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Abstract. Commutative algebra is a vast subject, with connections to many
different areas of mathematics, and beyond. The focus of this workshop was
on three areas, all concerned with resolutions in various forms. One is the
resolution of singularities of algebraic varieties, which remains a vibrant topic
of research. The second is the theory of noncommutative resolution of singu-
larities. Introduced two decades ago, this subject has witnessed remarkable
growth developing connections to algebraic geometry, commutative algebra,
cluster algebras, and the representation theory of algebras, both commuta-
tive and noncommutative, among others. The third intended meaning of
the world “resolution” is as in free resolutions of algebras and modules in
commutative algebra. There is another sense in which the title is appropri-
ate: recently three long standing open problems in commutative algebra have
been resolved. This workshop brought together experts and early career re-
searchers in these various fields, to facilitate exchange of ideas and to explore

potential collaborations.
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Introduction by the Organizers

Commutative algebra has been evolving at a fast pace in the past few years, driven
in part by an influx of ideas and techniques from number theory. This made for
a lively meeting, with participants from most of the major research centers in
commutative algebra across the world. The workshop was also well-represented
demographically, for it had a number of early-career researchers, many of who are
driving the research in our area, as well as more senior researchers. The timing
of workshop at Oberwolfach was propitious, for in Spring 2024, MSRI will host
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a semester-long program on Commutative Algebra. Though independent of this
event, our workshop played a complementary role, by providing an opportunity
for the community to connect and set the tone for the major themes of the MSRI
semester. Here are a few topics that covered at workshop. Some are classical
topics in commutative algebra that yet remain the focus of active research; all
have close ties to the subject, and to each other.

Mixed and positive characteristic. Recently Bhatt (2020) proved that if R is a
complete noetherian local domain of mixed characteristic, its integral closure in the
algebraic closure of its field of fraction—called the absolute integral closure of R—
is big Cohen-Macaulay. The possibility that such a statement might be true arose
when Hochster and Huneke (1992) proved the analogous result when R is a local
ring containing a field of positive characteristic. The importance of these results
is that they provide big Cohen-Macaulay R-algebras; the adjective “big” indicates
that these need not be finite as R-modules. This result comes in the wake of
André’s (2016) of Hochster’s Direct Summand Conjecture for mixed characteristic
local rings, and Bhatt’s own simplification of André’s proof. The proofsof these
results are inspired by, and make critical use of, Scholze’s perfectoid techniques;
Bhatt’s recent work also builds on his recent work with Lurie on the p-adic versions
of the Riemann-Hilbert correspondence. These developments have already begun
to have a huge impact on commutative algebra and algebraic geometry, in part
by paving the way to extending classical constructions and invariants, hitherto
available only in the equi-characteristic case, to the world of mixed characteristic.
This was apparent from many of the results presented in the workshop.

Linquan Ma talked about his work with Cai, Lee, Schwede and Tucker on
mixed-characteristic analogues of various numerical invariants, like the Hilbert-
Kunz multiplicity and F -signature, that are based on the Frobenius map in posi-
tive characteristic. To this end, they develop a mixed-characteristic analog of Falt-
ing’s normalized length, using the perfectoidzation functor of Bhatt and Scholze.
Shunsuke Takagi explained joint work with Tatsuki Yamaguchi concerning big
Cohen-Macaulay test ideal. As an application, they give an alternate proof of a
recent theorem of Zhang showing that the property of KLT type descends along a
pure local homomorphism.

There has also been significant progress on phenomena specific to local rings
of positive characteristic. Thomas Polstra presented his striking new results, with
Aberbach and Huneke, on the long-standing conjecture that any weakly F -regular
ring is already strong F -regular. Alessandro De Stefani discussed joint work with
Jonathan Montaño and Luis Núñez-Betancourt on the F -purity and strong F -
regularity of blowup algebras of various determinantal rings, which yields new
bounds on degrees of defining equations for these algebras, among other things.

Closely related to this last topic was Claudia Polini talk on duality and Rees
algebra, based on her joint work with Yairon Cid-Ruiz, Bernd Ulrich, and Matthew
Weaver. Polini discussed a new method for finding implicit equations for graphs
and images of rational maps between projective varieties. A key new ingredient
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is a weaker notion of the Gorenstein property, and a generlization of a duality
theorem of Jouanolou to this much larger family of rings.

Homological aspects. Homological algebra has played an important role in com-
mutative algebra, ever since Serre’s proof that the regularity property of rings is
inherited by localizations. Since then there have been homological characteriza-
tions of many other properties in local algebra. At the workshop, Benjamin Briggs
spoke about his spectacular proof of Vasconcelos’ conjecture characterizing the
complete intersection property in terms of the finiteness of the projective dimen-
sion of conormal modules. He also discussed his subsequent work with Iyengar on
the cotangent complex that significant strengthen Avramov’s result, conjectured
by Quillen, characterizing locally complete intersection maps in terms of cotan-
gent complexes. The work of Briggs is part of a bigger story involving support
varieties for modules over commutative rings. Introduced first in the context of
modules over local complete intersection rings it now encompasses modules over
any local ring, thanks to work of Avramov, Jorgensen, Pollitz, and many others.
Nevertheless basic questions remain. The talk of Elóısa Grifo discussed joint work
with Briggs and Pollitz on one such: Given an local ring and an appropriately
chosen variety when can it be realized as the variety associated to some module
the ring? One of the main conclusion is that this is not always possible, and that
there are lower bounds on the dimension of the given variety. Grifo et. al. also
draw connections to, and extend, earlier work of Avramov, Buchweitz, Iyengar,
and Miller, on Loewy lengths of the homology of finite free complexes.

Claudiu Raicu presented his work on the cohomology of line bundles over flag
varieties defined a field of positive characteristic. The characteristic zero case is
the content of the celebrated Borel-Weil-Bott theorem. He also explained some im-
plications of his calculations to statements about Castelnuovo-Mumford regularity
for Koszul modules an determinantal ideals.

The search for structure theorems for resolutions in small codimension has al-
ways been central topic with the classical Hilbert–Burch theorem (for perfect ideals
of codimension 2) and Buchsbaum–Eisenbud theorem (for Gorenstein ideals of
codimension 3) as main results. Jerzy Weyman discussed his new contributions
establishing connections between the structure of perfect ideals of codimension 3
and Gorenstein ideals of codimension 4 with root systems and Schubert varieties
in homogeneous spaces. Roser Homs Pons spoke about her results on canoni-
cal Hilbert-Burch matrices for power series extending work of Conca and Valla,
and Constantinescu on homogenous ideals in polynomial rings. A related topic is
the problem of transferring free resolutions along surjective maps of commutative
rings. A few years ago Burke used A∞-rings and modules to solve this problem.
Janina Letz spoke about ongoing work with Briggs, Cameron, and Pollitz where
they build on Burke’s work to obtain a recipe for transferring resolutions along
Koszul homomorphisms, yielding more optimal resolutions than Burke’s methods.

Chow rings of matriods are a topic of active research interest. They enter, for
example, in the proof of the Heron-Rota-Welsh Conjecture by Adiprasito, Huh,
and Katz on the log-concavity of the coefficients of the chromatic polynomial of
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matroids), and also in the recent proof of the Top Heavy Conjecture by Braden,
Huh, Matherne, Proudfoot, and Wang. It is known that these Chow rings are com-
mutative, artinian, Gorenstein algebras. And that they are defined by quadratic
relations, leading Dotsenko to conjecture that they are in fact Koszul. This was
proved recently by Jason McCullough and Matthew Mastroeni, and McCullough
presented their work at our workshop. The Koszul property places restrictions on
possible Hilbert Series of Chow rings and implies that their Poincare series are
rational. Continuing on this combinatorial theme, Hema Srinivasan reported on
her joint work with Philippe Gimenez on the problem presenting a semigroup as
a gluing of sub semigroups.

Differential operators remain a topic of active interest in commutative and al-
gebraic geometry. Jeffries presented his recent work with Josep Àlvarez Montaner,
Daniel J. Hernández, Luis Núñez-Betancourt, Pedro Teixeira, and Emily E. Witt,
wherein they develop the theory of holonomic D-modules for rings of invariants
of finite groups in characteristic zero, and for strongly F-regular finitely gener-
ated graded algebras with FFRT in prime characteristic. Differential operators
were also the focus of Claudia Miller’s talk, describing the operators of low order
for certain isolated hypersurface singularities. This was based on joint work with
Rachel Diethorn, Jack Jeffries, Nick Packauskas, Josh Pollitz, Hamid Rahmati,
and Sophia Vassiliadou.

Non-commutative resolutions and singularity categories. The motivation
for commutative resolutions of singularities (NCRs) is to find a smooth (in some
sense) noncommutative ring that encompasses the geometry of a traditional res-
olution of singularities and provides a more transparent way to understand the
initial singularity. NCRs are given as endomorphism rings of certain modules,
usually of maximal Cohen–Macaulay modules, over the commutative coordinate
ring of an algebraic variety. The study of these rings opens up new connections
between algebraic geometry, commutative algebra, tilting theory, and representa-
tion theory. A further object of study arising from a noncommutative viewpoint
is the singularity category of a ring, which is equivalent to the stable category of
maximal Cohen–Macaulay modules for a Gorenstein ring. Singularity categories
provide a homological measure for singularities of (non)commutative rings.

Following Van den Bergh’s introduction of noncommutative crepant resolutions
nearly 20 years ago, there has been a lot of activity in constructing noncommuta-
tive resolutions and further studying singularity categories of commutative rings.
Very recently, noncommutative singularity theory has become a new development
in order to understand the birational geometry in particular of 3-folds. Michael
Wemyss gave a vibrant account of his joint work with Gavin Brown about classify-
ing noncommutative hypersurfaces à la Arnol’d. The goal is to find normal forms,
similar to the commutative ADE-classification. In the noncommutative case there
is a much richer structure of normal forms, which have interesting applications to
the homological minimal model programme of 3-folds.

Singularity categories have been introduced by Buchweitz and they are a ho-
mological invariant for (non)commutative rings. The main question of Martin
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Kalck’s talk was, how fine this invariant is: the classical example is Knörrer’s cor-
respondence which allows to determine the equivalence of singularity categories of
hypersurfaces. In his talk he showed several implications of equivalent singularity
categories and gave an interesting new example for an equivalence of dimension
2 and 3 singularities for which the parity of Krull-dimensions (as in Knörrer’s
theorem) is not preserved.

Hilbert schemes play a prominent role in the resolution of singularities, in par-
ticular in the 3-dimensional McKay correspondence considered by Bridgeland–
King–Reid. Špela Špenko talked about the structure of noncommutative Hilbert
schemes and their connection to combinatorics, in particular parking functions
and Fuss-Catalan numbers. In her joint work with Lunts and Van den Bergh she
could further determine a tilting bundle of the noncommutative Hilbert scheme of
cyclic modules of dimension n over the free algebra C〈x1, . . . , xm〉.

Singularities and resolution of singularity in positive and mixed charac-
teristic. The problem of local uniformization, which is a local form of resolution
of singularities, was introduced by Zariski. Suppose that S is a local domain with
quotient field L, and that ω is a valuation of L which dominates S. Then S admits
a local uniformization along ω if there exists a birational extension S → S1 such
that S1 is dominated by ω and S1 is a regular local ring. Zariski proved that local
uniformization always holds in algebraic function fields over an arbitrary field of
characteristic zero, and used this to prove resolution of singularities for projective
varieties of dimension ≤ 3 and characteristic zero. Hironaka (proved the stronger
global theorem that resolution of singularities of projective varieties of character-
istic zero is true in all dimensions. As of this time, resolution of singularities is
known for excellent reduced schemes in dimension ≤ 3 and local uniformization
is known for excellent local rings in dimension ≤ 3; this is due to work of Ab-
hyankar, Lipman, and Cossart and Piltant, and many others. Recently there has
been significant progress in understanding these problems in positive and mixed
characteristic. The significant new understanding is that the only obstruction
to local uniformization in positive and mixed characteristic is the defect of the
extension K → L.

In another direction, there is a remarkable dictionary between singularities
defined in positive characteristic that have good properties with respect to the
Frobenius mapping and the singularities which occur in characteristic zero in the
minimal model program.

Anna Bravo presented joint work with Angélica Benito, Santiago Encinas and
Javier Guillán-Rial on an application of the classical Samuel function to resolution
of singularities. From the Samuel function, they define the Samuel slope of a local
ring and show that it computes key invariants of resolution of singularity.

Franz-Viktor Kuhlmann reported on joint work with Steven Dale Cutkosky and
Anna Rzepka on ramification of valued fields. He explained the essential role of
extensions of degree p and his classification of such extensions into those with
dependent and independent defect. He presented their joint theorem that such
an extension has independent defect if and only if the Kähler differentials of the
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extension of valuation rings are zero, and explained the relationship of this result
to deep ramification of fields.

Hussein Mourtada presented some of his results, obtained in joint work with Br-
uschek and Schepers, and Afsharijoo, linking integer partitions to singularity the-
ory. He computes the Arc Hilbert-Poincaré series of some rational double points,
and has also found new Rogers-Ramanujan identity.

Parangama Sarkar presented joint work with Cutkosky where they introduce
and study analytic spread for filtrations of noetherian local rings. One of the key
results is that the analytic spread is bounded above the dimension of the ring, but,
unlike for ideals, there are no positive lower bounds.
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Abstracts

The asymptotic Samuel function: some properties and invariants
of singularities

Ana Bravo

(joint work with Angélica Benito and Santiago Encinas; Santiago Encinas and
Javier Guillán-Rial)

Let A be a commutative ring with 1, and let J ⊂ A be a proper ideal. The
asymptotic Samuel function with respect to J is defined as:

ν̄J : A // R ∪ {∞}

a ✤ // limn→∞
νJ (a

n)
n ,

where νJ(a) := sup{m ∈ N : a ∈ Jm}. When (A,m, k) is a regular local ring, then
ν̄m is the usual order function νm. And if A is a Noetherian ring and f ∈ A, then
ν̄J(f) ≥

a
b if and only if f b ∈ Ia (see [17, Corollary 6.9.1]).

The asymptotic Samuel function was first introduced by Samuel in [15] and
studied afterwards by D. Rees in a series of papers ([11], [12], [13], [14]). Thor-
ough expositions on this topic can be found in [10] and [17]. A generalization for
arbitrary filtrations of ideals can be found in [7].

We have studied this function from two points of view. On the one hand, we
have explored some of its properties mainly comparing it with the usual order
function on regular local rings. This is work in progress with S. Encinas nad J.
Guillán-Rial ([6]). On the other, we have established some connections with some
invariants of singularities that appear in constructive resolution. This is joint with
A. Benito and S. Encinas ([1], [2]).

Some properties of the asymptotic Samuel function. When (A,m, k) is
regular then the usual order function satisifies the following properties:

(1) [8, Theorem 2.11] For a ∈ A and p ⊂ m a prime ideal, νpAp
(a) ≤ νm(a).

(2) For a, b ∈ A, νm(a · b) = νm(a) + νm(b).
(3) There is a natural graded ring Grm(A) =

⊕
n∈N

mn/mn+1 associated to νm.

We have found that for the asymptotic Samuel function the following analogous
results hold.

Theorem 1 ([6]). Let (A,m) be equicharacteristic, equidimensional, excellent and
reduced. Let p ⊂ A be a prime such that the multiplicity of (Ap, pAp) equals that
of A. Let a ∈ A. Then ν̄pAp

(a) ≤ ν̄m(a).

Theorem 2 ([1]). Let (A, n) → (B,m) be a finite morphism of Noetherian local
rings, with B reduced, A regular and so that nB is a reduction of m. Then for all
a ∈ A and all b ∈ B, ν̄m(ab) = ν̄m(a) + ν̄m(b).
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For J ⊂ A, the order ν̄J defines a graduation on A: for t ∈ R≥0, J
(≥t) :=

{a ∈ A : ν̄J(a) ≥ t}, and J (>t) := {a ∈ A : ν̄J (a) > t}. The graded ring:
Grν̄J (A) = ⊕tJ

(≥t)/J (>t) is graded over R.

Theorem 3 ([6]). Let (A,m) be reduced, excellent, equicharacteristic, and equidi-
mensional. Then there is some ℓ ∈ Z>0 such that Grν̄m(A) is graded over 1

ℓZ≥0.

The Samuel slope of a local ring. [1, §3] Let (A,m, k) be a Noetherian ring.
There is a natural map of k-vector spaces, λm : m/m2 → m/m(>1). If (A,m, k) is
singular of dimension d and if dimk(m/m

2) = d + t, then 0 ≤ dimk ker(λm) ≤ t.
With this notation, the following holds for the Samuel slope of A, S-sl(A).

• When dimk ker(λm) < t, then S-sl(A) := 1.
• When dimk ker(λm) = t select γ1, . . . , γt ∈ m, inducing basis of ker(λm).
For B = {γ1, . . . , γt} define sl(B) := min{ν̄m(γi) : i = 1, . . . , t}. Then

S-sl(A) := sup
B
{sl(B) : B induces a basis of ker(λm)}.

Theorem 4 ([6]). Let (A,m, k) be equidimensional, equicharacteristic, excellent,
and reduced. Then S-sl(A) ∈ Q.

The asymptotic Samuel function and resolution of singularities. Let X
be an equidimensional singular algebraic variety of dimension d defined over a
perfect field k. Then the set of points of maximum multiplicity, Max multX , is a
closed proper set in X . Let max multX be the maximum value of the multiplicity
at points of X . A simplification of the multiplicity of X is a finite sequence of
blow ups,

(1) X = X0 X1
π1oo . . .

π2oo XL−1

πL−1
oo XL

πLoo

with max multX0
= max multX1

= · · · = max multXL−1
> max multXL , where

πi : Xi → Xi−1 is the blow up at a regular center contained in Max multXi−1
.

Simplifications of the multiplicity exist if the characteristic of k is zero (see
[18]), and resolution of singularities follows from there. Recall that Hironaka’s
line of approach to resolution makes use of the Hilbert-Samuel function instead of
the multiplicity [9]. The centers in the sequence (1) are determined by resolution
functions. These are upper semi-continuous functions fXi : Xi → (Γ,≥) ,
i = 0, . . . , L− 1, and their maximum value, MaxfXi , achieved in a closed regular
subset MaxfXi ⊆ MaxmultXi , selects the center to blow up. Hence, a simplifica-
tion of the multiplicity of X , X ← XL, is defined as a sequence of blow ups at
regular centers.

(2) X = X0 ← X1 ← . . .← XL.

so that MaxfX0
> MaxfX1

> . . . >MaxfXL , where MaxfXi denotes the maximum
value of fXi for i = 0, 1, . . . , L.

Usually, fX is defined at each point as a sequence of rational numbers. The
first coordinate of fX is the multiplicity, and the second is what we refer to as

Hironaka’s order function in dimension d, ord
(d)
X . The function ord

(d)
X is a positive

rational number. The remaining coordinates of fX(ζ) can be shown to depend
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on ord
(d)
X (ζ). The function ord

(d)
X can always be defined if k a perfect field, but

falls short to define a resolution function when the characteristic of the field is
positive. This motivated the papers [4] and [5]. There, the function H-ord

(d)
X was

introduced by A. Benito and O. Villamayor. In [3], this function played a role in
the proof of desingularization of two dimensional varieties. For a point ζ ∈ X of

multiplicity greater than 1, 1 ≤ H-ord
(d)
X (ζ) ≤ ord

(d)
X (ζ).

The definition of the H-ord
(d)
X and ord

(d)
X is done locally, in an étale neighbor-

hood of a singular point of X . This requires the selection of suitable embeddings
and certain finite projections to smooth schemes, together with the application of
different techniques that involve elimination and saturation by differential opera-
tors. Hence, part of the work in resolution consists on proving that these functions
are actually invariants of the singularities (i. e., it has to be proven that that their
definition does not depend on the may different choices that have been made for
their construction). With A. Benito and S. Encinas, we have proven that the
Samuel slope of the local ring OX,ζ captures the same information as the previous
functions:

Theorem 5 ([1], [2]). Let X be an equidimensional algebraic variety defined over
a perfecti field k and let ζ ∈ X be a singular point. Then: if char(k) > 0,

S-sl(OX,ζ) = H-ord(d)(ζ); if char(k) = 0, then S-sl(OX,ζ) = ord(d)(β(ζ)).
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Perfectoid signature and applications

Linquan Ma

(joint work with Hanlin Cai, Seungsu Lee, Karl Schwede, Kevin Tucker)

Let (R,m) be a Noetherian F-finite domain of characteristic p > 0. The F-
signature of R is defined as follows:

s(R) := lim
e→∞

frk(R1/pe

)

rk(R1/pe)

where frk(R1/pe

) is the largest integer a such that one can write R1/pe ∼= Ra⊕M for
some M . Quite obviously, 0 ≤ s(R) ≤ 1. There are three fundamental theorems
of F-signature:

• Existence: the limit above exists [7].
• Characterizing regularity: s(R) = 1 if and only if R is regular [6].
• Characterizing strong F-regularity: s(R) > 0 if and only if R is strongly
F-regular [1].

Furthemore, it is proved in [4] that s(R) satisfies certain transformation rule under
finite étale in codimension one map. As a consequence, it is shown in [4] that
πet
1 (Spec(R)\{m}) is finite for every Noetherian complete local strongly F-regular

ring (R,m, k) with k = R/m algebraically closed.
We use Bhatt-Scholze’s perfectoidization functor [2] and Faltings’ normalized

length function [5] to define a mixed characteristic version of F-signature, which
we call perfectoid signature. Let (R,m, k) be a Noetherian complete local domain
such that k = R/m is perfect and has characteristic p > 0. By Cohen-Gabber
theorem, we can find a complete regular local ring (A,mA, k) and a finite extension
A→ R that is generically étale. Fix an isomorphism A ∼= k[[x1, . . . , xd]] in positive
characteristic and A ∼=W (k)[[x2, . . . , xd]] in mixed characteristic (and set x1 = p).

Let A∞ := A[x
1/p∞

1 , . . . , x
1/p∞

d ]∧ where the completion is p-adic. Then A∞ is a

perfectoid ring. Further, let RA∞

perfd := (A∞ ⊗A R)perfd be the perfectoidization of
A∞ ⊗A R, and let

I∞ := {z ∈ RA∞

perfd | the map R→ RA∞

perfd sending 1 to z is not split}.

Finally, define the perfectoid signature of R with respect to x = x1, . . . , xd to be

s
x
perfd(R) := λ∞(RA∞

perfd/I∞)
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where λ∞(−) denotes the normalized length computed over A∞. We prove the
following in [3]:

• In positive characteristic, s
x
perfd(R) = s(R).

• 0 ≤ s
x
perfd(R) ≤ 1.

• sxperfd(R) = 1 if and only if R is regular.

• If R is Q-Gorenstein, then s
x
perfd(R) > 0 if and only if R is BCM-regular:

that is, R→ B is split for all perfectoid big Cohen-Macaulay algebras B.

We also prove that s
x
perfd(R) satisfies the same transformation rule as for s(R)

under finite étale in codimension one map. As a main application of these results,
we obtain that πet

1 (Spec(R) \ {m}) is finite for every Noetherian complete local
Q-Gorenstein BCM-regular rings (R,m, k) with k = R/m algebraically closed, see
[3] for more details and more general statements.
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Duality and Rees Algebras

Claudia Polini

(joint work with Yairon Cid-Ruiz and Bernd Ulrich, Yairon Cid-Ruiz,
Bernd Ulrich and Matt Weaver)

In this talk we will discuss a method to find the implicit equations defining the
graphs and images of rational maps between projective varieties. The problem
amounts to identifying the torsion in the symmetric algebra of an ideal, and one
technique to achieve this is based on a duality statement due to Jouanolou that
expresses the torsion of a graded algebra in terms of a graded dual of this algebra
[1]. Unfortunately, Jouanlou duality requires the algebra to be Gorenstein, a rather
restrictive hypothesis for symmetric algebras.

In this talk, we introduce a generalized notion of Gorensteinness, which we call
weakly Gorenstein, and prove that Jouanolou duality generalizes to this larger
class of algebras. Surprisingly, the weak Gorenstein property is rather common
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and is satisfied, for instance, by determinantal rings and by symmetric algebras
assuming that the latter are Cohen-Macaulay. This leads to the solution of the
implicitization problem for new classes of rational maps.

Our approach to showing that symmetric algebras have the weakly Gorenstein
property is by computing explicitly the canonical module. The formula for the
canonical module of the symmetric algebras coincides with a formula for the canon-
ical module of certain Rees algebras (see [3]), which leads to interesting applica-
tions. Our main tool to compute ωSym(I) is a newly defined complex that mends
one of the main drawbacks of the approximation complex Z• [2]. The approxima-
tion complex Z• is ubiquitous in the study of blowup algebras, and it provides a
resolution of the symmetric algebra in many cases of relevance. However, the fact
that is made up of Koszul syzygies, which are typically non-free modules, can be
a non trivial obstacle. To remedy this problem we introduce a halfway resolution
that refines Z•. We introduce a new complex that consists of free modules in the
last g−1 positions and that coincides with Z• in the remaining positions. This new
complex is acyclic when Z• is. Furthermore, these halfway free resolutions lead
to actual free resolutions of the symmetric algebra for special families of ideals
such as almost complete intersections and perfect ideals of deviation two. The
usefulness of this new complex came as surprise, since computing free resolutions
of symmetric algebras is a problem of tall order.

As an application of our generalized duality we provide the explicit solution of
the implicitization problem for maps from Pn to Pn+1 when the ideal generated
by the forms parametrizing the map is either Gorenstein of codimension three or
Cohen-Macaulay of codimension 2. The talk is based on joint works with Yairon
Cid-Ruiz, Bernd Ulrich, and Matthew Weaver.
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Cohomology and regularity in characteristic p

Claudiu Raicu

(joint work with Zhao Gao, Jennifer Kenkel)

One of the fundamental invariants in commutative algebra and algebraic geometry
is the Castelnuovo–Mumford regularity of a homogeneous ideal or a graded module
over a polynomial ring. It is closely related to many classical homological invariants
such as Tor and Ext groups or local cohomology, and it provides a versatile measure
of the complexity of an ideal or module. For instance, it bounds the generating
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degree of a homogeneous ideal, and also gives a bound for when the Hilbert function
of a graded module becomes a polynomial [6, Chapter 4].

One of the celebrated results about regularity in commutative algebra (see [4],
[12]) asserts that the regularity of powers of a homogeneous ideal is asymptotically
computed by a linear function:

reg(Id) = ad+ b for d≫ 0,

but explicit values for a, b and effective bounds for d are often difficult to determine.
For generic determinantal ideals, we showed the following in [16].

Theorem 1. Over a field of characteristic zero, if It denotes the ideal of t × t
minors of a generic m× n matrix, then

reg(Idt ) = td+

⌊
t− 1

2

⌋
·

⌈
t− 1

2

⌉
for d ≥ min(m,n)− 1.

In positive characteristic, such a formula is not known beyond the special cases
t = 1 (where It is the maximal homogeneous ideal), and the case t = min(m,n)
of maximal minors treated in [1]. The main tool used in the proof of Theorem 1
is an explicit calculation of Ext (or local cohomology) by establishing direct rela-
tionships with cohomology of line or vector bundles on full or partial flag varieties.
In characteristic zero, such cohomology calculations can then be performed us-
ing the Borel–Weil–Bott theorem, but in characteristic p > 0 the description of
cohomology is much less understood.

In the case of symbolic powers, in [3, Chapter 10] we were able to extend the
results of [16] to characteristic p > 0, by establishing some new vanishing results
for cohomology of special line bundles on flag varieties.

Theorem 2. If I
(d)
t denotes the d-th symbolic power of the ideal of t × t minors

of a generic m× n matrix, then

reg(I
(d)
t ) = td for d≫ 0.

In characteristic zero or when t = 2, one can take d ≥ min(m,n)− 1.

Beyond generic determinantal varieties, there are many examples of classical
varieties (Segre or Veronese varieties, binary forms etc.) where invariants of ho-
mological nature (syzygies, local cohomology, Ext modules, Castelnuovo–Mumford
regularity) admit a description relating them to cohomology on a flag variety.
This motivates, from a commutative algebra standpoint, the following fundamen-
tal question.

Problem 3. Determine the cohomology groups of line bundles on a flag variety
in characteristic p > 0. In particular, characterize the (non)vanishing behavior of
such cohomology groups.

A characterization of (non)vanishing of cohomology is given in the case ofH0 by
Kempf’s vanishing theorem [9, 8], and for H1 by Andersen [2], but general results
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for intermediate cohomology remain unknown. Following up on work of Liu [14]
and Liu–Polo [15], we consider in [7] the case of the incidence correspondence

X = {(p,H) ∈ P× P∨ : p ∈ H},

which is a partial flag variety parametrizing pairs of a point in projective space and
a hyperplane containing it. The line bundles on X are parametrized by Z2, and
beyond some well-understood cases, the cohomology of such line bundles translates
into cohomology for the sheaves DdR(e) on projective space, where Dd denotes the
divided power functor, and R = Ω1

P
(1) is the universal sub-bundle on projective

space. In [7] we characterize (non)vanishing of cohomology of line bundles on X
by reducing it to a formula for Castelnuovo–Mumford regularity, this time for an
appropriate sheaf on projective space.

Theorem 4. Suppose P = Pn−1 is the projective (n− 1) space over a field k with
char(k) = p > 0. For d ≥ 1, let q = pr and 1 ≤ t < p such that tq ≤ d < (t+ 1)q.

We have that the Castelnuovo–Mumford regularity of the sheaf DdR is given by

reg(DdR) = (t+ n− 2)q − n+ 2.

The explicit description for cohomology of line bundles on X (or for the sheaves

DdR(e) on P) remains an open problem in general, but one which is closely related
to the study of determinantal ideals. To illustrate this with an example, suppose
that P = P2, and let I denote the ideal of 2× 2 minors of the generic matrix

[
x1 x2 x3
y1 y2 y3

]
.

If S = k[x1, x2, x3, y1, y2, y3] then a special case of [3, Equation (10.26)] implies

ExtjS(I
d/Id+1, S)e−2d−4

∼= Hj−2(P2,DdR(e − 1))⊗k H
0(P1,OP1(e)).

The explicit calculations in [7, Theorem 1.9] can then be used to conclude that if
char(k) = 2 then

lim
d→∞

ℓ(Ext3S(I
d/Id+1, S))

d5
does not exist!

It is still an open question to understand the existence of the related limit

(1) lim
d→∞

ℓ(Ext3S(S/I
d, S))

d6
,

which is an instance of the higher ǫ-multiplicities from [5]. In characteristic zero the
limit (1) is known to exist, as well as its natural generalization to maximal minors of
a generic matrix of any size [10], [13]. With Jenny Kenkel we are investigating the
behavior of ℓ(Ext3S(S/I

d, S)) by employing a related cohomological interpretation
of Ext groups:

Ext3S(S/I
d, S)−6−e

∼= H0(P2,D2d−4−e(R⊕R)(d − 2)).

We can compute the above quantities explicitly when e = 0, which proves that
the bound in [11, Theorem 5.1] is in fact an equality, and illustrates the fractal
behavior of cohomology in characteristic p > 0. Whether this fractal behavior



Resolutions in Local Algebra and Singularity Theory 343

that occurs in a fixed degree of Ext3 smoothens out when considering all degrees
(in order to give a well-defined limit in (1)) remains an open question for now.
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Noncommutative Singularity Theory

Michael Wemyss

(joint work with Gavin Brown)

Singularity theory (à la Arnold) seeks to classify all f ∈ C[[x1, . . . , xd]], up to
specified isomorphism, satisfying some fixed numerical criteria, and produce theory
for when classification is not possible.

There are many choices. The first is the numerical criteria. Perhaps the most
famous is to consider those f which satisfy the numerical condition that

#{I | I proper ideal of C[[x1, . . . , xd]] with f ∈ I
2} <∞.
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It is a theorem that the only such f , after relabelling the variables z1, . . . zd−2, x, y,
and up to formal change of variables, is one of

An z2 + x2 + yn+1 n ≥ 1

Dn z2 + x2y + yn−1 n ≥ 4

E6 z2 + x3 + y4

E7 z2 + x3 + xy3

E8 z2 + x3 + y5

where above and below we will write z2 = z21 + . . .+ z2d−2.
Other rings exist, e.g. the noncommutative power series ring C〈〈x1, . . . , xd〉〉.

Asking similar classification questions in such rings is valuable in its own right,
and turns out to have perhaps unexpected consequences.

To set notation, for f ∈ C〈〈x1, . . . , xd〉〉 consider the Jacobi algebra

Jac(f) =
C〈〈x1, . . . , xd〉〉

((δ1f, . . . , δdf))
,

where the denominator is the closure of the two sided ideal generated by the
cyclic derivatives of f . We consider two elements f and g to be equivalent if
Jac(f) ∼= Jac(g), remarking that the naive analogue of the Tjurina algebra is not
well defined in this context.

It is the main theorem of [1] that the only f satisfying the numerical condition
dimC Jac(f) < ∞, after relabelling the variables z1, . . . zd−2, x, y, is equivalent to
one of

An z2 + x2 + yn n ≥ 2

Dn,m z2 + x2y + y2n + y2m−1 n,m ≥ 2,m ≤ 2n− 1
Dn,∞ z2 + x2y + y2n n ≥ 2

E6,n z2 + x3 + xy3 + yn n ≥ 4

E7, E8 z2 + x3 +O4 (various cases)

Remarkably, taking the limit n→∞ turns out to give normal forms that classify
those Jacobi algebras of growth rate one, suitably interpreted1.

There are two justifications for the naming of the ADE families. The first is
intrinsic to noncommutative singularity theory, via quotients by generic central
elements. The second is via birational geometry.

The applications of the above noncommutative singularity theory are to bira-
tional geometry, specifically to the classification of smooth 3-fold flops, and to
divisor-to-curve contractions. The theory presented here, which is specific to the
noncommutative power series ring, translates into statements regarding single ir-
reducible curves. The multi-curve situation requires the ring C〈〈x1, . . . , xd〉〉 to be
replaced by C〈〈Q〉〉, where Q is a symmetric quiver.

1finite dimensional algebras have growth rate zero.
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Canonical Hilbert-Burch matrices for power series

Roser Homs

(joint work with Anna-Lena Winz)

The goal of this presentation is to provide a parametrization of all deformations of
a codimension 2 monomial ideal that preserve the Hilbert function based on the
results of [1].

We first fix the setup and review a few basic facts about Hilbert functions of
local rings. Let R = k[[x, y]] be the ring of formal power series in two variables
over a field k of characteristic 0, let P = k[x, y] be the polynomial ring and let
I be a 0-dimensional ideal in R. Note that its initial ideal I∗ is a homogeneous
ideal in P and its leading term ideal Ltτ (I

∗) with respect to some monomial term
ordering is a monomial ideal, again in P . Both these deformations of the ideal
preserve the Hilbert function by definition:

HFR/I := HFP/I∗ = HFP/Ltτ (I∗) = HFP/Lex(I).

Moreover, the lex-segment ideal Lex(I) is a special monomial ideal: it is the generic
initial ideal with respect to a given ordering, see [2, Section 1.4] for a discussion on
this notion in the local setting. This property implies that if we can parametrize
deformations of a lex-segment ideal that preserve the Hilbert function, we are
actually giving a parametrization of all ideals with a given Hilbert-function up to
generic change of coordinates. We can thus weaken our original goal.

Goal 1: Parametrize all deformations of a lex-segment ideal that preserve the
Hilbert function.

Definition 1. The monomial ideal L = (xt, xt−1ym1 , xt−2ym2 . . . , ymt) is lex-
segment iff 0 < m1 < m2 < · · · < mt.

In [3], Rossi and Sharifan provide specific deformations of L by looking at its
syzygies instead of its generators. By Hilbert-Burch, L = It(H) is the ideal of
t-minors of H , where

0 −→ P t H
−→ P t+1 −→ P −→ P/L −→ 0.

In the context of obtaining the Betti numbers of any ideal from the Betti numbers
of its associated lex-segment ideal, the authors prove in [3, Remark 4.7] that there
exist matrices N with entries 0 or 1 such that I = It(H+N) realizes any admissible
number of generators of HFP/L.

The main idea to achieve Goal 1 is to extend the notion of canonical Hilbert-
Burch matrix from lex-segment ideals to any of its deformations. This approach
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had already been exploited by Conca-Valla [4] and Constantinescu [5] for the
lexicographical and degree lexicographical ordering, respectively, to parametrize

Gröbner cells Vτ (L) := {I ⊂ P : Ltτ (I) = L}.

More generally, it follows from results on smooth varieties with a torus action (here
the weight vector that represents the term ordering) by Bialynicki-Birula [6], that
these Gröbner cells are affine spaces for any term ordering in codimension 2.

However, there is an obstacle in terms of the preservation of the Hilbert function:
Ltτ (I) 6= Ltτ (I

∗) in general. This can be solved by considering an ordering which
is compatible with the local structure:

Definition 2. A term ordering τ in P induces a reverse-degree ordering τ in R
such that for any monomials m,m′ in R, m >τ m

′ if and only if

deg(m) < deg(m′) or deg(m) = deg(m′) and m >τ m
′.

We call τ the local term ordering induced by the global ordering τ .

Note that τ -enhanced standard basis are the local analogue of Gröbner bases in
the polynomial ring; similarly, Grauert’s division and the tangent cone algorithm
are the analogues of Buchberger division and Buchberger’s algorithm. Another
key tool is the lifting of syzygies in the local case, see [2, Theorem 1.10] for a
formulation that fits our notation.

Local term orderings are compatible with the local structure in the sense that
Ltτ (I) = Ltτ (I

∗). Therefore, Gröbner cells Vτ (L) := {I ⊂ P : Ltτ (I) = L} only
contain ideals with Hilbert function HFP/L.

Definition 3. We denote by T (L) the set of matrices N = (ni,j) of size (t+1)× t
with entries in k[y] such that

• ni,j = 0 for any i ≤ j,
• ui,j ≤ ord(ni,j) ≤ deg(ni,j) < mj −mj−1 for any i > j.

Theorem 4. [1, Theorem 5.7] Given a zero-dimensional lex-segment monomial
ideal L ⊂ R with canonical Hilbert-Burch matrix H, the map

ΦL : T (L) −→ V (L)
N 7−→ It(H +N)

is a bijection.

In the presentation we used as a running example the lex-segment ideal L =
(x4, x3y, x2y5, xy8, y10) from [3, Example 4.8] to illustrate how to obtain Gröbner
cells in practise. In particular, V (L) ≃ A20 and VCI(L) is the quasi-affine variety
obtained by substracting the union of 3 hyperplanes from A20.

Therefore, Theorem 4 allows us to completely characterize — up to generic
change of coordinates — any ideal with a given Hilbert function and any admissible
number of generators by looking into the local Gröbner cell V (L) and certain
special quasi-affine varieties.

However, for some tasks a parametrization up to generic change of coordinates
is not enough: the computation of Gorenstein covers (see [1, Section 6]) or celullar
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decompositions of the punctual Hilbert scheme Hilbn(k[[x, y]]) that are compatible
with the local structure require Gröbner cells V (E) for any monomial ideal E =
(xt, xt−1ym1 , xt−2ym2 . . . , ymt), with 0 < m1 ≤ m2 ≤ · · · ≤ mt.

Goal 2: Parametrize all deformations of any monomial ideal that preserve the
Hilbert function.

Definition 5. We denote by T (E) the set of matrices N = (ni,j) of size (t+1)× t
with entries in k[y] such that

• ui,j + 1 ≤ ord(ni,j) ≤ deg(ni,j) < mi −mi−1 for any i ≤ j,
• ui,j ≤ ord(ni,j) ≤ deg(ni,j) < mj −mj−1 for any i > j.

Conjecture 6. [1, Conjecture 5.14] For any zero-dimensional monomial ideal
E ⊂ P , the map

ΦE : T ′(E) −→ V (E)
N 7−→ It(H +N)

is a bijection.

We highlight the main obstacle in the proof of the conjecture: injectivity of ΦE .
For lex-segment ideals, the reduced τ -enhanced standard basis is a lex-Gröbner
basis with the same leading term ideal. This allows us to use the results for the
global term ordering lex from [4]. In the case of deglex [5], injectivity was already
an issue for general monomial ideals. Surjectivity is also not proven but it seems
plausible that the approach by ”moves” already found in [4, 5, 1], although very
technical, should succeed.

Our evidence for the conjecture is twofold:

• It holds for extremal cases: lex-segment ideals (and a slighlty more general
class) and complete intersections.
• The dimensions of the cells of the celullar decomposition of Hilbn(k[[x, y]])
resulting from the conjecture are correct for n ≤ 30. More precisely, by
[7] the number of cells of dimension l in any celullar decomposition of the
punctual Hilbert scheme is equal to the 2l-Betti numbers of Hilbn(k[[x, y]]),
namely the OEIS sequence A058398.
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On equivalences between singularity categories of commutative rings

Martin Kalck

For simplicity, all rings are assumed to be of the form C[[z1, . . . , zn]]/I.
Let R be a ring and M a finitely generated R-module. Its free resolution

(1)

Ωd(M)

· · · Fd+1 Fd Fd−1 · · · F1 F0 M 0,

‘stable range’ ‘initial noise’

starts with some ‘initial noise’ but becomes ‘stable’ after finitely many steps. While
the initial part mainly depends on M , the ‘stable range’ often reveals structural
properties of the ring R. For example, for Cohen–Macaulay rings R of Krull
dimension d, the Depth Lemma implies that Ωd(M) is a maximal Cohen–Macaulay
R-module. Often, (minimal) free resolutions behave more regular after this point,
e.g. for the rings in items (P1) & (P2) below. Moreover, for Gorenstein rings, the
syzygy functor Ω becomes invertible on maximal Cohen–Macaulay modules.

Natural categorical framework to study ‘stable ranges’. (Buchweitz [1])
The following triangulated quotient category is called singularity category of R.

(2) Dsg(R) :=
Hot−,b(proj R)

Hotb(proj R)
∼=

Db(mod R)
Perf(R)

[1]

More precisely, it is a Verdier quotient of the homotopy category Hot−,b(proj R) of
bounded below complexes of finitely generated projective R-modules with bounded
cohomologies by the subcategory Hotb(proj R) of bounded complexes. The cate-

gory Hot−,b(proj R) contains, in particular, all free resolutions (1). Modulo the

‘initial noise’ in Hotb(proj R), we see that Dsg(R) captures the ‘stable range’. The
shift functor [1] of Dsg(R) is an auto-equivalence induced by shifting complexes.

Question 1. What do singularity categories know about singularities?

We list some examples of properties that are detected by singularity categories.

(P1) Spec(R) is non-singular ⇔ all ‘stable ranges’ = 0 ⇔ Dsg(R) = 0.
[Auslander-Buchsbaum; Serre]

(P2) R ∼= C[[z0, . . . , zd]]/(f) is a hypersurface singularity ⇔ all ‘stable ranges’

are 2-periodic: · · ·
A
−→ F

B
−→ F

A
−→ F

B
−→ · · · ⇔ [1] ◦ [1] ∼= id in Dsg(R).

[Eisenbud]
(P3) R has Gorenstein isolated singularities ⇔ Dsg(R) is Hom-finite over C.

[Auslander; Avramov–Veliche]

Remark 2.

(1) This uses Buchweitz’s equivalence [1]: Dsg(R) ∼= CM(R), translating the
statements to stable categories of maximal Cohen–Macaulay modules.
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(2) The 2-periodic ‘stable ranges’ in (P2) are induced by matrix factorizations
of f .

Question 3. How fine is the invariant Dsg(R), i.e. when are two rings R, S
singular equivalent: Dsg(R) ∼= Dsg(S) ?

To explain what is known about this question, we introduce some notation.

Notation. For a primitive nth root of unity ǫn ∈ C and a tuple (a1, . . . , am) ∈
Zm
>0, we define a cyclic subgroup of order n in GL(m,C)

1

n
(a1, . . . , am) = 〈diag (ǫa1

n , . . . ǫ
am
n )〉 ⊂ GL(m,C).(3)

The invariant rings under the diagonal action on C[[z1, . . . , zm]] are denoted by

C[[z1, . . . , zm]]
1
n (a1,...,am).(4)

Complete list of known singular equivalences. 1

(E0) Dsg(R) ∼= 0 ∼= Dsg(S) for R,S regular [Auslander–Buchsbaum; Serre].

(E1) Dsg
(

C[[z0,...,zd]]
(f)

)
∼= Dsg

(
C[[z0,...,zd,x1,...,x2m]]

(f+x2
1+...+x2

2m)

)
, for 0 6= f ∈ C[[z0, . . . , zd]].

[Knörrer 1987, [10]]

(E2) Dsg
(
C[[y1, y2]]

1
n (1,1)

)
∼= Dsg

(
C[z1,...,zn−1]
(z1,...,zn−1)2

)
[Yang 2015 [12]2, Kawamata

2015 [9], Kalck–Karmazyn 2017 [6]3 ]

(E3) Dsg
(
C[[x1, x2, x3]]

1
2
(1,1,1)

)
∼= Dsg

(
C[[y1, y2]]

1
4
(1,1)

)
[Kalck 2021 [3]]

Remark 4.

(a) In contrast to the equivalences in (E1) & (E2), the singular equivalence in
(E3) does not preserve the parity of the Krull dimension.

(b) There are several ways to prove (E2) & (E3). One option is to use (non-
commutative) resolutions of singularities & relative singularity categories
building on [7, 8]. Another possibility is to show that up to taking syzygies
& direct summands there are unique maximal Cohen-Macaulay modules
MR and MS over the rings R and S, respectively, cf. [3]. More precisely,
the modules MR, MS are direct summands of Ω(ωR) respectively Ω(ωS),
where ωR, ωS are the canonical modules.

(c) If we allow S in Question 3 to be non-commutative, then there are many
further examples: indeed, for every ADE-surface singularity R except E8,
we construct an uncountable family of complete Noetherian C-algebras
SR, which are singular equivalent to R and have pairwise non-isomorphic
centers, see [5].

1That is, singular equivalences between commutative complete local Noetherian C-algebras

R 6∼= S, that we could find in the literature, cf. also the older list in [11, Example 4.1.].
2Based on our joint works [7, 8].
3This is a generalization, yielding singular equivalences between explicit finite dimensional

algebras Kn,a and all cyclic quotient surface singularities 1

n
(1, a). The Kn,a are commutative iff

a = 1 or a = n− 1. They appear as building blocks of derived categories of toric surfaces [13]
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(d) Only the equivalences in (E0) & (E1) involve Gorenstein rings. The next
result indicates, why it might be difficult to find more examples in the
Gorenstein case.

Proposition 5. Let R be a Gorenstein isolated singularity and let S be isomorphic
to C[[z1, . . . , zn]]/I.

(a) If there is an equivalence of triangulated categories

Dsg(R) ∼= Dsg(S),(⋆)

then S is a Gorenstein isolated singularity, by (P3) above. If, in addition,
dim R 6= dim S, then both R and S are isolated hypersurface singularities,
cf. [4, 14].

(b) If the C-linear equivalence (⋆) admits a differential graded enhancement,
then (⋆) can be realized as a Knörrer equivalence4 (E1), see [4].

Remark 6.

(1) If R is a 3-dimensional isolated hypersurface singularity admitting a small
resolution of singularities (cf. M. Wemyss’s talk), then the condition in
(b) holds by recent work of Jasso–Muro as observed by Keller, [2].

(2) Examples of singular equivalences without dg enhancement5 are given by

Dsg(Z/p2) ∼= Dsg

(
(Z/p)[x]

(x2)

)
,

for all primes p 6= 2, see [15] which uses higher K-theory.
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Deeply ramified fields and independent defect

Franz-Viktor Kuhlmann

(joint work with Steven Dale Cutkosky and Anna Rzepka)

The defect of finite extensions of valued fields plays a crucial role in

• local uniformization, and
• the model theory of valued fields

in positive characteristic. Both can be attacked via the structure theory of valued
algebraic function fields. In both, elimination of ramification is a crucial goal, and
the defect is a main obstacle.

The defect is defined as follows. By (L|K, v) we denote an extension of valued
fields, where v is a valuation on L and K is endowed with its restriction. We
denote by vK the value group and by Kv the residue field of (K, v). For a finite
extension (L|K, v) where the extension of v from K to L is unique, the Lemma of
Ostrowski says

[L : K] = p̃ℓ · (vL : vK)[Lv : Kv]

where ℓ is a non-negative integer and p̃ is the characteristic exponent of Kv, that
is, p̃ = charKv if it is positive, and p̃ = 1 otherwise. The factor d(L|K, v) := p̃ℓ

is the defect of the extension (L|K, v). We call (L|K, v) a defect extension if
d(L|K, v) > 1. Nontrivial defect only appears when charKv = p > 0, in which
case p̃ = p. When we say that “(K, v) does not admit defect extensions”, we
will actually mean that its henselization has this property (which gives us the
reduction to extensions with unique extension of the valuation). Background and
a large collection of examples of defect extensions can be found in [7].

Using the structure theory of valued algebraic function fields, I proved in joint
work with Hagen Knaf:

• All Abhyankar places of algebraic function fields admit local uniformization
([3]). (Abhyankar places are places that satisfy equality in the Abhyankar
inequality.)
• Every place of an algebraic function field F |K, where F |K is separable,
admits local uniformization in a finite separable extension of F ([4]).

While this result also follows from de Jong’s resolution by alteration, the presence
of the place allows us to say more about the extension of F ; moreover, our proof
reveals the connection with the structure theory of valued algebraic function fields
and the phenomenon of the defect.

The proof of the first theorem uses the “Generalized Stability Theorem” ([5])
which states that if F |K is an algebraic function field with an Abhyankar place
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under which K does not admit defect extensions, then the same is true for F .
The proof of the second theorem uses the first theorem, applied to subfunction
fields of maximal transcendence degree on which the place is Abhyankar, together
with the “Henselian Rationality Theorem” ([9]). These two main tools are also
used to prove model theoretic results for the classes of tame and separably tame
fields ([8, 10]). These fields do not admit any defect extensions (or separable
defect extensions, respectively). They play a crucial role in the proof of our local
uniformization by alteration, in which defects are essentially “killed” by separable
alteration.

The question arises whether the above results can be generalized by studying
situations where (certain) defects are allowed. In [6] I introduced a classification of
defects of Galois extensions of prime degree of valued fields of positive character-
istic. Those that can be derived by some transformation from purely inseparable
defect extensions are dependent, and the others independent; examples for such
defects and the mentioned transformation are given in my talk. Independent de-
fects appear to be more harmless than the former. This seems to be witnessed by
Temkin’s Inseparable Local Uniformization, which proves local uniformization af-
ter a finite purely inseparable extension of the function field. Only the dependent
defect can be killed by purely inseparable extensions of the function field, so this
indicates that independent defect can be handled without alteration. This leads
to the question: what are the valued fields that admit only independent defects?

It is obvious from the classification that the perfect valued fields of positive
characteristic are among the fields that we are looking for. Also the perfectoid
fields of positive characteristic are such fields. But what about perfectoid fields in
mixed characteristic where the field has characteristic 0 and its residue field has
positive characteristic? In this case, the above classification does not work, as there
are no nontrivial purely inseparable extensions. In joint work with Anna Rzepka
([11]), we have generalized the classification to the mixed characteristic case, and
we have studied the valuation theory of deeply ramified fields and related classes
of valued fields. They encompass the perfectoid fields, which are the complete
deeply ramified fields whose value groups are archimedean, i. e., can be embedded
in the reals. In positive characteristic, deeply ramified fields are those that lie
dense in their perfect hull, which includes the perfect valued fields. In mixed
characteristic, we consider the even larger class of roughly deeply ramified fields
(in short: rdr fields), which are valued fields (K, v) that satisfy the following two
conditions:

(DRvp) vp is not the smallest positive element in vK,
(DRvr) the homomorphism

OK/pOK ∋ x 7→ xp ∈ OK/pOK

is surjective, where OK denotes the valuation ring of (K, v).

In positive characteristic, we let rdr fields coincide with deeply ramified fields.
Among other things, we show in [11] (by purely valuation theoretical proofs):

(i) rdr fields do not admit defect extensions with dependent defect,
(ii) all algebraic extensions of rdr fields are again rdr fields,
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(iii) if (L|K, v) is finite and (L, v) is an rdr field, then so is (K, v),
(iv) the tame fields are exactly the henselian rdr fields with p-divisible value

groups that do not admit defect extensions.

It is an open question whether also the converse of (i) holds, i. e., whether every
valued field that admits only independent defects is roughly deeply ramified.

We denote by Ksep the separable-algebraic closure of K and extend v from K
to Ksep. By (Kr, v) we denote the ramification field of the extension (Ksep|K, v).
In [11], we also prove:

(v) (K, v) is an rdr field if and only if (Kr, v) is (in which case (Kr, v) is even
deeply ramified).

In their book [2], Gabber and Ramero present the condition

(1) ΩOKsep |OK
= 0 ,

where ΩB|A denotes the module of relative differentials when A is a ring and B is
an A-algebra. They show that it is equivalent to property (DRvr) together with

(DRvg) if Γ1 ⊂ Γ2 are convex subgroups of the value group vK, then Γ2/Γ1

is not isomorphic to Z (that is, no archimedean component of vK is
discrete).

Note that (DRvg) implies (DRvp).
If (K, v) satisfies condition (1), then they call it a deeply ramified field. The

proof in [2] of the equivalence is quite involved (to say the least). The goal of
recent joint work with Steven Dale Cutkosky is to give a down-to-earth alternative
to this proof. In [1], we have already succeeded to show that given a Galois defect
extension (L|K, v) of prime degree p, the following assertions are equivalent:

a) the extension has independent defect,
b) ΩOL|OK

= 0,

c) Ip = I , where I =

(
σb − b

b

∣∣∣∣ b ∈ L×

)
for any generator σ of GalL|K is

the ramification ideal of the extension.
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Blowup algebras of determinantal ideals in prime characteristic

Alessandro De Stefani

(joint work with Jonathan Montaño and Luis Núñez-Betancourt)

A Noetherian F-finite ring R of prime characteristic p > 0 is said to be F-pure if
the Frobenius homomorphism splits as a map of R-modules. Equivalently, there
exists ϕ ∈ HomR(R

1/p, R) such that ϕ(1) = 1, where R1/p denotes R viewed as a
module over itself via Frobenius.

Let I = {In}n∈N be a filtration, i. e. I0 = R, I1 ⊆ R is a proper ideal, In+1 ⊆ In
for all n ≥ 0 and Im · Im ⊆ Im+n for all m,n ≥ 0. Consider the blowup algebras

R(I) =
⊕

n≥0

InT
n ⊆ R[T ] and gr(I) =

⊕

n≥0

In/In+1

associated to I. The main goal it to study F-singularities and, in particular, F-
purity, of blowup algebras associated to some interesting filtrations. To this end,
we make the following definition.

Definition 1. Let ϕ ∈ HomR(R
1/p, R) be a map such that ϕ(1) = 1. We say that

I = {In} is F-pure (with respect to ϕ) if ϕ(I
1/p
np+1) ⊆ In+1 for all n ≥ 0.

If I is F-pure with respect to ϕ ∈ HomR(R
1/p, R), then ϕ induces maps ϕR ∈

HomR(I)(R(I)
1/p,R(I)) and ϕgr ∈ Homgr(I)(gr(I)

1/p, gr(I)) both sending 1 7→ 1.
It follows that blowup algebras associated to F-pure filtrations are F-pure.

We observe that if one is only interested in F-purity of R(I), then it suffices

to require that ϕ(I
1/p
np ) ⊆ In for all n ≥ 1. Moreover, if ψ ∈ HomR(R

1/p, R) is

a surjective map such that ψ(I
1/p
np+1) ⊆ In+1 for all n ≥ 0, then I is F-pure with

respect to a map ϕ defined as follows: there exists c ∈ R such that ψ(c1/p) = 1;
set ϕ(−) = ψ(c1/p · −).

One of our main results about general F-pure filtrations is the following.

Theorem 2. [2, Theorem 4.10] Let R be either local or a non-negatively graded
R0 = K-algebra, where K is a field. If I = {In} is an F-pure filtration, then

(1) limn→∞ depth(In) = min{depth(In)}.

(2) In the graded setup, limn→∞
reg(In)

n exists.
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Symbolic F-purity. From now on, let K be a perfect field, S = K[x1, . . . , xn]
with the standard grading, and let m = (x1, . . . , xn). Recall that if I ⊆ S is
homogeneous and R = S/I, then any map ϕ ∈ HomR(R

1/p, R) can be described
very explicitly thanks to the work of Fedder [3], based on Kunz’s Theorem [6]. First
of all, such a map corresponds to ϕ ∈ HomS(S

1/p, S) such that ϕ(I1/p) ⊆ I. Since
S is Gorenstein, we have that HomS(S

1/p, S) ∼= ωS1/p
∼= S1/p as S1/p-modules,

and we can explicitly identify a generator Φ, called trace map. In particular, given
ϕ as above there exists f ∈ S such that ϕ(−) = Φ(f1/p · −), and because S1/p is a
free S-module the condition that ϕ(I1/p) ⊆ I translates into fI ⊆ I [p]. It follows
that to each map ϕ as above corresponds an element f ∈ I [p] : I, and such an
element is unique modulo I [p]. From now on we will assume that ϕ is graded, and
then f can be chosen to be homogeneous. The same principle used above finally
shows that ϕ is surjective if and only if f /∈ m[p].

With this correspondence at hand, we have the following:

Lemma 3. Given a filtration I = {In} of homogeneous ideals of S we have that

I is F-pure if and only if
⋂

n≥0

(
I
[p]
n+1 : Inp+1

)
6⊆ m[p].

We will now focus on the case I = {I(n)}, where I is a radical ideal of pure
height h. If such a filtration is F-pure we also simply say that I is symbolic F-pure.
Since I(h(p−1)) ⊆ (I(n+1))[p] : I(np+1) for all n ≥ 0 [5, 4], in order to show F-purity
of I it suffices to find f ∈ I(h) such that in<(f) is square free for some monomial
order < of S; in fact, in this case fp−1 ∈ I(h(p−1)) \m[p].

We show how this can be done for determinantal ideals.

Determinantal ideals. Let X be an m × n generic matrix with m ≤ n, and
t ≤ m be an integer. Let It be the ideal generated by the t-minors of X inside
S = K[X ], where K is a perfect field of characteristic p > 0. For 1 ≤ i < j ≤ m

and 1 ≤ a < b ≤ n we let X
[i,j]
[a,b] be the submatrix of X obtained by taking the

rows i, i+ 1, . . . , j and columns a, a+ 1, . . . , b of X . Consider the polynomial:

ft =

m−1∏

ℓ=t

(
det

(
X

[1,ℓ]
[1,ℓ]

)
det

(
X

[m−ℓ+1,m]
[n−ℓ+1,n]

))
·
n−m+1∏

ℓ=1

det
(
X

[1,m]
[ℓ,m+ℓ−1]

)
.

If < is any anti-diagonal order on X (e.g. LEX with x1,n > x1,n−1 > . . . >
x1,1 > x2,n > x2,n−1 > . . . > xm,1), then in<(ft) is a square-free monomial.

Furthermore, using that Ij ⊆ I
(j−i+1)
i for all 1 ≤ i ≤ j, we have that ft ∈ I

(h)
t ,

where h = (m − t + 1)(n − t + 1) is the height of the prime ideal It. As an
immediate consequence, the symbolic blowup algebras Rs(It) and grs(It) are F-
pure. Moreover, one can show that also the ordinary Rees algebra R(It) is F-pure
if p > min{t,m − t}. This is because we just showed that Ij is symbolic F-pure
for every 1 ≤ j ≤ m, and because of a primary decomposition for ordinary powers

Int =
⋂

1≤ℓ≤t I
(n(t−ℓ+1))
ℓ , which holds for p > min{t,m− t} [1].
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Finally, set ∆ = det(X
[1,t−1]
[1,t−1] ). Since in<(ft) does not involve any of the vari-

ables of in<(∆), one can see that there exists a monomial u ∈ S such that the

map ψ(−) = Φ((fp−1
t u)1/p ·−) sends ∆1/p 7→ 1. Using that (S/It)∆ is regular, one

gets that both Rs(It)∆ and grs(It)∆ are strongly F-regular. As a consequence, we
obtain our main theorem concerning symbolic blowup algebras of ideals of minors.

Theorem 4. [2, Theorem 6.7] The symbolic blowup algebras Rs(It) and grs(It)
are strongly F-regular.

In [2] we obtain some further results for filtrations associated to initial ideals
of symbolic and ordinary powers, as well as for filtrations associated to other
determinantal objects such as Pfaffians of a generic skew-symmetric matrix, minors
of a generic symmetric matrix and of a generic Hankel matrix.
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Free resolutions of perfect ideals

Jerzy Weyman

This is the report on the ongoing projects on the finite free resolutions of perfect
ideals of codimension 3 and Gorenstein ideals of codimension 4. They are a result of
collaborations with many persons, notably Ela Celikbas, Lars Christensen, Lorenzo
Guerrieri, Jai Laxmi, Xianglong Ni and Oana Veliche.

Perfect ideals of codimension 3. It was established in [15] that the structure
of free resolutions of length 3 is related to the root systems of type Tp,q,r where
(p, q, r) = (r1 + 1, r2 − 1, r3 + 1), where ri denotes the rank of the differential di
in our free resolution for i = 1, 2, 3. This means that the formats corresponding
to finite root systems of type ADE play special role. It turns out that for perfect
ideals the connection goes much deeper. In particular one has

Conjecture 1 (LICCI Conjecture, [6]). Every perfect ideal of I in a local ring R
codimension 3 with R/I having a resolution of ADE format is LICCI (i. e. in the
linkage class of a complete intersection).
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Recall that ADE types are the resolutions of formats

Dn : (1, n, n, 1) and (1, 4, n, n− 3),

E6 : (1, 5, 6, 2),

E7 : (1, 5, 7, 3) and (1, 6, 7, 2),

E8 : (1, 5, 8, 4) and (1, 7, 8, 2).

In dealing with the LICCI Conjecture, it turns out it is related to the generators
of generic ring R̂gen established in [15]. These generators correspond to three
irreducible representations

W (d3) = F ∗
2 ⊗ V (ωz),W (d2) = F2 ⊗ V (ωy),W (d1) = C⊗ V (ωx)

where V (ωx), V (ωy), V (ωz) are three irreducible fundamental representations of
g(Tp,q,r) corresponding to three extremal nodes at the end of three arms. It turns
out that the LICCI property is related to the appearance of units in the entries of
higher structure maps corresponding to homogeneous components of these repre-
sentations. This is true for the known type Dn and we can establish this in [7] for
the smallest unknown type (1, 5, 6, 2) for E6. This is done by analyzing the higher
structure maps for the linked ideal, extending in this case the procedure from [1].
In general we expect

Conjecture 2. Let I be a perfect ideal of codimension 3 over a local Gorenstein
ring R. Then I is LICCI if and only if there exists a higher structure map in the
representation W (d1) whose entry is a unit. Similarly, the existence of a unit in
W (d2) and W (d3) should be equivalent to the fact that I can be linked to an ideal
I ′ with a resolution of a smaller format.

Moreover, one can construct a uniform family of generic examples of perfect
ideals I with R/I having resolutions of ADE formats which are expected to provide
generic models for these resolutions. Such resolutions can be viewed from three
angles:

(1) From bigradings of Lie algebras of type Tp,q,r, with uniform description of
all differentials, see [10],

(2) As defining ideals of affine pieces of Schubert varieties in certain homoge-
neous spaces of groups of type Tp,q,r, see [12],

(3) As partial Jacobian ideals of sporadic invariants of prehomogeneous repre-
sentations from Sato-Kimura list, see [12], in this case the SL(6)-invariant

∆4 of degree 4 in Sym(
∧3 C6), the SL(7)-invariant ∆7 of degree 7 in

Sym(
∧3

C7), and the SL(8)-invariant ∆16 of degree 16 in Sym(
∧3

C8).

In the case of root systems of type Dn one recovers the Buchsbaum-Eisenbud
generic Gorenstein ideals of codimension 3 [4] and the almost complete intersec-
tions of codimension 3 constructed by Anne Brown [2].

The most recent progress is that we can prove (with L. Guerrieri and X. Ni)

Theorem 3. Let I be a perfect ideal of codimension 3 over a local Gorenstein ring
R, with the resolution of R/I having ADE format. Then
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• Conjecture 2 is true,
• If I is LICCI, then (R, I) is a specialization of the corresponding generic
example described above.

The conjecture 2 seems to be within reach, one just has to be sure that manip-
ulation of units works for Kac-Moody groups.

Gorenstein ideals of codimension 4. Similar theory for Gorenstein ideals of
codimension 4 was started in [16]. For the ideals with n minimal generators the
role of the root system Tp,q,r is played by the root system En. Starting with
resolution of the type

0→ R
d4−→ F ⊗R

d3−→ G⊗R ∼= G∗ ⊗R
dtr
3−→ F ∗ ⊗R

dtr
4−→ R,

where R is a C-algebra, F = Cn and G = C2n−2 is an orthogonal module with
a nondegenerate quadratic form (assumed to be in hyperbolic form), one first
construct ”the generic complex” over a ring A(n)1 of this type and then introduces

the cycle killing procedure to construct a generic ring A(n)∞ akin to R̂gen from
[15]. There are, however, two nonobvious conditions. First, one has to introduce
from the beginning the spinor coordinates of the isotropic subspace Im(d3) (see
[5]). Second (and this was the least obvious), one treats the above resolution as
a complex of length 3, dropping dtr4 . Then one is able to lift cycles and construct
a generic object A(n)∞ which is a multiplicity free sl(F ) × g(En) representation.
The ring A(n)∞ is Noetherian if and only if n ≤ 8, suggesting that for n ≥ 9
the problem of classifying the Gorenstein ideals of codimension 4 might be very
complicated. Still, one gets many benefits from this theory. The first immediate
application is

Theorem 4. The spinor coordinates of the module Im(d3) in the free resolution
of the module R/J where J is a Gorenstein ideals of codimension 4 are in J .

Moreover, one gets very interesting examples of Gorenstein ideals with n gener-
ators for 4 ≤ n ≤ 8. They are obtained by uniform construction and are candidates
for generic types in these cases. For n = 4 one gets a complete intersection on 4
independent variables. For n = 5 one gets a nonminimal resolution which is a com-
plete intersection in 4 variables plus a split summand. For n = 6 one gets a generic
hyperplane section in a generic Gorenstien ideal of codimension 3. For n = 7, 8
one gets two most interesting new examples. The corresponding resolutions have
similar properties to the ones constructed for perfect ideals of codimension 3. They
can be viewed from three angles:

(1) From bigradings of Lie algebras of type En, with uniform description of
all differentials, see [10],

(2) As defining ideals of affine pieces of Schubert varieties in certain homoge-
neous spaces of groups of type En, see [16],

(3) As partial Jacobian ideals of sporadic invariants from Sato-Kimura list, see
[16], [7] in this case the invariants in half-spinor representations: Spin(12)-
invariant Θ4 of degree 4 in Sym(V (ω5, D6)), and the Spin(14)-invariant Θ8

of degree 8 in Sym(V (ω6, D7)).
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Catalan numbers and noncommutative Hilbert schemes

Špela Špenko

(joint work with Valery Lunts and Michel Van den Bergh)

We first state some purely combinatorial results which give a new interpretation of
parking functions and Fuss-Catalan numbers [9, 10] in terms of lattice points in a
certain polytope related to the permutahedron. Afterwards we give the motivation
behind these results.

Polytopes and Catalan numbers. Let m,n ∈ N and let (ei)i=1,...,n be the
standard basis for Zn ⊂ Rn. We let the symmetric group Sn act on Zn and Rn
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by permutations. Let ∆m,n be the Sn-invariant zonotope which is the Minkowski
sum of the intervals

[0, ei] , 1 ≤ i ≤ n,
[
0,
m

2
(ei − ej)

]
, 1 ≤ i 6= j ≤ n.

For ν :=
∑n

i=1 ei and τ ∈ R put ∆m,n
τ = ∆m,n + τν.

Proposition 1. Assume that τ −m(n − 1)/2 is not a rational number with de-
nominator ≤ n.1 Let L = (mn+ 1)Zn + Zν. Then

∆m,n
τ ∩ Zn → Zn/L : a 7→ ā

is an Sn-equivariant bijection.

This result follows very quickly from the fact that ∆m,n
τ is equivalent, in a

suitable sense, to the permutahedron and hence is space tiling.
Proposition 1 allows one to relate the lattice points in ∆m,n

τ for admissible τ to
parking functions. Recall that an (m,n)-parking function is a sequence of natural
numbers2 a = (a1, . . . , an) ∈ Nn such that its weakly increasing rearrangement
ai1 ≤ ai2 ≤ · · · ≤ ain satisfies aij ≤ m(j − 1). Note that Sn acts on parking func-
tions by permuting indices. Below we denote the set of (m,n)-parking functions
by Qm. According to [8, NOTE in §3] or [1, §5.1] the map

Qm → Zn/L : a 7→ ā

is an Sn-equivariant bijection. Combining it with Proposition 1 yields the following
corollary.

Corollary 2. Assume that τ −m(n− 1)/2 is not a rational number with denomi-
nator ≤ n. Then there is an explicit Sn-equivariant bijection between lattice points
in ∆m,n

τ and (m,n)-parking functions.

If a = (a1, . . . , an) ∈ Nn is weakly increasing then we say that a is an (m,n)-
Dyck path if aj ≤ (m− 1)(j − 1). The number of (m,n)-Dyck paths is

An(m, 1) :=
1

mn+ 1

(
mn+ 1

n

)
=

1

(m− 1)n+ 1

(
mn

n

)

and is called the (m,n)-Fuss-Catalan number.
There is a bijection between regular orbits of (m,n)-parking functions and

(m,n)-Dyck paths which sends the orbit representative a = (a1, . . . , an) ∈ Nn

with a1 < . . . < an to (a1, a2 − 1, . . . , an − (n− 1)).
We thus obtain a new interpretation of the Fuss-Catalan numbers.

Corollary 3. Assume that τ −m(n− 1)/2 is not a rational number with denomi-
nator ≤ n. There is an explicit Sn-equivariant bijection between regular Sn-orbits
in ∆m,n

τ ∩ Zn and (m,n)-Dyck paths. In particular the number of such regular
orbits is An(m, 1).

1This condition is equivalent to ∂(∆m,n

τ ) ∩ Zn = ∅.
2We assume 0 ∈ N.
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The noncommutative Hilbert scheme. The Hilbert scheme of length n sheaves
on Am may be viewed as the moduli space of cyclic modules of dimension n over
the polynomial algebra C[x1, . . . , xm]. It is then natural to define the correspond-
ing noncommutative Hilbert scheme Hm,n as the moduli space of cyclic modules
of dimension n over the free algebra C〈x1, . . . , xm〉. While the Hilbert scheme is in
general very singular, the noncommutative Hilbert scheme is smooth. Moreover,
it has an affine stratification.

Proposition 4 ([6, 11]). Hm,n has a stratification consisting of affine spaces and
the number of strata is given by the Fuss-Catalan number An(m, 1).

Moreover, Hm,n can be described as the moduli space of stable (or equivalently
semi-stable) representations with dimension vector (1, n) and stability condition
(−n, 1) [3, Definition 1.1] of the following quiver Qm,n:

• •

m

1

It follows from loc. cit. that Hm,n can also be described as a GIT quotient for the
group (C∗×GLn(C))/{center} ∼= GLn(C). More precisely we getHm,n =W ss,χ/G
where G = GLn(C), W = End(Cn)⊕m ⊕ Cn and W ss,χ ⊂ W is the semi-stable
locus associated to the determinant character χ.

Using the GIT description Hm,n we show using [2, 7] that Hm,n admits a family
of tilting bundles. Let ∆m,n

τ ⊂ Rn be as previously defined. We identify Zn with
the character group of the diagonal torus (C∗)n in GLn(C). Let (Zn)+ be the
“dominant” part of Zn, i.e. those (a1, . . . , an) ∈ Zn such that a1 ≤ · · · ≤ an.
For ξ ∈ (Zn)+ let V (ξ) be the irreducible GLn(C) representation with highest
weight ξ and let V(ξ) be the equivariant vector bundle on Hm,n corresponding to
the GLn(C)-equivariant vector bundle V (ξ)⊗k OW ss,χ on OW ss,χ . Put

ρ̂ =
1

2

∑

i>j

(ei − ej) +
1

2
(n− 1)ν = (0, 1, . . . , n− 2, n− 1).

Proposition 5. [4] Assume that τ − m(n − 1)/2 is not a rational number with
denominator ≤ n. Then

Tτ :=
⊕

ξ∈(Zn)+∩(∆m,n
τ −ρ̂)

V(ξ)

is a tilting bundle on Hm,n.

Comparing the ranks of K0(Hm,n) obtained from Propositions 4 and 5 yields
the identity

|(Zn)+ ∩ (∆m,n
τ − ρ̂)| = An(m, 1).

Sending a 7→ a− ρ̂ defines a bijection between the regular orbits in Zn ∩∆m,n
τ and

(Zn)+ ∩ (∆m,n
τ − ρ̂). This yields a “geometric” proof of the claim about An(m, 1)

in Corollary 3.
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Further directions. In [4] we further show that the derived category of the
noncommutative Hilbert scheme admits a semi-orthogonal decomposition.

Pădurariu and Toda [5] construct a finer decomposition for H3,n. Moreover,
they construct a semi-orthogonal decomposition of the category of matrix factori-
sations on H3,n with a super-potential whose critical locus is the (classical) Hilbert
scheme. These provide categorifications of Donaldson-Thomas invariants.
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On the Weak Implies Strong Conjecture

Thomas Polstra

(joint work with Ian Aberbach and Craig Huneke)

An introduction to the weak implies strong conjecture. Let (R,m, k) be
an excellent Cohen-Macaulay normal domain of prime characteristic p > 0. For
each natural number e let F e(−) : Mod(R)→ Mod(R) be the base change functor
along the eth iterate of the Frobenius F e : R→ R. If N ⊆M are R-modules then
an element η ∈ M belongs to N∗

M , the tight closure of N in M , if there exists a
0 6= c ∈ R such that η belongs to the kernel of the following composition of maps
for all e≫ 0:

M →M/N → F e(M/N)
·c
−→ F e(M/N).

The finitistic tight closure of N ⊆ M is denoted by N∗fg
M and is the union of

(N ∩M ′)∗M ′ where M ′ runs through all finitely generated submodules of M . For
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example, if a ⊆ R is an ideal then F e(R/a) = R/a[p
e] and therefore x ∈ a∗R if there

exists 0 6= c ∈ R such that cxp
e

∈ a[p
e] for all e≫ 0. Tight closure was introduced

and developed by Hochster and Huneke in the late 80’s and early 90’s. See [9] for
an introduction of tight closure and its applications.

A ring R is said to be weakly F -regular if N∗fg
M = N for all modules N ⊆ M ,

F -regular if RP is weakly F -regular for all P ∈ Spec(R), and strongly F -regular if
N∗

M = N for all modules N ⊆ M . Direct summands of regular rings are strongly
F -regular. It is conjectured that all three notions of F -regularity coincide.

Conjecture 1 (The weak implies strong conjecture). If R is an excellent weakly
F -regular ring of prime characteristic p > 0 then R is strongly F -regular.

Weak and strong F -regularity can be determined by studying the behavior the

0-submodule of the local cohomology module H
dim(R)
m (ωR).

Theorem 2 ([9],[16]). Let (R,m, k) be an excellent normal domain of prime char-
acteristic p > 0 and of Krull dimension d. Let ωR be a canonical module of R. The

ring R is weakly F -regular if and only if 0∗fg
Hd

m
(ωR)

= 0 and R is strongly F -regular

if and only if 0∗Hd
m
(ωR) = 0.

History and progress on the weak implies strong conjecture. There has
been incremental progress on the weak implies strong conjecture since the inception
of tight closure theory.

• Conjecture 1 was settled for the class of Gorenstein rings by Hochster and
Huneke, [10].
• Williams settled the weak implies strong conjecture for rings of dimension
at most 3, [17]. Williams methodology is an interplay of commutative
algebra techniques and the theory of the birational geometry of surfaces,
namely resolutions of singularities and the theory of rational/F -rational
singularities, [13, 12, 15].
• Murthy equated the classes of weakly F -regular rings and F -regular rings
for finite type algebras over an uncountable field. See [11].
• If the anti-canonical algebra of R is Noetherian and R is weakly F -regular,
or more generally a splinter, then R is strongly F -regular [5, 14].
• Every F -regular ring of dimension at most 4 and of prime characteristic
p > 5 is strongly F -regular by [2]. The methodology requires the the-
ory of birational geometry of 3-folds, namely resolution of singularities
and results of the prime/mixed characteristic minimal model program in
dimension 3, [6, 7, 3].

Main results and an inductive program. A novel insight to Conjecture 1 is
that the conjecture can be solved by establishing annihilation properties of local
cohomology modules of quotients of R by symbolic powers of an anti-canonical
ideal.

Theorem 3 (Aberbach-Huneke-Polstra, [1]). Let (R,m, k) be an excellent Cohen-
Macaulay normal domain of prime characteristic p > 0, of Krull dimension d, and
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I ⊆ R an anti-canonical ideal. Suppose that there exists m ≥ 1 so that for each
1 ≤ j ≤ d− 2 there exists an ideal aj of height d− j + 1 such that

a
pe

j H
j
m

(
R

I(mpe)

)
= 0

for every e ∈ N. If R is weakly F -regular then R is strongly F -regular.

The modules Hj
m(R/I

(mpe)) are annihilated by an ideal of height d− j+1. The
criterion of Theorem 3 is therefore reasonable as it is natural to anticipate that
the annihilators of Hj

m(R/I
(mpe)) are of linear comparisons as e→∞. We present

a characteristic-free problem in commutative algebra that if solved would settle
the weak implies strong conjecture:
Open Problem: Let (R,m, k) be a complete Cohen-Macaulay normal domain
of arbitrary characteristic. Let I ⊆ R be an ideal of pure height h. For each
1 ≤ j ≤ d− h− 1 does there exist an ideal aj of height d− j + 1 such that

a
n
jH

j
m(R/I

(n)) = 0

for every n ∈ N? It suffices to solve the open problem for ideals of pure height 1
in a weakly F -regular ring to settle Conjecture 1.

Properties described in Theorem 3 can be established under mild hypotheses.

Theorem 4 (Aberbach-Huneke-Polstra, [1]). Let (R,m, k) be an excellent weakly
F -regular ring of prime characteristic p > 0, of Krull dimension d, and I ⊆ R an
anti-canonical ideal. Suppose that the anti-canonical algebra of R is Noetherian
on the punctured spectrum. There exists m ∈ N so that for each 1 ≤ j ≤ d − 2
there exists an ideal aj of height d− j + 1 such that

a
pe

j H
j
m

(
R

I(mpe)

)
= 0

for every e ∈ N. In particular, the ring R is strongly F -regular by Theorem 3.

Results of the complex minimal program and methods of reduction to prime
characteristic, e.g. [4, 8, 15], inspire the following conjecture.

Conjecture 5. If (R,m, k) is a strongly F -regular ring then the anti-canonical
algebra of R is Noetherian.

Conjecture 5 has been established for all rings of dimension 2, [12, 13, 15], as
well as 3-dimensional F -regular rings of characteristic p > 5.
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Bernstein’s inequality for certain singular rings

Jack Jeffries

(joint work with Josep Àlvarez Montaner, Daniel Hernández,
Luiz Núñez-Betancourt, Pedro Teixeira, Emily Witt, David Lieberman)

Let S = C[x1, . . . , xn]. The ring of differential operators DS is the ring generated
by S and the partial derivatives with respect to the variables. The ring S, its
principal localizations Sf , and local cohomology modules Hi

I(S) are all naturally
left modules over DS , and the action of DS on these modules has a range of
applications and connections to commutative algebra. For example:

(1) This action is applied by Lyubeznik [4] to show that every local cohomol-
ogy module Hi

I(S), though usually not finitely generated as an S-module,
nonetheless has finitely many associated primes as an S-module.

(2) Bernstein [3] and Sato [6] show that for every element f ∈ S, there is an
operator δ(s) ∈ DS [s] and a nonzero complex polynomial s ∈ C[s] such
that δ(t) · f t+1 = b(t)f t for all t ∈ N; the minimal such b(s) is called the
Bernstein-Sato polynomial of f , and its roots are intricately tied to the
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singularities of V (f), e.g., in terms of jumping numbers and multiplier
ideals.

Both applications follow somewhat easily from the following fact.

Theorem 1 (Bernstein’s inequality [3]). Every nonzero DS-module has dimension
at least dim(S).

Both of the consequences above are known to hold for various additional classes
of rings, but to fail in general; for example, see [1, 7, 8]. The new results discussed
in this talk provide a version of Bernstein’s inequality for certain singular rings
that recovers the consequences above.

For the remainder of the abstract,

• K denotes a field of arbitrary characteristic, and
• R denotes an N-graded finitely generated K-algebra with R0 = K.

Our notion of Bernstein’s inequality is for the ring of K-linear differential oper-
ators, denoted DR. This is a graded K-algebra, but is not necessarily finitely
generated or Noetherian, and we avoid any specific finite generation hypotheses
in our investigations. Instead, to obtain a meaningful notion of dimension we use
generalized Bernstein filtrations

Bi = K{δ homogeneous | deg(δ) + word(δ) ≤ i},

for some w greater than the generation degree of R as a K-algebra. For a DR-
module M , equipped with a B•-compatible filtration F •, we define

dim(M,F •) = inf{λ | dimK(F i) = o(λi)} and e(M,F •) = lim sup
i→∞

dimK(F i)

idim(M,F•)
.

We then have the following.

Theorem 2. Let R be either

(0) An invariant ring of a polynomial ring under the action of a finite group
in characteristic zero,

(p) A graded strongly F-regular ring of finite F-representation type in positive
characteristic, or

(#) The coordinate ring of a Segre product Pm × Pn in characteristic zero.

Then, for any DR-module M and any filtration F • compatible with B•, one has

(1) dim(M,F •) ≥ dim(R) and when equality holds e(M,F •) > 0.
(2) If dim(M,F •) = dim(R) and e(M,F •) < ∞, then M has finite length as

a DR-module.
(3) The DR-modules R, Rf for f ∈ R, and Hi

I(R) for I ⊆ R and i ∈ N each
admit filtrations F • compatible with B• with dimension = dim(R) and
multiplicity <∞.

We think of the first part as a version of Bernstein’s inequality, the second as
saying that holonomic module have finite length, and the third as saying that the
motiving classes of D-modules are indeed holonomic. This result in the case of
polynomial rings of positive characteristic is due to Bavula [2] as reinterpreted by
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Lyubeznik [5]. Cases (0) and (p) above are from the first listed project in the first
paragraph, and case (#) is from the second listed work in progress.
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Semigroup Rings and Gluing Operation

Hema Srinivasan

(joint work with Philippe Gimenez)

Introduction. Let N denote the set of natural numbers. We denote by Nn the
semigroup (a monoid) under addition. All our semigroups will be monoids. Let
〈A〉 denote the semigroup minimally generated by a subset A = {a1, . . . , ap} of
Nn. Let k be an arbitrary field and φA : k[x1, . . . , xp] → k[t1, . . . , tn] be the ring
homomorphism given by φA(xj) = taj =

∏n
i=1 t

aij

i where aj = (a1j , . . . , anj) ∈ Nn.
The kernel of φA, denoted IA, is a binomial prime ideal and the semigroup ring
k[A] is isomorphic to k[x1, . . . , xp]/IA. We will also denote by A the n× p integer
matrix whose columns are the elements in A.

The concept of Gluing was introduced by Rosales in 1990’s perhaps inspired by
the classical construction by Delorme (1976) for the study and characterization
of complete intersection numerical semigroups. For a semigroup 〈C〉, when the
set of generators of the semigroup splits into two disjoint parts, C = A ∪B, such
that IC = IA + IB + 〈ρ〉 where ρ is a binomial whose first, respectively second,
monomial involves only variables corresponding to elements in A, respectively B,
we say that 〈C〉 is a gluing of 〈A〉 and 〈B〉. Let the two semigroups 〈A〉 and 〈B〉
in Nn with A = {a1, . . . , ap} and B = {b1, . . . ,bq} have corresponding semigroup
rings denoted by k[A] ≃ k[x1, . . . , xp]/IA and k[B] ≃ k[y1, . . . , yq]/IB respectively.

Definition 1. Given an integer n ≥ 1 and two subsets A = {a1, . . . , ap} and
B = {b1, . . . ,bq} in Nn, we say that the semigroups 〈A〉 and 〈B〉 can be glued if
there exist two integers k1, k2 ∈ N such that for C = k1A ∪ k2B, the semigroup
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〈C〉 is a gluing of 〈k1A〉 and 〈k2B〉, i.e., IC = IA + IB + 〈ρ〉 for some binomial
ρ = xα − yβ with α ∈ Np and β ∈ Nq.

When this occurs, we will say that 〈C〉 is a gluing of 〈A〉 and 〈B〉 instead of
saying that it is a gluing of 〈k1A〉 and 〈k2B〉 and write C = k1A ⋊⋉ k2B. In the
definition of gluing, one can always assume that k1 and k2 are relatively prime,
if needed. Such a semigroup 〈C〉 is called decomposable or that it decomposes) as
〈C〉 = 〈A〉 ⊔ 〈B〉.

Questions. Given two semigroups 〈A〉 and 〈B〉 in Nn, can 〈A〉 and 〈B〉 be glued?
When it is possible to glue them, what should the integers k1 and k2 be, so that for
C = k1A ∪ k2B, 〈C〉 is a gluing of 〈A〉 and 〈B〉?

The case of numerical semigroups, where n = 1, this is well understood. More-
over, it is well known that given two arbitrary numerical semigroups 〈A〉 and 〈B〉,
if one chooses k1 ∈ 〈B〉 and k2 ∈ 〈A〉, then for C = k1A ∪ k2B, one has that
IC = IA + IB + 〈ρ〉 for some binomial ρ = xα − yβ with α ∈ Np and β ∈ Nq. One
can thus answer to the above questions when n = 1: Two numerical semigroups
can always be glued and one knows how to glue them (choosing k1 ∈ 〈B〉 and
k2 ∈ 〈A〉). Moreover, if 〈C〉 is a gluing of 〈A〉 and 〈B〉, the semigroup rings k[A],
k[B] and k[C] are always Cohen-Macaulay in this case.

Main Theorems. The main results, theorems 2, 10, and 11, and the examples
can be found in [4].

Theorem 2. If C = k1A ⋊⋉ k2B, then

(1) depth k[C] = depth k[A] + depth k[B]− 1,
(2) dim k[C] = dim k[A] + dim k[B]− 1.

Now, it can be shown that A is the n×pmatrix over N whose columns minimally
generate the semigroup 〈A〉, then the dimension of the semigroup ring k[A] is
precisely the rank of A. Hence, we say A or 〈A〉 is degenerate if the rank A < n.
We get the following immediate consequences of Theorem 2.

Corollary 3. If n ≥ 2, then 〈A〉 and 〈B〉 can not be glued unless at least one of
〈A〉 and 〈B〉 is degenerate.

Corollary 4. If C = k1A ⋊⋉ k2B, then

(1) k[C] is Cohen-Macaulay if and only if k[A] and k[B] are,
(2) k[C] is Gorenstein if and only if k[A] and k[B] are,
(3) k[C] is a complete intersection if and only if k[A] and k[B] are.

Thus, we see that one necessary condition for when two semigroups A and B
can be glued to obtain a semigroup C is that rankC = rankA+ rankB − 1. This
somewhat partially explains when we can hope to glue two semigroups A and B.

Moreover, the converse is true for the complete intersection ([1], [2]), but not
for the other two properties, namely Gorenstein or Cohen-Macaulay semigroups.
There exist, even in the case of numerical semigroups, examples of Gorenstein
semigroups that are not a gluing of semigroups of smaller embedding dimension.
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For example, one has that a numerical semigroup 〈C〉 minimally generated by
an arithmetic sequence of length n ≥ 3, C = {a, a + d, . . . , a + (n − 1)d}, is a
gluing if and only if n = 3, a is even, and d is odd and relatively prime to a/2.
Note that these are also the only numerical semigroup minimally generated by
an arithmetic sequence that are a complete intersection. In fact, a numerical
semigroup minimally generated by an arithmetic sequence of length n ≥ 4 is never
a gluing of two smaller numerical semigroups. Thus, for all n ≥ 4 and 1 ≤ t ≤ n−1,
there is a numerical semigroup of embedding dimension n and Cohen-Macaulay
type t which is not a gluing of two smaller numerical semigroups.

It is not true that the gluing is not determined by the minimal number of
generators of the glued semigroup.

Example 5. Consider these two semigroups 〈A〉 and 〈B〉 in N3 given by

A = {(1, 6, 7), (1, 4, 5), (2, 5, 7), (5, 5, 10)} and

B = {(1, 1, 6), (2, 2, 7), (3, 3, 8), (10, 10, 20)}.

Here, IA is minimally generated by 3 binomials, IA = 〈x22x
3
3−x

3
1x4, x

5
3−x

5
2x4, x

7
2−

x31x
2
3〉, IB = 〈y22 − y1y3, y

4
3 − y

2
1y4〉 and IC is minimally generated by 6 elements

but it is not a gluing. IC = IA + IB + 〈x24 − y4〉 + 〈x4y1 − y
2
3〉. In this case, the

second minimal generator of IB is not minimal in IC .

Theorem 6 ([3, Thm. 6.1, Cor. 6.2]). Let A = {a1, . . . , ap} and B = {b1, . . . ,bq}
be two finite subsets of Nn and assume that 〈C〉 is a gluing of 〈A〉 and 〈B〉, i. e.,
C = A∪B and IC = IA + IB + 〈ρ〉 for some ρ = xα− yβ with α ∈ Np and β ∈ Nq.
Consider FA and FB , minimal graded free resolutions of k[A] and k[B].

(1) A minimal graded free resolution of k[C] can be obtained as the mapping
cone of ρ : FA⊗FB → FA⊗FB where ρ is induced by multiplication by ρ.

(2) The Betti numbers of k[A], k[B] and k[C] are related as follows. ∀i ≥ 0,

βi(k[C]) =
∑i

i′=0 βi′(k[A])[βi−i′ (k[B]) + βi−i′−1(k[B])]

=
∑i

i′=0 βi′(k[B])[βi−i′ (k[A]) + βi−i′−1(k[A])] .

(3) The relation between the projective dimensions of k[A], k[B] and k[C] is

pd(k[C]) = pd(k[A]) + pd(k[B]) + 1 .

Using the last part of the previous result, one can easily show that the only
nondegenerate semigroups whose semigroup ring is Cohen-Macaulay that can be
glued are the numerical semigroups.

Theorem 7. Let 〈A〉 and 〈B〉 be nondegenerate semigroups in Nn such that k[A]
and k[B] are nondegenerate. Then 〈A〉 and 〈B〉 can be glued if and only if n = 1.

Example 8. For n ≥ 2, some degeneracy is necessary in order to glue two semi-
groups. If 〈S〉 ⊂ N2 is the semigroup generated by S = {(3, 0), (2, 1), (1, 2), (0, 3)},
the ideal IS is the defining ideal of the twisted cubic which is known to be Cohen-
Macaulay. By theorem 7, 〈S〉 can not be glued with itself in N2. But one can
consider the two degenerate semigroups 〈A〉 and 〈B〉 of N3 generated respectively
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by A = {(4, 0, 0), (3, 1, 0), (2, 2, 0), (1, 3, 0)} and B = {(3, 3, 0), (3, 2, 1), (3, 1, 2),
(3, 0, 3)}, whose defining ideals IA ⊂ k[x1, . . . , x4] and IB ⊂ k[y1, . . . , y4] are both
the defining ideal of the twisted cubic. In other words, k[A] ≃ k[B] ≃ k[S]
and 〈A〉 and 〈B〉 can be thought as two copies of 〈S〉 in N3 where they are
degenerate. However, 〈A〉 and 〈B〉 can be glued because if C = A ∪ B, then
IC = IA + IB + 〈y21 − x1x

2
4〉.

Towards understanding what happens when C is a gluing of A and B, we prove
the following condition.

Lemma 9. Given A = {a1, . . . , ap} and B = {b1, . . . ,bq} in Nn satisfying the
rank conditions rankA|B = n and rankA+ rankB = n+1, let u = u(A,B) ∈ Zn

be the gluable lattice point of A and B. Then, the following are equivalent:

(1) the system A·X = B ·Y has a nontrivial solution (X,Y ) such that X ∈ Np

and Y ∈ Nq;
(2) there exist positive integers a and b such that au ∈ 〈A〉 and bu ∈ 〈B〉.

The u in Lemma 9 is called the gluable lattice point.

Theorem 10. Let A and B be two finite sets in Nn satisfying the rank conditions

rankA|B = n and rankA+ rankB = n+ 1

and let u = u(A,B) ∈ Zn be the gluable lattice point of A and B. Then,

(a) =⇒ (b) =⇒ (c) ⇐⇒ (d)

for the following four conditions:

(a) there exist relatively prime positive integers k1, k2 such that k2u ∈ 〈A〉 and
k1u ∈ 〈B〉;

(b) 〈A〉 and 〈B〉 can be glued;
(c) there exists positive integers k1, k2 such that k2u ∈ 〈A〉 and k1u ∈ 〈B〉;
(d) The system A · X = B · Y has a nontrivial solution (X,Y ) with X ∈ Np

and Y ∈ Nq.

There are examples showing that (c) does not imply (b) in Theorem 10. At the
same time, there are also examples showing that if (b) is not satisfied, then (c) may
not be true either. Thus, in some sense, these are the best possible implications.

Finally, we can ask if given two non degenerate semigroups 〈A〉 and 〈B〉 in
Nn, n ≥ 2, how does one embed them in Nm,m > n in order to glue them?

Theorem 11. Any two homogeneous nondegenerate semigroups in dimension 2
can be glued after an appropriate embedding in dimension 3.
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Commutative Algebra and Integer Partitions

Hussein Mourtada

An integer partition λ of an integer number n is a decreasing sequence of integer
numbers λ = (λ1, . . . , λr) such that λ1 + · · ·+λr = n; the λi’s are called the parts
of λ and r is its size. An important direction in the theory of integer partitions
([4]) is the study of partition identities: this amounts to find a family A of integer
partitions defined by some restrictions on the partitions and another family B
determined by different restrictions, such that the number of partitions of n in A
is equal to the number of partitions of n in B for every integer number n. The
following example of a partition identity is due to Euler.

For every integer number n, the number of partitions of n whose parts are odd is
equal to the number of partitions of n whose parts are distinct.

One of the most famous partition identities are the (two) Rogers-ramanujan
identities. The first one is given by:

Let n be an integer number. Let T (n) be the number of partitions of n such that
the difference between consecutive parts is at least 2. Let E(n) be the number of

partitions of n into parts congruent to 1 or 4 mod 5. Then we have

T (n) = E(n).

The fame of these identities is probably due to the fact that their proofs are
difficult and that they appear in many domains such as combinatorics, statistical
mechanics, number theory, representation theory or algebraic geometry (see the
references in [8, 2]). Another version of the first Rogers-Ramanujan identity can
be stated in terms of q-series:

∞∑

k=0

qk
2

(1 − q) · · · (1 − qk)
=

∏

n≥0

1

(1 − q5n+1)(1− q5n+4)
,(1)

the empty products obtained when one puts k = 0 on the left-hand sides are taken
to be 1. One can prove that the left member of (1) is actually the generating series
of T (n) (i.e. is equal to 1 +

∑
n∈Z>0

T (n)qn) and that the right member of (1) is

equal to the generating series of E(n).
In this note, we report on some results linking partition identities to singularity

theory. Let (X,O) be a singularity defined over a field K of characteristic 0 (O
being a closed point on X that we assume affine). Let XO

∞ = SpecAO
∞ be the space

of arcs centered at the point O : this is the moduli space of formal unibranched
curves centered at O; it is not difficult to prove that it hase a structure of a scheme.
Moreover, it has a natural cone structure which induces a grading on AO

∞ (i.e.,
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AO
∞ = ⊕h∈NA

O
∞,h) and one can consider its Hilbert-Poincaré series that we call

the Arc-Hilbert-Poincaré series of the singularity [8, 6]:

AHPX,0(q) =
∑

h∈N

dimK AO
∞,h q

h.

This series is an invariant of singularities (it detects regularity) and it contains
different ingredients which motivate its study from the viewpoint of singularity
theory [8]. But it is in general very difficult to compute, even though sometimes
for mild singularities this is possible:

Theorem 1 ([7]). Let (X,O) be a rational double point surface singularity (i. e.
an ADE surface singularity). We have

AHPX,O(q) =
1

(1− q)3


∏

i≥2

1

(1− qi)2


 .

Question 2. Does the Arc Hilbert-Poincaré series characterize ADE surface sin-
gularities?

Let us go back to the link to integer partitions. It happened that for the
simplest possible singularities, the Arc Hilbert-Poincaré series is related to the
Rogers-Ramanujan identities:

Theorem 3 ([5]). For X = Spec K[x]
(x2) , we have

AHPX,O(q) =
∏

i≡1,4 (mod 5)

1

1− qi
.

Notice that the power series in the theorem is the right hand side of the first
Rogers-Ramanujan identity. The proof uses the fact that AO

∞ has a differential
structure which allows using differential calculus to compute a Groebner basis
(with respect to some order) of the infinitely generated ideal defining the space
of arcs (centered at O) in a natural infinite dimensional affine space. Moreover,
using simple commutative algebra [6], the proof allows to find in a very natural
way a sequence of q-series which converges (for the q-adic topology) to the two
q-series appearing in (1); this gives a proof of the Rogers-Ramnujan identities,
which was found by Andrews and Baxter in an empirical way. Again using simple
commutative algebra, differential calculus and Groebner basis computations with
respect to some monomial orderings, we were able to guess and prove a family of
partition identities indexed by an integer number k; for k = 1, this adds another
member to the Rogers-Ramanujan identities.

Theorem 4 ([3]). Let n ≥ k be positive integers. The number of partitions λ
of n whose parts are larger or equal to k and whose size is less than or equal to
s(λ) − (k − 1) is equal to the number of partitions of n with parts larger or equal
to k and without neither consecutive nor equal parts.
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Studying the Arc Hilbert-Poincaré series of SpecK[x]
(xn) , n ≥ 2, we found in [6] a

link with another famous family of identities (Gordon’s identities) which gener-
alises Rogers-Ramanujan identities. In her thesis [1], using similar ideas to those
of [3] and the results of [6], Afsharijoo conjectured a large family of exciting par-
tition identities. These conjectures were recently proved in [2] using commutative
algebra, combinatorial methods from the theory of partitions and q-series calculus.

References

[1] P. Afsharijoo, Looking for a new version of Gordon’s identities, Ann. Comb. 25 (2021), no.
3, 543–571.

[2] P. Afsharijoo, J. Dousse, F. Jouhet & H. Mourtada, New companions to the Andrews-Gordon
identities motivated by commutative algebra. Adv. Math.. 417 pp. Paper No. 108946 (2023),
https://doi.org/10.1016/j.aim.2023.108946

[3] P. Afsharijoo, & H. Mourtada, Partition identities and application to infinite-dimensional
Groebner basis and vice versa. Arc Schemes And Singularities, pp. 145-161.

[4] G. E. Andrews, The theory of partitions, Encyclopedia of mathematics and its applications,
Vol. 2, Addison-Wesley, Reading, Massachusetts, 1976.

[5] C. Bruschek, H. Mourtada, & J. Schepers, Arc spaces and Rogers-Ramanujan identities.
Discrete Math. Theor. Comput. Sci. Proc., FPSAS 2011 pp. 211-220 (2011)

[6] C. Bruschek, H. Mourtada, & J. Schepers, Arc spaces and the Rogers-Ramanujan identities.
Ramanujan J.. 30, 9-38 (2013), https://doi.org/10.1007/s11139-012-9401-y

[7] H. Mourtada, Jet schemes of rational double point singularities. Valuation Theory In Inter-
action. pp. 373-388 (2014)

[8] H. Mourtada, Jet schemes and their applications in singularities, toric resolutions and integer
partitions, Handbook of geometry and topology of singularities, IV, to appear.

Pure subrings of KLT singularities and BCM test ideals

Shunsuke Takagi

(joint work with Tatsuki Yamaguchi)

Throughout this abstract, all rings are commutative rings with unity. First we
recall the definition of pure homomorphisms.

Definition 1. A ring extension R →֒ S is said to be pure if the induced map
M =M ⊗R S →M ⊗R S is injective for every R-module M .

For example, if a linearly reductive group G acts on a polynomial ring S =
C[X1, . . . , Xn], then S

G →֒ S is a pure homomorphism.
Boutot proved the following important property of rational singularities.

Theorem 2 ([2]). Let R →֒ S be a pure local homomorphism of local rings essen-
tially of finite type over C. If S is a rational singularity, then so is R.

It is then natural to ask, “What about other classes of singularities in birational
geometry?”. We focus on KLT singularities in this talk. Classical KLT singulari-
ties are Q-Gorenstein by definition, but R is not necessarily Q-Gorenstein even if
S is regular. Therefore, being (classical) KLT does not descend under pure exten-
sions. On the other hand, de Fernex-Hacon [3] generalized the definition of KLT
singularities to the non-Q-Gorenstein setting: a normal local ring R essentially
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of finite type over C is said to be of KLT type if there exists an effective Q-Weil
divisor ∆ on SpecR such that (SpecR,∆) is a (classical) KLT pair.

Very recently, Z. Zhuang proved that being of KLT type descends under pure
extensions.

Theorem 3 ([11]). Let R →֒ S be a pure local homomorphism of local rings
essentially of finite type over C. If S is of KLT type, then so is R.

Remark 4. Schwede-Smith [9] conjectured that R is of KLT type if and only
if its reduction modulo p is strongly F -regular for all large p. Since strong F -
regularity descends under pure extensions, one may think that the conjecture
implies Theorem 3. However, it is not clear at all, because purity is not preserved
under reduction modulo p in general (see [5]).

We give an alternative proof of Theorem 3, using BCM test ideals. Let (R,m, k)
be an excellent Noetherian local domain with dualizing complex.

Definition 5 ([7], [6]). Let B be a Big Cohen-Macaulay R-algebra.

(1) For a (not necessarily finitely generated) R-module M , the submodule 0BM
ofM is defined as the kernel of the map M →M ⊗RB sending x to x⊗1.

(2) The BCM test ideal τB(R) of R associated to B is defined as

τB(R) =
⋂

M

AnnR 0BM ,

where M runs through all R-modules.

Let R+ denote an absolute integral closure of R, that is, the integral closure of
R in an algebraic closure K of the fractional field K of R.

Theorem 6 ([4], [1]). Suppose that the residue field k has characteristic p > 0.

Then p-adic completion R̂+
p
of R+ is a big Cohen-Macaulay R-algebra.

However, when k has characteristic zero, R+ is not a big Cohen-Macaulay
R-algebra in general. We construct a big Cohen-Macaulay algebra in equal char-
acteristic zero, following Schoutens [8].

From now on, we assume that (R,m, k) is a normal local ring essentially of
finite type over C. Let P be the set of all prime numbers, and fix a non-principal
ultrafilter on P . Then we have a non-canonical isomorphism

ulimp∈P Fp
∼= C,

where Fp is an algebraic closure of the prime field Fp of characteristic p > 0. We

can construct an Fp-algebra Rp from R via this isomorphism. Rp is a normal local

ring essentially of finite type over Fp for almost all p ∈ P .

Theorem 7 ([8]). B(R) := ulimp∈P R
+
p is a big Cohen-Macaulay R+-algebra.

de Fernex-Hacon [3] generalized the definition of multiplier ideals too. Their
multiplier ideal JdFH(R) of R is characterized as

JdFH(R) =
∑

∆

J (X,∆),
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where J (X,∆) is the classical multiplier ideal associated to (X := SpecR,∆) and
∆ runs through all effective Q-Weil divisors on X such that KX +∆ is Q-Cartier.
By definition, R is of KLT type if and only if JdFH(R) = R.

Now our main result is stated as follows.

Theorem 8 ([10]). If the anti-canonical ring of R is Noetherian, then τB(R)(R) =
JdFH(R).

Thanks to the above theorem, we can study the behavior of multiplier ideals
under pure extensions using BCM test ideals.

Corollary 9. Let R →֒ S be a pure local homomorphism of normal local rings
essentially of finite type over C, and suppose that the anti-canonical ring of R is
Noetherian. Then the following holds.

(1) JdFH(S) ∩R ⊆ JdFH(R).
(2) If R →֒ S is faithfully flat, then JdFH(S) ⊆ JdFH(R)S.

Remark 10. For simplicity, we only consider the no boundary case in this talk.
However, we can actually prove the following: let D be a prime divisor on X :=
SpecR, a be an ideal of R not contained in any minimal prime ideals of R(−D)
and t ≥ 0 be a real number. Assume that the cycle-theoretic pullback DS of D
by the morphism SpecS → X is a prime divisor on SpecS and that the log anti-
canonical ring

⊕
n≥0R(−n(KX+D)) of (X,D) is Noetherian. Then the following

holds.

(1) adjIDS
(S,DS , (aS)

t) ∩R ⊆ adjID (R,D, a
t).

(2) If R →֒ S is faithfully flat, then adjIDS
(S,DS , (aS)

t) ⊆ adjID (R,D, a
t)S.

Here, adjID (R,D, a
t) (resp. adjIDS

(S,DS , (aS)
t)) is a generalization of the classical

adjoint ideal to the case where KSpecR +D (resp. KSpecS +DS) is not necessarily
Q-Cartier.

Theorem 3 is easily obtained from Corollary 9 (1), because if S is of KLT type,
then the anti-canonical rings of S and R are both Noetherian. Similarly, the
following result is an immediate consequence of Remark 10: suppose that R →֒ S
is a pure local homomorphism of local rings essentially of finite type over C and D
is a prime divisor on SpecR, and let DS denote the cycle-theoretic pullback of D
on SpecS. If (S,DS) is of plt type, that is, there exists an effective Q-Weil divisor
∆ on SpecS such that (SpecS,D +∆) is a classical plt pair, then so is (R,D).
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Transferring resolutions along a Koszul homomorphism

Janina C. Letz

(joint work with Benjamin Briggs, James C. Cameron, Josh Pollitz)

The Koszul property for algebras over a field was introduced by Priddy [8], see
also [7, 4]. A finite dimensional augmented (graded) k-algebra K is Koszul, if K
admits a grading (compatible with the grading on K)

K(⋆) =
∐

w>0

K(w) with K(0) ,

called the weight grading, such that the minimal resolution of k is linear with
respect to the weight grading.

Classically, for a graded algebra K the weight grading coincides with the given
grading on K. We make a point of allowing the weight grading to be different
from the given one.

It is well-known, that any Koszul algebra is quadratic; that means

K(⋆)
∼= Ta

(⋆)(V )/(W )

for V = K(1) and W ⊆ V ⊗ V , where Ta
(⋆)(V ) is the tensor algebra on V .

Let Q be a commutative noetherian local ring with residue field k.

Definition 1. A finite local homomorphism ϕ : Q→ R is Koszul if

(1) R⊗L

Q k is formal, that is R⊗L k ∼= TorQ(R, k) as dg algebras, and

(2) TorQ(R, k) is Koszul as a k-algebra.

Note, that the weight grading need not coincide with the homological grading.

This definition generalizes the Koszul property for k-algebra: A k-algebra K is
Koszul if and only if k → K is Koszul.

We can construct a quadratic presentation for a local Koszul homomorphism.
Let ε : A → R be a surjective semi-free resolution of R over Q. The algebra
structure on R lifts to A. While the induced multiplication need not be associative,
it is associative up to homotopy. More precisely, by [2, Proposition 3.6], the algebra
structure on R lifts to an A∞-algebra structure on A such that ε is a quasi-
isomorphism of A∞-algebras. A∞-structures where first introduced by Stasheff
[9, 10], for an overview see [5].
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If ϕ is Koszul, then we can choose the A∞-structure on A such that there exists
a free, non-negatively graded module V and a summand W ⊆ V ⊗ V such that

A ∼= Ta(V )/(W ) with m2 ⊗ k = µ⊗ k and mn ⊗ k = 0 for n 6= 2 .

Here the mn’s are the higher multiplications of the A∞-structure and µ denotes
the multiplication of the tensor algebra.

Example 2. Any local homomorphism Q→ Q[x]/(x2−ax−b) =: R with a, b ∈ m

is Koszul. A free resolution of R is given by A = R and it has a quadratic
presentation with

V = Qx and W = V ⊗ V .

The induced multiplication on A and the tensor algebra multiplication do not
coincide when a 6= 0 or b 6= 0; explicitly

m2(x⊗ x) = ax+ b 6= 0 = µ(x⊗ x) .

Example 3. Any surjective complete intersection map ϕ : Q→ R = Q is Koszul.
The Koszul complex A = KosQ(f1, . . . , fc) on a minimal generating set of the
kernel of ϕ is a free resolution of R, and it has a quadratic presentation with

V = A1 and W = 〈{x⊗ x} ∪ {x⊗ y + y ⊗ x}x 6=y〉 .

Further examples of local Koszul homomorphisms include Golod maps and sur-
jective Gorenstein maps of projective dimension 3; for the former see [2] and the
latter [1].

Let A be an A∞-algebra with Ā the cokernel of its unit. The bar construction
B(A) is the tensor coalgebra on Ā with a curved dg coalgebra structure induced
by the A∞-algebra structure of A; see [6, Section 2.2] for details. If ϕ is Koszul
and A ∼= Ta(V )/(W ) a quadratic presentation, then we define

C(0)(V,W ) := Q , C(1)(V,W ) := V and

C(n)(V,W ) :=
⋂

i+2+j=n

V ⊗i ⊗W ⊗ V ⊗j .

By construction this is a sub-coalgebra of B(A). When the curved dg coalgebra
structure on B(A) restricts to a curved dg coalgebra structure on C(V,W ), then
we say ϕ is special Koszul. In this case, the inclusion C(V,W )→ B(A) is a quasi-
isomorphism of curved dg coalgebras.

All the examples mentioned above are special Koszul. We do not know whether
that always holds.

Question 4. Is any local Koszul homomorphism special Koszul?

For a local Koszul homomorphism ϕ : Q → R we can construct R-resolutions
from Q-resolutions: LetM be an R-complex and G→M a semi-free resolution of
M over Q. Then there is an A∞-module structure on G over A. From this data
we can construct a semi-free resolution of M over R:

R⊗τ C(V,W )⊗τ G = (R ⊗ C(V,W )⊗G, ∂τ )→M .
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The twisted differential ∂τ consists of the differentials of R and G, and the A∞-
structures on A and G. This generalizes the construction for surjective complete
intersection maps of Eisenbud an Shamash [3], and for Golod maps of Burke [2].
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Chow rings of matroids are Koszul

Jason McCullough

(joint work with Matthew Mastroeni)

Chow rings of matroids have been integral in the recents proofs of the Heron-Rota-
Welsh Conjecture [1] and the Top Heavy Conjecture [2]. They have their origins
in the cohomology rings of wonderful compactifications of complex hyperplane
arrangement complements ala de-Concini and Procesi [3]. They were generalized
to arbitrary graded lattices and building sets by Feichtner and Yuzvinsky [6], where
a not necessarily quadratic Gröbner basis is given.

For an arbitrary matroid M , the Chow ring of M is

CH(M) =
Q[xF | F ∈ L(M) \ {∅}]

(xFxF ′ | F, F ′ incomparable) + (
∑

G⊇F XG | rk(F ) = 1)
.

In [1] Adiprasito, Huh, and Katz show that CH(M) has the Kähler package:
Poincarè duality, the hard Lefschetz property, and the Hodge-Riemann relations.
Thus it is an Artinian, Gorenstein, quadratic ring and it is natural to ask if it is



Resolutions in Local Algebra and Singularity Theory 379

Koszul. This was explicitly conjecture by Dotsenko [5] who showed that a related
Chow ring (with respect to a non-maximal building set) of a certain matroid known
to be isomorphic to the cohomology of the compactification of the moduli space
of n marked points on the projective line, was Koszul. This answered a question
of Manin.

Via a Koszul filtration argument, Mastreoni and the author prove Dotsenko’s
conjecture for all matroids:

Theorem 1 (Mastroeni and McCullough [8]). For any matroid M , CH(M) is
Koszul.

The filtration is defined by means of a new notion of a total coatom ordering on
a graded lattice. We proved that the lattice of flats of any matroid (equivalently
any geometric lattice) has a total coatom ordering. Similar results have been
proved by Delucchi [4].

As corollaries, we show that the Chow ring of a matroid always has a rational
Poincarè series, which is not true even for all quadratic Gorenstein algebras. It
also follows that the Hilbert series of CH(M) is at least one real root. There is an
outstanding conjecture, due to Huh (see [7]), that the Hilbert series of CH(M) is
real-rooted, which would impose severe restrictions on the possible coefficients of
the Hilbert series. Thus our result can be viewed a step toward Huh’s conjecture.

We similarly show that the augmented Chow ring introduced in [2] is Koszul.
While it can be realized as the Chow ring of a certain matroid with respect to
a non-maximal building set, not all building sets give rise to Koszul, or even
quadratic, algebras. It would be nice to have a way to unify these two results and
so we ask the following question:

Question 2. Is every Artinian, quadratic, Gorenstein algebra with the Kähler
package Koszul?

Examples show that the hard Lefschetz property is not sufficient.
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The dimension of cohomological support varieties

Elóısa Grifo

(joint work with Ben Briggs, Josh Pollitz)

Given a local ring R and an R-moduleM , the cohomological support variety ofM
is a geometric object encoding homological information about M and R. These
were first defined by Avramov in 1989 over complete intersection rings [1], and
later extended to the general setting by Jorgensen.

Let us fix some notation. Throughout, R will denote a noetherian local ring,

and we will fix a minimal Cohen presentation R̂ ∼= Q/I, where (Q,m, k) is a regular
local ring and I ⊆ m2 is minimally generated by n elements f1, . . . , fn. Under the
isomorphism I/mI ∼= An

k , for each nonzero point a = (a1, . . . , an) fix lifts bi of
each ai to Q, and let Qa := Q/(b1f1 + · · ·+ bnfn).

Definition 1. Given a finitely generated R-module M 6= 0, the cohomological
support variety of M is given by

VR(M) := {a = (a1, . . . , an) ∈ I/mI ∼= An
k | a = 0 or pdimQa

(M̂) =∞}.

One can show that this is the cone over a projective variety in Pn−1, and that
the definition is independent of the choices made. Moreover, the definition can be
extended to any M in the the derived category Db(R), of bounded complexes of
finitely generated R-modules up to quasi-isomorphism. For details, see [9].

The easiest example to compute is the support of the residue field k: since
Qa is not regular for any a, we must have pdimQa

(k) = ∞ for all a, and thus
VR(k) = I/mI. In a previous paper, [7], we showed that if J ⊇ I is a complete
intersection, meaning it is generated by a regular sequence, then the support of
Q/J is given by the minimal generators of I that are not minimal generators of J .
More precisely, the map induced by the inclusion of I into J gives

VR(Q/J) = ker (I/mI → J/mJ) .

In general, one can explicitly compute VR(M) for any finite complex of finitely
generated modules using the Macaulay2 package ThickSubcategories, written
by the author, Janina Letz, and Josh Pollitz. But for a general module M , it is
not feasible to give explicit formulas that one can compute by hand. Moreover, the
examples above are all linear, but one can construct examples where even VR(R),
is not a finite union of linear spaces.

Cohomological supports detect complete intersections (ci). Pollitz showed [9]
that R is a complete intersection if and only if VR(R) = {0}.

Cohomological support varieties can be used as auxiliary tools to prove homo-
logical results. For example, they are the key piece in the Avramov and Buchweitz’
proof [2] that for all finitely generated modules M and N over a complete inter-
section ring R,

Ext≫0
R (M,N) = 0 ⇐⇒ Ext≫0

R (N,M) = 0.

In fact, in [2] Avramov and Buchweitz apply cohomological support varieties to
study asymptotic properties of betti and bass numbers of modules over complete
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intersections; for further developments on this that also apply cohomological sup-
port varieties techniques, see the recent work of Briggs, Pollitz, and McCormick.

Support varieties also encode information about the triangulated structure of
Db(R), and how complexes can be built out of each other. One important con-
struction in Db(R) is the notion of building. We say M builds N in Db(R) if we
can construct N from M via finitely many of the following building operations:
• Shifting: if M builds X , then it builds any complex obtained by shifting the

homological grading on X .
• Direct summands: if M builds X , then it builds any direct summand of X .
• Cones: given a short exact sequence of complexes

0→ A→ B → C → 0,

if M builds two of A, B, and C, then M also builds the third.
We will write 〈M〉 to denote the collection of all the objects that M finitely

builds, which in the language of triangulated categories is the thick closure of M .
We can reinterpret the Auslandar-Buchsbaum-Serre characterization of regular

rings in this context: R is a regular ring if and only if 〈R〉 = Db(R). Here 〈R〉,
the complexes built by R, play the role of modules of finite projective dimension.
The Auslandar-Buchsbaum-Serre theorem solved the Localization Problem: if R
is a regular local ring then RP must also be regular for all primes P . The theorem
gives us a structural characterization of regularity that allows us to focus on a
property of modules that easily localizes. In contrast, the Localization Problem for
complete intersections was solved by Avramov in the 1970s, but his solution does
not provide such a characterization of the ci property. Using his characterization
of cis in terms of VR(R), Pollitz showed that R is a complete intersection if and

only if for every M ∈ Db(R) there exists P ∈ 〈M〉 ∩ 〈R〉 with the same support
(in the classical sense) as M . If M satisfies these properties, we say M is proxy
small; this is a notion that localizes well, giving a new solution to the Localization
Problem. Roughly speaking, M is proxy small if it is finitely many steps away
from having finite projective dimension.

But Pollitz’ characterization was in terms of all M ∈ Db(R); the problem of
whether this characterization can be restricted to finitely generated R-modules
remains open. In previous work [7], we solved this problem for certain classes of
rings by explicitly constructing modules that are not proxy small:

Theorem 2 (Briggs-Grifo-Pollitz, [7]). Let R be an equipresented local ring or
such that VR(R) = An. If R is not ci, there exists a finitely generated R-module
that is not proxy small. If moreover the residue field of R is infinite, there exists
a quotient R→ S to an artinian hypersurface that is not proxy small.

The key ingredient in the proof is once more cohomological support varieties; we
construct finitely generated R-modules M with VR(R) ( VR(M). This prompts
the question of when is VR(R) = An, or more generally of how small can VR(M)
be. A related question, of interest for other reasons as well, is the following:

Problem 3. Fix R. Given a conical subvariety V of An, is there M ∈ Db(R)
such that VR(M) = V ?
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When R is a complete intersection, the answer is all of them, by independent
work of Bergh [5] and Avramov and Jorgensen.

Theorem 4 (Briggs-Grifo-Pollitz, [8]). For any M ∈ Db(R),

dim(VR(M)) > n− embdim(R) + depth(R).

and the inequality is strict if R is not a complete intersection.

When R is a Cohen-Macaulay ring, the quantity on the right is µ(I)−height(I),
also known as the ci-defect of R, which measures of how far R is from being ci.

Corollary 5. If R is Cohen-Macaulay but not ci, dim(VR(M)) > µ(I)−height(I)

for allM ∈ Db(R), so not every conical subvariety of An can be realized as VR(M).

Our work in [8] also contains other bounds on dim(VR(M)); one of those bounds
recovers and strengthens a result from [3] on the Loewy length of finite free com-
plexes, while also relating the codimension of VR(M) with an invariant coming
from the homotopy Lie algebra of R. The homotopy Lie algebra π∗(R) is a graded
Lie algebra with graded Lie bracket [−,−] and such that π2(R) ∼= (I/mI)∨. An ele-
ment α in πi(R) is called central if ad(α) := [α,−] = 0, and radical if ad(α)p = 0
for some p. The radical elements in π2(R), ρ2(R), play a key role in Briggs’ recent
solution of Vasconcelos’ conjecture [6]; Avramov and Halperin showed that R is ci
if and only if ρ2(R) = π2(R). Our bounds on dim(VR(M)) recover this result.

We say R has an embedded deformation if R̂ ∼= S/(f) for some quotient S
of Q and some f regular on S. In the 1980s, Avramov showed that embedded
deformations of R give rise to central elements in π2(R), and asked if the converse
holds. Pollitz showed that embedded deformations give rise to hyperplanes con-
taining VR(R). In [8], we show that elements in ρ2(R) gives rise to a hyperplane
containing VR(R), giving a new avenue to study Avramov’s question: by studying
whether hyperplanes containing VR(R) give rise to embedded deformations of R.
The advantage is that VR(R) can often be computed explicitly.
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Analytic spread of filtrations

Parangama Sarkar

(joint work with Steven Dale Cutkosky)

Let R be a Noetherian local ring and m denote the unique maximal ideal of R. A
collection I = {In}n∈N of ideals in R is called a filtration if

I0 = R, Im ⊂ In for all m ≥ n and ImIn ⊂ Im+n for all m,n ∈ N.

A filtration I = {In}n∈N is said to be Noetherian if the graded ring R[I] =⊕
n∈N

In is a finitely generated R-algebra. Otherwise, we say I = {In}n∈N is a
non-Noetherian filtration.

For an ideal I in R, the filtration I = {In} is a Noetherian filtration. The
Krull dimension of the ring R[I]/mR[I] is called the analytic spread of I and it is
denoted by ℓ(I). Geometrically, ℓ(I) = δ+1 where δ is the dimension of the closed
fiber f−1({m}) and f : X → SpecR is the blow up of I. By upper semicontinuity
of fiber dimension, we have ℓ(IP ) ≤ ℓ(IP ′) for all P, P ′ ∈ V (I) with P ⊂ P ′. If
ℓ(I) = 0 then In = 0 for all n ≫ 0. Analytic spread of I is bounded above by
dimR and bounded below by the height of I, i.e., height(I) ≤ ℓ(I) ≤ dimR. One
interesting question is when the above-mentioned bounds are achieved.

The equality height(I) = ℓ(I) holds if and only if all fibers of

f0 : f−1(Spec(R/I))→ Spec(R/I) (restriction of f)

have the same dimension. In 1980, McAdam proved the following fundamental
theorem which gives the necessary and sufficient conditions for the equality ℓ(I) =
dimR to hold true in terms of the prime divisors of integral closures of powers of
I [5].

Theorem 1. Let R be a formally equidimensional local ring and I be an ideal in
R. Then m ∈ Ass(R/In) for some n if and only if ℓ(I) = dimR.

Using the above result and the persistence property of integral closures of powers
of ideals, one can immediately produce a result due to Burch [3] which says ℓ(I) =
dimR implies m ∈ Ass(R/In) for all n≫ 0.

In [1] Brodmann proved that ℓ(I) ≤ dimR − lim infn depthR/I
n where I =

{In}. If R has infinite residue field then Burch improved the result of Brodmann
for the filtration I = {In} and proved that ℓ(I) ≤ dimR − lim infn depthR/In

[3]. This result was generalized to the filtration I = {I(n)} if the Symbolic Rees
algebra of I is finitely generated [2].

Motivated by the above results, we define analytic spread of a filtration I =
{In}n∈N where the filtration is not necessarily Noetherian. We first show that the
Krull dimension of the ring R[I]/mR[I] is bounded above by dimR and define
ℓ(I) := dimR[I]/mR[I]. We define height I = height In for any n ≥ 0.

An easy example of a non-Noetherian filtration I = {In = m} in a Noetherian
local ring (R,m) with dimR ≥ 1 shows that ℓ(I) = 0 < heightI = dimR and
In 6= 0 for all n ≥ 0. We show some of the above mentioned classical results of
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analytic spread of an ideal extend to analytic spread of discrete valued filtrations
and also illustrate examples to show the differences.

Let R be a local domain of dimension d with quotient field K. Let ν be a
discrete valuation of K with valuation ring Oν and maximal ideal mν . Suppose
that R ⊂ Oν . For n ∈ N, consider the valuation ideals

I(ν)n = {f ∈ R | ν(f) ≥ n} = mn
ν ∩R.

A discrete valued filtration of R is a filtration I = {In} of ideals such that there
exist discrete valuations ν1, . . . , νr and a1, . . . , ar ∈ Z>0 such that for all n ∈ N,

In = I(ν1)na1
∩ · · · ∩ I(νr)nar .

A divisorial valuation of R is a valuation ν of K such that if Oν is the val-
uation ring of ν with maximal ideal mν , then R ⊂ Oν and if p = mν ∩ R then
trdegκ(p)κ(ν) = ht(p) − 1, where κ(p) is the residue field of Rp and κ(ν) is the
residue field of Oν . A divisorial valuation is a discrete valuation.

A divisorial filtration of R is a discrete valued filtration I = {In} such that
there exist divisorial valuations ν1, . . . , νr and a1, . . . , ar ∈ Z≥0 such that for all
n ∈ N,

In = I(ν1)na1
∩ · · · ∩ I(νr)nar .

If I = {In} is a discrete valued filtration then In = In for all n ≥ 1. We first prove
the following.

Theorem 2. [4] If (R,m) is a d-dimensional excellent local domain and I = {In =
I(ν1)na1

∩ · · · ∩ I(νr)nar} is a divisorial filtration of m-primary ideals on R then
ℓ(I) = d.

The main ingredient of the proof is the following. We first consider the filtration
{Jn = J(ν1)a1n∩· · ·∩J(νr)arn} in the normalization S of R where J(νi)m = {f ∈
S | νi(f) ≥ m} for all i = 1, . . . , r. Then we show that ⊕n≥0Jn is integral over
R[I] and construct a chain of distinct prime ideals C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cd in
⊕n≥0Jn with mR[I] ⊂ C0 ∩R[I]. Therefore C0 ∩R[I] ⊂ C1 ∩R[I] ⊂ C2 ∩R[I] ⊂
· · · ⊂ Cd ∩R[I] is a chain of distinct prime ideals in R[I] and hence ℓ(I) = d.

Next we deal with the “if” condition of Theorem 1 and prove the following.

Theorem 3. [4] Suppose that (R,m) is a local domain and I = {In} is a discrete
valued filtration in R. Let In = I(ν1)na1

∩· · ·∩I(νr)nar for n ≥ 1, some valuations
νi and some a1, . . . , ar ∈ Z>0. Suppose that ℓ(I) = dimR. Then for some νi, the
center mνi ∩ R = {f ∈ R | νi(f) > 0} is m. Moreover, there exists a positive
integer n0 such that m is an associated prime of In = In for all n ≥ n0.

As a consequence of the above result, we get if R is a local domain, dimR ≥ 1
and I = {In = I(ν1)na1

∩ · · · ∩ I(νr)nar} is a discrete valued filtration in R with
either m ∈ Ass(R/It) for some t ≥ 1 or dimR/mνi ∩R = 1 for all i = 1, . . . , r then
ℓ(I) ≤ dimR− lim infn depthR/In [4].

We construct examples of 3-dimensional regular local rings and height two prime
ideals p such that ℓ(I) = 0, 1, 2 can occur where I = {p(n)} and for ℓ(I) = 0, 1
cases upper semicontinuity of fiber dimension fails [4].
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Differential operators of low order for an isolated
hypersurface singularity

Claudia Miller

(joint work with Rachel Diethorn, Jack Jeffries, Nick Packauskas, Josh Pollitz,
Hamid Rahmati, and Sophia Vassiliadou)

The history of differential operators goes far back to understanding the theory
of differential equations. In the past half century, it played an important role in
algebraic geometry due to the development of the theory of D-modules. The ring
of differential operators is defined as follows.

Definition 1 (Grothendieck [3]). Let φ : k → R be a homomorphism of commu-
tative rings. The module of k-linear differential operators on R of order at most
i, denoted by Di

R|k, is defined inductively as follows:

• D0
R|k = HomR(R,R) ∼= R ;

• Di
R|k = {δ ∈ Homk(R,R) | δ ◦ µ− µ ◦ δ ∈ D

i−1
R|k for all µ ∈ D0

R|k} .

One has the following order filtration

D0
R|k ⊆ D

1
R|k ⊆ D

2
R|k ⊆ · · ·

of their union, which is defined to be the ringDR|k of k-linear differential operators
on R with product given by composition of operators. It is an R-module, but not
an R-algebra as D0

R|k = R is not in the center of DR|k.

To motivate this classic inductive definition, we see the operators of order 1 are
exactly the k-linear derivations on R. Indeed, note that a k-linear map δ : R→ R
is a derivation if it satisfies

δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ R

Rearranging this and setting µa to be multiplication by a, one gets

(δ ◦ µa − µa ◦ δ)(b) = δ(a)b

so that the commutator [δ, µa] is the same as µδ(a) ∈ D
0
R|k. In fact, one has that

D1
R|k = Derk(R)⊕R.
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Similarly, the higher order operators are those that satisfy a higher order analogue
of the product rule.

We assume that k is a field of characteristic zero for the remainder of this
report, including the historical portions.

The quintessential example of a ring of differential operators is that of the
operators for the polynomial ring R = k[x1, . . . , xn]. This is the Weyl algebra

DR|k = R〈∂1, . . . , ∂n〉 = k〈x1, . . . , xn, ∂1, . . . , ∂n〉

where ∂i is the operators given by partial differentiation with respect to xi. Here
the differential operators of order i are the R-linear combinations of partial deriva-
tives of order at most i. More generally, Grothendieck showed that DR|k is gener-
ated as an R-algebra by the derivations under composition whenever R is smooth.
In 1961, Nakai [6] conjectured that the converse should hold; this is now known
as Nakai’s Conjecture and implies the well-known Lipman-Zariski Conjecture [5].
Nakai’s conjecture is still wide open outside of a handful of cases.

We consider the non-smooth case, where the phenomena are radically different.
Nevertheless, studying DR|k when R is singular is an old and interesting prob-
lem that has seen a revival of interest lately, especially with its connections with
simplicity of D-modules.

Let k be a field of characteristic zero and R a finitely generated standard graded
k-algebra, so

R = Q/I where Q = k[x1, . . . , xn] and I homogeneous.

It is straightforward to see that the k-linear differential operators on R are the
elements of the Weyl algebra for which the ideal I is invariant, more precisely:

DR|k
∼=
{δ ∈ DQ|k | δ(I) ⊆ I}

IDQ|k
.

Now Kantor showed that, for quotient singularities R, the ring DR|k is still quite
tame, and in fact a finitely generated k-algebra. For example, this includes normal
2-dimensional rational hypersurfaces, such as k[x, y, z]/(x2 + y2 + z2). However,
beyond this situation or that for rings coming from combinatorial objects, the ring
of differential operators seems much wilder.

For isolated singularity hypersurface rings of the form R = k[x, y, z]/(f), Vigué
[7] established that DR|k is not generated by the operators of any bounded order
and has no differential operators of negative degree when R = k[x, y, z]/(f) is
an isolated singularity hypersurface with f homogeneous of degree at least 3;
this generalizes the work of Bernstein, Gel’fand, and Gel’fand on the cubic cone
k[x, y, z]/(x3 + y3 + z3) in [1]. Moreover, Vigué showed that in each order i, the
module Di

R|k has at least 3 generators that are not in the R-subalgebra of DR|k

generated by lower order operators. Existence of these operators was determined
abstractly by an analysis of sheaf cohomology.

However, when R is singular, even in specific examples, it is extremely difficult
to determine the differential operators of each order that are not compositions of
lower order operators. We develop a new homological approach for finding these
operators, by discovering that the resolutions of each Di

R|k have an unexpectedly
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beautiful structure, as described in the result below; this finding was aided in part
by the computer algebra system Macaulay2 [2]. Once we developed a coherent
surmise for the matrix factorizations of these resolutions, we were able to work
“forwards” in the resolution to find the generating operators.

Once we found the generating operators, we were also able to express them in
terms of the Euler derivation,

E = x∂x + y∂y + z∂z,

and the Hamiltonian derivations,

Hyz = fz∂y − fy∂z, Hzx = fx∂z − fz∂x, and Hxy = fy∂x − fx∂y.

These four operators form a minimal generating set for the module of derivations,
whose minimal resolution was found by Herzog and Martsinkovsky [4].

Our main results give the generators and minimal R-free resolutions of Di
R|k

for i = 2, 3. We present the i = 2 case here as the other case is similar but more
complex to describe.

Theorem 2. Assume R = k[x, y, z]/(f) is an isolated hypersurface singularity
where f is homogeneous of degree d > 3 and k is a field of characteristic zero.

1. A minimal set of generators for D2
R|k is given by

{1, E,Hyz, Hzx, Hxy, E
2, EHyz, EHzx, EHxy, Ax, Ay, Az},

with
Ax =

1

x

[
H2

yz +
1

(d− 1)2
∆xxE

2 +
d− 2

(d− 1)2
∆xxE

]

where ∆xx is the 2×2-minor obtained by deleting the 1st row and 1st col-
umn of the Hessian matrix of f , and similar formulas hold for Ay, Az.

2. The minimal free resolution is 2-periodic supported on the matrix factor-
ization obtained from the free complex over Q that is the mapping cone of
a chain map from the Koszul complex Kos(x, y, z) into the totalization of
the following diagram

Kos(fx, fy, fz)

∧

Hessian(f)

��

Q
D3 //

α3

��

Q3 D2 //

α2

��

Q3 D1 //

α1

��

Q

α0

Kos(x, y, z) Q
∂3 // Q3 ∂2 // Q3 ∂1 // Q

where the rows are the dg algebras give by Koszul complexes and the chain
map between the rows is induced by the map induced by the map on gener-
ators of these algebras by the Hessian matrix of second partial derivatives.
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Syzygies of the Cotangent Complex

Benjamin Briggs

(joint work with Srikanth J. Iyengar)

Jacobian criteria for classical invariants. We shall assume throughout that
ϕ : R → S is a homomorphism of commutative noetherian rings, essentially of
finite type, so that

S = U−1R[x1, . . . , xm]/(f1, . . . , fn).

The module of differentials. The module of differentials can be presented as
the cokernel of the Jacobian matrix

Ω1
S/R = coker

(∂fj
∂xi

)
.

In the case that R = k is a field, the classical Jacobian criterion asserts that S is
a smooth k algebra exactly when Ω1

S/k is a projective S-module and rankSp
Ω1

S/k =

dimSp for all primes p ⊆ S.
It is natural to ask how weaker homological conditions on Ω1

S/k, or on related

modules, correspond to weaker constraints on the singularities of S. It is the
philosophy of Avramov and Herzog that results of this form can be thought of as
higher Jacobian criteria [2]. The first such example we state is independently due
to Ferrand [6] and Vasconcelos [10]: Assuming that k has characteristic zero, S is
a reduced complete intersection ring if and only if Ω1

S/k has projective dimension

no more than 1 over S.
Vasconcelos made the stronger conjecture that, when k has characteristic zero,

if projdimS Ω1
S/k is finite then S is a reduced complete intersection. Various cases

of this conjecture have been established, notably the graded case by Avramov and
Herzog [2]. We show in [4] that Vasconcelos’ conjecture holds contingent on the
Eisenbud-Mazur conjecture (which was known to hold more generally).

An interesting example is the coinvariant algebra for the symmetric group Sn

acting by permuting the coordinates of kn, having a presentation

S = k[x1, . . . , xn]/(x1 + · · ·+ xn, . . . , x
n
1 + · · ·+ xnn),
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with k a field of characteristic zero. Up to rescaling, the Jacobian matrix is the
VanderMonde matrix, and this explains the right-hand part of the sequence below:

· · · −→ Sn











xn
1 ··· xn

n

...
...

x1 ··· xn











−−−−−−−−−−−→ Sn











1 x1 ··· xn−1
1

...
...

1 xn ··· xn−1
n











−−−−−−−−−−−−−−−→ Sn −→ Ω1
S/k −→ 0.

The ring S is complete intersection, but it is not reduced, and it follows that
projdimS(Ω

1
S/k) > 1. However, the Jacobian presentation of Ω1

S/k can be contin-

ued as shown into a 2-periodic resolution. This resolution comes from a matrix
factorisation of the symmetric polynomial xn1 + · · ·+xnn; see [3] for an explanation
and generalisation to other reflection groups. This example raises the question
of the meaning of the (necessarily polynomial) rate of growth of the resolution of
Ω1

S/k, for non-reduced complete intersection rings.

The conormal module. Assume that the homomorphism ϕ : R→ S is surjective
with kernel I = (f1, . . . , fn). The S-module

I/I2

is called the conormal module of ϕ. It controls the deformation theory of Spec(S)
inside Spec(R). Ferrand [6] and Vasconcelos [11] independently established the
following Jacobian criterion for I/I2: Assuming that projdimR S is finite (for
example, if S is regular), the map ϕ is locally complete intersection if and only if
I/I2 is a projective S-module.

Vasconcelos later conjectured that one can weaken the condition on I/I2 to
having finite projective dimension over S [12]. This is a rigidity statement: it
means that projdimS I/I

2 can only be 0 or∞. A number of authors made progress
on this and related problems (cf. [2]), and we establish the conjecture in [4]:

Theorem 1. Assume that projdimR S is finite. Then ϕ is locally complete inter-
section if and only if I/I2 has finite projective dimension over S.

The first Koszul homology module. Assuming still that ϕ : R→ S is surjec-
tive, we consider the degree one homology of the associated Koszul complex:

H1(I;R) = H1[KosR(f1, . . . , fn)].

After Buchsbaum’s classical characterisation of regular sequences in terms of the
vanishing of Koszul homology, it was Gulliksen [7] who established the first higher
analogue of the Jacobian criterion for Koszul homology: Assuming that I ⊆ R
has finite projective dimension, I is locally generated by a regular sequence if and
only if H1(I;R) is a projective module over S = R/I. Vasconcelos and others
considered the weaker condition that projdimR H1(I;R) is finite [12, 2]. We prove
the corresponding rigidity statement in [4]:

Theorem 2. Assume that I ⊆ R has finite projective dimension. Then I is locally
generated by a regular sequence if and only if projdimS H1(I;R) <∞.
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The cotangent complex. The cotangent complex is a complex of projective
S-modules

LS/R = L0 ← L1 ← L2 ← · · ·

defined by Quillen to be the total left derived functor of the module of differentials
Ω1

−/R, applied to S; see [9] for more information on how to compute this object.

Let us say that projdim(LS/R) = n if n is the smallest integer such that LS/R

is quasi-isomorphic to a complex of projective S modules concentrated in degrees
n and below. With this the cotangent complex detects geometric conditions: ϕ is
étale exactly when LS/R ≃ 0; ϕ is smooth exactly when projdim(LS/R) ≤ 0; and
ϕ is locally complete intersection exactly when projdim(LS/R) ≤ 1; see [9].

Quillen conjectured, when projdimR S <∞, that if projdim(LS/R) is finite then
ϕ is locally complete intersection. This was proven by Avramov [1]. At the same
time, Quillen also conjectured that for any homomorphism ϕ, if projdim(LS/R) is
finite then projdim(LS/R) ≤ 2. This second conjecture remains largely open.

The higher cotangent modules. In [2, 5] the ith cotangent module of ϕ is
defined as a syzygy of the cotangent complex:

Ci(S/R) = coker(Li+1
∂
−→ Li).

The first few cotangent modules are familiar: C0(S/R) = Ω1
S/R is the mod-

ule of differentials; C1(S/R) = I/I2 is the conormal module of the surjection
U−1R[x1, . . . , xm] → S; and C2(S/R) = H1(I;U−1R[x1, . . . , xm]) is the Koszul
homology. In [5] we generalise Theorems 1 and 2 to all of the higher Ci(S/R).

Theorem 3. Assume that projdimR S is finite. If there exists i ≥ 1 such that
projdimS Ci(S/R) < ∞, then ϕ is locally complete intersection (and then all
Ci(S/R) are projective).

If projdim(LS/R) ≤ n then Ci(S/R) = 0 for all i > n, and Theorem 3 im-
plies that ϕ is locally complete intersection. Therefore, we obtain a new proof of
Quillen’s first conjecture on the cotangent complex. In fact we obtain the stronger
statement that the cotangent complex cannot be zero in any positive degree, anal-
ogous the Halperin’s Theorem on the nonvanishing of deviations [8].
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