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Abstract. Optimization problems constrained by time-dependent Partial
Differential Equations (PDEs) are challenging from a computational point of
view: even in the simplest case, one needs to solve a system of PDEs coupled
globally in time and space for the unknown solutions (the state, the costate

and the control of the system). Typical and practically relevant examples
are the control of nonlinear heat equations as they appear in laser hardening
or the thermic control of flow problems (Boussinesq equations). Specifically

for PDEs with a long time horizon, conventional time-stepping methods re-
quire an enormous amount of computer memory allocations for the respective
other variables. In contrast, adaptive-in-time-and-space methods aim at dis-
tributing the available degrees of freedom in an a-posteriori fashion to capture

singularities and are, therefore, most promising. Recently, well-posed weak
variational formulations have been introduced for time-dependent PDEs such
as the heat equation, linear transport and the wave equation. Those formu-
lations also allow for a sharp relation between the approximation error and

the residual, which is particularly relevant for model reduction. Moreover, for
those tensor-basis formulations, advanced algebraic solvers designed to take
into account these multiarray (tensorial) formulations appear to be particu-

larly competitive with respect to time-marching schemes, especially in higher
dimensions. We plan to discuss whether these techniques can be extended to
nonlinear PDEs like Hamilton–Jacobi–Bellman equations, or stochastic PDEs
and variational inequalities. Another topic will be adaptive schemes which,

when properly designed, inherit the stability of the continuous formulation.
The central goals of the workshop are the analysis, fast solvers and model

reduction for PDE-constrained control and optimization problems based on
weak formulations of the underlying PDE(s).
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Introduction by the Organizers

The workshop Optimization Problems for PDEs in Weak Space-Time Form, or-
ganised by Helmut Harbrecht (Basel), Angela Kunoth (Köln), Valeria Simoncini
(Bologna) and Karsten Urban (Ulm) was well attended with over 25 participants
with broad geographic representation and a nice blend of researchers with various
backgrounds.

The workshop was directed at control and optimization problems constrained
by evolutive PDEs. Our main goal was to design most efficient guaranteed numer-
ical solvers, building upon variational formulations of the underlying PDE(s). The
idea was to encourage interaction between scientists from different areas (numer-
ical analysis, optimization and optimal control, numerical linear algebra, model
reduction) and thereby result in more rapid advances of new methodologies in
these various domains. It was, therefore, also a bridge from theoretical founda-
tions to applications, such as mechanical engineering, quantum chemistry, signal
and image processing, complex fluid flows, or finance.

Topics that were addressed in our workshop were:
• Weak and very weak variational formulations of PDEs and inequalities;
weak discontinuous Petrov-Galerkin methods, and corresponding stable
discretizations; optimization and control problems constrained by these
formulations

• Robust numerical linear algebra techniques for tensor linear and nonlinear
equations, for reduction-based approximations and low rank problems, for
structure-aware representations, and for adaptive-in-time discretizations;
their discretization-dependent convergence properties

• Shape calculus and numerical solution of shape optimization problems
with time-dependent PDE, especially in case of time-dependent domains

• Error estimation, convergence and complexity estimates on different grids
for the different variables state, costate and control; exchange of informa-
tion from different grids while maintaining accuracy

• Optimal control of parametric/random PDEs and sparse discretization
thereof

• Open and closed loop control problems
• Linear and nonlinear reduced modeling for forward and inverse problems
• Optimal actor and sensor placement in control for inverse problems and
their efficient solution

The different concepts and expertises are in our opinion relevant for further de-
velopment of efficient solution methods for optimization problems constrained by
time-dependent PDEs. Indeed, the participants of the workshop discussed syner-
gies and possible cross-fertilization.
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Arnd Rösch (joint with Eduardo Casas, Mariano Mateos)
Chances and Challenges in PDE Constrained Optimization . . . . . . . . . . . 688

Olaf Steinbach (joint with U. Langer, R. Löscher, F. Tröltzsch, H. Yang,
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Abstracts

Introduction to Optimization Problems for PDEs in Weak
Space-Time Form

Angela Kunoth

(joint work with Sarah Knoll (last part))

Optimization problems constrained by PDEs (partial differential equations) are
challenging from a computational point of view: one needs to solve a system of

PDEs coupled globally in space, and, in addition, globally in time if the underlying
PDE is time-dependent. This global coupling is an unavoidable feature of such
control problems; typically an adjoint PDE problem comes into place as specified
next.

PDE-constrained control problems. We recall some general statements about
constrained optimization problems. Let Y, U be Hilbert spaces over R which shall
host the state y of a system and a control u by which the state can be influenced.
Let J : Y × U → R be a functional which is twice differentiable with respect to y
and u, and K : Y × U → Y ′ be a (in y, u Fréchet-) differentiable function where
Y ′ denotes the topological dual of Y . We shall be concerned with the constrained
minimization problem

(1) inf
(y,u)∈Y×U

J(y, u) subject to K(y, u) = 0.

For the constraints K(y, u) = 0 (which will play the role of the PDE later), we
assume that there exists a unique solution y ∈ Y for the case that u ∈ U is
given. A typical way to solve (1) is to compute the zeroes of the first order
Fréchet derivatives of the corresponding Lagrangian functional. These are built
by introducing a new variable p, the costate or adjoint state in terms of which the
constraints are appended to the functional, i.e.,

(2) L(y, u, p) := J(y, u) + 〈K(y, u), p〉Y ′×Y

with L : Y ×U×Y → R. Denoting by Lz(y, u, p) :=
∂
∂zL(y, u, p) and Lzz(y, u, p) :=

∂2

∂z2L(y, u, p) the first and second variation, respectively, of L with respect to z =
y, u, p, the necessary conditions for optimality read

(3) δL(y, u, p) :=



Ly(y, u, p)
Lu(y, u, p)
Lp(y, u, p)


 =



Jy(y, u) + 〈Ky(y, u), p〉Y ′×Y

Ju(y, u) + 〈Ku(y, u), p〉Y ′×Y

K(y, u)


 = 0.

If J is now quadratic in both y, u, and K linear in y, u, system (3) can be specified
to the linear system of equations

(4)



Lyy Lyu K∗

y

Luy Luu K∗
u

Ky Ku 0






y
u
p


 = g ⇐⇒:

(
A B∗

B 0

)(
(y, u)⊤

p

)
= g ⇐⇒: Gq = g
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with some right hand side g and C∗ denoting the dual of C. The Hessian of L
or the Karush-Kuhn-Tucker (KKT) operator G has for such linear-quadratic prob-

lems constant entries. For linear-quadratic optimization problems, the necessary
conditions are also sufficient for the infimum. Moreover, if J or K do not contain
products yu, one has Lyu = Luy = 0 so that A is a block diagonal operator. Typ-
ically, the quadratic functional (1) contains inner products so that the resulting
Riesz operators Lyy, Luu are symmetric which implies that A and, thus, G is sym-

metric. Moreover, in all the cases we consider, A : V → V ,B : V → Q′ for some
Hilbert spaces V , Q are continuous, ImB = Q′ and A is invertible on KerB so
that the saddle point problem (4) has for g ∈ V ′ ×Q′ a unique solution q ∈ V ×Q
by the Brezzi-Fortin theory. Thus, we can consider constrained linear-quadratic
minimization problems as symmetric saddle point problems (4) with a boundedly
invertible linear mapping G : V ×Q → V ×Q′ where V := Y × U and V := Q.

The most prominent example of a control problem constrained by a linear par-
abolic PDE in weak space-time form to which this scenario applies is the following
[5].

Parabolic PDE with distributed control. We consider a linear parabolic
evolution PDE in full space-time weak formulation from [7] as constraintK(y, u) =
0 in (1). The parabolic operator equation is formulated such that the resulting
operator B = ∂t+A is boundedly invertible from X := (L2(I)⊗V )∩ (H1

T (I)⊗V
′)

to Y := (L2(I) ⊗ V ) × L2(Ω) where H1
T (I) is the closure of the functions in

H1(I) which vanish at end time T and I := (0, T ) denotes the time interval. Here
A : V → V ′ is the operator expressing the weak form of the elliptic PDE.

With a corresponding objective functional, we arrive at a system of the form (4)
with symmetric A where the corresponding operator G is a boundedly invertible
mapping.

Computational challenges. For control problems subject to a linear parabolic
evolution PDE, conventional time-stepping methods require an enormous storage.
In contrast, adaptive methods in both space and time based on the formulation in
[7] which aim at distributing the available degrees of freedom in an a-posteriori-
fashion to capture singularities are most promising. Employing wavelet schemes for
full weak space-time formulations of the parabolic PDEs, we can prove convergence
and optimal complexity for control problems constrained by a linear parabolic PDE
[3].

Yet another level of challenge are control problems constrained by evolution
PDEs involving stochastic or countably many infinite parametric coefficients: for
each instance of the parameters, this requires the solution of the complete con-
trol problem. Our method of attack is based on the following new theoretical
paradigm. It is first shown for control problems constrained by evolution PDEs,
formulated in full weak space-time form as in [7], that state, costate and control
are analytic as functions depending on these parameters. We establish that these
functions allow expansions in terms of sparse tensorized generalized polynomial
chaos (gpc) bases. Their sparsity is quantified in terms of p-summability of the
coefficient sequences for some 0 < p ≤ 1. Resulting a-priori estimates establish
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the existence of an index set for concurrent approximations of state, co-state and
control for which the gpc approximations attain rates of best N-term approxi-
mation. This entails corresponding sparse realizations in terms of deterministic
adaptive Galerkin approximations of state, co-state and control on the entire, pos-
sibly infinite-dimensional parameter space, see [5]. We specify in [6] how to realize
these Galerkin approximations.

Optimal preconditioners for elliptic PDEs. For the control problems dis-
cussed here, the fast numerical solution of the underlying parabolic PDE in weak
space-time form is of central importance. A BPX-type preconditioner based on
higher order B-splines as proposed in [1] for a linear elliptic PDE is investigated
in the present setting in [4].

Pricing American Put Options using Black-Scholes leads to a parabolic varia-
tional inequality including a non-symmetric, non-coercive bilinear form

(5) aB(u, v) =

∫

I

σ2

2
S2 ∂u

∂S

∂v

∂S
+ ruv + (σ2 +D0 − r)

∂u

∂S
v dS

where σ, r,D0 are constants and u, v ∈ V := {u ∈ L2(I) : S ∂u∂S ∈ L2(I)}. As
shown in [2], (5) satisfies a Garding inequality

(6) aB(u, u) ≥ α‖u‖2V − β‖u‖2L2(I)
with α ≥ 0 and β := |σ2+D0−r|

2 .

Discretization of (5) using higher order B-splines and coinciding knots at the
strike price as developed in [2] results in a (slightly) non-symmetric matrix A,

whose spectral condition number is approximated by κ2(A) ≈
√
κ2(ATA). Shifting

the matrix A by the constant β in (6), we were able to apply the BPX-type
preconditioner with an SSOR-decomposition as in [1] resulting in the following
spectral condition numbers on discretization level J for B-splines of order k = 4.

J without preconditioner with BPX-type preconditioner
4 3652 3.21
5 18966 3.50
6 100662 3.75
7 540558 4.11
8 2.92e6 4.86
9 1.58e7 5.96
10 8.66e7 7.35
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Introduction to the Workshop from my Perspective

Karsten Urban

My point of departure is Model Order Reduction using the Reduced Basis Method
(RBM) for Parametrized Partial Differential Equations (PDEs). Originally, RBMs
have been constructed, analysed and realized for coercive (stationary) problems
and it was partly thought that an extension to evolutionary problems would be
out of reach due to the exponential behaviour over time. However, variational
space-time methods combined with uniformly stable discretizations and efficient
tensorproduct solvers offered the path towards efficient RBM for parabolic prob-
lems. In turn, optimization and optimal control problems using model reduction
was then possible.

These advances make it now possible to consider many other interesting ques-
tion concerning weak variational formulations of PDE-constrained optimization
problems such as transport, wave-type, Schrödinger equations, problems beyond
optimal-Kolmogorov reduction, fast solvers, inclusion of data and nonlinear tech-
niques including ML and AI. The workshop is designed to collect recent advances
in these fields.

Chances and Challenges in PDE Constrained Optimization

Arnd Rösch

(joint work with Eduardo Casas, Mariano Mateos)

In this talk we discuss non-standard formulations of optimization problems. There
are at least five reasons for designing a different optimization problem:

(1) desired properties of the control (or state): sparsity, smoothness, ...
(2) the PDE does not have the desired properties (existence and uniqueness

of solutions, differentiability,...)
(3) the optimal control problem does not have the desired properties (for in-

stance the existence of an optimal control cannot be guaranteed)
(4) the properties of the optimality system differ significantly from that one

of the state equation.
(5) the PDE has not the properties expected from the physics (artificial vis-

cosity was introduced to obtain a well-posed PDE)
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We start with an example from a paper of Casas and Chrysafinos [1]. We aim
to minimize

J(y, u) =
1

8

∫ T

0

‖y − yd‖
8
L4(Ω) dx+

γ

2
‖y(T )− yΩ‖

2
L2(Ω) +

λ

2
‖u‖2L2(Q)

subject to the instationary Navier-Stokes equations

yt − ν∆y + (y · ∇)y +∇p = f + u in Q

div y = 0 in Q

y(0) = y0 in Ω

y = 0 on Σ

and additional box constraints for the control.
The used norms overcomes a fundamental problem of the Navier-Stokes equa-

tions. We have the existence of a weak solution. Due to the objective, the solution
belongs to the space L8(0, T ;L4(Ω)3). Each weak solution belonging to the space
L8(0, T ;L4(Ω)3) is a strong solution. Strong solutions are unique.

In the main part of the talk, we discuss a parabolic problem with a functional
promoting directional sparsity, see [2, 3]. We want to minimize the functional

min
u∈L∞(Q)

J(u),

where J(u) = F (u) + µj(u) with µ > 0,

F (u) =
1

2

∫

Q

(yu − yd)
2 dx dt+

ν

2

∫

Q

u2 dx dt, (ν > 0)

and

j(u) = ‖u‖L1(Ω;L2(0,T )) =

∫

Ω

‖u(x)‖L2(0,T ) dx =

∫

Ω

(∫ T

0

u2(x, t) dt
)1/2

dx

subject to the semilinear parabolic equation




∂ty +Ay + a(x, t, y) = u in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

As a first result we establish the first-order necessary optimality condition. If ū is
a local solution, then there exist ȳ, ϕ̄ ∈ Y , λ̄ ∈ ∂j(ū) such that

ϕ̄+ νū + µλ̄ = 0.

Moreover, ū ∈ C(Q̄) ∩H1(Q) and the following relations hold

‖ū(x)‖L2(0,T ) = 0 ⇔ ‖ϕ̄(x)‖L2(0,T ) ≤ µ (directional sparsity)

λ̄(x, t) =





−
1

µ
ϕ̄(x, t) if x ∈ Ω0

ū,

ū(x, t)

‖ū(x)‖L2(0,T )
if x ∈ Ωū.

Furthermore, λ̄ is unique.
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For the discretization we use a Discontionuous Galerkin method in time.

Yh = {zh ∈ C0(Ω̄) : zh|K ∈ P1(K) ∀K ∈ Kh},

Yσ = {yσ ∈ L2(0, T ;Yh) : yσ|Ik ∈ Yh ∀k = 1, . . . , Nτ}.

We use the same space for the controls, i.e.,

Uσ = Yσ.

To get sparse controls for the discretized problem, we study the minimization
problem

Jσ(uσ) =
1

2

∫

Q

|yσ(uσ)− yd|
2 dx dt+

ν

2
‖u− σ‖2σ + µ|uσ|σ,

where

‖uσ‖
2
σ =

Nh∑

j=1

Nτ∑

k=1

u2jkτk

∫

Ω

ej dx.

and

|uσ|σ =

Nh∑

j=1

∫

Ω

ej dx
[ Nτ∑

k=1

τku
2
jk

]1/2
.

The discrete problem is defined by

min
uσ∈Uσ

Jσ(uσ).

The sparsity of the discrete controls follows again from the optimality condition.
Let ūσ be a local minimum of modified discrete problem, then j ∈ I0σ if and only
if

(∫ T

0

[ 1∫
Ω ej dx

∫

Ω

ϕ̄σej dx
]2
dt
)1/2

≤ µ.

Moreover, we derive a priori error estimates of the form

δ

2
‖ūσ − ū‖2L2(Q) ≤ c(τ + h2).

References
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Space-Time Finite Element Methods for Optimal Control Problems

Olaf Steinbach

(joint work with U. Langer, R. Löscher, F. Tröltzsch, H. Yang, M. Zank)

We consider the minimization of tracking type functionals

J (u̺, z̺) =
1

2
‖u̺ − u‖2L2(D) +

1

2
̺ ‖z̺‖

2
Y ∗

subject to an abstract operator equation Bu̺ = z̺. We assume that X and Y are
Hilbert spaces satisfying X ⊂ L2(D) ⊂ X∗ and Y ⊂ L2(D) ⊂ Y ∗, respectively,
where D = Ω ⊂ Rn, or D = Q = Ω× (0, T ) ⊂ Rn+1. We assume that the linear
operator B : X → Y ∗ is an isomorphism, satisfying

‖Bv‖Y ∗ ≤ cB2 ‖v‖X , cB1 ‖v‖X ≤ sup
06=q∈Y

〈Bv, q〉D
‖q‖Y

for all v ∈ X.

In addition, let A : Y → Y ∗ be linear, bounded, self-adjoint, and elliptic, such
that ‖ ·‖A−1 defines an equivalent norm in Y ∗. Hence we can consider the reduced
minimization problem

J̃(u̺) =
1

2
‖u̺ − u‖2L2(D) +

1

2
̺ ‖Bu̺‖

2
A−1 → min

u̺∈X
.

In the case of neither state nor control constraints the minimizer of the reduced
cost functional is given as the unique solution of the gradient equation

u̺ + ̺ Su̺ = u in X∗,

where S := B∗A−1B : X → X∗ is self-adjoint and elliptic. Depending on the
regularity of the target u we have the following estimates for the regularization
error

‖u̺ − u‖L2(D) ≤ ‖u‖L2(D), ‖u̺ − u‖L2(D) ≤ ̺ ‖Su‖L2(D).

When introducing a conforming finite-dimensional ansatz space Xh ⊂ X we can
compute a (space-time) finite element approximation u̺h ∈ Xh satisfying

〈u̺h, vh〉L2(D) + ̺ 〈Su̺h, vh〉L2(D) = 〈u, vh〉L2(D) for all vh ∈ Xh.

Since the operator S = B∗A−1B does not allow a direct evaluation in general, we
introduce a second finite element space Yh ⊂ Y for its discretization. It is worth
mentioning that the finite element spaces Xh and Yh can be chosen independently
of each other, we only assume some approximation properties of Xh ⊂ X , and
Yh ⊂ Y , respectively. Unique solvability and related error estimates follow due
to the regularization term involved. When relating the error ‖u̺ − u̺h‖L2(D) of
the finite element discretization with the regularization error ‖u̺ − u‖L2(D), we

conclude an optimal choice for ̺ = h2 independently of the regularity of u.
As a first model problem we consider a distributed control problem subject to

the Dirichlet problem for the Poisson equation in a bounded Lipschitz domain
D = Ω ⊂ Rn, where we have X = Y = H1

0 (Ω), A = B = −∆ : H1
0 (Ω) → H−1(Ω).

In this case, the regularization error estimates as obtained in [10] were combined
with finite element error estimates in [6]. Instead of a constant regularization
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parameter ̺ = h2 we may also use a mesh dependent function ̺(x) = h2ℓ of local
finite element mesh widths hℓ, see [2]. For a comparison with the more common
approach of a control z̺ ∈ L2(Ω), see [3]. However, for Y = L2(Ω) the Laplace
operator B = −∆ being an isomorphism implies X = {u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)}.
Based on the space-time finite element method as analyzed in [11] we have

considered the numerical solution of distributed optimal control problems subject
to the heat equation with homogeneous Dirichlet and initial conditions in the
space-time domain D = Q = Ω × (0, T ), see [4] for the control in L2(Q), and [5]
for the energy regularization. Within the general setting we have the function
spaces Y = L2(0, T ;H1

0 (Ω)), X = {u ∈ Y : ∂tu ∈ Y ∗, u(x, 0) = 0, x ∈ Ω}, and
B = ∂t −∆x : X → Y ∗, A = −∆x : Y → Y ∗, see [7]. As an alternative, we can
also consider a variational formulation of the heat equation in anisotropic Sobolev

spaces [12], i.e., find u̺ ∈ H
1,1/2
0;0, (Q) such that

〈∂tu̺, v〉Q + 〈∇xu̺,∇xv〉L2(Ω) = 〈z̺, v〉Q for all v ∈ H
1,1/2
0;,0 (Q).

While the test and ansatz spaces differ in the zero initial and terminal conditions at
t = 0 and t = T , respectively, we can introduce a modified Hilbert transformation

HT : H
1,1/2
0;0, (Q) → H

1,1/2
0;,0 (Q) to overcome this, see [12], i.e., X = Y = H

1,1/2
0;0, (Q).

Note that the space-time finite element discretization of such an approach results
in a symmetric and positive definite stiffness matrix approximating the first-order
time derivative, and a non-symmetric but positive definite approximation of the
spatial Laplacian. Hence we conclude unique solvability for any conforming choice
of the finite element space Xh ⊂ X .

As a last example we consider a distributed optimal control problem subject to
the wave equation with homogeneous Dirichlet and initial conditions. The space-
time variational formulation of the primal problem reads to find u̺ ∈ H1,1

0;0,(Q)
such that

−〈∂tu̺, ∂tv〉L2(Ω) + 〈∇xu̺,∇xv〉L2(Q) = 〈z̺, v〉L2(Q) for all v ∈ H1,1
0;,0(Q).

Although unique solvability follows for z̺ ∈ L2(Q) this setting does not define an

isomorphism onto H1,1
0;0,(Q). Moreover, a space-time finite element discretization

using tensor-product ansatz spaces requires a CFL condition for the spatial and
temporal mesh sizes to be satisfied, see [12]. However, when using the modified

Hilbert transformation HT : H1,1
0;0,(Q) → H1,1

0;,0(Q) we end up with a variational
formulation which is unconditionally stable for any choice of the space-time finite
space Xh ⊂ X , see [9].

When considering the wave operator � := ∂tt−∆x with homogeneous Dirichlet
and initial conditions and setting Y = H1,1

0;,0(Q) we need to define X appropriately

such that B : X → Y ∗ is an isomorphism. Following [13], we define the enlarged
space-time domain Q− := Ω× (−T, T ) as well as

H(Q) :=
{
u = ũ|Q : ũ ∈ L2(Q−), ũ|Ω×(−T,0) = 0, �ũ ∈ [H1

0 (Q−)]
∗
}
,
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with the graph norm ‖u‖H(Q) :=
√
‖u‖2L2(Q) + ‖�ũ‖2

[H1
0(Q−)]∗

. Then we define

X = H0;0,(Q) := H1,1
0;0,(Q)

‖·‖H(Q)

, ‖u‖H0;0,(Q) = ‖�ũ‖[H1
0(Q−)]∗ ,

for which we can apply the general framework, see [8] for a detailed discussion.
Finally, we can also include state and control constraints, see [1] in the case of a

distributed control problem for the Poisson equation with homogeneous Dirichlet
conditions. This general setting also applies to boundary control problems as well
as to problems with partial observation and partial control. Of interest is also the
formulation and analysis of preconditioned iterative solution strategies which are
robust with respect to adaptive mesh refinement, and an adaptive choice of the
regularization parameter.
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Low-Rank Solution of Optimal Control Problems in Fluid Dynamics

Sergey Dolgov

(joint work with Peter Benner, Martin Stoll, Akwum Onwunta)

Low-rank tensor decompositions have become a valuable tool for compressed ap-
proximation and fast computation of high-dimensional tensors, including expan-
sion coefficients of multivariate functions. The efficiency of tensor approximations
hinges on the rate of convergence of an approximation with tensor ranks (which
for hierarchical tensor decompositions are ranks of certain matrix reshapes of the
tensor). It is now known that highly smooth or weakly correlated functions exhibit
rapidly converging hierarchical tensor approximations. However, it used to be un-
clear whether this applies to functions arising in fluid dynamics (such as solutions
to the Navier-Stokes equations), since in the most interesting regimes of turbu-
lence, the solutions seem neither smooth nor locally correlated. We demonstrate
that certain optimal control problems constrained by the Navier-Stokes equations
do lend themselves to efficient tensor approximations, even at high Reynolds num-
bers. The key difference compared to the uncontrolled problem is that it is natural
to optimize the flow such that the desired solution exhibits some regularity, for ex-
ample, minimal vorticity. However, resolution of the optimality conditions requires
the solution of a saddle-point coupled space-time problem, which is not amenable
to standard tensor approximation algorithms such as Alternating Least Squares.
We show a block version of this algorithm which preserves the well-posedness of
the optimality conditions, and can solve a stochastic time-dependent problem with
the asymptotic complexity of the deterministic problem, or a deterministic time-
dependent problem with the asymptotic complexity of the stationary problem.

References

[1] P. Benner, S. Dolgov, A. Onwunta, M. Stoll, Low-rank solution of an optimal control problem
constrained by random Navier-Stokes equations, Int J Numer Meth Fluids 92 (2020), 1653–
1678.

[2] S. Dolgov, M. Stoll, Low-Rank Solution to an Optimization Problem Constrained by the
Navier-Stokes Equations, SIAM Journal on Scientific Computing 39 (2017), A255–A280.

[3] P. Benner, S. Dolgov, A. Onwunta, M. Stoll, Low-rank solvers for unsteady Stokes-Brinkman
optimal control problem with random data, Computer Methods in Applied Mechanics and
Engineering 304 (2016), 26–54.



Optimization Problems for PDEs in Weak Space-Time Form 695

Solution Concepts for Optimal Feedback Control of Nonlinear
Differential Equations

Karl Kunisch

(joint work with Behzad Azmi, Dante Kalise, Donato Vasquez,
and Daniel Walter)

Consider the optimal control problem:

(OC)





min
u(·)∈Uad

J(y, u) =
∞∫
0

ℓ(y(t)) + γ
2 |u(t)|

2 dt

subject to ẏ(t) = f(y(t)) +Bu(t) , y(0) = x

with f(0) = ℓ(0) = 0, so that (OC) becomes an optimal stabilisation problem.
The associated optimal value function is given by

V (x) := min
u(·)∈Uad

J(u(·), x).

If V is a C1 function, then it satisfies the Hamilton-Jacobi-Bellman (HJB) equation

min
u∈Uad

{∇V (x)⊤(f(x) +Bu) + ℓ(x) +
γ

2
|u|2} = 0 , V (0) = 0,∇V (0) = 0.(1)

If moreover Uad is unconstrained then the optimal control in feedback form is given
by

(2) u∗(x) = −
1

γ
B⊤∇V (x) ,

and the HJB eqation is of the form

∇V (x)⊤f(x)−
1

2γ
∇V (x)⊤BB⊤∇V (x) + ℓ(x) = 0 .

The resulting closed loop equation is given by:

ẏ(t) = Ay(t)−
1

γ
BB⊤∇V (y(t)) , y(0) = x.

We observe that (1) is a first order hyperbolic in a dimension which is deter-
mined by the state-space dimension of the dynamical system appearing in (OC).
In particular if the dynamical system arises from a grid-based discretisation of a
partial differential equation, resulting in an ordinary differential equation of di-
mension d and (OC) is discretized over a grid of N nodes in each dimension, we
arrive at a nonlinear system of order Nd unknowns, a severe case of a curse of di-
mensionality. Consequently, the development of techniques which allow to obtain
approximations to the solution of the HJB equation is of fundamental importance.
We subsequently address two such techniques.

Data driven approach

We assume the availability of a gradient enriched data set: {xj, V (xj),∇V (xj)}
ND

j=1,

where {xj}
ND

i=1 denotes a sampled data set of initial conditions in state space. The

values of V (xj),∇V (xj)}
ND

j=1 are obtained in the course of open loop solves of the
optimal control problem. It is of importance to recall that in the process of each
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open loop solve for the generation of V (xj), the gradient ∇V (xj) is computed as
a by-product via the adjoint state. Next we choose a polynomial model for the
value function

Vθ(x) =

q∑

i=1

θiΦi(x),

where Φi(x) are ansatz-functions, for example chosen in separable form with

Φi(x) := Πdj=1φij (xj) with φij (·) monomials. Denoting the data by V = (Vj)
ND

i=1,

and setting Vj = V (xj), and abbreviating Φj,i = Φi(xj) we consider the LASSO
regression problem for the unknown coefficients θi, given by

min
θ∈Rq

‖(Φ,∇Φ)⊤ θ − (V (x•),∇V (x•))
⊤‖22 + λ‖θ‖1.(3)

The ‖θ‖1− penalty term is introduced to enhance sparsity of the coefficients and
to speed up interpolation procedures. Once (3) is solved the optimal feedback
control can be determined through:

u∗(x) = argmin
u

{〈f(x) +B(u),∇Vθ(x)〉 + ℓ(x) +
1

2
|u|2 .

In numerical practice for the approximation of the value function and its gradient,
and ultimately for the optimal control in feedback form, this procedure has proved
to be effective and reliable. More details and examples are reported on in [1].

Learning based technique

In the learning approach we search for a feedback function F which minimizes the
original cost-functional J that appeared in (OC) along an ensemble of trajectories
with initial conditions in a compact set Y0. Note that as a consequence of the
Bellman principle the training does not only occur for the samples in Y0 but
additionally for each state y(t; y0) visited by a trajectory originating from y0 ∈ Y0.

(P)





min
F∈H,

y∈L∞

µ (Y0,W∞)

j(y, F ) =

∫

Y0

J(y(y0), F (y(y0))) dµ(y0),

d

dt
y(y0) = f(y(y0)) +BF (y(y0)), for µ-a.e. y0 ∈ Y0,

|y|L∞
µ (Y0,W∞) ≤M0

where W∞ = { y ∈ L2(0,∞;Rn) | ẏ ∈ L2(0,∞;Rn) }, B ∈ Rn×m, (Y0,A, µ) is a
complete probability space. Here H denotes a Banach space of at least Lipschitz
continuous feedback function. Since the value function is Lipschitz continuous
under mild conditions on f and ℓ, existence to (P) is straightforward since the
optimal control in feedback form is given by (2). In [2] and [4] we investigate the
approximation of (P) by means of replacing H by deep neural networks and poly-
nomial functions, respectively. Convergence results are provided and numerical
results illustrate the feasibility and strengths of the approach.

In [3, 5] related questions are investigated for finite horizon problems. In this
case the value function depends on time and space and consequently additional
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considerations are necessary concerning its approximation. In [3], the cost in the
finite horizon version of (P) is augmented by the running cost of the value function
and its gradient.
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On Optimal Control Problems with State Constrained Parabolic
Partial Differential Equation

Ira Neitzel

We begin this talk by reviewing results on optimal control problems governed
by quasilinear parabolic partial differential equations and additional inequality
constraints on the state given by

Minimize J(u, q)

∂tu+A(u)u = Bq in I × Ω,

u|ΓD
= 0, in I × ΓD,

u(0) = u0, in Ω

qa ≤ q ≤ qb, u ∈ Uad,

obtained by Hoppe and the speaker in [6]. The problem features a uniformly
elliptic operator A(u) of the form

A(u) = −∇ · ξ(u)µ∇,

and an operator B that is included to allow control functions acting either in the
whole domain or on a Neumann part of the boundary, either depending on space
and time or purely on time. The set Uad may be given in two different ways, either
by

Uad = {u ∈ C(Ī × Ω̄) : ua(t, x) ≤ u(t, x) ≤ ub(t, x) ∀ (t, x) ∈ Ī × Ω̄},

or by

Uad = {u ∈ L1(I, C(Ω̄)) : ua(x) ≤

T∫

0

u(t, x) dt ≤ ub(x) ∀x ∈ Ω̄}.
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For the precise setting, we refer to [6]. We present an overview about second order
sufficient conditions for this model problem, see also the talk [10, Oberwolfach
Report 9, 2021], focussing on the need of an interplay between different control
structures, different constraint structures, and different regularity assumptions
from either [3] or [1], that deal with quasilinear purely control constrained problems
under different assumption. The latter work by Bonifacius and the speaker builds
on regularity results for parabolic equations from e.g.[8]. In this talk, particular
emphasis lies on the structure of the control functions, particularly on finitely
many time-dependent controls

Bq =
∑

qi(t)ei(x)

for given, fixed functions ei, and different constraint structure displayed in the two
different choices of Uad, that we will exploit further in a regularization context for
the model problem

Minimize J(u, q)

∂tu−∆u = q(t)e(x) in I × Ω,

u|ΓD
= 0, in I × ΓD,

u(0) = u0, in Ω

qa ≤ q ≤ qb, u ≤ ub

with tracking type objective and linear state equation. We first review some of the
challenges of state constraints that are well-known since the meanwhile classical
work of Casas [2]. In essence, using classical Slater type techniques to prove
necessary optimality conditions leads to the appearance of measures in the first
order optimality conditions, leading to lower regularity of the adjoint state, even
though this can be improved in some cases, cf. e.g. [4]. These regularity issues also
influence the discussion of second order sufficient conditions and further question
of (numerical) analysis.

Several regularization methods are meanwhile well-established. We focus on an
extension of a method originally developed for boundary control problems in [13]
for elliptic problems or by Tröltzsch and the speaker in [12] for parabolic problems,
i.e. we apply the adjoint S∗ of the control-to-state operator S to an auxiliary
control v, that is defined in the whole space-time domain, setting qreg = S∗v, thus
u = SS∗v. The state constraints are then regularized by a standard Lavrentiev
Ansatz, [9],

λv + u ≤ ub a. e. in I × Ω

and can be transferred into easier control bounds. By this ansatz, however, addi-
tional pure control bounds become artificial state constraints

qa ≤ S∗v ≤ qb.

For purely time dependent controls, control constraints will become averaged in
space and pointwise in time state constraints, i.e. an auxiliary variable z solving
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an adjoint equation is restricted to the set Zad defined by

Zad = {z ∈ C([0, T ], L1(Ω)):

∫

Ω

z(t, x)e(x) dx ≤ ub(t) ∀ t ∈ [0, T ]}.

Problems with these type of constraints and additional control constraints have
been analyzed in [7] For more details regarding the application to our model prob-
lem, we refer to [11].
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High-Order Polytopic Discontinuous Galerkin Methods for Radiation
Transport Problems

Paul Houston

(joint work with Matthew E. Hubbard, Thomas J. Radley, Oliver J. Sutton,
and Richard S. J. Widdowson)

The linear Boltzmann transport problem describes the flow of particles through a
scattering and absorbing medium, and is commonly employed within a wide range
of application areas, including medical imaging, radiotherapy treatment planning,
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and the design of nuclear reactors, for example. Here, we consider the numerical
approximation of the stationary form of the problem, seeking a solution which is a
function of up to six independent variables. The high dimensionality of this prob-
lem means that the development of efficient discretisation schemes is imperative.

To this end, we let Ω ⊂ Rd, d ≥ 2, denote an open bounded polyhedral spatial
domain with boundary ∂Ω, S = {µ ∈ Rd : |µ|2 = 1} denote the surface of the
d-dimensional unit sphere and E = {E ∈ R : E ≥ 0} the real half line. Writing
D = Ω× S× E we seek to find u : D → R such that

µ · ∇xu(x,µ, E) + (α(x,µ, E) + β(x,µ, E))u(x,µ, E) = S[u](x,µ, E)

+ f(x,µ, E) in D,(1)

u(x,µ, E) = gD(x,µ, E) on Γin,

where f, g, α, β : D → R are given data terms, ∇x is the spatial gradient operator,
and Γin = {(x,µ, E) ∈ D̄ : x ∈ ∂Ω and µ · n < 0} denotes the inflow boundary
of D, where n denotes the unit outward normal vector on the boundary ∂Ω. The
action of the scattering operator applied to the solution u is denoted by

S[u](x,µ, E) =

∫

E

∫

S

θ(x,η → µ, E′ → E)u(x,η, E′) dη dE′,

where θ is a specified scattering kernel, and β(x,µ, E) =
∫
E

∫
S
θ(x,µ → η, E →

E′) dη dE′.
In this talk, we consider the development of hp-version discontinuous Galerkin

finite element methods (DGFEMs) for the numerical approximation of (1), where
the spatial, angular, and energy components of the solution are approximated
in a unified manner. In many applications, particularly those arising in medical
physics, the spatial domain may be highly complicated; to deal with such strong
complexity of the physical geometry, in an efficient manner, we admit the use of
general polygonal/polyhedral (polytopic) meshes; see, for example, [1, 2, 3] and
the references cited therein. The exploitation of a unified DGFEM discretisation
of the linear Boltzmann problem over the entire computational domain ensures
that the resulting scheme is naturally high-order. We note that historically, there
has largely been a single standard approach to energy discretisation known as the
multigroup approximation; see [4, Chapter 2] and the references cited therein.
Here the essential idea is to approximate the solution by a piecewise constant
function with respect to a finite number of nonoverlapping energy groups, which
limits the accuracy of the resulting numerical method to first-order.

The stability and hp–version a priori error analysis of the proposed scheme is
undertaken based on deriving suitable hp–approximation estimates, together with
a novel inf-sup bound. By employing a judicious selection of the quadrature and
local polynomial bases in the angular and energy domains, highly efficient solvers
for the proposed DGFEM may be designed which are naturally parallelisable. In
this way the underlying scheme may be implemented as a generalised multigroup
discrete ordinates method. Numerical experiments are presented to highlight the
accuracy of the proposed method, as well as to benchmark with more standard
kinetic Monte Carlo simulations.
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Shape Optimization in Diffusive Optical Tomography

Johannes Tausch

(joint work with Helmut Harbrecht)

The talk is concerned with an inverse problem of the heat equation. The goal is to
determine the diffusion and absorption coefficients α and β in the overdetermined
boundary value problem of the heat equation

∂tu−∇· α∇u + βu = 0 in Ω× (0, T ),

u = f on Σ× (0, T ),

∂νu = g on Σ× (0, T ),

u = 0 in Ω× {0}.

Here Σ = ∂Ω and ν is the normal on Σ. The domain Ω ⊂ Rd is bounded and
contains a smooth and possibly time dependent subdomain Ω1(t) with Ω̄1(t) ⊂ Ω
and boundary Γ(t) = ∂Ω1(t). Here it is assumed that there is a sufficiently smooth

isomorphism κ : Rd × [0, T ] → Rd and a smooth domain Ω̂ such that Ω1(t) =

κ(Ω̂, t). The coefficients are piecewise constants for a fixed time t. Specifically, if
Ω2(t) := Ω \ Ω̄1(t) then

α(x, t) =

{
α1 in Ω1(t),

α2 in Ω2(t),
β(x, t) =

{
β1 in Ω1(t),

β2 in Ω2(t).

We assume that α1, α2, β1 and β2 are known and determine the shape of the
domain Ω1(t).

The motivation for studying this problem arises in diffusion optical tomography,
which is a medical imaging technique where an object occupied by Ω1 is recon-
structed from light transmitted and scattered through the object Ω. Here u is the
photon density and the boundary conditions correspond to the measured signal
and source strengths of an impinging infrared laser.
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This inverse problem is formulated as a shape optimization problem. Here one
solves the Dirichlet problem for an assumed Ω1(t) and minimizes the functional

J(Ω1) =
1

2

∫ T

0

∫

Σ

(∂νu− g)2 dσdt.

For a time independent Ω1 the uniqueness of the inverse problem and the existence
of a shape derivative was established in [1]. In addition, techniques for a time
dependent Ω1 in the context of the inclusion problem (i.e., Dirichlet conditions
instead of transmission conditions on Γ(t)) have been developed in [2].

In light of this previous work, it is possible to derive the shape derivative and the
adjoint equation for the present problem. Specifically, consider the perturbation
of the inner domain by the vector field

ψǫ(x, t) = x+ ǫV (x, t)

where V is C2
0 (Ω̄) and V = 0 in a neighborhood of Σ. Then for ǫ > 0 sufficiently

small ψǫ maps Ω to Ω one-to-one and onto. Moreover, the perturbed coefficients
are αǫ = α ◦ ψ−1

ǫ and βǫ = β ◦ ψ−1
ǫ . With the bilinear form

aǫ(w, v) =

∫ T

0

∫

Ω

∂wtv + αǫ∇w∇v + βǫwv dxdt

where (w, v) ∈ Ȟ
1, 12
0 (Ω × (0, T )) × Ĥ

1, 12
0 (Ω × (0, T )), the variational form of the

Dirichlet problem with the perturbed coefficients is: Find uǫ ∈ Ȟ
1, 12
0 (Ω × (0, T ))

such that

(1) aǫ(uǫ, v) = f(v), ∀ v ∈ Ĥ
1, 12
0 (Ω× (0, T )).

Here f(v) =
∫ T
0

∫
Ω
fv dxdt, where f is the extension of the Dirichlet data into the

domain.
The shape derivative is as usual defined as u′ := limǫ→0(uǫ ◦ ψ

−1
ǫ − u0)/ǫ. To

describe the regularity of the shape derivative define the space-time tubes

Qk = {(Ωk(t), t) : t ∈ (0, T )} , k ∈ {1, 2}.

Further, the Sobolev spaces Hr,s(Qk), k ∈ {1, 2} consist of the functions w such

that the pullback w ◦ κ−1 is in Hr,s(Ω̂× (0, T )). Then it is possible to show that

u′|Qk
∈ Ȟ1, 12 (Qk), k ∈ {1, 2} with u′ = 0 on Σ. Moreover, assuming that the

solution of (1) has additional regularity uǫ|Qk
∈ Ȟ2,1

0 (Qk), k ∈ {1, 2}, then u′

satisfies

a0(u
′, p) = −a′(u0, p)

where

(2) a′(u0, p) :=

∫ T

0

∫

Γ(t)

Vν

(
[∂tu0]±p+ [α∇u0 · ∇p]± + [β]±u0p

)
dσ dt

for all p ∈ Ĥ
1, 12
0 (Ω × (0, T )) and p|Qk

∈ Ĥ2,1
0 (Qk). Here, Vν is the normal com-

ponent of the vector field V and [·]± is the jump across the interface Γ(t). The
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derivative of the functional J ′(Ω1;V ) = limǫ→0(J(ψǫΩ1)− J(Ω1))/ǫ is given by

J(Ω1) =

∫ T

0

∫

Σ

(∂νu− g)∂νu
′ dσdt.

This suggests that the adjoint equation is

(3)

−∂tp−∇· α∇p+ βp = 0 in Ω× (0, T ),

p = ∂νu− g on Σ× (0, T ),

p = 0 in Ω× {T }.

It follows from Green’s second identity, the fact that u′ = 0 on Σ and from (3)
that

J ′(Ω1;V ) =

∫ T

0

∫

Σ

∂νu
′p− ∂νpu

′dσdt = a0(u
′, p) = −a′(u0, p)

Thus with the solution of the adjoint equation (3) the the dependence of J ′(Ω1;V )
on the vector field V is made explicit in (2).

The remainder of the talk is focused on solving the state and adjoint equations
unsing boundary integral methods.

For the domains Ω1 and Ω2 the Green’s function is

Gk(x, y, t, s) =
exp(−βk(t− s))

[4παk(t− s)]
d
2

exp

(
−

|x− y|2

4αk(t− s)

)
, k = 1, 2.

Integral equations for the boundary data can be derived by taking traces and nor-
mal traces of the Green’s representation formula. In the case of the heat equation
for moving domains this formula contains additional terms that involve normal
velocity of the boundary nt, which can be expressed by the following modification
of the normal trace operator, see [3]

(4) γ±1 φ :=
∂φ

∂νs
±

1

2
vtφ

With this, the weakly and strongly singular Green’s integral equations are

1

2
u(x, t) = Vγ−1 u(x, t)−Ku(x, t),

1

2
γ−1 u(x, t) = K′γ−1 u(x, t)−Du(x, t),
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where x ∈ ∂Ωk(t). Here the thermal layer potentials also involve the modified
trace operator, thus

Vφ(x, t) =

t∫

0

∫

∂Ωk(s)

G(x, y, t, s)φ(y, s) dσyds ,

Kφ(x, t) =

t∫

0

∫

∂Ωk(s)

γ+1,yG(x, y, t, s)φ(y, s) dσyds ,

Dφ(x, t) = pf

t∫

0

∫

∂Ωk(s)

γ−1,xγ
+
1,yG(x, y, t, s)φ(y, s) dσyds .

The hypersingular operator D has to be understood as a finite-part integral. En-
forcing the boundary condition on Σ and the continuity of the functions and fluxes
on Γ then leads to a system of integral equations. The talk will conclude with a
discussion of a Nyström discretization method to solve the state and adjoint equa-
tions which eventually leads to an efficient gradient based minimization method
to compute the optimal shape Ω1.
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Shape Optimization for Time-Dependent Domains

Helmut Harbrecht

(joint work with Rahel Brügger and Johannes Tausch)

1. Introduction

We are concerned with the solution of time-dependent shape optimization prob-
lems. Specifically, we consider the heat equation in a domain which might change
over time. We develop the respective shape calculus by means of the perturbation
of identity. We derive the local shape derivative and compute Hadamard’s shape
gradient in case of both, domain integrals and boundary integrals. As particular
examples, we consider the one-phase Stefan problem and the detection of a time-
dependent inclusion. We discuss the numerical solution of these problems and
present respective results.
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2. Shape calculus

2.1. Space-time tubes. We shall introduce space-time tubes. For every point
of time t ∈ [0, T ], we have a time-dependent spatial domain which we denote by
Ωt ⊂ Rd, d ≥ 2. This spatial domain has a time-dependent spatial boundary Γt :=
∂Ωt. For every point of time t, we assume to have a smooth C2-diffeomorphism
κ, which maps the reference domain Ωref onto the time-dependent domain Ωt. We
write

(1) κ : [0, T ]× Ωref → R
d, (t,x) 7→ κ(t,x)

to emphasize the dependence of the mapping κ on the time, where we have
κ(t,Ωref) = Ωt. Here, κ ∈ C2([0, T ]×Ωref) and we assume the uniformity condition

(2) ‖κ(t,x)‖C2([0,T ]×Ωref;Rd), ‖κ(t,x)
−1‖C2([0,T ]×Ωref;Rd) ≤ Cκ

for some constant Cκ > 0. To reduce the technical level of the ensuing discussion,
we assume that Ω0 has a C2-smooth boundary which implies that the boundary
of Ωt has the same regularity. We finally define the space-times tube

QT :=
⋃

0<t<T

(
{t} × Ωt

)
.

with mantle
ΣT :=

⋃

0<t<T

(
{t} × Γt

)
.

2.2. Perturbation of identity. In order to apply the traditional shape calculus,
we would like to perturb the tube. To this end, we consider a vector field Z(t,x),
which is C2-smooth, to generate the perturbation of identity I + sZ. It yields a
new tube

QsT =
⋃

0<t<T

(
{t} × (I+ sZ)(Ωt)

)
.

Notice that the perturbations under consideration are horizontal, meaning that
we consider perturbations of (t,κ) of the type (0,Z). Moreover, I + sZ should
satisfy a uniformity condition as in (2). An illustration of our setting is found in
Figure 1.

2.3. Local shape derivative. Given a sufficiently smooth function f , we shall
consider the heat equation on the space-time tube

(3)

(∂t −∆)u = f in QT ,

u = 0 on ΣT ,

u(0, ·) = 0 in Ω0.

Note that the solution theory to this initial boundary value problem has been stud-
ied in [3] by using boundary integral operators and associated integral equations.

As in the time-independent case, we can define non-cylindrical material and
local shape derivatives of (3). The material derivative u̇[Z] is defined as

(4) u̇[Z] = lim
s→0

ust ◦ (I+ sZ)− ut
s

,
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[
t
x

]
[
t
xt

]

[
t
xst

]

κ(t,x)

κ+ sZ ◦ κ

I+ sZ

xt ∈ Ωt

xst ∈ Ωst

x ∈ Ωref

Figure 1. Perturbation of identity in the Lagrangian setting.

while the local shape derivative δu = δu[Z] in the direction Z is formally given by

δu[Z](t,x) = lim
s→0

ust (t,x)− ut(t,x)

s
, (t,x) ∈ QsT ∩QT .

Here, ust denotes the state computed on the perturbed domain QsT and ut the
state computed on QT . These two non-cylindrical derivatives are connected by
the relation

δu[Z] = u̇[Z]−∇v · Z.

Theorem. The local shape derivative of the state u from (3) in the direction

Z is given as the solution of the partial differential equation

(∂t −∆)δu = 0 in QT ,

δu = −〈Z,n〉
∂v

∂n
on ΣT ,

δu(0, ·) = 0 in Ω0.

2.4. Shape functionals. We shall next comment on the derivative of shape func-
tionals. For the domain integral

J(QT ) =

∫ T

0

∫

Ωt

u dxdt,

one finds the shape gradient

δJ(QT )[Z] =

∫ T

0

∫

Ωt

δu[Z] dxdt+

∫ T

0

∫

Γt

u〈Z,n〉dσ dt.

Whereas, for the boundary integral

(5) J(QT ) =

∫ T

0

∫

Γt

u dσ dt,
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one has the shape gradient

δJ(QT )[Z] =

∫ T

0

∫

Σt

δu[Z] dσ dt+

∫ T

0

∫

Γt

(
∂u

∂n
+Hxu

)
〈Z,n〉dσ dt.

We emphasize that the shape functional (5) of boundary integral form is different
from

J(QT ) =

∫

ΣT

u d~σ,

whose shape gradient differs from the above one.

3. Applications

In [1], the classical Stefan problem has been reformulated as a shape optimization
problem. Namely, motivated by [4] in the one-dimensional setting, we considered
the heat equation (3) and enforced the Stefan condition by tracking the Neumann
data correspondingly. In contrast, [2] was concerned with a time-dependent shape
optimization problem for the heat equation. Namely, from the measurements of
the temperature and the heat flux at the outer, fixed boundary of a body we
intended to reconstruct an unknown, time-dependent void of zero temperature.
We refer to the respective articles for all the details.
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Neural Operators for Partial Differential Equations:
Challenges and Results

Ivan Oseledets

(joint work with V. Fanaskov, A. Rudikov, T. Yu)

In this talk I discussed two papers. The first one ist “Spectral Neural Opera-
tors”. It discussed how to approximate function-to-function mapping that has
discretization invariance and zero-shot superresolution. Second is a way to aug-
ment trraining data for N.D. by random variable transformations. The improve-
ment is significant.
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A Space-Time Variational Method for Linear Parabolic Optimal
Control Problems –Well-Posedness, Stability and Numerical Solution

Nina Beranek

(joint work with Alexander Reinhold, Karsten Urban)

Formulation. We consider an optimal control problem with quadratic cost func-
tion constrained by a linear parabolic partial differential equation. We impose the
parabolic partial differential equation in a space-time variational formulation, e.g.
[4], where space and time are both treated in a variational sense. The space-time
formulation of the parabolic problem takes the form

given u ∈ U , find y ∈ Y : b(y, z) = f(u, z) + h(z) for all z ∈ Z,(1)

where Y, Z, U denote some appropriate Lebesgue–Bochner spaces and b : Y×Z →
R, f : U × Z → R and h : Z → R are continuous (bi)linear forms. In the optimal
control framework the space Y arises as state space and the space U is the control
space. The quadratic cost function can be written in the form

J : Y × U → R, J(y, u) =
ω

2
· d(y − yd, y − yd) +

λ

2
· n(u, u),

where ω, λ > 0 are some weighting factors, d : D ×D → R and n : U ×U → R are
some bilinear forms and yd ∈ D ⊇ Y is the desired state.

Existence and uniqueness. The continuous left-hand side b : Y ×Z → R of the
state equation (1) satisfies an inf-sup condition of kind

β := inf
06=y∈Y

sup
06=z∈Z

|b(y, z)|

‖y‖Y ‖z‖Z
= inf

06=z∈Z
sup

06=y∈Y

|b(y, z)|

‖y‖Y ‖z‖Z
> 0,

which, applying the Banach–Nec̆as–Babus̆ka theorem, e.g. [2], ensures the well-
posedness (in the sense of Hadamard) of the state equation (1) in space-time form.
In our setting one can realize that the inf-sup constant is optimal, i.e., β = 1.

The well-posedness of the state equation guarantees that the state equation
assigns a unique state y ∈ Y to each control u ∈ U which allows to formulate
the optimal control problem in a (on the control) reduced form. Existence and
uniqueness of an optimal solution can be shown by applying a standard result
from optimal control theory requiring that the reduced cost function is weakly
lower semicontinuous, bounded and strictly convex.

Optimality system. Following the optimize-then-discretize approach, we set up
first-order necessary optimality conditions in function space at first (which are
also sufficient due to the convexity of the problem) and then discretize the arising
optimality system. Formulated in Karush–Kuhn–Tucker form, the optimality sys-
tem consists of the constraint itself, i.e., the state equation, the gradient equation,
ensuring the optimality, and the adjoint equation, which is a helper equation in
order to simplify the gradient equation. In the suggested functional analytic set-
ting the adjoint problem directly arises from the state equation by exchanging the
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roles of trial and test spaces and by another right-hand side. It takes the form

given y ∈ Y, find z ∈ Z : b(ỹ, z) = ω · d(ỹ, yd − y) for all ỹ ∈ Y.(2)

A crucial question in the analysis of the optimality system is whether the adjoint
problem (2) is well-posed. In the chosen functional analytic setting the well-
posedness directly follows from the well-posedness of the state equation, yielding
the same inf-sup constant for both problems, i.e., β = 1.

Concerning the stability analysis of the optimality system it is convenient to
formulate the optimality system in a reduced form by eliminating the control,

L

(
y
z

)
= g in W ′,(3)

where L : W := (Y × Z) → W ′ is a linear operator and g ∈ W ′ specifies the
right-hand side of the optimality system. Due to the well-posedness of the state
equation we can prove that L is boundedly invertible, ensuring well-posedness of
the optimality system (3). Exploiting that β = 1 and choosing n(u, ũ) := (u, ũ)U
(which is a standard choice for a quadratic cost function) the estimate boils down
to

‖L−1‖W′→W ≤ 2 +
1

λ
.

Based upon this, we can derive some stability estimates for the optimal triple, i.e.,
the optimal state and the corresponding optimal adjoint state and optimal control.

Discretization. In order to discretize the optimality system we introduce a con-
forming finite element tensorproduct discretization, simultaneously in space and
time, which amounts to construct finite-dimensional spaces Yδ ⊂ Y, Zδ ⊂ Z and
Uδ ⊂ U for the state space, the adjoint state space and the control space. Using
finite elements of appropriate orders in space and time for Y and Z, this setting is
known to be equivalent to a Crank–Nicolson time-stepping scheme applied to (1),
[3]. As we face a Petrov–Galerkin setting, i.e., Y 6= Z, the discrete spaces Yδ and
Zδ need to satisfy a discrete inf-sup condition,

βδ := inf
06=yδ∈Yδ

sup
06=zδ∈Zδ

|b(yδ, zδ)|

‖yδ‖Y ‖zδ‖Z
= inf

06=zδ∈Zδ

sup
06=yδ∈Yδ

|b(yδ, zδ)|

‖yδ‖Y ‖zδ‖Z
> 0,(4)

in order to guarantee well-posedness of the discrete version of (1). Following the
suggestions of [1] concerning the choice of Yδ and Zδ and using suitable norms,
we can realize an optimally stable discretization, i.e., βδ = 1. Moreover, we have
dim(Yδ) = dim(Zδ) =: N .

Applying the discretization to the reduced optimality system (3) yields an al-
gebraic system of kind

Lδ

(
yδ
zδ

)
= gδ,(5)

where Lδ ∈ R2N×2N and gδ ∈ R2N specify the discrete optimality system and
yδ ∈ RN and zδ ∈ RN are the unknowns. As in the continuous setting we can
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derive a stability estimate for (5), bounding the norm of the inverse of Lδ by

‖L−1
δ ‖ ≤ 2 +

1

λ
.(6)

Error analysis. Recalling that ‖L−1
δ ‖ is equal to the inverse of the inf-sup con-

stant of the discrete optimality system (5), the upper bound (6) is at the same time
a lower bound for the inf-sup constant. Thus, applying the Xu–Zikatanov lemma,
[5], which yields a quasi-best approximation statement with multiplicative factor
of the inverse of the inf-sup constant, allows us to derive the a priori estimate

‖y − yδ‖Y + ‖z − zδ‖Z + ‖u− uδ‖U

≤ max

{
1,

1

λ

}(
2 +

1

λ

)(
inf
ỹδ∈Yδ

‖y − ỹδ‖Y + inf
z̃δ∈Zδ

‖z − z̃δ‖Z + inf
ũδ∈Uδ

‖u− ũδ‖U

)
.

for the optimal triple. Moreover, we can state a a posteriori estimate, including
the bound (6) as well as the dual norm of the residual of the system (5).

Numerical results. Firstly, we compute the discrete inf-sup constant of the op-
timality system for different values of the regularization parameter λ and different
discretizations. Comparing it with the derived lower bound (2 + 1

λ)
−1, we ob-

serve the same quantitative behavior. The bound seems to be almost sharp for
increasing values of λ, whereas for small values of λ the bound is too pessimistic.

Secondly, we compare our space-time method with a time-stepping method
based on a semi-variational formulation of the parabolic problem. We compare
the value of the cost function that we obtain by solving the optimality system
with the two approaches for different temporal and spatial discretizations. Both
methods converge to the same value of the cost function as the number of tempo-
ral degrees of freedom increases. However, we observe that the space-time method
yields the optimal value of the cost function already for very coarse temporal dis-
cretizations whereas the semi-variational method requires a sufficient fine temporal
discretization in order to reach this value. Hence, the space-time method requires
fewer degrees of freedom in time (and therefore a smaller number of unknowns)
to reach the same accuracy. This might offer computational savings compared to
the semi-variational method, and, since the CPU-times for the same number of
unknowns turned out to be similar for both methods, also potential for significant
speedup. This beneficial effect of the space-time method might be due to the im-
proved stability properties compared to the semi-variational method that become
visible depicting the computed control function for different temporal discretiza-
tions. For coarse temporal discretizations we can observe some stability issues for
the semi-variational approach, which do not appear in the space-time context.
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Compression of Boundary Integral Equations Discretised by
Anisotropic Wavelet Bases

Remo von Rickenbach

(joint work with Helmut Harbrecht)

Given a domain Ω ⊂ R3, we are interested in the solution of a partial differential
equation, such as, for example, the Laplace equation with Dirichlet boundary

condition g ∈ H
1
2 (Γ), that is

{
∆v = 0, in Ω,
v = g, on Γ.

We require that Γ = ∂Ω can be decomposed into surface patches Γ =
⋃r
i=1 Γi,

where each surface patch Γi can be smoothly parametrised by a mapping γi :
� := [0, 1]2 → Γi. Moreover, Γ is required to admit overall Lipschitz continuity.

By considering the fundamental solution G(x,y) = 1
4π‖x−y‖ , it is well known

that

∆z

∫

Γ

G(z,y)u(y) dSy = 0, z ∈ Ω,

for any u ∈ H− 1
2 (Γ). By taking the limit Ω ∋ z → x ∈ Γ, we arrive at the

boundary integral equation

(1) Au(x) :=

∫

Γ

G(x,y)u(y) dSy = g(x), x ∈ Γ,

where A is called the single layer operator. This equation is known to be uniquely
solvable, cf. [8, 10].

Testing (1) with φ ∈ H− 1
2 (Γ) yields the variational formulation

find u ∈ H− 1
2 (Γ) such that 〈Au, φ〉Γ = 〈g, φ〉Γ for any φ ∈ H− 1

2 (Γ).

By the restriction to a finite-dimensional trial space VJ = span{φJ,1, . . . , φJ,NJ
},

we get a Galerkin problem, which is for u =
∑NJ

k=1 uJ,kφJ,k ∈ VJ equivalent to the
linear system

(2) Au = g, A =
[
〈AφJ,ℓ, φJ,k〉Γ

]NJ

k,ℓ=1
, g =

[
〈g, φJ,k〉Γ

]NJ

k=1
.

Let us briefly remark that there exist other approaches for solving the Laplace
equation with the boundary element method, such as, for example, the double
layer ansatz or a direct formulation. Moreover, there are similar methods to solve
a Neumann problem. However, all these methods encounter the same difficulty:
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As the bilinear form involves a nonlocal operator A : Hq(Γ) → H−q(Γ), defined
as the convolution with a nonlocal kernel, the system matrix is densely populated.

Methods were developed to deal with the dense population, among which we
want to focus on the wavelet matrix compression, cf. [1, 9]. By choosing a sequence
of nested trial spaces V0 ⊂ · · · ⊂ VJ−1 ⊂ VJ ⊂ VJ+1 ⊂ · · · ⊂ Hq(Γ), with

Vj = span{φj,k : k ∈ ∆j},

we can decompose Vj = Vj−1 ⊕Wj , where the difference spaces Wj are given by

Wj = span{ψj,k : k ∈ ∇j}, ∇j := ∆j \∆j−1.

Recursively, this is VJ = V0 ⊕W1 ⊕ · · · ⊕WJ . We can thus express the system (2)
with respect to the multilevel wavelet basis.

The main advantage of the wavelet basis is that it admits the cancellation
property: Given a sufficiently smooth function f , the integral of f against any
wavelet function ψj,k decays as

(3)
∣∣〈f, ψj,k〉Γ

∣∣ . 2−(d̃+1)j |f |W d̃,∞(suppψj,k)
,

see e.g. [9] for the details. Note that this generalises to domains Ω ⊂ Rn, too, in
which case the additional summand 1 in the exponent in (3) needs to be replaced
by n

2 .
By using such an isotropic wavelet basis, it was shown in [1] that for any J ,

there exists a compression scheme such that the solution uJ with respect to the
compressed operator converges to u at the rate

(4) ‖u− uJ‖Hq(Γ) . 2−(d−q)J‖u‖Hd(Γ),

that is in line with the discretisation error, while the compressed matrix AJ con-
tains at most O(N) nontrivial entries. We remark that the estimate (4) can even
be extended to a whole range of Sobolev spaces.

Meanwhile, it was already shown that in general boundary integral operators are
s⋆-compressible in these wavelet coordinates, cf. [11], apart from which adaptive
methods have been developed. In [2, 4], it is shown that one can approximate
the solution at the rate of the best N -term approximation in the sense of [3] with
respect to this basis, using only O(N) operations. Therefore, it is crucial that
the best N -term approximation admits a good convergence. This is, however,
impossible in the case of geometric singularities, coming from edges for example,
in which case the convergence rate deteriorates. This might be overcome by using
an anisotropic tensor product wavelet basis.

Anisotropic tensor product wavelets were already used in [5] in the context of
sparse tensor product spaces. As suggested by the name, on the unit square, the
wavelet functions are defined by

ψj,k := ψj1,k1 ⊗ ψj2,k2 , k ∈ ∇j := ∇j1 ×∇j2 .

When considering associated matrix entries a(j,k),(j′,k′) = 〈ψj′,k′ , Aψj,k〉Γ, we en-
counter a lot of wavelet pairs which overlap. In fact, we even encounter a lot of
wavelet pairs for which even the support of one wavelet overlaps with the singular
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support of the other wavelet and vice versa at the same time. In the classical
compression scheme, such entries cannot be compressed.

However, according to [7], if the integral under consideration is broken down to
a one-dimensional integral, for example, like

∫

�

∫

�

ψj′,k′(x′)G(x,x′)ψj,k(x) dx dx′

=

∫ 1

0

∫ 1

0

ψj′1,k′1(x
′
1)k1(x1, x

′
1)ψj1,k1(x1) dx1 dx

′
1,

with

k1(x1, x
′
1) :=

∫ 1

0

∫ 1

0

ψj′2,k′2(x
′
2)G

(
(x1, x2), (x

′
1, x

′
2)
)
ψj2,k2(x2) dx2 dx

′
2,

one can still make use of a generalised cancellation property similar to (3), pro-
vided that at least in one spatial direction the support of one wavelet is sufficiently
far away from the singular support of the other. In [7], estimates for radial op-
erators as well as for anisotropic integrodifferential operators have been derived
and corresponding compression schemes have been developed, taylored to sparse
tensor product spaces on the unit cube.

On the fundament of these estimates, we have developed a compression scheme
on the full tensor product space, which results in a compressed system matrix
containing only O(N) nontrivial entries whilst the solution converges with dis-
cretisation error accuracy, i.e., (4) holds in this case as well. For the details, we
refer to the forthcoming paper [6]. An adaptive version of this compression scheme
is work in progress.

References

[1] W. Dahmen, H. Harbrecht, and R. Schneider, Compression techniques for boundary inte-
gral equations: Asymptotically optimal complexity estimates, SIAM Journal on Numerical
Analysis 43 (2006), 2251–2271.

[2] W. Dahmen, H. Harbrecht, and R. Schneider, Adaptive methods for boundary integral equa-
tions: Complexity and convergence estimates, Mathematics of Computation 76 (2007),
1243–1274.

[3] R. A. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.
[4] T. Gantumur and R. Stevenson, Computation of singular integral operators in wavelet co-

ordinates, Computing 76 (2006), 77–107.
[5] M. Griebel, P. Oswald, and T. Schiekofer, Sparse grids for boundary integral equations,

Numerische Mathematik 83 (1999), 279–312.
[6] H. Harbrecht and R. von Rickenbach, Compression of boundary integral operators discretised

by anisotropic wavelet bases, in preparation, 2023.
[7] N. Reich, Wavelet Compression of Anisotropic Integrodifferential Operators on Sparse Ten-

sor Product Spaces, PhD thesis, ETH Zürich, 2008. ETH Diss Nr. 17661.
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FOSLS for Parabolic and Instationary Stokes Equations

Rob Stevenson

(joint work with Gregor Gantner)

1. FOSLS for parabolic equations

Let Ω ⊂ Rd, d ≥ 1, be a Lipschitz domain with boundary Γ := ∂Ω, and T > 0 a
given end time point with corresponding time interval I := (0, T ). We abbreviate
the space-time cylinder Q := I×Ω with lateral boundary Σ := I×Γ. We consider
the following parabolic PDE with homogeneous Dirichlet boundary conditions

(1)
∂tu− divx(A∇xu) + b · ∇xu+ cu = f in Q,

u = 0 on Σ,
u(0, ·) = u0 on Ω.

where A = A⊤ ∈ L∞(Q)d×d is uniformly positive, b ∈ L∞(Q)d, and c ∈ L∞(Q).
With Y := L2(I;H

1
0 (Ω)), any f ∈ Y ′ = L2(I;H

−1(Ω)) can be written as

f = f1 + divx f2,

for some f1 ∈ L2(Q) and f2 ∈ L2(Q)d. With such a decomposition, and u =
(u1,u2) : Q→ R× Rd, (1) can be written as the first-order system

GPu :=



divu+ b · ∇xu1 + cu1

−u2 −A∇xu1
u1(0, ·)


 =



f1
f2
u0


 =: f , u1|Σ = 0,(2)

Building on earlier work from [1], we have the following result:

Theorem ([2, Theorem 2.3 and Proposition 2.5]). The operator GP is a linear

isomorphism from the space

U := {u = (u1,u2) ∈ L2(I;H
1
0 (Ω))× L2(Q)d : u ∈ H(div;Q)}(3)

equipped with the corresponding graph norm, to the space

L := L2(Q)× L2(Q)d × L2(Ω).(4)

Consequently, for any closed subspace U δ ⊂ U , the least-squares approximation

uδ := argmin
wδ∈Uδ

1
2‖GPw

δ − f‖2L

is a quasi-best approximation to u ∈ U from U δ (‘Cea’s lemma’). The least-squares
functional provides an a posteriori estimator that is equivalent to the norm on U
of the error. The squared estimator is a sum of squared local error indicators
associated to the individual elements, which immediately suggests an adaptive
solution method.
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A potential disadvantage is that finding uδ requires the solution of a discretized
PDE in the d + 1 dimensional space-time cylinder instead of the solution of a
sequence of (elliptic) PDEs in the d-dimensional spatial domain, which can be
expected to be more memory consuming. In [4], three applications are discussed
where the advantages of the space-time approach are in any case prevailing. First,
the application of the reduced basis method to solve a parameter-dependent par-
abolic PDE is considered. In this case, the reduced basis methodology does not
only reduce the complexity in space but equally well in time. As a second appli-
cation, optimal control problems constrained by parabolic PDEs are considered.
Since the optimality system consists of a parabolic PDE forward in time coupled
with a parabolic PDE backward in time, it does not allow for an easy solution by
time marching. The final application is the solution of a parabolic PDE on a time-
dependent domain. Whilst technically involved with a time-marching scheme, it
does not impose any difficulties with a space-time solver.

2. FOSLS for instationary Stokes equations

2.1. Stokes problem with slip conditions. In [3] we followed the same program
for the instationary Stokes equations as for the parabolic equation. Given vector
fields u

∼0 on Ω and f
∼

on I × Ω, a function g on I × Ω, and a viscosity ν > 0, we

consider the instationary Stokes problem with slip boundary conditions of finding
a velocity field u

∼
and corresponding pressure p that satisfy

(5)





∂
∼tu∼ − ν∆

∼ xu∼ +∇x p = f
∼

in I × Ω,

divx u∼ = g in I × Ω,
u
∼
· n

∼
=0 on I × ∂Ω,

(Id− n
∼
n
∼

⊤)T
∼
∼

(νu
∼
, p)n

∼
=0 on I × ∂Ω,

u
∼
(0, ·) =u

∼0 on Ω.

Here (0, n
∼
) ∈ Rd+1 denotes the outward pointing normal vector on I × ∂Ω, and

for v
∼
: I × Ω → Rd and q : I × Ω → R, the symmetric gradient and stress tensor

are defined by D
∼
∼

(v
∼
) := ∇

∼
∼
xv∼ + (∇

∼
∼
xv∼)

⊤ and T
∼
∼

(v
∼
, q) := D

∼
∼

(v
∼
)− qId, respectively.

A classical solution (u
∼
, p) of (5) with w

∼
∼

:= −T
∼
∼

(νu
∼
, p) satisfies

GS(u∼, w∼
∼

, p) := (w
∼
∼

+ T
∼
∼

(νu
∼
, p), ∂

∼tu∼ + div
∼ xw∼

∼

, divx u∼, u∼(0, ·)) = (0, f
∼

+ ν∇
∼ xg, g, u∼0),

as well as u
∼
· n

∼
= 0 on I × ∂Ω, and (Id− n

∼
n
∼

⊤)w
∼
∼

n
∼
= 0 on I × ∂Ω.

We define the Hilbert spaces

L2,0(Ω) := {p ∈ L2(Ω):

∫

Ω

p dx = 0},

H
∼

1(Ω) := {u
∼
∈ H

∼

1(Ω): u
∼
· n

∼
= 0 on ∂Ω}

and

Z := {(u
∼
, w

∼
∼

) ∈ L2(I;H∼
1(Ω)) × L2(I;L2(Ω; S∼

∼

)) : ∂
∼tu∼ + div

∼ xw∼
∼

∈ L
∼2(I × Ω),

divx u∼ ∈ H1(I;L2,0(Ω)), (Id− n
∼
n
∼

⊤)w
∼
∼

|I×∂Ωn∼ = 0},
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equipped with the corresponding graph norm

‖(u
∼
, w

∼
∼

)‖2Z :=‖u
∼
‖2L2(I;H

∼

1(Ω)) + ‖w
∼
∼

‖2L
∼
∼

2(I×Ω)

+ ‖∂
∼tu∼ + div

∼ xw∼
∼

‖2L
∼

2(I×Ω) + ‖ divx u∼‖
2
H1(I;L2,0(Ω)).

Theorem. Let Ω be convex or has a C2-boundary. Then

‖GS(u∼, w∼
∼

, p)‖L
∼
∼

2(I×Ω)×L
∼

2(I×Ω)×H1(I;L2,0(Ω))×L
∼

2(Ω) h ‖(u
∼
, w

∼
∼

, p)‖Z ×L2(I;L2,0(Ω))

for all (u
∼
, w

∼
∼

, p) ∈ Z × L2(I;L2,0(Ω)).

Analogously to the parabolic case, this result gives rise to computable least-
squares approximations that are quasi-best approximations from the trial space
that is applied.
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Stability Analysis for Electromagnetic Waveguides

Leszek Demkowicz

(joint work with Jens M. Melenk, Stefan Henneking, Jacob Badger)

The reported work is part of a continued effort to build reliable, high-fidelity
Finite Element (FE) models for investigating Transverse Mode Instability (TMI)
in optical amplifiers [1, 2]. The model consists of a system of two nonlinear time-
harmonic Maxwell equations coupled with each other and with the transient heat
equation to account for thermal effects. Modeling of a 1–10 m long fiber segment
involves the solution with O(1-10 M) wavelengths. Solving such a problem with
a direct FE discretization is infeasible, even on state-of-the-art supercomputers.1

For this reason, even simplified models typically resolve a longer length scale. In
the context of TMI studies, it is common to resolve only the length scale of the
mode beat between the fundamental mode and higher-order modes since the mode
instabilities occur at that scale. In a typical weakly-guiding, large-mode-area fiber
amplifier, the mode beat length is on the order of O(1,000) wavelengths. This
brought forth the idea of the full envelope approximation in which the solution to
the Maxwell equations is sought using the ansatz including an exponential factor,

E(x, y, z) = eikzE0(x, y, z)

1A sophisticated hp code using MPI+OpenMP parallelization and up to 512 manycore com-
pute nodes enabled us to model fibers with up to O(10,000) wavelengths [2].
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where wavenumber k corresponds to circa one thousand wavelengths, and the new
unknown, E0(x, y, z), involves only O(1,000–10,000) wavelengths. The presented
work summarizes our efforts to investigate the stability and convergence of the
Discontinuous Petrov-Galerkin (DPG) method used to solve the problem [3, 4].

DPG essentials. The ideal DPG method with optimal test functions reproduces
automatically the stability of the continuous problem. Assume that a system of
first-order differential equations is represented with a bounded below closed opera-
tor A,

A : L2(Ω)N ⊃ D(A) → L2(Ω)N , α‖u‖ ≤ ‖Au‖, α > 0

where Ω ⊂ R3, N is the number of equations, and ‖ · ‖ denotes the L2-norm. The
stability of the DPG method based on the ultraweak (UW) formulation:

{
u ∈ L2(Ω)N

(u,A∗v) = (f, v) v ∈ D(A∗)

where the test space—domain of L2-adjointA∗—has been equipped with the scaled
graph norm,

‖v‖2V := ‖A∗v‖2 + β2‖v‖2, β > 0

is governed by the inf–sup constant [3]:

γ ≥

[
1 +

(
β

α

)2
]− 1

2

.

Hence our interest in constant α corresponding to the modified Maxwell problem
resulting from the full envelope ansatz. The first, very simple result, may be a bit
surprising.

Lemma 1: Let Ã be the operator corresponding to the full envelope ansatz, i.e.,

Ãũ := eikzA(e−ikz ũ) ,

where A denotes the operator corresponding to the acoustic or EM waveguide
problem. Then, the operator Ã is bounded below if and only if operator A is
bounded below, and the corresponding boundedness below constants are identical:

‖Au‖ ≥ α‖u‖ ⇔ ‖Ãũ‖ ≥ α‖ũ‖ .

Proof: We observe

‖Ãũ‖ = ‖eikzA(e−ikz ũ)‖ = ‖A(e−ikz ũ)‖ ≥ α‖e−ikz ũ‖ = α‖ũ‖ .

In other words, using the full envelope ansatz may help with the approximability
(if the simulated phenomenon, indeed, occurs at the scale of thousands of wave-
lengths) but it does not affect the stability. This observation brought us back to
the study of stability of waveguide problems. For a fixed domain, we are usually
interested in the dependence of the stability constant upon frequency ω, e.g., un-
der technical assumptions, one can show the linear dependence of α−1 upon ω.
For optical fibers, the frequency is fixed, and we are interested in the dependence
of the stability constant upon the length L of the waveguide or, in other words,
the number of wavelengths.



718 Oberwolfach Report 13/2023

We started our study with the acoustic waveguide. Eliminating the velocity, we
obtain the standard Helmholtz equation for the pressure, accompanied by appro-
priate boundary conditions (BCs) and a non-local Dirichlet-to-Neumann (DtN)
BC at the fiber exit. Employing the separation of variables ansatz, we obtain
an eigenvalue problem involving a self-adjoint operator defined in the transversal
domain D (in x, y). For each eigenvalue λ then, we obtain a 1D Helmholtz-like
problem in z with a homogeneous BC at z = 0, and an impedance BC at z = L.
Application of the DtN operator is then equivalent to selecting the outgoing wave.
Expanding solution u in terms of the orthogonal eigenmodes (self-adjointness of
the operator in the transversal domain is critical), we obtain the following result.

Theorem 1. Let (u, p) ∈ H(div,Ω)×H1(Ω) be the solution to the acoustic waveg-

uide problem with the right-hand side (f, g) ∈ L2(Ω) × L2(Ω)3 with appropriate

BCs. There exists then a constant C > 0 depending upon the frequency and the

material properties of the waveguide but independent of length L, such that

‖u‖H(div,Ω) + ‖p‖H1(Ω) ≤ CL
[
‖f‖L2(Ω) + ‖g‖L2(Ω)3

]
.

In the remaining two pages we will describe briefly the techniques that we
used to arrive at the corresponding result for the Maxwell waveguide problem.
First of all, to our surprise, we learned that the well-posedness result for a non-

homogeneous Maxwell waveguide, was an open problem. To begin with, we cannot
reduce the Maxwell problem to a single scalar-valued equation, so the separation
of variables approach is out. But, anticipating the 1D Helmholtz problem in z, we
can start with an exponential ansatz in the z direction, and seek the solution in
the form eiβz(Et(x, y), E3(x, y)), e

iβz(Ht(x, y), H3(x, y)) where Et, Ht and E3, H3

are the transversal and z components of the electric and magnetic field defined in
the transversal domain D, respectively. We then obtain a non-standard2 eigen-
value problem for Et, Ht, E3, H3 involving first-order operators. Upon eliminating
E3, H3 we obtain an ‘EH eigenvalue problem’ involving two second-order equa-
tions. However, the corresponding operator (even for the homogeneous case) is not
self-adjoint. Finally, eliminating Ht or Et respectively, we obtain single-equation
‘E-eigenvalue’ and ‘H-eigenvalue’ problems. For example, the E-problem is:

(1)

{
Et ∈ H0(curl, D), curlEt ∈ H1(D), 1

ǫdiv ǫEt ∈ H1
0 (D)

∇× curlEt − ω2ǫEt −∇(1ǫdivǫEt) = −β2Et .

The regularity assumptions are inherited from the previous eigenvalue problems
involving more unknowns. The operator in (1) is self-adjoint for the homogeneous
case (with dielectric constant ǫ = 1) but, for a variable ǫ, the operator is still not
self-adjoint. We then began with a study of the homogeneous waveguide problem.

Lemma 2: Let (λi, φi) and (µj , ψj) denote the Dirichlet and Neumann eigenpairs
of the Laplacian in the domain D. The eigenvalues β2

i for (1) are classified into
the following three families.

2Mass terms for E3,H3 are missing.
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(a) β2 = ω2−µj with µj distinct from all λi. The corresponding eigenvectors
are curls:

E = ∇× ψj ,

with multiplicity of β2 equal to the multiplicity of µj .
(b) β2 = ω2 − λi with λi distinct from all µj . The corresponding eigenvectors

are gradients:
E = ∇φi ,

with multiplicity of β2 equal to the multiplicity of λi.
(c) β2 = ω2 − µj = ω2 − λi for µj = λi. The corresponding eigenvectors are

linear combinations of curls and gradients:

E = A∇ × ψj +B∇φi , A,B ∈ C ,

with multiplicity of β2 equal to the sum of multiplicities of µj and λi.

With a similar result for the H-eigenvalue problem, we were now able to guess the
ansatz for the 3D E,H fields:

(2)
E =

∑
i∇× ψiαi(z) +

∑
j∇φjβj(z) +

∑
j ezφjγj(z)

H =
∑

i∇ψiδi(z) +
∑

j ∇× φjηj(z) +
∑
i ezψiζi(z)

where ez = (0, 0, 1) is the z unit vector.
After substituting ansatz (2) into the Maxwell equations, we were able to ob-

tain a similar effect as for the acoustics waveguide. For each mode, we obtained a
system of six ODEs for coefficients αi(z), βj(z), γj(z), δi(z), ηj(z), ζi(z) which de-
couples into two subsystems consisting of two first-order ODEs and one algebraic
equation. Eventually, each subsystem reduces to a single second-order equation
identical with that for the acoustic waveguide. Furthermore, the orthogonality of
the modes in (2) leads to the final result.

Theorem 2. There is C > 0 independent of L such that the solution (E,H) of

the Maxwell homogeneous3waveguide problem with right-hand side (f, g) satisfies

‖(E,H)‖L2(Ω)3×L2(Ω)3 ≤ CL‖(f, g)‖L2(Ω)3×L2(Ω)3 .

For details on the discussed results for the acoustic and homogeneous Maxwell
waveguide problems, see [3]. In [4] we tackled the non-homogeneous Maxwell
problem. A simple perturbation argument shows that the well-posedness of the
homogeneous Maxwell problem implies the well-posedness of the non-homogeneous
case for a sufficiently small perturbation ǫ = 1 + δǫ. However, the ‘smallness’ of
δǫ depends on length L; the longer the waveguide, the smaller perturbation δǫ
must be. The linear dependence of the stability constant upon length L is thus
lost. Instead, the analysis in [4] is based on classical perturbation theory of self-
adjoint operators applied to E-, H-eigenvalue problems and corresponding adjoint
operators. By a judicious argument, we were again able to reduce the problem to
independent systems of six ODEs in z, and reduce the stability analysis to analysis
of a single second-order ODE in z. The lack of orthogonality of the (perturbed)

3In the non-dimensional setting, both permeability µ and permittivity ǫ equal one.
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eigenvectors led to the need of analyzing the (linearized) mass matrices. In the end,
we were able to obtain the same result as for the homogeneous waveguide under
the assumption of δǫ being sufficiently small in the L∞-norm only.4 However, the
analysis is based on a formal perturbation technique and is not a full proof yet.
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Recent Advances in Low Rank Matrix Equations Solvers

Valeria Simoncini

Linear matrix equations such as the Lyapunov and Sylvester equations and their
generalizations have classically played an important role in the analysis of dy-
namical systems, in control theory and in eigenvalue computation. More recently,
matrix equations have emerged as a natural linear algebra framework for the dis-
cretized version of (systems of) deterministic and stochastic partial differential
equations, and new challenges have arisen. Growing attention starts to be given
to multiterm linear matrix equations, that allow for the numerical treatment of
computationally expensive discretization techniques addressing advanced prob-
lems.

In this talk we will review some of the key methodologies for numerically solv-
ing large scale linear matrix equations, and how they arise in various settings.
In particular, we will focus on application problems associated with space-time
discretizations, which pose insurmountable difficulties to classical numerical linear
algebra solution strategies.
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Deep Barron Classes

Reinhold Schneider

(joint work with Angela Kunoth and Mathias Oster)

Barron spaces characterize approximation rates of shallow neural networks (NN),
formally without curse of dimensions. However the concepts are applicable also to
Gaussian mixture models and Gaussian wave packets with minor changes. Func-
tions in Barron spaces are supposed to have a continuous representation formula

h(x) =

∫

U

a σ(Ax + b) dµ1(a,A, b)

with a random measure µ1. The discrete versions are based on approximations of
the measure by Dirac delta’s (i.e., in the weak-* sense)

µ1 =
1

N

N∑

i=1

δai,Ai,bi , (ai, Ai, bi) ∈ U =⇒ h(x) =
1

N

N∑

i=1

ai σ(Aix+ bi) ,

where the ai, Ai, bi are sampled from the random measure µ1. Convergence can
be deduced from error estimates of Monte Carlo quadrature. More details can be
found, e.g., in [2].

In order to consider deep neural networks, we recall that a large family of deep
neural networks, e.g., ResNets, can be viewed as an Euler discretization of an ODE
ẋ(t) = v(t, x) , x(0) := x, with driving field v given as a shallow NN.

This leads to the following feedback optimal control problem. We seek to learn
a function f by deep neural networks with activation function σ. An abstract
feedback optimal control problem with measure-valued controls µ2(t) is of the
form

min
µ1,µ2

J (µ1, µ2), J (µ1, µ2) :=

∫

Rd

‖f(x)−

∫
a σ(A z(T, x) + b) dµ1(t; a,A, b)‖

2dx

such that
d

dt
z(t, x) =

∫
a σ(Az(t, x) + b) dµ2(t; a,A, b), z(0, x) = x.

This perspective provides an interesting mathematical framework to analyse the
expressivity and optimization of such networks from a continuous point of view. It
also has a strong relationship to Hamilton Jacobi Bellmann equations and Potential
Mean Field Games. The above control problem can be interpreted as an infinite
deep neural network where the last layer is of a particular form. We exploit
the ideas of Barron spaces and the corresponding representation as continuous
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interpretation of wide shallow networks and neural ODEs as infinite deep residual
network architectures.

We discuss the issue of existence and the employment of gradient schemes.
We observe that the parametrisations of the functions under consideration with
respect to the sought measures µ1, µ2 are linear. However, the set of random
measures is NOT a linear space. In particular, the definition of gradient flow
requires sophisticated analytical tools, see, e.g., [1]. Details are deferred to the talk
of Matthias Oster. He has shown the existence of minimizers to the optimal control
problem by using Prokhorov’s theorem on tight measures and some regularity
assumptions on the activation function [4].

We became aware of a recent paper with similar content we would like to men-
tion [3].
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Optimization Based Formulation and Regularization of
Inverse Problems

Barbara Kaltenbacher

(joint work with Kha Van Huynh, William Rundell)

The conventional way of formulating inverse problems such as identification of a
(possibly infinite dimensional) parameter, is via some forward operator, which is
the concatenation of the observation operator with the parameter-to-state-map for
the underlying model.

Recently, all-at-once formulations have been considered as an alternative to this
reduced formulation, avoiding the use of a parameter-to-state map, which would
sometimes lead to too restrictive conditions. Here the model and the observation
are considered simultaneously as one large system with the state and the parameter
as unknowns.

A still more general formulation of inverse problems, containing both the re-
duced and the all-at-once formulation, but also the well-known and highly versatile
so-called variational approach (not to be mistaken with variational regularization)
as special cases, is to formulate the inverse problem as a minimization problem
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(instead of an equation) for the state and parameter. Regularization can be in-
corporated via imposing constraints and/or adding regularization terms to the
objective.

A classical example of a nonstandard variational formulation of an inverse prob-
lem is electrical impedance tomography EIT in two space dimensions, as derived in
the seminal 1987 paper by Kohn and Vogelius [1]

min
σ,φ,ψ

I∑

i=1

1
2

∫

Ω

(
σ|∇φi|

2 +
1

σ
|∇⊥ψi|

2
)
dx

s.t. ψi = γi , φi = υi on ∂Ω , i = 1, . . . , I

where φ and ψ are potentials for the electric field and the current density, re-
spectively Ji = −∇⊥ψi , Ei = −∇φi , i = 1, . . . , I , and I is the number of
measured current-voltage observation pairs (γi, υi). It can be regularized, e.g., by
adding constraints on the searched for conductivity σ and relaxing the data misfit
constraint:

min
σ,Φ,Ψ

I∑

i=1

{
1
2

∫

Ω

I∑

i=1

1
2

∫

Ω

(
σ|∇φi|

2 +
1

σ
|∇⊥ψi|

2
)
dx + α

2 ‖(φi, ψ)‖
2
H1+ǫ(Ω)2

}

s.t. σ ≤ σ ≤ σ on Ω ,

υδi − τδ ≤ φi ≤ υδi + τδ ,
γδi − τδ ≤ ψi ≤ γδi + τδ ,

}
on ∂Ω , i = 1, . . . , I .

with the noise level δ ≥ ‖y− yδ‖ and a safetly factor τ > 1 Some crucial features
of the resulting problem are the following.

• The problem is formulated in Hilbert spaces X,V for design variables q, u
(easier applicability of iterative minimization methods).

• The cost function Jδ is differentiable;
• The constraints are pointwise bounds, which can be efficiently imple-
mented and are practically relevant in view of known a prior bounds on
σ;

• The model takes the form of a first order least squares formulation of the
PDE model;

• The Euler-Lagrange equation for unregularized problem yields the well-
known second order PDE model ∇ · (σ∇φi) = 0 for EIT;

These properties are shared by a formulation of the inverse problem of localiz-
ing sound sources f from observation of the pressure at sensor positions xℓ by
minimizing the sum of the norms of the residuals in the balance and observation
equations

̺0vt +∇p = f in Ω× (0, T )
1
c20
pt + ̺0∇ · v = 0 in Ω× (0, T )

̺0v · ν + κp = 0 on Γa × (0, T )
v · ν = 0 on Γr × (0, T )

yℓ = p(xℓ) , ℓ ∈ {1, . . . , L}.
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Moving into nonlinear acoustics, the model equations become, e.g.,

(1)

̺0~vt +∇p∼ + ̺0∇~v · ~v − µ∆~v +∇p0 − ~f

1
c2 p∼t +∇ · (̺0~v) +∇ · ( 1

c2 p∼~v)− κ (p∼)
2
t

y = trΣT
(p∼ + p0)

(equipped with initial and boundary conditions) and the inverse problem under
consideration is identification of the space-dependent coefficient κ(x), which ap-
pears as the crucial quantity in nonlinearity parameter tomography. The formula-
tion (1) also opens up the possibility to apply space-tine addaptivity for a numer-
ically efficient solution of the inverse problem.
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Parameter Estimation for ODEs

Roland Becker

We consider least-squares problems for parameter estimation, with an ordinary
differential equation as state equation. Let I =]0, T [ be the time interval. For the
initial value problem

ut = f(p, u), u(0) = u0(p)

with parameter dependent right-hand side and initial data, we use the variational
formulation

u ∈ X :

∫ T

0

ut · v + u(0) · v0 =

∫ T

0

f(p, u) · v + u0(p) · v0 ∀(v, v0) ∈ Y,

where X = H1(I,Rn) and Y = L2(I,Rn)× Rn, see [1, 2, 3].
The equation is discretized by a space-time Petrov-Galerkin formulation with

discontinuous test functions and continuous trial functions on a time mesh δ. The
idea is to use a global adaptive algorithm in the spirit of adaptive methods for
elliptic equations.
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We derive error estimators in a more general framework. Let Q, X and Y be
Hilbert spaces and a : Q×X × Y → R smooth and linear with respect to the last
argument. We assume

(1) a′u(p, u)(w, v) ≤ Ca′ ‖w‖X ‖v‖Y ∀p ∈ P, u, w ∈ X, v ∈ Y,

and the following Lipschitz condition: for all p ∈ P, u1, u2, w ∈ X, v ∈ Y

(2) |a′u(p, u1)(w, v) − a′u(p, u2)(w, v)| ≤ Ca′′ ‖u1 − u2‖X ‖w‖X ‖v‖Y .

The continuous and discrete problems, depending on p ∈ Q, read

(3) u ∈ X : a(p, u)(v) = l(p, v) ∀v ∈ Y and

(4) uδ ∈ Xδ : a(p, uδ)(v) = l(p, v) ∀v ∈ Yδ

with finite-dimensional subspaces Xδ ⊂ X and Yδ ⊂ Y . We suppose that for
p ∈ P , (3) and (4) define unique solutions u(p) and uδ(p), respectively. Then the
least-squares problem minimizes the cost functional

Ĵ(p) = J(u(p)) =
1

2
‖R(p)‖2Z + αLM ‖p− p‖2Q , R(p) = C(u(p)) − C,

where C : X → Z is a bounded linear observation operator, Z being a Hilbert
space, and C ∈ Z and p ∈ P are given. The discrete analogues are denoted Rδ(p)

and Ĵδ.
Following [4], where an adaptive finite element method for elliptic problems has

been analyzed, our goal is to derive error estimators for the parameter error. At
the same time we obtain estimators for the cost functional as well as the gradient,
which can be used to guide the optimization algorithm.

First we note that for any p ∈ P

Ĵ(p)− Ĵδ(p) =
1

2
‖R(p)‖2Z −

1

2
‖Rδ(p)‖

2
Z

=
1

2
‖R(p)−Rδ(p)‖

2
Z + 〈R(p)−Rδ(p), Rδ(p)〉Z

≤
1

2
‖C(u(p))− C(uδ(p))‖

2
Z + ‖C(u(p))− C(uδ(p))‖Z ‖Rδ(p)‖ .

Similarly, we obtain for any p ∈ P
∥∥∥∇Ĵ(p)−∇Ĵδ(p)

∥∥∥ ≤‖C(u(p)) − C(uδ(p))‖Z ‖C(u′(p)) − C(u′δ(p))‖Z

+ ‖C(u(p))− C(uδ(p))‖Z ‖C(u′δ(p))‖Z

+ ‖C(u′(p)) − C(u′δ(p))‖Z ‖Rδ(p)‖Z ,

where u′(p) and u′δ(p) are solutions to the tangent problems

u′ ∈ X : a′u(p, u)(u
′, v) =l′(p, v)− a′p(p, u)(v) ∀v ∈ Y and

u′δ ∈ Xδ : a′u(p, uδ)(u
′
δ, v) =l

′(p, v)− a′p(p, uδ)(v) ∀v ∈ Yδ.
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In order to bound the errors, we consider the adjoint problems

z ∈ Y : a′u(p, u)(w, z) =C(w) ∀w ∈ X and

zδ ∈ Yδ : a′u(p, uδ)(w, zδ) =C(w) ∀w ∈ Xδ.

Thanks to conformity, we have for any v ∈ Yδ
∫ 1

0

a′u(p, (1 − s)uδ + su)(u− uδ, v) ds = a(p, u)(v)− a(p, uδ)(v) = 0,

such that with (2)

a′u(p, u)(u− uδ, v) =

∫ 1

0

(a′u(p, u)(u− uδ, v)− a′u(p, (1− s)uδ + su)(u− uδ, v)) ds

≤
Ca′′

2
‖u− uδ‖

2
X ‖v‖Y

and with (1)

C(u(p)− uδ(p)) =a
′
u(p, u)(u− uδ, z)

=a′u(p, u)(u− uδ, z − zδ) + a′u(p, u)(u− uδ, zδ)

≤Ca′ ‖u− uδ‖X ‖z − zδ‖Y +
Ca′′

2
‖u− uδ‖

2
X ‖zδ‖Y .

We summarize the obtained bounds.

Theorem 1. Let

Eδ(p) :=Ca′ ‖u(p)− uδ(p)‖X ‖z(p)− zδ(p)‖Y +
Ca′′

2
‖u(p)− uδ(p)‖

2
X ‖zδ(p)‖Y ,

Fδ(p) :=Ca′ ‖u
′(p)− u′δ(p)‖X ‖z(p)− zδ(p)‖Y +

Ca′′

2
‖u′(p)− u′δ(p)‖

2
X ‖zδ(p)‖ .

Then we have

(5) |Ĵ(p)− Ĵδ(p)| ≤ E2
δ (p) + Eδ(p) ‖Rδ(p)‖Z

and ∥∥∥∇Ĵ(p)−∇Ĵδ(p)
∥∥∥ ≤Eδ(p)Fδ(p) + Fδ(p) ‖Rδ(p)‖Z + Eδ(p) ‖C(u

′
δ)‖Z .

Under the strict convexity assumption ∇2Ĵ(p) � µ > 0 for all p ∈ [p∗, p∗δ ], we have

(6)

µ
1
2 ‖p∗ − p∗δ‖P ≤Eδ(p

∗
δ)Fδ(p

∗
δ) + Fδ(p

∗
δ) ‖Rδ(p

∗
δ)‖Z + Eδ(p

∗
δ) ‖C(u

′
δ(p

∗
δ))‖Z .
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Symplectic Model Reduction of Hamiltonian Systems

Silke Glas

(joint work with Patrick Buchfink, Bernard Haasdonk)

Classical model reduction methods based on linear approximation schemes for
parameter-dependent partial differential equations (PDEs) or ordinary differential
equations are known to work very well for certain classes of problems, e.g., elliptic
PDEs. For other types of problems, e.g., for transport-dominated problems, the
decay of the Kolmogorov N-width, which describes the best-possible error of a
reduced model constructed with linear approximation schemes, can admit a slow
decay, see e.g., [7, 4].

In this contribution, which has been published in [2], we are interested to obtain
a reduced model via nonlinear approximation methods, that can overcome the
Kolmogorov N-width barrier, while at the same time preserving the symplectic
structure in the reduced model, i.e., having that the reduced model is again a
Hamiltonian system. See e.g., [6, 8, 2] for symplectic model reduction with linear
approximation methods. To this end, we first introduce the high-dimensional
Hamiltonian system: let I := (0, T ] with 0 < T < ∞ be a finite time interval and
let µ ∈ P ⊂ Rp be the parameters the equation depends on. Then, we define a
smooth function H : R2N × P → R, which is the so-called Hamiltonian function.
We seek a solution to the following problem: for given parameter µ ∈ P , given
parameter-dependent initial condition x0(µ) ∈ R2N , find x(·;µ) ∈ C1(I,R2N )
such that

d

dt
x(t;µ) = J2N∇xH(x(t;µ);µ), x(0;µ) = x0(µ),

where C1(I,R2N ) are the at least once continuously differentiable functions with
values in R2N and the matrix J2N ∈ R2N×2N is the so-called canonical Poisson
matrix given by

J2N :=

(
0N×N IN

−IN 0N×N

)
∈ R

2N×2N ,

where IN denotes the unity matrix of size N and 0N×N denotes the matrix of size
N ×N where all entries equal to zero.

The goal ofs the nonlinear approximation methods is to approximate the de-
tailed solution manifold

M :=
{
x(t;µ) ∈ R

2N
∣∣ t ∈ [0, T ],µ ∈ P

}
,
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with a nonlinear symplectic trail manifold. To achieve this approximation, we
extend the classical linear subspace model reduction methods to nonlinear ap-
proximations methods of the form

x̃(t;µ) := d(xr(t;µ)) ≈ x(t;µ),

which is an ansatz that is also known as model reduction on manifolds. In the
aforementioned definition, the function d : R2n → R2N is the reconstruction func-

tion, xr(t;µ) ∈ R2n are the reduced coordinates with n≪ N and x̃(t;µ) ∈ R2N is
the reconstructed solution. Moreover, we require d to be a symplectic map, which
means that the Jacobian Dxd(x) ∈ R2N×2n of d is a symplectic matrix for every
x ∈ R2n, i.e.,

(Dxd(x))
T
J2NDxd(x) = J2n,

in order to guarantee that the resulting reduced systems is again Hamiltonian.
Note that in the latter equation, J2n ∈ R2n×2n is the canonical Poisson matrix of
size 2n and that due to the definition of d being a symplectic map, the Jacobian
Dxd(x) has full column rank.

In order to construct the reduced order model, we introduce the time-continuous
residual of the high-dimensional model

r (t;µ) :=
d

dt
x̃(t;µ)− J2N∇xH(x̃(t;µ);µ),

with respect to the reconstructed solution x̃(t;µ). We assume that the symplectic
projection

(Dxr
d(xr(t;µ)))

+ r (t;µ)
!
= 02n,(1)

of the residual, i.e., projection with the symplectic inverse

(Dxd(x))
+ := J

T

2n (Dxd(x))
T
J2N ,

vanishes. Equation 1 can be reformulated to

d

dt
xr(t;µ) = (Dxr

d(xr(t;µ)))
+
J2N∇xH(d(xr(t;µ));µ)

= J2n (Dxr
d(xr(t;µ)))

T ∇xH(d(xr(t;µ));µ)︸ ︷︷ ︸
=∇xrHr(xr(t;µ);µ)

,

and we arrive at the reduced problem: for given parameter µ ∈ P , given reduced
initial condition sxr,0(µ) ∈ R2n, find xr(·;µ) ∈ C1(I,R2n) such that

d

dt
xr(t;µ) = J2n∇xr

Hr(xr(t;µ);µ), xr(0;µ) = xr,0(µ),(2)

with reduced Hamiltonian Hr(·;µ) : R2n → R,xr 7→ H(d(xr);µ).
For the reduced model in (2) it can be shown that for any µ ∈ P the error in

the Hamiltonian is constant for all t ∈ I

∆H(t;µ) := |H(x(t;µ);µ)−H(x̃(t;µ);µ)|,

which is due to the property that the Hamiltonian is preserved over time for the
high-dimensional model as well as for the reduced model. Additionally, we are able
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to provide stability results in the sense of Lyapunov, as well as derive a rigorous
error bound, see [1].

For the numerical experiments, we provide results for a linear wave equation
for which a slow decay of the Kolmogorov-n-width can be observed, see e.g. [3, 4].
The map d is constructed via a weakly symplectic deep convolutional autoencoder,
which is an extension of the deep convolutional autoencoder provided in [5]. For
the detailed description of the weakly symplectic deep convolutional autoencoder
and further numerical results, we refer to [1].

References

[1] P. Buchfink, S. Glas, and B. Haasdonk, Symplectic model reduction of Hamiltonian sys-
tems on nonlinear manifolds and approximation with weakly symplectic autoencoder, SIAM
Journal on Scientific Computing 45(2) (2023), A289–A311.

[2] P. Buchfink, S. Glas, and B. Haasdonk, Optimal Bases for Symplectic Model Order Re-
duction of Canonizable Linear Hamiltonian Systems, IFAC-PapersOnLine 55(20) (2022),
463–468.

[3] S. Glas, A. T. Patera, and K. Urban, A reduced basis method for the wave equation, Inter-
national Journal of Computational Fluid Dynamics 34(2) (2020), 139–146.

[4] C. Greif and K. Urban, Decay of the Kolmogorov n-width for wave problems, Applied Math-
ematics Letters 96 (2019), 216–222.

[5] K. Lee and K. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders, Journal of Computational Physics 404 (2020), 108973.

[6] B. Maboudi Afkham and J. S. Hesthaven, Structure preserving model reduction of para-
metric Hamiltonian systems, SIAM Journal on Scientific Computing 39(6) (2017,) A2616–
A2644.

[7] M. Ohlberger and S. Rave, Reduced basis methods: Success, limitations and future chal-
lenges, Proceedings of ALGORITMY (2016), 1–12.

[8] L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM Journal
on Scientific Computing 38(1) (2016), A1–A27.

Deep Barron Classes — Continued

Mathias Oster

(joint work with Angela Kunoth and Reinhold Schneider)

We seek to learn a function f by deep neural networks with activation function σ.
An abstract optimal control problem with measure-valued controls µ(t) of the form

min
µ(·)

J (µ(·)), J (µ(·)) :=

∫

Rd

‖f(x)−

∫
aσ(A z(T, x) + b) dµ(t; a,A, b)‖2dx

such that
d

dt
z(t, x) =

∫
aσ(Az(t, x) + b) dµ(t; a,A, b), z(0, x) = x

provides an interesting mathematical framework to analyse the expressivity and
optimization of such networks from a continuous point of view. This control prob-
lem can be seen as an infinite deep neural network where the last layer is of a
special form. We exploit the ideas of Barron spaces as continuous interpretation
of infinite wide shallow networks and neural ODEs as infinite deep residual network
architectures.
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We show the existence of minimizers to the optimal control problem by using
Prokhorov’s theorem on tight measures and some regularity assumptions on the
activation function [3].

Secondly, we analyse corresponding gradient flows in the space of probability
measures [1]. To this end, we introduce the Wasserstein metric on probability
measures with bounded second moment and define the notion of absolute contin-
uous curves. We define a notion of Wasserstein gradient and exemplify it on the
example of a potential functional E(µ) =

∫
V (u)dµ(u) for some twice continuously

differentiable function V . By using the equivalence of absolute continuous curves
and solutions to the continuity equation, we can state the gradient flow equations
for the optimal control problem. We sketch the proof of existence of gradient flows
based on the so-called generalized minimizing movement [3].

It was shown in [2] that, if a gradient point has a limit point within support of
all of RM , it is a global minimizer. It is not clear whether this statement holds
true in the above context.
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Computing Certain Invariants of Topological Spaces of
Dimension Three

Marc Dambrine

(joint work with F. Caubet, G. Gargantini, B. Puig, S. Zerrouq)

The optimisation of structures under different types of constraints is a core problem
in mechanical engineering. In the last decades, topological and shape optimisa-
tion techniques have provided engineers with alternative tools for designing better
performing structures. One of the main aspects that engineers have to consider
when designing a mechanical structure is the treatment of uncertainties, both in
the shape itself and in the applied loads. This paper deals with the optimisation
of elastic structures in this context of taking into account uncertainties in the
definition of the criterion to be optimised.

In a first step, I presented a worst case approach to solve the inverse homog-
enization problem taking into account geometrical uncertainties. Additive manu-
facturing allows to produce parts with a structure typical of porous media and one
may then want to produce materials with a given Hooke tensor and a given den-
sity. Unfortunately, the manufacturing process does not allow for perfect surface
finishes. These uncertainties about the actual shape must be taken into account
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when designing optimisation tools for microstructures. I have presented this ap-
proach in the spirit of the linearisation-based framework given by Allaire and
Dapogny. In other words, we try to compute a microstructure that generates the
desired homogenised tensor and that should also be insensitive to small geomet-
rical perturbations by penalising the shape gradient. Let me give more precise
statements.

Assume that, in a given macroscopic domain, there is a periodic distribution of
holes inside an isotropic elastic solid phase, with constant elasticity tensor A. The
periodicity size is denoted α > 0. Let Y = [0, 1]N be the rescaled unit periodic cell,
where N is the space dimension. Inside this unit periodicity cell, the solid domain
is the subset Ω ⊂ Y , its complement being holes with boundary Γ = ∂Ω. When
α → 0, the medium can be considered homogeneous, with an effective constant
elasticity tensor A∗. To compute this homogenized tensor A∗, one needs so-called
correctors wij ∈ H1

#(Y ) (defined below in sub-section (2.1)), corresponding to the

local displacement in the cell Y , defined for each pair (i, j) ∈ {1, 2, . . . , N}2 as the
solutions of the following cell problems





div (A (eij + ǫ (wij))) = 0 in Ω
A (eij + ǫ (wij)) · n = 0 on Γ
y 7→ wij(y) [0, 1]N − periodic

where eij =
1
2 (ei ⊗ ej + ej ⊗ ei) is a basis for symmetric tensors of order 2, n is the

normal to the boundary Γ in Ω, and ǫ (wij) =
1
2 (∇wij +

t∇wij) is the symmetric
strain tensor. The family of functions wij can be used to define the effective tensor

A∗ = [Aijkl]
N
i,j,k,l=1 in accordance with

A∗
ijkl(Ω) =

∫

Y

A (eij + ǫ (wij)) : (ekl + ǫ (wkl)) dy ∀i, j, k, l ∈ {1, 2, . . . , N}

Let us consider a given tensor G ∈ RN×N
sym describing the desired material

properties. The robust inverse homogenization problem is then: can we find a
periodic hole structure (that is a domain Ω ) such that the effective tensor is as
close as possible to G, while being the least sensitive to geometric perturbations?
Let us make this vague statement precise.

We follow the strategy of of the previous work [2] and choose the Frobenius
norm on matrices to make precise the notion of closeness between matrices and
we define the main objective J(Ω)

J(Ω) =
1

2
‖A∗(Ω)−G‖2F =

1

2

∑

1≤i,j≤d

(
A∗
ijkl(Ω)−Gijkl

)2

as a least square matching of the desired properties. For θ ∈ W1,∞
(
RN ,RN

)
a

perturbation vector of magnitude ‖θ‖W1,∞(RN ,RN ) ≤ δ, the shape gradient of J(Ω)
in the direction θ writes

J ′(Ω)(θ) =

∫

Γ

(θ · n)k(Ω)
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Here, k(Ω) is the scalar field given by

k(Ω) =
∑

1≤i,j,k,l≤N

(
A∗
ijkl(Ω)−Gijkl

)
Aǫ (φij) : ǫ (φkl) .

The robust matching criterion J2,δ(Ω) = J(Ω) + δ‖k(Ω)‖2L2(Γ) is well defined

for δ > 0 in the spirit of Allaire and Dapogny’s work. It is shape differentiable for
all Ω ∈ A(Y ), and its shape derivative is given by

J ′
2,δ(Ω)(θ) =

∫

Γ

(θ·n)


k(Ω) + δ




∑

1≤i,j≤N

Aǫ (φij) : ǫ (pij) + ∂n
(
k(Ω)2

)
+Hk(Ω)






where H is the main curvature to the boundary Γ, and the adjoint states pij are
solutions to the following problems :

∫

Ω

Aǫ (pij) : ǫ(ψ) + 2
∑

1≤k,l≤N

∫

Ω

Aǫ (φkl) : ǫ(ψ)

∫

Γ

k(Ω)Aǫ (φij) : ǫ (φkl) = 0

for all ψ ∈ H1
#(Y ).

In a second step, I presented an approach to optimize an elastic structure sub-
jected to random mechanical loading, we are interested in the solution of shape
optimization problems where the expectation of a polynomial function of the state
appears as an objective or among constraints: Find a domain Ωopt minimizing
the objective E[J (Ω,g)] over a class of admissible domains where, for all event

ω ∈ O, the state uΩ ∈
[
H1(Ω)

]d
solves:





− divσ (uΩ) = 0 in Ω,
σ (uΩ(ω))n = g(ω) on ΓN,
σ (uΩ(ω))n = 0 on Γ0,

uΩ(ω) = 0 on ΓD.

The sensitivity analysis of the objective and the constraints is studied following
the method of differentiation with respect to the shape in the sense of Hadamard.
In order to deal with the random aspects of the problem, we extend the approach
of [1] to the case of polynomial functions of degree m of the state. In particular, we
provide a deterministic expression for the expectation of the functional of interest
and its derivative, which depends only on the first m random moments of the
loading. This approach is presented for two application cases. The first one
studies the sensitivity of the variance of a quadratic functional to the shape, with
the only knowledge of the first four moments of the random variable that models
the loading of the structure. The second example is related to the approximation
of the L∞ norm of a real-valued function defined on a domain, by its Lm norm,
when m is sufficiently large. In particular, we study a problem where we look for
the elastic structure of minimum mass, for which the norm Lm of the von Mises
stress is bounded by a constant. A typical result of such a simulation is shown
in Figure 1. This approach is particularly interesting for industrial applications
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Figure 1. Example of minimization of the volume under a bound
on the expectation of the L6 norm of von Mises stress.

because one of the main concerns in the design of structures is to avoid the high
concentration of mechanical stresses, in order to avoid damage or cracking of the
object.
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Time-Dependent Problems: Nonsmoothness, Optimization and
Optimal Control

Stefan Volkwein

(joint work with Behzad Azmi, Marco Bernreuther, Luca Mechelli,
Andrea Petrocchi, Jan Rohleff)

In the first part of the talk, a nonsmooth semilinear parabolic partial differential
equation (PDE) is considered. For a reduced basis (RB) approach, a space-time
formulation is used to develop a certified a-posteriori error estimator. This error
estimator is adopted to the presence of the discrete empirical interpolation method
(DEIM) as approximation technique for the nonsmoothness. The separability of
the estimated error into an RB and a DEIM part then guides the development of
an adaptive RB-DEIM algorithm, combining both offline phases into one. Numer-
ical experiments show the capabilities of this novel approach in comparison with
classical RB and RB-DEIM approaches. The results are published in [4] which is
an extension of the elliptic case considered in [3].

In the second part of the talk we study a nonlinear elliptic-parabolic system,
which is motivated by mathematical models for lithium ion batteries; cf. [1, 12].
One state satisfies a parabolic reaction diffusion equation and the other state a
elliptic equation. The states are coupled through a strongly non-linear function,
and this makes the evaluation of online-efficient error estimates difficult. First
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we prove the well-posedness of the system, then show a possible discretization
by the RB-DEIM method and finally describe an algorithm for the evaluation
of approximated hierarchical a-posteriori error estimators based on [6]. Then, the
numerical results show good approximations and efficiencies with a relatively small
number of bases. For that reason we turn to parameter optimization problems
for the coupled elliptic-parabolic system. We utilize the RB method with the
hierarchical error estimation in an adaptive trust-region framework (cf. [2, 5,
9, 13]) and enrich the RB approximation spaces on-the-fly. Numerical examples
illustrate the efficiency of the proposed approach.

Finally, the last part of the talk optimal control problems for linear parabolic
PDEs with time-dependent coefficient functions are considered. After applying a
finite element (FE) discretization the PDEs can be described by linear time variant
(LTV) dynamical systems. The associated first-order optimality system can be
interpreted as a coupled LTV dynamical system. Due to the large-dimensional
FE discretization reduced order modeling is applied. Here, an empirical gramian
approach (cf. [10] and [7, 8]) is directly applied to the optimality system. This
strategy is efficiently tested for a multiobjective optimal control problem and a
closed-loop problem solved by a model predictive control method. The results are
compared with the ones obtained by applying a proper orthogonal decomposition
reduced order modeling. The results are published in [11].
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Model Reduction and Learning for PDE Constrained Optimization

Mario Ohlberger

(joint work with S. Banholzer, B. Haasdonk, T. Keil, H. Kleikamp, L. Mechelli,
M. Oguntola, F. Schindler, S. Volkwein, T. Wenzel)

Model order reduction for parameterized systems has gained much attention in
the last two decades. Classically, it is based on a so-called offline phase, where
reduced approximation spaces are constructed and the reduced parameterized sys-
tem is built, followed by an online phase, where the reduced system can be cheaply
evaluated in a multi-query context [1]. In this contribution we propose to overcome
this offline-online paradigm in the context of PDE-constrained optimization prob-
lems by an adaptive learning or enrichment approach where appropriate surrogate
models are constructed on-the-fly within an outer optimization loop.

Specifically, we are interested in efficient approximation strategies to solve gen-
eral PDE-constrained optimization problems of the form

(1) min
µ∈Pad

J(µ, u), such that e(u;µ) = 0 in W ′,

where J : P × V → R denotes the objective functional and e(·;µ) : V → W ′ a
residual encoding the parameter dependent state equation (PDE). P , V,W denote
suitable Banach spaces and Pad ⊂ P a set of admissible parameters.

As a general class of optimization methods to solve (1) we consider descent
methods, i.e., for suitable chosen initial value µ0 we iteratively compute

µk+1 := µk + tkdk(µk, uµk , pµk , . . . ),

where tk and dk are suitably chosen step sizes and descent directions for the
objective functional, respectively. Depending on the complexity of the problem at
hand, the descent directions may be computed from evaluations of the objective
functional, from its gradient or even from its hessian with respect to µ. Typically
this does not only involve the solution of the state equation e(uµk ;µk) = 0 in W ′,
but also the solution pµk ∈ W of the adjoint equation and possibly solutions
of additional equations to obtain sensitivities of the state and the dual solution,
etc. Hence, the efficiency of the method scales inversely with the computational
complexity to solve the state and adjoint equations.

The principal idea to speed up such methods is to construct a hierarchy ofM ap-
proximationmodels at each iteration step k, i.e., at hierarchy levelm = 1, 2, . . . ,M ,
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solving for ukm ∈ V km of

(2) ekm(ukm;µ) = 0 in (W k
m)′,

with decreasing model complexity Ck1 ≥ Ck2 ≥ . . . and increasing approximation
error ||u − uk1 || ≤ ||u − uk2 || ≤ . . . with the goal to replace as many costly model
evaluations as possible by cheaper ones while keeping a guaranteed accuracy for
the overall solution of the optimization problem. Examples of such hierarchies
of models are e.g., given by classical finite element type discretization schemes
with different grid resolutions as well as corresponding reduced order or machine
learning surrogate models.

In [2, 3, 4] we investigated such an approach for optimization problems con-
strained by second-order elliptic PDEs within a trust region optimization frame-
work. Rigorous a posteriori error estimates were derived and the convergence of the
resulting multi-fidelity approximation scheme was proven. The construction of the
model hierarchy is thereby based on reduced basis methods that are constructed
on the fly during the outer optimization loop without any pre-computation in an
offline phase. In [5] this concept has been generalized to localized model order
reduction for multi-scale problems within the framework of localized orthogonal
decomposition methods [6]. Numerical experiments have been conducted with
PyMOR1 [7] for the model reduction as well as dune-gdt2 and the DUNE frame-
work [8] for the finite element type discretizations.

Finally, in [9, 10] the concept has been extended to machine learning based sur-
rogate models for time-dependent PDE-constrained parameter optimization and
optimal control. A hierarchical framework of full order, reduced order, and ma-
chine learning models is introduced in [9] for parameterized parabolic equations
that can be queried in any context with a prescribed accuracy. The resulting hi-
erarchical model adaptively updates its hierarchy if it is queried for parameters
where either the machine learning model or the reduced order model is not accu-
rate enough. The accuracy is thereby measured by a rigorous a posteriori error
estimator that can be used by both the reduced order and machine learning model
since the machine learning model approximates in the same space as the reduced
order model. As machine learning approaches, deep neural networks were studied
as well as kernel and deep kernel methods [11]. In [10], the hierarchy only consists
of a full order model and a deep neural network based machine learning model built
from snapshots of the full order model. Therefore, a rigorous a posteriori error
analysis of the model reduction is unavailable. However, the hierarchy of available
models has still been used for rigorous certification of the overall optimization
algorithm.
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