to elementary equivalence.

Our proof of the classiûcation 1 builds on our previous works [1] and [2], in
which we proved that hyperbolicity is preserved by elementary equivalence among
ûnitely generated groups, and classiûed the ûnitely generated virtually free groups
up to "#-equivalence.
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Riso-stratifications

Immanuel Halupczok

(joint work with David Bradley-Williams)

1. Motivation / Goal

The surface from Figure 1 is smooth at a1, singular at a2 and, in some sense,
<even more= singular at a3: near a2, the surface is at least <roughly translation
invariant= in direction of the x-axis, whereas near a3, it is not roughly translation
invariant in any direction. There are various ways in which one can make <roughly
translation invariant= precise, though the most natural deûnitions have serious
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drawbacks (which we will recall below). In this talk, a new way to make this
notion precise which avoids those drawbacks was presented. This is joint work
with David Bradley-Williams; see [2].

Figure 1. A surface and points with <diûerent amounts of singularity=

Most of the following works in many diûerent topological ûelds (e.g. R, C,
Qp), but for simplicity, let us just work over R. Let us ûx a set X ¢ Rn whose
singularities we want to consider. We assume X to be deûnable in a suitable
language L, e.g. the ring language. (Another suitable language is the subanalytic
one. More generally, the following works for any polynomially bounded o-minmal
language on R.)

In general, given a neighbourhood B ¢ Rn of some point x * X , we are inter-
ested in whether X + B, after applying some <small perturbation= Ç : B ³ B2 ¢

Rn, becomes translation invariant in d-dimensions (for some d f n). Here, the
<small perturbation= should be a bijection of a certain kind K, e.g. a homeomor-
phism or a bi-Lipschitz1 map. Let us formulate this a bit more precisely:

Definition 1. Fix x * X and let B ¢ Rn be a neighbourhood of x. We say
that X is d-K-trivial on B if there exists a K-bijection Ç : B ³ B2 ¢ Rn and
a d-dimensional vector sub-space V ¢ Rn such that for x1, x2 * B2 satisfying
x1 2 x2 * V , we have x1 * Ç(X +B) if and only if x2 * Ç(X +B).

For a ûxed notion K of perturbation map, we can then classify the singularities
of X , partitioning it into sets S0, . . . , SdimX as follows:

Definition 2. For each d f dimX, let Sd be the set of those x * X which have
a neighbourhood B on which X is d-K-trivial, but which have no neighbourhood B
on which X is (d+ 1)-K-trivial.

Unfortunately, if K means <homeomorphism= or <bi-Lipschitz=, then the re-
sulting sets Sd are not deûnable in general, making this entire approach not very
useful. A classical remedy to this is to introduce a suitable notion of stratification:
a partition of X into sets Sd which in particular has the property that every x * Sd

has a neighbourhood on which X is d-K-trivial. Those Sd are deûnable, but they
are less precise in the sense that X might also be (d + 1)-K-trivial on a neigh-
bourhood of an x * Sd. Moreover, the Sd are usually not canonically deûned; in

1Bi-Lipschitz means that both the map and its inverse are Lipschitz continuous.
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Figure 1 for example, while it would be natural to set S0 = {(0, 0, 0)}, any bigger
ûnite set would also yield a stratiûcation.

Our goal now is to replace the notion K by another one which directly yields
deûnable sets Sd.

2. Passing to a non-standard model

A key idea is that we should look at infinitesimal neighbourhood of points x * X .
To this end, we need to work in a non-standard model, so ûx a proper elementary
extension R7 � R. Recall that R7 is naturally a valued ûeld, where the valuation
ring OR7 is the convex closure of R, and the maximal ideal MR7 ¢ OR7 consists
of the inûnitesimal elements of R7. We denote the valuation by | · |v and write it
multiplicatively, i.e., | · |v is the canonical map (R7)× ³ � := (R7)×/O×

R7 * {0},
extended by 0 7³ 0.

We will need to put an additional assumption on R7, namely that it is spherically
complete, meaning that every nested chain of valuative balls Bi ¢ R7 has non-
empty intersection. Note that such elementary extensions exist: If L is the ring
language, we can take R7 to be a Hahn ûeld like R7 = R((tQ)); for the more
general languages L mentioned above, the existence of such R7 has been proven
in [3] (and reproven in bigger generality in [1]).

Let us write X7 for the subset of (R7)n deûned by the same formula as X .
Given x * X (a standard point), we now have a notion of <the inûnitesimal
neighbourhood of x=, namely:

Definition 3. Given x * X, set Bx := x +Mn
R7 ¢ (R7)n (where Mn

R7 is the
cartesian power of MR7).

We will apply Deûnition 1 within R7, with B = Bx. It turns out that we can
also set B2 := Bx (due to the ultrametric nature of the valuation). Given that
the neighbourhood is inûnitesimal, it makes sense to also impose that the map
Ç : Bx ³ Bx produces only an inûnitesimal perturbation. Here is the property we
want it to have:

Definition 4. A bijection Ç : Bx ³ Bx is a risometry if, for every pair x1, x2 * Bx

of distinct points, we have

(1) |Ç(x1)2 Ç(x2)2 (x1 2 x2)|v < |x1 2 x2|v.

The intuition behind this deûnition is as follows: Set d := x1 2 x2 and d2 :=
Ç(x1)2 Ç(x2). Imposing d = d2 would mean that Ç has to be a translation, i.e., it
would not perturb X +Bx at all. Instead, we want to allow d and d2 to diûer by
something inûnitesimal. The right way to make this precise is that the diûerence
d 2 d2 should be inûnitesimal compared to d (or, equivalently, compared to d2).
This is exactly what (1) is saying.

We now plug those notions into Deûnitions 1 and 2:
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Definition 5. Fix d f n.

(i) Given x * X (a standard point), we say that X7 is d-riso-trivial on Bx if
there exists a risometry Ç : Bx ³ Bx and a d-dimensional vector sub-space
V ¢ (R7)n such that for x1, x2 * Bx satisfying x1 2 x2 * V , we have
x1 * Ç(X +Bx) if and only if x2 * Ç(X +Bx).

(ii) Let Sd be the set of those x * X such that on Bx, X
7 is d-riso-trivial but

not (d+ 1)-riso-trivial.

Our main result is:

Theorem 6. For each d, Sd is L-definable.

To prove this, we ûrst extend the language L to a language L2 which includes
the valuation. In L2, the inûnitesimal neighbourhoods Bx are deûnable and we
prove more genereally that the set of open valuative balls (considered as living
in some imaginary sort) on which X7 is d-riso-trivial is L2-deûnable.2 The main
ingredient to get back to the smaller language L is the fact that the structure on
the residue ûeld R of R7 induced by the language L2 is only the L-structure on R.

Now that we have our canonical partition of X into deûnable sets Sd, a natural
question is: do these sets form a stratiûcation of X , in some of the classical senses?
The ûrst property to check is the following:

Theorem 7. For each d, if Sd is non-empty, then dimSd = d.

The next required property would be that the topological closure of Sd is con-
tained in S0 * · · · * Sd. In general, this is not the case for the deûnition of the
sets Sd given above, but one can modify the sets Sd to obtain sets S2

d which still
satisfy Theorems 7 and 6 and which additionally satisfy the topological condition.
We call this partition S2

0 * · · · * S
2
dimX of X the riso-stratification of X . To ûnish

relating this to classical stratiûcations, we also prove that this riso-stratiûcation
satisûes Whitney9s regularity conditions, meaning that the riso-stratiûcation of X
is in particular essentially3 a Whitney stratiûcation of X .

While this is nice to know, note that the riso-stratiûcation does not only have the
advantage of being canonical, but it also has some stronger regularity properties
(that neither Whitney nor Verdier stratiûcations have), which allow us to get
some information about Poincaré series. (However, explaining this would require
an entire second talk.)
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Lang-Weil type bounds in finite difference fields

Martin Hils

(joint work with Ehud Hrushovski, Jinhe Ye and Tingxiang Zou)

We establish coarse estimates for the number of rational points of diûerence va-
rieties in ûnite diûerence ûelds. For p prime and 0 f m < n, we denote by
DF (p, n,m) the ûnite diûerence ûeld (Fpn ,Frobpm), where Frobpm(x) = xp

m

. Let
{DF (pi, ni,mi)}i*N be an enumeration of all ûnite diûerence ûelds. We consider
diûerence ûelds in the language of diûerence rings L := {0, 1,+,2,×, Ã}.

We ûx a pseudoûnite diûerence ûeld

(K,Ã) :=
∏

i³U

DF (pi, ni,mi),

where U is a (non-principal) ultraûlter on N satisfying

lim
i³U

mi = lim
i³U

ni/mi =>.

Definition. (i) Let D =
∏

i³U Di ¦ Kn be an internal subset of Kn (e.g., a
definable set). The (normalized) coarse dimension of D is defined as

···(D) := st.
log |D|

log |K|
:= lim

i³U

log |Di|

log pni

i

* [0, n] * {2>}.

(ii) Let Ç(x1, . . . , xn) be an L(K)-formula and D = Ç[K] ¦ Kn. The transfor-
mal dimension of D is defined as

trf.dim(D) := max{trf.deg(K(a)Ã/K) | a * (K 2, Ã) < (K,Ã) with |= Ç(a)},

where K(a)Ã denotes the difference field generated by the tuple a over K
and where trf.deg denotes the transformal transcendence degree.

The following is (the non-standard version of) our main result.

Theorem. Let D ¦ Kn be a quantifier-free L(K)-definable set. Then

···(D) = trf.dim(D).

In particular, the coarse dimension of any quantifier-free definable set in K is an
integer.

This conûrms a conjecture by Zou [4, Conjecture 3.1]. Moreover, Zou proved that
the equality between coarse dimension and transformal dimension for quantiûer-
free deûnable sets implies the same equality for existentially deûnable sets ([4,
Theorem 3.1]).
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To prove the theorem, we use the following qualitative version of strong Lang-Weil
bounds due to Cafure-Matera [1] in order to estimate the number of rational points
of diûerence varieties in ûnite diûerence ûelds.

Fact 1. Given n, 3 * N, there exists a constant Cn(3), which depends polynomially
on 3, such that whenever V ¦ An is an absolutely irreducible variety defined over
the finite field Fq, with d = dim(V ) and deg(V ) f 3, then

|#V (Fq)2 q
d| f Cn(3)qd21/2.

The main diûculty is to control the algebraic dimension of the irreducible com-
ponents of the Frobenius specializations (i.e. the algebraic varieties one obtains
when replacing Ã by a Frobenius automorphism Frobpm) of a diûerence variety
X . If X is of transformal dimension d, we show that there is a diûerence subva-
riety Xs of transformal dimension < d such that all Frobenius specializations of
X \Xs (for pm large enough) are equidimensional of dimension d. We prove the
existence of Xs using the model theory of contractive valued diûerence ûeld, where
the induced automorphism Ã on the value group � is assumed to satisfy Ã(³) g n³
for any ³ * �>0 and n* N. By the recent work [2] of Dor and Hrushovski, the

corresponding theory has a model-companion, denoted by Ë̃V FA. It is not hard

to see that for quantiûer-free L-deûnable sets in models of Ë̃VFA, the topological
dimension (with respect to the valuation topology) and the transformal dimension
agree. We may thus use the following key fact, together with standard techniques
for diûerence ûelds, like the primitive element theorem, to show the existence of
Xs. (By ACFA we denote the model-companion of the theory of diûerence ûelds.)

Fact 2 ([2, 3]). Let Lval be the language of valued difference fields, and let Q be the
set of prime powers. For q * Q, let Lq := (Fq(t)alg , vt,Frobq), where vt denotes
the t-adic valuation. Then the following holds.

(i) Ë̃VFA = {Ç Lv-sentence | Lq |= Ç for all q * Q with q k 0}. In particu-

lar,
∏

q³U Lq |= Ë̃VFA for any non-principal ultrafilter U on Q.

(ii) Let L |= Ë̃VFA, with residue field kL.

a. Both L and kL (with the induced automorphism) are models of ACFA.

b. The residue field kL is stably embedded in L, with induced structure a
pure model of ACFA.

c. The partial type over L of an element x from the valuation ring O as-
serting that the residue of x is transformally transcendental over kL, is
complete (and thus also definable).
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Automorphisms of ordered abelian groups

Jan Dobrowolski

(joint work with Rosario Mennuni)

The goal of the talk is to present the main result of [1]:

Theorem 1. The category of ordered abelian groups with an automorphism has
the Amalgamation Property.

While this is a purely algebraic statement, our proof uses model-theoretic tools
such as the compactness theorem, existentially closed models, and o-minimality.

Moreover, noting that any quantiûer-free formula in the language
LÃ := {+,2, 0, <, Ã, Ã21} is NIP in any ordered abelian group with an automor-
phism Ã, one can conclude from Theorem 1 the following:

Corollary 2. The theory of ordered abelian groups with an automorphism is NIP
in the sense of positive logic.

Namely, there do not exist contradictory existential formulas Ç(x; y) and Ë(x; y)
and parameters (ai)i<Ë and (bW )W¦Ë in some model such that Ç(ai; bW ) holds for
i *W and Ë(ai; b) holds for i /*W .

Below we sketch the proof of Theorem 1.

Step 1: Realiûcation. Given an amalgamation problem B ± A ³ C, we ûnd

extensions of A2, B2, C2 of A, B, C, respectively, and we equip each of them with
a structure of an ordered real vector space with an automorphism. For this, we use
compactness and the following fact (see [2, Corollaries 0.5 and 0.14, Proposition
0.25]).

Fact 3. Every countable-dimensional ordered vector space is isomorphic to a Hahn
sum of Archimedean ordered vector spaces.

A2, B2, and C2 are obtained as some suûciently rich Hahn groups over R
equipped with suitably constructed automorphisms. Moreover, we obtain com-
mutativity of suitable diagrams, which yield that amalgamating B2 ± A2 ³ C2 is
enough to amalgamate B ± A³ C.

Hence, from now on we are working with ordered real vector spaces with an
automorphism.

Step 2: Intermediate Value Property (IVP). In this step we prove that Ã-poly-
nomials have the IVP on existentially closed models.
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Definition 4.

— A Ã-polynomial is an expression of the form £n
i=0riÃ

i for some n < Ë and
ri * R.

— If A is an ordered real vector space with an automorphism, then a Ã-poly-
nomial over A is an expression of the form £n

i=0riÃ
i + a with a * A.

— The polynomial associated to £n
i=0riÃ

i + a is the polynomial £n
i=0rix

i.
— If b * B § A where A and B are ordered real vector spaces with an auto-

morphism, then we say that b is Ã-algebraic over A when b is a zero of a
non-trivial Ã-polynomial over A.

— A Ã-polynomial over A is absolutely monotone if it defines a monotone
function in every extension of A.

As pointed out to us by Martin Hils, a Ã polynomial is absolutely monotone if
and only if the polynomial associated to it has no positive real roots. This allows
to decompose an arbitrary Ã-polynomial as a product of absolutely monotone Ã-
polynomials and Ã-polynomials of degree 1. If f is absolutely monotone, we show
that f has the IVP on any maximally complete (with respect to the Archimedean
valuation) model, hence also on any existentially closed model. We deal with the
degree 1 case by constructing suitable 1-generated extensions.

Step 3: IVP for minima. With considerable technical eûort, we extend the IVP on

existentially closed models to functions of the form min(f1 + a1, . . . , fn + an) for
Ã-polynomials f1, . . . , fn. This step is crucial for amalgamating Ã-transcendental
points.

Step 4: Amalgamating Ã-algebraic points. We solve amalgamation problems of
the form B ± A³ C where B = 〈A, b〉Ã is generated overA by an element b which
is Ã-algebraic over b. As in Step 2, we deal separately with the absolutely monotone
case and the degree 1 case, and we conclude by decomposing the extension A³ B

into a suitable tower of extensions.

Step 5: Amalgamating Ã-transcendental points. Consider B ± A ³ C with B =
〈A, b〉Ã generated over A by an element b Ã-transcendental over A. Let M be an
existentially closed model containing B, and let A2 be the set of all elements of
M which are Ã-algebraic over A. Let B2 be the substructure of M generated by
A2 * {b}. By Step 4, we can amalgamate A2 ± A ³ C into some C2. Now it is
enough to amalgamate B2 ± A2 ³ C2. For this, is suûces to show that qftp(b/A2)
is ûnitely satisûable in A2 (hence consistent with the atomic diagram of C2). So
let Ç(x) * qftp(b/A2). We may assume Ç(x) c ((x, Ã(x), . . . , Ãn(x)) * Z) for some
cell Z deûnable in the ordered real vector space A2. As b is non-algebraic over A2,
we get that Z is an open cell, hence Ç(x) c (h(x) > 0) where h = min(f1, . . . , fm)
for some Ã-polynomials fi over A2. As b * Z, we have h(b) > 0, so there is some
m * M with h(b) > m > 0. Since M is existentially closed, we can choose m so
that Ã(m) = m, hence m * A2. If h(a2) g 0 for some a2 * A2 then a2 satisûes Ç;
otherwise, by the IVP for h on M we can ûnd m2 *M with h(m2) = 0. But then
m2 is Ã-algebraic over A2, so m2 * A2, and h(m2) = m > 0, so m2 satisûes Ç.
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Corners in stability

Daniel Palaćın

(joint work with Amador Martin-Pizarro, Julia Wolf)

1. Introduction

Given an abelian group G, written additively, we say that a subset S ¢ G × G

contains a (non-trivial) corner if there exists a triple (x, y, g) * G3, with g 6= 0G,
such that (x, y), (x+g, y), (x, y+g) * S. It is well-known that a non-trivial corner
(x0, y0), (x0 + g, y0), (x0, y0 + g) in the Cayley graph of a subset A ¢ G yields a
3-arithmetic progression x0 2 y0 2 g, x0 2 y0, x0 2 y0 + g in A. Hence, for ûnite
groups of odd order, the existence of non-trivial corners for dense subsets of G×G
implies Roth9s Theorem on arithmetic progressions of length 3 in dense subsets
of G. The existence of non-trivial corners for ûnite cyclic groups of odd order is
due to Ajtai and Szemerédi [1]. Nowadays, several proofs of this result are known,
some of them with reasonable bounds [5, 7].

Concerning non-abelian groups, one may distinguish between naive corners, a
conûguration of the form (x, y), (gx, y), (x, gy) with g 6= 1G, and BMZ corners
which are conûgurations of the form (x, y), (gx, y), (gx, gy) with g 6= 1G. Here the
term BMZ stands for Bergelson, McCutcheon and Zhang, who proved in [2] the
existence of BMZ corners for sets of positive upper density in amenable groups.
One can also deûne other 2-dimensional shapes for abelian groups such as squares,
i.e. patterns of the form (x, y), (x + g, y), (x, y + g), (x + g, y + g), or L-shapes
which consist of 4 pairs of the form (x, y), (x+ g, y), (x, y + g), (x, y + 2g). Peluse
[8] has obtained the ûrst reasonable bounds for the existence of L-shapes in dense
subsets of Fn

p × Fn
p .

We state the existence of some 2-dimensional shapes for deûnable relations
which are robustly stable (see Deûnition 2.3) in non-principal ultraproducts of
ûnite groups, not necessarily abelian.

2. Ultraproducts and robust stability

2.1. Set-up. Fix a non-principal ultraproduct G =
∏

n³U
Gn of ûnite groups

(Gn)n*N of strictly increasing order. We say that a subset X ¢ G is internal if
X =

∏
n³U

Xn for some subsets Xn ¢ Gn for each n * N. Internal sets form a
Boolean algebra which comes naturally equipped with the so-called Loeb measure,
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which is deûned for an internal subset X =
∏

n³U
Xn of G as follows:

µG(X) = lim
n³U

|Xn|

|Gn|
.

This is a ûnitely additive probability measure on the Boolean algebra of internal
sets. Working within a suitable language, expanding the language of groups, we
may assume that all (relevant) internal sets are deûnable and that the Loeb mea-
sure is continuous in the following sense: for every · * [0, 1] and every internal
subset Z ¢ Gn ×Gm, there is some internal set Y· ¢ G

m such that

{y * Gm | µGn(Zy) > ·} ¢ Y· ¢ {y * G
m | µGn(Zy) g ·} ,

where Zy = {x * Gn | (x, y) * Z} is the ûber of Z at y.

2.2. Dense sets. Deûnable sets of positive Loeb measure are called dense. We
can extend this terminology to types by saying that a partial type is dense if it
only implies dense deûnable sets. A standard compactness argument shows that
every dense partial type can be completed to a dense complete one.

In this context, dense types play the role of generic types in deûnable groups
of stable or simple theories. Bearing this idea in mind, we introduce the following
terminology to capture a measure-theoretic idea of independence. Given two dense
types p, q * SG(A), deûne

gp(p, q) = {(a, b) |= p× q | tp(a/A, b) or tp(b/A, a) is dense} ,

where the notation gp stands for good position. By the discussion above, note that
gp(p, q) 6= '. So, there are always pairs in good position.

2.3. Robust stability. Let k g 1. Given a subset S ¢ G × G, we set Hk(S) to
denote the collection of all half-graphs of height k induced by S. That is,

Hk(S) :=
{

(a1, b1, . . . , ak, bk) * G2k
∣∣ (ai, bj) * S iû i f j

}
.

With this notation, recall that a subset S ¢ G × G is k-stable if Hk(S) = '. In
our setting, in the presence of a measure, we can introduce the following notion:

Definition. A definable subset S ¢ G×G is robustly k-stable if µG2k(Hk(S)) = 0.

Robust stability can be deûned in a more general context but to ease the frame-
work we restrict our attention to subsets of the groupG×G. In fact, similar notions
have been considered in a more graph-theoretical context, see [3, 9].

We show for pairs in good position that the value of a robustly stable relation
is constant:

Theorem 1. Let S ¢ G×G be a definable dense set and suppose that it is robustly
k-stable for some k g 1. Let p, q * SG(M) be two complete dense types over a
countable elementary substructure M . The set S is homogeneous on gp(p, q), i.e.
either gp(p, q) ¢ S or gp(p, q) ¢ (G×G) \ S.

Hence, robustly stable relations are also stationary, as the stable ones.
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3. Existence of 2-dimensional shapes

We state our main results:

Theorem 2. Let S ¢ G×G be a definable dense set and suppose that it is robustly
k-stable for some k g 1. Then S contains a dense collection of both naive and of
BMZ corners, i.e. the definable set

{
(x, y, g) * G3

∣∣ (x, y), (xg, y), (x, yg), (xg, yg) * S
}

is dense. In particular, if G is abelian, then there is a dense set of triples which
form a square in S.

The proof relies on Theorem 1, as well as on methods suggested by Hrushovski
[4] such as the Stabilizer Theorem. The model-theoretic version of Roth9s Theorem
proved in [6] allows us to obtain the following:

Theorem 3. Let S ¢ G×G be a definable dense set and suppose that it is robustly
k-stable for some k g 1. If G does not have elements of order 2, then the definable
set

{
(x, y, g) * G3

∣∣ (x, y), (xg, y), (x, yg), (xg, yg), (x, gyg), (xg, gyg) * S
}

is dense. In particular, if G is abelian, then there is a dense set of triples which
form (non-trivial) squares and L-shapes.

As a consequence, by a standard application of  Loś9s Theorem we obtain the
following ûnitary version.

Corollary 1. Given an integer k g 1 and a real number · > 0, there is an integer
30(k, ·) g 1 and real numbers » = »(k, ·) > 0 and ë = ë(k, ·) > 0 with the following
property. Let G be a finite group of odd order |G| g 30 and let S ¢ G × G be a
relation of size |S| g ·|G|2 such that |Hk(S)| f »|G|2k. Then the set

�(S) =
{

(x, y, g) * G3 | (x, y), (xg, y), (x, yg), (xg, yg), (x, gyg), (xg, gyg) * S
}

has size |�(S)| g ë|G|3. In particular, if G is abelian, then S contains a positive
density of (non-trivial) squares and L-shapes.
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Imperfection in NIP fields

Sylvy Anscombe

(joint work with Franziska Jahnke)

In a theory T , a formula ×(x̄, ȳ) has the independence property if in some model
M there exist families (āi)i*N and (b̄I)I¦N, of tuples from M, where |āi| = |x̄| and
|b̄I | = |ȳ|, such that ×(āi, b̄I) is true in M if and only if i * I. A theory T is NIP
(or is dependent) if no formula has the independence property in T . Moreover a
structure is said to be NIP if its complete theory is.1

Finite ûelds are trivially NIP; separable closed ûelds are stable ([13]), thus NIP;
and real closed ûelds are o-minimal, by the results of Tarski, thus NIP. The Con-
jecture on NIP Fields 4 sometimes called Shelah’s Conjecture2 4 proposes that
inûnite NIP ûelds are either separably closed, real closed, or henselian, i.e. they
admit a non-trivial henselian valuation.

Delon, in 1981, proved a <NIP transfer theorem= in equal characteristic zero:

Fact 1 (Delon, [6]). Let (K, v) be a henselian valued field of equicharacteristic 0.
Then,

(K, v) is NIP in Lval ñó Kv is NIP in Lring.

For the language of rings we take Lring = {+, ·, 0, 1} and for the language of
valued ûelds we may take one of the usual options, for example the language of
rings expanded by a unary predicate symbol that is interpreted by the valuation
ring. Delon9s theorem originally included the additional assumption that the value
group vK is NIP as an ordered abelian group, but it was later shown by Gurevich
and Schmidt that this holds for any ordered abelian group ([7, Theorem 3.1]).

Transfer theorems of this kind were proved in other contexts by Bélair in [4]
(for unramiûed henselian valued ûelds with perfect residue ûelds), and by Jahnke
and Simon in [8] (for separably tame ûelds of ûnite imperfection degree). Bélair9s
approach builds on Delon9s, and it shows in particular that p-adically closed ûelds
are NIP (cf. [4, Corollaire 7.5]). On the other hand the results of Jahnke and
Simon extended a strategy developed by Chernikov and Hils ([5]) in the context
of NTP2 valued ûelds. In the NIP case the strategy is: if (K, v) satisûes two
properties 8IM9 and 8SE9, and Kv is NIP, then (K, v) is NIP.

This talk presented parts of joint work with Franziska Jahnke ([1, 2]). This
parts consisted of (i) a discussion a transfer theorem for ûnitely ramiûed henselian
valued ûelds of mixed characteristic, and (ii) a completion of the analysis of sepa-
rably tame valued ûelds from [8]. This division into (i) and (ii) reûects a precise

1For a general reference on NIP theories, the reader is encouraged to consult [12].
2This conjecture is often named after Shelah, who made a related conjecture in [11]).
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dichotomy: Recall the 8standard decomposition9 of a valued ûeld of mixed charac-
teristic:3

K
vK/&0

// Kv0
&0/&p

// Kvp
&p

// Kv

where &0 is the smallest convex subgroup of the value group vK of v that contains
v(p), and &p is the largest convex subgroup not containing v(p). Assuming 51-
saturation of (K, v), (Kv0, v̄p) is maximal and the value group &0/&p is isomorphic
to Z or R. See also [3].

Bélair9s method does not include ûnitely ramiûed henselian valued ûelds of
mixed characteristic with imperfect residue ûelds. In this case we verify the SE
condition of Jahnke and Simon (i.e. stable embeddedness of the value group and
residue ûeld) by applying an embedding lemma that we proved in [2] and that was
closely based on [10].

Turning to (ii): Bélair also showed in [4] that an algebraically maximal Kaplan-
sky ûeld (K, v) of positive characteristic is NIP in Lval if and only if its residue
ûeld Kv is NIP in Lring, and that the same holds if (K, v) is ûnitely ramiûed
with perfect residue ûeld. Jahnke and Simon generalized Bélair9s result to sepa-
rably algebraically maximal Kaplansky ûelds of ûnite degree of imperfection and
arbitrary characteristic. Thus the gap in the separably algebraically maximal Ka-
plansky setting is for inûnite imperfection degree.

All of these transfer theorems have the spirit of Ax-Kochen/Ershov: under
certain algebraic assumptions (including for example henselianity), if (K, v) is a
valued ûeld such that the residue ûeld Kv is NIP, then (K, v) is NIP. In fact our
main theorem is the following.

Theorem 1 (Main Theorem, [1]). Let (K, v) be a henselian valued field. Then
(K, v) is NIP in Lval if and only if both of the following hold:

(1) Kv is NIP.

(2) Either

(a)

{
(a.i) (K, v) is of equal characteristic, and
(a.ii) (K, v) is trivial or separably defectless Kaplansky;

or

(b)

ù
ú
û

(b.i) (K, v) has mixed characteristic (0, p), and
(b.ii) (K, vp) is finitely ramified, and
(b.iii) (Kvp, v̄) is trivial or separably defectless Kaplansky;

or

(c)

{
(c.i) (K, v) has mixed characteristic (0, p), and
(c.ii) (Kv0, v̄) is defectless Kaplansky.

3Note that this diagram illustrates the composition of places associated to the composition
of valuations.
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To prove the implications in the 8forward9 direction we use a theorem of Kaplan,
Scanlon, and Wagner ([9]): inûnite NIP ûelds of positive characteristic admit no
propert Artin-Schreier extensions.

As a corollary we prove that if (K, v) is NIP then so is its henselization. More-
over, we obtain a classiûcation of the complete theories of NIP ûelds, assuming
that Shelah9s conjecture is true.
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On groups definable in an o-minimal expansion of (R,+, ·)

Alf Onshuus

It has been known since [3] that any group deûnable in an o-minimal expansion of
the real ûeld can be equipped with a Lie group structure. It is therefore natural to
ask when a Lie group is Lie isomorphic to a group deûnable in such an expansion.

In this talk we give a complete classiûcation of which Lie groups admit such a
<deûnable representation=. This is, we characterize, up to Lie isomorphism, the
real Lie groups that are deûnable in an o-minimal expansion of the real ûeld. For
any such group, we ûnd a Lie-isomorphic group deûnable in Rexp for which any
Lie automorphism is deûnable.

The talk will be divided as follows: We will ûrst recall the torsion-free solvable case
(proved by Coversano, Starchenko and Onshuus in [1]): any connected torsion-free
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Lie group admits a deûnable representation if and only if it is completely solvable,
where:

Definition. A connected torsion-free solvable Lie group G is completely solvable
if and only if there exist a sequence of subgroups

G = Gn > Gn21 > · · ·G0 = {e}

such that each Gi is normal in G and Gi+1/Gi is a one-dimensional simply con-
nected Lie group for i < n.

We will then sketch the proof that in order for a connected Lie group G to be
Lie isomorphic to a deûnable group it is necessary and suûcient that its solvable
radical is completely solvable.

Finally, we will sketch the proof (by Conversano, Post and Onshuus in [2]) that a
Lie group G has a Lie isomorphic deûnable copy in an o-minimal expansion of the
real ûeld if and only if:

4 G has ûnitely many connected components,
4 the center Z(G) of G has ûnitely many connected components, and
4 there is a normal simply-connected completely solvable subgroup N such

that R(G)/N is compact.
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On the shatter functions of semilinear families

Chieu-Minh Tran

(joint work with Abdul Basit)

For a collection S of subsets of an ambient set V (also called a set system on V ),
its shatter function ÃS : N ³ N is a natural measure of its complexity. Setting
S + A := {S + A : S * S} for ûnite A ¦ V , the function ÃS is given by

ÃS(n) := max{|S +A| : A ¦ V, |A| = n}.

A celebrated result by Sauer and Shelah establishes that either ÃS(n) = 2n for
all n or ÃS is polynomially bounded. It is well known that structure M is NIP
if and only if the collection of deûnable sets given by an arbitrary formula has
polynomially bounded shatter function.

A conjecture by Chernikov suggests that in <suûciently geometric= settings
(e.g., o-minimal), a structureM is <linear/modular= NIP if and only if the collec-
tion of deûnable sets given by an arbitrary formula has polynomially assymptotic
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shatter function. In this talk, a joint work with Abdul Basit is discussed, where we
verify this belief for o-minimal expansions of (R; +). More precisely, we show that
if (Xb)b*Y is a deûnable family in (R; +), and S is the collection {Xb}b*Y , then
ÃS is assymptotic to a polynomial. In other words, there are constants C1, C2 > 0,
and a natural number s such that

C1n
s < ÃS(t) < C2n

s for every n g 1.

The aforementioned belief then follows from this statement through a standard
application of the trichotomy principle for o-minimal structures.

The proof of our result consists of three steps. In the ûrst step, we reduce to the
problem to the case where (Xb)b*Y as above is <uniform=. The precise notion of
uniform is what is needed to carry out the later steps, but, intuitively, it is easier
to handle the case where (Xb)b*Y does not contain sets of diûerent dimensions or
sets of diûerent <shapes= (e.g., some are triangles and some are rectangles).

In the second step, we relate the family (Xb)b*Y to another deûnable family
(X 2

b)b*Y which is geometrically simpler, but at the cost that X 2
b is a subset of

disjoint Euclidean spaces. The challenges include ûnding suitable (X 2
b)b*Y through

an induction on dimension procedure and establish that the shatter functions of
the set systems corresponding to (Xb)b*Y and (X 2

b)b*Y are appropriately related.
In the last step, we ûrst perform projections to reduce the problem to the

case where each member of (X 2
b)b*Y is a disjoint union of single points and rays.

Techniques from a paper by Aschenbrenner, Dolich, Haskell, Macpherson, and
Starchenko combined with another result by Basit, Chernikov, Starchenko, Tao,
and Tran already allow us to handle the case where each member of (X 2

b)b*Y is a
union of two single points. Modiûcations of these techniques involving variations of
shatter functions and using linear programming are needed to handle the general
case that we need.
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Towards higher classification theory

Artem Chernikov

1. Introduction

Model theory provides, among other things, methods of converting asymptotic
quantitative questions about properties of ûnite hypergraphs into qualitative ques-
tions about the <shape=, <volume= or <dimension= of certain limiting inûnite ob-
jects to which the inûnitary model-theoretic machinery can be applied. Shelah9s
classiûcation program [8] isolates several combinatorial dividing lines (stability,
NIP, distality, etc.) separating mathematical structures exhibiting various degrees
of wild, or Gödelian, behavior, from the tame ones in which one develops a <geo-
metric= theory akin to algebraic or semi-algebraic geometry for deûnable sets in
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such structures. These dividing lines are amazingly robust, and have been redis-
covered in various branches of mathematics.

These tameness notions in Shelah9s classiûcation theory are typically given by
restrictions on the combinatorial complexity of deûnable binary relations, by for-
bidding certain induced subgraphs (e.g. T is stable if no deûnable binary relation
can contain arbitrary large ûnite half-graphs; and NIP if suûciently large random
bipartite graphs are omitted). A typical result then demonstrates that binary re-
lations are <approximated= by the unary ones in some form, up to a <small= error.
For example, stationarity of forking in stable theories says that given p (x) , q (y)
types over a model M , there exists a unique type r(x, y) overM so that if (a, b) |= r

then a |= p, b |= q and a |#M
b 4 that is, there is a unique type r (x, y) extending

p (x) * q (y), up to the forking formulas × (x, y) * L (M). Another example: T is
distal if and only if for any p (x) , q (y) global invariant types that commute, there
is a unique global type r (x, y) extending p (x) * q (y).

Recently a number of results began to emerge concerning the higher arity gen-
eralizations of these phenomena, both in the context of pure model theory and
in connection to hypergraph combinatorics: under some restricting assumption on
the deûnable relations of arity n+1, demonstrate an <approximation= by relations
each involving at most n out of n+ 1 variables, up to a <small error=. Mirroring
the passage from graphs to hypergraphs in combinatorics, this leads to signiûcant
growth in complexity of the occurring phenomena. We overview some of these
developments focusing on of n-dependent theories (with the case n = 1 corre-
sponding to NIP) introduced by Shelah, n-stability (several possible deûnitions
have recently emerged in the literature, but very much remain to be explored),
n-distality (recently introduced by Walker), and connections to higher amalgama-
tion and stationarity, as well as implications for the algebraic structures deûnable
in such theories.

2. N-dependence

A higher order generalization of NIP, the class of k-dependent theories, was in-
troduced by Shelah in [9], with the 1-dependent case corresponding to the class
of NIP theories, and basic properties of k-dependent theories were investigated in
[4], in particular making an explicit deûnition of the VCk-dimension.

We ûx a complete theory T in a language L. For kg 1, a formula × (x; y1, . . . , yk)
is k-dependent if there are no inûnite sets Ai = {ai,j : j * Ë} ¦Myi

, i * {1, . . . , k}
in a model M of T such that A =

∏n
i=1Ai is shattered by ×: for any s ¦ Ëk,

there is some bs * Mx s.t. M |= × (bs; a1,j1 , . . . , ak,jk) ñó (j1, . . . , jk) * s.
T is k-dependent if all formulas are k-dependent. T is strictly k-dependent if it
is k-dependent, but not (k 2 1)-dependent. We have: 1-dependent = NIP ¦ 2-
dependent ¦ . . ., with all inclusions strict as witnessed e.g. by the theory of the
generic k-hypergraph.

In some sense all currently known <algebraic= examples of k-dependent theories
are built from multilinear forms over NIP ûelds. By Cherlin-Hrushovski, smoothly
approximable structures are 2-dependent, and coordinatizable via bilinear forms
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over ûnite ûelds. Inûnite extra-special p-groups are strictly 2-dependent [7], and
strictly k-dependent pure groups constructed using Mekler9s construction [1] are
essentially of this form as well, using Baudisch9s interpretation in alternating bi-
linear maps. More generally:

Theorem 1. ([2] for k = 2, [3] in general) If the field K is NIP, then the theory
T of alternating n-linear forms over K (with sorts for the field and for the vector
space, generalizing Granger) is (strictly) n-dependent.

This leads one to speculate that if T is k-dependent, then it is <linear, or 1-
based= relative to its NIP part. One precise version of this conjecture is:

Conjecture 1. If K is an k-dependent field (pure, or with valuation, derivation,
etc.), then K is NIP.

There is some mounting evidence for this conjecture: k-dependent ûelds are
Artin-Schreier closed ([7], generalizing Kaplan-Scanlon-Wagner for k = 1), valued
ûelds of positive characteristic are Henselian ([2], generalizing Johnson for k = 1),
the question for valued ûelds reduces to pure ûelds (Boissonneau). A key general
result used in the proof of Theorem 1 is:

Theorem 2 (Composition Lemma). LetM be an L2-structure such that its reduct
to a language L ¦ L2 is NIP. Let d, k * N, ×(x1, . . . , xd) be an L-formula, and
(y0, . . . , yk) be arbitrary k + 1 tuples of variables. For each 1 f t f d, let 0 f
it1, . . . , i

t
k f k be arbitrary, and let ft : My

it
1

× . . . ×My
it
k

³ Mxt
be an arbitrary

L2-definable k-ary function. Then the formula

Ë (y0; y1, . . . , yk) := ×
(
f1(yi1

1
, . . . , yi1

k
), . . . , fd(yid

1

, . . . , yid
k
)
)

is k-dependent.

The following is a characterization of k-dependence in terms of a <hypergraph
regularity lemma=, generalizing the k = 1 case from [5]:

Theorem 3. (C., Towsner [6]) Assume that T is k-dependent, k2 g k + 1,
M |= T and let µ1, . . . , µk2 be global Keisler measures on the definable subsets
of the sorts Mx1 , . . . ,Mxk2 respectively, such that each µi is Borel-definable and
all these measures commute, i.e. µi·µj for all i, j * [k2]. Then for every formula
×(x1, . . . , xk2 ) * L(M) and · * R>0 there exist some formula Ë(x1, . . . , xk2) which
is a Boolean combination of finitely many (f k)-ary formulas each given by an
instances of × with some parameters placed in all but at most k variables, so that
taking µ := µ1 · . . .· µk2 we have µ (×·Ë) < ·.

It is also proved in that paper that if T is a k-dependent ûrst-order theory
(classical or continuous), then its Keisler randomization TR is also k-dependent,
generalizing Ben Yaacov for k = 1.
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3. N-distality

Definition 1. (Walker [10]) A theory is n-distal if it satisfies the following con-
dition. Assume that (ai : i * I) is an indiscernible sequence indexed by a dense
linear order I, I = I0 + I1 + . . . + In+1 with each Ij dense without endpoints,
and b1, . . . , bn+1 are so that: for any 0 f t f n, we have that the sequence
I0 + b0 + . . . + It21 + bt21 + It + It+1 + bt+1 + . . . + In + bn + In+1 is indis-
cernible (i.e. we are omitting bt here). Then the sequence I0 + b0 + . . .+ bn + In+1

is indiscernible (with all bt, 0 f t f n placed in the corresponding cuts).

The following generalizes a standard characterization of distality:

Fact 1. [10] If T is n-distal, then for any global invariant types pi (xi) , i f n that
are pairwise commuting, we have

⋃
0ftfn

⊗
0fifn,i6=t pi (xi) ¢

⊗
0fifn pi (xi).

That is, the type
⊗

0fifn pi in n+1 variables is determined by all of its restrictions
to n variables.

Turns out that n-distality is connected to certain notions of triviality of forking
(as studied by Poizat and others) between generically stable types (for k = 1, in
the sense that they are all realize).

Definition 2. Let T be a stable theory and k g 1. We say that T is

(i) k-trivial if for any tuples (ai : i < k + 2) and a set A, if every k + 1 of the
ai’s form an independent set over A (in the sense of forking), then every
{ai : i < k + 2} is also an independent set over A.

(ii) totally k-trivial if for any tuples a, (bi : i < k + 1) and a set A, if a is
independent from any k of the bi’s over A, then it is also independent from
all k + 1 of them over A (note that we are not requiring the bi’s to be
independent over A).

(iii) For k g 1, a theory T is indiscernibly k-trivial if for any infinite sequence
I and tuples (at : t < k + 1), if I is indiscernible over (at : t * s) for every
s ¦ {0, 1, . . . , k} with |s| = k, then I is indiscernible over (at : t < k + 1).

Fact 2. [10] Let T be a stable theory and k > 0. Then T is k-trivial if and only
if T is (k + 1)-distal.

A theory T is strongly 2-distal if for any sequence I0 + b0 +I1 and tuples a0, a1,
if I0 + I1 is indiscernible over a0a1, I0 + b0 + I1 is indiscernible over a0 and
I0 + b0 + I1 is indiscernible over a1, then I0 + b0 + I1 is indiscernible over a0a1.
We observe:

Theorem 4. If T is stable, then the following are equivalent:

(i) T is strongly 2-distal,

(ii) T is indiscernibly trivial,

(iii) T is totally trivial.
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Whether triviality is equivalent to k-triviality (equivalently, k-distality implies
2-distality) in stable theories is an old question of Poizat (known to hold in super-
stable theories). Theorem 4 combined with Poizat9s examples answers Walker9s
question [10]: there exist stable 2-distal not strongly 2-distal theories.

4. Connections to higher amalgamation and stationarity

Higher amalgamation was studied by a number of authors, starting with Shelah9s
work on stability in AEC9s, Hrushovski in the study of the saturation spectrum
and of generalized imaginaries, continued in a series of papers by Goodrick, Kim,
Kolesnikov and others.

Definition 3. For n * Ë, let [n] = {1, . . . , n} * Ë. For a set X, we let P(X) be
the set of all subsets of X, P<n(X) (Pfn(X)) the set of all subsets of X of size
less (respectively, less or equal) than n, and P2(X) := P(X) \ {X}.

We let T be a complete simple ûrst-order theory in a language L, and we work in
Mheq, the expansion of M by the hyper-imaginaries. As usual, |# denotes forking

independence and bdd(A) is the bounded closure of the set A in Mheq.

Definition 4. (i) For n g 1, T satisfies ( independent) n-amalgamation if
for every independent system of types {rs(xs) : s * P2([n])} there exists
a complete type rn(xn) such that {rs(xs) : s * P([n])} is an independent
system of types.

(ii) T satisfies ( independent) n-uniqueness if for every independent system of
types {rs(xs) : s * P2([n])} there exists at most one complete type rn(xn)
such that {rs(xs) : s * P([n])} is an independent system of types.

(iii) T satisfies n-amalgamation (n-uniqueness) over a set A ¦M if (i) (respec-
tively, (ii)) holds for every independent system of types with r' = tp(bdd(A)).

(iv) T satisfies complete n-amalgamation (or f n-amalgamation) if T satisfies
m-amalgamation for all 1 f m f n.

Theorem 5. Given n g 1, let T be a simple theory with f (n+ 2)-amalgamation.
Then T is n-dependent if and only if T has (n+ 1)-uniqueness (over models).

For n = 1 this corresponds to the well-known fact that if T is simple (hence
satisûes f 3-amalgamation over models) and there exists a non-stationary type
(i.e. 2-stationarity fails), then T is not NIP. Theorem 5 also gives us a collapse of
2-dependence and several notions of 2-stability considered in the literature.

Definition 5 (Takeuchi). A partitioned formula ×(x; y1, y2) has OP2 if there ex-
ist sequences (ai)i*Ë , (bj)j*Ë with ai * My1 , bj * My2 so that for every strictly
increasing f : Ë ³ Ë there exists cf *Mx satisfying |= ×(cf , ai, bj) ñó i f f(j)
for all (i, j) * Ë2.

A related property FOP2 with increasing functions replaced by arbitrary func-
tions f : Ë ³ Ë is considered by Terry and Wolf. We let Cz := (L, C,z) be the
generic countable convexly ordered binary branching C-relation, i.e. the Frä1ssé
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limit of all ûnite convexly ordered binary branching C-relations. The following is
considered by Kaplan, Ramsey, Simon:

Definition 6. A theory T is treeless if there is no formula ×(x, y, z) and (ag : g * L)
such that |= ×(af , ag, ah) ñó Cz |= C(f, g, h).

Theorem 6. The following are equivalent:

(i) T is not treeless;

(ii) there exists a Cz-indiscernible which is not (L,z)-indiscernible;

(iii) there exists a Cz-indiscernible (ag : g * L) and ×(x, y, z) so that

|= ×(af , ag, ah) ñó C |= C(f, g, h).

It is easy to see that each of treeless, no OP2 and no FOP2 imply 2-dependence,
and under 4-amalgamation we get a converse:

Theorem 7. If T is simple with f 4-amalgamation, then the following are equiv-
alent:

(i) T satisfies 3-uniqueness;

(ii) T is 2-dependent;

(iii) T has no OP2;

(iv) T has no FOP2;

(v) T is treeless.
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Generalized locally compact models of approximate subgroups via
topological dynamics

Krzysztof Krupiński

(joint work with Anand Pillay)

A subset X of a group is called an approximate subgroup if it is symmetric (i.e.
e * X and X21 = X) and XX ¦ FX for some ûnite F ¦ 〈X〉. Approximate
subgroups were introduced by Tao in [8] and play a central role in additive com-
binatorics.

A compact neighborhood of the neutral element in a locally compact group is
always an approximate subgroup. Let X be an approximate subgroup and G :=
〈X〉. By a locally compact [resp. Lie] model of X we mean a group homomorphism
f : 〈X〉 ³ H for some locally compact [resp. Lie] group H such that f [X ] is
relatively compact in H and there is a neighborhood U of the neutral element in
H with f21[U ] ¦ Xm for some m < Ë. It is easy to show that if f : 〈X〉 ³ H is a
locally compact model of X , then X can be recovered up to commensurability as
the preimage of any compact neighborhood of the identity in H .

A breakthrough in the study of the structure of approximate subgroups was
obtained by Hrushovski in [3], where a locally compact (and in consequence Lie)
model for any pseudoûnite approximate subgroup (more generally, near-subgroup)
X was obtained by using model-theoretic tools. This paved the way for Breuillard,
Green, and Tao to give a full classiûcation of all ûnite approximate subgroups in
[1].

By a definable (in some structure M) approximate subgroup we mean an ap-
proximate subgroup X of some group such that X,X2, X3, . . . are all deûnable in
M and ·|Xn×Xn : Xn ×Xn ³ X2n is deûnable in M as well. If the approximate
subgroup X is deûnable in M , then in the deûnition of a locally compact model
one usually additionally requires definability of f in the sense that for any open
U ¦ H and compact C ¦ H such that C ¦ U , there exists a deûnable (in M)
subset Y of G such that f21[C] ¦ Y ¦ f21[U ]. Note that in the abstract situa-
tion of an arbitrary approximate subgroup X , we can always equip the ambient
group with the full structure (i.e. add all subsets of all ûnite Cartesian powers
as predicates), and then X becomes deûnable and the additional requirement of
deûnability of locally compact models is automatically satisûed. In other words,
deûnable approximate subgroups generalize abstract approximate subgroups.

Massicot and Wagner [7] proved the existence of deûnable locally compact
(and in consequence Lie) models for all deûnably amenable deûnable approxi-
mate subgroups, and Wagner conjectured that a Lie model exists for an arbitrary
approximate subgroup. Literally, this conjecture is false; a counter-example can
be found for example in [5, Section 4]. However, in another breakthrough paper
[4], Hrushovski weakened the notion of locally compact [and Lie] model by replac-
ing a homomorphism by a quasi-homomorphism with compact error set S whose
preimage is contained in a (small) power of X , and he proved the existence of such
generalized definable locally compact models for arbitrary approximate subgroups
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(where the notion of deûnability is also weakened appropriately). This allowed
him to deduce the existence of suitable generalized Lie models and obtain full
classiûcations of approximate lattices, e.g., in SLn(R) and SLn(Qp).

The proof in [4] of the existence of generalized locally compact (and Lie) models
is based on a new theory developed by Hrushovski including definability patterns
structures and local logics, which may be very diûcult to non model theorists.

We prove the existence of generalized deûnable locally compact models via
topological dynamics methods in a model-theoretic context. The main idea is to
extend the fundamental theory of Ellis groups to the context of suitable locally
compact ûows (in fact, locally compact left topological semigroups), and then the
desired generalized locally compact model is a certain (explicitly deûned) quasi-
homomorphism to the canonical Hausdorû quotient of the Ellis group. Our proof is
much shorter and uses only standard model theory (e.g. types, externally deûnable
sets). We also prove universality of our generalized deûnable locally compact model
in a suitable category. It is also interesting to consider the special case when
the approximate subgroup X in question generates a group G in ûnitely many
steps. Then the target space of our generalized [deûnable] locally compact model
is compact, and it is in fact the classical [resp. externally deûnable] generalized
Bohr compactiûcation of G deûned by Glasner (see [2] and [6]). This special case
can be seen as a structural result on arbitrary deûnable generic subsets of deûnable
groups.

To give a few details of our construction, let X be an approximate subgroup
deûnable in a structure M , and G := 〈X〉. Let N { M be an |M |+-saturated
extension of M . By SG,M (N) we denote the set of all complete types over N con-
centrated on G and ûnitely satisûable in M . Then SG,M (N) =

⋃
n SXn,M (N), and

we introduce a topology on SG,M (N) by declaring that a subset F ¦ SG,M (N) is
closed if F +SXn,M (N) is closed (in the usual type space topology on SXn,M (N))
for every n * N. Then SG,M (N) is a <locally compact G-ûow=, with the natural
left action of G. We show that it is in fact a left topological semigroup with suit-
ably deûned semigroup operation. Then we prove the existence of minimal left
ideals and an extension of Ellis theorem which presents each minimal left idealM
as a disjoint union of groups uM (where u ranges over the idempotents in M),
which are all isomorphic and which we call Ellis groups. Then we show that a
certain topology on Ellis groups (called the Ç-topology) is quasi locally compact,
T1, and separately continuous. The maximal Hausdorû quotient uM/H(uM)
is a locally compact group. Finally, our main theorem says that the function
f : G³ uM/H(uM) given by f(g) := ugu/H(uM) is a generalized deûnable lo-
cally compact model of X with suitably deûned compact error set. This model has
some additional good properties, and our second theorem says that it is universal
in a suitable category.
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Residue field domination

Deirdre Haskell

(joint work with Clifton Ealy, Pierre Simon)

Let K be a valued ûeld, with valuation ring O, maximal ideal m and residue ûeld
k = O/m. Many of the imaginaries in K are internal to the residue ûeld. These
include the obvious ones, like the k-vector spaces O³/mO³ , where O³ = {x * O :
v(x) g ³}, and less obvious ones like the ûbers of RV = K×/(1 + m) given by
RV³ = {x(1 + m) : v(x) = ³}. In an algebraically closed valued ûeld, these are
all stable, stably embedded sets. In [4], we were motivated by the coincidence of
the k-internal sets with the collection of stable, stably embedded sets to deûne
the notion of stably dominated for types in general, and to study the consequences
of the notion in an algebraically closed valued ûeld. In particular, we proved [4]
that a type is stably dominated if and only if it is orthogonal to the value group.
In the recent paper [3], we give a more purely algebraic criterion for a type in an
algebraically closed valued ûeld to be stably dominated over a set of parameters
in the ûeld sort. In the process, we observe that it is useful to isolate the concept
of a good separated basis (also observed in [1], where the property is called vs-
defectless).

Definition 1. The field L has the good separated basis property over the subfield
C if, for every finite-dimensional subspace of L as a vector space over C, there is
a basis 31, . . . , 3n such that for all c1, . . . , , cn in C,

v(

n∑

i=1

ci3i) = min
1fifn

{v(ci3i)}

and for all 1 f i, j f n, if v(ci) 6= v(cj) then v(3i/3j) /* �C .

Theorem 2. Work inside a large saturated model of the theory of algebraically
closed valued fields. Let C be a field, a a field element and write L = dcl(Ca).
Assume that L is a regular extension of C. Then tp(a/C) is stably dominated if
and only if �(L) = �(C) and L has the good separated basis property over C.
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A henselian valued ûeld in general cannot be assumed to have a non-trivial
stable part, and yet still has all of the k-internal sets described above. We are
therefore inspired to deûne a notion of residue field domination. This was ûrst
studied in [2] for real closed valued ûelds, and then in [3] for any henselian valued
ûeld of residue characteristic 0, provided the sets of nth powers in RV have ûnite
index. Some useful examples are given to illustrate how neither of residue ûeld
domination and stable domination implies the other, especially when the param-
eters lie outside of the valued ûeld sort. We do get the following theorem, which
is analogous to Theorem 2 above.

Theorem 3. Now work inside a large saturated model of the chosen theory of
henselian valued fields. Let C be a field, a a field element and write L = dcl(Ca).
Assume that kL is a regular extension of kC , that �L = �C and that L has the
good separated basis property over C. Then tp(a/C) is residue field dominated.

The assumption that the value group does not increase is essential in this the-
orem. The given examples lead one to realise that residue ûeld domination is too
strong of a property when there are parameters from the value group. This leads
to a deûnition of RV-domination in a natural way, and the following theorem.

Theorem 4. Use the assumptions of Theorem 3 except now assume that �L is a
torsion-free extension of �C. Then tp(a/C�L) is RV-dominated.

Similar results are proved by M. Vicaria in [5].
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Treelessness, independence and generically stable partial types

Nicholas Ramsey

In joint work with Itay Kaplan and Pierre Simon, we introduce a notion of in-
dependence called GS-independence, deûned in terms of generically stable partial
types. We will describe a context, the class of treeless theories, in which this notion
is particularly well-behaved and give applications for both the SOPn hierarchy and
in NIP.

In more detail, a global partial type Ã is called generically stable over A if it
is Ind-deûnable over A and whenever ×(x; b) * Ã and ai |= Ã|Aa<i

for all i, then
{i :|= ¬×(ai, b)} is ûnite. We show that if p is a complete type over A, then p

has a unique maximal extension to a global partial type that is generically stable
over A, which is a kind of canonical generic extension of p. Using this, we deûne
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a notion of independence as follows: a |#
GS

A
b if b |= Ã|Aa, where Ã is the unique

maximal global partial type extending tp(b/A) which is generically stable over A.
This notion of independence, GS-independence, is reasonably well-behaved in

arbitrary theories. For example, it always satisûes extension, left transitivity, and
local character and always agrees with non-forking independence in simple theories
(and with Kim-independence over models in NSOP1 theories). However, we isolate
a class of theories, the treeless theories, in which GS-independence is particularly
useful, satisfying both base monotonicity and symmetry. The treeless theories are
deûned in terms of the collapse of certain indiscernible trees called treetop indis-
cernibles. We show that the treeless theories contain both the stable and binary
theories and deduce many consequences of treelessness. In particular, we show
that a treeless NSOP3 theory with indiscernible triviality is NSOP2 and treeless
NSOP1 theories are simple, from which we deduce that binary NSOP3 theories are
simple as a corollary. We additionally ûnd applications for NIP theories, showing
that a treeless NIP theory has an interpretable linear order.

Taming perfectoid fields

Franziska Jahnke

(joint work with Konstantinos Kartas)

Given two henselian valued ûelds (K, v) and (L,w) with the same value group
(vK = wL) and residue ûeld (Kv = Lw).

Question. Which arithmetic properties do (K, v) and (L,w) share?

This fundamental question has found many answers over the last 60 years:

(i) For char(Kv) = char(Lw) = 0, any ûrst-order property (in the language
Lval = {0, 1,+, ·,O}) holds in (K, v) if and only if it holds in (L,w),1 i.e.,

(K, v) cLval
(L,w).

This was shown independently by Ax and Kochen [2] and by Ershov [4].

(ii) By taking non-principal ultraproducts over the set of all primes, the theorem
above allows to transfer properties between Qp and Fp((t)) asymtoptically:
for every Lval-property Ç there is an N * N such that we have for all p g N

Qp |= Çñó Fp((t)) |= Ç.

This result was applied in particular to show that Artin9s Conjecture holds
eventually: for every degree d, there is N g 0 such that for p > N , every
homogeneous polynomial over Qp of degree d in d2 many variables has a
nontrivial solution in Qp. However, Terjanian showed that for every prime
p, this property fails for some degree, i.e., no Qp is a C2-ûeld [9].

1In fact, this only requires the residue fields and value groups to be elementarily equivalent
in Lring = {0, 1,+, ·} and Loag = {0,+, <} respectively. The same is true for the fields discussed

in (ii)-(iv).
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(iii) If both (K, v) and (L,w) are unramiûed, i.e., char(K,Kv) = char(L,Lw) =
(0, p) and the value of p is the least positive element of the value group in
each case, then once more we have

(K, v) cLval
(L,w).

For the case of perfect residue ûeld, this was shown by Ax and Kochen [3],
for imperfect residue ûeld in joint work of Anscombe and the speaker [1].

(iv) For (K, v), (L,w) tame ûelds of positive characteristic, there is once again
an Ax-Kochen/Ershov principle by a result of Kuhlmann [6]:

(K, v) cLval
(L,w).

This principle fails in mixed characteristic tame ûelds, but a version holds
nonetheless [10]: For (K, v) ¦ (L,w) tame ûelds, one has

(K, v) z (L,w)ñó vK z wL and Kv z Lw

Here, a valued ûeld (K, v) of residue characteristic p > 0 is called tame if
4 the value group is p-divisible and
4 the residue ûeld is perfect and
4 for all (F, u) § (K, v) ûnite, one has [F : K] = (uF : vK) · [Fu : Kv].

Moreover, these principles can be extended to separably tame ûelds [7].

(v) In the realm of perfectoid ûelds, Scholze [8] extended work by Fontaine and
Wintenberger [5], to show that the absolute Galois groups of a perfectoid
ûeld (K, v) and its tilt (Ko, vo) are canonically isomorphic. Here, a valued
ûeld (K, v) of residue characteristic p > 0 is called perfectoid if

4 the value group is archimedean and p-divisible and
4 (K, v) is complete and
4 the Frobenius map § : O/(p)³ O/(p), x 7³ xp is surjective.

The tilting operator turns a perfectoid ûeld of mixed characteristic (K, v)
into a perfectoid ûeld of positive characteristic (Ko, vo) with Kv = Kovo

and vK = voKo, such that there is some t * mvo with O/(p) >= Oo/(t).
This ring is called an infinitesimal thickening of the residue ûeld.

Note that as perfectoid ûeld may have immediate extensions (proper
algebraic extensions where the value group and residue ûeld extensions are
trivial), there is no hope for a similar Ax-Kochen/Ershov principle as for
tame ûelds.

We show that despite the existence of immediate extensions, there is an Ax-
Kochen/Ershov principle for perfectoid ûelds, when we replace 8residue ûeld9 by
8inûnitesimal thickening of the residue ûeld9:

Theorem 1 (Perfectoid AKE, Jahnke-Kartas 2023+). Let (K, v) ¦ (K 2, v2) be
two perfectoid fields. Then

(K, v) � (K 2, v2)ñó O/� � O
2

/�

for any � * mv with 0 < v(�) f v(p).
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Moreover, we show that - up to taking ultrapowers - the tilt of of a perfectoid
ûeld occurs as the residue ûeld of a coarsening of the valuation which is tame with
divisible value group:

Theorem 2 (Taming Theorem (Jahnke-Kartas, 2023+)). Let (K, v) be a perfec-
toid field of mixed characteristic and (K7, v7) a nonprincipal ultrapower. Then,
there is a coarsening w of v7 such that

(1) (K7, w) is tame with divisible value group (in other words: any finite exten-
sion of (K7, w) is unramified)

(2) (Ko, vo) � (K7w, v̄7)

As an immediate consequence, we obtain that the absolute Galois groups of
ultrapowers of K and Ko are canonically isomorphic. This isomorphism restricts
to a canonical isomorphism between the absolute Galois groups of K and Ko, i.e.,
we recover the classical Fontaine-Wintenberger Theorem.

However, our approach gives more than that: it allows one to understand which
arithmetic properties (un)tilt: An Lring-elementary property tilts if it passes from
a tame valued ûeld with divisible value group to its residue ûeld, and it untilts if
it lifts from the residue ûeld of a tame valuation with divisible value group to the
valued ûeld.

Applying Kuhlmann9s Ax-Kochen/Ershov results for tame ûelds, we also obtain
that elementary equivalence is preserved under tilting:

Corollary 3. Let (K, v) and (K 2, v2) be perfectoid fields. Then

— (K, v) � (K 2, v2)ñó (Ko, vo) � ((K 2)o, (v2)o) and
— (K, v) c (K 2, v2) =ó (Ko, vo) c ((K 2) o, (v2)o)
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Non-degenerate n-linear forms and n-dependence

Nadja Hempel

(joint work with Artem Chernikov)

In Neostability (stable, simpel, NIP, NTP2, . . . ) we mostly study classes of theories
with tame binary relations. We are interested in studying theories with tame n-ary
relations. One obivious candidate are the so called n-dependent theories. In the
quest of ûnding natural algebraic examples, we looked at the theory T of symmetric
or alternating nondegenerate bilinear forms on vector spaces, in a language with
a separate sort for the ûeld, i. e.

(V,K,+V , ·S ,+K , ·K , 〈·, ·〉)

where V and K are two diûerent sorts with the ûeld language (+K , ·K) on K, the
vector space language +V on V , scalar multiplication function ·S : K × V ³ V

and the bilinear form function 〈x, y〉 : V × V ³ K. Their basic model theory was
studied by Granger in [5], and more recently in [3, 4] from the point of view of
generalized stability theory. To obtain quantifer elimination, we add for each p * Ë
a (deûnable) p-ary predicate »p(x1, . . . , xp) which holds if and only if x1, . . . , xp *
V are linearly independent over K as well as for each p * Ë and i f p an (p+1)-ary
function f

p
i : V p+1 ³ K such that

f
p
i (v; v1, . . . , vp) =

{
»i if |= »p(v1, . . . , vp) and v=

∑p
i=1 »ivi for some »i *K

0 otherwise

Moreover we expand the language by relations on Kn, n * Ë deûnable in the
language of rings such that K eliminates quantiûers in (e.g. we can always take
Morleyzation of K) and call this language LK» . The theory T has quantifer elimi-
nation in LK» and if K is NIP, then T is 2-dependent [1].

In this talk we considered alternating n-linear spaces, generalize nondegeneracy,
and show that they are n-dependent when the underlying ûeld is NIP. A naive
way to generalize nondegeneracy to n-linear forms 〈, . . . , 〉n would be: for any
v1, . . . , vn21 nonzero, there is w * V such that 〈v1, . . . , vn, w〉n 6= 0. The obstacle
which arises is, that particular expression are forced to be zero while working in
n-linear forms satisfying additional properties (e. g. alternating or symmetric). In
the case of alternating forms, we have for example that 〈v, v, v3 . . . , vn21, w〉n = 0
regardless of the choice of v, v, v3 . . . , vn21, w * V . To circumvent this issue, we

work in
⊕n21

V modulo the subspace of
⊕n21

V containing all elements v1 ·
· · · · vn21 for which V ³ K, w 7³ (v1, . . . , vn21, w) should be the zero map. In
the case of alternating n-linear forms, we work with

Alt = Span{v1 · · · · · vn21|v1, . . . , vn21 are linearly dependent}.

and obtain

( n21⊕
V
)/

Alt =
n21∧

V the (n2 1)th exterior power of V.
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Any n-linear form 〈 , . . . , 〉n gives rise to a bilinear form 〈 , 〉2 on
⊕n21

V × V

deûned by

〈v1 · · · · · vn21, v〉2 = 〈v1, . . . , vn21, v〉n.

We say that 〈 , . . . , 〉n is an n-linear form of type Alt in V if t/Alt = s/Alt in

(
⊕n21

V )/Alt implies that 〈t, v〉2 = 〈s, v〉2 for all v * V .

Definition. Let V be an n-linear space of type Alt. We say that 〈 , . . . , 〉 is

— non-dengerate if for any non-zero t * (
⊕n21

V )/Alt there is w * V such
that (t, w)2 6= 0.

— generic if for any linearly independent elements t1, . . . , tm *
⊕n21

V/Alt
and k1, . . . , km there is w * V such that (ti, w)2 = ki.

Then we obtain the following

(i) For any n-linear space (U, 〈 , . . . , 〉n) of type Alt, there is a vector space
V of dimension 50 + dim(U) containing U and an n-linear form ( , . . . , )n
on V of type Alt extending 〈 , . . . , 〉n and such that (V, ( , . . . , )n) is a non-
dengenerate.

(ii) Let V be an inûnite-dimensional. Then (V, 〈 , . . . , 〉n) is nondegenerate if
and only if (V, 〈 , . . . , 〉n) is generic.

So let Tn be the theory of alternating nondegenerate n-linear forms on vector
spaces, in a language with a separate sort for the ûeld, i. e. of

(V,K,+V , ·S ,+K , ·K , 〈 , . . . , 〉n)

as above. The main obstacle to show n-dependence for such structure when the
underlying ûeld is NIP are formulas of the form

Ë(y1, . . . , yq) = Ç(〈yV7 , . . . , y7〉, . . . , 〈y
V
7 , . . . , y

V
7 〉, y

K
7 , . . . , y

K
7 )

where Ç is a formula in the ûeld language, yV7 is a variable from (y1, . . . , yq) of the
vector space sort, and yK7 is a variable from (y1, . . . , yq) of the ûeld sort. To treat
this case we showed the following Composition Lemma which is of independent
interest and can be used in other situations to show n-dependence of particular
theories.

Theorem 1 (Composition Lemma [2].). Let M be an L2-structure such that its
reduct to a language L ¦ L2 is NIP. Let d, k * N, ×(x1, . . . , xd) be an L-formula,
and (y0, . . . , yk) be arbitrary k + 1 tuples of variables. For each 1 f t f d, let
0 f it1, . . . , i

t
k f k be arbitrary, and let ft : My

it
1

× . . . × My
it
k

³ Mxt
be an

arbitrary L2-definable k-ary function. Then the formula

Ë (y0; y1, . . . , yk) := ×
(
f1(yi1

1
, . . . , yi1

k
), . . . , fd(yid

1

, . . . , yid
k
)
)

is k-dependent.
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Finally we obtain:

Theorem 2 (Chernikov, H. [2].).

(i) The theory Tn has quantifer elimination in LK» .

(ii) If K is NIP, then Tn is n-dependent.
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Université Claude Bernard Lyon 1

43 blvd. du 11 novembre 1918

69622 Villeurbanne Cedex

FRANCE

Marco Amelio

Institut für Mathematische Logik und

Grundlagenforschung

Universität Münster

Einsteinstraße 62

48149 Münster

GERMANY

Dr. Simon André
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Institut de Mathématiques de Jussieu

Sorbonne Université
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