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to enlarge the scope of Hodge theory not only to arbitrary semi-simple per-
verse sheaves, equivalently semi-simple regular holonomic D-modules via the
Riemann-Hilbert correspondence, but also to possibly semi-simple irregular
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proof of the decomposition theorem for semi-simple holonomic D-modules on
a smooth complex projective variety, first conjectured by Kashiwara in 1996.
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Introduction by the Organizers

The notion of twistor structure has been introduced by Simpson in [Sim97], fol-
lowing a letter to him by Deligne, in order to include the objects related by the
Kobayashi-Hitchin correspondence on a compact Kähler manifold, namely stable
Higgs bundles with vanishing characteristic classes and simple flat holomorphic
bundles, into a larger family, so that to equip the enlarged moduli space of a hyper-
kähler structure, extending thereby the original construction of Hitchin [Hit87].
A more in-depth elaboration of this fundamental construction has recently been
developed by Simpson [Sim08, Sim21]. The talks in this session will however not
pursue in this direction, but the participants may consult these recent papers to
better understand the backgrounds of the twistor approach.

Already in 1997, Simpson envisioned the following “meta-theorem”:
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Meta-theorem (Simpson, [Sim97]). If the words “mixed Hodge structure” (resp.
“variation of mixed Hodge structure”) are replaced by the words “mixed twistor
structure” (resp. “variation of mixed twistor structure”) in the hypotheses and
conclusions of any theorem in Hodge theory, then one obtains a true statement.
The proof of the new statement will be analogous to the proof of the old statement.

The aim of this session is to illustrate this meta-theorem with the proof of a
conjecture made by Kashiwara in various talks around 1996 [Kas98], that is, the
decomposition theorem for semi-simple holonomic D-modules. One can summa-
rize the twistor approach by saying that twistor theory provides with a theory of
weights a category of objects that do not naturally exhibit a weight structure.

The decomposition theorem was first proved in [BBDG82] for pure perverse
ℓ-adic sheaves on varieties over a finite field of characteristic p 6= ℓ. It asserts
that the push-forward by a proper morphism of such an object decomposes, in
the derived category, into its perverse cohomology sheaves and each such is semi-
simple. Furthermore, by a technique of reduction to characteristic p, Beilinson,
Bernstein, Deligne and Gabber were able to extend it to semi-simple perverse
sheaves on smooth complex projective varieties which are of geometric origin.
M. Saito [Sai88, Sai90b] developed at the end of the eighties a completely new
strategy to extend this result on complex varieties to any (semi-)simple perverse
sheaf whose associated local system underlies a polarizable variation of Q-Hodge
structure, not necessarily of geometric origin. The theory of mixed Hodge modules
is now widely used in Algebraic geometry.

The decomposition theorem for semi-simple perverse sheaves on smooth com-
plex projective varieties has now two proofs. One is by Drinfeld [Dri01], extending
the proof of [BBDG82] by reduction to characteristic p, relaxing the assumption
of geometric origin by relying on a conjecture of de Jong, later proved by Böckle-
Khare [BK06] and Gaitsgory [Gai07]. The other one, which will be the main topic
of this session, applies the meta-theorem of Simpson to the strategy of M. Saito
by introducing the category of polarizable twistor D-modules. The starting point
were the papers [Moc02, Sab05], and the proof was achieved in [Moc07]. One key
point in M. Saito’s theory is the use of Schmid’s norm estimates and orbit theorems
[Sch73] through the Hodge-Zucker theorem [Zuc79] yielding the Hodge theorem
for the intersection complex of a polarizable variation of Hodge structure on a
punctured compact Riemann surface. The “twistor analogues” of these results
were provided by Simpson [Sim90].

Furthermore, Simpson also raised in [Sim90] the following:
“A question is whether one could set up a correspondence in which some non-

tame harmonic bundles correspond to systems of equations with irregular singular-
ities.”

The strength of the twistor approach is that it enables to enlarge the scope of
Hodge theory not only to arbitrary semi-simple perverse sheaves, equivalently
semi-simple regular holonomic D-modules via the Riemann-Hilbert correspon-
dence, on smooth complex projective varieties, but also to possibly irregular semi-
simple holonomic D-modules. In such a way, the analogy with the arithmetic the-
ory of pure ℓ-adic perverse sheaves on varieties over finite fields is made stronger, as
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the latter does not restrict to tame objects, contrary to M. Saito’s Hodge modules,
whose associated D-modules are known to be regular holonomic. For example, the
analogue of the Katz-Laumon ℓ-adic Fourier transformation exists in the theory
of mixed twistor D-modules.

Simpson’s insight has first been confirmed in dimension 1 [Sab99, BB04] and,
after a first step in [Sab09], the full development of the theory of wild twistor
D-modules, both in the pure and the mixed case, has been achieved by T. Mochizuki
in the sequence of works [Moc11, Moc15], extending [Moc07]. In particular, the
monographs [Moc07, Moc11] provide the complete proof in the complex analytic
setting of the conjecture of Kashiwara for semi-simple holonomic D-modules (note
that a wild analogue of Drinfeld’s proof for the regular case still does not ex-
ist). An overview of this work is provided in [Moc14] (see also [Moc15, Chap. 1],
and [Sab13] for a focus on the decomposition theorem). Let us also mention
that the decomposition theorem in the Kähler setting, for regular holonomic D-
modules underlying a polarizable pure twistor D-module, has recently been proved
by T.Mochizuki [Moc22] (see also [Sai90a, Sai22] for the case of OX).

The introductory chapters of [Sab05], [Moc07] and [Moc11] are helpful for un-
derstanding how the various arguments fit together, leading to the proof of Kashi-
wara’s conjecture.

Let us finally mention that Hodge module theory or twistor D-module theory
is not the only way to the decomposition theorem in complex algebraic geometry.
For the case of regular holonomic D-modules (or perverse sheaves) of geometric
origin, so that Hodge theory is involved, we mention the work of de Cataldo and
Migliorini [dCM02, dCM05, dCM09] (see also [Wil17]). A similar idea has been
developed in [WY21] for proving the decomposition theorem in the case of a semi-
simple local system on a smooth projective variety, relative to a morphism to
another variety.

Acknowledgements: The organizers would like to thank Professor Peter Scholze for
giving them the opportunity to run this Arbeitsgemeinschaft session and for his
acute questions during the talks. The eighteen talks were given by non specialists
who did a great job in making the theory understandable to the audience of 30
participants. Special thanks go to Ruijie Yang, not only for taking in charge the
role of Video Conference Assistance, but also for his active involvement during
the after-dinner question sessions. They also go to Brian Hepler for collecting the
extended abstracts. The organizers thank the MFO administration for being very
efficient in making the workshop run smoothly.
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Abstracts

Pure and mixed twistor structures, comparison with Hodge structures

Joakim Faergeman

In this talk, we introduce the notation of a mixed twistor structure. In particular,
we investigate

• The relationship between mixed twistor structures and (complex) mixed
Hodge structures.

• Basic properties of mixed twistor structures.

Let us clarify on point one above. If one has a vector bundle E on P1, one may
take the fiber at 1 ∈ P1 to obtain a complex vector space. This provides a functor
between the category of mixed twistor structures and complex vector space. If
furthermore E was Gm-equivariant (for the natural Gm-action on P1), one shows
that E|1 is naturally equipped with two decreasing filtrations. Moreover, E is a
pure twistor structure of weight w if and only if the two decreasing filtrations on
E|1 are w-opposed. In this way, we obtain a functor

{Gm − equivariantMTS} → MHS

where the left hand side denotes the category of Gm-equivariant mixed twistor
structures and the right hand side denotes the category of mixed Hodge structures.
One shows that the above functor is in fact an equivalence. The inverse functor
is given by the Rees construction that takes a vector space V equipped with
two decreasing filtrations and produces a vector bundle. The Rees construction
naturally upgrades to a functor from the category of MHS to the category of Gm-
equivariant MTS. Next, let us clarify on bullet point two above. The main result
of this talk is the fact that the category of mixed twistor structures is Abelian (in
particular, the functor described above is an exact functor of Abelian categories).
The proof is very similar to the usual proof that the category of (complex) mixed
Hodge structures is Abelian. Namely, the crux of the proof consists of showing
that any map of mixed twistor structures is strict. As a corollary, one obtains
that the functors GrW and −|t are exact for t ∈ P1. Here GrW is the functor that
takes a mixed twistor structure and produces the associated graded vector bundle.
The functor −|t takes a mixed twistor structures and spits out the fiber at t of the
underlying vector bundle.

Twistor structures over a complex manifold and polarizations

Marielle Ong

Variations of mixed twistor structures over X are locally free sheaves of modules
over X × P1, endowed with a strict filtration and a differential operator that re-
spects the filtration and squares to zero. We say that a variation is pure if the
associated graded pieces of the strict filtration are pure twistor structures over
{x} × P1 for x ∈ X and are concentrated in one degree. Every variation gives
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rise to an underlying λ-connection by taking the fibers over points on P1. We
then return to variations over a point and introduce the notion of polarizations of
pure twistor structures. In fact, polarized pure twistor structures of weight 0 are
equivalent to complex Hermitian vector spaces. Since Hodge structures give rise to
twistor structures, we verify that polarizations of Hodge structure do indeed induce
polarizations of twistor structures. We then generalize these notions to polariza-
tions of variations of pure twistor structures over X . The twistor substructure
of a polarized variation is polarized and is a direct summand. Consequently, the
category of polarized variations of pure twistor structures over X is semisimple.

Harmonic bundles and equivalence with smooth polarized twistor

structures of weight 0

Mads Bach Villadsen

Let (E, θ) be a holomorphic Higgs bundle on a complex manifold, with underlying
C∞-vector bundle H , and let h be a hermitian metric on H . Let ∂E be the
differential operator on H with symbol ∂ such that ∂h(u, v) = h(∂Eu, v)+h(u, ∂̄E)
and ∂̄h(u, v) = h(∂̄Eu, v)+h(u, ∂E), where ∂̄E is the holomorphic structure for E.
Let θ† be the adjoint of θ with respect to h, and let ∂̄V = ∂̄E +θ† and ∇ = ∂E +θ.
If ∂̄2V = 0 and ∇ defines a flat holomorphic connection on the corresponding
holomorphic bundle V , then (E, θ, h) is said to be a harmonic Higgs bundle, or
equivalently, (V,∇, h) is a harmonic flat bundle.

We discuss two concrete examples. For a variation of Hodge structures (H =⊕
p+q=wH

p,q,∇) with polarization k, the polarization together with Griffiths

transversality shows that ∇(Hp,q) ⊂ (Hp,q ⊕Hp−1,q+1)⊗A1,0(X); let ∇ = ∂E + θ
be the corresponding decomposition. The corresponding decomposition of the
holomorphic structure on H as a flat bundle yields ∂E and θ†. These operators,
together with the Hodge metric h associated to k, give a harmonic Higgs bundle.

On a punctured disc, we write down equations for rank one harmonic Higgs
bundles directly. Let L be the trivial holomorphic line bundle, with frame e. For
(a, α) ∈ R×C, take the metric ha(e, e) = |z|2a and the Higgs field θ = αdz

z . Then
we explicitly compute the remaining operators discussed above, and show that this
defines a harmonic bundle.

Finally, we discuss the equivalence, due to Simpson, between harmonic bundles
on one side, and polarized variations of twistor structures of weight 0 on the other.

The non-Abelian Hodge correspondence and the

Hodge-Simpson theorem

Ko Aoki

In this talk we see two global properties of harmonic bundles over a compact
Kähler manifold (X,ω); one is the semisimplicity property and the other is the
Hodge property. One key observation used in both proofs is the fact that any
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harmonic bundle satisfies the Kähler identities; more precisely, for a harmonic
bundle (H, ∂′, ∂′′, θ′, θ′′, h), we have

[Λ, D′] = i(D′′)∗, [Λ, D′′] = −i(D′)∗,

where D′ = ∂′ + θ′′ and D′′ = ∂′′ + θ′.
As explained in the previous lecture, any harmonic bundle gives us both a flat

bundle and a Higgs bundle: The sum ∇ = ∂′ + ∂′′ + θ′ + θ′′ is a flat connection
on H , while θ′ induces the Higgs field ϑ on the holomorphic vector bundle E =
(H, ∂′′). The Corlette–Simpson correspondence determines when a given flat or
Higgs bundle over a compact Kähler manifold (X,ω) underlies a harmonic bundle:
Corlette’s theorem [1] states that a flat bundle on a compact Kähler manifold
admits a pluriharmonic metric if and only if it is semisimple, while Simpson’s
theorem [5] states that a Higgs bundle on a compact Kähler manifold admits a
pluriharmonic metric if and only if it is polystable and has trivial Chern classes.
It is worth noting that Mochizuki [3] proved the same type of characterization for
λ-flat bundles.

We followed the proof of the “only if” part of Corlette’s theorem. Fix a flat
bundle (H,∇). For a C∞-automorphism g on H , we get another connection g∇.
We decompose it along the metric h as g∇ = (g∇)h + gθ and consider the value

‖gθ‖2 =

∫

X

〈gθ, gθ〉VolX ,

which should be thought of as the energy of g. Then if h is pluriharmonic, the
Kähler identities show that the energy function has a critical value at g = id,
which implies its semisimplicity.

There is an important corollary of the Corlette correspondence, which can be
stated in algebraic geometry: For a map between smooth projective varieties
f : Y → X and a local system L, if L is semisimple, so is f∗L. Indeed, we can
easily see this by picking a pluriharmonic metric on the flat bundle associated to L
since the pullback of a harmonic bundle is again a harmonic bundle. No algebraic
proof of this fact is known. A natural question is what happens if we instead
consider the pushforward of L. Kashiwara’s conjecture [2] considers a situation
where we have a projective morphism between smooth varieties f : Y → X with a
relatively ample line bundle L. It states that for a holonomic D-module N on Y ,
the pushforward f+N decomposes into the direct sum of its (shifted) cohomologies
f i
+N [−i] and it satisfies the hard Lefschetz theorem with respect to c1(L), i.e., the
morphism c1(L)i : f−i

+ N → f i
+N is an equivalence. This conjecture has a long

history, but ultimately it was solved by Mochizuki [4] using the theory of mixed
twistor D-modules, which is the topic of this Arbeitsgemeinschaft. In this talk, we
focus on a simple instance of this conjecture (or theorem) due to Simpson, which
is the case where X = ∗ and N is regular.

We get back to our compact Kähler manifold (X,ω). For a flat bundle (H,∇),
its natural cohomology is the sheaf cohomology of the associated local system
L = H∇. For a Higgs bundle (E , ϑ), its natural cohomology is the Dolbeault
cohomology, i.e., the hypercohomology of the complex E → Ω1 ⊗ E → · · ·, where
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the differentials are given by ϑ ∧ −. A standard resolution technique shows that
these two are computed as the cohomologies of the complexes of the form

C∞(X ;H) → C∞(X ;A1 ⊗H) → · · ·
with different differentials. Suppose that both arise from one harmonic bundle
(H, ∂′, ∂′′, θ′, θ′′, h). Then these are special cases of the family of complexes of the
above form with the differentials given by aD′ + bD′′ for (a, b) ∈ C2 \ 0. Indeed,
the case (a, b) = (1, 1) corresponds to the sheaf cohomology of L while the case
(a, b) = (0, 1) corresponds to the Dolbeault cohomology of (E , ϑ).

We followed the construction given in [6]. Again we consider X ×P1 as a space
that is C∞ in X and holomorphic in P1. Then we consider

H ⊠O → (A1 ⊗H)⊠O(1) → · · ·
where the differentials are given by λD′ + µD′′, where λ and µ are the coordinate
of P1 around 0 and ∞, respectively. We pushforward this complex along X ×
P1 → P1 and show that it splits into polarizable pure twistor structures of various
weights. The point is again the Kähler identities, which enable us to use the
harmonic representative technique as in the constant case. The Lefschetz theorem
is clear again by the Kähler identities.
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The notion of R-triple and various functors

Andreas Hohl

In this talk, we introduce the category of R-triples, which will serve as a framework
for the theory of twistor D-modules in later talks. The main references are [2,
Chap. 1,2] and [1, Chap. 14].

We first define the sheaf of rings RX, a certain ring of relative differential
operators on X = X × Cλ (for X a complex manifold): Let OX be the sheaf
of holomorphic functions on X. Then RX is defined to be the C-subalgebra of
EndC(OX) generated by OX and λp∗XΘX , where pX : X → X is the projection
and ΘX is the tangent sheaf of X . Equivalently, one can think of RX as fol-
lows: The ring of differential operators DX on X has a natural order filtration.
If we denote by RFDX =

⊕
k(FkDX)λk the associated Rees ring, we can set

RX := OX ⊗OX [λ] RFDX .
We discuss some properties and operations for RX-modules, such as the equiva-

lence between left and right modules as well as direct and inverse image functors,
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whose constructions are mostly analogous to the theory of D-modules. In particu-
lar, direct and inverse images are defined via a transfer bimodule RX→Y. We also
discuss the notion of holonomicity: Via the concept of good filtration, one can de-
fine a notion of good RX-module and associate to each such module a characteristic
variety, which is a subset of T ∗X ×Cλ. One calls the RX-module holonomic if its
characteristic variety is contained in Λ×Cλ for some conic Lagrangian Λ ⊂ T ∗X .

As an example, we firstly mention the case of a filtered holonomic DX -module,
which (via the Rees construction) gives a holonomic RX-module M := OX ⊗OX [λ]

RFM . Secondly, we show how a holomorphic vector bundle with a holomorphic
family of λ-connections is naturally an RX-module: Let E be a smooth vector
bundle on X × Cλ with holomorphic structure in the λ-direction given by

d′′λ : E → E ⊗ p−1
λ A0,1

Cλ

and an operator

D : E → E ⊗ p−1
X A1

X

satisfying D(f ·e) = e⊗ (λdX +dX)f +fD(e) for some local (smooth) sections f of
C∞
X and e of E, respectively. Then a natural action of RX on E := ker(D0,1 + d′′λ)

is defined by setting

ξ · s := D1,0
λ−1ξ(s)

for ξ a local section of λp∗XΘX and s a local section of E. One can check that,
via this definition, the λ-twisted Leibniz rule of D1,0 actually gives an (untwisted)
Leibniz rule for the action of RX, as desired.

Next, we introduce the notion of a sesquilinear pairing. For this, we define
a certain “conjugation functor” for RX-modules: First of all, let us remark that
for any complex manifold Y , we have the complex conjugate manifold Y (the
same underlying topological space equipped with the sheaf of functions that are
antiholomorphic with respect to the complex structure on Y ). We get a “näıve”
conjugation functor turning an OY - (or DY -)module into an OY - (or DY )-module.

(This is basically the pullback via the natural morphism of ringed spaces Y → Y
induced by complex conjugation.) Now, let us write Ω0 = Cλ = P1 \ {∞} and
Ω∞ = P1 \ {0}, then the antiholomorphic involution of P1 given by λ 7→ −1/λ
induces a morphism of ringed spaces Ω∞ → Ω0. Taking the product with idX
and composing with the natural morphism of ringed spaces X × Ω0 → X ×Ω0 as
above, we get a morphism of ringed spaces X × Ω∞ → X × Ω0. Pullback along
this morphism turns a module M over RX = RX×Ω0 into a module denoted by M

over RX×Ω∞

.
Given two RX-modules M1,M2, a sesquilinear pairing is then a pairing

C : M1|X×S1 ⊗OCλ
|
S1

M2|X×S1 → DbX×S1/S1

with values in (relative) distributions.
With this notion in hand, we introduce the category of R-triples, whose objects

are of the form (M1,M2, C), and mention some operations on them, such as Tate
twists and proper direct images. We also mention the special case of smooth
triples, where M1 and M2 are locally free, which makes the pairing C take values
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in smooth functions and hence enables us to define an inverse image functor for
these objects.

Finally, we formulate the notion of (pure) twistor structure in the language
of R-triples, first in the case where dimX = 0, then in the case of an arbitrary
complex manifold X (variations of pure twistor structures):

An R-triple (H1,H2, C) in the case X = {pt} is called a pure twistor structure
of weight w if H1 and H2 are free, the pairing C is non-degenerate with values in

OCλ
|S1 and the OP1-module obtained by gluing (H1|∆)∨ andH2|∆ via the resulting

isomorphism H2|S1 ≃ (H1|S1)∨ is isomorphic to OP1(w)d for some d ∈ Z≥0.
For general X , one recalls that variations of twistor structures (as defined by

Simpson) are related to families of λ-connections, which in turn give smooth RX-
modules by the above example. This motivates the definition in the language of
R-triples: A variation of twistor structures of weight w is a smooth R-triple whose
restriction over any x ∈ X is a pure twistor structure as above.
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Specializability, S-decomposability, and canonical extensions

Yichen Qin

We will explain how to define specializability, S(support)-decomposability, and
canonical extensions for R-modules and R-triples, following a similar approach
for D-modules. Throughout the lecture, we will emphasize the similarities and
distinctions between the constructions in both settings.

The case of D-modules

Let X be a smooth complex manifold and f : X → C a holomorphic function.
We denote DX as the sheaf of differential operators and M as a (left) coherent
DX -module.

Specializability. We start with a special case. Suppose there exists a smooth com-
plex manifold X0 such that X = X0×Ct and f = t. The V -filtration on DX along
t is given locally on X , by

(1) VkDX := {P ∈ DX | P (t)i ⊂ (t)k+i ∀i}.
It can be demonstrated that VkDX · VℓDX ⊂ Vk+ℓDX holds for any k, ℓ ∈ Z. A
V -filtration on M along t is an increasing, exhaustive, Z-indexed filtration U•M
of coherent V0DX -modules, satisfying VℓDX · UkM ⊂ Uk+ℓM for any k, ℓ ∈ Z.
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We call M specializable along t if, locally on X , there exists a good V -filtration
U•M, and a Bernstein polynomial bU (s) ∈ C[s]\{0}, with roots’ real parts lying
in the interval [0, 1), such that the following condition holds for any k ∈ Z:

(2) bU (−(∂t · t+ k)) · grUk M = 0.

We can demonstrate that the V -filtration is locally unique by employing the good-
ness of U•M. Consequently, specializability imples the global existence of a V -
filtration on M.

For simplicity, we assume M to be R-specializable henceforth, meaning it is
specializable along t and the roots of the Bernstein polynomial are all real numbers.
We can refine the V -filtration to a filtration V•M indexed by R, referred to as
the canonical V -filtration (Kashiwara–Malgrange filtration). The jumps of the
V -filtration occur precisely at A + Z for a finite set A ⊂ R, and the operator
(−∂t · t− a) acts nilpotently on grVa M for each a ∈ R.

Returning to the general case, for a smooth complex manifold X and a holomor-
phic function f on X , we denote the graph embedding ιf : X → X×Ct that maps
x to (x, f(x)), with t being the coordinate of the C factor. A coherent DX -module
M is considered (R-)specializable along f if ιf,+M is (R-)specializable along t.

The nearby and vanishing cycles. If M is specializable along f , then the nearby
cycles of M along f are defined by ψf,αM := grVα (ιf,+M) for α ∈ [−1, 0), and the
vanishing cycle of M along f is defined by φf,0M := grV0 (ιf,+M). Let can and var
be the morphisms −∂t : ψf,−1M → φf,0M and t : φf,0M → ψf,−1M respectively.
We have the following quiver:

(3) ψf,−1M φf,0M

can

var

In this context, the composition var ◦ can (resp. can ◦ var) acts on ψf,0M (resp.
φf,0M) nilpotently, denoted by N . The monodromy operator on ψf,−1 (resp. φf,0)
is defined as T = exp(2πi(−t · ∂t)) (resp. T = exp(2πi(−∂t · t))).

The minimal extension and S-decomposability. We call M a minimal extension
along f if the map can: Ψf,−1M→ Φf,0M is surjective and the map var : Φf,0M→
Ψf,−1M is injective. This is equivalent to stating that M has no coherent sub-
quotientDX -modules supported on Z(f). Furthermore,M is called S-decomposable
along f if Φf,0 = imcan⊕ker var holds true, which is equivalent to M = M′⊕M′′,
where M′ is a minimal extension along f and M′′ is supported on Z(f).

Nearby cycles and proper pushforward. For simplicity, we assume that X = X0 ×
Ct, Y = Y0 ×Ct, and f0 : X0 → Y0 be a proper holomorphic map between smooth
complex varieties. We put f = f0 × id : X → Y . Assume that M is specializable
along t, then taking nearby cycles ψt,α and the vanishing cycle φt,0 commutes with
the proper pushforward Hif+.
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The case of R-modules and R-triples

Let X = X × Cλ, and M a (left) coherent RX -module, and T = (M1,M2, C)
a (left) coherent R-triple. The main word that makes everything in this setting
work is strictness. More precisely, M is said to be strict at λ0 if it has no (λ−λ0)-
torsion, and is strict if it is strict at all points λ0 ∈ C. We call T strict if M1 and
M2 are strict.

Specializability. For simplicity, assume that X = X0 × Ct, with the general case
being analogous to the situation of DX -modules. The V -filtration on RX along t
is defined similarly to that on DX . For a given λ0 ∈ C, we define V -filtrations at
λ0 of M in a manner akin to the case of DX -modules, by replacing DX with RX

and requiring the filtration to be defined on a neighborhood of X × λ0.
Let ðt = λ∂t. A coherent RX -module M is specializable along t at λ0 if there

exists a good V -filtration U
(λ0)
• M at λ0, and a Bernstein polynomial bU (s), having

roots as functions on λ, such that bU (−ðt · t− kλ) · grU(λ0)

k M = 0 for any k. More
precisely, there exists a finite set A(λ0) ⊂ R× C, such that the roots of bU (s) are

{−e(λ, u) | u = (a, α) ∈ A(λ0) + Z× {0}, 0 ≤ p(λ0, u) < 1},
where p(λ0, (a, α)) = a − 2Re(λ0ᾱ) and e(λ, (a, α)) = α − aλ − ᾱλ2. The choice
of Bernstein relations can be justified by the Basic example [4, Exe. 1.2]. We also
have local uniqueness results [2, Lem. 22.3.4] for the filtration U (λ0) and A(λ0),

and we can refine U (λ0) to the canonical V -filtration along t at λ0 V
(λ0)
• indexed

by R, such that
∏

p(λ0,u)=c(−ðt · t+ e(λ, u)) acts unipotently on grV
(λ0)

c M. As the

roots of the Bernstein relations are in fact functions on λ, the V -filtration is not
defined globally with respect to Cλ.

We say that M is specializable along t if it is specializable along t at any λ0 ∈ Cλ

and the graded quotient grU
(λ0)

c M is strict for each c ∈ R. In this case, the set
A(λ0) does not depend on λ0 and we denote by KMS(M, t) the set A+Z×{0}.
Moreover, M is called strict specializable along t if it is specializable along t and

(1) the morphisms t : V
(λ0)
a M → V

(λ0)
a−1 M are isomorphism for a < 0,

(2) the morphisms ðt : grV
(λ0)

a M → grV
(λ0)

a+1 M are surjective for a > −1.

For an RX -triple T = (M1,M2, C), it is specializable along t is M1 and M2 are
so.

The nearby cycle and Vanishing cycles. Although the V -filtrations V (λ0)M are
defined locally in terms of λ0, the nearby cycles are defined globally. We define

ψ
(λ0)
t,u M ⊂ grV

(λ0)

p(λ0,u)
M locally as the generalized eigenspace of (−ðt · t+ e(λ0, u)),

and we glue them by a compatibility lemma [2, Lem. 22.3.5] to get ψt,uM.
In the case of R-triples, we need to define the nearby cycles and the vanishing

cycle for a sesquilinear form C : M1 |X×S1 ×M2 |X×S1→ DbX×S1/S1 . Sabbah
defines it as the residue of a Mellin transform [3, (3.6.10)]. As for the vanishing
cycle of the sesquilinear pairing φt,0C, we cannot simply define it as ψt,(0,0)C
because ψt,(0,0)C is 0 when Mi are supported on X0, see [3, § 3.6b] for more
details.
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After defining the nearby and vanishing cycles of C, we introduce ψt,uT and
φt,0T as the triplets (ψt,uM1, ψt,uM2, ψt,uC) and (ψt,(0,0)M1, ψt,(0,0)M2, φt,0C)
respectively. Similar to the case of DX -modules, we have the can and var quiver
for T like (3).

The minimal extension and the strict S-decomposability. These two notions are
defined in a manner akin to those for D-modules.

Nearby cycles and proper pushforward. Adopting the notation from the case of
DX -modules, let F = f × id : X = X ×Cλ → Y = Y ×Cλ. Compared to the case
of DX -modules, we not only assume that T is strict specializable along t, but also
require the strictness for HiF+ψt,uT for any i ∈ Z and u ∈ KMS(M, t). Then,
taking the nearby cycles ψt,u commutes with the proper pushforward HiF+ for
any u [2, Lem. 22.10.5]. If, in addition, T and HiF+T are strictly S-decomposable
along t for any i, taking the nearby cycles φt,0 commutes with the proper push-
forward HiF+[2, Lem. 22.10.5].
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[4] C. Sabbah, Théorie de Hodge et correspondance de Hitchin–Kobayashi sauvages [d’après
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Polarizable pure twistor D-modules

Chuanhao Wei

I will first give the inductive definition of the category of (regular) pure twistor
D-modules using R-triples. Some basic properties about such category will be
given with sketched proof, including the fact that it is an abelian category. Then,
I will introduce the notion of sesquilinear duality of some weight of an R-triple.
In the case that X is a point, I will give the definition of a polarized pure twistor
structure of some weight w in terms of R-triples equipped with a sesquilinear
duality of weight w. Then, the inductive definition of the category of polarizable
(regular) twistor D-modules will be given. The purely imaginary case will also
be explained. Lastly, two main theorems: Decomposition Theorem (Kashiwara’s
Conjecture), and the generalization of Corlette-Simpson correspondence will be
stated without proof.
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Sketch of proofs of Statements 1, and the “easy” direction of

Statement 2

Marco Hien

Part 1: Proof of the Decomposition Theorem. For a complex analytic man-
ifold X we have the following categories of twistor D-modules:

• MT(r)(X,w)(p): polarizable pure regular twistor D-modules of weight w,

• MLT(r)(X,w; 1)(p): polarizable pure regular graded Lefschetz twistor D-
modules of weight w (with Lefschetz degree 1).

By standard arguments and a result of Corlette and Simpson, the Decomposition
Theorem for the derived direct image of a semisimple local system F with respect
to a proper holomorphic map f : U → Y from an open subset U ⊂ X of a smooth
projective variety X into a complex manifold Y can be deduced from the following
two results on twistor D-modules:

Theorem 1. (Theorem 6.1.1. in [Sab05]) Let f : X → Y be a projective morphism

of complex analytic manifolds and (T ,S) a polarized object in MT(r)(X,w)(p). If
Lc denotes the Lefschetz operator associated to a relative ample line bundle, the
tuple

(1)
(⊕

i

f i
†T ,Lc,

⊕

i

f i
†S
)

is a polarized object in MLT(r)(X,w; 1)(p).

Theorem 2. (Theorem 6.1.3 in [Sab05]) Any smooth polarized twistor structure

of weight w on X is a polarized object of MT(r)(X,w)(p).

In the situation of the Decomposition Theorem, a result of Corlette and Simp-
son yields that the DX -module associated to an irreducible local system F on X
underlies a smooth polarized twistor structure of weight 0 to which Theorem 2
can be applied in order to prepare for a subsequent application of Theorem 1 to
obtain the relative Hard Lefschetz result leading to the Decomposition Theorem.

Sketch of the proof of Theorem 1. The proof is realized by induction on the
pair (dim(supp(T ), dim f(supp(T )).

• (n,m) = (1, 0) is treated seperately in a subsequent lecture.
• (n,m) ⇒ (n+1,m+1): the essential case is to consider an object (T ,S) =
(M,M, C, Id) on X of weight 0 with strict support Z of dimension n+ 1
such that dimf(Z) = m+1. One has to prove that the inductive properties

characterising the objects in MLT(r)(X, 0; 1)(p) hold for (1). For example,
for any holomorphic function t : V → C on some open V ⊂ Y , one of
the tasks is to prove strict specializabilty and S-decomposability of f i

†T
along t = 0. This is achieved by carefully analysing the behaviour of the
direct images f i

†Ψg(T ) of the nearby cycles Ψg(T ) along g = t ◦ f taking
into account the natural monodromy filtration on the latter and using
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the inductive definition of MT(r)(X,w)(p) in terms of these nearby cycle
functors.

• (≤ n− 1, 0) ⇒ (n, 0): without loss of generalization one can assume X =
PN . The essential idea is to use a Lefschetz pencil with a suitable choice of
axis A. The blow-up π : X̃ → X ofA induces a map f : X̃ →֒ X×P1 → P1.
For a generic choice of A the pull-back π+(T ,S) of the object (T ,S) with
strict support Z has strict support the blow-up Z̃ of Z and the fibres of
f |Z̃ are of dimension n− 1. This allows to apply the induction hypothesis
by using a Gysin map for the inclusion of the fibre (as in [Moc11, 17.3]).
Finally, the original pair (T ,S) is a direct summand of π+π

+(T ,S).

Sketch of the proof of Theorem 2 by induction on dim(X). The cases
dim(X) = 0 or 1 are easily verified. For dim(X) ≥ 2 again one has to ensure
the inductive properties with respect to taking nearby/vanishing cycles along any
holomorphic function t. The case t = x1 · · ·xr of a product of local coordinates
can be verified by direct computations. The general case is reduced to the latter
by blow-ups and ramifications using arguments similar to the proof of the final
induction step describe above.

Part 2: Sketch of the proof of the “easy” direction of Statement 2. The
statement to be proved is the following

Theorem 3. (Theorem 4.2.12 in [Sab05]) Let X be a smooth projective complex

variety and (T = (M′,M′′, C),S) be a polarized object of MT(r)(X,w)(p). Then
the associated regular holonomic D-module M := ΞDR(M′′) is semisimple.

Reduction of the proof of Theorem 3 to a theorem of Simpson. On a
Riemann surface X with fixed punctures S ⊂ X a filtered vector bundle consists
of a vector bundle E on X× = X r S together with a family of extensions Eα

to X for α ∈ R such that locally at each s ∈ S the filtration is left continuous,
descending Eα,s ⊂ Eβ,s for a ≥ β and Eα+1,s = z · Eα,s for a local coordinate z
at s.

Denoting Ē the extension for the choice of α = 0 and Ē(s) its fibre at s with
the given filtration, one defines the degree of the filtered vector bundle as

deg(E) = deg(Ē) +
∑

s∈S

∑

0≤α<1

dimgrαĒ(s)

and the slope as slope(E) = deg(E)
rk(E) .

A filtered regular Higgs bundle consists of a filtered vector bundle with a Higgs
fields θ : E → E ⊗Ω1

X× which is logarithmic with respect to the given extensions.
It is called stable if the slope decreases strictly on any proper subbundle preserved
by θ.

Similarly, a filtered regular meromorphic connection is a filtered vector bundle
with a connection ∇ : V → V ⊗ Ω1

X× logarithmic with respect to the given
extensions. It is stable if the slope decreases strictly for any proper subbundle



946 Oberwolfach Report 17/2023

preserved by ∇. By the regular singular Riemann-Hilbert correspondence the
latter correspond to stable filtered local systems.

In order to relate these objects one studies harmonic metrics on such bundles.
Given a harmonic bundle (E, ∂̄, θ, h) (with the complex structure induced by ∂̄,
the associated Higgs field θ and the harmonic metric h) on X×, locally at each
puncture one can write θ in the form θ = f dz

z . The harmonic bundle is called tame
if the coefficients of the characteristic polynomial det(T − f) are holomorphic at
z = 0. It is called purely imaginary if the eigenvalues of the residue of θ at all
punctures are purely imaginary.

For a tame harmonic bundle on X× as above, the parabolic filtration inside j∗V
(with j : X× →֒ X and V the holomorphic vector bundle) is defined by bounding
the growth of sections with respect to the metric h in comparison with the growth
of |z|α for a local coordinate. Due to the tameness, the resulting parabolic filtration
is a filtration by coherent modules and the associated connection ∇ is logarithmic
with respect to these extensions.

If the tame harmonic bundle is purely imaginary, the parabolic filtration coin-
cides with the canonical Kashiwara-Malgrange filtration on (V,∇).

Simpson’s Theorem (cp. [Sim90]) is a correspondence between



stable filtered
regular Higgs
bundles of
degree 0


 ↔

(
irreducible

tame harmonic
bundles

)
↔

(
stable filtered
local systems
of degree 0

)

From this one deduces a correspondence between purely imaginary tame harmonic
bundles and semisimple local systems.

Now, the proof of Theorem 3 can be reduced to the latter correspondence by first

noting that the given polarized object (T = (M′,M′′, C),S) of MT(r)(X,w)(p),
say with strict support Z, generically on Z0 ⊂ Z is smooth and the associated
D-module is an intersection complex associated to a local system L. It remains to
prove that L is semisimple.

This is executed by induction on the dimension dim(Z). The case of a smooth
Riemann surface Z follows by Simpson’s correspondence. To apply the latter,
one observes that the smooth twistor D-module on Z0 corresponds to a harmonic
bundle and that the harmonic metric constructed in this step is tame and purely
imaginary. The non-smooth case can be handled analogously including the nor-
malization of Z into the arguments.

The induction step follows rather easily by intersecting with a hyperplane sec-
tion since it induces a surjection of the fundamental groups π1(Z

0 ∩H) ։ π1(Z
0)

and hence semisimplicity of L on Z0 follows from the semisimplicity of L|Z0∩H .
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Tame harmonic bundles on curves: local properties

Carsten Neumann

The goal of this talk is to construct from a tame harmonic bundle attached
to a variation of pure polarized twistor structure on the punctured disc ∆∗ =
{|t| < 1} \ {0} a pure polarized twistor D-module on the whole disc ∆. One pos-
sible definition of tameness is the following: A harmonic bundle (E, ∂E , θ, h) is
called tame if the eigenvalues λi of θ have poles of order at most one.

One important notion in this talk is that of filtered vector bundles on ∆∗: A
filtered vector bundle on ∆∗ is a vector bundle E with a decreasing filtration of
j∗E by coherent sheaves Ea such that Ea =

⋂
b<aEb and Ea+1 = tEa, where

j : ∆∗ → ∆ is the inclusion. A filtered regular Higgs bundle is a filtered Higgs
bundle such that

θ : Ea → Ea ⊗ Ω1
∆(log({0})).

Similarly, a filtered regular flat bundle (V,∇) is a flat bundle such that

∇ : Va → Va ⊗ Ω1
∆(log({0})).

For a metrized holomorphic bundle (E, h), we define

Ea := {σ ∈ j∗E | |σ|h ≤ Cra−ǫ for all ǫ > 0},
which gives us a decreasing filtration on

Ẽ := {σ ∈ j∗E | |σ|h has moderate growth at 0}.
A metrized holomorphic bundle (E, h) is called acceptable if the curvature Rh of
the metric connection satisfies

|Rh| ≤ f +
C

|t|2(log |t|)2
near t = 0, where C is a constant and f ∈ Lp. In that case, the Ea are co-
herent sheaves and E is therefore a filtered vector bundle. Due to a theorem by
Simpson [1], the tame harmonic bundle (E, ∂E , θ, h) is acceptable with either the

holomorphic structures ∂E or d′′ and, furthermore, ((Ẽ, ∂E), θ) is a filtered regular

Higgs bundle and ((Ẽ, d′′),∇) is a filtered regular flat bundle. (We use the corre-
spondence between harmonic bundles ((E, ∂E , θ, h) and flat bundles (V,∇, h) with
∇ = d′ + d′′ its decomposition into operators of types (1,0) and (0,1).) A similar
result holds for the connections (Eλ,Dλ) for each fixed λ ∈ C, that is, the Eλ

a are
locally free O∆-modules.

The main theorem of this talk is the following:

Theorem 1 ([2]). The variation of polarized pure twistor structure of weight 0
attached to a harmonic bundle on ∆∗ which is tame at the origin extends in a
unique way as a polarized pure twistor D-module on ∆ whose underlying D-module
is the intermediate extension of the flat bundle underlying the variation.

The construction goes as follows: Starting with a harmonic bundle (E, ∂E , θ, h),
one has the R∆∗×Cλ

-triple T (E) = (E , E , C0) with hermitian sesquilinear duality
S(E) = (id, id), where the R-module E is induced by the deformed holomorphic
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bundle with its family of λ-connections and C0 is induced by the metric h. The
desired twistor D-module is the prolongment of this, which is a R∆×Cλ

-triple
T(E) = (E,E,C) with the hermitian sesquilinear duality S(E). Then ΞDR(E) is
the intermediate extension of the flat bundle underlying the variation.

The converse assertion, namely that a polarized pure twistor structure of weight
0 on ∆∗ which is the restriction of a polarized pure twistor D-module on ∆ has an
associated harmonic bundle which is tame at the origin, is simpler: The restriction
of a polarized pure twistor D-module of weight 0 to the punctured disc corresponds
to a harmonic bundle and, by the regularity assumption, each negative step of the
V -filtration is O-locally free in a neighbourhood of λ = 0; since it is stable by the
action of t∂t, it follows that the Higgs field, obtained by setting λ = 0 in the action
of tðt, satisfies the tameness assumption of [1].
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Decomposition theorem for curves

Yajnaseni Dutta

The main goal of this talk is to complete Step 1 from the proof of Statement 1 of
Lecture 8. In other words, establish the P (1, 0) case of the decomposition theorem.
We first recall the statement:

Theorem 1 ([Sab05, Moc07]). Let X be a smooth projective curve and let a : X →
SpecC denote the structure map for the curve. Let (T ,S) be a polarized regular
pure twistor D-module on X of weight 0.

Then, the push-forward (⊕1
i=−1a

i
+T ,L, a+S) is a polarized graded Lefschetz

twistor structure.

We refer to the previous lectures for the precise definitions of polarized regular
pure twistor D-modules and their pushforwards. However we do briefly recall
the following correspondence (see e.g. [Moc07, Theorem 20.1]). For simplicity, we
restrict to the weight 0 case.

Theorem 2. There is a one-to-one correspondence between the variation of po-
larized pure twistor structures of weight 0 which are generically defined over X and
the regular pure twistor D-modules of weight 0 whose strict support is X.

The correspondence goes via harmonic bundles since a variation of polarized
pure twistor structures of weight 0 underlies a harmonic bundle (E, ∂E , θ, h) on
X := X \ D for D a finite set of points (assume, only one point for simplicity).
We let X := X × Cλ and X := X × Cλ and p the respective projections to X
(or X). From this data, we obtain an RX -triple (E , E , C0). On its näıve algebraic
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extension bundle �E (i.e. roughly speaking the twistor incarnation of the algebraic

extension of E over X) we have a V -filtration U
(λ0)
•

�E defined on �E|X(λ0,ǫ0),
where X(λ0, ǫ0) := X × ∆(λ0, ǫ0) namely a slice of the product space over the
disc ∆(λ0, ǫ0) around λ0 ∈ Cλ. Define E(X(λ0, ǫ0)) := the RX- submodule of
�E generated by U

(λ0)
<0

�E . Then the glued RX-module gives rise to a polarized
RX-triple ((E,E,C), (Id, Id)) underlying a pure regular twistor D-module.

Conversely, given such a triple, generically on X, namely for a Zariski open
subset X the RX -triple T |X is a λ-deformed bundle of the harmonic bundle
(E, ∂E , θE , h). The regularity implies tameness of this harmonic bundle.

Proof Sketch. For the proof of 1 we follow [Moc07, §20.2.2] and it relies on the
Dolbeault lemma for a singular Hermitian line bundle due to Zucker. A different
proof can be found in [Sab05, §6.2.b–6.2.f].

The proof goes via a series of quasi-isomorphisms leading up-to

Hi+dimX(Ra∗(E⊗ Ω•
X) ≃ Harmi⊗OCλ

,

where Harmi is a finite dimensional vector space. Thus by definition the pushfor-
ward is a twistor structure of weight i. The Lefschetz map in this case concerns
only i = 0 and looks like

L := a0+E → a0+E⊗ T(0)

where T(0) is the Tate twistor structure of weight 0.

Roughly speaking, the reason why such vector spaces Harmi are independent
of λ is they are generated by the kernel of the Laplace operator

Dλ∗

Dλ +DλDλ∗

= (1 + |λ|2)
(
(∂E + θ)∗(∂E + θ) + (∂E + θ)(∂E + θ)∗

)

acting on certain finite dimensional space of global L2-sections. Here Dλ is the
connection associated to Eλ.

The crux of the proof lies in constructing this series of quasi-isomorphisms. It
relies on the classical Dolbeault lemma for C∞ rank 1 flat bundle (V,∇) on the
disc. This is due to Zucker [Zuc79] who established a quasi-isomorphism between
the näıve algebraic extension �V of V on X and the complex L•(V )(2) of L2-

sections of V ⊗ Ap
X with L2-derivatives [Zuc79, Theorem 6.2]. For all λ ∈ Cλ,

one can apply this construction to the bundles Eλ associated to E|X and extend

these ideas to construct a complex S(E ⊗ Ω•,0
X

) on X whose fibres are certain λ-

holomorphic sections of a sub-complex L̃•(Eλ)(2) ⊆ L•(Eλ)(2). This subcomplex
is defined so that it is soft with respect to the global section functor and the i-
th cohomology of the global section complex is a finite dimensional vector space
Harmi [Moc07, Lemma 20.23-24] and hence is independent of λ.

On the other hand, the relation between the complexes a∗S(E⊗Ω•,0
X

) to Ra∗(E⊗
Ω•

X) is not so straightforward. To this end, one uses the V -filtration associated to
�E defined over a neighbourhood ∆(λ0, ǫ0) and the pieces of the weight filtrations
whose sections are L2 in order to construct Q(λ0),• on X(λ0, ǫ0) for each λ0 ∈
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Cλ. Using Zucker’s norm estimates one shows that that Q(λ),•
∣∣
X×{λ0}

is quasi-

isomorphic to S(E ⊗ Ω•,0
X

)
∣∣
X×{λ0}

. For a discussion on how L2-norm estimates on

a harmonic bundle behaves with respect to the sections of parabolic filtrations,
V -filtrations and the monodromy weight filtrations see Lecture 14. Since the
cohomologies of the pushforwards of both complexes form coherent sheaves on the
disc ∆(λ0, ǫ0) and their fibres are already isomorphic, one can argue using the
Nakayama lemma for graded rings to conclude

Hi(Ra∗Q(λ),•) ≃ Hi(a∗S(E ⊗ Ω•,0
X

))
∣∣
∆(λ0,ǫ0)

≃ Harmi⊗CO∆(λ0,ǫ0).

This is [Moc07, Lemma 20.38]. The quasi-isomorphism between the complexes
Q(λ),• and E⊗Ω•

X follows from the properties of the V -filtration [Moc07, Lemma
20.35] completing the proof.

�
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Tame harmonic bundles in arbitrary dimension

Claus Hertling

The subject of the lecture were tame harmonic bundles in arbitrary dimension,
namely their definition, basic properties and two theorems (though also the basic
properties are theorems).

First, the local definition was given. In the case of the complex manifold X =
∆n with ∆ = {z ∈ C | |z| < 1} the unit disk and the normal crossing divisor

D =
⋃l

i=1Di with Di = {zi = 0} ⊂ X , a harmonic bundle H = (E, ∂E , θ, h) on
X − D is tame along D if for each logarithmic vector field v the characteristic
polynomial of the endomorphism θv of the holomorphic bundle E which comes
from v and the Higgs field θ extends holomorphically over D.

There is a very useful curve test for tameness. The harmonic bundle H onX−D
is tame along D if for any holomorphic curve C which intersects the smooth part
of D transversely in one point Q, the restriction H|C−{Q} of the harmonic bundle
to C − {Q} is tame along Q.

For each parameter λ ∈ C the bundle E comes equipped with a new holo-
morphic structure ∂E + λθ† with which it is called Eλ, and the bundle Eλ comes
equipped with a holomorphic flat λ-connection Dλ = λ∂E + θ. These data glue to
a holomorphic bundle E =

⋃
λ∈C

Eλ with a family D of λ-connections, with D0 = θ.
Consider a curve C ⊂ X which intersects the smooth (with respect to D) part

D◦
i of a component Di of D transversely in a point Q. For each f ∈ Eλ − {0},
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the order ord(f) ∈ R is the biggest number b ∈ R with |f |h = O(|z|b−ε) for any
ε > 0. Simpson [Si90] proved that the sections f ∈ Eλ −{0} with −ord(f) ≤ b for
some b ∈ R give an extension of Eλ to a holomorphic vector bundle bEλ|C on C
and that Dλ has on this bundle a logarithmic pole at Q.

If bEλ/<bEb % {0}, then the residue endomorphism Res θ|C acts on this finite
dimensional C-vector space with some eigenvalues β ∈ C. The set of all such pairs
(b, β) ∈ R×C is the KMS-structure KMS(Eλ|C) ⊂ R×C, a discrete subset which
is invariant under addition of ±(1,−λ).

It turns out that this KMS-structure is independent of Q and C, so it gives
a KMS-structure KMS(Eλ, i) ⊂ R × C for the component Di of the normal

crossing divisor D =
⋃l

i=1Di. Also the definition of bEλ|C extends. For any

b = (b1, ..., bl) ∈ Rl an extension of Eλ to a holomorphic vector bundle bEλ on
X arises, and again Dλ has logarithmic poles along D. Especially, the Higgs field
θ = D0 has on the extension bE0 of E0 = E a logarithmic pole along D.

Proofs of these statements can be found in [Mo07], which is the main source of
this lecture.

Interesting is also the dependence of the KMS-structure on λ ∈ C. For fixed λ,
the map

(p(λ), e(λ)) : R× C → R× C, (a, α) 7→ (a+ 2Re(λα), α− λa− λ2α),

is a bijection from R×C to R×C, and it restricts to a bijection from KMS(E0, i)
to KMS(Eλ, i) for any i ∈ {1, ..., l}.

A tame harmonic bundle as above is called purely imaginary if KMS(E0, i) ⊂
R×

√
−1R for any i. In this purely imaginary case one has for λ = 1

−Re(e(λ)(a, α)) = −Re(α− λa− λ2α) = a
!
= a+ 2Re(λα) = p(λ)(a, α).

This implies that the filtration •E1 from the norm fits to the Kashiwara-Malgrange
filtration which comes from the real parts of the eigenvalues of the residue endo-
morphisms of D1.

The local definition of the tameness of a harmonic bundle along a normal cross-
ing divisor gives rise in an easy way to the notion of a generically defined tame
harmonic bundle on an irreducible (reduced complex analytic) subvariety Z in a
complex manifold X . One just needs a Zariski open smooth subset U ⊂ Z, a har-

monic bundle H = (E, ∂E , θ, h) on U , and the existence of a resolution ϕ : Z̃ → Z

such that (i) D̃ := ϕ−1(Z−U) is a normal crossing divisor in Z̃, (ii) ϕ : Z̃−D̃ → U

is an isomorphism, and (iii) the harmonic bundle ϕ−1H is tame along D̃.
Two such generically defined tame harmonic bundles (U,H) and (U ′,H′) on Z

are equivalent if a third one (U ′′,H′′) with U ′′ ⊂ U ∩U ′ and H|U ′′
∼= H′′ ∼= H′|U ′′

exists (the next theorem implies that then H|U∩U ′
∼= H′|U∩U ′).

Now the first of the two theorems can be formulated.
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Theorem 1. [Mo07, Theorem 19.6 and Theorem 19.42] Let X be a complex man-
ifold and Z ⊂ X an irreducible (reduced complex analytic) subvariety.

(a) There is a natural correspondence between the set

{generically defined tame harmonic bundles on Z}/equivalence
and the set MPT

(r)
Z (X, 0) of regular polarized pure twistor D-modules of weight 0

with strict support Z.
(b) The correspondence restricts to a correspondence between the purely imagi-

nary objects on both sides.

The definition of a purely imaginary generically defined tame harmonic bundle
on Z is obvious from the definitions above. The definition of a purely imaginary

element of MPT
(r)
Z (X, 0) had been given in an earlier lecture.

The proof of the theorem is given in [Mo07] in the subsections 19.2 (tameness of

the harmonic bundle which one obtains by restricting an element ofMPT
(r)
Z (X, 0)

to a suitable Zariski open subset of Z), 19.3 and 19.4 (existence and uniqueness
of an extension of a generically defined tame harmonic bundle on Z to an object

of MPT
(r)
Z (X, 0)) and 19.5 (part (b) of the theorem).

Perhaps most interesting is the first step in 19.3, which starts with the local
situation above: the complex manifold X = ∆n, the normal crossing divisor D =⋃l

i=1Di, the harmonic bundle (E, ∂E , θ, h) on X−D which is tame alongD. Then
for any λ0 ∈ C one finds a small ε > 0 and a disk ∆(λ0, η0) ⊂ C around λ0 such
that for any i ∈ {1, ..., l}

{1− ε} × C ∩KMS(Eλ, i) = ∅ for λ ∈ ∆(λ0, η0)− {λ0},
[1− ε, 1[×C ∩KMS(Eλ0 , i) = ∅.

The bundle

(<1)E(λ0) :=
⋃

λ∈∆(λ0,η0)

(1−ε,...,1−ε)Eλ

on (X −D)×∆(λ0, η0) turns out to be holomorphic, and the R-module which it
generates is the correct extension from (X −D)×∆(λ0, η0) to X ×∆(λ0, η0).

If λ1 6= λ0 with ∆(λ0, η0) 6= ∅, the bundles (<1)E(λ1) and (<1)E(λ0) may differ
on the intersection ∆(λ0, η0) ∩ ∆(λ1, η1), but they generate the same R-module
on this intersection. Thus these (in λ) local extensions glue to the right object on
X × C in MPT (r)(X, 0).

The second theorem of this lecture is as follows.

Theorem 2. [Mo07, Proposition 22.15, Theorem 25.21, Theorem 25.28] Let X be
complex projective manifold and D ⊂ X a normal crossing divisor.

(a) Let (E, ∂E , θ, h) be a harmonic bundle on X −D which is tame and purely
imaginary along D. Then the flat vector bundle (E1,D1) is semisimple.

(b) Let (Ẽ, ∇̃) be a semisimple flat complex vector bundle on X −D. Then a
harmonic bundle (E, ∂E , θ, h) on X−D exists which is tame and purely imaginary

along D and which satisfies (E1,D1) ∼= (Ẽ, ∇̃). The pluriharmonic metric h is
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unique up to automorphisms of the flat bundle (E1,D1). In other words: If one
writes

(E1,D1) =
⊕

ρ∈Irred(X−D)

(E(ρ),∇(ρ)) ⊗ Cm(ρ)

with (E(ρ),∇(ρ) a simple flat bundle associated to ρ and m(ρ) ∈ Z≥0, then the
metric splits as h =

⊕
ρ∈Irred(X−D) h(ρ)⊗gρ with gρ a metric on (the vector space)

Cm(ρ).

There was no time in the lecture to discuss the proof of this theorem. Though
the following remarks were made. If a harmonic bundle (E, ∂E , θ, h) on X −D is
tame, but not purely imaginary alongD, then the associated flat bundle (E1,D1) is
not necessarily semisimple. On the other hand, there exist already for dimX = 1
harmonic bundles on X−D which are tame, but not purely imaginary, and whose
associated flat bundles (E1,D1) are nonetheless semisimple.

In the case dimX = 1 this theorem is due to Simpson [Si90]. In the case
dimX = 2 Mochizuki’s proof of part (b) in [Mo07, 25.1-25.4] follows an argument
of Jost and Zuo [JZ97], and like them he assumes only that X is a compact Kähler
surface with a normal crossing divisor. But the elegant inductive argument for
part (b) in the cases dimX ≥ 3 in [Mo07, 25.5] requires that X is a complex
projective manifold.
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Irregular singularities in dimension one

Alex Takeda

The goal of this lecture was to recall the classical theory of meromorphic flat
bundles with irregular singularities, in order to later relate it sto the analogous
developments in the setting of twistor D-modules. The lecture mostly followed the
exposition in chapters III and IV of Malgrange’s book [Ma91], and was roughly
divided in two parts: the first half devoted to the formal classification of irregular
singularities, presenting the ideas behind the proofs of the decomposition result
of Levelt, Turrittin, Hukuhara [Le75, Tu55], and the second half passing to the
analytic theory of irregular singularities over the punctured disk, which builds on
the formal classification by adding the notion of Stokes structures, as developed by
Deligne, Birkhoff, Malgrange [De06, Bi13, Ma91], among others, and commonly
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known as the ‘(irregular) Riemann-Hilbert-Birkhoff correspondence’. A third sec-
tion, which was planned but not presented due to time constraints, deals with
an extension of this RHB correspondence by Mochizuki [Mo11, Sec.4.5.2] to cer-
tain types of families of irregular connections, where the irregular part varies under
multiplication by positive factors, and that plays a role in the study of wild twistor
D-modules. These results were partly presented in other later talks.

The formal classification. Let ∆̂ be the formal disk, with structure sheaf Ô =

C[[x]], and K̂ = Ô[x−1] the ring of meromorphic formal functions. We study flat

connections with a meromorphic singularity at zero; these are K̂〈∂〉-modules that
are flat connections away from zero, with a pole of any order in x.

The Hukuhara-Levelt-Turrittin decomposition. The formal classification starts with
the observation that every such connection M admits a cyclic vector (this also
works over the actual, non-formal disk) [Co36, De06, Ka87]. In other words, there
is an element e ∈M such that {e, ∂e, . . . , ∂m−1e} is a basis of M . From the equa-
tion expressing ∂me in this basis, one obtains the Newton polygon ofM , which one
proves to be independent ofM . This polygon gives a one-parameter family of val-

uations on K̂〈∂〉; using these one can decomposeM as a direct sum of submodules,
each summand corresponding to a slope of the polygon. The submodule with slope
zero is the regular part of M ; using an iterative argument for the other compo-
nents leads to decomposition theorem of Levelt, Hukuhara, Turrittin, stating that
(possibly after a finite ramification) there is a decomposition M ∼=

⊕
ω Lω ⊗Mω,

where each Lω is a certain rank-one connection with irregular value ω, and Mω is
regular.

Good Deligne-Malgrange lattices. We consider now a disk ∆ of some radius R
and denote O for its structure sheaf (and analogously for K,K〈∂〉). Given any
meromorphic connection on the punctured disk, that is, a K〈∂〉-module M that

restricts to a flat connection away from zero, we can take its formalization M̂ and
get a formal connection of the type we described above.

We begin describing an analytic connectionM by noting that due to the results
above for formal connections, one can produce a good Deligne-Malgrange lattice
[Mo09] for the connection M (again, possibly after a finite ramification): such a
lattice is a locally free O-submodule E ofM such that KE ∼=M , and the property
of ‘goodness’ means its monodromy satisfies a certain condition. This lattice E is

obtained by pulling back a lattice for M̂ , constructed using the Hukuhara-Levelt-
Turrittin decomposition. Note that this existence result is specific to dimension
one, and fails in higher dimensions due to the existence of turning points.

The analytic classification. This formal information, however, does not suffice

to classify meromorphic connections over ∆; the mapping M 7→ M̂ forgets some
information. This data turns out to be captured by a notion called a ‘Stokes
structure’ associated to M . This appears in different forms in many works; the
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formulation in the book is attributed to Deligne and measures roughly how the for-

mal models for the flat sections of M̂ in angular sectors around zero glue together
to local flat sections of M .

Flat sections on angles. We consider a real blow-up of the disc D̃ → D which
replaces zero with a circle S of directions, and then define a sheaf A on D̃ which,
close to each small open in S, has as sections germs of meromorphic functions
that admit an asymptotic Laurent series in that small angular sector. This sheaf
naturally has a subsheaf A<0 of functions with zero Laurent series.

Using elementary complex analysis, one can prove that the natural map
H1(S,A<0) → H1(S,A) is zero [RS89], and using asymptotic analysis, that the
endomorphism ∂ is surjective on A<0(M) = A<0 ⊗O M . Now, for each angle
θ ∈ S, we take the localization A(M)θ; the kernel of ∂ on this space is the germs
of flat sections of M around that angle. It follows from these results then that

the natural map ker(∂,A(M)θ) → ker(∂, M̂) is surjective; that is, every formal
solution can be locally extended to a small interval around any angle.

Stokes structures. One concludes from this result above that locally around every
angle, there is an identification between the flat sections ofM and the flat sections
of some connection of the form

⊕
ω Lω ⊗Mω; these are all of the form exp(

∫
ω)fω

for some fω solving a differential equation with a regular singularity.
Thus every solution has a certain asymptotic behavior ∼ exp(

∫
ω)(. . . ), well-

defined up to terms of smaller growth; this gives a filtration on the sheaf of flat
sections. Putting this all together, each irregular connection produces (possibly
after finite ramification) an Ω-filtered local system of solutions, where Ω is a family
of local systems indexed over the irregular values ω; this is what is called a Stokes
structure.

The (irregular) Riemann-Hilbert-Birkhoff theorem is the statement that this
map, from meromorphic connections on the disk, to Stokes-filtered local systems,
is an equivalence of categories. Malgrange attributes this statement to Deligne,
and provides references to many proofs [Bi13, Ju06, Ma79]. It was noted during
the talk at Oberwolfach that the statement given in the book [Ma91] is slightly
inaccurate; one must be more careful in specifying which Ω-filtered local systems
are allowed in the category of Stokes-filtered local systems. Roughly, one must
require that these filtrations be, angular-locally, isomorphic to filtrations coming
from standard meromorphic connections; for more details, the work of Sabbah on
Stokes structures ([Sa12] and references within) has more precise descriptions of
this correspondence.
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Wild harmonic bundles on curves

Szilárd Szabó

We define the notions of (unramifiedly, purely imaginary) wild Higgs bundles and
wild harmonic bundles on the complement of a finite number of points on a curve,
first locally then globally by requiring the corresponding conditions on coordinate
charts. We give examples in arbitrary rank, with arbitrary irregular part, parabolic
weights and graded residues. We define the metric prolongment of the holomorphic
bundle associated to the λ-connection of a wild harmonic bundle on the punctured
disc. We state that it is a filtered bundle. We define the graded residue maps,
and for a frame compatible with the irregular parts, the parabolic filtration and
the weight filtration on the associated graded pieces of the parabolic filtration,
we define a model metric. We state the norm estimate due to T. Mochizuki:
the model metric so constructed is mutually bounded with the harmonic metric,
and we sketch its proof in the case λ = 0. For the proof we invoke C. Simpson’s
Corollary saying that if two metrics H, K both have curvature in Lp for some p > 1
and they induce the same filtration both on the bundle and its dual, then they are
mutually bounded. We state T. Mochizuki’s result saying that the components of
a harmonic 1-form corresponding to irregular part a 6= 0 decay exponentially in
rord(a), where ord(a) < 0 is the degree of a with respect to z. We indicate a proof
using energy estimates based on the Weitzenböck formula.
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Polarizable wild twistor D-modules

Qianyu Chen

The goal of my talk is to define wild twistor D-modules and present the decom-
position theorem for them, as developed by Sabbah and Mochizuki. To begin,
I provided the definition of Deligne’s irregular nearby cycle for D-modules and
R-modules, which is necessary for the wild case as the usual nearby cycle may not
provide enough information for irregular D-modules. The irregular nearby cycle
takes into account all exponential and ramification twists.

Moving on to the definition of wild twistor D-modules, one simply mimics the
regular case but replaces the regular nearby cycles with Deligne’s irregular nearby
cycles. The properties of wild twistorD-modules are similar to those of the regular
case; for example, the category of polarizable wild twistor D-modules is abelian
and semisimple.

I then introduced the decomposition theorem, which states that (1) the coho-
mology modules of the pushforward of a polarizable wild twistor D-module along
a projective morphism are again a polarizable wild twistor D-module (with weight
shifted by the cohomological degree), and (2) the Hard Lefschetz holds on the
cohomology modules of the pushforward.

Finally, I noted that the first step of the proof is to reduce to the case of curves,
and that the reduction is similar to the regular case. However, the case of curves
will be analyzed further in later lectures.

Proof of wild statement 1

Benedict Morrissey

In the case of curves, we give an overview of T. Mochizuki’s proof of “wild” version
of statement 1. If (τ, S) is a polarized wild pure twistor D-module of weight w on
an algebraic curveX , then its pushfoward to a point is a polarized graded Lefschetz
twistor structure of weight w. We will focus on how the proof in this case differs
from the tame case, which was proven earlier in this Arbeitsgemeinschaft. This
statement can be seen as a generalization of the Hodge decomposition and Hard
Lefschetz theorem in the compact curve case.

Deligne-Malgrange lattices and purely imaginary wild

harmonic bundles

Mauro Porta

In this talk we approach the subtleties arising from passing from dimension 1 to
higher dimensions. In a nutshell, when passing from meromorphic connections
with isolated singularities to meromorphic connections with singularities concen-
trated along a simple normal crossing divisor, Hukuhara-Levelt-Turrittin formal
composition theorem will only hold outside of a codimension 1 open on the divisor
(so, outside of codimension 2 in X). Roughly speaking, the closed subset of points
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where we don’t have a good formal decomposition is called the set of turning points,
and it is a major obstruction in establishing the Riemann-Hilbert correspondence
and in studying the existence of pluriharmonic metrics on the meromorphic con-
nection. Through the lenses of an explicit example, I will introduce the former
Sabbah’s conjecture, stating that there exists a resolution of turning points, which
is analogous to resolution of singularities. This conjecture has been proven inde-
pendently by Mochizuki and Kedlaya, and if time permits I will briefly survey the
broad ideas involved.

Wild harmonic bundles and semi-simple meromorphic flat bundles

Jean-Babtiste Teyssier

As proved by Mochizuki, wild harmonic bundles canonically extend at infinity as
meromorphic flat bundles. The goal of this talk is to explain how semi-simplicity
of the extended flat bundle translates in terms of the original harmonic bundle.
The emphasis is put on the Kobayashi-Hitchin correspondence as the main player
of this interplay, giving necessary and suffisant conditions for a meromorphic flat
bundle to come from a wild harmonic bundle. The roles of Mochizuki’s resolution
of turning points and Deligne-Malgrange’s parabolic structures are underlied. A
special emphasis is put on how the DM parabolic structure appears as the most
natural candidate satisfying the numerical conditions of the Kobayashi-Hitchin
correspondence. As application of this circle of results, we give a detailed proof
of Mochizuki’s theorem stating that semi-simplicity for algebraic flat bundles is
stable under pull-back.

Wild harmonic bundles and wild pure twistor D-module

Bruno Klingler

Let X be a smooth complex projective variety and Xan its associated compact
complex manifold. Non-abelian Hodge theory relates topological, algebraic differ-
ential, metric and algebraicOX -linear objects onX (the Betti, de Rham, harmonic
and Dolbeault objects). The simplest (“smooth”) instance is the equivalence of
categories between semi-simple (complex) local systems on Xan, semi-simple flat
algebraic connections on X , harmonic bundles on Xan and semi-stable Higgs bun-
dles on X with vanishing Chern classes. Allowing tame singular objects, this
generalizes to an equivalence between semi-simple perverse sheaves on Xan, semi-
simple regular holonomic D-modules on X and

√
−1R polarizable tame twistor

D-modules of weight 0 on Xan (the Higgs picture is already unclear at this level
of tame singular objects). Passing to general singular objects, the main purpose
of this talk was to sketch the proof the following result (where now both the Betti
and Dolbeault pictures are unclear):

Theorem 1 (T. Mochizuki). The functor “fiber at 1”

ΞdR : MTwild(X, 0,
√
−1R)(p) → Holss(X)
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between the category of
√
−1R polarizable wild twistor D-modules of weight 0 on

Xan and the category of general semi-simple holonomic D-modules on X is an
equivalence of category.

Kashiwara’s conjecture (existence of the “Lefschetz package” for semi-simple
holonomic D-modules on X) then follows immediately from the corresponding
statement for polarizable pure wild twistor D-modules on Xan (proven in Lecture
12).

The proof of Theorem 1 reduces easily to simple objects with strict support:

Theorem 2. [Moc11, (19.4.1)] Let Z ⊂ X be a closed irreducible subvariety of X.
The functor “fiber at 1”

ΞdR : MTwild
Z,s (X, 0,

√
−1R)(p) → HolZ,s(X)

between the category of
√
−1R polarizable wild twistor simple D-modules of weight

0 on Xan with strict support Z and the category of simple holonomic D-modules
on X with support contained in Z is an equivalence of category.

The proof of Theorem 2 consists in two steps: (A): prove that ΞdR maps simple
objects to simple objects, so that the statement actually makes sense. (B): prove
the equivalence of category. Here the main difficulty is the essential surjectivity of
ΞdR.

Using the Kedlaya-Mochizuki resolution of turning points (Lectures 16 and 17),
one reduces the proof of Theorem 2 to showing:

Theorem 3. [Moc11, (19.1.2)] Let Z ⊂ X be a closed irreducible subvariety of X.
The functor

Φ : MPTwild
strict(Z,U, 0,

√
−1R) → VPTwild(Z,U, 0,

√
−1R)

which, to a polarized wild pure twistor D-module with strict support Z whose re-
striction to an open subset U ⊂ Z is a variation of polarized twistor structure
of weight 0, associates the unique pluriharmonic bundle (E, ∂E , θ, h) on U whose
metric h is adapted to the Deligne-Malgrange lattice, is an equivalence of category.
Here the morphisms on both sides are isomorphisms.

Again, the proof of Theorem 3 consists in two steps: (A): prove that Φ maps
simple objects to simple objects, so that the statement actually makes sense. (B):
prove the equivalence of category. And again the main difficulty is the essen-
tial surjectivity of Φ, equivalently the construction of the minimal extension of a
given wild harmonic bundle (E, ∂E , θ, h) ∈ VPTwild(Z,U, 0,

√
−1R) as an object

of MPTwild
strict(Z,U, 0,

√
−1R).

The main step consists in dealing with the local situation: (E, ∂E , θ, h) is an

unramifiedly good wild harmonic bundle onX−D = ∆n−⋃l
i=1Di, Di = {zi = 0}.

In that case, one extracts the minimal extension from the “meromorphic extension”
(QE on (X,D)×Cλ,D) introduced in Lecture 15. This is done in [Moc11, (19.2.1)]
by induction on the dimension of X : the case of curves is rather easy, while the
inductive step is carried out in [Moc11, Chap.12].
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It remains to prove the full faithfulness of Φ in Theorem 3. The faithfulness
is elementary. The fullness on the other hand is non trivial, because of the non-
uniqueness of the meromorphic extension in the wild case (existence of Stokes
structures). When X is a curve the key ingredient is [Moc11, (12.6.1)].
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Centre de Mathématiques Laurent

Schwartz
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