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Abstract. This workshop brought together researchers working on mathe-
matical problems related to tomography, with a particular emphasis on novel
applications and associated mathematical challenges. Examples of respective
issues represented in the workshop were tomographic imaging with Compton
cameras or coupled-physics imaging, resolution and aliasing, vector and ten-
sor field tomography, diffraction tomography, magnetic particle tomography,
and limited data, all of which are motivated by the many modern applica-
tions. These topics were complemented by novel algorithmic strategies in
the solution of tomographic inverse problems, such as stochastic methods
and machine learning techniques. Bringing together mathematical and scien-
tific researchers working on these different mathematical problems created a
fruitful interchange with novel ideas and strong impact for the future of the
field.
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Introduction by the Organizers

Tomography is the mathematics, physics, and technology used to image the in-
ternal properties of objects using indirect data. It has revolutionized fields from
diagnostic medicine to nondestructive evaluation by allowing doctors to diagnose
diseases without exploratory surgery and researchers to find defects in objects from
external observations. Tomographic problems are inverse problems because one
wants to go backward from the data to the object that generated it.
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The workshop Tomographic Inverse Problems: Mathematical Challenges and
Novel Applications brought together forty-five participants from Europe and Asia
as well as North and South America. Their expertise covered a broad range of
areas from pure mathematics to numerical analysis and practical applications in
medicine, science, and industry. Besides international experts and young scientists,
the group of participants included six graduate students whose talks and posters
were especially effective to introduce these new researchers to the field. This
was a diverse workshop. In particular, the discussions and the talks reflected
the high quality of the young mathematicians in the field. This is the eleventh
Oberwolfach workshop in this series. The first workshop, in 1980, was crucial for
the development of this then-young field. As the field has grown and broadened,
the themes of the workshop series have expanded, and these workshops remain
crucial to the development of the field and of its practitioners.

New X-ray detectors have recently been developed that record energy (pro-
portional to frequency) as well as intensity, and this opens important new tomo-
graphic modalities. In Compton tomography, one images objects using photons
whose scatter obeys the Compton effect. The mathematical model involves a
new Radon transform that integrates over surfaces of rotation of circles to gener-
ate American football or “apple” shaped spindle tori. Important open problems
include determining effective data acquisition methods and finding stable recon-
struction methods. To do this, one must develop the mathematical properties of
the transforms. Other Compton models include V-line and conical methods, and
they generate their own questions. In most of these problems, the data are limited,
and understanding what object features are visible is important and involves deep
pure mathematics. These fields were well-represented at the workshop.

Another novel direction in X-ray imaging is three-dimensional nano-tomography,
which leads to interesting combinations of phase retrieval and tomographic recon-
struction problems. This field of diffractive imaging was represented at the work-
shop in talks on all instances from practical issues to mathematical reconstruction
techniques and their theory.

Vector and tensor tomography are interesting extensions of the classical tomog-
raphy approaches, which were represented at the workshop by talks on diffractive
versions thereof as well as fast inversion formulae. Further versions of the tomog-
raphy problems related to limited angle and low dose data were covered by several
talks, including the application of dental CT. Similar problems appearing in mag-
netoacoustoelectric tomography, leading to weighted Radon transform of vector
fields, were also reported.

Many tomographic modalities share similar mathematical models, and progress
in one application can benefit other applications. Examples include coupled physics
imaging (CPI) techniques, modalities where user-controlled probes generate sim-
ulated signals read by a complementary measurement system. A leading example
is Photoacoustic Tomography (PAT) which measures pressure waves generated by
the body in response to light, and ultrasound measures the reaction of the body
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to ultrasonic radiation. Other novel examples of CPI presented were magnetoa-
coustoelectric tomography and optical coherence elastography.

Radar and sonar measure waves generated by radiation reflected off objects. In
each case, the measured data can be modeled as averages over circular, spheri-
cal or ellipsoidal (or more complicated) wavefronts, allowing for a broad range of
approaches. As well as its role in PAT, ultrasound is a direct example of tomo-
graphic imaging; recently with the increasing computational resources available,
ultrasound tomography by full waveform inversion has become a practical pos-
sibility. Another example of imaging of data described by a partial differential
equation (PDE) is quantum optics, which was the subject of the final talk in the
workshop.

A ubiquitous topic nowadays is deep learning, which also found strong interest
at the workshop in the context of improving tomographic reconstruction. In the
workshop methods using deep learning for model error correction, for curing issues
in limited angle tomography, and for motion estimation from tomography data
were presented. Moreover, some talks investigated fundamental issues related to
machine learning in inverse problems, including a discussion of potential use cases
and limitations as well as theoretical convergence guarantees.

Another interesting issue arising in many practical problems is uncertainties
(such as also the model errors mentioned above). Several talks addressed this
issue and its mathematical treatment by Bayesian and data-driven approaches.

Besides presenting the current research areas in the field, the workshop was
also crucial in fostering existing and initiating new collaborations among partici-
pants. Gaël Rigaud and Todd Quinto discussed joint work on Compton scattering
tomography; Simon Arridge and Matias Courdurier discussed a new model for
phase-contrast tomography; Simon Arridge and John Schotland initiated a col-
laboration to develop a learned based method for the inverse Born Series; Tim
Salditt initiated new collaborations with Martin Burger, Samira Kabri, Lorenz
Kuger, and Simon Arridge; to name only a few. This gives a small glimpse into
the vibrancy of the field and the important role this workshop series plays in its
advancement.

Acknowledgement: The organizers thank Prof. Dr. Huisken and the staff of the
Mathematisches Forschungsinstitut Oberwolfach for creating a perfect environ-
ment to do serious mathematics. We thank the MFO for their efficient and very
helpful organization that made the conference go smoothly and allowed us to fo-
cus on the mathematics. The MFO and the workshop organizers would like to
thank the National Science Foundation for supporting the participation of junior
researchers in the workshop by the grant DMS-2230648, “US Junior Oberwolfach
Fellows”. Lastly, we thank the participants themselves for sharing their mathe-
matics and helping create a lively and stimulating workshop.
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Abstracts

On the approximate inversion of generalized Radon transforms
emerging in seismic imaging

Andreas Rieder

(joint work with Kevin Ganster)

Wave propagation in a medium that does not admit shear stress is accurately
modeled by the acoustic wave equation when, in addition, attenuation is neglected:
the pressure wave u = u(t;x,xs) at x = (x1, x2)

⊤ ∈ R2 and time t ≥ 0 satisfies

(1)
1

ν2p
∂2t u−∆xu = δ(x− xs)δ(t), u|t=0 = ∂tu|t=0 = 0,

where the wave is initiated by a source at location xs and time t = 0 (δ denotes
the Dirac distribution in the related variables). The seismic inverse problem in the
acoustic regime that we consider reads: reconstruct the sound speed νp in an open
set X ⊂ R2

+ := R × [0,∞) from reflected fields u(t;xr,xs), (t;xr,xs) ∈ [0, T ] ×
R× S. Here S and R are sets of source and receiver positions in ∂R2

+ = R× {0},
respectively, and T is the observation time.

We linearize this nonlinear inverse problem by

1

ν2p(x)
=

1 + n(x)

v2(x)

with a smooth, a priori known background velocity v = v(x) satisfying the geomet-
ric optics assumption1. Thus, multiple reflections are excluded. The reflectivity n
captures the high frequency content of νp and is the quantity we are interested in.

We assume that pairs of source and receiver positions can be smoothly parame-
trized by a variable s in an open subset S ⊂ R, that is, xr = xr(s) and xs = xs(s).
Using principles of wave propagation under the geometric optics assumption we
can show, see [7], that n approximately solves the integral equation

(2) Fw(s, t) = 4π

∫ t

0

(u− ũ)(r;xr(s),xs(s))dr.

The reference solution ũ has to be computed from (1) with v in place of νp. In
(2), the operator F is a generalized Radon transform

Fw(s, t) =

∫

X

A(s,x)w(x)δ
(
t− ϕ(s,x)

)
dx,

A(s,x) =
a(x,xs(s))a(x,xr(s))

v2(x)
, ϕ(s,x) = τ(x,xs(s)) + τ(x,xr(s)),

where the travel time τ and the amplitude a can be computed from

(3) |∇xτ |2 = v−2 and divx(a
2∇xτ) = 0.

1Any two points in the medium can be connected by a unique ray of geometric optics. Rays
are characteristic curves of the PDE on the left in (3) (eikonal equation).
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Define X = int{x ∈ R2
+ : ∇xϕ(s,x) 6= 0, s ∈ S} and Y = {(s, t) : s ∈ S, t >

tfirst(s)} where tfirst(s) is the time, which the unique ray needs from source to
receiver. Then, F : E′(X) → D′(Y ) is a Fourier integral operator of order −1/2
which integrates over reflection isochrones L(s, t) = {x ∈ X : t = ϕ(s,x)}.

Recently, in [3–5] the authors proposed and analyzed imaging operators Λ =
KF †ψF where K is a properly supported pseudodifferential operator of positive
order, ψ : Y → [0,∞) is a smooth cutoff function, and F † denotes the generalized
backprojection with smooth weight W , that is,

F †u(x) =

∫

S

W (s,x)u(s, ϕ(s,x))ds.

The formal L2-adjoint F ∗ has weight W = A and a backprojection with W = 1/A
was used in [1]. Further, a numerical scheme for Λ can be based on the concept
of approximate inverse [6]. To this end let, for k > 0,

eγ(x) =
k + 1

π γ2(k+1)

{
(γ2 − |x|2)k : |x| < γ,

0 : |x| ≥ γ.

The family {eγ}γ>0 converges to δ in the distributional sense as γ → 0.
Now, for p ∈ X and g ∈ L2(Y ), we define the approximate inverse by

Φγg(p) := 〈ψg, υp,γ〉L2(Y )

where

(4) υp,γ(s, t) = F̃
(
W (s, ·)K∗eγ(· − p)

)
(s, t)

is the reconstruction kernel and

F̃ ρ(s, t) =

∫

L(s,t)

ρ(s,x)
ds(x)

|∇xϕ(s,x)|
.

Note that ΦγFn(p) = Λn ⋆ eγ(p) is a regularized version of Λn (⋆ denotes convo-
lution).

The following tasks have to be performed to numerically compute the kernel:
1. Solve the PDEs in (3), for instance, by Fast Marching and Lax-Friedrich sweep-
ing schemes, respectively. 2. Find L(s, t) efficiently by Marching Squares. 3. Eval-
uate the right hand side of (4) by a quadrature rule where in concrete settings
K∗eγ(· − p) can be computed analytically.

To process these steps in full generality is challenging and subject to ongoing
research. However, if one considers a layered background medium, that is, v(x) =
v(x2), and the common offset acquisition geometry, that is, xs(s) = (s − α, 0)⊤
and xr(s) = (s + α, 0)⊤ for offset α ≥ 0 fixed, then invariance properties apply,
which reduce the numerical effort considerably, see [2] for implementation details.
Figure 1 shows a reconstruction kernel under the assumptions just given.

By the steps explained above we can pre-compute/approximate υp,γ on a grid
S× T ⊂ Y for p in a discrete set Mp ⊂ X . Finally, for data g given on a uniform
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Figure 1. Numerical approximation of υ(0,4),1 for offset α = 3, k = 3,

F † = F ∗, and K = ∆M2 where M is the multiplication operator
by x2 and ∆ is the Laplacian. The background velocity is v(x) =
1
2

(

1 + x2 +
1
2
cos

(

π
4
x2

))

. On the right: cross sections for s = 0 (blue)
and s = ±9 (orange).

grid Sdata × Tdata ⊂ Y with step sizes hSdata
and hTdata

we get

Φγg(p) ≈ hSdata
hTdata

∑

Sdata

∑

Tdata

ψ|Sdata×Tdata
⊛ g ⊛ (Πυp,γ)|Sdata×Tdata

(5)

where Π interpolates the kernel onto the data grid. In (5) we have an element-wise
multiplication of three arrays, indicated by ⊛, and then we take the sum over rows
and columns.

A variety of numerical experiments to demonstrate the performance of this
inversion/regularization scheme can be found in [2].
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Exact reconstruction and reconstruction from noisy data: Going
beyond point sources?

Benedikt Wirth

(joint work with Martin Holler)

A prototypical example problem for so-called superresolution is the following:
Given a discrete Radon measure

ρ† =
∑N

n=1 aiδ(xi,yi)

as ground truth with a1, . . . , aN ∈ R and (x1, y1), . . . , (xN , yN) ∈ T2 for T2 the flat
two-dimensional torus (identified with [0, 1)2 for simplicity), can we recover this
ground truth from finitely many Fourier measurements, i.e. from the measurement

f † = Aρ† =
(∫

T2 exp(−2πik · (x, y)) dρ†(x, y)
)
k∈Z2, |k|∞≤K

with some finite cutoff frequency K > 0? This problem and the related problem
of reconstruction from noisy data were solved by various researchers, e.g. [1–3]:
Under multiple alternative conditions (such as nonnegativity of ρ† or a minimum
distance condition between the (xi, yi)) one can indeed exactly reconstruct ρ† from
f † by solving the convex minimization problem

min
ρ

M(ρ) such that Aρ = f †,

in which M(ρ) denotes the mass or total variation of the Radon measure ρ. Fur-
thermore, if one only has access to noisy measurements f δ with δ = 1

2 |f δ−f †|2 > 0,
one can replace the above constraint by a convex fidelity term with weight α > 0
and for instance solve the convex minimization problem

min
ρ

M(ρ) + 1
2α |Aρ− f δ|2.

If α decreases (sufficiently slowly) with δ, then one can estimate the error between
the minimizer ρδ and ρ† in some weak norm or related difference measure and
show that it converges to zero as δ → 0. The natural question arises to what type
of regularizers other than M or measurement operators other than A such results
extend. As a first simple example in this direction we replace the regularizer by
the so-called anisotropic total variation

TV(u) = M(∂xu) +M(∂yu),

which is a natural regularizer for the reconstruction of a piecewise constant ground
truth image u† ∈ L1(T2) with only horizontal and vertical discontinuities at ver-
tical coordinates y1, . . . , yN and horizontal coordinates x1, . . . , xM , respectively.
Setting again f † = Au†, we obtain the following result.

http://dx.doi.org/10.1088/0266-5611/12/2/005
http://www.trip.caam.rice.edu/downloads/preamble.pdf
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Theorem ( [4]). There exists C > 0 such that, if the discontinuity lines of u† have
mutual distance no smaller than C

K and if ∂xu
† and ∂yu

† do not change sign on

any vertical and horizontal discontinuity line, respectively, then u = u† is unique
minimizer of

min
u

TV(u) such that Au = f †.

Further, ‖uδ − u†‖L1 ≤ Cδ1/4 for any minimizer uδ of

min
u

TV(u) + 1√
δ
|Au− f δ|2.

The proof follows the same steps as in the reconstruction of point masses ρ†:

• In the noise-free case one first shows that the support of ∂xu
† and ∂yu

†,
the vertical and horizontal discontinuity lines, is correctly identified (while
in the point mass setting one would first show that the locations of the
Dirac masses in ρ† are correctly reconstructed). As a consequence, the
reconstruction u must also be piecewise constant and has the same dis-
continuity lines as u†. Then in a second step one shows that the finitely
many function values of the reconstruction u coincide with those of u†

(while in the point mass setting one would show that the reconstructed
weights of the Dirac masses coincide with those of ρ†).
• In the noisy setting one refines the previous arguments for identifying the
support and the values of ∂xu

† and ∂yu
† to obtain an estimate for an

unbalanced optimal transport distance between ∂xu
δ or ∂yu

δ and ∂xu
† or

∂yu
† (while in the point mass setting one would get an unbalanced optimal

transport distance estimate between ρδ and ρ† from such a refinement).
In a final step one turns this unbalanced optimal transport estimate into
an estimate of ‖uδ − u†‖L1.

Optimal transport distances such as the so-called Wasserstein distances are a clas-
sical framework to metrize weak-* convergence on the space of probability mea-
sures. The above used so-called unbalanced optimal transport is a variant in which
the total mass of the measure may change so that one is not restricted to proba-
bility measures. In the above context a natural unbalanced optimal transport cost
between two nonnegative measures ρδ, ρ† is

W 2
2,R(ρ

†, ρδ) = inf
ρ
W 2

2 (ρ, ρ
δ) + R2

2 M(ρ† − ρ)

for some fixed parameter R > 0, where W2 denotes the classical Wasserstein-2
distance between nonnegative measures of same mass (for signed measures one
simply computes the Wasserstein distance separately for the positive and the neg-
ative part). W 2

2,R represents a natural error measure if one can only expect weak
convergence of reconstructions to the ground truth.

Each of the above listed steps is based on convex analysis principles. Exem-
plarily we illustrate the first step of identifying the support of ∂xu

† and ∂yu
† in

the noise-free case: One starts by showing that the following source condition can
be satisfied.



1118 Oberwolfach Report 21/2023

Source condition ( [4]). There exists w† ∈ {k ∈ Z2 | |k|∞ ≤ K} with
−A∗w† ∈ ∂TV(u†),

i.e. A∗w† = divϕ for some ϕ ∈ H(div;T2) with ϕ1 ∈ ∂M(∂xu
†), ϕ2 ∈ ∂M(∂yu

†)
(this implies |ϕ1|, |ϕ2| ≤ 1 and ϕ1 = sign∂xu

† on the vertical and ϕ2 = sign∂yu
†

on the horizontal discontinuity lines). In addition w† can be chosen such that

|ϕ1(x, y)| < 1 unless x ∈ {x1, . . . , xM}, |ϕ2(x, y)| < 1 unless y ∈ {y1, . . . , yN}.
This compares to a structurally analogous source condition in the setting of

point mass reconstruction, which requires the existence of some dual variable w†

such that −A∗w† ∈ ∂M(ρ†) and |A∗w†| < 1 away from the support of ρ†. In both
settings such dual variables w† or rather the degree K trigonometric polynomials
−A∗w† can be constructed almost explicitly using so-called Fejér kernels (which
can be thought of as trigonometric polynomial approximations of Dirac masses).
The correct reconstruction of the support of ∂xu

† and ∂yu
† is then a direct conse-

quence of the nonnegativity of the so-called Bregman distance DTV
v (u, u†) for any

v ∈ ∂TV(u†): We have

0 ≤ DTV
−A∗w†(u, u

†) := TV(u)− TV(u†)− 〈−A∗w†, u− u†〉
= TV(u)− TV(u†) + 〈w†, Au−Au†〉 = TV(u)− TV(u†) ≤ 0,

since Au = Au† and u is a minimizer of TV. The one-homogeneity of TV now
implies TV(u†) = 〈−A∗w†, u†〉 so that

0=DTV
−A∗w†(u, u

†)=TV(u)−〈−A∗w†, u〉=M(∂xu)−〈ϕ1, ∂xu〉+M(∂yu)−〈ϕ2, ∂yu〉.
Thus, since |ϕ1|, |ϕ2| < 1 away from the support of ∂xu

† and ∂yu
†, ∂xu and ∂yu

must have the same support. (In the point mass setting the argument would be
almost identical with u, u† replaced by ρ, ρ† and TV by M.)

To prove that the actual values of u and u† coincide, one needs to show that
the error u − u† satisfies a similar source condition as u†, followed by a similarly
simple argument (the point mass setting would proceed analogously).

The error estimates in the noisy case derive from quantitative refinements of the
above, which require that the functions |ϕ1|, |ϕ2| from the source condition decay
quickly enough away from the supports Sx of ∂xu

† and Sy of ∂yu
†, respectively.

As smooth functions (linear combinations of Fejér kernels), ϕ1 and ϕ2 indeed
behave like parabolas near Sx and Sy, which leads to the occurrence of squared
distances to Sx and Sy in the quantitative estimates and thereby to Wasserstein-
2-type error estimates. Those can finally be turned into L1-type estimates by the
following one-dimensional norm interpolation result.

Lemma ( [4]). If a function v of bounded variation on (0, 1) satisfies v(1) = 0 in

the trace-sense, then ‖v‖2L1 ≤ M(∂xv)M(dist2(0, x)∂xv).
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Translation invariant diagonal frame decomposition for the
Radon transform

Jürgen Frikel

(joint work with Simon Göppel, Markus Haltmeier)

Frame-based regularization methods have become one of the standard technique
for solving ill-posed inverse problems due to their ability to simultaneously adapt
to the operator and the signal class (a-priori information). In particular, regu-
larization methods based on diagonal frame decomposition (DFD) of linear op-
erators have been developed and analyzed recently, see for example [5, 10]. The
Radon transform has been a popular example in this context, since several DFDs
are available in the literature, such as wavelet-vaguelette decompositions [4], and
DFDs based on curvelets and shearlets, cf. [1, 3]. However, existing DFDs often
lack translation invariance, which is crucial for efficient denoising, cf. [2].

In this work, we introduce a translation-invariant DFD framework (TI-DFD) for
solving ill-posed reconstruction problems in computed tomography and present the
construction of a translation-invariant diagonal frame decomposition of the Radon
transform R : L2(R2)→ L2(Y), with Y := S1×R2, as a densely defined and closed
operator. For more details we refer to [8, 9].

Translation invariant frame decompositions.

Definition 1. Let Λ be an at most countable index set. A family (uλ)λ∈Λ ∈
L2(R2)Λ is called a translation invariant frame (TI-frame) for L2(R2) if ûλ ∈
L∞(R2) for all λ ∈ Λ and there exist constants A,B > 0, such that

(1) ∀f ∈ L2(R2) : A‖f‖2 ≤
∑

λ∈Λ

‖u∗λ ∗ f‖2 ≤ B‖f‖2 .

A TI-frame (uλ)λ∈Λ is called tight if (1) holds with TI-frame founds A = B = 1.

For every TI frame element uλ, we define the canonical dual frame element via

wλ := F
−1(2πûλ/

∑

µ∈Λ

|ûµ|2),

where ûµ denotes the Fourier transform of uµ and F−1 denotes the inverse Fourier
transform. The resulting frame (wλ)λ∈Λ is called the canonical dual of (uλ)λ∈Λ,
and for every f ∈ L2(R2) it holds that

(2) f =
∑

λ∈Λ

wλ ∗ (u∗λ ∗ f),
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where u∗λ(x) := u(−x) and z̄ denotes the complex conjugate of z ∈ C.
Generalizing the notion of the DFD (cf. [5]) we arrive at the following definition

of the translation invariant version of the DFD (cf. [9]).

Definition 2 (TI-DFD). Let B(Y, L2(R2)) denote the space of bounded operators

between Y and L2(R2). We call the system (uλ,V
∗
λ, κλ)λ∈Λ a translation invariant

frame decomposition (TI-DFD) for R, if the following properties hold:
(TI1) (uλ)λ∈Λ ∈ L2(R2)Λ is a TI-frame for L2(R2).

(TI2) ∀λ ∈ Λ : V∗
λ ∈ B(Y, L2(R2)) and ∀g ∈ ranR :

∑
λ∈Λ‖V∗

λg‖2 ≍ ‖g‖.
(TI3) ∀λ ∈ Λ: κλ ∈ (0,∞) and ∀f ∈ dom(R) : V∗

λ(Rf) = κλ (u
∗
λ ∗ f).

Here, f ≍ g :⇔ ∃c, C > 0: c‖g‖ ≤ ‖f‖ ≤ C‖g‖.

Filter-based TI-DFD regularization methods. In what follows, a family
(Φα)α>0 of bounded and piecewise continuous functions Φα : (0,∞)→ R is called
a regularizing filter, if the following properties hold:

(F1) ∃C > 0 : sup
α,t>0

|tΦα(t)| ≤ C,

(F2) ∀t > 0 : lim
α→0

Φα(t) =
1
t .

We quote the following central result, the proof of which can be found in [9].

Theorem 3. Let (uλ,V
∗
λ, κλ)λ∈Λ be a TI-DFD for R and (wλ)λ∈Λ be a dual TI-

frame for (uλ)λ∈Λ. Then,

(3) ∀g ∈ ran(R) : R−1g =
∑

λ∈Λ

wλ ∗ (κ−1
λ · (V∗

λg)).

Furthermore, for a regularizing filter (Φα)α>0, the family of operators (RΦ
α)α>0,

given by

(4) R
Φ
αg :=

∑

λ∈Λ

wλ ∗ (Φα(κλ) · (V∗
λg))

defines a regularization method (for definition see [6]).

The equation(3) reveals the ill-posedness of the reconstruction problem and
links it to the decay rate of the quasi-singular values κλ. Moreover, once a TI-DFD
is available for R, this result provides a way to construct regularization methods
from a given regularizing filter (examples of regularizing filters can be found, e.g.,
in [6,9]). In the next paragraph, we explain how TI-DFDs can be constructed for
the Radon transform.

Filter-based TI-DFD regularization methods. The following result shows
how to construct a TI-DFD for the Radon transform starting from a given TI-
wavelet frame for L2(R2). We recall that the Riesz transform I1 of a suitably
chosen function g : Y → R is defined via the Fourier transform F as I1g(θ, ·) :=
F−1(|·|Fg(θ, ·))).

Theorem 4. Let (uj)j∈Z be a TI-frame of L2(R2), given by uj,l(x) = 2ju0,l(2
jx),

(j, l) ∈ Z × {H,V, L}, such that supp(û0,l) ⊆ {ω ∈ R : a ≤ |ω| ≤ b} for some
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a, b > 0. For (j, l) ∈ Z× {H,V, L}, we define

vj,l := 2−j/2I1Ruj,l(x) and V∗
j,l(g) := R∗(v∗j,l ∗ g).

Then, the family (uj,l,V
∗
j,l, 2

−j/2)j∈Z×{H,V,L} is a TI-WVD for the Radon trans-
form R.

The proof of this theorem can be found in [8].
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Reconstruction From Discrete 2D Radon Transform Data –
Resolution and Aliasing

Alexander Katsevich

Resolution of image reconstruction from discrete data is one of the fundamental
questions in imaging. The most direct approach to estimating resolution utilizes
the notions of the point spread function (PSF) and modulation transfer function
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(MTF) [1, Sections 12.2, 12.3]. This and other similar approaches allow rigorous
theoretical analysis of only the simplest settings, such as inversion of the classical
Radon transform. For the most part, resolution of reconstruction in more diffi-
cult settings (e.g., inversion of the cone beam transform) is analyzed by heuristic
arguments, numerically, or via measurements [2–4].

Sampling theory provides another approach to investigating resolution [7, 12].
Consider, for example, the classical Radon transform in R2

(1) f̂(α, p) =

∫

R2

f(x)δ(~α · x− p)dx, ~α = (cosα, sinα).

The corresponding discrete data are

(2) f̂(αk, pj), αk = ᾱ+ k∆α, pj = p̄+ j∆p, αk ∈ [0, 2π), j ∈ Z,

for some fixed ᾱ, p̄ and ∆α, ∆p. Assume that f is essentially band-limited (in
the classical sense). This means that, with high accuracy, its Fourier transform

f̃(ξ) is supported in some ball |ξ| ≤ B. The sampling theory predicts the rates

∆α, ∆p with which f̂(α, p) should be sampled, so that reconstruction of f from
discrete data does not contain aliasing artifacts. Since the essential band-limit B
is related to the size of the smallest detail in f , a typical prescription of the theory
can be loosely formulated as follows: given the size of the smallest detail in f , the
minimal sampling rates to avoid aliasing are ∆α, ∆p. Alternatively, the theory
determines the size of the smallest detail in f that can be resolved given the rates
∆α, ∆p. A microlocal approach to sampling was developed recently [15–17]. In
this approach f is assumed to be band-limited in the semiclassical sense (i.e., the
semiclassical wavefront set WFh(f) is compact). The goal is to accurately recover
the semiclassical singularities of f and avoid aliasing. If the sampling requirement
is violated, the theory predicts the location and frequency of the aliasing artifacts.

In [18–22], the author developed an analysis of resolution (we call it Local Res-
olution Analysis, or LRA), which addresses the question of resolution head on.
The main results in these papers are simple expressions describing the reconstruc-
tion from discrete data in a neighborhood of the singularities of f in a variety of
settings. We call these expressions the Discrete Transition Behavior (DTB). The
DTB provides the most direct, fully quantitative link between the sampling rate
and resolution. In these papers such a link is established for a wide range of inte-
gral transforms, conormal distributions f , and reconstruction operators. In [23,24]
LRA was generalized to objects with rough boundaries in R2.

Suppose ∆p = ǫ and ∆α = κǫ, where κ > 0 is fixed. The DTB is an accurate
approximation of the reconstruction in an ǫ-neighborhood of the singular support
of f in the limit as ǫ→ 0. Therefore, the DTB provides much more than a single
measure of resolution (e.g., the size of the smallest detail that can be resolved).
Given the DTB function, the user may decide in a fully quantitative way what
sampling rate is required to achieve the user-defined reconstruction quality. The
notion of quality may include resolution (which can be described in any desired
way) and/or any other requirement the user desires. Thus, the LRA answers
precisely the question of the required sampling rate to guarantee the required



Tomographic Inverse Problems 1123

resolution (understood broadly). No assumption that f be band-limited (either
classically or semiclassically) is required.

In practice f is almost never band-limited, so aliasing artifacts arise regardless
of the sampling rate. Some earlier results on the analysis of aliasing artifacts (more
precisely, view aliasing artifacts) are in [25] and [1, Section 12.3.2]. They include an
approximate formula for the artifacts far from a small, radially symmetric object.
More recent results are in [15–17]. These include the prediction of the location and
frequency of the artifacts, qualitative analysis of the artifacts generated by various
edges (e.g., flat, convex, and a corner), as well as their numerical illustrations.

In this talk we generalize the LRA to the analysis of view aliasing. We call it
the Local Aliasing Analysis, or LAA. Our main result is a precise, quantitative
formula describing aliasing artifacts. The formula is asymptotic, it is established in
the limit as the sampling rate ǫ→ 0 (which is the same assumption as in [15–17]).
Similarly to the LRA, the LAA is very flexible. In this talk we consider the gener-
alized Radon transform in R2 and apply it to functions with jump discontinuities
across smooth, convex curves. Similarly to [18–22], we believe that the LAA is
generalizable, and that it is capable of predicting aliasing artifacts for a wide range
of integral transforms, conormal distributions f , and reconstruction operators.
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Weighted Radon transforms of vector fields, with applications to
magnetoacoustoelectric tomography

Leonid Kunyansky

(joint work with E. McDugald and B. Shearer)

We study unweighted and linearly weighted Radon transforms of vector fields.
There is a significant body of work on ray transforms of vector and tensor fields [1,
2,4,5,8–10]. However, there are very few publications on the Radon transforms of
vector fields [6,7], with considerations usually restricted to unweighted transforms
of potential fields with finitely supported potentials. Here we consider general
vector fields (i.e. not purely potential or solenoidal), and we study both unweighted
and linearly weighted Radon transforms.

An important tool we use is the Helmholtz decomposition. We work with
transversal and longitudinal Radon transforms of the potential and solenoidal parts
F p and F s of a general vector field F . The known estimates of the rates of
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decay of F p and F s at infinity [8] do not guarantee the convergence of the Radon
transforms, so we provide improved estimates, that imply the existence of the
Radon transforms of the above types.

The longitudinal Radon transforms of a potential field vanish, as does the
transversal transform of a solenoidal field. Therefore, reconstructing a general
vector field from only the longitudinal or only the transversal transform(s) is not
possible. If one of the transform types (longitudinal or transversal) cannot be
measured, we assume the knowledge of weighted transforms of the available type.

We present explicit formulas for solving two distinct problems. The first prob-
lem is that of reconstructing a general vector field from known values of its
transversal transform, and from d− 1 weighted transversal transforms with linear
weights. The second problem (motivated by MAET) is the reconstruction of a
vector field from d−1 of its longitudinal transforms and one weighted longitudinal
transform with a linear weight. The reader is advised to compare our solutions to
the results of [2], where a full vector field is reconstructed from a ray transform
and a first-moment ray transform.

Consider a continuous function f(x) defined in Rd, subject to the condition
f(x) = O

(
|x|−d

)
at infinity. Define a hyperplane Π(ω, p) by the equation ω ·x = p,

where Sd−1 is the unit sphere in Rd, and (ω, p) ∈ Sd−1×R. The Radon transform
Rf is defined as the set of integrals of f over all the hyperplanes:

[Rf ] (ω, p) ≡
∫

Π(ω,p)

f(x) dAΠ(x), (ω, p) ∈ Sd−1 × R,

where dAΠ(x) is the standard area element on Π(ω, p). Properties of the Radon
transform are traditionally studied for functions f(x) from the Schwartz class
S(Rd). A function f(x) ∈ S(Rd) can be reconstructed from its projections g = Rf
using the well known filtered backprojection inversion formula [3]:

(1) f = R−1(g) ≡ 1

2
(2π)1−dI−αR#Iα−d+1g,

where R# is the dual Radon transform that acts on a function g(ω, p) defined on
Sd−1 × R according to the formula

[R#g](x) =

∫

Sd−1

g(ω, ω · x)dω,

and where Iαf is the Riesz potential of a function f.
Let us consider now a continuous vector field F (x) = (F1(x), ..., Fd(x)) defined

on Rd, d ≥ 2, whose components decay fast enough for the existence of integrals
over each hyperplane (e.g., |F (x)| = O

(
|x|−d

)
). Below we define several types of

Radon transforms of such a field.
The componentwise Radon transform RF of F is defined in the obvious way:

[RF ] (ω, p) ≡ (RF1, ..,RFd) (ω, p), (ω, p) ∈ Sd−1 × R.
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The transversal Radon transform D⊥F is the Radon transform of the projection
of F onto the normal ω to the plane Π(ω, p):

[
D⊥F

]
(ω, p) ≡

∫

Π(ω,p)

ω · F (x) dAΠ(x) = [R(ω · F (x))] (ω, p).

For each fixed direction ω ∈ Sd−1, let us arbitrarily extend ω to an orthonormal
basis B = (ω, ω1, ..., ωd−1) of Rd, where ωj = ωj(ω), j = 1, ..., d − 1. To simplify
the notation, below we will suppress the dependence of ωj ’s on ω. Define the

longitudinal Radon transforms Dq

kF of F, k = 1, ...d− 1, as follows:

[
D

q

kF
]
(ω, p) ≡

∫

Π(ω,p)

ωk · F (x) dAΠ(x) = [R(ωk · F (x))] (ω, p), .

For a faster decaying vector field F (x) (e.g. satisfying |F (x)| = O
(
|x|−d−1

)
), one

can define the weighted transversal transforms W⊥
k and longitudinal transforms

W
q

k with linear weights ωk · x, k = 1, ...d− 1, by the following expressions:

W⊥
k F ≡

∫

Π(ω,p)

(ωk · x)F (x) · ω dAΠ(x) = D⊥((ωk · x)F (x)), (ω, p) ∈ Sd−1 × R,

W
q

kF ≡
∫

Π(ω,p)

(ωk · x)F (x) · ωk dAΠ(x) = D
q

k((ωk · x)F (x)), (ω, p) ∈ Sd−1 × R.

The present definitions of the unweighted longitudinal and transversal Radon
transforms coincide with those given in [9, 11] (where they are mentioned under
the names of “probe” and “normal” transforms, respectively). Our definitions of
the weighted transforms appear to be new; they naturally extend the notion of
“moments ray transforms” [2, 11] to the case of Radon transforms. Obviously

[
D⊥F

]
(ω, p) = ω · [RF ] (ω, p),

[
D

q

kF
]
(ω, p) = ωk · [RF ] (ω, p).

Consider a vector field F (x) with each component Fm(x) lying in the Schwartz
space S(Rd). Define the potential ϕ as the convolution of the divergence Φ of F
with the fundamental solution G of the Laplace equation in Rd:

(2) ϕ(x) = (Φ ∗G)(x) =
∫

Rd

Φ(y)G(x − y)dy, Φ(x) = divF (x), x ∈ Rd.

Now the potential and solenoidal parts F p, F s are defined as:

(3) F p(x) = ∇ϕ(x), F s(x) = F (x) − F p(x), x ∈ Rd.

Theorem 1. Suppose that each component Fk(x), k = 1, ..., d of a vector field
F (x) is a function from the Schwartz class S(Rd). Then potential ϕ and fields F p

and F s given by equations (2)-(3) have the following decay rates at infinity
(4)

|F ...(x)| = O

(
1

|x|d
)
,

∣∣∣∣
∂

∂xj
F ...(x)

∣∣∣∣ = O

(
1

|x|d+1

)
,

∣∣∣∣
∂2

∂xj∂xk
F ...(x)

∣∣∣∣ = O

(
1

|x|d+2

)
,
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where F ... stands for either F p or F s, k = 1, 2, ..., d. The above estimates guarantee
existence of the various Radon transforms of F p and F s, so that

RF = RF p +RF s, D⊥F = D⊥F p +D⊥F s, D
q

kF = D
q

kF
p +D

q

kF
s,

with k = 1, 2, ..., d − 1. Transforms Wq

kF
p, Wq

kF
s, W⊥

k F
p, and W⊥

k F
s cannot be

defined, in general. Our main results are the following two theorems:

Theorem 2. If an infinitely differentiable vector field F (x) = (F1(x), ..., Fd(x))
satisfies decay conditions (4), its divergence Φ can be reconstructed from the trans-
versal transform D⊥F by applying the inversion formula (1) as follows

Φ(x) =

[
R−1

(
∂

∂p
D⊥F

)]
(x), x ∈ Rd.

The componentwise transform of RF can be reconstructed from D⊥F and weighted
transversal transforms W⊥

k F , k = 1, .., d− 1, as follows:

[RF ](ω, p) = ω[D⊥F ](ω, p) +
d−1∑

k=1

ωk

(
∂

∂p
[W⊥

k F ](ω, p)− [R{(ωk · x)Φ(x)}](ω, p)
)

where (ω, p) ∈ Sd−1×R, j = 1, 2, ..., d. Finally, field F can be recovered by inverting
RF componentwise:

Fj(x) = R−1 (ej ·RF ) (x), x ∈ Rd, j = 1, 2, ..., d,

where vectors e1,e2, ..., ed form the canonical orthonormal basis in Rd, and where
R−1 is understood as the filtration/backprojection formula (1).

In order to formulate the next theorem, let us denote by Ψ the componentwise
Laplacian Ψ of the solenoidal part of the field F s:

Ψ(x) ≡ (Ψ1(x),Ψ2(x), ...,Ψd(x)), Ψj(x) = ∆F sj (x), x ∈ Rd, j = 1, .., d.

Theorem 3. If an infinitely differentiable vector field F (x) = (F1(x), ..., Fd(x))
satisfies decay conditions (4), the componentwise Laplacian Ψ of its solenoidal
part F s and the Radon transform of Ψ can be reconstructed from longitudinal
transforms D

q

jF , j = 1, ..., d− 1, using the following formulas:

[RΨ](ω, p) =
∂2

∂p2

d−1∑

j=1

ωj [Dj
qF ](ω, p), Ψj(x) =

[
R−1 (ej ·RΨ)

]
(x), x ∈ Rd.

Further, the divergence Φ of the field can be reconstructed from the linearly weighted
longitudinal transform W

q

1F and previously found Ψ as follows:

Φ(x) = R−1{R((x · ω1)ω1 ·Ψ(x))− ∂2

∂p2
W

q

1F}, x ∈ Rd,

where R−1 is understood as the filtration/backprojection formula (1). Field F is
reconstructed from Φ and Ψ by convolving these functions with G and ∇G:

F (x) = (Φ ∗ ∇G)(x) +
d∑

j=1

ej(Ψj ∗G)(x), x ∈ Rd.
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Injectivity and stability of the inversion of the star transform

Gaik Ambartsoumian

(joint work with Mohammad J. Latifi)

The star transform is a generalized Radon transform mapping a function (or,
more generally, a tensor field) to its integrals along “star-shaped” trajectories,
which consist of a finite number of rays emanating from a common vertex. Such
operators appear in mathematical models of various imaging modalities based on
scattering of elementary particles (e.g. see [1–4, 6]). Our talk presents the results
of a comprehensive study of the inversion of the star transform published in [2].
In particular, we describe the necessary and sufficient conditions for invertibility
of the star transform defined on scalar fields, introduce an exact, closed form
inversion formula, and discuss its stability properties. As an unexpected dividend
of our approach, we obtained a proof of a conjecture from algebraic geometry
about the zero sets of elementary symmetric polynomials, which is stated at the
end of this abstract.

Let f(x) ∈ Cc
(
R2
)
be a compactly supported continuous function, and let γ

be a fixed unit vector.
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Definition 1. The divergent beam transform Xγ of f at x ∈ R2 is defined as:

(1) Xγf(x) =

∫ ∞

0

f(x+ tγ) dt.

The star transform of f is a linear combination of divergent beam transforms
with a set of fixed directions γi ∈ S1 and non-zero constants ci ∈ R, i = 1, . . . ,m.
More formally,

Definition 2. The star transform S of f at x ∈ R2 is defined as:

(2) Sf(x) =

m∑

i=1

ci Xγif(x) =

m∑

i=1

ci

∫ ∞

0

f(x+ tγi) dt.

Two special types of star transforms play a prominent role in our main results
presented below. The symmetric star transforms comprise the only non-invertible
configurations, while the regular star transforms contain the operators with the
most stable inversions.

Definition 3. The star transform is called symmetric, if m = 2k for some k ∈ N
and (after possible re-indexing) γi = −γk+i with ci = ck+i for all i = 1, . . . , k.

Theorem 1 (Injectivity). The star transform S =
∑m
i=1 ciXγi is invertible if and

only if it is not symmetric.

Corollary 1. Any star transform with an odd number of rays is invertible.

Definition 4. The star transform is called regular, if c1 = . . . = cm = 1 and the
ray directions γi, i = 1, . . . ,m correspond to the radius vectors of the vertices of a
regular m-gon.

Theorem 2 (Inversion). Consider the star transform S defined in (2) and let

(3) q(ψ) =
−1

m∑

i=1

ci
〈ψ, γi〉

, ψ ∈ S1.

Then the following is true for any unit vector ψ in the domain of q:

(4) Rf(ψ, s) = q(ψ)
d

ds
R(Sf)(ψ, s),

where R denotes the (classical) Radon transform of a function in R2.
Therefore, if q is defined almost everywhere, one can apply R−1 to recover f .

The issues related to the invertibility and stability of the inversion of the star
transform boil down to the behavior of the function q(ψ) and its singularities.
It is easy to notice that if the star transform is injective, then the singularities
appearing in the right-hand side of inversion formula (4) are removable. Namely,

Remark 1. Let {ψi}Mi=1, M ≥ m be such that

(5) 〈ψi, γj〉 = 0, for some j ∈ {1, . . . ,m}
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and/or

(6)

m∑

j=1

cj
∏

i6=j
〈ψi, γj〉 = 0,

then

(7) lim
ψ→ψi

[
q(ψ)

d

ds
R(Sf)(ψ, s)

]
= Rf(ψi, s) <∞.

Definition 5. We call ψi’s satisfying condition (5) singular directions of Type 1
and those satisfying condition (6) singular directions of Type 2. These two types
are not mutually exclusive.

The number and location of singular directions affect the quality of numerical
reconstructions. The singular directions of Type 2 correspond to “division by zero”
of the processed data d

dsR(Sf), while those of Type 1 correspond to “multiplica-
tion by zero”. Hence, it is natural to expect that singular directions of Type 2 will
create instability and adversely impact the reconstruction. Our numerical experi-
ments confirm these expectations (see [2]). It is also interesting, that the (totally
different) algorithm for inversion of the star transform obtained in [6] produces a
relation equivalent to (6) as a necessary and sufficient condition for the instability
of that algorithm (see formula (51) on page 18 in [6]).

Since the singular directions of Type 2 are more crucial for the quality of re-
constructions, in the next several theorems we discuss the existence of singular
directions of Type 2 in the star transforms with different configurations. Here and
in what follows, by “configuration” we mean a specific choice of the unit vectors
γi and constants ci 6= 0, i = 1, . . . ,m.

Theorem 3. Consider the star transform S =
∑m

i=1 Xγi with uniform weights.

(1) If m is even, S must contain a singular direction of Type 2.
(2) When m is odd, there exist configurations of S that contain singular direc-

tions of Type 2, as well as configurations that do not contain them.

Theorem 4. The regular star transform S with m = 2k + 1 rays does not have a
singular direction of Type 2.

In a certain sense, such star transforms have the most stable inversions (see [2]).

Theorem 5. Consider the star transform S =
∑m

i=1 ciXγi . If m is even, S must
contain a singular direction of Type 2.

Theorem 6. Consider a star transform S =
∑m

i=1 ciXγi , where m = 2k + 1.

(a) For any set of specified weights c1 . . . , cm, there exist γ1, . . . , γm such that S

contains singular directions of Type 2.

(b) Let m = 3. For any set of specified weights c1, c2, c3, there exist γ1, γ2, γ3 such
that S does not contain singular directions of Type 2.
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The generalization of Theorem 6 (b) to the case of m = 2k + 1 > 3 is technically
more complicated and has not been proven yet.

We finish with a result in algebraic geometry advertised at the beginning of
this abstract. Let er(y1, . . . , ym) denote the elementary symmetric polynomial of
degree r in Rm. In paper [5], the author formulated the following conjecture:

Conjecture. If r is even then e−1
r (0) contains no real vector subspace of dim r.

Furthermore, it is stated there that one of the extreme cases is “the case
em−1(y1, ..., ym), m ≡ 1 (mod 2), which becomes a task quite hard to tackle”.

Our proof of Theorem 4 includes a proof of the aforementioned extreme case.
Namely,

Theorem 7 (Zeros of em−1(y1, . . . , ym) for odd m). Let m = 2k + 1 for some
k ∈ N. Then e−1

m−1(0) contains no real vector subspace of dimension m− 1.
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Phase Retrieval and Tomographic Reconstruction in X-ray Near-field
Diffractive Imaging: Inverse Problems at Work

Tim Salditt

X-rays can provide information about the structure of matter, on multiple length
scales from bulk materials to nanoscale devices, from organs to organelle, from
the organism to macromolecule. Due to the widespread lack of suitable lenses,
the majority of investigations are rather indirect — apart from classical shadow
radiography perhaps. While diffraction problems have been solved since long, the
modern era has brought about lensless coherent imaging with X-rays, down to the
nanoscale. How much more room for improvement is offered by full exploitation of
indirect measurements, sophisticated analysis and high performance algorithms,
and how far can this go? In this talk we discuss image formation and reconstruc-
tion in the optical far- and near-field, the limits imposed by partial coherence,
optical constants, and object constraints, the role of imperfect lenses and photon
correlations. We show how solutions and algorithms of mathematics of inverse
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problems [1–3] help us to meet the challenges of phase retrieval, tomographic re-
construction, and more generally image processing of bulky data. All to the benefit
of ambitious imaging projects such as mapping the human brain [4, 6] or fighting
infectious diseases [6].
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Tomographic inverse problems: which place for deep learning?

Voichita Maxim

In the last years, deep learning has emerged as an area of active research and many
publications have already shown very impressive results. While ethical questions
have been raised concerning utilization in medicine, experimental results from
different teams clearly demonstrate its potential. In parallel, theoretical studies
are attempting to elucidate the underlying mechanism of neural networks and to
strengthen their interpretability and explainability.

The predominant approach to deep learning tomographic image enhancement
is to post-process the analytically reconstructed images. This simple yet effective
strategy is applicable to a wide range of situations and can handle large volumes in
a clinically compatible time frame. As long as the quality of the initial reconstruc-
tion is not overly deteriorated, post-processing may be adequate. Pre-processing of
the data is an other option. The place reserved to deep learning and the techniques
to achieve image quality improvements can be as diverse as the applications.

We tried several instances of deep networks for inverse problems. For CBCT
images from real acquisitions, 2D and 3D U-Nets gave very good results for re-
moving CBCT and metal artefacts from low-dose images. U-Net post-processing
can be assimilated to non-linear image filtering in analytical reconstruction and is
equally fast. Instead of being hand-crafted by a specialist, the Γθ filter, θ being

https://arxiv.org/abs/2205.01099
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the vector of weights, is learned automatically from a database that is supposed
to faithfully represent the distribution of the images. Our test was carried out
with a low dose simulated by reducing the number of projections compared with
the normal dose acquisition [1]. With continuous acquisition, which is the most
widespread technique, it is not possible to produce large sets of low dose / normal
dose image pairs of patients, as this would require double irradiation.

At the opposite end of the spectrum is unsupervised learning from a single
image. We are currently testing it for estimating the convolution kernel from a
pair of sharp (f) and blurred (g) images. The kernel is stored in the structure of a
network trained according to a loss function representing the convolution process:

(1) L(θ) = d(f ∗ Γθ(u), g).
The network receives an input u which can be an image of noise as in [2]. This
technique works well even in the presence of noise on the data, but fails for strongly
degraded realistic data. In this case a better option might be supervised learning
on Monte-Carlo simulated data, followed by weight refinement during test. This
strategy outperforms supervised learning when the training set does not accurately
reflect the distribution of the data. Unsupervised learning is an instance of iter-
ative reconstruction, based entirely on a data fidelity cost function. However, an
intrinsic regularisation is performed by the network structure and an early stop-
ping [2]. Supervised learning followed by test-time training can be thought of as
initial nonlinear filtering of the image, followed by iterative refinement. As in our
experiment, the image and the convolution kernel are reconstructed at the same
time, this refinement concerns not only the result of the inverse problem but also
the formulation of the direct model.

For bimodal PET/MR reconstruction, we are implementing and testing a vari-
ational auto-encoder that jointly encodes high-quality PET and MR images. Its
role is to improve a pair of low-quality PET/MR images by optimisation within
the latent space, at each iteration of an ADMM algorithm. A regularized solution
is then obtained by alternating optimisation on data fidelity with careful selection
of the value of a latent variable encoding the a priori information.

Considered for some time as a favourite to replace analytical methods in to-
mographic imaging, iterative methods have the advantage of building on physical
models for the data and noise, general priors on the image and a growing body
of convergent and efficient optimization algorithms. Whereas much of the noise
and artefacts seen in analytically reconstructed images are removed, the texture
can be modified and some of the smallest features can be suppressed. Moreover,
rather high computing time and memory demands are significant pitfalls for clini-
cal deployment. Despite these drawbacks, iterative methods for regularized recon-
struction are still at the forefront of progress in emission tomography, benefiting
from the noise properties and the complex nature of the partly unknown direct
operator. New approaches in deep learning might go beyond current limitations
and still remain interpretable in the sense of analytical or iterative algorithms.

In emission tomography, visualizing the distribution of radiotracers from the
emitted gamma rays has a particular importance for the diagnosis of cancer and
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certain functional diseases, as well as for therapeutic monitoring. New issues are
emerging in the context of development of therapies and imaging devices. This
is namely the case when the projection model goes beyond the classical paradigm
of Radon projection on lines. One example is collimated SPECT detectors that
wrap around the patient’s body. Compton camera imaging, where projections are
acquired on conical surfaces, is another one. The direct operator is in this case
partially unknown. It results in unknown, spatially varying and source-dependent
point spread functions and low image resolution. Analytical non-linear filtering
achieved by supervised learning might not be precise enough in particular when
distribution shifts occur. The physical model should be accounted for, either in the
learning process or in an iterative algorithm with network-based regularization.

With neural networks we got more flexibility in the choice of filters or priors
and new methods pretty much similar to settled ones, although still significantly
heuristic.
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Data-driven approaches to address model inexactness and motion in
Compton Scattering Tomography

Gaël Rigaud

(joint work with David Elias Frank)

Compton scattering stands for the collision between a photon and an electron
and is the foundation for the so-called Compton scattering tomography (CST).
This latter proposes to benefit the recent advances in energy resolved detectors
(for instance scintillation crystals) to enhance standard computerized tomography
(CT) with the variable energy. Focusing on the first-order scattering which repre-
sents the most informative part of the measured spectrum, we obtain a nonlinear
generalized-type Radon transform on the electron density f ,

A (f, f)(p,d, s, t) :=

∫

Ω

W1(f(·, t))(x,d, s) f(x, t) δ(p− φ(x,d, s)) dx

with p = cotω, where cot : (0, π) 7→ R and the characteristic function given by

φ(x,d, s) =
κ(x,d, s)− ρ(x,d, s)√

1− κ2(x,d, s)
where κ =

(x− s)

‖x− s‖ ·
(d− s)

‖d− s‖ , ρ =
‖x− s‖
‖d− s‖ .

We refer to [1] for more details. The function φ characterizes the locations of first-
order scattering events and corresponds to the inside part of a spindle torus in 3D
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and to two circular-arcs in 2D between a source s and a detector d parametrized
by a scalar p (accounting for the energy). The operator W1 accounts for the
physical factors (attenuation and dispersion). To discretize and approximate A ,
we consider the dynamic discrete (linear) inverse problem

gdyn = Af + ε with f :=



f1
...
fnt


 ; gdyn :=



g1
...
gnt


 ; A :=



A1 0

. . .

0 Ant




in which the vector time t ∈ Rnt is equally spaced.

Modelling the Compton scattering effect leads to many challenges such as non-
linearity of the forward model, multiple scattering and high level of noise for
moving targets. To tackle these different issues, we studied and compared in this
work two data-driven techniques, namely the regularized sequential subspace opti-
mization and a Bayesian method based on the generalized Golub-Kahan bidiago-
nalization. We also explored the possibilities to mimic and improve the stochastic
approach with deep neural networks.

The Bayesian framework interprets the sought-for images as realizations of a ran-
dom variable with multivariate Gaussian distribution and was studied for dynamic
inverse problems in [2, 3]. More precisely, f ∼ N(µ, λ−2Q) and ǫ ∼ N(0, R) (typ-
ically R = δI). Thereby, the desired structure is implied onto the reconstruction
by the choice of the prior assumptions on the Gaussian vector, namely µ,Q,R.
We aim to minimize

1

2
‖A(Qx+ µ)− gdyn‖2R−1 +

λ2

2
‖x‖2Q with x← Q−1(f − µ).

The Generalized Golub-Kahan bidiagonalization (genGKB) delivers a singular sys-
tem (Bk, Uk+1, Vk) which allows us to build regularized solutions fk = µ+QVkzk
with

zk = argmin
z

{
1

2
‖Bkz − e1‖22 +

λ2

2
‖z‖22

}

with the relation Uk+1e1 = gdyn.

While the Bayesian approach is computationally effective and stable to the dif-
ferent issues of the underlying inverse problem, the approximation and especially
the regularization in the low-dimensional minimization problem can lead to very
smooth results and loss of details. Therefore, we propose a deep neural network,
consisting of two intertwined Deep Image Prior based networks, striving to mimic
and enhance the Bayesian approach. In particular, we consider a Encoder - Feature
Extraction - Decoder architecture, where the Encoder is given by the generalized
Golub-Kahan bidiagonalization. Starting from the projected system of low di-
mension, the middle part of the network can extract the features similar to the
minimization of the Bayesian approach, but with a better control on the smoothing
effect. The overall neurons are initialized following the matrix Bk. The proposed
neural networks combine the stability and robustness of the Bayesian approach
with the power of data-driven machine learning techniques. The neural network
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(a) genGKB (b) NNs

Figure 1. Reconstructions using the Bayesian approach and the
proposed autoencoder.

is unsupervised, as large databases suitable for Compton scattering tomography
do not exist yet. The results are depicted in Fig. 1.

Regularized sequential subspace optimization is an iterative projection-based
method able to compensate the model uncertainty of the associated inverse prob-
lem due to the linear approximation of the observation model and the multiple
scattering, see [4–6]. As a global estimate on the model deviation is not as in-
formative, the method uses a discrete framework to incorporate local inexactness
into the reconstruction. The principle can be extended in a straight-forward way
to the dynamic case. The changes of the object during the data collection can be
seen as deformation of a ”true” state, interpreted as model uncertainty and there-
fore compensated. Depending on the motion, the local model inexactness can thus
become quite large. The reconstruction process requires a good prior estimation
of these local uncertainties, which are difficult to obtain in realistic applications.
The results for one time interval are depicted in Fig. 2. One can see that the
RESESOP provides the best reconstruction possible, see Fig. 2(a) and (c), at the
cost of perfect estimates of the model uncertainty which is unreallistic. For more
reasonable estimates, see Fig. 2(b) and (d), the quality of reconstructions is vastly
reduced. One can see the benefits in terms of robustness of the Bayesian approach
as depicted in Fig. 1.
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(a) (b) (c) (d)

Figure 2. Reconstructions using RESESOP with estimations
(1a), (1b), (1c), (1d) respectively.

δs,t =





As,t(0, f)τ − gdyns,t(1a)

As,t(0, f
Bay)τ − gdyns,t(1b)

As,t(f
Bay, f)τ − gdyns,t(1c)

As,t(f
Bay, fBay)τ − gdyns,t(1d)

where (s, t) stands for the space/time discretization on data, f
the exact solution and fBay the Bayesian reconstruction.

[5] S. Blanke, B. Hahn and A. Wald, Inverse problems with inexact forward operator: iterative
regularization and application in dynamic imaging, Inverse Problems, 36 (2020) 124001.
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Integrating data-driven techniques and theoretical guarantees for
limited angle tomography

Tatiana A. Bubba

(joint work with Mathilde Galinier, Matti Lassas, Marco Prato, Luca Ratti,
Samuli Siltanen)

In traditional computed tomography (CT), a series of projection images of an
object is collected at different angular directions. Such images are the result of
the attenuation of incoming radiation measured by the detector. Mathematically,
tomographic imaging is about solving the inverse problem of recovering the infor-
mation on the internal structure of the object, modelled as a function f : Rn → R
with n > 1, from the indirect measurements collected by the detector. For in-
stance, in conventional CT, the underlying physical linear model R is given by the
X-ray transform:

(1) R(f)(s, ω) =

∫ ∞

−∞
f(sω⊥ + tω) dt s ∈ R, ω, ω⊥ ∈ S1

where ω⊥ denotes the vector in the unit sphere S1 obtained by rotating ω coun-
terclockwise by 90◦ [7].

When the direction vector ω is restricted within a limited angular range [−Γ,Γ],
the inverse problem arising is generally called limited-angle computed tomography
(LA-CT), in the following denoted by RΓ. It appears frequently in practical ap-
plications, such as dental tomography [5] or breast tomosynthesis [10].
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Due to the severe ill-posedness of the LA-CT problem, limited angle geometry
is still a testing ground for several theoretical and numerical studies. Microlocal
analysis is used to predict which singularities, that is, sharp features of the object
being imaged, can be reconstructed in a stable way from limited angle measure-
ments [8]. Even so, the task of robustly recovering the unknown quantity of interest
from such partial indirect measurement is a challenging one. Standard techniques
like the well-known filtered back-projection (FBP), perform rather poorly due to
the lack of a comprehensive measurement set.

Combining iterative schemes with variational regularisation techniques based
on promoting sparsity (i.e., reflecting the prior knowledge that the exact solu-
tion is expected to have few non-vanishing components, for example, in a suitable
wavelet [6] decomposition) allow for accurate reconstructions from fewer tomo-
graphic measurements than those usually required by methods like FBP, but still
leave room for improvement in terms of reconstruction quality.

In recent years, machine learning approaches, in particular, deep learning, with
convolutional neural networks (CNNs) being the most prominent design in the con-
text of imaging, are increasingly impacting the field of inverse problems [1], includ-
ing LA-CT. In particular, hybrid reconstruction frameworks where the practical
advantages of learning-based method are combined with the theoretical under-
standing that comes from model-based approaches have been widely applied for
the solution of ill-posed inverse problems, showing that these approaches are able
to significantly surpass both pure model- and more data-based methods.

Following this trend, in this talk a recent work done in collaboration with
M. Galinier, M. Lassas, M. Prato, L. Ratti and S. Siltanen [2] is showcased, where
a novel convolutional neural network, called ΨDONet, is designed starting from
the unrolled iterations of the Iterative Soft Thresholding Algorithm (ISTA), a
classical reconstruction algorithm for sparsity promoting regularization [3]. ISTA
iteratively creates the sequence {w(n)}Nn=1 as follows:

(2) w(n) = Sλ/L

(
w(n−1) − 1

L
K(n)w(n−1) +

1

L
b(n)

)
,

where, in our case, K(n) = WR∗
ΓRΓW

∗, with W wavelet transform associated

with an orthogonal family, b(n) =WR∗
Γm and Sβ(w) is the (component-wise) soft-

thresholding operator. ISTA can be applied to (1) to recover f = W ∗w from the
measurements m = R(f). It is well-known that the unrolled iterations of ISTA
can be considered as the layers of a neural network (see [4], where Learned ISTA
is introduced).

The novelty of our approach is that ΨDONet takes advantage of the possibility
to use small filters encoding a combination of upscaling, downscaling and convo-
lution operations, as it is common practice in deep learning, which can be exactly
determined combining the convolutional nature of the limited angle X-ray trans-
form and basic properties defining an orthogonal wavelet system. As a result, it is
possible to interpret the operations in (2) as a layer of a CNN, which in turn pro-
vides fairly general network architectures that allow to recover standard ISTA for
a specific choice of the parameters involved. The name of the network is motivated
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by the key feature of ΨDONet: the convolutional kernel is split into K = K0+K1

whereK0 is the known part of the model (i.e., K0 = R∗
ΓRΓ) andK1 is an unknown

pseudodifferential operator ΨDO to be learned. Basically, in K1 lays the potential
to add information in the reconstruction process with respect to the known part of
the model K0, thus inducing a “microlocal regularisation” that smooths away the
singularities, effectively improving the reconstruction quality. The convergence of
the proposed scheme is ensured by classical results on the convergence theory of
ISTA and relies on interpreting our network as a modification or perturbation of
ISTA for which we can bound the coefficients of the filters.

ΨDONet is numerically tested on simulated data from limited angle geometry,
generated from the ellipse data set. Compared to standard ISTA (and FBP), the
improvement provided by our results is mainly in its ability to smooth singularities,
while preserving features of interest (like sharp boundaries) and suppressing noise.

In the second part of the talk, more recent numerical results are presented,
obtained by “boosting” ΨDONet to reduce the computational burden and allow-
ing for more generality in the learning scheme, while still preserving theoretical
guarantees. In particular, the unrolled iteration of ISTA are extrapolated allowing
for a learned version of the well-known Fast ISTA (FISTA) algorithm, and the
soft-thresholding operator is replaced by learned regularisation through the Plug
and Play (PnP) paradigm [9]. Future work will be mostly devoted to addressing
convergence of the optimal network for PnP-ΨDONet, and generalization from the
training sample.
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Mathematical model and stability analysis for an inverse problem in
light sheet fluorescence microscopy

Matias Courdurier

(joint work with Pablo Arratia, Victor Castañeda, Evelyn Cueva, Steffen Härtel,
Axel Osses and Benjamin Palacios)

In Fluorescence Microscopy a relatively small and almost transparent sample, con-
taining a distribution of fluorophore, is illuminated with a laser to activate the
fluorescence. A camera outside the sample measures the irradiated fluorescent
light and the final goal is to estimate the fluorophore distribution inside the sam-
ple using these exterior measurements (see e.g. [5]). In Light Sheet Fluorescence
Microscopy (LSFM), the strategy is to optically slice the sample by illuminating
planes perpendicular to the camera sequentially, one at a time, obtaining a recon-
struction of the fluorophore distribution by direct imaging (e.g. [6]). The tech-
nique of LSFM has some advantages compared to regular confocal fluorescence
microscopy, like a reduced photo-toxicity and reduced photo-bleaching effects, but
it can be qualitatively observed that blurring artifacts affect the reconstruction of
the fluorophore distribution as you move further away from the illumination side,
which then requires multiple illumination views (see e.g. [3, 4])

To understand some of the mechanisms behind this blurring effect in LSFM,
and to propose possible improvements to this imaging technology, we study a
mathematical model for LSFM in two dimensions, including some diffusion in the
illumination stage of LSFM, and we then tackle the reconstruction of the fluo-
rophore distribution as an inverse problem (instead of purely direct observations).

For the fluorescence stage we did not included diffusion of light in the model and
stayed with a relatively simple transport model with collimated measurements at
the camera. It is worth mentioning that more complex models, providing a more
complete and accurate physical description of LSFM imaging technique would be
of interest, and it is one of possible directions in which the work presented here
could be extended. At this point though, we will only consider our intermediate
model, since heuristically most of the blurring artifact originate in the illumination
stage, and our model is admits reasonable mathematical analysis and numerical
treatment.

In this talk I will mention results presented in [1, 2], where we proposed the
mathematical model and inverse problem for LSFM mentioned above. In the
study of such setting, the inverse problem in LSFM is recast as a backwards heat
equation problem in R× [0,∞) with knowledge of the solution on a non-cylindrical
set, the observation set being a curve in the space-time variables. For the specific
family of backwards heat equations arising from the LSFM inverse problem, we
establish the injectivity of the forward operator, hence answering the uniqueness
question for the corresponding inverse problem, and we establish a conditional
logarithmic stability result.

We also explore some numerical aspects of the inversion for the LSFM inverse
problem through computational simulations.
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In what follows I present in more details the setting above. Let us consider the
domain D := [0, 1]× [−1, 1] subset of R2 and an open convex set Ω ⊂ D.

At each height h ∈ [−1, 1] we will illuminate
from the left with a laser in an horizontal di-
rection, which will propagate and also widen
due to diffusion, activating the fluorophore
with support Ω and distributed with an un-
known density µ(x, y). The activated fluo-
rophore will then emit fluorecent light that
will be measured up by a collimated camera
at pixels in positions s ∈ [0, 1], measuring
only light traveling vertically.
The quantity v(x, y, θ) (or

∑
n∈Z

v(x, y, θ+ 2πn) more precisely) describes the in-
tensity of laser photons at spatial position (x, y) traveling in direction
(cos(θ), sin(θ)), where x ∈ [0, 1], y ∈ R, θ ∈ R. We model the propagation of
the laser incoming at height h using the following Fermi pencil beam equation:(

∂x + θ∂y + a(x, h)− ψ(x, h)∂2θ
)
vh(x, y, θ) = 0, (x, y, θ) ∈ (0, 1]× R× R,

vh(0, y, θ) = δ(y − h)δ(θ),
where a represent the attenuation and ψ characterizes the diffusion of the laser,
both non-negative quantities and ψ also strictly possitive in Ω. Given a non-
negative fluorophore density µ(x, y), the activated fluorescence at position (x, y)
is wh(x, y) := cµ(x, y)

∫
R
vh(x, y, θ). And finally, the total fluorescence measured

up at the camera in the pixel at position s is P[µ](s, h) :=
∫
R
wh(s, y)dy.

The qualitative aspect of the illumination and fluorescence activation is exem-
plified in Figure 1.

This model admits an explicit solution, and the measurement at pixel s when
illuminating at height h is

P[µ](s, h) := c exp

(
−
∫ s

γ(h)

a(t, h)dt

)∫

R

µ(s, r)√
4πσ(s, h)

exp

(−(r − h)2
4σ(s, h)

)
dr,

Figure 1. Given the fluorophore distribution µ(x, y) on the left, the
middle figure shows wh(x, y), the fluorophore activated by one laser
entering at a given hight h. For visualization purposes, we also show
∫ 1

−1
wh(x, y)dh on the right.
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with γ(h) = inf{t ∈ [0, 1] : (t, h) ∈ Ω} and σ(s, h) = 1
2

∫ s
γ(h)

(s − t)2ψ(t, h)dt.

Assuming that a, ψ are known and that only µ is unknown, the inverse problem
in LSFM is the following: for each s fixed, reconstruct µ(s, y), y ∈ [−1, 1], from
the knowledge of P[µ](s, h), h ∈ [−1, 1]. This can be recast as a backwards heat
equation problem. Namely, let u(y, t) be the solution of

ut −∆u = 0, t > 0, y ∈ R,

u(0, y) = u0(y), y ∈ R,

lim
|y|→∞

u(t, y) = 0.

with u0 supported in [−1, 1], let σ(y) be a smooth function satisfying σ(y) = 0 for
|y| > 1 and σ(y) > 0 for |y| < 1. The inverse problem in LSFM is equivalent to the
problem of recovering u0 from the knowledge of u(σ(y), y), y ∈ R, where the curve
σ satisfies some extra conditions. Roughly speaking, in an somewhat imprecise
and without mentioning all the hypotheses necessary, the results presented in this
talk can be stated as follows:

Theorem. If u(σ(y), y) = 0, ∀y ∈ R, then u0(y) = 0, ∀y ∈ R. Which for the
LSFM inverse problem means that for each s, knowledge of P[µ](s, h), ∀h ∈ [−1, 1],
uniquely determines µ(s, y), ∀y ∈ [−1, 1].
Theorem. Assuming an a priori bound for u0 in the Sobolev space H1(R), there
exist a constant C > 0 and κ ∈ (0, 1) such that

‖u0‖L1(R) ≤ C(− log(‖u‖L2({(t,y):t∈[1,2],|y|>2}))
−κ,

which for the inverse problem implies the following stability estimate,

‖µ(s, ·)‖L1([−1,1]) ≤ C̃(− log(‖P[µ](s, ·)‖L1([−1,1])
−κ.
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Bidirectionality and Multiple Scattering Correction in Compton
Camera Imaging

Lorenz Kuger

(joint work with Martin Burger)

Compton cameras are an efficient imaging tool for in-situ gamma ray spectrome-
try that operate without collimation. They therefore attain large sensitivities and
allow emission imaging even in low-count or high-background surroundings. Con-
ventionally, Compton cameras are built with separated scattering and absorbing
layers of detectors. This setup allows detector materials to be tailored to maximize
sensitivity and have good energetic or spatial resolution, but often sacrifices the
cameras’ ability to produce spatially resolved images in the whole 4π field of view
resulting in a de facto collimation. The measurements that a Compton camera
makes are energy depositions during coincidences of a Compton scattering event
in one detector and subsequent photoelectric absorption of the photon in the ma-
terial of another detector. In the Compton scattering event, the energy loss of the
photon is related to the scattering angle θ through the Compton formula

E′ =
E

1 + E
mc2 (1 − cos θ)

,

where E and E′ are the photon energies before and after scattering, respectively.
In the above ideal measurement, the scattering detector measures E −E′ and the
absorption detector measures E′. Due to the formula, the energy measurement
restrics the source position from which a measured photon originated to the cone
surface C(x,y, E′) = {s : ∠(y− x,x− s) = π − θ}, where θ and E′ as before and
x and y are scattering and absorption point, respectively.

Formulations of the physical factors that describe the kinematics of a photon in
the measurement setup have been carried out in previous works, see e.g. [1]. Gath-
ering these factors in constants C1(s,x) and C2(x,y, E

′) allows us to formulate
the forward model, given by a Radon transform P over cone surfaces

Pf(x,y, E′) = C2(x,y, E
′)

∫

C(x,y,E′)

f(s) dS(s).

Our main contribution are two extensions to this model. The first one allows
detectors to scatter and absorb photons simultaneously. Since the camera’s mea-
surements do not give any information about the direction of a coincidence of
scattering and absorption, we talk of a bidirectional Compton camera. The addi-
tional uncertainty is reflected in the operator describing the forward model: The
new expected number of counts for interaction points x and y is what we call a
biconical Radon transform

Bf(x,y, Ex, Ey) = Pf(x,y, Ey) + Pf(y,x, Ex),

which is a nonlinearly weighted sum of two conical Radon transforms. To the best
of our knowledge, the mapping properties and invertibility of this new integral
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transform has not been analyzed in the literature up to this point and is an open
problem.

The other extension that we propose to consider in the model is motivated by
an imaging setup with a Compton camera with relatively large and spatially non-
resolved detectors. In these detectors, we show with simulation experiments that
multiple scattering events are the predominant case. The coincidences resulting
from measurements of multiply scattered photons lead to a model mismatch. We
demonstrate that energies deposited in the absorption detector are typically more
distributed and smaller than what the model predicts and hence scattering an-
gles are overestimated. We compute a corrected forward model which accounts
for double scattering in the first detector. The probabilities for double scatter-
ing can be formulated just as the ones for first scattering and are given by the
product C1(s,x1)C̃2(x1,x2, E

′)C3(x2,y, E
′, E′′), with appropriate constants de-

scribing physical effects like dispersion, attenuation, polarization and interaction
probabilities. This leads to an integral operator formulation of the expected num-
ber of measured, twice scattered and subsequently absorbed photons

P(2)(x2,y, E
′′) =

E0∫

E′′

C3(x2,y, E
′, E′′)

∫

C2

C̃2(x1,x2, E
′)

∫

C1

f(s)C1(s,x1) dS(x1)dS(s)dE
′

for scattering points x1 and x2 and cones C1 = C(x1,x2, E
′), C2 = C(x2,y, E

′′).
Despite the increased complexity, we compute the operator as a forward model,
in a way similar as it has been done in PET reconstruction experiments [2]. We
show in numerical experiments that it can indeed correct the reconstruction and
estimate the position of sources more accurately than the typical single scattering
model.
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Rigid Motion Reconstruction in Parallel Beam and Diffraction
Tomography

Denise Schmutz

(joint work with Peter Elbau, Michael Quellmalz, Monika Ritsch-Marte,
Otmar Scherzer, Gabriele Steidl)

In our work, we investigate the application of optical microscopy to examine par-
ticles that are trapped optically or acoustically. These particles exhibit a con-
tinuous rigid motion while undergoing the imaging process. Unlike conventional
microscopic imaging, where the specimen is immobilized, this technique enables
imaging in a more natural environment. Our objective is to reconstruct the internal
structure of the trapped object. However, the precise motion that occurs during
the object’s illumination is unknown and needs to be determined in advance.

While translations of the object can be recovered to a certain extent, we only de-
scribe the reconstruction of the rotation in this abstract. For a comprehensive and
in-depth discussion, we direct the reader to [2] and [8]. Currently, I am exploring
uniqueness criteria for both parallel beam tomography and diffraction tomogra-
phy models, which is why the work of my colleagues on diffraction tomography is
included in this report.

Both methods take into account the smooth motion over time t ∈ [0, T ] de-
scribed by a rotation R ∈ Cn([0, T ]; SO(3)), where n depends on the underlying
model and we denote Rt := R(t). Moreover, in both models we will recover the
corresponding angular velocity ω : [0, T ]→ R3 defined by

R⊤
t R

′
ty = ωt × y for all t ∈ [0, T ], y ∈ R3,

with ωt := ω(t). It is convenient to express ωt in cylindrical coordinates

ωt =

(
ρtφt
ζt

)

with the azimuth direction φt ∈ S1+ := {(cos(α), sin(α))⊤ : α ∈ [0, π)}, the cylin-
drical radius ρt ∈ R, and the third component ζt ∈ R.

1. Parallel beam tomography

In the context of parallel beam tomography, our approach assumes a linear prop-
agation of light through the object g. The light undergoes attenuation due to
interaction with the object by refraction and scattering. The measurements can
be characterized using the parallel-beam transform

mPB(t, x1, x2) =

∫

R

g(R(t)x)dx3.

According to the Fourier slice theorem, the two-dimensional Fourier transform of
the projection image equals a specific central plane of the three-dimensional Fourier
transform of the object. This plane is perpendicular to the imaging direction.
Consequently, when two projection images at time steps t1 and t2 are acquired
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from distinct imaging directions (or equivalently, from different rotational states
of the object), the planes intersect at a common line [3, 4].

We utilize this result to derive the following infinitesimal version through dif-
ferentiation.

Theorem 1. [2] Let mPB(t, x1, x2) be the parallel-beam measurements corre-
sponding to the rotation R ∈ C4([0, T ];SO(3)). Let ω ∈ C3([0, T ];R3) be the
associated angular velocity. Then, for all t ∈ [0, T ] satisfying ρt 6= 0 and all λ ∈ R
the following relation holds

∂tm̂PB(t, λφt) = ζt
〈
∇m̂PB(t, λφt), λP

⊤φ⊥
t

〉
,

with P⊤(x1, x2)⊤ = (x1, x2, 0)
⊤ and φ⊥

t = (− sin(α), cos(α))⊤.

Under certain assumptions, the parameters φt and ζt can be recovered using this
result. For the full reconstruction of the rotation, we will still need to estimate the
cylindrical radius ρt, which can be done by considering the third order derivative.

2. Diffraction tomography

In diffraction tomography we assume that the unknown object is illuminated by
an incoming plane wave

uinc(x) := eik0x3 ,

which propagates in direction e3 = (0, 0, 1)
⊤

with wave number k0. The incident
wave generates a scattered wave usca, which is detected and recorded at the plane
{x : x3 = rM}. An approximated scattered wave can be computed as a solution of
the Helmholtz equation, taking into account the Sommerfeld radiation condition
and the Born approximation. The Born approximation is valid for small objects
that exhibit mild scattering. Under these assumptions, we can explicitly express
the solution ut of the Helmholtz equation in the form

ut(x) =

∫

R3

eik0‖x−y‖

4π ‖x− y‖f(Rty)u
inc(y)dy,

where f is the scattering potential describing the object. Therefore, our measure-
ments can be expressed by:

mDT (t, x1, x2) = ut(x1, x2, rM ).

In this model, a similar result to the Fourier slice theorem, known as the Fourier
diffraction theorem, applies. According to the Fourier diffraction theorem, the two-
dimensional Fourier transform F2 of the diffraction measurements corresponds to
the three-dimensional Fourier transform F3 of the object on a hemisphere [1, 5],
that is,

F2[mDT ](t,k) =

√
π

2
F3[f ](Rth(k))

ieirM
√
k20−‖k‖

√
k20 − ‖k‖

,

where h(k) = (k1, k2,
√
k20 − ‖k‖−k0)⊤, k = (k1, k2) is the parametrization of the

hemisphere with ‖k‖ < k0.
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Similar to the previous scenario, utilizing the fact that these hemispheres at
two distinct time steps intersect in a common circle, we can derive the following
result through differentiation.

Theorem 2. [8] Let νt(k1, k2) :=
2
π (
√
k20 − ‖k‖)2|F2[mDT ](t,k)|2. Let the rota-

tion R ∈ C1([0, T ];SO(3)) and ω : [0, T ]→ R3 be the associated angular velocity.
Then we have for every r ∈ (−k0, k0) the relation

∂tνt(rφt) =

(
ρt

(
k0 −

√
k20 − r2

)
+ rζt

)〈
∇νt(rφt),φ⊥

t

〉
,

where ∂νt denotes the partial derivative of νt with respect to t.

Under certain assumptions all components of the angular velocity may be re-
constructed using the above result.

In order to achieve a unique reconstruction of the angular velocity from the
given measurements of either model presented, specific assumptions regarding the
symmetry of the object are required. If the object possesses high symmetry, the
reconstruction of motion parameters may not be unique. While some uniqueness
results exist for the method of moments [7] and the common circle method [6], the
classification of functions for which the unique recovery of a continuous motion is
possible remains an open problem.
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Accounting for model inexactnesses in Magnetic Particle Imaging

Marius Nitzsche

(joint work with Bernadette Hahn, Hannes Albers, Tobias Kluth)

A novel technique in the field of medical imaging is magnetic particle imaging
(MPI), which was introduced in 2005 by Gleich and Weizenecker [1]. The stimula-
tion of injected superparamagnetic iron oxide nanoparticles with a magnetic field
results in a temporal change of the magnetization of the particles, that induces
a voltage in a receiving coil. One of the notable advantages of MPI is its ability
to provide both high spatial resolution and incredibly fast measurement times, all
without the use of harmful radiation. The magnetic field H(x, t) consists of a static
selection field g(x) characterized by a field free point as well as a homogeneous
dynamic drive field h(t). Together they move the field free point along Lissajous
trajectories.

The resulting inverse problem is described by equation 1

v =

∫

Ω

c(x)(−a ∗ µ0p
R(x)T

∂

∂T
m̄(x, ·))dx − a ∗ µ0

∫

R3

pR(x)T
∂

∂T
H(x, ·)dx(1)

with µ0 being the constant permeability of vacuum, Ω ⊂ R3 the field of view, pR :
Ω 7→ R3 the receive coil sensitivity,M : Ω×[0,T] 7→ R3 the particle magnetization,
H : R3 × [0,T] 7→ R3 the applied magnetic field, c : Ω 7→ R+ ∪ 0 the tracer
concentration, m̄ : Ω× [0,T] 7→ R3 the mean magnetic moment and a : [−T,T] 7→
R an analog filter. Discretization results in a linear system Ac = v with System
Matrix A ∈ CM×N , M being the number of temporal points per trajectory and
N the number of spatial points.

There are two main challenges in MPI: the identification of the mean mag-
netic moment m̄ from given tupels (c, v) is the calibration problem. The imaging
problem is the reconstruction of the concentration c(x) from measurements v(t).

1. Model Inexactnesses in Magnetic Particle Imaging

In reality, there is no perfect model. We look at two instances, that introduce
model inexactnesses in MPI. Firstly, there exist two different approaches for the
determination of the System Matrix. The commonly used measurement-based
approach is the most accurate method. However, it is a very time consuming
procedure, which has to be repeated for each imaging sequence. The model-
based approach does not need a time consuming acquisition and can be applied
to arbitrarily fine sampling grids. On the downside, the simulation of the System
Matrix introduces inaccuracies.

Secondly, motion like breathing of the examined specimen diminishes the quality
of the reconstructions. Ignoring this problem leads to severe motion artifacts.
Due to very fast measurement times, the searched-for concentration c(x, t) can be
assumed piecewise constant in time.

Commonly used algorithms like the Kaczmarz method with a Tikhonov regu-
larization are not equipped to compensate those model flaws [2] Therefore, there
is a need to use more sophisticated algorithms.
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2. Regularized Sequential Subspace Optimization

We apply the Regularized Sequential Subspace Opimization combined with Kacz-
marz method (RESESOP-Kaczmarz), which is based on the Sequential Subspace
Optimization (SESOP). SESOP is an iterative solver equivalent to metric projec-
tions onto intersections of hyperplanes [3].

It is possible to introduce a regularization with the help of the uncertainty levels
of the noisy data ||v−vδ|| ≤ δ as well as the inexact forward operator ||A−Aη|| ≤ η.
The idea is to replace the exact hyperplanes by stripes whose widths are chosen
based on the corresponding uncertainty levels. Adding Morozov’s discrepancy
principle results in a regularization method, as proven in [4] and in more detail
in [5].

Blanke, Hahn and Wald additionally proposed to combine the usage of local
properties of the inverse problem in the regularization as done in RESESOP with
Kaczmarz, which enables the combination of sub-problems [5].

3. Numerical Results

To evaluate the ability of RESESOP-Kaczmarz to compensate for model imper-
fections in the system function, we conduct experiments using two different three-
dimensional simulated system matrices. The size of each matrix is 61 × 61 × 5.
The first system matrix, referred to as GT, is a fully simulated operator based on
model B3 from Kluth et al. [6]. This model serves as the ground truth for our
experiment. The second system matrix, denoted as AO, is a less advanced model
operator in comparison to the GT model.

Phantom

GT: regularized Kaczmarz

AO: regularized Kaczmarz

AO: RESESOP-Kaczmarz

Figure 1. Reconstructions with different operators and meth-
ods of the given phantom. We depict the same slice of each 3D
solution.
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The reconstruction quality of regularized Kaczmarz with an imperfect operator
is noticeably diminished, particularly at the boundaries and corners of the field
of view, as shown in Figure 1. This degradation aligns with the relative operator
error. However, RESESOP-Kaczmarz demonstrates the capability to compensate
for the model inexactness introduced by the less advanced operator, resulting in a
3D image of nearly the same quality as the ground truth.

Moving on to the algorithm’s ability to account for motion, we conduct an
experiment using real data from the UKE Hamburg. These three dimensional
measurements were obtained using a pre-clinical Bruker scanner and depict a ro-
tating glass capillary with varying rotation frequencies (1 Hz and 7 Hz).

1 Hz rotation frequency. 7 Hz rotation frequency.

Figure 2. 2D slices of the reconstructed image with varying ro-
tation frequencies using Resesop-Kaczmarz

The results presented in Figure 2 exhibit promising improvements compared
to the original reconstructions by Gdaniec et al. [2]. However, when dealing with
very fast motion, such as a 7Hz rotation, motion artifacts are still visible in the
reconstructed images. This occurrence can be attributed to the assumption of a
piecewise constant concentration over each trajectory.
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Dealing with field imperfections for field-free line magnetic
particle imaging

Stephanie Blanke

(joint work with Christina Brandt)

1. Introduction

Magnetic particle imaging (MPI) is a tracer-based medical imaging modality in-
vented by Gleich and Weizenecker [1]. Different scanner implementations having
different magnetic field properties exist. Regarding field-free line (FFL) scanner [2]
and discrete line rotation, the space- and time-dependent magnetic field

H(r, ϕ, t) = (−G r · eϕ +AΛϕ(t)) eϕ ,

features an FFL, which for data generation is sequentially translated through
the field of view and rotated in between measurements. Thereby, A and G de-
note constants determining the maximum displacement of the FFL to the origin
sFFL (t) =

A
GΛϕ (t) with Λϕ (t) being an excitation function usually chosen to be

sinusoidal. Further, ϕ respectively eϕ specifies the direction of the FFL.
Assuming static particle concentrations c as well as spatially homogeneous receive
coil sensitivities pl, the measured voltage signal ul induced in the l-th receive
coil can be expressed in terms of the magnetic permeability µ0, the mean mag-
netic moment m, and the applied magnetic field H. Using the Langevin model of
paramagnetism [3], the signal equation for an FFL scanner thus can be written as

(1) ul (ϕ, t) = −µ0 eϕ · pl
∫
c(r)

∂

∂t
m (−G r · eϕ +AΛϕ(t)) dr.

For convenience we neglect signal filtering and refrain from removing the direct
feed-through of the excitation signal. We recommend to consult [3] for further
details.
With respect to this measurement setup the scanning geometries of MPI and com-
puterized tomography, a well-known medical imaging technique, become similar.
Considering the idealized setting above, it has been shown that MPI data can be
traced-back to the Radon transform of the particle concentration [4], i.e. we can
write

ul (ϕ, t) = −µ0 eϕ · plAΛ′
ϕ(t) (m

′ (G ·) ∗ Rc (ϕ, ·)) (sFFL (t)) ,

where R denotes the Radon transform mapping c to the set of its line integrals

Rc (ϕ, s) =

∫
c (r) δ (r · eϕ − s) dr.

The aim of our work is to investigate the setting of more realistic assumptions.
Here, we concentrate on magnetic field imperfections that might lead to image
artifacts when being neglected in the reconstruction process.
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2. Methods

The idea is to link ideal and deformed magnetic fields via deformation functions
that can be obtained with the aid of image registration techniques. First, we
create a link between MPI data and an adapted version of the Radon transform
not necessarily integrating along straight lines. To this end, we assume that the
real magnetic field can approximately be written in terms of the ideal field using
diffeomorphic mappings Γϕ,t, i.e.

(2) Hreal (r, ϕ, t) ≈ Hideal (Γϕ,tr, ϕ, t) .

Motivated by the similar scanning geometry, the approach roots from methods ap-
plied in dynamic CT (e.g. [5], [6], [7]). Furthermore, to some extent data obtained
from measurements with deformed magnetic fields can be reinterpreted as data
obtained from measurements with deformed objects. Inserting (2) into the FFL
signal equation (1) yields

ureall (ϕ, t) ≈− µ0 eϕ · pl
∫
c(r)

∂

∂t
m (−G Γϕ,tr · eϕ +AΛϕ(t)) dr

=− µ0 eϕ · pl AΛ′
ϕ (t)

∫
c(r) m′ (−G Γϕ,tr · eϕ +AΛϕ(t)) dr

+ µ0 eϕ · plG
∫
c(r) (Γϕ,t)

′
r · eϕ m′ (−G Γϕ,tr · eϕ +AΛϕ(t)) dr.(3)

For the moment, we presume the second term to be negligible compared to the
remaining part. Inspired by [4] and [7], we rewrite our expression for ureall (ϕ, t) in
terms of an adapted version of the Radon transform RΓ as

ureall (ϕ, t) ≈ −µ0 eϕ · plAΛ′
ϕ (t)

(
m′ (G ·) ∗ RΓc (ϕ, ·)

)
(sFFL (t))

with

RΓc (ϕ, s) =

∫
c (r) δ (Γϕ,tr · eϕ − s) dr.

In the following, we will write ureall = Klv
Γ with vΓ = RΓc and Kl being the

corresponding convolution operator.

3. Results

For first proof-of-concept results, we will regard the time- and angle-independent
deformation function

Γϕ,t

(
x
y

)
=

(
x

y − 100x2

)
.

Thus, the second term in (3) vanishes. Motivated by [8] we jointly reconstruct
Radon data and particle concentration by means of total variation regularization

min
c≥0, vΓ≥0

1

2

∑

l

∥∥Klv
Γ − ureall

∥∥2
L2

+
α1

2

∥∥RΓc− vΓ
∥∥2
L2

+ α2 TV(c) + α3

∥∥vΓ
∥∥
L1
.

Ignoring the non-ideal magnetic field by choosing Γϕ,t = Id, the field deformation
transfers to a deformed phantom reconstruction (Figure 1b). Incorporation of the
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exact Γϕ,t yields a well-reconstructed image (Figure 1c). Determining the defor-
mation function via linking the ideal and deformed magnetic fields using the im-
age registration package FAIR [9] and the corresponding add-on LagLDDMM [10]
available at https://github.com/C4IR/FAIR.m, we get promising results (Fig-
ure 1d) justifying our approach for dealing with magnetic field imperfections. Next
steps would be the investigation of more realistic deformation functions and the
application of our method to experimental magnetic field data.
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(a) Phantom.

0.2

0.4

0.6

0.8

(b) Γϕ,t = Id.
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(c) Exact Γϕ,t.
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(d) Estimated Γϕ,t.

Figure 1. Phantom reconstructions for different choices for Γϕ,t.
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Retrospective Redundancy-based motion estimation in MRI using
Deep CNNs

Mathias S. Feinler

(joint work with Bernadette N. Hahn)

Suitable algorithms for motion correction are highly relevant for medical imaging
applications such as Magnetic Resonance Imaging (MRI). During data acquisition
involuntary motion can occur due to non-cooperative patients or induced by respi-
ratory and cardiac motion. Since most procedures are designed for a static setup,
the most convenient way of motion compensation is a retrospective one.

The motion affected data acquisition can be modelled as

yc(t) = A(t)F[ScU(s, t)] =: A(U, s, t), c = 1, . . . , N coils

where the deformations U ∈ DU and the image s ∈ Ds are unknowns, F is the
Fourier transform and A(t) specifies which Fourier coefficient is acquired at time t.
We assume that coil sensitivities Sc are available by some pre-computation proce-
dure [2] and only time dependent data yc are available. By artificially separating
the data, bearing in mind that the continuous data acquisition allows us to balance
the temporal resolution retrospectively, we can write the data acquisition as

yci = AiF[ScUi(s)], i = 1, . . . , N exc, c = 1, . . . , N coils

using the assumption that the object is quasi static during the acquisition of some
small subset of Fourier coefficients specified by the sampling pattern Ai.

We aim to reconstruct the image s as well as deformation-fields U = {Ui}N
exc

i=1

from a single acquisition of one slice in MRI.
To enable motion estimation in a verifiable manner, we need redundantly sam-

pled information. This can be achieved by the selection of sampling patterns Ai.
For the static case several attempts have been made to find optimal sampling pat-
terns for sparse reconstruction [3]. For the dynamic case it is still an open issue
to find an optimal sampling pattern that guarantees successful motion estimation
for predefined spaces of deformations and images.

A radial acquisition scheme is well-known to be slightly motion resistant. The
angle of each spoke can be chosen according to a greedy criterion w.r.t the coverage
of the k-space. Thus, if we combine consecutive spokes we achieve a homogeneous
coverage of the k-space. Since for rotations of the image, the k-space is rotated
as well, we can guarantee that, using coil sensitivity information, the central part
of the k-space is sampled redundantly. This enables redundancy based motion
estimation [1].

1. Methodology

Motion estimation is mostly formulated in variational form. The problem is that
local optima could prevent global convergence to the desired solution when local
optimization techniques are used. Therefore, we first focus on the prediction of
coarse estimates for the true deformation fields. Using prohibitively sparse data
yi = {yci }c we can compute CG-SENSE reconstructions si. Even though we cannot
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expect to recover the true image s in high quality, the coarse configuration is
usually already encoded. By comparison of all si we are able to infer coarse
deformation estimates using a Deep CNN. The used network architecture resembles
FlowNet 2.0 [4] where now in contrast all images {si}N

exc

i=1 are plugged in at once.
In case of challenging deformations like free form deformations, this estimate

has to be refined further. It is crucial to use a projected gradient descent pro-
cedure, since a pure application of gradients not necessarily leads to compliant
deformations. This projection procedure is, dependent on the space of deforma-
tions, hard to implement in an analytic manner. Instead, a neural network can be
used to learn a suitable projection operation by using training data that samples
this space.

The refinement can be pursued via unrolled iterative or multiscale procedures.

2. Results

We apply the proposed procedure to simulated MRIs of the abdomen. To model
potential breathing motion for MRIs of the abdomen, we use free form deforma-
tions. Only after the correction procedure, the estimated motion allows to produce
reconstructions with sharp edges. Results are visualized in Figure 1.

After the motion estimation procedure, the residual value

yc(t)−A(Ū , s̄, t)

can be computed, where s̄ and Ū are the predicted image and deformation-fields,
respectively. Even if convergence can not be guaranteed for this procedure, the
residual value together with the appearance of the predicted deformations allows to
verify the plausibility of the predicted reconstruction. This is for instance crucial
to allow a reliable diagnosis in medical imaging.

static reconstruction predicted image predicted deformation-
field

Figure 1. Result of proposed procedure on a simulated motion
corrupted MRI of the abdomen using synthetic free form defor-
mations, 5% additive Gaussian measurement noise, N exc = 16,
image resolution 192× 192.



1156 Oberwolfach Report 21/2023

References

[1] M.S. Feinler and B.N. Hahn Retrospective Motion Correction in Gradient Echo MRI by
Explicit Motion Estimation Using Deep CNNs, arXiv, (2023), 2303.17239.

[2] M.J. Allison, S. Ramani, and J.A. Fessler, Accelerated regularized estimation of mr coil
sensitivities using augmented lagrangian methods, IEEE Trans. Med. Imaging, 32 (2013),
556–564.

[3] F. Sherry et al., Learning the Sampling Pattern for MRI, IEEE Trans. Med. Imaging, 39,
12, (2020), 4310–4321.

[4] E. Ilg et al., Flownet 2.0: Evolution of optical flow estimation with deep networks, arXiv,
(2016), 1612.01925.

Convergent Data-driven Regularization for CT Reconstruction

Samira Kabri

(joint work with Alexander Auras, Danilo Riccio, Hartmut Bauermeister,
Martin Benning, Michael Moeller, Martin Burger)

In the context of inverse problems, regularization is the key tool for stable recon-
struction of unknown data from noisy measurements. Examples range from gen-
eral formulations, such as Tikhonov regularization, to model specific approaches,
like incorporating regularizing filters into filtered back-projection. In applications
where hand-crafting a precise mathematical description of the considered data
spaces is impractical to impossible, data-driven approaches aim to find suitable
regularizers by exploiting the structure of a finite set of data examples (see [1] for
an overview).

We consider compact linear operators A : U → V on two Hilbert spaces U,V
and denote its nullspace by N(A) and its range by R(A). Such operators can be
decomposed into a singular system {σn; un, vn}n∈N, where σn > 0 are the singular
values in non-increasing order, {un}n∈N ⊂ U and {vn}n∈N ⊂ V form orthonormal
bases of N⊥(A) ⊆ U, or R(A) ⊆ V, respectively, and

Au =
∑

n∈N

σn〈u, un〉un.

For such operatorsA with an infinite dimensional range, the Moore-Penrose inverse
A† : D(A†) := R(A)+̇R(A)⊥ → N(A)⊥, which is defined for f ∈ D(A†) by

A†f =
∑

n∈N

1

σn
〈f, vn〉un,

is discontinuous, which leads to uncontrollable reconstruction errors, even for very
small measurement errors. Therefore, for noisy measurements f δ = Au+ ν, where
u is a random variable, drawn from a data distribution and ν is a random variable,
drawn from a distribution with zero mean that is parametrized by δ > 0, we want
to analyze the linear spectral regularizer

R(f δ, ḡ) =
∑

n∈N

ḡ(σn)〈f δ, vn〉un,
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where the function ḡ : R+
0 → R+

0 minimizes the expected squared L2-error with
respect to the data and noise distributions, i.e.,

ḡ ∈ argmin
g:R+

0 →R
+
0

Eu,ν
[
‖u−R(f δ, g)‖2

]
.(1)

Due to the simple structure of the regularizer, the minimizing function is unique
at the evaluation points σn and can be computed explicitely as

ḡ(σn) =
σn

σ2
n + ∆n

Πn

with Πn = Eu
[
〈u, un〉2

]
and ∆n = Eν

[
〈ν, vn〉2

]
, as long as Πn,∆n > 0 for all

n ∈ N.
We show that under reasonable conditions, the resulting family of operators are

a regularization method in the stochastical sense.

Assumption 1. The variance of the noise is bounded by δ2, more precisely,

sup
n∈N

∆n = δ2.

Assumption 2. The data is smoother than the considered noise, more precisely
there exist c > 0 and n0 ∈ N such that

∆n ≥ c δ2 Πn
for all n ≥ n0 and δ > 0, where we note that ∆n depends on δ in the sense of
Assumption 1

Assumption 3. The sequence of Πn is summable, i.e.,
∑

nΠn <∞.

Under these assumptions, the obtained reconstruction operator is a regularization
method, meaning it is continuous and converges to the Moore-Penrose inverse in
the no-noise limit.

Theorem. Let Assumptions 1-3 hold. Then R(·; g) is continuous and

lim
δ→0

Eν
[∥∥A†f −R

(
f δ, g

)∥∥2
]
= 0

for every f ∈ D(A†).

Proof. The proof can be found in [2, Thm. 3]. �

Although the data-driven regularizer is chosen to be optimal with respect to (1),
it introduces a bias towards smoother reconstructions. This can be illustrated by
computing the variance coefficients of the reconstructed data, i.e.,

Π̃n = Eu,ν
[〈
R(f δ, ḡ), un

〉2]
.

Inserting Assumption 2 reveals that

Π̃n =
σ2
nΠn

σ2
nΠn +∆N

Πn ≤
1

1 + cδ2

σ2
n

Πn,
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thus, compared to the original data, the variance of the reconstructions is damped
to account for the noise. Since the singluar values σn decrease with increasing n,
this effect is stronger for higher frequencies and can therefore be interpreted as
oversmoothing. Despite the simple form of the considered regularizer, it appears
naturally in practical applications, for example in filtered back-projection, where
the function to optimize in dependence on given data would be the so-called filter.

In the future, we would like to extend the considered framework to more gen-
eral approaches which could allow for lower computational costs and a higher
expressivity of the obtained regularizers. A first direction could be to substitute
the singular value expansion by a diagonal frame decomposition, which have been
studied in [3]. Furthermore, to strengthen the connection to supervised learning,
we want to study how well the regularizers generalize in the case of finite data.
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Uncertainty Quantification of Inclusion Boundaries

Yiqiu Dong

(joint work with Babak M. Afkham, Nicolai A. Riis, Per Christian Hansen)

Computed tomography (CT) imaging is the task of reconstructing a positive at-
tenuation field (in the form of an image) from a finite number of projections (e.g.,
sinograms). CT reconstruction is often followed by an image segmentation step
to partition the image into piecewise smooth/constant regions. The boundaries
between such regions often carry valuable information.

In this talk, we will describe a Bayesian framework for reconstructing the bound-
aries of piecewise constant regions in the CT problem in an infinite-dimensional
setting. Since the regularity of boundaries carries crucial information in many
inverse problem applications, e.g., in medical imaging for identifying malignant
tissues or in the analysis of electroencephalogram for epileptic patients, we char-
acterize the regularity of the boundary by means of its fractional differentiability.
The proposed Bayesian formulation has a hierarchical structure, which simulta-
neously estimates the boundary and its regularity. In addition, we quantify the
uncertainties in the estimates.

Our approach is goal oriented, meaning that we directly detect the discontinu-
ities from the data, instead of reconstructing the entire image. This drastically
reduces the dimension of the problem, which makes the application of Markov
Chain Monte Carlo (MCMC) methods feasible.

https://arxiv.org/abs/2206.05431
https://arxiv.org/abs/2212.07786
https://arxiv.org/abs/2008.06219
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We will show that the proposed method provides an excellent platform for
challenging X-ray CT scenarios (e.g., in case of noisy data, limited angle, or sparse
angle imaging). Furthermore, this framework can be extended to reconstruct 2D
surfaces, track the changes of the boundaries, and handle other types of noise.
This work has been published or submitted, see [1, 2].
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A Bayesian level-set inversion method for simultaneous reconstruction
of absorption and diffusion coefficients in diffuse optical tomography

Anuj Abhishek

(joint work with Thilo Strauss, Taufiquar Khan)

Diffuse Optical Imaging (DOT) is a non-destructive medical imaging modality
used to probe bio-medical tissues. In a DOT system, we illuminate the surface of
the medium we are interested in imaging, by low-energy infra-red light by guiding
the light through certain optical fiber channels called optodes. As the light is prop-
agated through the medium, we measure the transmitted intensity at other optode
locations. Based on such boundary measurements, the idea is to reconstruct the
following two optical characteristics of the medium: diffusion (or, scattering) and
absorption. This allows us to detect anomalies in the interior, e.g. the diffusion
parameter of a tumor is different from that of surrounding healthy tissues and
likewise the absorption coefficient of a benign tumor may be different from that of
a malignant tumor. One may find more details about the use of DOT in the field
of medical imaging in the following references [1, 2].

One particularly useful mathematical model for studying DOT is the so-called
frequency diffusion approximation to the Radiative Transfer Equation. In this
model, the photon density u(x) in the medium Ω is related to the diffusion and
absorption effects by the following equation,

−∇ · (a(x)∇u(x)) +
(
b(x) + i

ω

c

)
u(x) = 0 in Ω.(1)

Here ω is the laser modulation frequency, which is non-zero in the alternating
current case, whereas, ω = 0 in the direct current case. Note that in the equation
above, c is the speed of light, a(x) is the diffusion coefficient, and b(x) is the
absorption coefficient. For setting up the inverse problem in this work, we study
the model under the assumption that ω = 0. Thus the equation under study is:

−∇ · (a(x)∇u(x)) + b(x)u(x) = 0 in Ω.(2)

Before we describe the discrete measurement set-up for the inverse problem, we
will describe an idealized inverse problem with Neumann and Robin data. In
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an idealized inverse problem set-up, we assume knowledge of all possible Robin
and Neumann data pairs on the boundary ∂Ω, i.e., −a∂u∂ν |∂Ω is the source pho-
ton density (Neumann data) going into the medium through the boundary and
(u(x) + 2a∂u∂ν )|∂Ω is the measured photon density (Robin data) on the boundary
respectively. The goal is to then infer the coefficients a(x), and b(x) from such
boundary measurements, given equation (2) is satisfied. However, in [3] it was
shown that if a(x) and b(x) are smooth and a(x) = 1 near the boundary ∂Ω, then
there is a non-uniqueness in the solution for the inverse problem. In spite of this
non-uniqueness result for the case of smooth parameters, in [4] it was shown that
if one considers a(x) which are piecewise constants and b(x) is piecewise analytic,
then the inverse problem has a unique solution.

Inspired by this result, in our present work we consider a Bayesian inference
method for reconstruction of optical parameters, a(x) and b(x) that are piecewise
constants. For this we consider the case where diffusive and absorptive coefficients
are expressed as:

a(x) =

M∑

i=1

aiI(Ω
d
i ), b(x) =

N∑

i′=1

bi′I(Ω
a
i′ )(3)

for some M,N ∈ N. Here, I(S) denotes the characteristic function of some set
S ⊂ Ω. Also, for i 6= k, and i′ 6= k′, Ωdi ∩ Ωdk = ∅, Ωai′ ∩ Ωak′ = ∅. Besides,
∪Mi=1Ω

d
i = Ω = ∪Ni′=1Ω

a
i′ . The constants ai and bi′ are bounded, strictly positive

numbers such that a(x) ∈ A(Ω) and b(x) ∈ A(Ω).
We will now describe the semi-discrete mathematical formulation of the prob-

lem, similar to that introduced for electrical impedance tomography (EIT) [5].
Let Ω ∈ R2 be the region to be imaged with its boundary denoted by ∂Ω. Let
the photon-density measurements be made on L optodes, {Ol}Ll=1, placed along
∂Ω. We will denote by Ul, the measured photon density on the lth optode and
by F̄l, the average photon density across the lth optode. We assume that the
parameters a(x), b(x) are real valued, positive, bounded functions in L∞(Ω̄). The
measurement set-up is then given by:

−∇ · (a(x)(∇u(x))) + b(x)u(x) = 0, x ∈ Ω(4)

u(x) + 2a
∂u

∂ν
= Ul, x ∈ Ol, l ∈ {1, . . . , L}(5)

a
∂u

∂ν
= 0 on ∂Ω \

L⋃

l=1

Ol.(6)

We also assume that the average value of applied photon density on each optode,
denoted by F̄l =

1
|Ol|

∫
Ol
−a∂u∂ν dS is known. Here dS is the surface measure on ∂Ω

and |Ol| is the surface measure of the lth optode Ol. Since |Ol| is known, hence
we assume that the applied photon flux satisfies:

∫

Ol

−a∂u
∂ν
dS = Fl(7)
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where Fl = F̄l × |Ol|. Formally, for each j ∈ {1, . . . , J}, let us represent the true
photon density, U (j), corresponding to the applied flux F (j) on the optodes by:

U (j) = Gj(a, b)(8)

Consider the case, when the measured data is corrupted by a Gaussian noise. Let
yj denote the noisy measurements of the photon density on the boundary:

(9) yj = Gj(a, b) + ηj ; j ∈ {1, . . . , J} and ηj ∼ N(0,Γ0) i.i.d.

Here N(0,Γ0) is used to denote a Gaussian random variable with mean 0 and
variance Γ0. Concatenating all the vectors yj ∈ RL we can write:

y = G(a, b) + η(10)

where y ∈ RLJ and η ∼ N(0,Γ) where Γ = diag(Γ0, . . . ,Γ0). The statistical
inverse problem can now be formulated as recovery of the parameters, a and b,
from observed (noisy) data y.

In this work, we prove that the Bayesian inverse problem so stated is well-
posed wherein we use level set-prior models for the optical parameters a(x) and
b(x). This follows the paradigm introduced in [6,7]. Furthermore, we also provide
a numerical implementation of the proposed method which is based on an MCMC
sampling strategy devised in [8] for sampling very high dimensional spaces.
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Recent approaches in nano-CT using inexact models and deep learning

Anne Wald

(joint work with Stephanie Blanke, Bernadette Hahn-Rigaud, Florian Hartmann,
Alice Oberacker)

We consider an inverse problem

A(f) = g, A : D(A) ⊆ X → Y,

where the given data gδ are subject to noise with noise level

‖gδ − g‖ ≤ δ.
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In addition, we assume that only an inexact version Aη of A is given with inex-
actness η > 0, such that

‖Aη(f)−A(f)‖ ≤ η · ρ for all f ∈ Bρ(0) ⊆ D(A).

In particular, we consider linear inverse problems

A(t)f = g(t)

with time-dependent data g(t) and forward operator A(t). The quantity f is as-
sumed to be static.

If measurements are taken at time instances tk, k = 1, ...,K, we obtain the
semi-discrete setting

Akf = gk, ‖Ak −Aηk‖ ≤ ηk, ‖g − gδk‖ ≤ δk k = 1, ...,K,

where A(tk)  Ak.

• If the model is accurate at t = tk, we choose η(tk) = 0.
• Changes in the physical setting may be incorporated in the choice of η.
• Periodic time-dependent changes in the model lead to periodic functions
η(t).

As an example, we consider motion in computerized tomography (CT): The
investigated object undergoes a deformation during data acquisition.
Typical examples from medicine:

• Breathing: periodical deformation of the entire body (global motion)
• Heartbeat: local periodical motion

Motion in nano-CT:

• relative motion between object and scanner due to, e.g., vibrations, man-
ufacturing tolerances, object drift

In dynamic CT, we interpret the motion of the object as a model inexactness
in comparison to a static problem:

We consider the dynamic model for an X-ray beam, parametrized by the angle
ϕ of the tomograph and the detector point s,

gΓ(ϕ, s) = RΓf0(ϕ, s) =

∫

R2

f0(Γϕx)δ(s − xTω(ϕ)) dx,

where Γ is the (unknown) motion, f0 is the initial state of the object, and RΓ is
the dynamic Radon operator. For the inexactness η in

∥∥RΓ(ϕ, s)−R(ϕ, s)
∥∥ ≤ η(ϕ, s)

we have several options:

• η(ϕ, s) = η̄ with some constant η̄ > 0
• η(ϕ, s) = η(ϕ): inexactness depends on the position of the tomograph,
i.e., on time
• η(ϕ, s) = η(s): inexactness depends on offset and is affected by local
behavior of the object
• η(ϕ, s) = η(ϕ, s): local time-dependent inexactness
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To solve such inverse problems in dynamic computerized tomography, for ex-
ample in nano-CT, we adapt sequential subspace optimization (see, e.g., [1]) as
a regularization technique for semi-discrete linear inverse problems with inexact
forward operators as presented in [2]. We present numerical results for simulated
as well as real measured data.

In addition, we show that using sequential subspace optimization and local
modelling errors may yield a basis for motion identification as well as data-driven
post-processing to improve the reconstruction quality.
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Ill-Posed Inverse Problems in Low-Dose Dental Cone-Beam
Computed Tomography

Jin Keun Seo

(joint work with Hyoung Suk Park)

Dental cone-beam computed tomography (CBCT) is a specialized type of CT
imaging device designed specifically for dental applications. Recently, low-dose
dental cone-beam computed tomography (CBCT) has become an increasingly pop-
ular imaging technique in dental clinics as an alternative to standard multi-detector
CT (MDCT). This is due to several advantages of CBCT, including: (i) lower cost,
as dental CBCT is typically less than one-tenth the cost of MDCT; (ii) greater
convenience for patients, as they can be scanned while seated or standing, requir-
ing less space in the dental office; and (iii) lower radiation exposure for patients,
as dental CBCT exposes them to less radiation than MDCT.

However, the advantages of dental CBCT come at the expense of reduced data
quality and more ill-posed inverse problem compared to MDCT. Dental CBCT
systems use a fixed array of detectors and scan the head in one revolution, taking
longer than MDCT’s continuous table movement with a fast rotation time. This
longer scanning time can result in motion artifacts. In order to obtain a larger field
of view while using a small detector, most dental CBCT devices utilize an offset
detector with a short subject-to-detector distance. However, this short distance
between the subject and detector can result in scattering and cone-beam artifacts,
which can negatively impact the quality of the reconstructed image.

Due to the prevalence of metallic implants in dental patients, metal artifact
reduction (MAR) is a critical issue in dentistry. However, MAR is a highly chal-
lenging, non-linear problem in dental CBCT. This is because the global structure
of metal artifacts is influenced not only by local metal geometry, but also by vari-
ous complex factors associated with metal-bone and metal-teeth interactions, FOV
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truncation, scattering, and nonlinear partial volume effects, among others. Metal-
lic objects in the CBCT field of view produce streaking artifacts that significantly
degrade the reconstructed CT image, resulting in a loss of crucial information on
the teeth and other anatomical structures.

Developing robust CT reconstruction algorithms using MAR is a complex and
challenging task that involves addressing uncertainties resulting from the forward
model mismatch. Despite several MAR methods that have been suggested over the
last four decades, existing approaches may not be sufficient to effectively reduce
metal artifacts in low-dose dental CBCT environments, emphasizing the critical
need for further research in this area.

A dental CBCT scan involves directing a cone-shaped X-ray beam through a
patient’s head as they are positioned between an X-ray source and a flat-panel
detector. The X-ray source and detector are housed in a gantry that is rotated,
allowing the beam to pass through the patient’s head from various angles. As the
beam passes through the patient, a planar detector acquires the CBCT projection
data denoted as P(ϕ, u, v), where ϕ ∈ [0, 2π) represents the projection angle, and
(u, v) represents the position of the planar detector. The position is scaled using
the ratio of the distance between the X-ray source and the detector plane to the
distance between the source and the rotation axis.

The incident X-ray beams used in most dental CBCT scans consist of photons
with varying energies, ranging from the minimum energy (e.g., 0 keV) up to the
peak energy (e.g., between 60 keV and 120 keV). The X-ray attenuation coefficients
denoted by µ also vary with the photon energy level E, where the µ value of metal
objects exhibits significant variation with E, while the µ of soft tissue remains
relatively constant with E. Consider a path of the X-ray beam from a source
position oϕ to a detector position xϕ,u,v in the world coordinates. Due to the
polychromatic nature of X-ray beams, the projection data P(ϕ, u, v) follows the
Lambert-Beer law [1, 3]:

P(ϕ, u, v) = − ln

(∫

R

η(E) exp(−α
∫ 1

0

µ((1− s)oϕ + sxϕ,u,v)ds)dE

)
,(1)

where α = ‖oϕ − xϕ,u,v‖ represents the distance between the source and the
detector cell, and η(E) represents the fractional energy at photon energy E in the
spectrum of the X-ray source [5], with its support being the interval [Emin, Emax],
and

∫
R
η(E)dE = 1. When the X-ray beam encounters a metal object, the higher

energy photons are absorbed less compared to the lower energy photons, resulting
in a beam hardening effect. As a result, the lower energy photons are absorbed
more, while the higher energy photons penetrate through the metal object, causing
distortion in the CT image. This can lead to streak-like artifacts extending from
the metal object.

All existing CT reconstruction methods are typically based on the monochro-
matic assumption, where η(E) is simplified to a Dirac delta function, representing
a single energy value. Under this idealized assumption, there exists a linear X-
ray transform denoted by Tforward, such as the Radon transform or cone-beam
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transform, that maps the CT image to the projection data as follows:

(2) P = Tforward µ.

The CT image µ can then be reconstructed by inverting the forward operator.
The standard reconstruction methods, such as the filtered back-projection (FBP)
algorithm [2] and Feldkamp-Davis-Kress Algorithm (FDK) [4], can be viewed as an
inverse of the forward operator Tforward, which assumes that the data P lies in the
range space of the forward operator. However, in practical dental CBCT scenarios,
the data P associated with polychromatic X-ray beams does not necessarily lie in
the range space of the forward operator. Hence, there is no CT image µ that
satisfies the forward model (2) and the inconstent data P results in the model
mismatch:

(3) (T−1
forwardTforward)P 6= P.

Due to this mismatch, the process of projecting the data into the range space
during the inversion of the forward operator often generates artifacts, such as
streaking and shadowing artifacts. These artifacts are spread globally, resulting
in overall degraded image quality.

Recently, there have been numerous attempts to leverage deep learning ap-
proaches as heuristic image regularizers, and these methods have shown remark-
able performance in sparse-view CT scenarios. However, their efficacy in dental
CBCT environments is limited when there are multiple metal inserts occupying a
significant area. Existing methods that rely on initially reconstructed images by
the standard reconstruction algorithm appear to have fundamental limitations in
our setting due to the highly corrupted input images in neural networks. There-
fore, it is crucial to reconsider the standard reconstruction algorithms, such as
FDK and FBP, which are designed based on the ideal forward model (2). This
model assumes that the data lies in the range space of the forward operator, which
is an idealistic assumption. However, in practical scenarios, there is often a dis-
crepancy between this ideal assumption and the actual data, resulting in serious
artifacts in the reconstructed images. These artifacts are widespread and can lead
to overall degraded image quality. Lessons learned from the last three decades
have shown that conventional regularization methods struggle to effectively han-
dle severe artifacts.

Taking inspiration from the recent success of neural radiance fields (NeRF) in
computer vision [6], one may consider to utilize a neural representation of CT im-
ages while accounting for the energy dependence of the attenuation distribution.
Unlike traditional approaches that rely on the inversion formula, neural represen-
tation focuses on a compact 3D CT image representation denoted by fΘ, which
maps a 3D point x = (x, y, z) to a scalar value µ(x) representing the attenuation
coefficient at position x, where the parameter Θ determines the function f within
the neural network. Using the function fΘ as a neural network instead of the
standard point-wise expression µ is crucial because it provides a much more com-
pact representation, while still giving the same µ(x) value. This compact implicit
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expression allows for the solution of highly ill-posed inverse problems, which is a
significant advantage of MAR-NeRF over traditional methods.
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Diffractive tensor field tomography as an inverse problem for a
transport equation

Thomas Schuster

(joint work with Lukas Vierus)

Diffractive tensor field tomography (DTT) means the reconstruction of tensor fields
from integral data along geodesic curves in a refracting (inhomogeneous) medium,
i.e., with variable refractive index n(x). Since the data are scalar this inverse
problem is intrinsically underdetermined and ill-posed. The mathematical model
follows Fermat’s principle and demands for tools from Riemannian geometry. The
refractive medium is characterized by the pair (M, g) whereM ⊂ Rd, d = 2, 3, is a
compact Riemannian manifold with strictly convex boundary ∂M and the metric
g is given as gij = n2(x)δij , where n : M → R+ represents the refractive index.
Let ΩM be the pairs (x, ξ) ∈ TM with unit tangent vectors |ξ|g(x) = 1. We define
the inflow and outflow boundaries by

∂±ΩM = {(x, ξ) ∈ ΩM : x ∈ ∂M ;±〈ξ, ν(x)〉 ≥ 0}.

Let (x, ξ) ∈ ΩM and γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M be a geodesic curve with
initial conditions γx,ξ(0) = x, γ̇x,ξ(0) = ξ. If in addition M has the property
that for any x ∈ M and and non-zero vector ξ ∈ TxM , the geodesic curve γx,ξ(t)
cannot be extended further than to a finite interval [τ−(x, ξ), τ+(x, ξ)], then (M, g)
is called a compact dissipative Riemannian manifold (CDRM). This means that
geodesics must have a finite length. We furthermore postulate that all geodesics
enter and leave the boundary at well-defined points. Then, the interval limits can
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be written as

τ−(x, ξ) = max{τ ∈ (−∞, 0] : γx,ξ(t) ∩ ∂M 6= ∅}
τ+(x, ξ) = min{τ ∈ [0,∞) : γx,ξ(t) ∩ ∂M 6= ∅}.

Given an attenuation α ∈ L∞(ΩM) with α(x, ξ) ≥ α0 > 0 a.e. in ΩM we define
the attenuated ray transform Iα : L2(Smτ ′M ) → L2(∂+ΩM) of a m-tensor field
f = (fi1···im) by

(Iαf)(x, ξ) =

∫ 0

τ−(x,ξ)

〈f(γx,ξ(τ)), γ̇mx,ξ(τ)〉 exp
(
−
∫ 0

τ

α(γx,ξ(σ), γ̇x,ξ(σ))dσ
)
dτ.

The attenuated dynamic ray transform

Idα : L2(0, T ;L2(Smτ ′M ))→ L2(0, T ;L2(∂+ΩM))

of a m-tensor field f = (fi1···im) is defined by

(Idαf)(t, x, ξ) =∫ 0

τ−(x,ξ)

〈f(t+ τ, γx,ξ(τ)), γ̇
m
x,ξ(τ)〉 exp

(
−
∫ 0

τ

α(γx,ξ(σ), γ̇x,ξ(σ))dσ
)
dτ.

We extend the function u = Iαf to T 0M , where T 0M =
{
(x, ξ) ∈ TM : ξ 6= 0

}
,

by

u(x, ξ) =

∫ 0

τ−(x,ξ)

〈f(γx,ξ(τ)), γ̇mx,ξ(τ)〉 exp
(
−
∫ 0

τ

α(γx,ξ(σ), γ̇x,ξ(σ))dσ
)
dτ.

This way u = 0 in ∂−ΩM and u = Iαf in ∂+ΩM . In the same way we can extend
Idαf to [0, T ]×T 0M . If f ∈ C(Smτ ′M ), then u satisfies the boundary value problem

(
H + α(x, ξ)

)
u(x, ξ) = 〈f(x), ξm〉, on ΩM,

u(x, ξ) = (Iαf)(x, ξ) =: φ(x, ξ), (x, ξ) ∈ ∂+ΩM,

u(x, ξ) = 0, (x, ξ) ∈ ∂−ΩM,

whereH is the geodesic vector field Hu = ξi ∂u∂xi−Γijk(x)ξjξk ∂u∂ξi . If f is continuous

in time, then u satisfies a corresponding initial boundary value problem. We
consider the forward operator F : D(F ) ⊆ L2(Smτ ′M ) → L2(∂+ΩM) with F =
γ+ ◦ T, where T(f) := u is the parameter-to-solution map and γ+ : H1(ΩM) →
L2(∂+ΩM) denotes the trace operator on ∂+ΩM . Unique (classical) solutions exist
under smoothness assumptions to n and f (envelopes, method of characteristics
, see, e.g., [2]). We study weak solutions. Let the bilinear form a : H1(ΩM) ×
H1(ΩM)→ R be given as

a(u, v) :=

∫

ΩM

(
− Γijk(x)ξ

jξk
∂u

∂ξi
v + 〈∇xu, ξ〉v + αuv

)
dΣ

and the linear functional b : H1(ΩM)→ R as

b(v) :=

∫

ΩM

〈f, ξm〉v dΣ.
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The weak formulation then reads as

a(u, v) = b(v)− a(φ̂, v), v ∈ H1
0 (ΩM)

where φ̂ ∈ H1(ΩM) is such that γ+φ̂ = φ. Set uφ := u + φ̂. Unfortunately the
bilinear form a is not H1-coercive. To this end we define (approximate), weak
viscosity solutions uε by

−ε∆uε +Huε + αuε = 〈f, ξm〉
for small ε > 0. The weak formulation then reads as

aε(uε, v) = bεφ(v), v ∈ H1
0 (ΩM),

where aε : H
1(ΩM)×H1(ΩM)→ R is given as

aε(u, v) :=

∫

ΩM

ε

n2(x)
〈∇u,∇v〉dΣ + a(u, v)

and bεφ := b− aε(φ̂, ·). Again we set uφ,ε := uε + φ̂. Let ε > 0, α ∈ L∞(ΩM) with

α(x, ξ) ≥ α0 > 0 a.e. in ΩM , φ ∈ L2(∂+ΩM), n ∈ C1(M) and f ∈ L2(Smτ ′M ) . If

sup
x∈M

|∇n(x)|
n(x)

< α0,

then the variational problem

aε(uε, v) = bεφ(v) ∀v ∈ H1
0 (ΩM)

has a unique solution in H1
0 (ΩM). That means that there is a unique, viscous

weak solution if n varies only slowly. For α0 → 0 we obtain the uniqueness result
for n = 1 (cf. [1]). An analogue result can be proven for viscous weak solutions in
the dynamic setting, see [3]. It is an (by now) open question whether limε→0 uε
exists (and in which topology) and, if the answer is positive, whether the limit
solves the original transport equations.

The inverse problem of DTT using viscosity solutions can now be re-formulated
as Fεf = φ for given φ ∈ H1/2(∂+ΩM), where the forward operator Fε : L

2(Smτ ′M )
→ L2(∂+ΩM) is given by Fε = γ+ ◦ Tε and Tε : L2(Smτ ′M ) → H1

0,−(ΩM) is the
parameter-to-solution map mapping f to the unique (weak) viscosity solution uφ,ε
of the transport equation.

For general n(x) it is difficult to obtain analytic expressions for the adjoints
(backprojections) I∗α, (I

d
α)

∗ which are necessary for many inversion formulas and
numerical solution methods (such as Filtered Backprojection, Landweber’s method,
Tikhonov regularization). But we can characterize them using the adjoint PDEs.
For φ ∈ L2(∂+ΩM) we have that

(I∗αφ)(x) =

∫

ΩxM

w(x, ξ)ξm dσ(ξ)

where w ∈ H1(ΩM) is the weak solution of the boundary value problem

−〈∇w, ξ〉 + Γkijξiξj
∂w

∂ξk
+ (α+ Ξn(x, ξ))w = 0, (x, ξ) ∈ ΩM,
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with boundary conditions

w(x, ξ) =
φ(x, ξ)

〈νx, ξ〉
, (x, ξ) ∈ ∂+ΩM

w(x, ξ) = kφ(x, ξ) exp
(
−
∫ τ+(x,ξ)

0

(
α+ Ξn

)
(γx,ξ(τ̃ ), γ̇x,ξ(τ̃ ))dτ̃

)
, (x, ξ) ∈ ∂−ΩM,

where

kφ(x, ξ) =
φ(γx,ξ(τ+(x, ξ), γ̇x,ξ(τ+(x, ξ))

〈νγx,ξ(τ+(x,ξ)), γ̇x,ξ(τ+(x, ξ)〉
,

and

Ξn(x, ξ) =

{
1
2n

−1(x)〈∇n(x), ξ〉, d = 2
n−1(x)〈∇n(x), ξ〉, d = 3

.

A similar representation exists for (Idα)
∗, see [3]. Numerical results using the

damped Landweber method with Nesterov acceleration reconstruction scheme
show that indeed even a slightly varying n(x) can not be neglected.
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Semiclassical methods in tomography

Plamen Stefanov

We review the use of semiclassical analysis in tomography. Microlocal analysis has
been recognized as an important tool to describe which singularities are visible, and
which are not and to help reconstruct them; in particular to help with detection
of edges. Semiclassical analysis is microlocal in nature as well but instead of
looking at the asymptotic expansion as the dual variable ξ approaches infinity, it
is interested, roughly speaking, in what happens on the way there. We consider
h > 0 to be a small parameter; which in the standard use of this calculus is the
Planck constant. The semiclassical wavefront set WFh(f) of f which may depend
on h, consists of those (x, ξ) so that the windowed semiclassical Fourier transform

ψ̂f(ξ/h) does not decay rapidly as h → 0. Intuitively, WFh(f) consists of points
and (co)directions corresponding to high oscillations at a rate ξ/h there.

We show that (classical) pseudo-differential and Fourier Integral operators
(FIOs) resolve WFh(f) away from ξ = 0. Our motivating example is the weighted
Radon transform but the theory applies to much more general operators. We
present several applications on the calculus.

Discretization/sampling. We describe briefly the results in [4]. In many
numerical calculations, we would represent a given function f(x) on a finite grid,
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i.e., we take {f(xj)} to be an approximate representation of f . If h is proportional
to the step size sh, we think of it as an asymptotic process as h → 0. Then we
show that there is a semiclassical version of the sampling theory assuring a recon-
struction of f from the samples via a Whittaker–Shannon type of interpolation
formula up to an O(h∞) error if the step satisfies the Nyquist condition s < π/B.
Here, B > 0 is the semiclassical band-limit, finite by assumption, defined as the

least B so that f̂(ξ/h) is essentially supported in [−B,B]n.
If A is an FIO, we show that the sampling requirements for Af are related

to those of f by the canonical relation of A. In particular, this tells us how dense we
need to sample Af having a priori information about the “smallest detail” f has.
If A is elliptic, associated to a canonical relation which is locally a diffeomorphism,
we can apply the same arguments to the parametrix A−1. We apply this to the
Radon transform, in particular, to recover earlier applied math results by other
authors. That also tells us how much resolution on f we can possibly have, given
the resolution (the sampling rate) of the data Af . Aliasing is well understood
in classical sampling theory, and it turns out to be a semiclassical FIO in our
setting. When applying an FIO A as above, or its parametrix A−1, aliasing of
the end-result is also a semiclassical FIO with a canonical relation that can be
computed by Egorov’s theorem. In the case of Radon transform R we compute
explicitly the aliasing artifacts of the reconstructed f given an undersampled Rf .
It turns out that semiclassical singularities can jump from one place to another
with or without changing the frequency as well. This makes aliasing a non-local
phenomenon! We illustrated that with many numerical simulations. Finally, we
study the effect of small local averaging, or regularization, of the data Af on the
reconstructed f . We model that by a Friedrichs mollifier with φh(x) = h−nφ(x/h),
where φ̂ ∈ C∞

0 . That convolution is actually a semiclassical pseudo-differential
operator, and the reconstructed f from regularized data is asymptotically given
by Q(x, hD)f , where Q is again such an operator with a principal symbol φ(ξ)
pulled back by the canonical relation of A. It can be described as an x-dependent,
anisotropic, in general, regularization of f .

Sampling theory in principle requires Whittaker–Shannon interpolation (or a
modification of it) to get an accurate interpolation. If we want to do this numer-
ically, to convert samples to a “continuous function,” we need to pass to a much
finer grid. It turns out [3] that when using the filtered backprojection formula
for the Radon transform Rf(p, ω) with discrete values ωj of the angles, and all p,
there is no need of interpolation. This is due to the Poisson summation formula
and even though there is no interpolation, the reconstruction can be explained by
the asymptotic sampling theory.

We applied this theory to the geodesic X-ray transform in [2]. We showed
that the behavior of the Jacobi fields, and in particular the curvature, play a
fundamental role in the way this problem should be discretized.

Semiclassical analysis is useful in analyzing propagation of noise under inver-
sion, as done in [5]. If we add white noise to the data, or even other type of noise,
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one can describe the spectral density of the noise by the semiclassical “defect mea-
sure.” For white noise, it is constant over the Nyquist range of the (discrete) noise.
Apply A (or A−1) however maps that noise to noise with a defect measure that
can be computed from the one applied to the data, knowing the canonical relation
of A. The result is noise changing from point to point, also possibly direction de-
pendent. The calculus allows us to compute the characteristics of the noise added
to f , like the standard deviation, locally or even microlocally. One could consider
non-additive noise as well.

In [1], those methods were applied to Thermoacoustic Tomography.
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Photoacoustic and Ultrasonic Tomography for Breast Imaging

Felix Lucka

(joint work with the PAMMOTH team)

New high-resolution, three-dimensional imaging techniques are being developed
that probe the breast without delivering harmful radiation and without requiring
painful compression. In particular, photoacoustic tomography (PAT) and ultra-
sound tomography (UST) promise to give access to high-quality images of tissue
parameters with important value for the detection and diagnosis of breast cancer.
However, the involved inverse problems are very challenging from an experimen-
tal, mathematical and computational perspective. In this talk, we want to give an
overview of these challenges and illustrate them with data from an ongoing clini-
cal feasibility study that uses the PAMMOTH scanner for combined PAT and UST.

Mathematically, the forward problem of PAT can be modeled in four steps:
Firstly, the breast is illuminated by a short pulse of near-infrared laser light. The
transport, scattering and absorption of photons in the breast tissue can be modeled
by the radiative transfer equation (RTE):

(1) (v · ∇+ µa(x) + µs(x)) Φ(x, v) = q(x, v) + µs(x)

∫
Θ(v, v′)Φ(x, v′) dv′

Here, Φ(x, v) denotes the photon transport density in location x and direction v,
µa and µs denote absorption and scattering coefficients, q models the laser source
and Θ is the scattering kernel. The photoacoustic effect describes how the rapid
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Figure 1. Examples of preliminary in-vivo results. Left: 3D re-
construction of p0 with a spatial resolution of 0.4mm, visualized
as maximum intensity projections. Right: 3D reconstruction of
c − cwater using TD-FWI with a spatial resolution of 0.6mm, vi-
sualized as slice views.

absorption of the optical energy leads to a thermoelastic expansion of the tissue,
which induces a pressure increase:

(2) p0(x) = Γ(x)µa(x)

∫
Φ(x, v′) dv′ ,

where Γ describes the efficiency of this conversion of optical into acoustic energy.
The initial pressure p0 travels through the tissue as ultrasonic waves

(3)
(
c(x)−2∂2t −∆

)
p(x, t) = 0, p(x, 0) = p0(x), ∂tp(x, 0) = 0

which can be measured once they reach the detection surface of the scanner:

(4) f =Mp

PAT inversion consists of two coupled inverse problems: First, ones tries to recover
p0 from f , which corresponds to solving an acoustic initial value problem (3) with
boundary data (4). More details on this linear inverse problem can be found in [1].
We formulate its solution as a variational regularization problem

(5) min
p0∈C

‖MAp0 − f‖2W + R(p0) ,

where the linear operator A maps p0 to the solution of (3), and use first-order
optimization schemes with early stopping (accelerated proximal gradient descent,
see [2] for more details). We illustrate how using accurate models of the ultrasound



Tomographic Inverse Problems 1173

transducers improve the reconstructed images, validate the results using experi-
mental phantoms and show in-vivo results of volunteers and patients, cf. Fig 1.
In a second step, we try to recover µa from p0, which corresponds to an optical
parameter identification problem (1) with internal data (2). More details on this
non-linear inverse problem can be found in [3].

In UST, we emit ultrasonic waves from i = 1, . . . , Ns sources supported on the
measurement surface and capture the transmitted and scattered waves as

(6) fi =Mipi,
(
c(x)−2∂2t −∆

)
pi(x, t) = si(x, t), p(x, 0) = ∂tp(x, 0) = 0

Recovering the speed-of-sound c from {fi}Ns

i=1 is an acoustic parameter identifica-
tion problem with boundary data. There are different approaches to solve this
non-linear inverse problem, typically accounting for different aspects of the com-
plex wave physics underlying the data generation. For instance, travel time to-
mography is based on a geometrical optics approximation and relies on travel time
differences of the transmitted waves as the main source of information. It leads to
a robust and computationally efficient inversion scheme, see [4] for more details.
However, the approximation limits the spatial resolution obtainable. Time-domain
full waveform inversion (TD-FWI ) relies on numerical wave solvers and formulates
the solution to (6) as a variational regularization problem

(7) min
c∈C

Ns∑

i

‖Mi

(
c(x)−2∂2t −∆

)−1
si(x, t)︸ ︷︷ ︸

pi(c)

−fi‖22 + J(c) .

To solve this large-scale, non-convex optimization problem via first-order opti-
mization schemes, the adjoint state method can be used to compute

(8) ∇c ‖Mipi(c)− fi‖22 = 2

∫ T

0

c(x)−3∂2t pi(x, t)q
∗
i (x, t) dt ,

where q∗i (x, t) solves
(
c(x)−2∂2t −∆

)
q∗(x, t) = s∗(x, t) and s∗(x, t) is time-reversed

data discrepancy Mipi − fi. For high resolution 3D UST (∼ 0.5mm isotropic res-
olution), using TD-FWI holds three key challenges: Firstly, the computation of
the gradient for a single source i has a restrictively large memory footprint. Sec-
ondly, the number of sourcesNs used in the PAMMOTH patient protocol is 18.000.
Lastly, the structure of (7) may result in slow progression of the solver and conver-
gence to a local minimum. We describe a comprehensive computational strategy
to overcome these challenges in [5], discuss its translation to experimental data
and illustrate preliminary results for experimental phantoms and breast cancer
patients, cf. Fig 1.
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Is BMD by DXA or CT reliable?

Ming Jiang

Bone mineral density (BMD) is the amount of bone mineral in bone tissue. BMD
measurement is used in clinic as an indirect indicator of osteoporosis and fracture
risk [1]. “Dual-energy x-ray absorptiometry (DXA) is the most widely used and
most thoroughly studied BMD technology” [2], in spite of its controversial reliability
[3].

DXA measures two projections at two energies, respectively, but only for one
single direction. When soft tissue absorption is subtracted out, the BMD is esti-
mated from the resulting absorption, which is assumed to that of bone [2]. It is
natural that the higher the BMD, the bigger the projection in DXA measurement,
because the Radon transform is monotone, i.e., R(f) ≥ R(g) if f ≥ g, where both
inequality holds in the sense of pointwise order [4, §1.37]. Although DXA only
measures one projection at one single direction, we can mathematically pretend
that all the projection at all directions are available, without loss of generality, to
simplify the presentation.

A mathematical problem appears naturally with DXA: does bigger projections
conclude higher BMDs? Mathematically, this is equivalent to the following prob-
lem: is the inverse R−1 of the Radon transform monotone, i.e., does it hold that
R−1(p) ≥ R−1(q) if p ≥ q, where both inequality is defined in the sense of pointwise
order. In this preliminary study, we assume that the Radon transform is defined
on L2(Ω) where Ω is the 2D disk of R2. The inverse of the Radon transform is well
defined on a subspace of the weighted Hilbert space L2([−1, 1]× S1, w−1), where

w(s) =
√
1− s2 [7].

It is then found that the inverse Radon transform is not monotone by an order-
theoretic approach. We need some notations from order theory to proceed. Let
X be a poset. For any two elements x and y ∈ X , x ∧ y is the infimum of them,
if it exists. By [4, Lemma 2.27, p. 47], if both f : X → Y and f−1 : Y → X are
monotone, then for any x and y ∈ X , if x ∧ y exists, then f(x) ∧ f(y) exists, and
(1) f(x ∧ y) = f(x) ∧ f(y).
Then we can show that (1) does not hold for the Radon transform. Let Ω1 and Ω2

be two disjoint sub-domain of Ω such that dist(Ω1,Ω2) > 0. Let u ∈ C∞
0 (Ω1) and

v ∈ C∞
0 (Ω2) such that 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. u and v can also be chosen to be

the the characteristic functions of Ω1 and Ω2, respectively. Because Ω1 ∩ Ω2 = ∅,
we have u ∧ v = 0, where 0 is the function identically equal to 0 and the same in
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the following even for different domains. Hence, the left side of (1) for the Radon
transform is

(2) R(u ∧ v) = R(0) = 0.

For the Radon transform R of u and v, we have

R(u) ≥ 0, R(v) ≥ 0, R(u) ∧R(v) ≥ 0 but R(u) ∧R(v) 6= 0.(3)

Note that in the case of DXA with only one projection in one single direction,
we can rotate Ω1 and Ω2 so that x-ray beams pass through both of them and the
above inequalities hold. Hence, (1) does not holds for the Radon transform with
the two functions u and v. If follows that the inverse of the Radon transform
cannot be monotone.

The above order-theoretic can be applied to other transforms such as the ray
transform and x-ray transform and leads to the same conclusion that the inverse is
not monotone, and might be applied to other inverse problems, when the inverse
exists. For incomplete data, the inverse does not exist and depends how the
inversion is performed. A related study is the work initiated by L. Collatz in [8]
and well summarized in [9].

The conclusion that the Radon transform fails to be monotone implies that
bigger projections do not conclude higher BMDs, or comparable projections do
not imply comparable reconstructed images. Hence, there are monotone-ghosts
such that they are non-positive but with non-negative projections because the
linearity of the Radon transform, i.e.,

(4) g � 0, but R(g) ≥ 0.

The term monotone-ghost is coined to imitate the term ghost for the null space in
the case of finite number of projections [5–7]. The monotone-ghosts destroy the
monotone inversion while Louis’ ghosts destroying the uniqueness.

Given the imperfection of DXA, x-ray CT techniques, especially, quantita-
tive CT (QCT) and high-resolution peripheral quantitative computed tomography
(HR-pQCT), have been developed for diagnosing osteoporosis [10]. In spite of ef-
forts of decades, QCT/HR-pQCT is not approved for clinical use at present [10,11].
It is found that that there are many potential sources of error in BMD estimates
from QCT [12]. The existence of monotone-ghosts could be a reason for this issue
because its potential effect on image contrast resolution.

The order-theoretic approach only qualitatively demonstrates that the existence
of monotone-ghosts. With the SVD of the Radon transform R from L2(Ω) to
L2([−1, 1]×S1, w−1), we can construct explicitly some monotone-ghosts. Use the
same notations for the SVD as in [7, §2.1]. Let {vm,λ, um,λ;σm,λ}, for 0 ≤ λ ≤ m
with m+ λ even, be the SVD of the Radon transform, i.e.,

(5) R (vm,λ) = σmum,λ,

where the singular value σm,λ = σm = 2
√

π
m+1 .

Because low trabecular bone density is directly related to both compressive
strength and fracture risk [13], it is necessary to image the fine structure of spongy
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bone together with sufficient spatial and contrast resolutions for trabecular bone
density estimate. Higher order eigenfunctions (HEF) vm,λ are significant for rep-
resenting the spongy trabecular structure. However, their contributions can be
diminished at measurement because the decay of singular values σm,λ and if the
accuracy and signal-to-noise ratio of the imaging detector is not high enough.
Therefore, such HEFs are unobservable by reconstruction. This can be one po-
tential reason for the error in BMD estimates from QCT because of missing the
significant components after imager reconstruction.

Any technique has its limitation. The reporter is not to conclude naively that
either DXA or QCT is not useful, but only to show mathematically why they
do not work reliably as expected. This presentation is based on a on-going work
conducted through discussions with A. K. Louis, P. Maaß, E. T. Quinto. The
reporter takes the full responsibility for any mistake and error in the presentation
and in this abstract.
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Fast Inversion Formulae for Some Ray Transforms in Vector and
Tensor Tomography

Alfred K. Louis

Ray transforms, besides X-ray transforms, have been studied for a long time, espe-
cially in connection with vector and tensor tomography. Reconstruction formulae
are already studied in the seminal book of Sharafutdinov [8] and the many papers
connected to the field, see e.g. [7]. Also different scanning geometries are studied
like those known from X-ray tomography, as fan beam or cone beam transforms.
Formulae for the three-dimensional problem are studied for so-called incomplete
data problems, where incomplete here means that not all possible data are avail-
able, but sufficiently many for unique and stable reconstruction, as in X-ray ap-
plications. Sharafutdinov, [8], bases his inversion formula on applying first the
backprojection and then manipulating the outcome. From a mathematical point
of view this is exact. Here we aim for an inversion formula where first the data is
filtered and then a suitable backprojection is applied.

In this report we restrict our consideration to the longitudinal ray transform
defined in 2D for a vector field f as

(P1f)(θ, s) =

∫

R

θ⊤f(sθ⊥ + tθ)dt = θ⊤Pf(θ, s)

wherePf is the x-ray transform of the components of f . Similar results hold for the
transversal ray transform. We restrict the considerations to compactly supported
vector fields with 0 boundary conditions, the Helmholtz-Hodge decomposition then
gives

f = ∇ψ + sf

where sf is the solenoidal part. The potential part ∇ψ is in the null space of the
longitudinal transform, hence only the solenoidal part can be recovered from the
longitudinal transform. Using the representation

sf = ∇⊥ϕ

we make use of formulas presented by Prince [6] and Derevtsov [1]

P1
sf = P1∇⊥ϕ =

∂

∂s
Pϕ

The right-hand side is part of the inversion formula of the x-ray transform resulting
in

ϕ = P−1Pϕ =
1

4π
P∗H

∂

∂s
Pϕ

where H denotes the Hilbert transform. Consequently the solenoidal part can be
determined by

sf =
1

4π
∇⊥P∗HP1

sf

Using the L2 dual operator of P1

(P1)
∗g(x) =

∫

S1

θg(θ, x⊤θ⊥)dθ
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and the intertwining property of ∇⊥ and P∗

∇P∗ = (P1)
∗ ∂

∂s

we find the new inversion formula.

Theorem
The following inversion formula for the longitudinal ray transform

(P1)
−1 =

1

4π
(P1)

∗I−1

where I−1 denotes the Riesz-potential of order −1, see [5].
For more details and inversion formulae for tensor tomography and slice-by-slice

tomography in three dimensions, see [4].
For deriving an inversion formula we apply the following strategy:

• represent the functions orthogonal of the null space as the application of
a differential operator D1 to a ’potential’
• derive a relation of type Prince-Derevtsov formula relating the ray trans-
form of the functions perpendicular to the null space as a differential op-
erator D2 applied to the x-ray transform
• invert the x-ray transform to get the ’potential’ and apply the differential
operator D1

• find an intertwining property for the differential operatorD1 applied to the
backprojection to give the adjoint operator of the ray transform applied
to a differential operator D3

for suitable differential operators D1, D2, D3.
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On a cylindrical scanning modality in three-dimensional Compton
scatter tomography

James W. Webber

1. Introduction

Compton Scatter Tomography (CST) is an imaging technique which uses Compton
scattered photons to recover an electron density, which has applications in security
screening, medical and cultural heritage imaging [1–5].

x

y

f
L

conveyor

−x
z0

z
f

1

s

d

Lω

E

E′

Figure 1. (x, y) and (x, z) plane cross sections of the proposed
cylindrical scanning geometry. The cylinder has unit radius.
TThe sources (s) are located on the bottom half of the cylin-
der, highlighted in blue, and the detectors (d), highlighted in red,
are located on the upper half. z0 ∈ R is the z component of the
center of L.

We introduce a new scanning modality in 3-D CST, whereby monochromatic
(e.g., gamma ray) sources and energy-sensitive detectors on a cylindrical surface
scan a density passing through the cylinder on a conveyor. See figure 1. The
incoming photons, emitted from s with energy E, Compton scatter from charged
particles (usually electrons) with energy E′, and are measured by the detector, d;
meanwhile, the electron charge density, f (represented by a real-valued function),
passes through the cylinder in the z direction on a conveyor belt. The scattered
energy, E′, is given by the equation

(1) E′ =
E

1 + (E/E0)(1 − cosω)
,

where E is the initial energy, ω is the scattering angle and E0 ≈ 511keV denotes
the electron rest energy. If the source is monochromatic (i.e., E is fixed) and we
can measure the scattered energy, E′, i.e., the detectors are energy-sensitive, then
the scattering angle, ω, of the interaction is fixed and determined by equation (1).
This implies that the surface of Compton scatterers is the surface of rotation of
a circular arc, which we denote as a lemon, L. Thus, we model the Compton
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scattered intensity as integrals of f over lemons. See, e.g., [2] for other work which
models the Compton intensity in this way.

2. Main results

We analyze the generalized Radon transform, R, defined by

(2) Rf(s,d, E′, z0) =

∫

L(s,d,E′,z0)

fdS,

where L = L(s,d, E′, z0) denotes a lemon surface, parameterized by (s,d, E′, z0),
as in figure 1, and dS denotes the surface measure on L. We consider only the L

with central axis parallel to z. In total, we vary four parameters, namely s and
d (i.e., the positions of the tips of the lemon), the scattered energy, E′, which
determines ω, and z0, which translates L in direction z. Equivalently, z0 controls
the position of f on the conveyor.

2.1. Injectivity. Let Cǫ = {
√
x2 + y2 < 1 − ǫ}, for some small offset 0 < ǫ < 1,

and let L2
c(Cǫ) denote the set of square integrable functions with compact support

in Cǫ. Then, we have the following theorem.

Theorem 2.1. Let 0 < ǫ < 1 be fixed. Then, the lemon Radon transform, R, is
injective on domain L2

c(Cǫ).

Theorem 2.1 shows that any f ∈ L2
c(Cǫ) can be recovered uniquely from Rf .

To prove Theorem 2.1, we first take a Fourier decomposition of R on the cylin-
der, which reduces R to a set of one-dimensional Volterra operators of the first
kind. After which, we apply the theory of [6] to prove injectivity of R, and derive
an inversion formula using Neumann series. The support of f is required to be
bounded away from the cylinder surface (i.e., by distance ǫ) to avoid singularities
(division by zero) in the Volterra equation kernel.

2.2. Microlocal analysis. We state our main microlocal theorem below.

Theorem 2.2. R, on domain L2
c(C0), is an FIO which satisfies the Bolker con-

dition

Theorem 2.2 shows that there are no added, unwanted edges in a reconstruction
from Rf data, for functions f ∈ L2

c(C0). In particular, we prove that any added
image edge artifacts are reflections of the true image edge map through planes
tangent to the boundary of C0. Thus, if f is supported within C0, the added
artifacts must lie outside of C0, and do not interfere with the scanning region.
We can also use our theory to predict precisely where artifacts will occur. For
example, see figure 2a, where we show the artifacts predicted by our theory in
reconstructions of delta functions. A delta function is supported at a single point,
and has edges in all directions. The artifacts due to Bolker, in this case, are
embedded in the (x, y) plane and appear on cardiod type curves which lie outside
of C0.
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Figure 2. Left - Predicted artifacts due to Bolker when recon-
structing delta functions (f = δ) from Rf . Right - The percentage
of edges detectable by R within C0. We set the height of C0 as 4.

2.2.1. Edge detection. We investigate the edge detection capabilities of R within
C0 using microlocal analysis. See figure 2b. For every point x ∈ C0, we calculate
the proportion of directions ξ ∈ S2 which are detectable by R. A value closer to 1
on the colorbar means greater edge detection, and conversely for values closer to
0. We see that, as we go closer to the center of C0, the edge detection ability of R
is greatest, and this tapers off quite significantly near the boundary and top and
bottom of C0. Nowhere in C0 are 100% of edges detectable, and thus the problem
is one of limited-angle tomography, which are often severely ill-posed [8].
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Ray tracing approximations to the acoustic propagation in weakly
nonlinear regime with applications in HIFU

Marta M. Betcke

(joint work with Matt G. Foster, Ben T. Cox)

In High Intensity Focused Ultrasound (HIFU), sound waves are fired from a fo-
cused bowl transducer into the body causing local cell necrosis near the focus while
leaving the rest of the tissue unharmed. The intensities used indicate a weakly
nonlinear regime in which the harmonics of the fundamental frequency are gener-
ated causing steepening of the sinusoidal source waveform as it progresses through
the medium to become a sawtooth wave. Resolution of the harmonics poses com-
putational difficulties to finite element or finite difference solvers, which require
a set number of grid points per wavelength, quickly leading to computationally
infeasible grid sizes in particular in three dimensions.

Here we propose to reduce the computational requirement to a solution of a
family of 1D equations by extending the linear ray theory [1] into the nonlinear
regime. These rays propagate through the medium following an equation for the
phase called the Eikonal equation, and can bend depending on both the medium
properties and, possibly also the amplitude of the wave. The rays then give the
phase of the wave at set points and a 1D equation is solved along each ray to
obtain the amplitude of the wave. This can then be interpolated to obtain the
waveform in the focus region of the transducer.

The weakly nonlinear ray derivation starts from the standard governing equa-
tions, the conservation of mass and inviscid conservation of momentum [2]. These
are paired along side an equation of state which relates the pressure to the density

p(ρ) = p|ρ0 + c20ρ+
c20
ρ0

B

2A
ρ2,

where B
A is known as the nonlinearity parameter and A = ρ0

(
∂p
∂ρ

)
s,0

and B =

ρ20

(
∂2p
∂ρ2

)
s,0

. The two conservation laws and the pressure density relation can be

written in a matrix vector form using Einstein notation,

A(x, t,u, ρ)vt +Bα(x, t,u, ρ)vxα
+ C(x, t,u, ρ)v = 0,

where v is the vector composed of the density ρ and the wave velocity u, v =
(ρ,uT)T. The variables in v are all defined as their acoustic values i.e. as small
perturbations of the ambient conditions such as the medium density ρ0, and ve-
locity u0. Hence, we expand the vector v in the limit of a small parameter ε→ 0

v(x, t; ε) = εv1(ε
−1φ(x, t),x, t) + ε2v2(ε

−1φ(x, t),x, t) +O(ε3),(WNE)

with the long space and time x, t = O(1). We further define the long phase
θ(x, t) := ε−1φ(x, t) and refer to any derivatives of v1 ect. with respect to this
variable as v1θ. Substituting (WNE) into the governing equations gives, up to the
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second order,

[φtA(v) + φxα
Bα(v)]v1θ + ε

[
(φtA(v) + φxα

Bα(v))v2θ

+A(v)v1t +Bα(v)v1xα
+ C(v)v1

]
= O(ε2).

Note that all the matrices are still evaluated at v rather than e.g. v1. Different
choices of the evaluation points will yield two differing ray formulations equivalent
to those obtained by Hunter (1995) [3] and Prasad (2002) [6], respectively.

The Hunter formulation can be obtained by taking a Taylor expansion of the
matrices around 0. This leaves two equations of order O(ε0) and O(ε1). The O(ε0)
equation simplifies to the linear Eikonal equation,

φt + c0|∇φ| = 0,

which we rewrite as a Hamiltonian system and solve computing bi-characteristics
(x(s), n̂(s)), where s is the ray coordinate, x(s) is the ray trajectory and n̂(s) is
the momentum

dx

ds
= c0(x)

n̂

|n̂| x(0) = x0;
dn̂

ds
= −|n̂|∇c0(x) n̂(0) = n̂0.

The above ray equations prescribe that ray moves at a speed c0 in the direction
of n̂ which turns depending on the gradient of the sound speed, ∇c0. The order
O(ε1) equation for the amplitude of the vector v1 along each ray is given by,

as + Gaaθ +Ha = 0(NTR)

G =
1√
2ρ0

(
1 +

B

2A

)
H =

1

c0

dc0
ds

+
1

2

1

q

dq

ds
.

We highlight the corresponding roles of the variables and operators: space-like
role of the long phase θ, the time-like role of the ray parameter s, accumulation
of the nonlinearity G, and ray geometry H with q(s) a measure of the geometrical
spreading of the rays calculated using ray tubes [4]. Equation (NTR) can be
transformed into the inviscid Burgers’ equation using integral operators which
transform the variables and the amplitude of the Burgers’ solution. The Burger’s
solution itself only depends on the sound speed along the ray, the geometrical
spreading and the initial condition. We obtain the solution of (NTR) by applying
the ray dependent transformations to the the corresponding Burgers’ solution. The
waveform is, as expected, steepening towards the focus which is inherited from the
Burgers’ solution.

While this model seems very useful and applicable, as the ray equations are the
same as in the linear ray theory, the rays only bend due to the sound speed of
the medium. Hence for a focused source, such as the transducer used in HIFU,
and a homogeneous background sound speed all the rays will cross at the focus
point causing a caustic. This does not correspond to the reality where the rays are
diffracted near the focus. To remedy this shortcoming, we artificially inject the
diffraction into the model by numerically generating a background sound speed
corresponding to linear diffraction. To this end we compute linear wave prop-
agation from a curved bowl transducer for time harmonic initial condition with
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Figure 1. a) Diffracting background sound speed generated from
linear solution using the Eikonal equation. b) Linear rays traced
from focused bowl transducer through the diffracting sound speed
in a). c) Nonlinear amplitude interpolated from the nonlinear
amplitudes along the rays. d) Nonlinear ray amplitude versus
nonlinear Westervelt k-Wave solution along the central ray.

frequency ω = 0.25MHz and homogeneous sound speed 1500m/s using an efficient
method such as implemented in Acoustic Field Propagator function in k-Wave [5].
This provides a phase map for the entire wave which can be unwrapped and trans-
formed into a diffracting sound speed using the Eikonal equation c0 = ω

|∇φ(x)| .

Tracing linear rays, as in Hunter’s formulation, through this diffracting sound
speed, causes them to bend away from the focus and each other eliminating the
nonphysical caustic.

There are two limitations of the Hunter’s ray model: i) the ray geometry is not
affected by the wave amplitude, and ii) it does not model the phase shift of the
harmonics at the focus. The first limitation is circumvented by Prasad’s formula-
tion [6], while the second is a fundamental limitation of ray based approaches.
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Duality for Neural Network Inverse Problems through Reproducing
Kernel Banach Spaces

Christoph Brune

(joint work with Len Spek, Tjeerd Jan Heeringa)

Reproducing Kernel Hilbert spaces (RKHS) have been a very successful tool in
various areas of machine learning. Recently, Barron spaces have been used to
prove bounds on the generalization error for neural networks. Unfortunately, Bar-
ron spaces cannot be understood in terms of RKHS due to the strong nonlinear
coupling of the weights. This can be solved by using the more general Reproduc-
ing Kernel Banach spaces (RKBS). We show that these Barron spaces belong to a
class of integral RKBS. This class can also be understood as an infinite union of
RKHS spaces. Furthermore, we show that the dual space of such RKBSs, is again
an RKBS where the roles of the data and parameters are interchanged, forming an
adjoint pair of RKBSs including a reproducing kernel. This enables the construc-
tion of saddle point problems for neural networks and potentially active learning
techniques for inverse problems.
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Directional regularization for the limited-angle Helsinki Tomography
Challenge with the Core Imaging Library (CIL)

Jakob Sauer Jørgensen

(joint work with Gemma Fardell, Laura Murgatroyd, Evangelos Papoutsellis and
Edoardo Pasca)

Last year the Finnish Inverse Problems Society organized the Helsinki Tomogra-
phy Challenge 2022 - an open competition for researchers to submit reconstruction
algorithms for a challenging series of real-data limited-angle computed tomogra-
phy problems [1]. This talk describes an algorithm submitted by the developer
team of the Core Imaging Library (CIL) [2, 3] that made it to the third place in
the competition. The algorithm consists of multiple stages: First, preprocessing
including beam-hardening correction and data renormalization; second a purpose-
built directional regularization method exploiting prior knowledge of the scanned
objects; and finally a multi-Otsu segmentation method. The algorithm was fully
implemented using the optimization prototyping capabilities of CIL and its perfor-
mance assessed and optimized on the provided training data ahead of submission.
The algorithm performed well on limited-angle data down to an angular range of
50 degrees, and in the competition was beaten only by two machine learning based
strategies involving generation of very large sets of synthetic training data. In the
spirit of open science, all the data sets are available from the challenge website [1]
as well as Zenodo [4] and the submitted CIL algorithm code from [5].

https://arxiv.org/abs/2211.05020
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Inversion Methods for Strain and Stiffness Reconstruction in
Quantitative Optical Coherence Elastography

Ekaterina Sherina

(joint work with Lisa Krainz, Simon Hubmer, Otmar Scherzer, Wolfgang Drexler)

Elastography, as an imaging modality in general, aims at mapping the mechan-
ical properties of a given sample. This modality is widely used in Medicine, in
particular for the non-invasive identification of malignant formations inside the
human skin or tissue biopsies during surgeries. In term of diagnostics accuracy,
one is interested in quantitative values of strain and stiffness mapped on top of
the visualization of a sample, rather than only in qualitative images.

In this work, we focus on optical coherence elastography (OCE), which re-
quires the extraction of mechanical parameters from optical coherence tomographic
(OCT) imaging data during compression of a sample. OCE is an emerging research
area, however, it still lacks precision and reproducibility, which are important for
clinical applications. Here, we are interested in quantitative OCE from the per-
spective of Inverse Problems. We propose and analyse inversion methods for strain
and stiffness reconstruction. Moreover, we investigate the data quality and prop-
erties of reconstruction methods required for the successful application of this
modality. Finally, inversion methods are compared to engineering approaches and
the results are validated against the ground truth for 12 silicone elastomer phan-
toms obtained using both a tensile testing machine and macroscopic analysis.

Typically, OCE is implemented in two steps, mathematically formulated as two
inverse problems - a reconstruction of the mechanical displacement (or strain) from
OCT data of a sample undergoing a static compression, and a reconstruction of
stiffness (the Young’s modulus) from the displacement (or strain), see Figure 1(A).

Standard methods for strain extraction include cross-correlation, computer vi-
sion tools like optical flow, and registration methods. However, it was observed
in [2] that standard tools display high inaccuracy when applied to imaging data

https://fips.fi/HTC2022
https://doi.org/10.1098/rsta.2020.0192
https://doi.org/10.1098/rsta.2020.0193
https://doi.org/10.5281/zenodo.6984868
https://github.com/TomographicImaging/CIL-HTC2022-Algo2
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(a) (b) (c) (d)

Figure 1. (A) Schematic elastographic experiment - compres-
sion force from below, scanning from top. (B) Schematic phan-
toms. (C) Example of OCT imaging data. (D) A zoomed overlay
of the tracked particle movement (yellow, blue), the simulated
movement from the elastic model with ground truth (green) and
in case the phantom were homogeneous (red) (taken from [1]).

from elastographic experiments. A-priori information about the underlying physics
is required to accurately estimate the strain. We propose and analyse a novel
computational method called elastographic optical flow method (EOFM), which
combines particle tracking, physical boundary conditions, and background mate-
rial assumptions into standard optical flow, see [2, 3] for details. We compute the
displacement field u as a sum of the homogeneous field ubg (calculated from a
homogeneous stiffness guess) and the update field uupd minimizing

J(uupd) :=
∥∥It +∇I · uupd +∇I · ubg

∥∥2
L2(Ω)

+ α
∥∥∇uupd

∥∥2
L2(Ω)

+ β

n∑

i=1

∫

Ω

gσ(x, x̂
i)
∣∣uupd + ubg − ûi

∣∣2 dx,

where I is an image intensity, (x̂i, ûi) are coordinates and displacement vectors of
tracked particles, gσ is a Gaussian function, and α, β are regularization parame-
ters. Figure 2 shows the axial and lateral strains reconstructed using EOFM from
imaging data, cf. Figure 1(C), for phantoms with geometry as in Figure 1(B) and
silicone elastomers of three stiffnesses denoted by S10, S20 and S30.

Unknown mechanical properties of the sample can be subsequently estimated
from computed displacements (or strains). However, it was observed in [1,4] that
an elastographic experiment with a single compression allows for unique recon-
struction of only one parameter such as Young’s modulus. Moreover, the inverse
problem is sensitive to data noise, which is illustrated in Figure 1(D) by the sim-
ilarity between the three fields. Thus, a-priori information about the sample is
required for successful parameter estimation. In this work, we look at four differ-
ent reconstruction methods. First, we apply a full inversion method with nonlinear
Landweber iteration from [4] to EOFM displacements. Second, we propose and
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Figure 2. Axial and lateral components of the strain maps cal-
culated from EOFM displacement fields (taken from [1]).

analyse the intensity-based inversion method (IIM) [1] formulated as a minimiza-
tion of

G(E, ν) := ‖I1(x+ u(E, ν))− I2(x)‖2L2(Ω) + α ‖(E, ν)‖2L2(Ω) ,

where I1 and I2 are OCT intensity images before and after compression, u is the
displacement from the deformation model depending on Young’s modulus E and
Poisson’s ratio ν, and α is the regularization parameter. Additional priors are in-
cluded into IIM from segmentation and then one unknown per area of inclusion and
background is estimated. We benchmark the IIM results against the results of two
engineering approaches - a simple uniaxial reconstruction method and a EOFM
strain-map based method with uniform stress assumption. The performance of the
proposed inversion methods is demonstrated in Figure 3 on 12 silicone elastomer
phantoms with inclusions of varying size and stiffness. We observe that IIM ben-
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Figure 3. Comparison of the results from all three methods.
The blue circles mark the values derived using 1D analysis, EOFM
strain maps and IIM, respectively (taken from [1]).
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efits from avoiding direct differentiation or division of the data (in comparison to
full inversion or engineering approaches) and from taking into account the impact
of the lateral sample expansion. Moreover, IIM is not limited to the model of
linear elasticity used here, but can also be applied with any deformation model
suitable for a specific experiment.
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Inverse problems for nonlocal PDEs with applications to
quantum optics

John C. Schotland

We consider the following model for the interaction between a quantized field and
a collection of two-level atoms [1]. The Hamiltonian H of the system is given by

H = HF +HA +HI .(1)

The Hamiltonian of the field, HF , is of the form

HF = ~c
∫
(−∆)1/2φ†(x)φ(x)dx ,(2)

where φ is a scalar bose field that obeys the usual commutation relations. The
Hamiltonian of the atoms, HA, is given by

HA = ~Ω
∫
ρ(x)σ†(x)σ(x)dx ,(3)

where Ω is the atomic resonance frequency, ρ(x) is the number density of the
atoms, and σ is the atomic lowering operator. The Hamiltonian describing the
interaction between the field and the atoms, HI , is taken to be

HI = ~g
∫
ρ(x)

(
φ†(x)σ(x) + σ†(x)φ(x)

)
dx ,(4)

where g is the strength of the atom-field coupling.
We suppose that the system is in a single-excitation state of the form

|Ψ〉 =
∫

dx
[
ψ(x, t)φ†(x) + ρ(x)a(x, t)σ†(x)

]
|0〉 ,(5)
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where |0〉 is the combined vacuum state of the field and the ground state of the
atoms. Here a(x, t) denotes the probability amplitude for exciting an atom at the
point x at time t and ψ(x, t) is the amplitude for creating a photon. The state
|Ψ〉 obeys the time-independent Schrodinger equation H |Ψ〉 = ~ω|Ψ〉, where ~ω
is the energy. It follows that the amplitudes a and ψ, which are independent of
time, obey the equations

c(−∆)1/2ψ + gρ(x)a = ωψ ,(6)

gψ +Ωa = ωa .(7)

By eliminating a from the above system, we immediately obtain the equation
obeyed by ψ, which is given by

(−∆)1/2ψ + V (x)ψ = kψ ,(8)

where k = ω/c and V (x) = g2/(c(ω − Ω))ρ(x).
We have considered the inverse problem of recovering the coefficient V from

suitable measurements. We have shown that this is possible under a smallness
condition on the measurements, which also guarantees the stability of the recov-
ery. The reconstruction is based on inversion of the Born series, which expresses
the solution to the inverse problem as an explicitly computable functional of the
measured data. We note that this method has been extensively studied in the
context of inverse problems for linear PDEs. The extension to the nonlocal set-
ting involves a substantial reworking of the theory, especially the combinatorial
structure of the Born series itself.
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