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Abstract. Fluid mechanics is one of the classical areas in the study of partial
differential equations and has been a vast subject of research in the last
centuries. A relevant class of problems are those in which the evolution
of fluids of different nature and their interaction is described through the
dynamics of their common boundary. Such problems are called free-boundary
problems. The key topic of this workshop deals with recent advances on
the analysis of free-boundary problems which open up a whole new area of
research activity. More precisely, we will address problems as the vortex-
patch, the study of water waves, interface flows in porous media and Hele-
Shaw cells as well as atmospheric front dynamics where the formation of finite
time singularities is a fundamental open question.
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Introduction by the Organizers

The mini-workshop Free Boundary Problems arising in Fluid Mechanics organ-
ised by Diego Alonso-Orán (La Laguna), Claudia Garćıa (Granada) and Juan
J. L. Velázquez (Bonn) was attended by 17 participants including the organizers
from 12 institutions. This workshop was a nice blend of researchers working in
free boundary problems with various backgrounds and with the participation of
promising young researchers as well as known senior experts in the field. The
successfully achieved main goal of the mini-workshop was to promote scientific ex-
change of ideas and enhance collaborations and explore possible future directions
of research of this area.
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The format of the mini-workshop followed the classical spirit and tradition of
Oberwolfach which consisted in two to four one-hour talks per day, leaving enough
time for discussion and interaction between the participants. The talks were usu-
ally followed by several questions and mathematical exchange of ideas which cre-
ated spontaneous discussions around the lectured topics. We strongly believe that
these interactions where particularly fruitful and helpful for young researchers.
Incidentally we also underline a significant number of women participants as well
as researchers coming from different nationalities such as Germany, Spain, United
Arab Emirates and USA.

The mini-workshop treated three main research directions: the vortex patch
problem and existence of rotating solutions, the study of viscous fluids in free
boundary problems and the more classical problem of steady and unsteady water
waves.

Concerning the vortex patch problem, the first talk was given by Joan Mateu
who presented new results regarding global in time solutions to the 3D quasi-
geostrophic model. The main technique towards the result being the use of the
bifurcation Crandall-Rabinowitz theorem. Similar ideas, but for corotating vortex
pairs for the Euler equation where exposed by Susanna V. Haziot which explained
the use of global bifurcation arguments to study the problem. Closely, Zineb
Hassainia offered a very interesting and innovative talk about the use of KAM
theory to construct quasi-periodic doubly-connected vortex patch solutions for the
Euler equation. Although being a very technical but deep result, several questions
and intriguing discussions emerge after Zineb’s presentation. The PhD student
Bernhard Kepka closed this topic by presenting his work on rotating solutions
for the Euler-Poisson equation with external particles. Several possible ideas to
extend Kepka’s work where suggested and discussed by the attending participants.

A majority of the contributions were devoted to the theme of free boundary
problems of viscous fluids. In particular, it was analysed in the talks of Helmut
Abels, Bogdan Matioc, Francisco Gancedo, Eduardo Garćıa Juárez and Xian Liao.
Helmut Abels studied the diffusive interface for a two-phase incompressible viscous
problem. More precisely, he studied several asymptotic models and the rigorous
convergence from the diffusive interface to the sharp interface. After the talk, the
audience had an animated discussion regarding the so-called contact line problem
and the correct use of boundary value conditions. Bogdan Matioc started with a
review of the known results regarding the free boundary problem for the Stokes
equation and also presented his new result on local existence of smooth solutions.
The use of potential theory and the abstracts results for evolution equation of
Lunardy were strongly used in his approach. Francisco Gancedo presented two
different problems: the one-phase Muskat problem and the interface problem by
two fluids of different densities evolving by the linear Stokes law. He gave an overall
view of the before-mentioned problems and later an analysis regarding global in
time results in critical spaces. A similar problem known as the Peskin problem
describing the evolution of a two-dimensional elastic membrane immersed in a
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three-dimensional steady Stokes flow was treated in the talk of Eduardo Garćıa-
Juárez. To conclude this theme, the board-talk by Xian Liao studied the existence
of strong solutions and enhance dissipation phenomena for the inhomogeneous
Navier-Stokes equation. Moreover, she discussed about the existence of stationary
solutions and constructed some explicit examples.

The more classical water wave problem was addressed by: Erik Wáhlen, who
presented a double periodic steady water wave problem and constructed solutions
via an approach first derived by Lortz in the context of magnetohydrodynamics;
Sijue Wu, who introduced the classical water wave problem and showed the exis-
tence of solutions with crests angles, this is, solutions with non-C1 interfaces and
Nastasia Grubic, who complemented Sijue Wu’s talk by providing the existence of
solutions with crests whose angle changes in time.

Finally, we also had the talks by Martina Magliocca who presented some asymp-
totic free boundary models for tumor growth and well-posedness results and by
Christian Zillinger, who discussed about stratification and non-linear resonances
for the 2D Boussinesq equations. Furthermore, C. Zillinger also mentioned some
perspectives concerning echoes for the magnetohydrodynamics equations.
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Abstracts

Approximation of Incompressible Two-Phase Flows by Diffuse
Interface Models

Helmut Abels

(joint work with Mingwen Fei)

We consider the singular limit ε→ 0 of the following system:

∂tvε + vε · ∇vε − div(2ν(cε)Dvε) +∇pε = −ε div(∇cε ⊗∇cε),(1)

div vε = 0,(2)

∂tcε + vε · ∇cε = ∆cε −
1
ε2 f

′(cε),(3)

in Ω × (0, T0) together with suitable boundary and initial data. Here vε, pε are
the velocity and the pressure of the fluid mixture, cε is the order parameter,
which is related to the concentration difference of the fluids, ν(cε) describes the
viscosity in dependence on cε, and f is a suitable smooth double well potential,
e.g., f(c) = 1

8 (c
2 − 1)2. Moreover, Dvε = 1

2 (∇vε + (∇vε)
T ) and Ω ⊆ R2 is a

bounded domain with smooth boundary. We prove the convergence of (1)-(3) to
the following sharp interface limit system:

∂tv
±
0 + v±

0 · ∇v±
0 − ν±∆v±

0 +∇p±0 = 0 in Ω±(t), t ∈ (0, T0),(4)

div v±
0 = 0 in Ω±(t), t ∈ (0, T0),(5)

J2ν±Dv±
0 − p±0 IKnΓt

= −σHΓt
nΓt

on Γt, t ∈ (0, T0),(6)

Jv±
0 K = 0 on Γt, t ∈ (0, T0),(7)

VΓt
− nΓt

· v±
0 = HΓt

on Γt, t ∈ (0, T0),(8)

where ν± = ν(±1), Ω is the disjoint union of Ω+(t),Ω−(t), and Γt for every
t ∈ [0, T0], Ω±(t) are smooth domains, Γt = ∂Ω+(t), and nΓt

is the interior
normal of Γt with respect to Ω+(t). Moreover,

JuK(p, t) = lim
h→0+

[u(p+ nΓt
(p)h)− u(p− nΓt

(p)h)]

is the jump of a function u : Ω × [0, T0] → R2 at Γt in direction of nΓt
, HΓt

and
VΓt

are the curvature and the normal velocity of Γt, both with respect to nΓt
.

Furthermore, σ =
∫
R
θ′0(ρ)

2 dρ, where θ0 is the so-called optimal profile that is the
unique solution of

−θ′′0 (ρ) + f ′(θ0(ρ)) = 0 for all ρ ∈ R, lim
ρ→±∞

θ0(ρ) = ±1, θ0(0) = 0.

Theorem. Let N ≥ 3, N ∈ N, (v±
0 ,Γ) be a smooth solution of (4)-(8) together

with v±
0 |∂Ω = 0 for some T0 ∈ (0,∞). Then there are smooth cA,0 : Ω → R and

vA,0 : Ω → R2, depending on ε ∈ (0, 1), such that the following is true: Let (vε, cε)
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be strong solutions of (1)-(3) with initial values c0,ε : Ω → [−1, 1], v0,ε : Ω → R2,
0 < ε ≤ 1 and (vε, cε)|∂Ω = (0,−1), satisfying

(9) ‖c0,ε − cA,0‖L2(Ω) + ε2‖∇(c0,ε − cA,0)‖L2(Ω) + ‖v0,ε − vA,0‖L2(Ω) ≤ CεN+ 1
2

for all ε ∈ (0, 1] and some C > 0. Then there are some ε0 ∈ (0, 1], R > 0, and
cA : Ω× [0, T0] → R, vA : Ω× [0, T0] → R2 (depending on ε) such that

sup
0≤t≤T0

‖cε(t)− cA(t)‖L2(Ω) + ‖∇(cε − cA)‖L2(Ω×(0,T0)\Γ(δ)) ≤ RεN+ 1
2 ,

‖∇τ (cε − cA)‖L2(Ω×(0,T0)∩Γ(2δ)) + ε‖∂n(cε − cA)‖L2(Ω×(0,T0)∩Γ(2δ)) ≤ RεN+ 1
2 ,

‖∇(cε − cA)‖L∞(0,T0;L2(Ω)) + ‖∇2(cε − cA)‖L2(Ω×(0,T0)) ≤ RεN− 3
2

‖vε − vA‖L∞(0,T0;L2(Ω)) + ‖vε − vA‖L2(0,T0;H1(Ω)) ≤ C(R)εN+ 1
2

hold true for all ε ∈ (0, ε0] and some C(R) > 0. Here Γ(δ), Γ(2δ) are δ-, 2δ-
neighborhoods of Γ, respectively. Moreover,

lim
ε→0

cA = ±1 uniformly on compact subsets of Ω± =
⋃

t∈[0,T0]

Ω±(t)× {t},

vA = v±
0 +O(ε) in L∞(Ω× (0, T0)) as ε→ 0.

For the proof an approximate solution (vA, pA, cA) is constructed using finitely
many terms from formally matched asymptotic calculations and a novel ansatz for
a highest order term. Then the error cA− cε is estimated with the aid of a refined
spectral estimate for the linearized Allen-Cahn operator. We refer to [2] for the
details.

References

[1] H. Abels, (Non-)convergence of solutions of the convective Allen-Cahn equation, Partial
Differential Equations and Applications 3(1) (2022), Paper No. 1, 11 pp.

[2] H. Abels and M. Fei, Sharp interface limit for a Navier-Stokes/Allen-Cahn system with
different viscosities, Preprint arXiv:2201.09343 (2022), accepted for publication in SIAM
J. Math. Anal.

Steady three-dimensional water waves with vorticity

Erik Wahlén

(joint work with Douglas Svensson Seth, Kristoffer Varholm and Jörg Weber)

While the two-dimensional steady water wave problem with vorticity has received a
lot of attention, the corresponding three-dimensional problem is almost completely
open. One reason is that there is no general analogue of the stream function
formulation in 3D and the free boundary problem is generally not elliptic. The
irrotational problem can, on the other hand, be formulated as an elliptic problem
in terms of the velocity potential. In the recent work [2], we construct solutions
which are symmetric and have small nonzero vorticity. Inspired by an approach
by Lortz [1] for magnetohydrostatic equilibria we obtain small-amplitude doubly
periodic solutions bifurcating from uniform flows.
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We consider gravity-capillary waves travelling at constant speed in the x-direction.
In a moving frame of reference, the problem is given by the stationary incompress-
ible Euler equations with kinematic and dynamic boundary conditions,

(u · ∇)u = −∇(p+ gz) in Ωη,

∇ · u = 0 in Ωη,

u · n = 0 on ∂Ωη,

p = −σH on z = η,

where Ωη = {x = (x, y, z) ∈ R3 : −d < z < η(x, y)} is the unknown fluid
domain, g > 0 the gravitational constant of acceleration, σ > 0 the coefficient of
surface tension, H = ∇ · (∇η/

√
1 + |∇η|2) the mean curvature and n a normal

vector. The unknowns are the surface η and the velocity field u, from which
one can recover the pressure p. We seek solutions which are λ1-periodic in x
and λ2-periodic in y, and satisfy the symmetry conditions η(x, y) = η(−x, y) =
η(x,−y), (u1, u2, u3)(−x, y, z) = (u1,−u2,−u3)(x, y, z), (u1, u2, u3)(x,−y, z) =
(u1,−u2, u3)(x, y, z). Under the additional assumption that u1 > 0 throughout
Ωη, this has the consequence that the streamlines are also periodic. A trivial
family of solutions is given by uniform flows u = (c, 0, 0) with a flat surface η = 0.
In fact, any shear flow (U(y, z), 0, 0) with U periodic and even in y is a solution.
This means that if we linearise the above problem directly without imposing further
restrictions, we face the challenge of an infinite-dimensional kernel. In order to
suitably restrict the solution space, we follow Lortz’ approach and use a Clebsch
type representation of the vorticity ω := ∇ × u of the form ω = ∇H × ∇τ ,
where H = 1

2 |u|
2+ gz+ p is the Bernoulli function and τ(x) the travel time along

a streamline from the symmetry plane {x = 0} to the point x. The Bernoulli
function is constant along streamlines. So is q(x), the total travel time along the
streamline passing through x form the symmetry plane {x = 0} to the shifted plane
{x = λ1}. It is therefore natural to impose a functional relationship H = h(q)
between the two. This has the effect of making the kernel finite-dimensional.

The problem is now reformulated as

∇× u = h′(q)∇q ×∇τ in Ωη,

∇ · u = 0 in Ωη,

u · n = 0 on ∂Ωη,

1
2 |u|

2 + gη − σH = h(q) +Q on z = η,

where Q is the Bernoulli constant, and τ = τ [u, η] is defined by u · ∇τ = 1,
τ |x=0 = 0 while q = τ(· + λ1ex) − τ . Note that the uniform flows are solutions
to this problem for any h (since q is constant), whereas non-uniform shear flows
require the specific choice h(q) = λ21/(2q

2). Due to the hyperbolic nature of the
equations defining τ and q, they are not Fréchet differentiable in the classical sense
with respect to u and η, but only if one allows some loss of spatial regularity. This
precludes the use of the Crandall–Rabinowitz local bifurcation theorem. However,
the problem is sufficiently ‘tame’ that an adaptation which allows for some loss of
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regularity works. The issue that u depends implicitly on η through its domain of
definition can be handled by the standard trick of ‘flattening’ the domain.

Theorem ([2]). Assume that h ∈ Ck,γ(R), k > 4, γ ∈ (0, 1) with ‖h‖k,γ ≪ 1 and

that k = 2π(λ−1
1 , λ−1

2 ) satisfies the dispersion relation g+σ|k|2−
c2
∗
k2
1

|k| coth(|k|d) =

0, and that there are no other solutions k ∈ (2π/λ1)Z×(2π/λ2)Z to the dispersion
relation except for reflections of k. Then there is a family of periodic and symmet-

ric solutions (u(t), η(t), c(t)) ∈ Ck,γ(Ωη(t)) × Ck+1,γ(R) × R, |t| < ε, bifurcating
from a uniform flow at t = 0, and satisfying

η(t)(x, y) = t cos

(
2π

λ1
x

)
cos

(
2π

λ2
y

)
+ o(t),

in Ck,γ . Under the additional hypothesis h′(λ1/c∗) 6= 0, ω(t) 6= 0 for 0 < |t| ≪ 1.

The fact that all non-uniform shear flows have the same h indicates that the
above approach does not in that case. Going back to the original formulation of
the steady water wave problem we show in a work in progress that there are no
C2 curves of symmetric solutions bifurcating from non-uniform flows. In fact, the
infinite-dimensional kernel of the linearisation implies that the nonlinearities have
to satisfy infinitely many compatibility conditions, and one can show that these
are not satisfied at quadratic order unless the underlying flow is uniform.

References

[1] D. Lortz. Über die Existenz toroidaler magnetohydrostatischer Gleichgewichte ohne Rota-
tionstransformation, Z. Angew. Math. Phys., 21 (1970), 196–211.

[2] D. S. Seth, K. Varholm and E. Wahlén, Symmetric doubly periodic gravity-capillary waves
with small vorticity. Preprint, arXiv:2204.13093.

Time periodic solutions for the 3D Quasigeostrophic model

Joan Mateu

(joint work with C. Garćıa and T. Hmidi)

This note is related with the construction of time periodic solutions for the inviscid
3D quasi-geostrophic model. In the papers [2] and [3] is proved the existence of
non-trivial rotating patches, obtained by suitable perturbations of stationary so-
lutions. These stationary solutions are given by generic revolutions shapes around
the vertical axis. The construction of these special solutions is done using some
ideas introduced by Burbea in last century [1]. More precisely, using bifurcation
theory through the Crandall-Rabinowitz Theorem, rotating patches are obtained
for the simply connected case and for the doubly connected case.

The quasi–geostrophic system is described by the potential vorticity q which is
merely advected by the fluid. In fact, we consider a transport equation given by
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



∂tq + u∂1q + v∂2q = 0, (t, x) ∈ [0,+∞)× R
3,

∆ψ = q,
u = −∂2ψ, v = ∂1ψ,
q(0, x) = q0(x).

(1)

This system is a model commonly used in the ocean and atmosphere circulations
to describe the vortices and to track the emergence of long–lived structures.

The main question to investigate is the existence of non trivial relative equilibria
close to the stationary revolution shapes r0.

We look for smooth domains D with the following parametrization,

D =
{
(reiθ, cos(φ)) : 0 ≤ r ≤ r(φ, θ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

}
,

where the shape is sufficiently close to a revolution shape domain, meaning that

r(φ, θ) = r0(φ) + f(φ, θ),

with small perturbation f (in a given function space).
The result obtained for the simply connected case follows, if some conditions

are required for the initial profile r0, and denoted throughout this note by (H).
These conditions are

(H1) r0 ∈ C2([0, π]), with r0(0) = r0(π) = 0 and r0(φ) > 0 for φ ∈ (0, π).
(H2) There exists C > 0 such that

∀φ ∈ [0, π], C−1 sinφ ≤ r0(φ) ≤ C sin(φ).

(H3) r0 is symmetric with respect to φ = π
2 , i.e., r0

(
π
2 − φ

)
= r0

(
π
2 + φ

)
, for

any φ ∈ [0, π2 ].

Under these condition the main result reads as follows.

Theorem. Assume that r0 satisfies the assumptions (H). Then for any m ≥ 2,
there exists a curve of non trivial rotating solutions with m-fold symmetry to the
equation (1) bifurcating from the trivial revolution shape associated to r0 at some
angular velocity Ωm.

For the doubly connected case we also can prove the existence of a family of
rotating domains which has been obtained bifurcating form an stationary doubly
connected revolution shape.

References

[1] J. Burbea, Motions of vortex patches, Lett. Math. Phys. 6(1) (1982), 1-16.
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The capillarity driven Stokes flow as a small viscosity limit

Bogdan-Vasile Matioc

(joint work with Georg Prokert)

The two-dimensional quasistationary Stokes flow of a fluid layer Ω(t) of infinite
depth driven by surface tension at the free boundary Γ(t) = ∂Ω(t) is governed by
the following system of equations

(1a)

µ∆v −∇p = 0 in Ω(t),
div v = 0 in Ω(t),

Tµ(v, p)ν = σκν on Γ(t),
(v, p)(x) → 0 for |x| → ∞,

Vn = v · ν on Γ(t)





for t > 0, where the interface Γ(t) is given as the graph of a map f(t, ·) : R −→ R,
that is

Ω(t) := {x = (x1, x2) ∈ R
2 : x2 < f(t, x1)},

Γ(t) := ∂Ω(t) := {(ξ, f(t, ξ)) : ξ ∈ R}.

Additionally, the interface Γ(t) is assumed to be known initially

f(0, ·) = f (0).(1b)

In (1a), v = v(t) : Ω(t) −→ R2 and p = p(t) : Ω(t) −→ R are the velocity
and the pressure of the Newtonian fluid, ν is the unit exterior normal to ∂Ω, κ
denotes the curvature of the interface, and Tµ(v, p) = (Tµ,ij(v, p))1≤i, j≤2 is the
stress tensor which is given by

Tµ(v, p) := −pE2 + µ
[
∇v + (∇v)⊤

]
, (∇v)ij := ∂jvi.

Moreover, Vn is the normal velocity of the interface Γ(t), a·b denotes the Euclidean
scalar product of two vectors a, b ∈ R2, E2 ∈ R2×2 is the identity matrix, and the
positive constants µ and σ are the dynamic viscosity of the fluid and the surface
tension coefficient at the interface Γ(t), respectively.

In the recent reference [1] we have shown that this problem is well-posed and
that it can be rigorously identified as the singular limit of the corresponding two-
phase Stokes flow

(2a)

µ±∆w± −∇q± = 0 in Ω±(t),
divw± = 0 in Ω±(t),

[w] = 0 on Γ(t),
[Tµ(w, q)]ν = −σκν on Γ(t),
(w±, q±)(x) → 0 for |x| → ∞,

Vn = w± · ν on Γ(t)





for t > 0 and

f(0, ·) = f (0),(2b)



Mini-Workshop: Free Boundary Problems Arising in Fluid Mechanics 619

with µ− = µ fixed, when the viscosity coefficient µ+ vanishes. In (2a) it is again
assumed that Γ(t) is the graph of a function f(t, ·) : R −→ R,

Ω±(t) := {x = (x1, x2) ∈ R
2 : x2 ≷ f(t, x1)},

and ν is the unit exterior normal to ∂Ω−(t). Moreover, w±(t) and q±(t) rep-
resent the velocity and pressure fields in Ω±(t), respectively, and [w] (respec-
tively [Tµ(w, q)]) is the jump of the velocity (respectively stress tensor) across the
moving interface.

We point out that the limit µ+ → 0 in (2) is singular because the ellipticity of
the boundary value problem is lost in this limit.

It is shown in [2, Theorem 1.1] that, given f (0) ∈ Hs(R), s ∈ (3/2, 2) there
exists a unique maximal solution (fµ+ , w±

µ+ , q
±
µ+) to (2) such that

• fµ+ = fµ+(·, f (0)) ∈ C([0, T+,µ+), Hs(R)) ∩C1([0, T+,µ+), Hs−1(R)),

• w±
µ+(t) ∈ C2(Ω±(t)) ∩ C1(Ω±(t)), q±µ+(t) ∈ C1(Ω±(t)) ∩ C(Ω±(t)) for all

t ∈ (0, T+,µ+),

• w±
µ+(t)|Γ(t) ◦ Ξf(t) ∈ H2(R)2 for all t ∈ (0, T+,µ+),

where T+,µ+ = T+,µ+(f (0)) is the maximal existence time and Ξf(t)(ξ) := (ξ, f(t, ξ))

for ξ ∈ R. As H3/2(R) is a critical spaces for both problems (1) and (2), this well-
posedness result covers all subcritical L2-Sobolev spaces.

In [1, Theorem 1.1] it is shown that also the one-phase problem is well-posed
in the same setting.

Theorem ([1, Theorem 1.1]). Let s ∈ (3/2, 2) be given. Then, the following
statements hold true:

(i) (Well-posedness) Given f (0) ∈ Hs(R), there exists a unique maximal so-
lution (f, v, p) to (1) such that

• f = f(·; f (0)) ∈ C([0, T+), H
s(R)) ∩ C1([0, T+), H

s−1(R)),

• v(t) ∈ C2(Ω(t))∩C1(Ω(t)), p(t) ∈ C1(Ω(t))∩C(Ω(t)) for all t∈ (0, T+),
• v(t)|Γ(t) ◦ Ξf(t) ∈ H2(R)2 for all t ∈ (0, T+),

where T+ = T+(f
(0)) ∈ (0,∞] is the maximal existence time. Moreover,

the set

M := {(t, f (0)) : f (0) ∈ Hs(R), 0 < t < T+(f
(0))}

is open in (0,∞)×Hs(R), and [(t, f (0)) 7−→ f(t; f (0))] is a semiflow on
Hs(R) which is smooth in M.

(ii) (Parabolic smoothing)
(iia) The map [(t, ξ) 7−→ f(t, ξ)] : (0, T+)× R −→ R is a C∞-function.

(iib) For any k ∈ N, we have f ∈ C∞((0, T+), H
k(R)).

(iii) (Global existence) If

sup
[0,T ]∩[0,T+(f(0)))

‖f(t)‖Hs <∞

for each T > 0, then T+(f
(0)) = ∞.
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Moreover, the one-phase problem is rigorously identified as the limit of the
two-phase problem when µ+ → 0.

Theorem ([1, Theorem 1.2]). Let s ∈ (3/2, 2) and f (0) ∈ Hs(R) be given.
Let (f(·; f (0)), v, p) denote the maximal solution to (1) identified in Theorem and
choose T < T+(f

(0)). Then, there exist constants ε > 0 and M > 0 such that for
all µ+ ∈ (0, ε], we have T < T+,µ+(f (0)) and

∥∥f(·; f (0))− fµ+(·; f (0))
∥∥
C([0,T ],Hs(R))

+
∥∥∥ d
dt

(
f(·; f (0))− fµ+(·; f (0))

)∥∥∥
C([0,T ],Hs−1(R))

≤Mµ+.
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Global bifurcation for co-rotating vortex patches

Susanna V. Haziot

(joint work with Claudia Garćıa)

We will consider steady (V-states) rotating vortex patch solutions to the two-
dimensional Euler equations: the patches are rotating at constant angular velocity
Ω without changing shape. We consider rotating configurations of two point vor-
tices. When perturbatively desingularized, one obtains pairs of symmetric patches
with same circulations (see [3]). Most of the work done on V-state vortex patches
is of perturbative nature: the solutions obtained are very close to the explicit so-
lutions they are bifurcating from. However, numerics suggest that interesting and
beautiful solutions form as one moves further away from the trivial solutions.

The first global bifurcation result for the simple patch bifurcating from the disk
is due to Hassainia, Masmoudi, and Wheeler in [2]. They obtain a global curve
which limits to a vanishing of the angular fluid velocity. We construct a global
curve of solutions for the corotating vortex pairs. Since in our case the explicit
solutions to the problem are points rather than patches, the formulation of the
problem contains a singularity, the main major difficulty of this problem.

The two-dimensional incompressible Euler equations expressed in the vorticity
form are given by

(1) ∂tω + (u · ∇)ω = 0, u = ∇⊥ψ, ∆ψ = ω.

Here u denotes the velocity field, ψ the stream function and ω the vorticity. We
identify (x, y) ∈ R2 with z = x+ iy ∈ C. We seek solution of (1) which satisfy the
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initial data

(2) ω0(z) := ω(0, z) =
1

ε2π
(χD1(0)(z) + χD2(0)(z)),

where the Dm(t) are disjoint simply connected regions. If this solution takes the
form ω(t, z) = ω0(e

−itΩz), we get a rotating vortex pair (D1, D2) about the origin
(0, 0) with angular velocity Ω. We choose the center of mass of D1 to be (l, 0) for
some l ∈ R and we set D2 := −D1. By moving to a frame of reference rotating
at this same speed Ω, the regions appear to be stationary. By expressing (1) in
terms of the relative stream function Ψ = ψ0−

1
2Ω|z|

2 we for Ψ ∈ C1(C) then get

∆Ψ =
1

ε2π
χD1 +

1

ε2π
χD2 − 2Ω,(3a)

∇(Ψ + 1
2Ω|z|

2) → 0, as |z| 7→ ∞, and Ψ = cm, on ∂Dm,(3b)

for some constants cm, m = 1, 2. Since both the Dm and the function Ψ are
unknowns, this is a free boundary problem. We obtain the following result.

Theorem. There exists a continuous curve C of corotating vortex patch solutions
to (3), parameterized by s ∈ (0,∞). The following properties hold along C:

(i) (Bifurcation from point vortex) The solution at s = 0 is a pair of points
z1, z2 lying on the horizontal axis at a distance l from each other.

(ii) (Limiting configurations) As s→ ∞

(4) min

{
min

z∈∂D1

ε∇Ψ(z) ·

(
z − l

|z − l|

)
, min
zm∈∂Dm

|z1 − z2|

}
→ 0

(iii) (ε bounded away from 0) The value of the parameter ε(s) is bounded away
from 0 for all s away from the local curve.

(iv) (Analyticity) For each s > 0, the boundary ∂Dm is analytic.
(v) (Graphical boundary) For each s > 0, the boundary of the patch can be

expressed as a polar graph.

The first term in (4) indicates that there are points on the boundaries of the
patches for which the angular fluid velocity becomes arbitrarily small. The factor
of ε is necessary in order to catch the domains in (3), where the vorticity (for the
purpose of the desingularization of point vortices) has been normalized to 1/(πε2).
The slightly complicated formulation of angular fluid velocity comes from the fact
that the patches are not centered at the origin. The formation of a corner or of a
cusp would require that ε∇Ψ = 0 at a given point on the boundary of the patches
and numerical evidence indicates that this does in fact happen. The second term
in (4) vanishes if and only if the boundaries ∂Dm of the two patches intersect at
some point z. Numerical work [4] suggests that the limiting scenario consists of the
two patches intersecting at a corner with a 90◦ angle. This conjecture, also known
as the Overman conjecture, would imply that the two terms in (4) would occur
simultaneously. The core of the proof relies on the following rigidity theorem.

Theorem. If ω0 = (πε2)−1(χD1 + χD2) is a solution to the vortex pair problem
then Ω ∈ (0, 1/(2πε2)). Moreover, if ε ≤ l/10 then |Ω| . |l|−2, where l is the
distance of the center of the patch D1 to the y-axis.
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The first part of the theorem is an adaptation of the result in [1] to the two-
patch setting. The second part is new with the striking property that it provides
uniform bounds on Ω regardless of where along the global curve the solution lies.
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[1] J. Gómez-Serrano, J. Park, J. Shi, Y. Yao Symmetry in stationary nd uniformly rotating
solutions of active scalar equations, Duke Math. J. 170 (2021), no.13, 2957–3038.

[2] Z. Hassainia, N. Masmoudi, M.H. Wheeler Global bifurcation of rotating vortex patches,
Comm. Pure Appl. Math. 73 (2020), no.9, 1933–1980.

[3] T. Hmidi, J. Mateu Existence of corotating and counter-rotating vortex pairs for active
scalar equations, Comm. Math. Phys. 350 (2017), no.2, 699–747.

[4] H.M. Wu, E.A. Overman II, N.J. Zabusky Steady-state solutions of the Euler equations in
two dimensions:rotating and translating V-states with limiting cases. I. Numerical algo-
rithms and results, J. Comput. Phys. 53 (1984), no.1, 42–71.

On the role of viscosity stratification

Xian Liao

(joint work with Zihui He, Christian Zillinger)

We investigate the role played by the viscosity stratification in the theory of
existence, regularity and stability for the two-dimensional (inhomogeneous) in-
compressible fluids. The global-in-time wellposedness for the two-dimensional in-
homogeneous incompressible Navier-Stokes equations in the presence of density-
dependent viscosity coefficient with large variation is still open. Instead, we pro-
pose to consider the stationary model, and also an evolutionary model with con-
stant density but variable viscosity coefficient.

The stationary model. We are first concerned with the two-dimensional sta-
tionary inhomogeneous incompressible Navier–Stokes equations

(1)

{
div (ρu ⊗ u)− div (µSu) +∇Π = 0,

divu = 0, div (ρu) = 0.

The unknown density function ρ ≥ 0, the unknown velocity vector field u ∈ R2 and
the unknown pressure Π ∈ R depend on the spatial variable (x, y) ∈ R2. In the
viscosity term −div (µSu), Su = ∇u+(∇u)T denotes the (symmetric) deformation
strain tensor, and the variable viscosity coefficient depends continuously on the
unknown density function

µ = b(ρ) = b(ρ(x, y)) ∈ [µ∗, µ
∗], 0 < µ∗ ≤ µ∗.

Observe that

• The pair of the following (Frolov) form solves (1)2 automatically:

(2) (ρ, u) = (η(Φ),∇⊥Φ), η ∈ L∞(R; [0,∞))
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• Applying ∇⊥· to (1)1 gives the following equation for stream function Φ:

LµΦ = ∇⊥ · div (ρ∇⊥Φ⊗∇⊥Φ),(3)

where Lµ denotes the fourth-order elliptic operator with µ = (b ◦ η)(Φ):

Lµ = (∂x2x2 − ∂x1x1)µ(∂x2x2 − ∂x1x1) + (2∂x1x2)µ(2∂x1x2).

Theorem ([1]). Let η ∈ L∞(R; [0,∞)), b ∈ C(R; [µ∗, µ
∗]), 0 < µ∗ ≤ µ∗ be given.

Let Ω ⊂ R2 be a bounded simply connected C1,1 domain, and u0 ∈ H
1
2 (∂Ω;R2)

with
∫
∂Ω
u0 · n = 0 be the boundary value condition. Then

• There exists a weak solution (ρ, u) of form (2), with u ∈ H1(Ω;R2), of the
boundary value problem for (1).

• If (ρ, u) is a weak solution of (1) with u0 ∈ W 1,∞(∂Ω), and the viscosity
coefficient µ is e.g. pieceweise-constant, then the weak solution satisfies

∇u ∈ Lp(Ω) and Pdiv (µSu) ∈ Lp(Ω), ∀p ∈ [2,∞),

where P denotes the Leray-Helmholtz projector on div-free vectors.
• There exist explicit solutions of form (2) for (1), e.g. shear flows: ρ =

ρ(y), u =

(
U(y)
0

)
, which satisfies

(4) ∂y(µ(y)∂yU) = const.

Remark. One observes that the assumption with positive lower and upper bounds
on µ is enough for existence results ∇u ∈ L2, while one needs some further
regularity assumption on µ to arrive at ∇u ∈ Lp, ∀p ∈ (2,∞): Otherwise,
∃µ : Ω → {K, 1

K }, K > 1, s.t. LµΦ = 0 has a solution with ∇u 6∈ Lp, ∀p ≥ 2K
K−1 .

The solution (4) implies explicitly the inheritance of the irregularity from µ to ∇u.

The evolutionary model. We consider the two-dimensional evolutionary Navier-
Stokes equations with constant density but variable viscosity coefficient:

{
∂tu+ u · ∇u− div (µSu) +∇Π = 0,

div v = 0,
(5)

where µ = µ(y) ∈ C2(R;R+) is a given stratified viscosity profile. Let u =(
U(y)
0

)
, (x, y) ∈ T× R be a shear flow of (5) such that

µ∂yU = const.(6)

Notice that (6) is a special case of (4).

Theorem ([2]). Suppose also that µ only varies gradually, in the sense that

‖(lnµ)′‖W 1,∞(R) < 0.0001.

The linearized equations around the steady flow (in vorticity formulation)

∂tω + U∂xω = U ′′u2 + div (µ∇ω)− div (µ′∇u1)− µ′′∂xu2,

(
u1
u2

)
= −∇⊥(−∆)−1ω,
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are stable and exhibit enhanced dissipation: There exists a time-dependent family
of operators A(t) with

0.1‖ω(t)‖2L2(T×R,U ′dxdy) ≤ ‖A(t)ω(t)‖2L2(T×R,U ′dxdy) ≤ ‖ω(t)‖2L2(T×R,U ′dxdy),

such that, if the x-average of the initial vorticity vanishes:
∫
T
ω0dx = 0, then for

all times t > 0 it holds that

d

dt
‖A(t)ω(t)‖2L2(T×R,U ′dxdy) ≤ −0.0001‖(µ(U ′)2))1/6A(t)ω‖2L2(T×R,U ′dxdy).

Remark. Let µU ′ = σ > 0 be a constant, then the effective dissipation rate

(
µ(U ′)2

) 1
3 =

σ
2
3

µ
1
3

increases as µ decreases while decreases as µ increases.
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On Resonance Chains in the Boussinesq Equations

Christian Zillinger

We consider the evolution of a two-dimensional, incompressible, heat conducting
viscous fluid in a periodic channel as modeled by the Boussinesq equations:

∂tv + v · ∇v +∇p = ν∆v + θe2,

∂tθ + v · ∇θ = κ∆θ,

div(v) = 0,

(t, x, y) ∈ R+ × T× R.

These equations are a system of the Navier-Stokes or Euler equations and an
advection diffusion equation and are coupled by a buoyancy term θe2, which causes
hotter fluid to rise above colder fluid.

This system of equations includes several interacting (de)stabilizing effects:

• Layers of hotter fluid below colder fluid give rise to Rayleigh-Bénard in-
stability.

• Shear flows in the fluid, chosen here as Couette flow v = (y, 0), can lead
to mixing and the appearance of very fine scales in the dynamics.

• The interaction of mixing and viscous effects leads to dissipation of kinetic
energy on time scales much faster than without mixing, a phenomenon
known as enhanced dissipation.
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As a first main result we show that in the setting of purely viscous dissipation
(κ = 0, ν > 0) mixing enhanced dissipation is sufficiently strong to suppress
Rayleigh-Bénard instability for the linearized problem and establish stability in
Sobolev regularity [3, 2]. However, in the nonlinear problem even in the stably
stratified case new instabilities appear, which limit regularity to a suitable Gevrey
class (i.e. between C∞ and analytic) [5]. We show that this instability, which
is commonly considered a purely non-linear effect, can already be captured in
the linearized problem around non-trivial low frequency solutions, which we call
traveling waves. While viscosity suppresses (chains of) so-called fluid echoes, as
in the Euler equations, the system structure causes thermal fluctuations to induce
resonances in the velocity: the equations exhibit thermal echoes [1].

Finally, we consider the inviscid Boussinesq equations in the stably stratified
regime, where stratification and shear flow give rise to algebraic instabilities. The
interaction between these instabilities and fluid echoes as captured in terms of
traveling waves is shown to exhibit highly frequency-dependent norm inflation. In
particular, we match the upper bounds of nonlinear estimates [6] for a specific
choice of frequencies and establish improved bounds for both lower and higher
frequencies [4].
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Asymptotic models for tumors growth

Martina Magliocca

(joint work with Rafael Granero-Belinchón)

The aim of this talk is deriving asymptotic models describing the growth of vas-
cular tumors under the action of inhibitors, i.e. tumors that form from cells that
make blood vessels or lymph vessels. Note that vascular tumors grow faster than
avascular ones.

The mathematical point of view we assume is the free boundary one, see [1, 2].
These results are part of an ongoing project of R. Granero-Belinchón (Univer-

sidad de Cantabria) and M. Magliocca.
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The tumor model we consider can be seen as a region Ω(t) with free boundary
Γ(t) and surrounded by the vacuum, whose growth is regulated by an externally
supplied nutrient σ = σ(t, x) (oxygen, glucose). We assume that only proliferating
cancer cells constitute Ω(t), and that a certain inhibitor β = β(t, x) ”fights against”
the tumor propagation. Both the nutrient σ and the inhibitor β verify reaction-
diffusion equations.

We assume that tumor receives constant nutrient supply from the tumor surface
and the pressure on the tumor surface is proportional to the mean curvature to
maintain the cell-to-cell adhesiveness of the tumor. This assumption is called
surface tension effect.
Cells move according to pressure gradients p created by the birth and death of
cells, and the velocity vector of the tumor u is assumed to follow Darcy’s law.

We study the case in which the boundary Γ(t) is a graph. In particular,we
assume that

Ω(t) =
{
x ∈ R

2, x1 ∈ LT, −∞ < x2 < h(x1, t)
}
,

Γ(t) =
{
x ∈ R

2, x1 ∈ LT, x2 = h(x1, t)
}
,

being T = [−π, π] the one-dimensional torus with periodic boundary conditions.

Once the model has been constructed, we first pass to the dimensionless formu-
lation of the system. We later apply a time dependent diffeomorphism to this
dimensionless problem in order to obtain an equivalent formulation over a fixed
boundary domain Ω.
Then, our main goal consists in finding the equation verified by

∂th0 + ε∂th1,

being h0 and εh1 the first two terms of the expansion h =
∑

n≥0 ε
nhn.
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The Peskin Problem: Immersed Elastic Interfaces

Eduardo Garćıa-Juárez

(joint work with Po-Chun Kuo, Yoichiro Mori, Robert Strain)

The 2D Peskin problem models the dynamics of a closed elastic filament immersed
in a two-dimensional incompressible fluid. Since the recent breakthrough works
[2] and [3], which provided the strong solution theory together with the global
behavior, the problem has attracted a lot of attention. We introduce its three-
dimensional counterpart: consider a three-dimensional incompressible Stokes fluid
that interacts with an elastic closed two-dimensional membrane in R3, [1].

An important feature of the Peskin problem is that it admits a Boundary In-
tegral formulation. The problem can be written as an evolution equation for X,
the deformation map from the sphere to the evolving membrane:

(1)
∂tX(x̂) =

∫

S2

G(X(x̂)−X(ŷ))∇S2 ·
(
T (|∇S2X(ŷ)|)

∇S2X(ŷ)

|∇S2X(ŷ)|

)
dµS2(ŷ),

X(x̂)|t=0 = X0(x̂),

where G(x) is the Stokeslet tensor in R3:

G(x) =
1

8π

( 1

|x|
I3 +

x⊗ x

|x|3

)
.

We have suppressed the dependence of X on t to avoid cluttered notation. It will
be sometimes convenient in the analysis to work with coordinates. Let θ = (θ1, θ2)

be a (local) coordinate system on S2 and let x̂ = X̂(θ) ∈ S2 ⊂ R3 be the point

on S2 corresponding to θ. Let X(θ) = X(X̂(θ)) ∈ Γ ⊂ R3 be the position on Γ

corresponding to the coordinate point θ (see figure below). If x̂ = X̂(θ), we will
write X(x̂) and X(θ) in an abuse of notation. Then, after integration by parts
and choosing an isothermal coordinate system, equation (1) becomes

∂tX(θ) = −p.v.

∫

R2

∂ηi
G(X(θ)−X(η))F̃ el,i(X)(η)dη1dη2,(2)

where we denote

F̃ el,i(X)(η) =
T (λ(η))

λ(η)
∂ηi

X(η), λ(η) =
√
tr(ĝ−1(η)g(η)).

We will show that the problem is well-posed. We will first show the existence
and uniqueness of strong solutions with initial data in little Hölder spaces, h1,γ(S2),
γ ∈ (0, 1), defined as the completion of the set of smooth functions in C1,γ(S2).

Theorem. Consider the 3D Peskin problem (1) with initial data satisfying X0 ∈
h1,γ(S2), and the arc-chord condition:

|X0|∗ = inf
x̂6=ŷ

x̂,ŷ∈S
2

|X(x̂)−X(ŷ)|

|x̂− ŷ|
> 0,
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and T ∈ C3 such that T > 0, dT /dλ ≥ 0. Then, there exists some time T > 0
such that (1) has a unique strong solution X,

X ∈ C([0, T ];h1,γ(S2)) ∩C1([0, T ];hγ(S2)).

Next, we will show that the solutions become smooth instantly in time, and
hence are classical solutions.

Theorem. Let X be the solution to the Peskin problem with initial data X0 ∈
h1,γ(S2) constructed in the previous Theorem . Then, for any α ∈ (0, 1), it holds
that X ∈ C1((0, T ];C3,α(S2)). Moreover, for any 3 ≤ n ∈ N and α ∈ (0, 1),
assuming that T ∈ Cn,α, it holds that X ∈ C1((0, T ];Cn+1,β(S2)), for any β < α.
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Global-in-time dynamics for Muskat and two-phase Stokes
gravity waves

Francisco Gancedo

(joint work with H. Dong, R. Granero-Belinchón, H.Q. Nguyen and E. Salguero)

We consider the evolution of an interface evolving by an incompressible flow. On
the one hand, we study the one-phase Muskat problem, where the fluid is filtered
in a porous medium. In the gravity-stable case, we show that initial Lipschitz
graphs of arbitrary size provide global-in-time well-posedness. On the other hand,
we study the interface dynamics given by two fluids of different densities evolving
by the linear Stokes law. We show stability to the flat stable case and exponential
growth in the unstable regime.
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1. Muskat. The Muskat problem models the evolution of the interface of a
two-diemnsional incompressible fluid

∇ · u(x, y, t) = 0, (x, y) ∈ R
2, t ≥ 0,

evolving by Darcy’s law Darcy’s law (1856)

(1) µ(x, y, t)u(x, y, t) = −∇p(x, y, t)− ρ(x, y, t)(0, 1),

with µ viscosity, p pressure, and ρ. The gravity constant g and permeability of
the medium κ are taken equal to one for the sake of simplicity. The fluid occupy
the domain

D(t) = {(x, y) ∈ R
2, y < f(x, t); f : T× [0, T ] → R}

having constant density and viscosity as follows

(µ, ρ)(x, y, t) =

{
(µ, ρ), (x, y) ∈ D(t),

(0, 0), (x, y) ∈ R
2
rD(t),

with horizontally periodic moving free boundary f(x, t).
Using potential theory, it is possible to find the evolution equation for f given

by

∂tf = −
ρ

µ
G(f)f,

with the operator G(f)g (Dirichlet-Neumann) given by

G(f)g(x) =
1

4π
p.v.

∫

T

sin(x−x′)+sinh(f(x)−f(x′))∂xf(x)

cosh(f(x)−f(x′))−cos(x−x′)
θ(x′)dx′,

and θ : T → R satisfies

1

2
θ(x) +

1

2π
p.v.

∫

T

sinh(f(x)−f(x′))−sin(x−x′)∂xf(x)

cosh(f(x)−f(x′))−cos(x−x′)
θ(x′)dx′=∂xg(x).

The main result is the following

Theorem (H. Dong, G., H.Q. Nguyen-21). For all f0 ∈W 1,∞(T), there exists

f ∈ C(T× [0,∞)) ∩ L∞([0,∞);W 1,∞(T)), ∂tf ∈ L∞([0,∞);L2(T))

such that f |t=0 = f0, f satisfies One-Fluid-Muskat in L∞
t L

2
x, and

‖f(t)‖W 1,∞(T) ≤ ‖f0‖W 1,∞(T) a.e. t > 0.

Moreover, f is unique in its class (viscosity solution).

It provides the first construction of unique global strong solutions for the Muskat
problem with initial data of arbitrary size in a critical space.

2. Two-phase Stokes gravity waves. In this interface problem we replace (1)
by the Stokes law

−∆u(x, y, t) = −∇p(x, y, t)− ρ(x, y, t)(0, 1),
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considering different density and equal viscosity fluids as follows

(µ, ρ)(x, y, t) =

{
(1, ρ1), (x, y) ∈ D1(t),

(1, ρ2), (x, y) ∈ D2(t) = R2 rD1(t).

Using the x periodic Stokeslet

8πS(x, y) = log (2(cosh(x)−cos(y))) I−
y

cosh(y)−cos(x)

(
− sinh(y) sin(x)
sin(x) sinh(y)

)
,

we obtain the evolution equation for the interface

zt(α, t) = (ρ2 − ρ1)

∫

T

S(z(α, t) − z(β, t)) · ∂βz
⊥(β, t)z2(β, t)dβ.

For interfaces giving by a graph, z(x, t) = (x, h(x, t)), we have stability in the
stable case (denser fluid below):

Theorem (G., R. Granero-Belinchón, E. Salguero-22). If ‖h0‖H3 < δ, for δ > 0
small enough, there exists a unique global classical solution such that

h ∈ C([0,∞);H3(T)),

and

(1 + t)s‖h‖L2(t) + ‖∂3xh‖L2(t) ≤ C‖h0‖H3 ,

for 3/2 < s < 2.

On the other hand, in the unstable case (denser fluid above) we show instability.
We use Wiener spaces. For ν > 0 we define

Aν =
{
h ∈ L1 : ‖h‖As

ν
=

∑

k∈Z

eν|k||ĥ(k)| <∞
}
.

Theorem (G., R. Granero-Belinchón, E. Salguero-23). Let T > 0 arbitrary.
There exists a family of smooth initial data g0 ∈ Aν∗ such that

g ∈ C([0, T ];Aν∗),

is a solution in the unstable regime, ρ2 − ρ1 < 0, and

‖g‖Aν∗
(τ) ≥ c(g0) exp

(√
(ρ1 − ρ2)ν∗τ

)
, τ ∈ [0, T ].
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Invariant KAM tori around annular vortex patches for the planar
Euler equations

Zineb Hassainia

(joint work with Taoufik Hmidi, Emeric Roulley)

The motion of a two-dimensional ideal homogeneous incompressible fluid follows
the the classical planar incompressible Euler equations that can be reformulated
in the vorticity/velocity form as follows

(1) ∂tω + (∇⊥ψ) · ∇ω = 0 , ∆ψ := ω ,

where ∇⊥ψ := (−∂yψ, ∂xψ) is the fluid velocity. Such Hamiltonian system mani-
fests diverse interesting dynamical behaviors, which are at the center of intensive
studies with a wide range of applications in natural sciences and engineering.

Global existence and uniqueness of weak solutions of (1) for bounded and in-
tegrable initial vortices follows from Yudovich’s theory [16]. This allows to deal
with discontinuous vortices of the patch form, where the vorticity is uniformly
distributed in a bounded domain, that is ω(0) = 1D0 . Due to the transportation
of the vorticity by the flow, such structure is preserved in time and the boundary
evolves according to a suitable contour dynamics equation. In particular, for any
parametrization z(t) : T → ∂Dt of the patch boundary one has

(2) ∂tz(t, θ) · n
(
t, z(t, θ)

)
= ∂θ

[
ψ
(
t, z(t, θ)

)]
,

where n
(
t, z(t, θ)

)
, i∂θz(t, θ) is a normal vector to the boundary at the point

z(t, θ).
In 1858, Rankine observed that any radial initial domain D0 (disc, annulus,

etc...) generates a stationary solution to (2). Thus, it is quite natural from a
dynamical system point of view to explore whether time periodic solutions may
exist around these equilibrium states. The first result in this direction is due to
Kirchhoff [14], where he proved that any vorticity uniformly distributed inside an
elliptic region performs uniform rotation about its center with a constant angular
velocity related to its aspect ratio. In addition to the ellipses, several structures
undergoing a rigid rotation of fixed shape, called V -states, were found by using
bifurcation theory [2, 3, 4, 5, 11, 10, 12, 8]. However, very few results are known
in the non-rigid case. In the present work, we investigate the emergence of time
quasi-periodic solutions in the vortex patches setting. Quasi-periodic functions
generalize periodic ones to several mutually irrational frequencies of oscillations
and naturally appear as invariant structures in Hamiltonian dynamical systems.

The construction of quasi-periodic vortex patches to (1) or to various active
scalar equations(generalized surface quasi-geostrophic equations, quasi-geostrophic
shallow-water equations and Euler-α equations) has been explored in the recent
papers [1, 7, 9, 13, 15, 6]. All of them deal with simply-connected quasi-periodic
patches vortices provided that the suitable external parameter is selected in a mas-
sive Cantor set. Our main gaol here is to construct quasi-periodic vortex patch
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solutions with one hole for (1) near the annulus

(3) Ab ,
{
z ∈ C s.t. b < |z| < 1

}
.

The motivation behind that is the existence of time periodic patches around the
annulus as stated in [11] and one may get time quasi-periodic solutions at the
linear level by mixing a finite number of frequencies. One of the main difficul-
ties in the construction of quasi-periodic solutions at the nonlinear level stems
from the vectorial structure of the problem because we are dealing with two cou-
pled interfaces. This leads to more time-space resonances coming in part from
the interaction between the transport equations advected by two different speeds.
Informally stated, our main result is the following;

Theorem. Consider a compact interval of moduli [b∗, b
∗] ⊂ (0, 1). Then, for any

d ∈ N, there exists a set C ⊂ [b∗, b
∗] with asymptotically full Lebesgue measure

such that, for any b ∈ C there exists a time quasi-periodic vortex patch solution
ω(t) = 1Dt

of the Euler equations (1) with a diophantine frequency vector Ω ∈ Rd,
where Dt is doubly connected domain, m-fold symmetric, with m large enough,
and close to the annulus Ab, described in (3).

The proof of this theorem is based on a KAM reducibility scheme and a Nash-
Moser iterative scheme. We use the modulus b of the annulus Ab to verify all the
Melnikov non-resonance conditions along the KAM iteration. Moreover, we take
advantage of the m-fold symmetry structures in order to eliminate the degeneracy
of the mode 2.
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On sharp crested water waves whose angles change with time

Nastasia Grubic

(joint work with D. Cordoba and A. Enciso)

We consider the motion of an inviscid incompressible irrotational fluid in the plane
with a free boundary. A time-dependent interface

Γ(t) := {z(α, t) |α ∈ R}

separates the plane into two open sets: the water region, denoted by Ω(t), and

the vacuum region, R2\Ω(t). The evolution of the fluid is described by the Euler
equations,

∂tv + (v · ∇)v = −∇P − ge2 in Ω(t),(1a)

∇ · v = 0 and ∇⊥ · v = 0 in Ω(t),(1b)

(∂tz − v) · ~n = 0 on Γ(t),(1c)

p = 0 on Γ(t),(1d)

where v and P are the water velocity and pressure in Ω(t), e2 is the second vector
of a Cartesian basis, g > 0 is the gravity constant and ~n is the unit normal vector.

The local well-posedness for the corresponding Cauchy problem in Sobolev
spaces has extensive literature. We only mention that the first general result
was established by Wu [5] and that (at present) lowest allowed interface regularity
is C3/2, cf [3]. These results assume Rayleigh–Taylor sign condition, that is,

−∂nP ≥ c > 0 on Γ(t).(2)

From the point of view of the energy estimates, ∂nP appears directly in the defi-
nition of the energy, and its sign is directly related to the positivity of the energy.
Note that (2) is automatically satisfied as long as Γ(t) is of class C1,λ.

Here, we presented the results of a recent preprint [2]. We were interested in the
existence of solutions to (1) with interface of class C1,λ everywhere except at one
point z∗(t) ∈ Γ(t) (or more generally finitely many points) by jump discontinuities
in the tangent vector which thus correspond to corners in the fluid domain. In
the vicinity of such points, the strictly positive lower bound in (2) cannot be
assured and we are led to consider weighted Sobolev spaces with weight given in
terms of the distance to the corner tip. Two classes of solutions allowing (short-
time) propagation of angled crests were known previously. The rigid angle class
constructed in [4, 6], and solutions constructed by the authors in [1] which do allow
time-dependent angles, but are highly symmetric and thus do not allow gravity.
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In [2], we were able to remove all restrictions on the symmetry of the domain and
prove local well-posedness in a suitable scale of weighted Sobolev spaces that allow
for interfaces with corners of time-dependent angle in the range

(
0, π2

)
, under the

degenerate Rayleigh-Taylor condition

−∂nP (z, t) ∼ |z − z∗|.

Morever, the corresponding fluid velocity is of class C1,λ up to the boundary inside
the water region, which implies these are classical solutions of the Euler equations.
In addition, by choosing weighted Sobolev spaces of a sufficiently high order, we
can ensure that the interface and velocity in the water region are arbitrarily smooth
away from the corner tip.
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Rotating solutions to the incompressible Euler-Poisson equation with
external particle

Bernhard Kepka

(joint work with Diego Alonso-Orán and Juan J. L. Velázquez)

We consider a two-dimensional, self-interacting, incompressible fluid body E ⊂ R
2

which is perturbed by an external particle X with small mass m > 0. The shape
of the fluid body is assumed to be closed to the unit disk D and is deformed due
to the interaction with the particle. Furthermore, both the fluid body and the
particle are assumed to rotate around their center of mass at angular speed Ω0.
The center of mass can be chosen to be (w.l.o.g.) in the origin. We construct
solutions which are steady states in a rotating frame of reference. In addition,
differently from the results on self-gravitating, ellipsoidal figures reviewed in [1]
(excluding the shapes studied by Riemann), we consider solutions which contain
a non-trivial internal motion v 6= 0 in any coordinate system.
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The equations under considerations read

(1)





(v · ∇)v + 2Ω0Jv − Ω2
0x = −∇p−∇UE −m∇UX in E

∇ · v = 0 in E

n · v = 0 on ∂E

p = 0 on ∂E

Ω2
0X = ∇UE(X)

|E| = π∫
E x dx+mX = 0.

Here, J is defined by

J =

(
0 −1
1 0

)
.

Furthermore, we consider various interaction potentials, in particular

UX(x) = ln |x−X |, UE(x) =

∫

E

ln |x− y| dy.(2)

Let us mention that the equation Ω2
0X = ∇UE(X) ensures that the centrifugal

force acting on X balances with the force due to the interaction with the fluid. By
invariance of (1) w.r.t. rotations we seek for X = (a, 0) on the x1-axis.

In order to solve the system (1) we use conformal mappings and the Grad-
Shafranov method [2, 3]. More precisely, Eh = fh(D) with fh(z) = z + h(z). The
velocity is given by the stream function ψ, i.e. v = ∇⊥ψ, and

{
∆ψ = G (ψ) in Eh,

ψ = 0 on ∂Eh,
(3)

for some given function G : R → R. Using the fact that the Bernoulli head is
constant on the free-boundary ∂Eh one can reduce the system (1) to





1
2 |∇ψh|

2 −
Ω2

0

2 |x|2 + UEh
+mUX = λ on ∂Eh,

Ω2
0a = ∂x1UEh

(a, 0),

|Eh| = π.

(4)

Here, (h, a, λ) are the unknowns. Note that the second equation is only the first
component of the Newton equation for the particle. The other component is
satisfied automatically, since Eh is symmetric w.r.t. the x1-axis. The unperturbed
solution (m = 0) is given by (h, a, λ) = (0, a0, λ0) solving (4). In particular,
a0Ω

2
0 = U ′

D
(a0) relates a0 to Ω0. We assume that a0 ≥ 2, say, so that the particle

does not intersect the fluid.
We apply the implicit function theorem and to this end, study the linearized

operator. This operator acts on h via some Fourier multipliers ωn = ωn(Ω0). The
main result reads as follows.

Theorem. Let k ∈ N0, α ∈ (0, 1) and choose a0(Ω0) ≥ 2 with a0 Ω
2
0 = U ′

0(a0). In
addition, assume that
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(1) G ∈ Ck+3(R;R) is non-decreasing;
(2) ψ′

0(1) 6= 0;
(3) ωn(Ω0) 6= 0 for all n 6= 0.

Then, for any sufficiently small m ≥ 0 there is a unique solution (h, a, λ) ∈
Ck+2,α(D) × R

2 to (4) close to (0, a0, λ0). Finally, the domain Eh = fh(D) is
symmetric w.r.t. the x1-axis and the corresponding velocity field v = ∇⊥ψh to-
gether with the position of the particle X = (a, 0) yield a solution to (1).

Remark. Assumption (3) ensure that the linearized operator is invertible. An
analysis shows ωn = 1

2ψ
′
0(1)

2|n| + O(1) as |n| → ∞. In particular, (3) holds
automatically for large |n|.
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Velázquez

Hausdorff Center for Mathematics
Institute for Applied Mathematics
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Martina Magliocca

Universidad de Sevilla
Campus Reina Mercedes
C/ Tarfia s/n
41012 Sevilla
SPAIN



638 Oberwolfach Report 11/2023

Prof. Dr. Joan Mateu

Departament de Matematiques
Universitat Autonoma de Barcelona
Campus Universitari
08193 Bellaterra, Barcelona
SPAIN

Dr. Bogdan Matioc

Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
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