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Introduction by the Organizers

In many areas of pure mathematics, it is a mantra that in order to understand an
object, one tries to understand its automorphism group. This point of view has
taken a while to percolate through to low-dimensional topology – typically most
work has been directed towards classifying the objects of the category of interest
(for example smooth or topological 4-manifolds, 3-manifolds, knots, or embedded
surfaces). Furthermore, in the case that a low-dimensional invariant is functorial
(Floer homologies and Khovanov-type homologies for example), most applications
of the invariant have tended to make use of the values taken by the invariant
on objects and not on morphisms. Nevertheless, in very recent years, there has
been a change. To pick two notable examples: Watanabe’s work on embedding
calculus has shown us how diffeomorphisms of the 4-sphere may be studied, and
Zemke’s work has used the functoriality of Floer homology to derive powerful
new obstructions to ribbon concordance. A common theme in these works is the
emphasis on functoriality of the invariants, rather than simply computation, and
a renewed interest in understanding diffeomorphism groups of a manifold rather
than single isotopy groups.
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‘Morphisms’ served as the central organising theme of the workshop, variously
interpreted by the speakers as referring to homeomorphism or diffeomorphism
groups, mapping class groups of 4-dimensional manifolds, morphisms in functorial
knot invariants, and functions on the knot concordance group.

With the goal of facilitating discussions among the participants, we ended each
day of the workshop with a lightning talk session, featuring 5-minute talks by six
presenters, including both junior and senior researchers. Each day also featured
three 45-minute talks (except only one on Wednesday). To highlight the theme of
the conference, consider the following talks that took place over the week.

• In the topological category: “Stable homeomorphism and homotopy equiv-
alence,” by Anthony Conway (MIT),

• Regarding Floer cobordism maps: “Torsion in the knot concordance group
and cabling,” by Sungkyung Kang (IBS),

• On diffeomorphism groups of 4-manifolds: “Showing implanted barbell
diffeomorphisms are non-trivial,” by Ryan Budney (Victoria).

We selected these titles to illustrate how participants interpreted the theme broadly
and considered a range of related topics. The light schedule left plenty of time
for lively discussions among the participants; we heard from several participants
that this week was productive and sparked interesting conversations on avenues
for future research.

The workshop was well attended with 45 participants present at Oberwolfach,
and a further 15 participants online. Of the 45 in-person participants, 10 were
current PhD students and another 11 were postdoctoral scholars.
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Abstracts

A survey of mapping class groups in dimension 2, 4 and 6 through the

eyes of Dehn twists

Matthias Kreck

We denote the mapping class group, the group of isotopy classes of self-diffeo-
morphisms of a manifold M , by π0(Diff (M)). All information in this talk about
mapping class groups of surfaces is from [1].

In this talk I started out with the Dehn–Nielsen–Baer theorem saying that the
mapping class group of a closed oriented surface is isomorphic to the outer auto-
morphism group of the fundamental group. So in a way it is done. Unfortunately
the outer automorphism group is hard to work with. So one is looking for another
approach.

This approach works identically up to the last step for a certain interesting
class of 6-manifolds, complex 3-dimensional complete intersections. So we pre-
sented this approach in parallel for surfaces and complex 3-dimensional complete
intersections. Whereas the case of surfaces has a long tradition, the work for
complete intersections is new (it is joint work with Su Yang [3]).

Here are the results. Let X stand either for a closed oriented surface of genus
g or a 3-dimensional complex complete intersection with 3rd Betti number 2g.

Theorem.

(1) The action on the integral middle homology with its intersection form,
which is a skew-symmetric hyperbolic form, gives (after choosing a sym-
plectic basis) a surjective homomorphism.

π0(Diff (M)) → Sp(2g,Z).

The surjectivity can be obtained from considering Dehn twists, which
in the 6-dimensional case are given by embeddings S3 × D3 into X and
choosing α ∈ π3(SO(4)) represented by a map α(D3, S3) → (SO(4), 1)
and mapping (x, y) ∈ S3 × D3 to (α(y)x, y). The kernel of this map is
called the Torelli group T (X).

(2) There is an explicitly known abelian group AX and a surjective homomor-
phism

J : T (X) → AX .

For surfaces this was constructed by Johnson and in the other case by
Kreck and Su Yang. In spirit these homomorphisms are similar.

(3) There is an explicitly known abelian group BX and a surjective homomor-
phism

K : Ker(J) → BX .

For surfaces this was constructed by Birman, Craiggs and Johnson, and
in the other case by Kreck and Su Yang. Again in spirit they are similar.

(4) Whereas for surfaces the kernel of K is widely unknown the main result
of Kreck and Su Yang is that K is an isomorphism.
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There are a lot of other similarities between the two cases, like that Dehn twists
generate the mapping class groups and that the groups are finitely presentable.
For more details we refer to the literature.

We didn’t say much in dimension 4 where very little is known. Here is a striking
result which indicates the difficulty in dimension 4:

Theorem. (Kronheimer and Mrowka, [4]) The Dehn twist along the separating
3-sphere in the connected sum K3♯K3 of two Kummer surfaces is not isotopic to
the identity.

Whereas for surfaces and complex 3-dimensional intersections isotopy is equiv-
alent to pseudo-isotopy the result of Kronheimer and Mrowka is a very simple
example of a diffeomorphism which is pseudo-isotopic to the identity (by an old
result of the speaker [2]) but not isotopic. Earlier examples of this type were found
by Rubermann.
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Mapping class groups of 4-manifolds

Mark Powell

(joint work with Patrick Orson)

I will report on joint work with Patrick Orson on the mapping class groups of
compact, simply-connected 4-manifolds.

Given an oriented, topological manifold X , with (possibly empty) boundary,
we consider Homeo+(X, ∂X), the topological group of orientation preserving self-
homeomorphisms that restrict to the identity on the boundary ∂X , with the
compact-open topology. The set of connected components π0 Homeo+(X, ∂X)
is the topological mapping class group of X , the group of isotopy classes of orienta-
tion preserving self-homeomorphisms that fix the boundary pointwise. We study
topological mapping class groups for X a compact, oriented, simply connected
4-manifold.

Let λX : H2(X)×H2(X) → Z be the intersection pairing of X . When ∂X = ∅,
it was shown by Perron and Quinn [Qui86, Per86] (cf. Kreck [Kre79, Theorem 1]),
that if two orientation preserving self-homeomorphisms of X induce the same
isometry of the intersection form then they are isotopic. Freedman [Fre82, The-
orem 1.5, Addendum] showed that every automorphism of the intersection form



Morphisms in Low Dimensions 221

is induced by a homeomorphism. Therefore the results of Perron, Quinn and
Freedman combine to compute the mapping class group of every closed, simply
connected 4-manifold, in the sense of reducing the problem to algebra:

π0 Homeo+(X)
∼=
−→ Aut(H2(X), λX); F 7→ F∗.

When X has nonempty boundary, we need to consider a refinement of the
automorphism group Aut(H2(X), λX) to capture the algebraic data of a homeo-
morphism. A map F ∈ Homeo+(X, ∂X) determines a homomorphism

∆F : H2(X, ∂X) → H2(X)

called a variation [Lam75, DK75, Kau74], defined by [x] 7→ [x − F (x)]. Using
that X has Poincaré-Lefschetz duality, Saeki [Sae06] showed that ∆F satisfies
an additional condition, making it what we call a Poincaré variation. There is
a binary operation on the set of Poincaré variations, together with which they
form a group V(H2(X), λX). The map F 7→ F∗ factors through this group via
homomorphisms:

π0 Homeo+(X, ∂X)
F 7→∆F−−−−−→ V(H2(X), λX)

∆ 7→Id−∆◦j
−−−−−−−−→ Aut(H2(X), λX),

where j : H2(X) → H2(X, ∂X) is the quotient map. In general ∆F contains more
information than F∗. Saeki [Sae06] used V(H2(X), λX) to describe the smooth
stable mapping class group for simply connected 4-manifolds with nonempty, con-
nected boundary.

When ∂X has more than one connected component and X admits a spin struc-
ture, there is a further invariant that does not appear in the closed case nor when
the boundary is connected. For F ∈ Homeo+(X, ∂X) we may compare a (topo-
logical) spin structure s on X with the induced spin structure F ∗s. The two agree
on ∂X because F fixes the boundary pointwise. There is a free, transitive action
of H1(X, ∂X ;Z/2) on the set of isomorphism classes of spin structures on X that
agree on ∂X , and we denote by Θ(F ) ∈ H1(X, ∂X ;Z/2) the class representing
the difference between s and F ∗s.

Our main result shows that these invariants describe the entire topological map-
ping class group.

Theorem (Orson-Powell). Let (X, ∂X) be a compact, simply connected, oriented,
topological 4-manifold.

(1) When X is spin, the map F 7→ (Θ(F ),∆F ) induces a group isomorphism

π0 Homeo+(X, ∂X)
∼=
−→ H1(X, ∂X ;Z/2)× V(H2(X), λX).

(2) When X is not spin, the map F 7→ ∆F induces a group isomorphism

π0 Homeo+(X, ∂X)
∼=
−→ V(H2(X), λX).

Our key contribution is injectivity of the maps in the theorem. Let us out-
line the proof strategy. First recall that a topological pseudo-isotopy is a home-
omorphism F : X × I → X × I such that F |∂X×I = Id∂X×I . The restrictions
F0 = F |X×{0} and F1 := F |X×{1} are said to be topologically pseudo-isotopic. We
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classify homeomorphisms of simply connected 4-manifolds with boundary, up to
topological pseudo-isotopy. The strategy builds on that of [Kre79, Proposition 2].
In broad strokes, if we can find a 6-manifold with boundary the (capped off) map-
ping torus of F , such that the 6-manifold is a rel. boundary h-cobordism from
X × [0, 1] to itself, then it follows that F is pseudo-isotopic to the identity. Our
proof consists of an analysis of the obstructions to finding such an h-cobordism,
and uses Kreck’s modified surgery theory [Kre99] as the main technical tool in its
construction. With the pseudo-isotopy classification in hand, the proof that the
maps in the theorem are injective concludes by appealing to Quinn’s result [Qui86,
Theorem 1.4] that topological pseudo-isotopy implies topological isotopy for home-
omorphisms of simply connected, compact 4-manifolds.

Of course, injectivity can be applied to diffeomorphisms of smooth 4-manifolds,
yielding a topological isotopy. This is a important step in the hunt for exotic
diffeomorphisms, which is currently a topic of considerable interest. For example
the main theorem was applied in this way recently by Iida-Konno-Mukherjee-
Taniguchi [IKMT22].

When X has nonempty, connected boundary, surjectivity of the variation map
π0 Homeo+(X, ∂X) → V(H2(X), λX) was already known, and is a consequence
of Boyer’s classification of simply connected compact 4-manifolds with connected
boundary, and a subsequent result of Saeki [Boy86, Boy93, Sae06]. To show that
the map (1) of the theorem is surjective, in particular to realise the Θ invariants
topologically, requires a novel geometric construction, again in combination with
Boyer and Saeki’s results [Boy86, Boy93, Sae06].

Dehn twists. An important type of self-homeomorphism of 4-manifolds is the
Dehn twist, which arises as follows. Let φt ∈ π1(SO(4)) be a generator based at
the identity matrix, represented by a smooth map S1 → SO(4) that is constant
near the basepoint. This induces a smooth loop of self-diffeomorphisms of S3,
which generates π1(Diffeo+(S3)) ∼= Z/2, and thence a self-diffeomorphism

Φ: S3 × I
∼=
−→ S3 × I; (x, t) 7→ (φt(x), t).

Given an embedding of S3×I into a 4-manifold, one can extend the map Φ by the
identity to obtain a self-homeomorphism of the entire 4-manifold, and we call any
self-homeomorphism obtained this way a Dehn twist. If X is smooth to begin with,
and S3 × I is smoothly embedded, then the Dehn twist is a self-diffeomorphism.

Now let X be a closed, simply connected 4-manifold and decompose X \ D̊4 as

the union N ∪S3×{1}S
3×I of a collar neighbourhood of ∂(X \ D̊4) and the closure

of its complement. The diffeomorphism Φ induces a Dehn twist homeomorphism

tX : X \ D̊4 → X \ D̊4; y 7→

{
Φ(x, t) y = (x, t) ∈ S3 × I,

y y ∈ N.

Corollary. For every closed, simply connected, topological manifold X, the Dehn
twist tX is topologically isotopic rel. boundary to Id

X\D̊4 .

An explicit geometric argument of Giansiracusa shows that tCP2 is smoothly
isotopic to the identity [Gia08]. This result can be extended to show that tX
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is smoothly isotopic to the identity for any non-spin, smooth, simply connected,
closed 4-manifold X ; this argument was communicated to us by Auckly, Kro-
nheimer, and Ruberman. On the other hand, it was shown independently by
Baraglia-Konno [BK22] and Kronheimer-Mrowka [KM20] that tK3 is not smoothly
isotopic to the identity. This prompts the obvious question.

Question. For which closed, spin, simply connected, smooth manifolds X is tX
smoothly isotopic to the identity?

Homeomorphisms not restricting to the identity on the boundary. We
consider the implications of our results when we relax the assumption that home-
omorphisms must fix the boundary pointwise. Let X be a compact, oriented,
simply connected 4-manifold. There is a fibre sequence

Homeo+(X, ∂X) → Homeo+(X) → Homeo+(∂X).

Consequently there is an exact sequence in homotopy groups, extending to the
left,
(1)
π1 Homeo+(∂X) → π0 Homeo+(X, ∂X) → π0 Homeo+(X) → π0 Homeo+(∂X).

Here, the first arrow can be defined by inserting the loop of diffeomorphisms of
∂X (based at Id∂X) into a collar of the boundary, and extending by the iden-
tity. Taking the basepoint of each group of homeomorphisms to be the respec-
tive identity map, the sequence (1) is an exact sequence of groups. Here the
π0 terms are also groups because they are connected components of topological
groups. The sequence suggests that the problem of whether two homeomorphisms
F1, F2 : (X, ∂X) → (X, ∂X) are isotopic in Homeo+(X) can be decomposed into
two stages, as follows.

The first-stage question is purely about 3-manifolds: are F1|∂X and F2|∂X iso-
topic? This is a highly nontrivial question in general, but thanks to the mod-
ern spectacular understanding of 3-manifolds, we have a good chance of being
able to decide. Self-homeomorphisms of ∂X must respect the prime decomposi-
tion [Kne29, Mil62] and the JSJ decomposition [JS79, Joh79]; see also [Hat07].
Restricting to geometric pieces it often suffices to understand the isometry groups
(in the sense of Riemannian geometry), by [Gab01, HKMR12, BK21, BK17] and
the references therein. For simple 3-manifolds their mapping class groups were
known earlier. For lens spaces the mapping class groups were computed by Bona-
hon [Bon83], while for Seifert fibred spaces in general see e.g. [BO91]. For Haken
3-manifolds, Hatcher and Ivanov [Hat76, Iva79] showed that the mapping class
group equals the group of homotopy self-equivalences. So with enough work, the
first-stage question can in principle be answered with our current knowledge.

If there is no isotopy between F1|∂X and F2|∂X , then certainly F1 and F2

are not isotopic. So let us assume that the 3-manifold question has been solved
affirmatively. Then, after an isotopy of F1 supported in a collar of ∂X we can
assume that F1|∂X = F2|∂X . We may ask the second-stage question: is G :=
F2 ◦ F

−1
1 ∈ Homeo+(X, ∂X) in the image of π1 Homeo+(∂X)?
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In some cases, π1 Homeo+(∂X) = 0 and so it causes no additional complica-
tions. A general condition for this, using work of Gabai, Hatcher, Ivanov, and
Waldhausen [Gab01, Hat76, Iva79, Wal67], is as follows.

Proposition. Let X be a compact, simply connected, oriented, topological 4-
manifold and suppose that every connected component of ∂X is irreducible but
not Seifert fibred. Then π1 Homeo+(∂X) = 0 and so there is exact sequence of
groups

0 → π0 Homeo+(X, ∂X) → π0 Homeo+(X) → π0 Homeo+(∂X).

Our main theorem describes the left group. The image of the right hand map
was described precisely by Boyer [Boy86, Boy93], for all 3-manifolds. So in the
case that every connected component of ∂X is irreducible but not Seifert fibred,
the combination of our work with Boyer’s results can be employed to complete the
two-stage process discussed above.

We considered Seifert fibred 3-manifold boundary components, and studied the
problem of realising the invariants in the theorem using loops of diffeomorphisms
in a boundary collar. For S3, lens spaces, and S1 × S2 we found some success,
showing that for X spin and ∂X a disjoint union of 3-manifolds of Heegaard
genus at most one, every element of 0×H1(X, ∂X ;Z/2) can be obtained by collar
insertion. In addition, if the dimension of H1(∂X ;Q) is at most one, then we can

identify V(H2(X), λX) with a subgroup Autfix∂ (H2(X), λX) of Aut(H2(X), λX).
We obtain the following corollary.

Corollary. Let X be a compact, simply connected, orientable, topological 4-mani-
fold. Suppose that every connected component of ∂X has Heegaard genus at most
1, and at most one of the connected components is S1×S2. Then there is an exact
sequence of groups

0 → Autfix∂ (H2(X), λX) → π0 Homeo+(X) → π0 Homeo+(∂X).

Note that this statement is independent of whether or not X admits a spin
structure. Let me end by setting the following challenge.

Challenge. Compute the collar insertion map π1 Homeo+(∂X) → π0 Homeo+(X,
∂X) when ∂X consists of more general Seifert fibred spaces.
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[Mil62] John Milnor. A unique decomposition theorem for 3-manifolds. American Journal

of Mathematics, 84(1):1–7, 1962.
[Per86] B. Perron. Pseudo-isotopies et isotopies en dimension quatre dans la catégorie
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Quasimorphisms, knot invariants, and slice-Bennequin inequalities

Peter Feller

An approach to studying a group is to investigate (group homo/quasi)morphisms
from it to some other group. The study of group representations (group homo-
morphisms to matrix groups) is a famous instance of this approach. Here we take
the group of interest to be Artin’s braid group Bn [Art25] for a fixed integer n ≥ 3
and the target is the group of real numbers R.

While, up to scaling, the only group homomorphism to R is given by the writhe
wr: Bn → Z ⊂ R (since the Abelianization of Bn is infinite cyclic), Bn is known
to have many homogeneous quasimorphisms1, written hqm below. The latter is
implied by the fact that the mapping class group of a surface (which the braid
group can be seen as) acts interestingly on a hyperbolic space (the curve com-
plex) [BF02]. We make ‘many’ precise: the R-vector space of hqms on Bn is
known to be uncountably infinite-dimensional.

Meta question: do hqms on Bn (which we know exist plentifully) relate to knot
concordance in the same way group homomorphisms do? We make this precise (see
the conjecture and the question below) after explaining how group homomorphisms
(i.e. the writhe) relate to knot concordance.

The slice-Bennequin inequality

For a link L—a non-empty oriented closed smooth 1-submanifold of the 3-sphere
S3—denote by χ4(L) the largest integer among the Euler characteristics of smooth
oriented surfaces in the 4-ball B4 without closed components and oriented bound-
ary L ⊂ ∂B4 = S3. In particular, for a knot K—a connected link—one has

2g4(K) = 1 − χ4(K), where g4 denotes the slice genus. Denoting by β̂ the link
obtained as the closure of β, we state a celebrated affine linear relation between
the writhe and χ4.

Slice-Bennequin inequality ([Rud93, KM94]). |wr(β)| ≤ n−χ4

(
β̂
)

∀β ∈ Bn.

One may wonder whether the writhe is special or whether in fact a similar
inequality holds for all hqms.

Conjecture. For every hqm f : Bn → R, there exist constants A,C ∈ R such

that |f(β)| ≤ Aχ4

(
β̂
)
+ C for all β ∈ Bn.

We answer the conjecture for the fractional Dehn twist coeeficient ω : Bn → R,
which is a hqm with many interesting relations to low-dimensional topology (knots,
3-manifolds, contact topology, . . . ) [GO89, Mal04, HKM07, HKM08, FH19].

Theorem ([Fel22, Theorem 3]). |ω(β)| ≤ n− χ4

(
β̂
)

for all β ∈ Bn.

1Recall that a quasimorphism on a group G is a function f : G → R such that
supa,b∈G |f(ab) − f(a) − f(b)| < ∞, where supa,b∈G |f(ab) − f(a) − f(b)| is called the defect

of f and is denoted by Df . A function f : G → R is said to be homogeneous if f
(

gk
)

= kf(g)

for all g ∈ G and integers k.
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This theorem in particular answers [HKK+20, Question 1.6]. It turns out that
both the slice-Bennequin inequality and the theorem can be proven by realizing
the involved hqms (wr and ω, respectively) as the homogenization of a certain
type of knot invariant.

Homogenization of knot invariants

A real-valued knot invariant I : Knots → R is called 1-Lipschitz concordance ho-
momorphism, if I(K#J) = I(K)+ I(J) and |I(K)| ≤ g4(K) for all K, J in Knots,
where Knots denotes the set of isotopy classes of knots. For each 1-Lipschitz
concordance homomorphism I, the map

Ĩ → R, β 7→ Ĩ(β) := lim
k→∞

I
(
β̂nkδ

)
(t)

nk
,

where δ is any element in Bn with δ̂ a knot, is a hqm with defect D
Ĩ
≤ n−1

2 [FH19,
Lemma A.1], and the following holds.

Key Observation ([Fel22, Appendix A]). Ĩ(β) ≤
n−χ4(β̂)

2 for all β ∈ Bn.

In light of the key observation, one approach towards proving above the con-
jecture would be to answer the following question in the positive.

Question. Let f : Bn → R be a hqm. Does there exist a 1-Lipschitz concordance

homomorphism I and r ∈ R such that f = rĨ?

Example 1. We consider the case when I is a slice torus invariant—a 1-Lipschitz
concordance homomorphism I with I(Tp,p+1) = g4(Tp,p+1) = (p − 1)p/2 for pos-
itive integers p. Slice torus invariants include Ozsváth-Szabó’s τ [OS03] and Ra-

sumussen’s s [Ras10]. In this case we have Ĩ = wr/2; see e.g. [FH19, Lemma A.3].
Hence, for such I, the key observation recovers the slice-Bennequin inequality.2

Example 2. If I(K) :=
ΥK( 2

n−1
)

n−1 + τ(K)
2 (where Υ is as defined in [OSS17]),

then Ĩ = ω/2 [FH19, Theorem 1.3]. Hence, the key observation yields the above
theorem.
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Floer homology and non-fibered knot detection

Steven Sivek

(joint work with John A. Baldwin)

Knot Floer homology assigns to any knot K ⊂ S3 a bigraded abelian group

ĤFK (K) =
⊕

a,m∈Z

ĤFKm(K, a),

and the Seifert genus g(K) is the maximal a such that ĤFK ∗(K, a) is nonzero

[OS04a]. Moreover, K is a fibered knot if and only if ĤFK (K, g(K)) has rank

1 [Ghi08, Ni07]. These facts imply that ĤFK detects the unknot, meaning that

ĤFK (K) ∼= ĤFK (U) as bigraded groups if and only if K = U , and likewise the
trefoils and figure eight, because these are the only fibered knots of genus ≤ 1. It
is also known to detect the cinquefoils [FRW22], which are fibered of genus 2.

This talk focused on recent work with John Baldwin [BS22a], where we proved

for the first time that ĤFK can detect knots which are not fibered. The main
result is a classification of the “nearly fibered” knots of genus 1.
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Theorem 1. Let K ⊂ S3 be a knot of Seifert genus 1. Then dim ĤFK (K, 1;Q) =
2 if and only if K or its mirror is one of the following:

52 15n43522 Wh−(T2,3, 2) Wh+(T2,3, 2)

2n+1

P (−3, 3, 2n+1)

Among these knots, we note that ĤFK uniquely detects 52 and Wh+(T2,3, 2);

it cannot distinguish 15n43522 from Wh−(T2,3, 2), or any of the pretzel knots
P (−3, 3, 2n + 1) from each other. With a little extra work, we can then use
other knot homologies to tell the pretzels apart:

Theorem 2. Reduced Khovanov homology detects 52, and reduced HOMFLY
homology detects each of the pretzel knots P (−3, 3, 2n+ 1).

Remark 3. We expect that reduced Khovanov homology should be enough to
detect each of the pretzels P (−3, 3, 2n+ 1), but we were unable to prove it.

Theorem 1 also lets us draw some purely topological conclusions. We say r ∈ Q
is a characterizing slope for K ⊂ S3 if S3

r (K) ∼= S3
r (J) implies that K = J .

Theorem 4 ([BS22b, BS22c]). Every r ∈ Q \ Z>0 is characterizing for 52. If K
is any of the knots of Theorem 1, then 0 is characterizing for K.

The first step in the proof of Theorem 1 is to classify the possible complements
of genus-minimizing Seifert surfaces. If F is a Seifert surface for K, then the
sutured Floer homology of

S3(F ) = (S3 \N(F ), λK)

can be identified with ĤFK (K, g(F )). When dimSFH (S3(F )) = 1, properties of
SFH tell us that

S3(F ) ∼= (F × [−1, 1], ∂F × {0}),

so this recovers the fact that K must be fibered. We are instead concerned with
the 2-dimensional case, so S3(F ) is no longer a product sutured manifold; however,
work of Juhász [Juh10] tells us that since dimSFH (S3(F )) is sufficiently small,
there must be an essential product annulus in S3(F ). We decompose S3(F ) along
this annulus and repeat, and eventually we have simplified the topology enough
that only two possibilities remain:

Proposition 5. Let F be a genus-1 Seifert surface for K, and suppose that
dimSFH (S3(F )) = 2. Then S3(F ) is the complement of the union of

• the (2, 4)-cable of either the unknot or the right-handed trefoil, and
• a properly embedded, non-separating arc in the cabling annulus,

up to orientation reversal. Its suture is a meridian of that arc.
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Once we know S3(F ), viewed as the complement of a product F × [−1, 1], it
remains to be seen how we can glue F×{1} to F×{−1} to recover the complement
of K. The key observation is that in either case, S3(F ) admits an involution ι
which restricts to F × {±1} as a hyperelliptic involution. Since g(F ) = 1, this
involution is central in the mapping class group of F , and this allows us to extend
ι across F × [−1, 1] to the whole of S3. Here we illustrate (S3(F ), ι) in case where
S3(F ) is built from a cable of a trefoil:

ι

λK

Taking the quotient by ι, we realize S3(F ) as the branched double cover of a fixed
tangle τ in the 3-ball, and F× [−1, 1] as the branched double cover of some 3-braid
β in D2 × [−1, 1]. Then τ ∪ β must be unknotted, since its branched cover is S3,
so it remains to determine all such β and produce the corresponding K.

We can only give a hint here of how to enumerate the possible braids β in the
trefoil case. After some simplification, we are led to the unknot diagram at left:

τ

β
∗

U = τ ∪ β

−

1

4 β

J

−

1

7 β

J0

Changing the indicated crossing turns U into a knot of the form T−2,3#J . The
Montesinos trick tells us that its branched double cover L(3, 2)#Σ2(J) arises as
some 2n+1

2 -surgery on a knot c in Σ2(U) ∼= S3. But half-integer surgeries must be
irreducible [GL87], so L(3, 2)#Σ2(J) ∼= L(3, 2), and then c and J are unknotted
and 2n+1

2 = 3
2 . Now we instead take the 0-resolution of that crossing of U to get

J0; its branched double cover is S3
n(c)

∼= S3
1(U) ∼= S3, so J0 is unknotted as well.

Both J and J0 are unknots differing in a single rational tangle, so we can replace
it with another rational tangle of slope p

q
to get a 2-bridge link with fraction p

q
.
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In the cases 0 ( ) or ∞ ( ) we see that the braid closure β̂ is a 2-component
unlink, and that a certain 2-bridge plat closure involving β is unknotted. The

3-braids with β̂ = U ⊔ U are known up to conjugacy, and from there we can pin
down the actual braids β, which end up giving rise to K = Wh±(T2,3, 2).

The remaining knots in Theorem 1 arise when S3(F ) comes from a (2, 4)-cable
of the unknot, and that case is harder but based on similar ideas. These arguments
could plausibly generalize to knots K for which S3(F ) comes from a (2, 2n)-cable
of the unknot or of T2,3, at least for small values of n, and this would be useful

in enumerating genus-1 knots with dim ĤFK (K, 1) = n > 2. The problem is that
at present we do not know how to prove the analogue of Proposition 5 that would
classify all possible S3(F ), even for n = 3.
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Khovanov homology and the Involutive Heegaard Floer homology of

branched double covers

Melissa Zhang

(joint work with Akram Alishahi, Linh Truong)

Since the turn of the millennium, Khovanov and Heegaard Floer homologies have
been prominent tools in the study of knots and their relationship with 3- and
4-manifolds. Khovanov’s original link homology theory [6], Kh, is an invariant of
isotopy classes of smooth links in S3, and is computed from a flat diagram of the
link. Ozsváth and Szabó’s original Heegaard Floer homology [12, 13] is an invariant
of 3-manifolds, and is computed from a Heegaard diagram of the 3-manifold.

The first direct relationship between Kh and HF was Ozsváth and Szabó’s link
surgeries spectral sequence [14]. Given a knot K ⊂ S3, they define a spectral
sequence E• such that

E2 ∼= K̃h(K̄),
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where K̄ is the mirror of the knot K (necessary due to convention choices), and K̃h
is reduced Khovanov homology, a version of Khovanov homology for based links.
This spectral sequence abuts to

E∞ ∼= ĤF (Σ(K)),

where Σ(K) is the branched double cover of S3 along K, and ĤF is the simplest
version of Heegaard Floer homology, a vector space over the field F2. In particular,
this spectral sequence is shown to collapse immediately (i.e. E2 ∼= E∞) for quasi-
alternating knots, which are a class of knots extending the class of alternating
knots, defined by a recursive condition on their knot determinants.

In the past decade, Hendricks and Manolescu’s involutive Heegaard Floer ho-
mology [5], HFI , has proven to be immensely powerful in numerous applications
in low-dimensional topology. These homology theories incorporate the action of
ι, a homotopy involution on the Heegaard Floer complex obtained by modify-

ing Heegaard diagrams for the 3-manifold. The hat flavor, ĤFI , assigns to each
3-manifold an F2[Q]/(Q2)-module.

Following Hendricks andManolescu’s construction, Lin defined involutive mono-

pole Floer homology [9], H̃MI , an involutive version of a gauge-theoretic 3-manifold

invariant, monopole Floer homology, H̃M [7]. Lin also constructed a spectral se-
quence of F2[Q]/(Q2) modules, relating a version of Bar-Natan homology (a per-

turbation of Khovanov homology [2]), E2 ∼= K̃h(K̄), to E∞ ∼= H̃MI (Σ(K)). This is

an involutive version of Bloom’s spectral sequence relating K̃h(K̄) to H̃M (Σ(K)),
an analogue to Ozsváth and Szabó’s link surgeries spectral sequence, for monopole
Floer homology.

The historical account above begs the following question: “Is there a link surg-
eries spectral sequence relating some version of Khovanov homology to involutive
Heegaard Floer homology?” The purpose of this talk is to announce upcoming work
with Alishahi and Truong, where we construct an involutive version of Ozsváth
and Szabó’s spectral sequence, with

E2 ∼= K̃h(K̄) and E∞ ∼= ĤFI (Σ(K)).

This is a spectral sequence of F2[Q]/(Q2)-modules, and is analogous to Lin’s spec-
tral sequence.

This result is possible due to the availability of the following tools. First, Lip-
shitz, Ozsváth, and Thurston defined a modular version of HF called bordered
Floer homology [11], and re-constructed Ozsváth and Szabó’s link surgeries spec-
tral sequence in this context [10]. Second, Hendricks and Lipshitz defined a surgery
exact triangle for bordered involutive Heegaard Floer homology [4], allowing us to
make explicit computations of the cobordism maps needed in constructing the
multicone used in the construction of our spectral sequence.

We know that our spectral sequence collapses immediately for quasi-alternating
knots. We also know of examples where the spectral sequence does not collapse

immediately; we obtain these by computing B̃N for these knots using Lewark’s
khoca program [8].
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We expect that our spectral sequence is weakly functorial, in the sense of [1].
We also have the following questions:

• Is there a (describable) larger class of knots for which the spectral sequence
collapses immediately?

• What is the significance of the page of the spectral sequence on which it
collapses?

• In what situations can this spectral sequence be used to deduce information
about the involutive Heegaard Floer homology of a branched double cover?

• Does B̃N come from a homotopy involution on (some chain homotopy
representative of) the Khovanov complex?

We conclude by speculating wildly about the last question. Consider knot diagram
D, drawn on the xy-plane. Now reflect the diagram across the y-axis, and reverse
all the crossings. This diagram, which we denote by D̄, is another diagram for
the same knot. There is a sequence of Reidmeister moves that transforms D̄ back
into D. What is the induced endomorphism on the Khovanov chain complex for
D? Is this is a non-trivial homotopy involution ι? If so, we could define involutive

Khovanov homology; one would hope this would be isomorphic to B̃N !
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The joy of not being a PID

Lukas Lewark

This talk, based on work in progress, is about Khovanov homology giving rise to
a homomorphism from the smooth concordance group C to some abelian group G,
which unifies and generalizes the Rasmussen invariants defined over Q [8], over the
prime fields Fp [6], and over the integers Z [9].

First, let us describe how to treat Khovanov homology as a black box satisfying
certain properties. Equip the polynomial ring Z[x] with a so-called quantum grad-
ing denoted by qdeg, by setting qdeg x = −2. The Khovanov chain complex JKK
of a knot K is constructed as a graded chain complex over Z[x], well-defined up
to graded chain homotopy equivalence ≃. For a Z[x]-module M , Khovanov ho-
mology with coefficients in M , denoted by Kh(K;M), is defined as the homology
of JKK ⊗M (all tensor products are over Z[x]). If M is a graded module, then so
is Kh(K;M). Note that the isomorphism type of Kh(K;M) is a knot invariant.
The following properties hold for all knots K and J :

(1) JKK consists of grading shifted free modules, and is of finite total rank.
(2) JunknotK ≃ Z[x].
(3) JK#JK ≃ JKK ⊗ JJK.
(4) J−KK ≃ JKK∗, where −K denotes the mirror image of K with reversed

orientation (so that the concordance classes of K and −K are inverse),
and C∗ denotes the graded dual of C, i.e. C∗

i is the Z[x]-module of graded
Z[x]-homomorphisms from Ci to Z[x].

(5) For the ungraded Z[x]-module Z := Z[x]/(x − 1), the homology module
Khi(K;Z) is isomorphic to Z for i = 0, and trivial for i 6= 0.

(6) If there exists a smooth connected cobordism of genus g from K to J , then
there exists a graded chain map JKK → JJK of quantum degree −2g that
induces an isomorphism on Kh( · ;Z).

Note that these properties are not sufficient to determine J · K. For example, setting
JKK := Z[x] for all knots K would satisfy (1)–(6). For experts in the subject, let
us remark that the chain complex J · K we are using here is the one coming from
the Frobenius algebra Z[x][y]/(y2 + yx) over Z[x], or equivalently from Bar-Natan
homology of the 2-ended tangle obtained by cutting K open [4, 1, 7, 3]. For
example, one has (where qk signifies a quantum grading shift by k)

J(3, 4)-torus knotK ≃ q6Z[x] 0 q10Z[x] q12Z[x] q12Z[x] q16Z[x].x 0 x2

For a field F, the chain complex JKK ⊗ F[x] is a graded chain complex over
a PID. Thus, up to ≃ it decomposes essentially uniquely into summands F[x] and
summands F[x] −→ F[x] with differential xn for some n ≥ 1. From property (5), it
follows that there is a unique summand F[x], which has homological degree 0. A
Rasmussen invariant may now be defined as the quantum grading of a generator
of that summand. The characteristic c of F determines this Rasmussen invariant,
so one may denote it by sc. From the properties (1)–(6) one deduces quickly that
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sc/2 gives a homomorphism C → Z, and that |sc(K)/2| is a lower bound for the
smooth slice genus of K.

How can one extract a concordance homomorphism from J · K without tensoring
with a simpler module first? Over the non-PID Z[x], indecomposable graded chain
complexes may be quite complicated (in particular, they are not classified). For
example, J(4, 5)-torus knotK admits the indecomposable summands

q22Z[x] q24Z[x]

q20Z[x] q22Z[x]

x

⊕ 2 ⊕

x

and

q28Z[x]

q24Z[x] q26Z[x] q28Z[x].

2⊕
−x2

2x x

Moreover, the decomposition of chain complexes as sum of indecomposables is gen-
erally not unique [3]. So, instead of focusing on a special summand, let us pursue a
different strategy. Let R be the set of graded chain complexes over Z[x] consisting
of grading shifted free modules, of finite total rank, modulo the equivalence rela-
tion ∼. Here, C ∼ D if there are graded chain maps f : C → D and g : D → C that
induce isomorphisms f : H∗(C⊗Z) → H∗(D⊗Z) and g : H∗(D⊗Z) → H∗(C⊗Z).
Then R is a commutative semiring with addition ⊕, zero-element the trivial com-
plex, multiplication ⊗, and one-element Z[x]. Let G ⊂ R consist of those C with
Hi(C ⊗ Z) isomorphic to Z for i = 0, and trivial for i 6= 0. For C ∈ G, one
can show that C ⊗ C∗ ∼ Z[x]. It follows that G is an abelian group. From the
properties (1)–(6), one may quickly deduce the following.

Theorem 1. Sending a knotK to JKK /∼ induces a group homomorphism C → G.

There are similar constructions of concordance homomorphisms coming from
other knot homologies, such as CFK∞(K) / ∼ from knot Floer homology [2]
with coefficients F2[U, V ], and Sn(K) from sln homology [5] with coefficients
C[x, a1, . . . , an−1]. In all three cases, a coefficient ring that is not a PID appears
as crucial ingredient for a rich invariant.

What can one say about the isomorphism type of G? For a field F and C ∈ G,
there is a unique F[x] summand of C⊗F[x]. Denote by sc(C) the quantum degree of
a generator of this summand, where c = charF. If C ∼ JKK for some knot K, then
sc(C) = sc(K). In particular JKK / ∼ determines the Rasmussen invariants sc.
The following will be proved in an upcoming paper.

Theorem 2. There is a surjective group homomorphism G → Z∞ given by
1/2(s0(C), s2(C) − s0(C), s3(C) − s0(C), s5(C) − s0(C), . . .). The kernel of this
homomorphism is infinitely generated.

Recently, Schütz [9] introduced an integral version of the Rasmussen invariant,
denoted by sZ, which is a concordance invariant, but not a homomorphism. The
invariant sZ is defined in terms of the spectral sequence coming from the filtration
induced on JKK ⊗ Z by the quantum grading. In fact, sZ encodes precisely the
isomorphism type of the filtered abelian group Kh0(K;Z) ∼= Z. It follows that
sZ(K) is also determined by JKK / ∼. Schütz’s astonishing discovery that there
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are knots K for which sc(K) = 0 holds for all c, but sZ(K) 6= sZ(U), thus im-
plies the non-triviality of the kernel of the homomorphism G → Z∞ mentioned in
Theorem 2.
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Stable homeomorphism and homotopy equivalence

Anthony Conway

(joint work with Diarmuid Crowley, Lisa Piccirillo, Mark Powell, Joerg Sixt)

In what follows, manifolds are assumed to be compact, connected and oriented.
We work in the topological category unless stated otherwise.

Context. How can one try to decide if two 4-manifolds M and N are home-
omorphic? Classical surgery theory suggests one should first find a homotopy
equivalenceM ≃ N and then “improve” it to a homeomorphism [Wal99]. Modified
surgery theory proposes to first find a homeomorphismM#rS

2×S2 ∼= N#rS
2×S2

(from now on we write ∼=s for stable homeomorphism) and then attempt to cancel
off the S2 × S2 summands [Kre99].

The idea behind modified surgery theory is that the stable classification is
less difficult to approach than the homotopy classification. To get a sense of
why this might be true, note for simply-connected, spin, closed 4-manifolds M
and N , it is known that M ∼=s N if and only if the signatures of M and N
agree, whereas M ≃ N if and only if the intersection forms of M and N agree.
More formally, Kreck [Kre99] has reduced the stable classification to a (difficult)
bordism problem that can be approached using spectral sequence arguments; see
e.g. [Tei92, Spa03, Dav05, KLPT17, HH19, KPT20, KPT21]
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What about the cancellation aspect of the modified surgery approach? A strik-
ing result in this direction is due to Hambleton and Kreck [HK93] who showed
that every closed 4-manifold that is stably homeomorphic to M := M0#S2 × S2

with π1(M0) finite is homeomorphic to M ; see [CS11, Kha17] for related results.
Naturally, such cancellation results cannot hold in general as can be seen by us-
ing Freedman’s results [Fre82] to realise distinct, stably isometric, nonsingular
symmetric bilinear forms by closed simply-connected 4-manifolds.

Since the (equivariant) intersection form gets in the way of cancellation, it is
natural to wonder whether stably homeomorphic 4-manifolds with isometric equi-
variant intersection forms are homeomorphic. Here the equivariant intersection
form refers to the Hermitian form

λM : H2(M̃)×H2(M̃) → Z[π1(M)]

on the universal cover M̃ of M , defined by λM ([A], [B]) :=
∑

g∈π(A · gB) g−1,
where A · gB is the algebraic intersection between A and the g-translate of B.

This “cancellation with fixed form” holds when π := π1(M) ∼= π1(N) is triv-
ial [Fre82], infinite cyclic [FQ90], finite cyclic [HK88] and a Baumslag-Solitar group
of the form BS(1, n) ∼= 〈a, b, | aba−1 = bn〉 [HKT09] but does not hold in general:
for every integer k ≥ 1, Kreck and Schafer [KS84] found examples of closed,
smooth 4k-manifolds M,N with π ∼= Z3

5 that are stably diffeomorphic and have
hyperbolic equivariant intersection form but are not homotopy equivalent.

Reformulating (but stating the results in the topological category for brevity),
for every integer k ≥ 1, Kreck and Schafer found a closed 4k-manifold M for
which the following set (which we call the fixed-form homotopy stable class) has
cardinality at least 2:

Sst,h
λ (M) = {N | N ∼=s M, λM

∼= λN}/ homotopy equivalence .

The Kreck-Schafer 4k-manifolds are constructed by taking the boundary of thick-
ened 2k-complexes; they are distinguished using their k-invariants. Some questions
now arise: can one systematise the Kreck-Schafer construction to produce man-

ifolds with larger Sst,h
λ (M)? Can one get a sense of the fundamental groups for

which Sst,h
λ (M) is trivial? finite? infinite?

Statement of results. In high dimensions we are able to produce families of
smooth manifolds with large fixed-form homotopy stable class. In dimension 4, we
obtain a similar result when the boundary is nonempty.

Theorem 1 ([CCPS21a, CCPS21b, CCP22]).

• For every k ≥ 2 and n > 0, there is a smooth, closed, simply-connected 4k-

manifold M with hyperbolic intersection form and |Sst,h
λ (M)| > n.

• For every k ≥ 2 and n > 0, there is a smooth, closed 4k-manifold M

with π1(M) ∼= Z, hyperbolic equivariant intersection form and |Sst,h
λ (M)|

= ∞.
• For every odd prime q, there is a 4-manifold Mq with π1(Mq) = Z, equi-

variant intersection form (2q), boundary L(2q, 1) and |Sst,h
λ (Mq)| = ∞.
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Summarising, our contribution is to produce manifolds that have both large

Sst,h
λ (M) and simple fundamental group. At the time of writing, the closed 4-

dimensional case remains challenging.

Remark 2. Here are some further comments on Theorem 1.
• In the closed higher dimensional cases:

– The tangent bundles of the manifolds are stably trivial; this procludes
them from being distinguished by their characteristic classes.

– The manifolds are stably diffeomorphic; we stated the results in the topo-
logical category to avoid introducing more notation.

– The manifolds are distinguished by the cohomology ring (of their universal
cover) but in an indirect way: we do not calculate the ring.

• In the 4-dimensional case with boundary:

– In the definition of Sst,h
λ (M), we mod out by homotopy equivalences that

restrict to homotopy equivalences on the boundary. If we require our
homotopy equivalences to be homeomorphisms on the boundary, we obtain
stronger results.

– The invariant is, roughly speaking, the map H2(M̃, ∂M̃) → H1(∂M̃). In
practice it takes the form of an isometry of the Blanchfield form

Bl∂M : H1(∂M̃)×H1(∂M̃) → Q(t)/Z[t±1].

This invariant takes values in a set Aut(Bl∂M )/ hAut+(∂M) × Aut(λM )
whose definition we omit.

Proof ideas.

Proof idea of the 4-dimensional result. We consider the case q = 3 for concrete-
ness, but the proof is identical in general. Consider M := (S1 × D3)♮X6(U),
where X6(U) denotes the 6-trace on the unknot. The first step of the proof

consists of showing that our invariant gives rise to a surjection Sst,h
λ (M) ։

Aut(Bl∂M )/ hAut+(∂M)×Aut(λM ), whereas the second step shows that the tar-
get is infinite. The second step is tedious but explicit: it involves understanding
the Blanchfield form of ∂M and its isometries; this is the main technical work
of [CCP22]. We therefore describe the idea behind the first step, i.e. how to con-
struct a 4-manifold with boundary realising the algebra; this construction comes
from [CPP22].

As we mentioned above, for the purposes of this note we think of our obstruc-

tion as a Z[t±1]-linear map f : Z[t±1] = H2(M̃, ∂M̃) → H1(∂M̃) = Z[t±1]/(6).

Add 2-handles to the top of ∂M̃ × [0, 1] along all the Z-translates of a knot rep-
resenting f(1) with “equivariant framing” 6. Use surgery theory to show that the
top of the resulting cobordism Wf bounds a 4-manifold B that has the homotopy
type of S1. The manifold we are after is Mf := Wf ∪∂ B.

The manifold Mf is spin, has boundary ∂M , fundamental group π1(Mf) = Z,
equivariant intersection form (6), and realises f . One can then use [Kre99] (with
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an argument from [CP20]) to show that since our manifolds are spin, have π1 = Z,
λ ∼= (6), and the same boundary, they are stably homeomorphic. �

Proof idea of the higher-dimensional results. The obstruction, despite being ex-
tracted from the cohomology ring, is challenging to describe and so we focus on the
construction of our manifolds. To this effect, we first recall (odd-dimensional)Wall
realisation from classical surgery theory. Given a closed smooth 2q-manifold M
and x ∈ L2q+1(Z[π1(M)]), Wall realisation outputs a cobordism (Wx,Mx,M)
based on M and a degree one normal map

(F, f, idM ) : (Wx,Mx,M) → (M × [0, 1],M,M)

whose surgery obstruction is x. The cobordism Wx is obtained from M × [0, 1]
by first attaching trivial q-handles and then adding an equal number of (q + 1)-
handles in a way that is “dictated” by x. The manifolds M and Mx are stably
diffeomorphic, as well as homotopy equivalent; thus Wall realisation cannot be
used to prove Theorem 1.

As a consequence we prove a “modified surgery analogue of Wall realisation”:
we show how to realise subsets of the ℓ-monoid ℓ2q+1(Z[π1(M)]) by cobordisms
based on M [CCPS21b]. The construction is similar to that of Wall realisation
(in particular M and Mx are stably diffeomorphic) but for q ≥ 4 even, we show
that Mx need not be homotopy equivalent to M (extracting a suitable homotopy
invariant from the cohomology ring takes some effort). Some additional work is
then needed to ensure that the equivariant intersection forms of M and Mx are
isometric (in general, the realisation process only ensures stable isometry). �
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Diagrams for contractible spaces of 4–manifolds

David Gay

We begin this talk by considering the following thought experiment: I draw a Kirby
diagram for a closed manifold, on a piece of paper, and pass it to audience member
A, who copies it down on their own piece of paper. Person A passes their copy to
person B, who makes their own copy, and the process repeats until everyone in the
room has their own copy. We are all careful topologists so we have all correctly
copied the diagram, in other words all of our diagrams are equivalent modulo
planar isotopies. Now we each use our diagram to build a closed 4–manifold;
person A’s 4–manifold is called XA, person B’s 4–manifold is XB, and so on. One
of the basic teachings of the smooth 4–manifold establishment is that all of these
4–manifolds are diffeomorphic. In other words, none of the choices made after
my initial drawing of the diagram “matter”, in the sense that the given diagram
uniquely determines a 4–manifold up to diffeomorphism. So far so good.

Now, however, we remember that this is a workshop on morphisms in low-
dimensional topology, not on objects. If the (isomorphism classes of) objects can
be described by diagrams, can the morphisms be described by diagrams? One
might imagine that if a Kirby diagram D describes 4–manifold X(D) and another
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diagram D′ describes 4–manifold X(D′), then a sequence of moves on Kirby dia-
grams connecting D to D′ should describe a diffeomorphism from X(D) to X(D′).
However, just as X(D) and X(D′) are only specified up to diffeomorphism, one
should at most expect the sequence of diagrams to describe a diffeomorphism up
to isotopy. In general, this should be possible but the purpose of this talk is to
think about potential pitfalls and solutions along the way, and what we should
be thinking about if we want to improve this idea still further to think about
higher homotopy groups (not just π0) of spaces of diffeomorphisms between 4–
manifolds. In particular, we have started with Kirby diagrams since they are the
most standard diagrams for 4–manifolds, but we will see that in fact trisection
diagrams (or at least some kind of enhanced version of trisection diagrams) have
some advantages over Kirby diagrams for at least the 0’th level in this program.

Returning to our thought experiment, persons A and B could discover a dif-
feomorphism φAB : XA → XB, persons B and C could discover a diffeomor-
phism φBC : XB → XC and persons C and A could discover a diffeomorphism
φCA : XC → XA. After all, all three people were using the same diagram! Then
we could ask about φCAφBCφAB : XA → XA. Surely, since we all started with the
same diagram, we might hope that this diffeomorphism is isotopic to the identity.
However, there is really no reason from the general theory of Kirby diagrams to
expect this, and the real problem is that the spaces of choices one makes along the
way from a diagram to a manifold might itself have nontrivial topology.

Thus the 0’th level referred to above is to ensure that our diagrams determine
4–manifolds in such a way that we can honestly speak about the identity diffeo-
morphism from a diagram-determined 4–manifold back to itself. Since it is not
reasonable to ask that a diagram uniquely determine one single manifold (i.e. an
actual set of points with an actual atlas of charts), the next best thing is to ask
that all the manifolds determined by a single diagram fit together into a larger
space as fibers of a bundle over a contractible base space. There is a natural base
space in this case, namely the space of auxiliary choices one needs to make to go
from a diagram to a manifold. These spaces of choices would generally be embed-
ding spaces, or bundles of embedding spaces over embedding spaces, and so on.
For example, for a Kirby diagram decribing a 4–manifold with two 2–handles, a
3–handle and a 4–handle, these choices include the space of embeddings of two
solid tori into S3 such that projections of their cores are isotopic to the given di-
agram, together with the space of embeddings of S2 × I into the result of surgery
along the embedded solid tori (a bundle of embedding spaces over the space of
embeddings of the solid tori), and finally the 4–handle attaching map, a space of
diffeomorphisms of S3 with the result of surgery along all the 2– and 3–handles.

We now define a class of diagrams for 4–manifolds which we claim fit the bill,
i.e. which are diagrams for contractible spaces of 4–manifolds.

Definition 1. A framed point on an oriented surface Σ is a point p ∈ Σ together
with an oriented frame for TpΣ, i.e. a positively oriented pair of linearly indepen-
dent tangent vectors (Up, Vp) at p.
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Definition 2. A pre-marked surface is an oriented surface Σ together with a fi-
nite number of framed points {p1, . . . , pn} with frames {(Up1

, Vp1
), . . . , (Upn

, Vpn
)}.

Thus the full data is the tuple Σ = (Σ, {p1, . . . , pn}, {(Up1
, Vp1

), . . . , (Upn
, Vpn

)}).

Once and for all, at the beginning of time, for each genus g and each n ∈ N,
fix a “standard” pre-marked genus g surface Σg,n with n framed marked points.
This is important so that our spaces of choices below do not include the choice of
surface, marked points and frames.

Definition 3. A framed, marked, generalized cut system on a pre-marked surface
Σ is a collection of disjoint oriented simple closed curves C = {C1, . . . , Ck} in
Σ and a preferred subset PC ⊂ {p1, . . . , pn} of the pre-marked framed points
satisfying the following conditions:

• The simple closed curves cut Σ into a collection of genus 0 components.
(In particular, k is greater than or equal to the genus of Σ.)

• Each Ci passes through exactly one marked point pj , with the first vector
Uj in the frame at pj being positively tangent to Ci.

• Each component of Σ\(C1∪ . . .∪Ck) contains exactly one of the preferred
marked points PC.

An isotopy of a framed, marked, generalized cut system is an isotopy of the curves
C1, . . . , Ck preserving all the above properties. In particular, the pre-marked
points do not move, the curves do not move at the marked points, and the curves
do not cross any of the extra pre-marked points during their isotopies.

Now we are ready to describe our diagrams for 4–manifolds.

Definition 4. A framed, marked, generalized trisection diagram D consists of the
following data

• A standard pre-marked surface Σg,n for some g and n.
• A cyclically ordered list (C1, . . . ,Cr) of isotopy classes of framed, marked,
generalized cut systems on Σg,n.

such that each Ci is related to Ci+1 in one of these two ways:

• Ci+1 contains all the curves of Ci together with one more curve, and all
the preferred marked points of Ci together with one more preferred point,
or vice versa.

• One curve C of Ci is replaced by one curve C∗ of Ci+1, all other curves
remain the same, and C and C∗ meet transversely at one point.

The following theorem is a statement of a preliminary result to the effect that
these diagrams in fact do describe contractible spaces of 4–manifolds. Having given
all the gory details for the definition of the kinds of diagrams we are considering, we
skip some definitions needed to make completely rigorous sense of the statement,
but we hope that the essential idea is clear.

Theorem 5. Given any framed, marked, generalized trisection diagram D, there
is a contractible space A(D) of auxiliary choices, and a bundle X(D) over A(D)



Morphisms in Low Dimensions 243

the fibers of which are smooth 4–manifolds. Furthermore, For every smooth 4–
manifold X , there is a diagram D such that X is diffeomorphic to a fiber of
X(D). If D and D′ are two diagrams such that the fibers of X(D) and X(D′) are
diffeomorphic then D and D′ are related by certain moves.

These diagrams are described as generalizations of trisection diagrams because
they can be produced somewhat systematically from trisection diagrams, and a
trisection diagram is like one of these diagrams with only three collections of curves,
except that in a trisection diagrams, the successive collections of curves are not as
simply related as those in our generalized trisection diagrams.

The next step in this program is to show that any diffomorphism between 4–
manifolds can be described, up to isotopy, by a sequence of diagrams. This itself
is a baby step towards a grand goal of constructing a cell complex in which the
vertices are these diagrams, one-cells are these moves, and higher cells are described
diagrammatically, so that each component of this cell complex corresponds to a
diffeomorphism class of 4–manifolds and each component is homotopy equivalent
to BDiff(X) for a 4–manifold X in its diffeomorphism class.

A pleasant outcome of giving this talk was that I learned from audience members
that the space discussed in the preceding paragraph (a copy of BDiff(X) for each
diffeomorphism class of 4–manifolds) is known as the moduli space of 4–manifolds,
and that my goal is to constract a diagrammatic cell complex approximation of
this space.

Computing invariants of barbell diffeomorphisms

Ryan Budney

(joint work with David Gabai)

Given a compact hyperbolic manifold of dimension ≥ 2 its isometry group is known
to be finite. In dimensions ≥ 3, Mostow Rigidity tells us the space of homotopy
self-equivalences of the manifold has the isometry group as a deformation-retract.
Due to work of Hatcher, Waldhausen and Gabai, we know the group of homeo-
morphisms, PL-automorphisms and diffeomorphisms also has the isometry group
as a deformation-retract. In dimensions ≥ 11, Farrell and Jones [5] used the ma-
chinery of Higher Simple Homotopy Theory (K-theory, pseudoisotopy, etc) [9] to
show that smooth, PL and topological automorphism groups of compact hyper-
bolic manifolds do not have the homotopy-type of the isometry group, moreover
they do not have the homotopy-type of finite CW-complexes. We extend these
results to dimension ≥ 4 by avoiding the use of Higher Simple Homotopy The-
ory, and constructing diffeomorphisms explicitly using ‘barbells’ [1]. The core of
our argument involves extending our theorem about the non-finite generation of
πn−4Diff(S1 ×Dn−1) to the non-finite generation of πn−4 Homeo(S1 ×Dn−1) for
all n ≥ 4. To do this, we construct an invariant of topological embedding spaces,
modelled on the Embedding Calculus. Specifically, we consider a ‘scanning’ map
Homeo(S1 × Dn−1) → Ωn−2Emb(I, S1 × Dn−1), where Emb(I, S1 × Dn−1) is a
space of topological embeddings of the interval in S1 ×Dn−1 with fixed boundary
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conditions. Our invariant of π2n−6Emb(I, S1 × Dn−1) takes place in a quotient
of the rational (2n − 3)-rd homotopy group of a space analogous to an ‘orbit
configuration space’ of points in the universal cover of S1 ×Dn−1 [4].
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The Dehn surgery characterisation of satellite knots

Laura Wakelin

The Dehn surgery characterisation problem asks: for which non-trivial slopes p/q ∈
Q does the manifold S3K(p/q) obtained by performing Dehn surgery of slope p/q
on a knot K ⊂ S3 uniquely determine K? We combine JSJ decompositions and
hyperbolic techniques to investigate this question in the case where K is a certain
type of satellite knot, with a particular focus on Whitehead doubles.

Introduction

Throughout, we denote by K a knot in a 3-manifold M (usually either S3 or
S1 × D2) and write its complement as MK := M \ ν(K). The manifold obtained
by performing Dehn surgery of slope p/q on the knot K ⊂ M is expressed as
MK(p/q). We use similar notation for links; any ambiguity should be resolved by
the context.

Definition 1. A satellite K = P (C) with pattern P = U ∪Q and companion C is
the image of Q in the oriented homeomorphism S3U → ν(C) preserving longitudes.

We denote the winding number of Q inside S3U
∼= S1 × D2 by w.

Definition 2. A slope p/q ∈ Q is called characterising for a knot K ⊂ S3 if the
existence of an orientation-preserving homeomorphism S3K(p/q) ∼= S3K′(p/q) for a
knot K ′ ⊂ S3 implies that K = K ′, and non-characterising otherwise.
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Question 3. Given a knot K ⊂ S3, can we classify all of its characterising and
non-characterising slopes?

Non-characterising slopes. There are many knots with non-characterising
slopes. Brakes suggested a method of constructing these using the idea of gluing
together a pair of knot complements [3]; this is realised in the following example
[17].

Example 4. For any m,n, q ∈ Z \ {0} with m 6= n, there is a pair of distinct
multiclasped doubles of double twist knots, K = Wn(Tm

q ) and K ′ = Wm(T n
q ),

and an orientation-preserving homeomorphism S3K(1/q) ∼= S3K′(1/q).

Baker and Motegi showed that there are also knots for which infinitely many
slopes are non-characterising [2]. The simplest of their examples is the hyperbolic
knot 86, for which no integer slopes are characterising.

Characterising slopes. Every slope is characterising for the unknot [7, 8], as
well as for the trefoils and figure eight knot [15]. Moreover, all but finitely many
non-integer slopes are characterising for torus knots [14, 11]. Lackenby showed
that for any knot K ⊂ S3, there exists a constant C(K) for which every slope
p/q ∈ [−1, 1] is characterising [9]; Sorya recently refined this in [16].

Inspired by the existence of C(K), the motivation for this work is to explicitly
construct such a lower bound in some special cases. The purpose of this talk is to
sketch the proofs of the following theorems from [17].

Theorem 5. Let K = P (C) be a satellite knot by a pattern P in whose comple-
ment the length of the shortest geodesic is at least 0.136. Then every slope p/q
with gcd(p, w) 6= 1, |q| ≥ 36 is characterising for K.

Theorem 6. LetK = W (C) be aWhitehead double and assume that the SnapPea
census of the first n orientable, 2-cusped hyperbolic 3-manifolds ordered by volume
is complete. Then every slope p/q with |p| 6= 1, |q| ≥ φ(n) is characterising for K.

n 4 6 8 10 16 18 24 49 289
φ(n) 44 33 31 29 28 27 26 25 24

Table 1. Choices of n and the corresponding values of φ(n).

JSJ decompositions

The JSJ decomposition theorem is a key part of our argument: we use the classi-
fication of JSJ pieces in a satellite knot complement to ensure that a homeomor-
phism S3K(p/q) ∼= S3K′(p/q) between two fillings identifies the filled JSJ pieces.

Satellite knot complements. The JSJ pieces in a satellite knot complement can
take precisely 4 different forms [4]. In particular, by considering each possibility
for the outermost JSJ piece in turn, we gain crucial information about the filling.
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Homeomorphic fillings. Let K = P (C) be a satellite by a hyperbolic pattern
and suppose that S3K(p/q) ∼= S3K′(p/q). We would like to show that K ′ = K.

Question 7. Must we have another satellite knot, K ′ = P ′(C′)?

The answer is yes, provided we assume |q| ≥ 9; then we can avoid exceptional
surgeries on hyperbolic knots by [10] and eliminate torus knots by [12].

Question 8. Must the homeomorphism identify the filled pieces?

The answer is yes, provided we assume gcd(p, w) 6= 1; this prevents the filled
pattern piece from being a knot complement.

Proposition 9. Let K = P (C) be a satellite by a hyperbolic pattern and suppose
that S3K(p/q) ∼= S3K′(p/q), where gcd(p, w) 6= 1 and |q| ≥ 9. Then K ′ = P ′(C) is a
satellite of the same companion C by a pattern P ′, and one of the following holds:

(i) P ′ = U ∪Q′ is hyperbolic and S3P (p/q)
∼= S3P ′(p/q);

(ii) P ′ = Jr,s(P̂ ) is a cabled pattern whose cabling slope satisfies |p − qrs| = 1,

P̂ = U ∪ Q̂ is hyperbolic and S3P (p/q)
∼= S3

P̂
(p/qs2).

Hyperbolic techniques

By Proposition 9, we have reduced our problem to showing that if P and P̃ are
hyperbolic patterns such that S3P (p/q)

∼= S3
P̃
(p/qt2) for some integer t ≥ 1, then

P = P̃ . (We can subsequently rule out case (ii) by noting that the existence of
a cosmetic surgery S3K(p/q) ∼= S3K(p/qt2) with t > 1 would contradict [13]; this
leaves us with case (i), which immediately implies that K = K ′.) There are two
distinct hyperbolic techniques which we can use to address this.

Minimal geodesics. Let P be a hyperbolic pattern such that the shortest geo-
desic in its complement has length at least 0.136. By assuming that |q| ≥ 36 and
invoking quantitative bounds from [6], we show that the shortest geodesic in both
filled manifolds can only be the core curve, thus implying that the homeomorphism
S3P (p/q)

∼= S3
P̃
(p/qt2) takes one to the other; hence P̃ = P . This completes the

proof of Theorem 5.

Minimal volumes. The Whitehead link complement and its sister jointly achieve
the smallest volume of all orientable 2-cusped hyperbolic 3-manifolds [1]. By
assuming that |q| ≥ 24 and utilising hyperbolic volume inequalities from [5], the
conjectural completeness of the SnapPea census up to a certain point allows us to
limit the possibilities for such a manifold M satisfying S3W (p/q) ∼= M(p/qt2) to
a finite list. We then obstruct the existence of a homeomorphism M ∼= S3

P̃
to a

suitable link complement unless P̃ = W . This completes the proof of Theorem 6.
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Multisections

Delphine Moussard

The goal of this talk was to present a generalization of Heegaard splittings of 3–
manifolds and trisections of 4–manifolds to higher-dimensional manifolds. It is a
joint work in progress with Fathi Ben Aribi, Sylvain Courte and Marco Golla.

All manifolds are compact, connected and oriented. By handlebody we mean a
1–handlebody.

A Heegaard splitting of a closed 3–manifold M is a decomposition M = H1∪H2

where H1 and H2 are handlebodies with common boundary a closed surface Σ. A
trisection of a smooth closed 4–manifold X is a decomposition X = X1 ∪X2 ∪X3

where theXi are 4–dimensional handlebodies, theXij = Xi∩Xj are 3–dimensional
handlebodies and Σ = X1 ∩X2 ∩X3 is a closed surface.
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From a Heegaard splitting or a trisection, one can produce a new one via a sta-
bilization move. This move is defined by removing a neighborhood of a boundary-
parallel arc properly embedded in one handlebody of the splitting and adding it
to the other handlebody. Similarly, from a trisection X = X1 ∪ X2 ∪ X3, take a
boundary-parallel arc in one of the Xij and add a tubular neighborhood of it to
the opposite Xk.

Theorem 1 (Heegaard, Reidemeister, Singer, Gay–Kirby). Any smooth closed
3/4–manifold admits a Heegaard splitting/trisection, unique up to stabilization.

These decompositions can be represented by diagrams. First define a cut system
for a handlebody as a family of disjoint curves on its boundary that bound disjoint
disks, such that cutting the handlebody along these disks gives a 3–ball.

A Heegaard diagram for a given Heegaard splitting is given by two families of
curves on the central surface that are cut systems for the two handlebodies of the
splitting, see Figure 1.

S3 S2 × S1 L(3, 1)

Figure 1. Heegaard diagrams

A trisection diagram for a given trisection consists of three cut systems on the
central surface Σ for the three 3–dimensional handlebodies Xij of the trisection.

Figure 2. A trisection diagram for S2 × S2

Abstractly, a Heegaard diagram (resp. trisection diagram) is a triple (Σ;α, β)
(resp. a quadruple (Σ;α, β, γ)) where Σ is a closed genus–g surface and α, β, γ
are families of disjoint simple closed curves on Σ; for a trisection diagram, we add
the condition that each pair of families defines a Heegaard splitting of a connected
sum of copies of (S1 × S2), that is the boundary of a 4–dimensional handlebody.
A Heegaard diagram (resp. a trisection diagram) determines a unique smooth
3/4–manifold.

Beyond Heegaard splittings of 3–manifolds and trisections of smooth 4–mani-
folds, it is natural to ask whether a similar decomposition can be provided in higher
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dimensions. We call n–section or multisection of a closed smooth (n+1)–manifold
W a decomposition W = ∪n

i=1Wi such that:

• WI = ∩i∈IWi is an (n+ 2 − |I|)–dimensional handlebody for any proper
non-empty subset I of {1, . . . , n},

• ∩1≤i≤nWi is a closed surface.

It should be noted that the WI cannot be all simultaneously diffeomorphic to
a handlebody. We deal here with manifolds with corners, requiring that their
canonical smoothing is diffeomorphic to a handlebody.

An interesting feature of these multisections is the following inductive property:
for each I, the manifold ∂WI has a natural (n− |I|)–section given by the WJ for
J = I ∪ {j}, j /∈ I.

Note that the definition of multisections extends to the PL setting by replacing
diffeomorphisms by PL homeomorphisms everywhere.

Given an n–section M of a smooth (n + 1)–manifold W as above, denote
Σ = ∩1≤i≤nWi the central surface and choose for all i ∈ {1, . . . , n} a cut sys-
tem (αi

j)1≤j≤g for the 3–dimensional handlebody ∩k 6=iWk. Then (Σ;α1, . . . , αn)
is an n–section diagram for (W,M). This is not unique, but it is well-known that
each system of curves (αi

1, . . . , α
i
g) is unique up to handleslides. Hence the n–

section diagram associated to a multisected manifold is unique up to handleslides
(performed independently in each family αi).

An abstract n–section diagram is a genus–g closed surface Σ with n families of g
disjoint simple closed curves, such that any subcollection of k ∈ {2, . . . , n} of these
families is a k–section diagram for a multisection of a connected sum of copies of
S1 × Sk.

Theorem 2 (Ben Aribi, Courte, Golla, M.). Let n ≥ 2.

• For n ≤ 6, any abstract n–section diagram is the diagram of some smooth
multisected (n+1)–manifold, which is unique up to multisection preserving
diffeomorphism if n ≤ 5.

• For arbitrary n, any abstract n–section diagram is the diagram of some PL
multisected (n+1)–manifold which is unique up to multisection preserving
PL homeomorphism.

The proof relies on results of Laudenbach–Poénaru [LP72], Montesinos [Mon79]
and Cavicchioli–Hegenbarth [CH93]: for n ≥ 4, any PL homeomorphism of the
boundary of an n–dimensional handlebody extends to the whole handlebody; this
holds for diffeomorphisms if n ≤ 6.

The uniqueness part of the result is optimum. Indeed, for n ≥ 6, exotic (n+1)–
spheres are known to be twisted spheres, so that they admit genus–0 n–sections;
hence they all admit the 2–sphere as an n–section diagram.

From dimension 8, it is known that there exist PL manifolds that do not admit
any smooth structure. If such manifolds can be multisected, then their multisection
diagrams cannot be realized by a smooth manifold.
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There is obvioulsy a single genus–0 n–section diagram. For n ≥ 4, all genus–1
diagrams are given by two groups of parallel curves, pairwise dual (see Figure 3 for
n = 4). When all curves are parallel, the diagram represents S1 × Sn. Otherwise,
it represents Sn+1. The stabilization moves for n ≥ 4 correspond to connected
sums with the corresponding multisections of Sn+1. These moves can be described
by cutting and pasting of embedded arcs or higher dimensional disks.

S1 × S4 S5 S5

Figure 3. Genus–1 quadrisection diagrams

The main question concerning multisections is that of existence and uniqueness
up to stabilizations.

Theorem 3 (Ben Aribi, Courte, Golla, M.). Any closed smooth 5–manifold ad-
mits a quadrisection.

The proof relies on morse functions on smooth manifolds, adapting in dimen-
sion 5 the approach of Lambert-Cole and Miller [LCM21] of the initial proof of
existence of trisections by Gay and Kirby [GK16].
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Involutive knot Floer homology and the Arf invariant

Sungkyung Kang

(joint work with JungHwan Park)

Given a knot K and relatively prime integers p, q, one can consider the cabled knot
Kp,q. When K is slice and q = 1, then it is clear that Kp,q is also slice. Miyazaki
asked if the converse of this fact also holds. In fact, we go one step further and
focus on the following stronger conjecture.
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Conjecture 1. The (p, q)-cable of K is torsion in the knot concordance group C
if and only if K is slice and |q| = 1.

It can be easily seen that if |q| > 1, then Kp,q has infinite order in C, so the
conjecture reduces to the case when q = 1. There are many nonslice knots where
their (p, 1)-cables have infinite order in C, but most of those arguments only work
when the given knot K also has infinite order in C as well. The only known result
when K is torsion in C appeared recently in a work of the author with Hom, Park,
and Stoffregen, where it is shown that the (p, 1)-cable of the figure-eight knot has
infinite order in C whenever p is odd and not equal to ±1. In our work, we expand
this result to a much larger family. Roughly, we show that “half” of the torsion
knots have infinite order once cabled. Let Kp1,q1;p2,q2;...;pm,qm denote the iterated
cable of K.

Theorem 2. Denote by CT the torsion subgroup of the knot concordance group
C. Then there is a nontrivial group homomorphism

A : CT → Z/2Z.

Moreover, if K is torsion in C with A(K) = 1, then for any sequence of positive
integers n1, n2, . . . , nm the iterated cable K2n1+1,1;2n2+1,1;...;2nm+1,1 has infinite
order in C. In particular, for any nonzero integer n the cable K2n+1,1 has infinite
order in C.

I was also able to prove linear independence of (odd,1)-cables of knots which
are torsion in C and has nonzero A-invaraint.

Theorem 3. If K is torsion in C with A(K) = 1, then the set of cables
{K2n+1,1}n>0 contains an infinite subset which is linearly independent in C.

It is a very interesting question whether the invariant A takes the same value
as the Arf invariant, so we leave this as a conjecture.

Question 4. If K is torsion in C, then is A(K) = Arf(K)?
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Bordered perspectives on the link surgery formulas

Ian Zemke

In this talk, I discussed work (much of which is in progress) on the surgery formulas
in Heegaard Floer theory. In the early 2000s, Ozsváth and Szabó introduced
a powerful set of 3-manifold invariants called Heegaard Floer homology. Some
of the most important developments in Heegaard Floer theory are the result of
its computability relative to other Floer theoretic invariants. Some of the most
important and useful computational results are the surgery formulas of Manolsecu-
Ozsváth-Szabó [5, 6].



252 Oberwolfach Report 4/2023

For a knot K ⊂ S3 (or more generally a null-homologous knot in a 3-manifold),
the surgery formulas give an isomorphism

HF−(Yn(K)) ∼= Cone(v + hn : A(K) → B(K)),

for some complexes A(K), B(K) and maps v and hn.
Fundamentally, Dehn surgery is an operation involving 3-manifolds with torus

boundaries, i.e. we cut out a neighborhood of K and glue in a solid torus. In Hee-
gaard Floer theory, there is a parallel theory for 3-manifolds with torus boundary,
called Bordered Heegaard Floer homology, due to Lipshitz, Ozsváth and Thurston
[4].

In this talk, I described some ways in which the Manolescu-Ozsváth-Szabó
surgery formulas could be interpreted as a bordered theory [8]. This interpretation
is through an algebra due to the author, denoted K. This algebra is over an
idempotent ring of 2 elements, denoted I0 ⊕ I1. We set

I0 · K · I0 = F[U ,V ], I0 · K · I1 = 0, I1 · K · I1 = F[U, T, T−1].

We declare I1 · K · I0 to be

F[U, T, T−1]⊗F 〈σ, τ〉.

The relations are

UT−1σ = σ,U Tσ = σV , T−1τ = τU , UT τ = τV .

To a 3-manifold M with torus boundary, the author describes a type-D module
X (M)K (i.e. a projective module), as well as a type-Amodule KX (M) (i.e. an A∞-
module). For 3-manifolds with n torus boundary components, one can construct
a type-D module over the algebra K ⊗F · · · ⊗F K.

The type-A module for a knot complement is easy to describe. Namely, the
underlying vector space is A(K) ⊕ B(K). The action of σ is by the map v, and
the action of τ is by hn.

The author has proven gluing formulas for gluing along torus boundary com-
ponents. These amount to connected sum formulas for the link surgery formula.
Topologically, these exploit the fact that

S3
n1+n2

(K1#K2) ∼=
(
S3 \ ν(K1)

)
∪φ

(
S3 \ ν(K2)

)

where φ is the map which sends the meridian of K1 to minus the meridian of K2,
and sends the n1-framed longitude of K1 to the n2-framed longitude of K2.

Many developments in the Heegaard Floer surgery formulas have interpreta-
tions in this theory. As a concrete example, Hedden-Levine and Eftekhary have
computed the knot Floer homology of the “dual” knot of a surgery [3, 7]. In the
theory I propose, their formula corresponds to the DA-bimodule for the Hopf link.
Note that the complement of the Hopf link is T2 × [0, 1], so the complement of
the Hopf link may naturally be viewed as the mapping cylinder of a simple dif-
feomorphism of the torus. This fits nicely in parallel with the bordered theory of
Lipshitz-Ozsváth-Thurston.
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The theory has proven useful in many contexts. One example is that I proved a
conjecture of Némethi about the equivalence of Heegaard Floer and lattice homol-
ogy [9]. In another work [2] with Liu and Borodzik, we describe a combinatorial
model of the link Floer homologies of all algebraic links in S3.

In the talk, I discussed new work on the surgery formulas. Precisely, I discussed
a new proof of the surgery formulas of Manolescu-Ozsváth-Szabó. This proof
simplifies many technical and annoying aspects of the original proofs, which are
obstacles to extending their formulas. (To the experts, the obstacles lie mainly
in truncations and gradings). The proof I am working on develops a new exact
triangle in the Fukaya category of the torus. Namely, we suppose that βλ denotes
a Lagrangian in the torus, and β0 is a curve intersecting βλ in a single point. We
let β1 be obtained by winding β0 exactly once in the direction of βλ. We decorate
β0 and β1 with certain notions of local systems, and we denote βV0

0 and βV1

1 for
these Lagrangians equipped with these local systems. There are two canonical
morphisms θσ, θτ : βV0

0 → βV1 . In forthcoming work, I prove that there is an
isomorphism in the Fukaya category of the torus

βλ ≃ Cone(θσ + θτ : βV0

0 → βV1).

A fairly routine argument shows that this implies the standard surgery formulas.
(In fact, it extends them outside of the context of null-homologous knots and
links).

Finally, we also consider the endomorphism A∞-algebra End(βV0

0 ⊕ βV1

1 ). In
forthcoming work, I show that there is an equivalence of (A∞)-algebras

End(βV0

0 ⊕ βV1

1 ) ≃ K.

This is reminiscent of work of Auroux [1] in the ordinary setting of bordered
Heegaard Floer homology.
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SWITZERLAND

Prof. Dr. David Gabai

Department of Mathematics
Princeton University
Fine Hall 502
Washington Road
Princeton NJ 08544-1000
UNITED STATES

Daniel Galvin

School of Mathematics & Statistics
University of Glasgow
University Place
Glasgow, G12 8QQ
UNITED KINGDOM

Prof. Dr. David T. Gay

Department of Mathematics
Boyd Graduate Studies Research Center
University of Georgia
Athens, GA 30602
UNITED STATES

Prof. Dr. Shelly L. Harvey

Department of Mathematics
Rice University
MS 136
Herman Brown 446
Houston TX 77251-1892
UNITED STATES



256 Oberwolfach Report 4/2023

Dr. Cole Hugelmeyer

Department of Mathematics
Stanford University
Stanford, CA 94305-2125
UNITED STATES

Hyeonhee Jin

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
GERMANY

Dr. Sungkyung Kang

IBS Center for Geometry and Physics
Room 108, Mathematical Science
Building, POSTECH,
77, Cheongam-ro, Nam-gu, Pohang-si
37673 Pohang City Gyeongsangbuk-do
KOREA, REPUBLIC OF

Dr. Daniel Kasprowski

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Marc Kegel

Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
12489 Berlin
GERMANY

Dr. Seungwon Kim

Department of Mathematics
Sungkyunkwan University
Suwon 440-146
KOREA, REPUBLIC OF

Prof. Dr. Alexandra Kjuchukova

Department of Mathematics
University of Notre Dame
Mail Distribution Center
Notre Dame, IN 46556-5683
UNITED STATES

Michael Kohn

Dept. of Mathematical Sciences
Durham University
Science Laboratories
South Road
Durham DH1 3LE
UNITED KINGDOM

Dr. Danica Kosanovic

ETH Zürich
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Universitätsstraße 31
93053 Regensburg
GERMANY

Prof. Dr. Andrew J. Lobb

Dept. of Mathematical Sciences
Durham University
Science Laboratories
South Road
Durham DH1 3LE
UNITED KINGDOM



Morphisms in Low Dimensions 257

Dr. Abhishek Mallick

Max-Planck-Institut für Mathematik
Vivatgasse 7
53111 Bonn
GERMANY

Prof. Dr. Gordana Matic

Department of Mathematics
University of Georgia
Rm. 503 Boyd GSRC
Athens, GA 30602
UNITED STATES

Dr. Irena Matkovic

Department of Mathematics
University of Uppsala
P.O. Box 480
75106 Uppsala
SWEDEN

Dr. Alice Merz

Dip. di Matematica ”L.Tonelli”
Universita di Pisa
Largo Bruno Pontecorvo, 5
56127 Pisa
ITALY

Fadi Mezher

Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
2100 København
DENMARK

Dr. Allison N. Miller

Dept. of Mathematics and Statistics
Swarthmore College
500 College Ave.
Swarthmore PA 19081
UNITED STATES

Dr. Maggie Miller

Department of Mathematics
Stanford University
450 Jane Stanford Way
Stanford CA 94305-2125
UNITED STATES

Prof. Dr. Delphine Moussard
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