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Abstract. Algebraic Number Theory is an area of Mathematics that has a
legendary history and lies at the interface of Algebra and Number Theory.
The last four decades of the last century witnessed rapid developments that
led to connections with other areas such as Algebraic Geometry, Representa-
tion Theory, Harmonic Analysis, Iwasawa theory, to mention a few. In the
last two decades, emergent areas such as p-adic Analysis, p-adic Geometry (p
is a prime number) led to additional new facets. More recent developments
in Arithmetic Geometry via Perfectoid Spaces and other emerging areas have
added newer facets. The lectures in this workshop present current develop-
ments in these diverse areas.
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Introduction by the Organizers

The workshop Algebraische Zahlentheorie, organised by Guido Kings (Regens-
burg), Sujatha Ramdorai (Vancouver), Eric Urban (New York) and Otmar Ven-
jakob (Heidelberg) was well attended with over 48 participants with broad geo-
graphic representation from all continents. Despite an attempt to include remote
participants, only the remote lecture by Xin Wan was actually scheduled and we
had zero remote attendance. This workshop was a nice blend of researchers work-
ing in different areas of Algebraic Number Theory and the lectures covered various
aspects of this subject going from Iwasawa Theory of Selmer groups, Euler systems
and arithmetic properties of L-values to the most recent technologies of arithmetic
geometry.
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The study of motives and their associated Galois representations weaves together
various branches of modern algebraic number theory such as Iwasawa theory, spe-
cial values of L-functions and cohomology theories. As generalisation of Class
Field Theory, the Langlands Program with its p-adic versions play a central role
and Shimura varieties link the latter with the automorphy of Galois representa-
tions. Recently, the work of Clausen and Scholze on ‘Condensed Mathematics’
has entered the Algebraic Number Theory landscape offering new frameworks for
unifying Topology, Algebraic Geometry, Analytic Geometry and Arithmetic Ge-
ometry. The lectures in the workshop covered these various topics, and we list
them below under broad subtopics.

Galois representations, Euler Systems and GSp4 The current state of the art in
this important topic was the subject of the lectures by David Loeffler, Naomi
Sweeting and Fabrizio Andreatta.

• David Loeffler: Euler systems for GSp4 and applications
• Naomi Sweeting: Tate classes and endoscopy for GSp4

• Fabrizio Andreatta: Endoscopy for GSp4 and rational points of elliptic
curves

Iwasawa theory and Galois representations

• Xin Wan: A new +/− Iwasawa theory and converse of Gross-Zagier and
Kolyvagin theorem
• Giada Grossi: Kolyvagin’s conjecture and Iwasawa theory
• Kazim Büyükboduk: On the arithmetic of θ-critical p-adic L-functions
• Samuel Mundy: The nonvanishing of Selmer groups of certain symplectic

Galois representations

p-adic Hodge Theory and p-adic Langlands

• Juan Esteban Rodŕıguez Camargo: The analytic de Rham stack and a
Jacquet-Langlands correspondence for locally analytic representations
• Laurent Berger: Super-Hölder functions and vectors
• Rustam Steingart: Analytic cohomology of Lubin-Tate (ϕL,ΓL)-modules
• Guido Bosco: Rational p-adic Hodge theory for rigid-analytic varieties
• Wieslawa Niziol: Duality for p-adic pro-étale cohomology of analytic vari-

eties

Automorphic forms, Shimura varieties and Cohomology

• Yujie Xu: On the geometry of integral models of Shimura varieties of
abelian type
• Matthias Flach: Special values of Zeta functions and Deligne cohomology
• Han-Ung Kufner: Deligne’s Conjecture on critical values of L-functions

for Hecke characters
• Daniel Kriz: Horizontal p-adic L-functions with applications to L-values
• Romyar Sharifi : Eisenstein cocycles for imaginary quadratic fields
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This was the first post-pandemic Algebraische Zahlentheorie Workshop to be
held in Oberwolfach and there was a lively atmosphere during the conference. The
facilities at Oberwolfach provided for excellent discussions among the participants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-2230648, “US Junior Oberwolfach Fellows”.
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Abstracts

Euler systems for GSp4 and applications

David Loeffler

(joint work with Sarah Livia Zerbes)

1. Euler systems

If V is a p-adic representation of Gal(Q/Q), an Euler system for V is a collection
of co ology classes zm ∈ H1(Q(µm), T ) for varying m, where T is a lattice in
V (independent of m), satisfying a norm-compatibility relation involving Euler
factors. These are useful because if a non-trivial Euler system exists for V , it
implies bounds on Selmer groups attached to V , which play a crucial role in many
results on the Bloch–Kato conjecture, the Birch–Swinnerton-Dyer conjecture, and
related problems.

2. Euler systems for GSp4 Galois representations

Let F be a holomorphic, cuspidal Siegel modular eigenform, of prime-to-p level
and ordinary at p. Then there exists a 4-dimensional Galois representation VF
associated to F , whose associated L-function is the spinor L-function L(F , s).
(Here we normalise so that if F has weight k1 ≥ k2 ≥ 2, then the centre of the

functional equation is at s = k1+k2
2 − 1.)

Theorem 1 (L.–Skinner–Zerbes). Suppose k2 ≥ 3, and let j ∈ Z with 1 ≤ j ≤
k2 − 2. Then ords=j L(F , s) = 1, and there exists an Euler system for V ∗

F (1 − j)
which is “morally related” to L′(F , j).

Here “morally related” means that the bottom class of this Euler system (de-

noted z
[F ,j]
ét ) is the image in étale cohomology of a special motivic cohomology class

defined by Francesco Lemma. Lemma has shown that the image of this special
class in Deligne–Beilinson cohomology, paired with a de Rham cohomology class
ηF coming from F , is related to L′(F , j). Sadly, since the kernel of the map from
motivic to étale cohomology is not known to be injective (although this has been
conjectured by Bloch and Kato), this does not directly rule out the possibility that
the bottom class of the Euler system is zero.

3. Relation to p-adic L-values

The critical values of L(F , s) are s = j ∈ Z with k2 − 1 ≤ j ≤ k1 − 1 (disjoint
from the range where the motivic class is defined).

Theorem 2 (L.–Pilloni–Skinner–Zerbes). There exists a p-adic L-function Lp(F),
which is a bounded rigid-analytic function on W = Hom(Z×

p ,C
×
p ), whose values

at the characters x 7→ xjχ(x), for j in the critical range and χ a finite-order
character, interpolate the L-values L(F , χ̄, j).
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Note that the case k2 = 2 is allowed here, unlike the previous theorem. When
k2 ≥ 3 we have a relation between Euler systems and p-adic L-functions:

Theorem 3 (L.–Zerbes). If k2 ≥ 3, then for every 1 ≤ j ≤ k2 − 2, the value
Lp(F)(j) is related to the Euler system for V ∗

F (1−j) via a p-adic regulator formula

Lp(F)(j) =
〈
ηF , logBK

(
locp z

[F ,j]
ét

)〉

where ηF is a de Rham class associated to F as above, and logBK is the inverse
of the Bloch–Kato exponential map for V ∗

F (1− j)|Gal(Qp/Qp)
.

4. Deformation in families

We would like to “analytically continue” the relation between p-adic L-functions
and Euler systems given by Theorem 3 from the range 1 ≤ j ≤ k2 − 2 to the
critical range k2 − 1 ≤ j ≤ k1 − 1 (in which we can relate the p-adic L-value to a
complex L-value). Of course, this is meaningless as stated, since one cannot try
to analytically continue from a finite set. However, the set

{(k1, k2, j) ∈ Z3 : 1 ≤ j ≤ k2 − 2 ≤ k1 − 2}
is dense in W3. So if we can show that all of the objects involved on both sides of
Theorem 3 interpolate in p-adic families with (k1, k2, j) all varying, we can hope
to analytically continue from this set.

For k2 ≥ 3, using work of Hida and Tilouine–Urban, one knows that there
exists a p-adic family of Siegel modular forms F over some open U ∋ (k1, k2) in
W2 whose weight (k1, k2) specialisation is F , and an associated family of Galois
representations VF. We show the existence of

• a p-adic L-function Lp(F) over U×W , interpolating the p-adic L-functions
of Theorem 2 for all classical specialisations of F;
• a family of Euler system classes zF interpolating the Euler system classes

for all specialisations of F;
• an isomorphism between DdR of a subquotient of the Galois representation
V ∗
F , and a space of coherent cohomology classes associated to F, interpo-

lating the p-adic Eichler–Shimura comparison isomorphisms for a dense
set of classical specialisations.

The last among these three constructions is the most difficult (despite its ap-
parently tautological appearance); it is an analogue for GSp4 of Ohta’s comparison
isomorphism for Hida families for GL2.

Putting these ingredients together we obtain a version of Theorem 3 which is an
identity of functions on U ×W3. We can now specialise this at (k1, k2) to obtain a
relation between critical values of L(F , j) and Euler system classes, hence proving
the following theorem:

Theorem 4. For F of weight (k1, k2) with k2 ≥ 3 (and satisfying various other
technical conditions), we have the following implication: for any j in the critical
range, if L(F , j) 6= 0, then the Bloch–Kato Selmer group of VF (j) is zero, as
predicted by the Bloch–Kato conjecture.
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5. Applications to BSD

Perhaps the most interesting weight is (2, 2), since this is the weight of the eigen-
forms forms associated to modular abelian surfaces. This is not immediately cov-
ered by the previous theorem, since in these non-regular weights, the eigenvariety
parametrising p-adic families for GSp4 may be badly-behaved – it is no longer
necessarily étale over weight space. Moreover, there are reasons to believe that
the eigenvariety is genuinely not étale at points corresponding to certain abelian
surfaces (those induced from elliptic curves over imaginary quadratic fields).

We formulate a criterion we call deformability at p, which is a little weaker than
étaleness of the eigenvariety, and should also be satisfied in the case of imaginary-
quadratic lifts. We can prove the following theorem:

Theorem 5 (L.–Zerbes). If A is an abelian surface with EndQ(A) = Z which is
deformable at p (and various other conditions), and L(A, 1) 6= 0, then A(Q) and
X(A/Q)[p∞] are finite.

In ongoing work of my PhD student James Rawson, a computationally practical
test for deformability is being developed.

A new +/− Iwasawa theory and converse of Gross-Zagier and
Kolyvagin theorem

Xin Wan

We develop a new kind of anticyclotomic local ±-Iwasawa theory at p for Hecke
characters of quadratic imaginary fields which is valid for all ramification types of
p (split, inert and ramified). As an application we deduce the converse of Gross-
Zagier-Kolyvagin them for these CM forms, which states that Selmer rank one
implies analytic rank one. To carry out the Iwasawa theory argument we employ
a recent construction of a new type of p-adic L-function by Andreatta-Iovita, and
a “virtual Heenger family” made via a limiting procedure from a Heegner family
along Coleman-Mazur eigencurve constructed by Jetchev-Loeffler-Zerbes.

Suppose ρ is the motive associated to an elliptic curve E over Q, the converse
of the Gross-Zagier and Kolyvagin theorem is an important special case predicted
by the Bloch-Kato conjecture and states that if the rank of the Selmer group is
1, then the vanishing order of its L-function is exactly 1. In the case when E has
no complex multiplication, the result is proved by Skinner under the assumption
of finiteness of the p-part of Shafarevich-Tate group, and also by Zhang when E
is ordinary at p. These assumptions are removed later by the work of the author
and Castella-Wan by using anticyclotomic Iwasawa theory. This converse theorem
has important arithmetic implications including average analytic rank of elliptic
curves and the result of Bhargava-Skinner-Zhang that at least 66 percent of elliptic
curves satisfy the rank part of BSD conjecture.

In the CM case, Rubin proved this converse theorem in the p-ordinary case
(i.e. p is split in the quadratic imaginary field K) under the assumption that
the p-part of the Shafarevich-Tate is finite. Recently Burungale-Tian removed
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the assumption of the Shafarevich-Tate group. In the case when E has good
supersingular reduction (here p is inert in K), Rubin set up a general local Iwasawa
theory at p. More precisely Rubin defined the ±-subspaces H1

+ (H1
−) of the rank

two (over the anticyclotomic Iwasawa algebra Λ−) module H1
Iw(K−

∞,p, ψ) to be

elements specializing to elements in H1
f (the finite part) at arithmetic points φ

corresponding to characters of Γ− of odd (even) powers of p, respectively. Rubin
also made a fundamental conjecture stating that

H1
Iw(K−

∞, ψ) = H1
+ ⊕H1

−.

On the other hand Rubin constructed ±-Heegner family κ± from cycles over K−
n

of level prime to p which satisfy the norm relation

tr(κpn+2) = −κpn ,
modified by the ± p-adic logarithm function.

This conjecture was proved recently by Burungale-Kobayashi-Ota, and from it
they also deduced an anticyclotomic Iwasawa main conjecture involving the ± p-
adic L-functions, and the converse of Gross-Zagier and Kolyvagin theorem in this
case from Rubin’s ± Heegner point.

We develop a new kind of ±-local Iwasawa theory which applies to all ramifica-
tion types of p in K (split, inert or ramified) and allows the CM character to have
ramification at p, and apply it to show the converse of Gross-Zagier and Kolyvagin
theorem for CM characters of K.

Our main theorem is the following: Let ψ be as above. Suppose p > 3 and the
p-part of the conductor of ψ is pn for n ≥ 2. Suppose the rank of the Selmer group
for ψ is 1, then the vanishing order of L(ψ, s) at s = 1 is also 1.

Our method is different from literature: we develop a new kind of ±-local
Iwasawa theory, which is valid for all ramification types for p (split, inert and
ramified cases). Our theory is analogous to Rubin’s ±-theory in format but quite
different in nature: we divide the arithmetic points in SpecΛ− into two parts X1

and X2 depending on the Archimedean types instead of the conductors at p. We
define the +-part (−-part) submodules of rank 1 of the local Iwasawa theoretic
Galois cohomology at p to be the subspace which specializes in H1

f (the kernel of

the dual exponential map exp∗) at arithmetic points in X1 (X2) respectively. The
existence and ranks of these submodules are studied by looking at various modules
of elliptic units.

Our proof goes along the main line of Castella-Wan.

• For the Rankin-Selberg p-adic L-function, In the case when p is non-split
at p, it has been constructed by Andreatta-Iovita as a locally analytic
function, which we denote as LAI

f,χ (f is the CM form, and χ is some CM

character). In our case we need a generalization by Yangyu Fan to Shimura
curves, using the techniques developed in his thesis. It is not identically
zero by the result of Greenberg again. In this case it splits up into the
product of two CM p-adic L-functions.
• To prove the converse theorem it is important to have a family of Heegner

points. We first choose a pair (f, χ) where f is a K-CM form of finite
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slope at p, and χ is a K-CM character such that L(f, χ, s) splits up into
L(ψ, s) · L(ψ′, s) for some ψ′. In other words we move the ramification
of ψ to the χ-part. Then we take a Coleman family F containing f , and
use the construction of Jetchev-Loeffler-Zerbes of the 2-variable Heegner
family κF ,χ for F .
• One can show that the restriction κf,χ of κF ,χ (we call this κf,χ a virtual

Heegner family as it is constructed by a p-adic limiting procedure instead of
actually Heegner points) has image in H1

+(Kp,ψ) ⊂ H1(K,ψ). Moreover
there is a basis v+ of H1

+(Kp,ψ) such that

(1) κf,χ = LAI
f,χ · v+

The main tool proving the above equation is the p-adic Gross-Zagier for-
mula (i.e. analogue of the Bertolini-Darmon-Prasanna formula in this
non-split setting) proved by Andreatta-Iovita and generalized by Yangyu
Fan. In sum, this virtual Heegner family can play the role of Heegner
family in the ordinary case for the Iwasawa theory argument.
• There is also a Rankin-Selberg Iwasawa main conjecture formulated using

Andreatta-Iovita’s p-adic L-function, which in turn can be deduced from a
Rubin type Iwasawa main conjecture (in the generality proved by Johnson-
Leung-Kings) for elliptic units. As in the non-CM case, we can use it to
prove a Perrin-Riou’s main conjecture (note that the ψ′ has root number
+1)

charΛ−,′(
H1

+(K,ψ)

Λ−,′ · κf,χ
)2 = charΛ−,′(X+

ψ,tor) · charΛ−,′(X+
ψ′).

The converse theorem can be deduced from this as before.

Tate classes and endoscopy for GSp4

Naomi Sweeting

Let g be a classical cuspidal eigenform of weight two for GL2; then g has a Galois
representation, constructed by Deligne as a quotient

H1(X1(N)Q,Qℓ) ։ ρg

for some sufficiently large level N . However, ρg also appears in the étale cohomol-
ogy of many other Shimura varieties; this talk dealt in particular with the Shimura
variety SK(GSp4), which is a three-dimensional moduli space of principally polar-
ized abelian surfaces with some level structure determined by an open compact
subgroup K ⊂ GSp4(Af ). Consider the decomposition of the étale cohomology

H3
et(SK(GSp4)Q,Qℓ) =

⊕
ΠK
f ⊗ ρΠf

,

with Πf the finite part of an automorphic representation of GSp4 and ρΠf
a

Galois representation. When it is nonzero, ρΠf
is typically four-dimensional and

irreducible [1]. But for certain Πf corresponding to endoscopic Yoshida lifts, ρΠf

will be a Tate twist of the two-dimensional representation ρg [3]; by Poincaré
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duality and the Kunneth formula, one deduces the existence of Galois-invariant
étale cohomology classes in middle degree four on the product SK(GSp4)×X0(N).

The main question of this talk is when these classes arise from algebraic cycles,
as predicted by the Tate conjecture. It turns out that a natural special cycle class
on SK(GSp4) accounts for some, but not all, of the Galois-invariant classes: it
only sees the ones corresponding to globally generic automorphic representations
of GSp4 [2]. The automorphic representations of GSp4 are organized by the Lang-
lands program into L-packets, each of which has a unique generic member, so the
failure of the special cycle to generate all of the Tate classes of interest is closely
related to the existence of nontrivial packet structure on GSp4. In fact, an anal-
ogous result holds over totally real fields, and for Galois-invariant classes in étale
cohomology with coefficients in certain automorphic local systems.

In the non-generic case, it is not known whether the Tate classes arise from alge-
braic cycles, because it is quite difficult to construct (or work with) algebraic cycles
that are not special. However, one can at least show that all the Galois-invariant
classes arise from Hodge classes under the Betti-étale comparison isomorphism
[2]. These Hodge classes are constructing using non-tempered theta lifts on the
group GSp6. The strategy is inspired by the groundbreaking work of Ichino and
Prasanna [4], which showed that Tate classes reflecting the Jacquet-Langlands
transfer between inner forms of GL2 also arise from Hodge classes. In the second
half of the talk, I gave a schematic overview of the theory of theta lifting, which I
then used to sketch a proof of the main results.
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Endoscopy for GSp4 and rational points of elliptic curves

Fabrizio Andreatta

(joint work with Massimo Bertolini, Marco Seveso, Rodolfo Venerucci)

Let f be a cuspform associated of a semistable elliptic curve A over Q of conductor
N . Let g and h be weight 1 forms associated to Artin representations ρg, resp. ρh
s.t. ρ := ρg ⊗ ρh is self dual. Assume that the the sign of the functional equation
of L(A⊗ ρ, s) at the central value s = 1 is −1. The BSD conjecture predicts that
(
A(Q ⊗ ρ

)Gal(Q/Q))
is non zero. This implies that the Bloch-Kato Selmer group

Selp(f, g, h) is non trivial.
In this work we use p-adic L-functions to provide evidence of the non-trivilaity

of Selp(f, g, h). It should be noticed that the relevant p-adic L-function seems to
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play the role of the derivative of the classical L-function L(A⊗ ρ, s), as envisioned
in another context in [BDP].

Assume p is a prime of good ordinary reduction for A. Let F , G and H be three
Hida families specializing at (2, 1, 1) as F2 = f , G1 = g and H1 = h. Greenberg-
Seveso [GS] and Hsieh [Hs] have constrcutied a p-adic L-function Lp(F ,G,H)
interpolating

(∗∗)L(Fk,Gℓ,Hm).

Here, L(Fk,Gℓ,Hm) is the the central critical value of the Garrett L-function for
unbalanced triples (k, ℓ,m) ∈ N3

≥2 and (∗∗) is a specific constant for which we
refer to loc. cit.

Thm. If Lp(F ,G,H) 6= 0, then Selp(Fk,Gℓ,Hm) 6= 0 for every (k, ℓ,m) ∈ N3
≥1

with k ≥ ℓ+ m. In, particular, this holds true for (2, 1, 1).
More precisely, we have the following explicit reciprocity law: for (k, ℓ,m) ∈

N3
≥1 with k ≥ ℓ + m, k ≥ 4 even and ℓ, m ≥ 2 there exists a class κ(k, ℓ,m) ∈

Selp(Fk,Gℓ,Hm) such that

logp,BK

(
locp(κ(k, ℓ,m))

)
(ω) ∼ Lp(Fk,Gℓ,Hm),

where logp,BK is the Bloch-Kato logarithm and ω ∈ Fil0DdR(Fk,Gℓ,Hm).

The key input is the phenomenon of endoscopy for GSp4 studied in [We].
Namely, given X the Siegel threefold of full level N and Iwahori level at p and
given a positive even integer k ≥ 4 there exists an automorphic étale sheaf Lk of
parallel weight k

2 − 2 over X and a Siegel modular eigenform Fk of parallel weight
k
2 + 1, ordinary for the Siegel Up-operator, such that the Fk-isotypic component

H3
et(XQ,Lk)[Fk] is isomorphic to the 2-dimensional Galois representation defined

by the elliptic cuspoform Fk. Consider integers ℓ, m ≥ 2 such that k ≥ ℓ+m. The
class κ(k, ℓ,m) is then costructed as follows. Let Y be the modular curve of level
Γ(N) ∩ Γ0(p). Consider the embedding Y 2 → X sending a pair of ellptic curves
(E,E′), with their level structures, to the principally polarized abelian surface
E × E′, with the product level structures. Let ι : Y 2 → X × Y 2 be the product
of this embedding and the identity map on Y 2. Let x := (k, ℓ,m) and Lx be the
p-adic étale sheaf on X × Y 2 given by the product of the pull back of Lk and the
ℓ− 2, resp. the m− 2 symmetric power of the p-adic Tate module of the universal
elliptic curve on Y . One can prove that H0

et

(
Y 2, ι∗(Lx)(−3)

)
is 1-dimensional with

canonical generator Invx. The class κ(k, ℓ,m) is defined by pushing forward Invx
via

ι∗ : H0
et

(
Y 2, ι∗(Lx)

)
→ H6

et

(
X × Y 2,Lx

)

and then projecting onto the Fk⊗Gℓ⊗Hm isotypic component of H1
et

(
Q,H5

et

(
(X×

Y 2)Q,Lx
))

.
The proof of the explicit reciprocity law uses the existence of models of toroidal

compactifications of Y 2 and X × Y 2 having semistable reduction at p and such
that ι extends, based on work of de Jong [dJ], Lan [La] and Stroh [St], and a newly
developed syntomic formalism with coefficients that allows to reduce the claim to
an explicit computation of primitives over the ordinary locus of X .



1556 Oberwolfach Report 28/2023

References

[BDP] M. Bertolini, H. Darmon, K. Prasanna: Generalised Heegner cycles and p-adic Rankin
L-series (With an appendix by Brian Conrad), Duke Math. J. 162, 1033-1148 (2013).

[dJ] J. de Jong: The moduli space of principally polarized abelian varieties with Γ0(p)-level
structure. J. Alg. Geom. 2, pp. 667–688 (1993).

[GS] M. Greenberg, M. A. Seveso: Triple product p-adic L-functions for balanced weights,
Math. Ann. 376 103-176 (2020).

[Hs] M.-L. Hsieh: Hida families and p-adic triple product L-functions, Amer. J.Math. 143,
411-532 (2021).

[La] K.-W. Lan: Closed immersions of toroidal compactifications of Shimura varieties. Math.
Res. Lett. 29, 487–527 (2022).

[St] B. Stroh: Compactification de variétés de Siegel aux places de mauvaise réduction. Bul-
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On the modularity of elliptic curves over imaginary quadratic fields

Ana Caraiani

(joint work with James Newton)

In this talk, I reported on recent work [7] establishing the modularity of all elliptic
curves over many imaginary quadratic fields, including Q(

√
−d) with d = 1, 2, 3, 5.

Let F be a number field. We say that an elliptic curveE/F is modular if either E
has complex multiplication or if there exists a cuspidal automorphic representation
π of GL2(AF ) of parallel weight 2 whose associated L-function is the same as the
L-function of E.

The modularity of all elliptic curves E/Q was pioneered by Wiles and Taylor–
Wiles [10, 11] and completed in work of Breuil–Conrad–Diamond–Taylor [3]. The
modularity of elliptic curves over real quadratic fields was established by Freitas–
Le Hung–Siksek [8] and there have since been further results over more general
totally real fields. The modularity of elliptic curves over imaginary CM fields
has historically been more difficult to establish. This is because the systems of
Hecke eigenvalues that conjecturally match such elliptic curves contribute to the
cohomology of locally symmetric spaces such as Bianchi 3-manifolds, which are
not directly related to Shimura varieties.

In [5], Calegari–Geraghty outlined a strategy for proving modularity lifting the-
orems beyond the setting of Shimura varieties, where the classical Taylor–Wiles
method applies. Inspired by Calegari–Geraghty, the potential modularity of ellip-
tic curves over imaginary CM fields was established only recently, in [2] and [4]
(independently of each other). Since then, Allen–Khare–Thorne proved many in-
stances of actual modularity in [1]. More precisely, they established the modularity
of a positive proportion of elliptic curves over imaginary CM fields together with
strong residual modularity results modulo 3 and modulo 5.

In [7], we combine the residual modularity results of [1] with a new modularity
lifting theorem and with a careful study of exceptional points on several modular
curves of small level to obtain the following result. Let X0(15) denote the modular
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curve of level Γ0(15). It is an elliptic curve of rank 0 over Q (the curve with
Cremona label 15A1).

Theorem 1. Let F be an imaginary quadratic field such that the Mordell–Weil
group X0(15)(F ) is finite. Then every elliptic curve E/F is modular.

A conjecture of Goldfeld on ranks of quadratic twists of elliptic curves predicts
that Theorem 1 applies to slightly more than half of imaginary quadratic fields.
For more general imaginary CM fields, we are still able to improve on the results
of [1] using our new modularity lifting theorem.

Theorem 2. Let F be an imaginary CM field that is Galois over Q and such that
ζ5 6∈ F . Then 100% of Weierstrass equations defined over F , ordered by their
height, define a modular elliptic curve.

The new modularity lifting theorem used in the proof of Theorem 2 applies in
the Barsotti–Tate case. It is proved using a version of the strategy introduced
by Kisin in the case of GL2 over totally real fields, as long as certain key ingre-
dients are in place. The first key ingredient is a local-global compatibility result
for the Galois representation attached to torsion in the cohomology of the locally
symmetric spaces for GL2/F . We discuss a more general version of this result
below. The second key ingredient has to do with the geometry of Barsotti–Tate
local deformation rings, whose characteristic 0 points parametrize two-dimensional
crystalline Galois representations with parallel Hodge–Tate weights {0, 1}. In gen-
eral, these deformation rings have two irreducible components, an ordinary and a
non-ordinary one. In order to keep track of these two components modulo p, we use
the fact that the Barsotti–Tate local deformation rings have generically reduced
special fibre. This fact was established in [6] using a version of the Emerton–Gee
stack.

We now discuss the local-global compatibility result in its general form. Let
n ≥ 2 be an integer, K ⊂ GLn(AF,f ) be a neat compact open subgroup and
XK be the corresponding locally symmetric space for GLn/F . In [9], Scholze
constructed Galois representations ρm attached to systems of Hecke eigenvalues m
occurring inH∗(XK ,Zp). For applications to modularity, it is extremely important
to understand the properties of the Galois representations ρm. One needs to know
whether ρm satisfies some form of local-global compatibility: if v is a prime of
F and GFv := Gal(F v/Fv), how does the level Kv at which m occurs determine
the ramification of ρm|GFv

? The case when v | p is particularly subtle because it
is not (a priori) clear how to formulate the correct integral p-adic Hodge theory
conditions and because the ρm are constructed via a p-adic interpolation argument
that loses track of the level Kv for v | p (and also loses track of the weight).

In [2], the first such local-global compatibility results at primes v | p were estab-
lished in two restricted families of cases, described by natural integral conditions:
the ordinary case and certain Fontaine–Laffaille cases. Beyond these special cases,
Gee–Newton formulated a general conjecture using the potentially semi-stable lo-
cal deformation rings constructed by Kisin. In [7], we prove their conjecture in the
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crystalline case, under technical assumptions, but allowing arbitrary n and allow-
ing p to be small and highly ramified in F . We also allow coefficients in general
local systems on XK coming from highest weights for GLn/F . For applications
to Theorems 1 and 2, it is crucial to allow p = 3 and p = 5, as well as to base
change to an extension F ′/F that is highly ramified at p. We expect our local-
global compatibility result to have many more applications to modularity lifting
theorems over CM fields.
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The analytic de Rham stack and a Jacquet-Langlands correspondence
for locally analytic representations

Juan Esteban Rodŕıguez Camargo

The theory of D-modules is an essential piece in the arsenal of an algebraic ge-
ometer, e.g. they are main players in the Hilbert-Riemann correspondence or
in Beilinson-Bernstein localization theorem. It turns out that the theory of D-
modules on a smooth variety X over C can be recover as the theory of quasi-
coherent sheaves on a suitable stack XdR, introduced by Simpson in [19], that we
call nowadays the de Rham stack. It is natural to ask whether there are rigid an-

alytic incarnations of these stacks, encoding the theory of D̂-modules of Ardakov-
Wadsley [1]. In the following we explain an affirmative answer of this question and
sketch two applications to p-adic automorphic forms on Shimura varieties.
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1. The analytic de Rham stack

The recent developments of condensed mathematics and analytic geometry of
Clausen and Scholze (cf. [5–7]) have unified classical analytic and algebraic geome-
try. For instance, both algebraic and analytic spaces belong to the same geometric
categories, all spaces appearing in analytic geometry have natural categories of
quasi-coherent sheaves, theorems like GAGA, finiteness of coherent cohomology
or Serre duality have the same categorical proofs, etc. The theory becomes even
more powerful when it is combined with the abstract six-functor formalisms ap-
pearing in the work of Mann [9, 10]. We make use of these technologies to define
analytic de Rham stacks for rigid spaces, provide a six-functor formalism for solid

D̂-modules, generalizing previous work of Bode [3], and show that this theory of
D-modules is well behaved in a cohomological sense.

To give an intuition in the stack, we briefly sketch a construction for a separated
smooth rigid variety X over a complete extension K of Qp. Let ∆ : X → X ×X
be the diagonal map, as X is separated Z = ∆(X) is a Zariski closed subspace of
X ×X . Let ∆X† denote the dagger space given by the overconvergent diagonal,
i.e. the analytic space with underlying topological space |X | but whose structural
sheaf are the functions in X ×X that overconverge the diagonal ∆(X). Then, the
analytic de Rham stack of X over K is constructed as the quotient

XdR = coeq(∆X†
⇒ X).

The intuition behind this presentation is that the analytic de Rham stack identifies
points of X that are overconvergently close.

The analytic de Rham stack is closely related to the theory of solid locally
analytic representations as developed in [12, 13]. For example, let G be a p-adic
Lie group and let Gla be the analytic space whose underlying space is G and whose
sheaf of functions are the locally analytic functions of G. Similarly, let Gsm be the
analytic space attached to the smooth functions of G, and let exp(LieG) ⊂ Gla be
the stalk at the identity. We have a short exact sequence of analytic groups

1→ exp(LieG)→ Gla → Gsm → 1

and in fact Gsm = GladR. A more interesting application to Shimura varieties will
be explained in the next paragraphs.

2. Overconvergent BGG maps

In a recent work [11] Pan has initiated a study of p-adic modular forms via locally
analytic representation theory, geometric Sen theory and the geometry of modular
curves via the Hodge Tate period map [4,8,16]. Part of his work has been extended
by the author in [14, 15], we will explain how the theory of analytic stacks allows
a more conceptual understanding of these results.

Let (G, X) be a global Shimura datum, fix Kp a prime to p level and let
Kp ⊂ G(Qp) be a compact open subgroup. Let E be the reflex field of the
Shimura datum and fix an embedding ι : E →֒ C := Cp. Let ShKp be the Shimura
variety of level KpKp seen as an adic space over C, for simplicity let us assume
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that the Shimura varities are compact and of Hodge type. Let µ : Gm → GC be
a fixed Hodge cocharacter, let Pµ ⊂ G be the parabolic subgroup parametrizing
increasing µ-filtrations and let Fl = G/Pµ be the flag variety.

The limit Sh∞ = lim←−Kp
ShKp is naturally a perfectoid space [16], and there is

a G(Qp)-equivariant Hodge-Tate period map πHT : Sh∞ → Fl parametrizing the

increasing Hodge-Tate filtration of automorphic local systems over Sh. Let Ô be
the structural sheaf of Sh∞. The space Sh∞ has a natural action of G(Qp), one
can then consider the analytic space Shla∞ with same underlying space as Sh∞,

but whose structural sheaf is the subsheaf Ola ⊂ Ô of locally analytic sections for
the action of G(Qp).

Hence, the πHT -map can be restricted to a G(Qp)-equivariant map of analytic
spaces

πlaHT : Shla∞ → Fl

that we can differentiate. This allows a clean passage from D̂-modules over Fl to
p-adic automorphic forms. For example, a consequence of geometric Sen theory is
that

Shla∞,dR = lim←−
Kp

ShKp,dR

where the limit is taken in the category of analytic stacks, in particular it does
not involve a completion process. Moreover, Shla∞,dR → ShKp,dR is a Ksm

p -torsor,

meaning that the data of a Kp-equivariant D̂-module over Shla∞ is the same as the

data of a D̂-module over ShKp . Therefore, by taking de Rham stacks for πla∞, and
taking quotients by Ksm

p , one has a map of analytic stacks

πsmHT,Kp
: ShKp,dR → FldR/K

sm
p .

After some modifications one can also construct an analogue of the previous arrow

for twisted D̂-modules. Moreover, the theory of overconvergent automorphic forms

of higher Coleman theory [2] can be encoded as pullbacks of suitable D̂-modules
via πsmHT,Kp

. For example, the constructions of the overconvergent Eichler-Shimura

or BGG maps for completed cohomology of [15] follow by taking the analogue
filtration for the localization of Verma modules over the flag variety and then
taking pullbacks along πsmHT,Kp

.

3. The local Jacquet-Langlands correspondence for locally
analytic representations (joint with Gabriel Dospinescu)

We end with an application for local Shimura varieties and a Jacquet-Langlands

correspondence for D̂-modules. We borrow notation from the previous paragraph;
we let (G, b, µ) be a local Shimura datum as in [18] with b basic, for Kp ⊂ G(Qp)
we let ShKp be the finite level local Shimura varities over C = Cp, and let
Sh∞ = lim←−Kp

ShKp be the infinite level Shimura variet. Let πHT : Sh∞ → Fl

be the Hodge-Tate period map. We denote by Pµ ⊂ G the parabolic subgroup

parametrizing decreasing µ-filtrations, let Fl = G/Pµ be the opposite flag variety

and let πGM : ShKp → Fl be the Grothendieck-Messing period map.
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Let is write G = G(Qp), and denote by H = Jb(G) the inner form of G

associated to b. Let Fladm and Fl
adm

denote the admissible locus of the flag
varieties. The duality of local Shimura varieties implies that πHT : Sh∞ → Fladm

is a G-equivariant H-torsor while πGM : Sh∞ → Fl
adm

is a H-equivariant G-
torsor. Therefore, one could ask about the comparison between the sheaves OG−la

and OH−la of locally analytic sections of the structural sheaf Ô of Sh∞. It turns
out that both sheaves are the same, and that the equality of analytic vectors
follow for more general sheaves of periods attached to affinoid subspaces of the
Fargues-Fontaine curve.

A first consequence of this relation is the compatibility of the functor of Jacquet-
Langlands of Scholze [17] with the passage to locally analytic vectors: let F be a
finite extension of Qp, G = GLn(F ) and D is a division algebra of invariant 1/n.

Then Fladm = Ω is the Drinfeld space and Fl
adm

= Fl is the whole flag variety.
Given a representation π of G one constructs a proétale sheaf Fπ by descent along
πGM : Sh∞ → Fl, and one defines the Jacquet-Langlands functor

JL(π) := RΓproet(Fl,Fπ).

The compatibility with the passage to locally analytic vectors implies that if π is
a Banach representation of G, one has that

JL(π)H−la = JL(πG−la).

Finally, a last consequence of geometric Sen theory and the equality OG−la =

OH−la is an equivalence of D̂-modules, indeed, we have an isomorphism of equi-
variant de Rham stacks

Fl
adm

dR /Hsm = FladmdR /Gsm.

As immediate implication one has an isomorphism of smoothG×H-representations
given by the de Rham cohomology of local Shimura varieties

lim−→
Gn⊂G

DR(ShGn) = lim−→
Hn⊂H

DR(ShHn).
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Horizontal p-adic L-functions with applications to L-values

Daniel Kriz

(joint work with Asbjørn Nordentoft)

Fix a modular form f of weight k ≥ 2. The study of non-vanishing of twisted
L-values L(f, χ, k/2) for χ varying in various families of Dirichlet characters (i.e.
finite-order) has long been the interest of both algebraic and analytic number
theorists. One version of this question is the following.

Question. Fix d ∈ Z≥1 and let χ vary through all Dirichlet characters of order
d, ordered by conductor. Let

Kd(X) = {χ primitive of conductor D, order d : D ≤ X}.
What is the asymptotic behavior of

#{χ ∈ Kd(X) : L(f, χ, k/2) 6= 0}
as X →∞?

When restricting to quadratic χ (i.e. of order d = 2) and f the weight k = 2
newform associated to an elliptic curve E over Q (i.e. L(f, s) = L(E, s)), this
question is addressed by Goldfeld’s conjecture [3]: when ordering quadratic χ by
conductor, the order of vanishing ords=1L(f, χ, s) is 0 for 50% of such χ and 1
for 50% of such χ. Goldfeld’s conjecture has seen considerable progress in recent
years, see for example [5], [7], [8], [1] and [6]. In [6], one of the authors verified
Goldfeld’s conjecture for the congruent number family (as well as other families of
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complex multiplication elliptic curves) by establishing a p-converse theorem and
invoking known results on distributions of 2-Selmer ranks in such families.

For d > 2 there are no root number obstructions that force vanishing on
L(f, χ, k/2) and so it is conjectured that L(f, χ, k/2) 6= 0 for 100% of χ of or-
der d. In fact, if d is a prime then the random matrix heuristics of [2] support
this conjecture and even make the stronger claim that L(f, χ, k/2) 6= 0 for all but
finitely many χ when d > 5. Unconditional results toward these conjectures have
proven difficult to establish and, unlike in the d = 2 case, currently seem out of
reach of analytic techniques. The main results of this talk are to give the first
unconditional results toward these heuristics for general d. The proofs of these re-
sults rely on a new construction of horizontal p-adic L-functions, which are power
series F ∈ R[[T ]] over p-adically complete rings R, associated to elements of group
rings νn ∈ R[Πn], where Πn = G1 × . . . × Gn for finite abelian groups Gn, com-
patible with respect to the natural projections R[Πn] → R[Πn−1]. These latter
compatibilities are often called horizontal norm relations in the context of Euler
systems or Mazur-Tate θ-elements, whence the name horizontal p-adic L-function.
The construction of horizontal p-adic L-functions relies on a new kind of patching
for the group rings R[Πn] when the latter satisfies Taylor-Wiles conditions; these
p-adic L-functions satisfy a new kind of interpolation property, wherein special
values are related to twisted moments of L(f, k/s), i.e. linear combinations of the
L(f, χ, k/2) for χ varying over all characters of Πn, with coefficients given by cer-
tain cyclotomic units. For other examples of similar twisted moments, see [9] and
[10]. Moreover, in certain cases the derivative d

dT F are related to the Kolyvagin
derivatives of ν = lim←−n νn ∈ lim←−nR[Πn].

Given a Hecke newform f , we say that an integer d ≥ 1 is f -good if for all
prime divisors p|d, the residual Gal(Q/Q)-representation ρ̄f at a prime of the Hecke
field λ above p is irreducible. When f is attached to an elliptic curve E/Q (i.e.
L(f, s) = L(E, s)), we say d is E-good if it is f -good. We prove the following
general non-vanishing result:

Theorem. Let f be a Hecke newform of weight k and let d ∈ Z≥1 be f -good.
Then for any A > 0 we have

#{χ ∈ K2d(X) : L(f, χ, k/2) 6= 0} ≫A,f,d
(log logX)AX

logX
.

Furthermore, if L(f, k/2) 6= 0, then for all f -good d ≥ 1 we have

#{χ ∈ Kd(X) : L(f, χ, k/2) 6= 0} ≫A,f,d
(log logX)AX

logX
.

Furthermore, our methods allow us to obtain non-vanishing results modulo
powers of p and at the same time control the number of prime factors of the
conductor:

Theorem. Let E/Q be an elliptic curve with L(E, 1) 6= 0. Let p be an be a
E-good prime and let n = ordp(Num(L(E, 1)/Ω+

E)) be the p-adic valuation of the

numerator of the algebraic part of the central L-value (where Ω+
E is the real Néron
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period). Then there exist infinitely many order p Dirichlet characters χ with con-
ductors divisible by at most n+1 primes such that L(E,χ, 1)/Ω+

E 6≡ 0 (mod p2nZ).

Moreover, the number of such χ-twists with L(E,χ, 1)/Ω+
E 6≡ 0 (mod p2nZ) and

conductor ≤ X is ≫ X/ logX.

One can refine the previous theorem when E/Q satisfies Kurihara’s conjecture,
which posits the existence of r ∈ Z>0 (where r is essentially the p∞-Selmer rank of
E) and r Kolyvagin primes q1, . . . , qr (i.e. primes satisfying certain conditions with
respect to (E, p)) such that a certain linear combination of modular symbols of
level dividing q1 · · · qr does not vanish modulo p. This can be seen as a topological
incarnation of Kolyvagin’s conjecture for E/Q, which posits the existence of certain
non-vanishing mod p classes in the Galois cohomology of E[p].

Theorem. Assume that E/Q satisfies Kurihara’s conjecture at p. Then for all
E-good integers d divisible by p, we have that for all A > 0,

#{χ ∈ Kd(X) : L(E,χ, 1) 6= 0} ≫A,E,d
(log logX)AX

logX
.

If moreover r = 1 in the context of Kurihara’s conjecture then there exists a
Kolyvagin prime q1 such that for a positive proportion of Dirichlet characters χ of
order p and conductor dividing q1ℓ where ℓ is a prime we have L(E,χ, 1) 6= 0.

Kurihara’s conjecture is known to be true in many cases; by work of Kim [4]
and forthcoming work of Burungale-Castella-Grossi-Skinner, it is known to be true
in certain cases assuming the cyclotomic Iwasawa main conjecture for (E/Q, p),
the latter having been established under mild assumptions by Skinner-Urban [11].
The proofs of all these results use the propagation principle:

Propagation Principle. Let χ0 be a Dirichlet character such that L(E,χ0, 1) 6=
0. Let pm be E-good. Then there exist infinitely many Dirichlet characters χ of
order pm such that L(E,χχ0, 1) 6= 0.

This principle is proven using the construction of a horizontal p-adic L-function
Fχ0
∈ Zp[[T ]] ∼= Zp[[Zp]] attached to (E,χ0) and a system of Mazur-Tate elements

indexed by Taylor-Wiles primes. We will briefly describe the construction of the
horizontal p-adic L-function below; for now, let us admit its existence and explain
the idea of the proof of the propagation principle when m = 1. By assumption

Fχ0
(0) = L(E,χ0, 1)/Ω+

E · C 6= 0 for some C ∈ Q×
. Thus Fχ0

6= 0; this implies

that for all but finitely many characters ψ : Zp → Q
×
p we have Fχ0

(ψ) 6= 0. Using
the fact that Fχ0

(ψ) is an explicit linear combination of L(E,χχ0, 1) where χ is
a Dirichlet character of order p on Πn (defined above), i.e. the conductor of χ
divides the product of the first n Taylor-Wiles primes, and whose last component

is given by the order p character ψp
n−1

(here pn is the conductor of ψ), we conclude
the existence of at least one such χ with L(E,χχ0, 1) 6= 0. Allowing ψ to vary,
this gives the desired conclusion.

We briefly describe the construction of the horiztonal p-adic L-function in the
above context. From modular symbols attached to Gi = Gal(Q(µℓi)/Q), ℓi Taylor-
Wiles primes for (E,χ0) so that we have a surjective map Gi → Z/p, we get an
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element ν ∈ lim←−n Zp[Πn] which projects under lim←−n Zp[Πn] → lim←−n Zp[(Z/p)
n] =

Zp[[(Z/p)∞]] to an element ν̃, here giving (Z/p)∞ = lim←−n(Z/p)n the natural inverse

limit topology (with the discrete topologies on each Z/p). Then using the “digit

bijection” of sets (Z/p)∞ ∼−→ Zp, (an)n≥0 7→
∑∞

n=0 ãnp
n, 0 ≤ ãn ≤ p− 1, ãn ≡ an

(mod p), we get an induced Zp-module isomorphism Zp[[(Z/p)∞]]
∼−→ Zp[[Zp]] =

Zp[[T ]]. The image of ν̃ under this Zp-module homomorphism is Fχ0
.

Similar results to the above are also established for E/K where K is an imagi-
nary quadratic field, for the twists L(E/K,χ, 1) (resp. L′(E/K,χ, 1)) by order d
ring class characters χ over K.
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Eisenstein cocycles for imaginary quadratic fields

Romyar Sharifi

(joint work with Emmanuel Lecouturier, Sheng-Chi Shih, Jun Wang)

We aim to establish a particular connection between the geometry of GL2 and
the arithmetic of GL1 over an imaginary quadratic field, with an Eisenstein ideal
serving as the intermediary between them.

First, let us explain what is known over Q. Consider the modular curve X1(N)
of level N over C and its cusps C∞

1 (N) that do not lie over ∞ ∈ X0(N). Let
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us use + to denote fixed part under complex conjugation, or projection to such a
part. We set Z′ = Z[ 12 ] for now. Busuioc and I constructed [1, 5] a map

Π̃ : H1(X1(N), C∞
1 (N),Z′)+ → (K2(Z[µN ,

1
N ])⊗ Z′)+,

[c : d]+ 7→ {1− ζcN , 1− ζdN}+

for c, d ∈ Z with (c, d,N) = 1 and c, d 6≡ 0 mod N , where [c : d] is the Manin
symbol that is the class of the geodesic from a

c to b
d for a, b ∈ Z with ad− bc = 1,

and where {1 − ζcN , 1 − ζdN} is the Steinberg symbol of cyclotomic N -units, for

ζN = e2πi/N . This map Π̃ restricts to a map

Π: H1(X1(N),Z′)+ → (K2(Z[µN ])⊗ Z′)+.

Let I be the the Eisenstein ideal in the modular Hecke algebra of weight 2 and
level Γ1(N), generated by Tℓ− ℓ−〈ℓ〉 for primes ℓ not dividing Np and U∗

ℓ − 1 for
primes ℓ dividing Np. Some years ago, I made the following conjecture:

Conjecture 1. The map Π̃ is Eisenstein, i.e., Π̃ ◦ T = 0 for all T ∈ I.
Moreover, I expect that Π mod I is an isomorphism. In a 2012 preprint [2],

Fukaya and Kato proved an earlier form of the conjecture (see [5]), as well a result
towards the latter statement.

Theorem 1 (Fukaya-Kato). The conjecture holds on p on p-parts for p | N , i.e.,

Π̃⊗ Zp is Eisenstein.

The proof involves viewing Π as the composition with specialization at the
cusp ∞ of a zeta map carrying Manin symbols to cup products of Siegel units on
Y1(N) over Z[ 1

N ]. The zeta map is Hecke-equivariant, as seen by a p-adic regulator
computation, and the specialization-at-∞ map is (basically) Eisenstein.

In [6], Venkatesh and I proved the following:

Theorem 2 (S.-Venkatesh). The map Π is Eisenstein away from the level: i.e.,
Π ◦ (Tℓ − ℓ− 〈ℓ〉) = 0 for primes ℓ not dividing Np.

In this result, Π is constructed as the restriction of a cocycle ΘN : Γ0(N) →
(K2(Z[µN ])⊗Z′)+. This cocycle is in turn the pullback by (1, ζN ) ∈ Gm(Q(µN )) of
the restriction to Γ0(N) of a cocycle Θ: GL2(Z)→ K2(Q(G2

m))⊗ Z′, which lands
in a small enough subgroup to make the pullback well-defined.

The cocycle Θ is constructed out of Kato’s analogue of the Gersten complex,
using the pullback action of the canonical right action of GL2(Z) on G2

m. The key
point is that the Eisenstein property of Θ can be easily verified (as can parabol-
icity and an explicit formula) by examining the action of Hecke operators on the
GL2(Z)-fixed class determined by 1 ∈ Gm(Q).

There is an evident potential analogue in the setting of Bianchi spaces and
elliptic units, asked for in a paper of Fukaya, Kato, and I [3]; some evidence for
its existence can be found in a much earlier work of Goncharov [4]. That is, let F
be an imaginary quadratic field with integer ring O, and let N be an ideal of O.

Consider the Bianchi space Ỹ1(N) and its minimal compactification X̃1(N) for
the analogue of Γ1(N) in GL3(O). (This space is a disjoint union of h = |Cl(F )|
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quotients of complex upper half-space, with the class of the identity corresponding
to Γ1(N) more directly.) Its first homology relative to non-infinity cusps contains
Manin-type symbols [c : d] of Cremona for c, d ∈ O −N with (c, d,N) = 1.

Let F (N) denote the ray class field of F of conductor N , denote its integer
ring by O(N), and now set Z′ = Z[ 16 ]. Let E be an elliptic curve with CM by
O and θE a theta-function attached to it. Fix a point P of order N on E. Let
Φ: ClF (N)→ Gal(F (N)/F ) be the Artin map.

The following is then the obvious question:

Question. Does there exist an Eisenstein map

Π: H1(X̃1(N),Z′)→ K2(O(N)) ⊗ Z′

that is the restriction of a map Π̃ on homology relative to non-infinty cusps that
takes the Cremona symbol [u : v] to the Steinberg symbol {θE(cP ), θE(dP )}?

Some remarks: if F is non-Euclidean, then the Cremona symbols do not gen-
erate relative homology. Also, the theta-function θE does not exist absent some
choice of divisor of degree zero, whereas we might wish θE to correspond to the
divisor of degree one that is the class of 0 ∈ E to rid ourselves of this choice. In
work in progress, we nevertheless show that the answer to our question is basically
“yes”. The following is a rough statement of our result.

Theorem 3. Let c ∈ O be a non-unit prime to N . There exists a map

cΠ: H1(Ỹ1(N),Z′)→ K2(O(N)) ⊗ Z′

such that cΠ⊗Z[ 15 ] is Eisenstein away from the level and which is compatible with

the existence of Π̃.

In fact, on p-parts for p ≥ 7 prime to N , we show the finer result that cΠ
factors through the homology of X̃1(N) and that there exists a map Π with (Nc2−
Φ(c))Π = cΠ that is Eisenstein away from the level and has an explicit description

compatible with being the restriction of a map Π̃ as in the above question.
Our approach extends that of S.-Venkatesh; it contains numerous subtleties not

present over Q. We define cocycles for all h2-products of representatives of the
h isomorphism classes {Ei | 1 ≤ i ≤ h} of elliptic curves with CM by O, where
E1(C) ∼= C/O. The representatives are then taken to be Galois conjugate curves
defined over L = F (f), where f is a suitable auxiliary ideal of O prime to N . We
consider the Gersten complexes Ki,j of Kato for each of these products to obtain
a cocycle for a group Γi,j related to GL2(O) for each of them. The complex Ki,j

enables us to construct a first cohomology class Θi,j : Γi,j → K2(L(Ei ×Ej))⊗Z′

out of the Γi,j-fixed degree 0 formal sum c2(0)− (Ei × Ej)[c] of points.
There are no non-principal Hecke operators on cohomology groups of terms

of Ki,j. We define a notion of a ∆-module system to consider all of the classes
Θ = (Θi,j)i,j at once. We find that TnΘ = (Nn + Sn)Θ for all primes of O not
dividing N , where Tn and Sn are certain Hecke operators.

We pull back the restrictions of representatives of the Θi,j to the analogues
of Γ0(N) via Galois-conjugate points (0, Pj) of order N on Ei × Ej to obtain
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cocycles valued in K2(F (N f)) ⊗ Z′. These cocycles come from cocycles valued in
K2(F (N)) ⊗ Z′ independent of a choice of f. Away from the level, the Eisenstein
property transfers to these pulled back, or specialized, classes. The specialized
classes come in Galois orbits, reducing the number of them we need to consider
to h. Their restrictions to the analogue of Γ1(N) together give the map cΠ. Its
partial explicit description can be gleaned by equating residues of values of Θ1,1

with sums of tame symbols of Steinberg symbols of theta-functions.
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Kolyvagin’s conjecture and Iwasawa theory

Giada Grossi

(joint work with Ashay Burungale, Francesc Castella, and Christopher Skinner)

Let E/Q be an elliptic curve and p be an odd prime of good ordinary reduction for
E. In 1991 Kolyvagin conjectured that the system of cohomology classes derived
from Heegner points on the p-adic Tate module of E over an imaginary quadratic
field K is non-trivial (see [10]). We report on a joint work with A. Burungale,
F. Castella and C. Skinner, in which we prove Kolyvagin’s conjecture in the cases
where an anticyclotomic Iwasawa Main Conjecture for E/K is known. In partic-
ular, we provide the first known cases when p is an Eisenstein prime.

Let K be a quadratic imaginary field of odd conductor DK 6= −3 and such
that p and all primes dividing the conductor N of E split in K. Assume also that
E(K)[p] = {0}. For any integer n ≥ 1, using the modular parametrisation of the
elliptic curve, one can construct the Heegner points

Pn ∈ E(K[n])

defined over K[n], the ring class field of K of conductor n. The Kummer map
yields a class in H1(K[n], T/pM), where T = Tp(E) is the p-adic Tate module
of E and M ≥ 0. Applying the Kolyvagin derivative and using the assumption
E(K)[p] = {0} (which yields the surjectivity of the restriction map), one can build
a collection of classes

{κn ∈ H1(K,T/pM(n))}n∈N ,

where N is the set of square-free products of inert primes ℓ coprime to p and N
such that M(ℓ) = min{ordp(ℓ+ 1), ordp(aℓ)} > 0, M(n) = min{M(ℓ) : ℓ | n}, and
by convention 1 ∈ N with M(1) =∞.
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Such collection of classes forms a Kolyvagin system; in particular if ℓn, n ∈ N ,
one can show that:

• the restriction to the cohomology group H1(Kℓ, T/p
M(n)) of the com-

pletion Kℓ of K at the unique prime of K above ℓ of the class κn, de-
noted by locℓ(κn), lies in the unramified subspace H1

f (Kℓ, T/p
M(n)) ⊂

H1(Kℓ, T/p
M(n));

• the image locsℓ(κnℓ) of locℓ(κnℓ) in the singular quotient H1
s (Kℓ, T/p

M(nℓ))
of H1(Kℓ, T/p

M(nℓ)) is non trivial (unless locℓ(κnℓ) = 0);
• the elements locsℓ(κnℓ) and locℓ(κn) have the same order (in the corre-

sponding local cohomology groups with coefficients T/pk for k ≤ M(n),
M(nℓ).

These properties follow from the definition of the classes and the so called norm
relations between the point Pn, Pnℓ. One also has an explicit description of the
bottom class κ1 which is simply obtained as the image via the Kummer map in
H1(K,T ) of the Heegner point PK := TrK[1]/KP1 ∈ E(K). The celebrated work
of Gross–Zagier [6] gives the following:

(GZ) κ1 6= 0 ⇔ L′(E/K, 1) 6= 0.

In [10] Kolyvagin conjectured that even when the analytic rank of E/K is not one,
the system {κn}n is non-trivial, namely:

Conjecture 1 (Kolyvagin). There exists n ∈ N such that κn 6= 0.

The first major progress towards this conjecture is due to W. Zhang [16], who
proved Kolyvagin’s conjecture using level raising techniques when p 6= 2, 3 is a
prime of good ordinary reduction for E under the assumption that

(sur) ρ̄E : GQ = Gal(Q̄/Q)→ AutFp(E[p]) is surjective

and ρ̄E satisfies certain ramification hypotheses. More recently, some of the hy-
potheses have been relaxed by N. Sweeting [13] using an ultrapatching method for
bipartite Euler systems.

The main result of [1] shows that Iwasawa theory can be used to prove new
results about Conjecture 1:

Theorem 1. Let E/Q be an elliptic curve with good ordinary reduction at p > 2
and K a quadratic imaginary field as above. Conjecture 1 holds true if the rational
anticyclotomic main conjecture for E/K holds.

In particular, Conjecture 1 holds true if

(i) E[p]ss ≃ Fp(φ) ⊕ Fp(φ−1ω) as GQ-module, where φ : GQ → F×
p is a

character such that φ|Gp 6= 1, ω, with Gp a decomposition group at p and
ω the Teichmüller character;

(ii) p > 3 is such that E[p] is an irreducible GQ-module.

In case (i), we rely on the work [4] where we prove the (integral) anticyclotomic
main conjecture at Eisenstein primes, strengthening our previous work [3] which
applied only in the co-rank one case (when κ1 6= 0). Case (ii) follows from the
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main conjecture proved in [2]. Previous results interlacing Iwasawa theory and
Kolyvagin’s conjecture (in the case where (sur) holds) appeared in [9].

Strategy of the proof. We briefly mention which are the main ingredients in the
proof. Firstly, using Heegner points of p-power conductor, one can construct a
Λ-adic Kolyvagin system, where Λ = Zp[[Γ]] and Γ is the Galois group of the
anticyclotomic Zp-extension K∞ of K. It is a collection of classes

{κΛ,n ∈ H1(K,T ⊗̂Λ/pM(n))}n∈N .

For any character α : Γ → Z×
p , we can consider the specialization of the Λ-adic

system at α, giving classes κn(α) ∈ H1(K,T⊗Zp(α)/pM(n)). The main ingredients
of the proof will then be:

(a) The existence of a character αm : Γ→ Z×
p with αm ≡ 1 mod pm for m≫ 0

such that

κ1(αm) 6= 0.

This follows from Mazur’s conjecture, proved by Cornut and Vatsal.
(b) A suitable control theorem/explicit reciprocity law characterizing the ob-

jects appearing in the Iwasawa main conjecture specialized at αm. Com-
bining such results with the (integral) anticyclotomic main conjecture, we
will get:

lengthZp
W(E ⊗ αm/K)[p∞] + ordp Tam(E/K) = 2 · ind(κ1(αm)),

where W(E ⊗ αm/K)[p∞] denotes the Shafarevic-Tate group of E[p∞]⊗
αm, Tam(E/K) denotes the product of the Tamagawa factors of E/K and
ind(κ1(αm)) denotes the maximal power of p dividing the class κ1(αm). If
one only has the rational main conjecture, an extra term (independent on
αm) appears in the equality, causing no harm for the proof of the result.

(c) A Kolyvagin system bound (with an error term E , which is non-zero only
when (sur) does not hold, but crucially not depending on αm) for the
Selmer groups of E[p∞]⊗αm given any weak Kolyvagin system {κ′n} with
κ′1 6= 0:

lengthZp
W(E ⊗ αm/K)[p∞] ≤ 2 · ind(κ′1) + E .

The idea of the proof is then to bound the index of divisibility of the Kolyvagin
system showing that if pt divides κn for every n, then, choosing a suitable αm as
in (a), pt also divides κn(αm) for every n and we can consider the weak Kolyvagin
system {κ′n := p−tκn(αm)}. Applying the bound in (c) and the equality in (b),
we get a bound on t.

Further results. The above strategy also yields a bound on the index of divisibility
µ∞ of the Kolyvagin system in terms of the Tamagawa factors of E. Let mr :=
min{ind(κn) : n is divisible by exactly r primes}. One shows that mr ≥ mr+1 for
every r ≥ 0. Let

µ∞ = lim
r→∞

mr.
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Note that Conjecture 1 is equivalent to µ∞ < ∞. In the case where (sur) holds,
we are working on upgrading the bound µ∞ ≤ ordp Tam(E/Q) obtained by the
above argument to an exact equality, replacing the Kolyvagin system bound in (c)
(which was proved in [4]) with the exact structure theorem

lengthZp
W(E ⊗ αm/K)[p∞] = 2 · (ind(κ1(αm))− µ∞).

That leads to the refined form of Conjecture 1, as formulated in [17, Conjec-
ture 4.5]:

µ∞ = ordp Tam(E/Q).

One could also ask about the non-vanishing of other Kolyvagin systems. For
example we can consider the Kolyvagin system κKato

n , for n in some set NKato,
obtained from the Euler system constructed by Kato [7] over cyclotomic extensions
of Q. A similar strategy applies: the non-vanishing results in (a) above are provided
by Rohrlich’s work [11] and Kato’s explicit reciprocity law in [7] and the Kolyvagin
system bound in (c) proved by Mazur–Rubin is generalized in our work to the case
where (sur) does not hold. This allows us to prove the following:

Theorem 2. Let E/Q be an elliptic curve without CM, and let p be an odd prime
of good ordinary reduction for E such that E(Q)[p] = 0. Assume that the rational
cyclotomic Iwasawa main conjecture holds, then

there exists n ∈ NKato such that κKato
n 6= 0.

In particular, {κKato
n } 6= 0 in the cases (i) and (ii) in Theorem 1.

For Eisenstein primes, we apply the new results on Mazur’s cyclotomic main
conjecture proved in [4]. Case (ii) follows from the main conjecture proved in
[7, 12, 15]. Previous results on the non-vanishing of Kato’s Kolyvagin system (in
the case where (sur) holds) were proved in [8], where also an analogue of the
refined Kolyvagin conjecture is formulated. We also prove such conjecture using
Mazur–Rubin’s structure theorem and the strategy outlined above in the Heegner
point case.
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On the arithmetic of θ-critical p-adic L-functions

Kazım Büyükboduk

(joint work with Denis Benois)

The construction and the basic arithmetic properties of p-adic L-functions for ellip-
tic modular forms are well-established, save the mysterious case of θ-critical forms.
Belläıche in [5] gave a construction of a p-adic L-function in the θ-critical scenario,
but its arithmetic properties (e.g. link to basic arithmetic invariants associated
to the underlying motive) remained mysterious. The purpose of our joint work
with Denis Benois [1, 2] that we summarize here is to unveil these properties. A
starting pointing is to reconstruct this p-adic L-function by interpolation in étale
cohomology (and in the style of Perrin-Riou), as this approach is naturally better
connected with arithmetic. Much of this note will focus on this new construction
of θ-critical p-adic L-functions.

1. The set-up and background

Fix forever a prime number p > 2 and a positive integer N coprime to p. Let
g ∈ Sk(Γ1(Np)) be a cuspidal eigenform, which is normalized and new away from
p, of weight k ≥ 2. Let us fix a finite extension E of Qp that contains an isomorphic
copy of the Hecke field of g.

The eigenform g corresponds to a point x0 in the cuspidal eigencurve C
≤k−1
N (E)

of tame level N and slope ≤ k − 1. The eigencurve is equipped with the weight

map into the weight space: C
≤k−1
N

w−→ WS = Homcts(Z×
p ,Gm). We normalize the

weight map so that w(x0) = k.
The eigenform g is θ-critical if the weight map w is ramified at x0. From here

on, let us assume that g is θ-critical and let e denote the ramification index of
w at x0. Let us fix a sufficiently small affinoid neighborhood W = Spm(OW ) ⊂
WS in the weight space about k, such that OW = E〈Y/per〉 is a Tate algebra
over E with parameter Y/per, for some r ≫ 0. On shrinking W as necessary,
x0 belongs to a unique connected component X = Spm(OX ) of w−1(W), where
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OX = OW [X ]/(Xe−Y ) ≃ E〈X/pr〉. The reader may benefit from thinking about
X as the Hecke operator Up−α · Id, where α ∈ E is the eigenvalue with which Up
acts on g.

It turns out that (cf. [5, Prop. 2.11]) g is necessarily of critical slope (i.e.
vp(α) = k − 1) and g = fα is the p-stabilization of a unique newform f ∈
Sk(Γ1(N), εf ). Let β := pk−1εf(p)/α be the other (slope-zero) root of the Hecke
polynomial of f at p. Let us denote by Vf Deligne’s Galois representation attached

to f , which is normalized so that its determinant is given by χ1−kε−1
f , where χ

denotes the cyclotomic character. Then the requirement that g = fα be θ-critical
is equivalent to any one of the following conditions.

• Filk−1Dcris(Vf ) = Dcris(Vf )ϕ=α , cf. [3].

• Vf |GQp
= V

(α)
f ⊕ V (β)

f splits.

A conjecture of Greenberg (which we do not assume) predicts that such f neces-
sarily has CM. If this is the case, a conjecture of Jannsen implies that e = 2, cf.
[4]. In what follows, we will assume that e = 2.

2. Critical p-adic L-functions

One defines p-adic L-functions by interpolation of L-values. These often charac-
terize the p-adic L-function. However, with its expected growth properties, one
may not characterize the p-adic L-function Lp(f

α) attached to the critical-slope
eigenform fα by interpolation properties. The problem is that the interpolation
range is not sufficiently large. An idea (that goes back to Stevens) is to construct
a 2-variable p-adic L-function Lp(X ) ∈ OX ⊗̂H(Γ) to rigidify this problem, and
define Lp(f

α) := Lp(X )|x0
. Here, H(Γ) ⊃ Λ(Γ) is Perrin-Riou’s extended Iwasawa

algebra, parametrizing cyclotomic variation. The point is that if W is sufficiently
small, all classical points x0 6= y ∈ X (E) are of non-critical slope, and the 2-
variable p-adic L-function Lp(X ) should be characterized by the requirement that
Lp(X )|y coincides with the Manin–Vishik p-adic L-function. It still remains to
understand the interpolation properties of Lp(f

α) := Lp(X )|x0
.

In our work with Denis Benois, we execute this general idea in the context of
overconvergent étale cohomology of Andreatta–Iovita–Stevens. In what follows,
we describe our results in this vein.

2.1. We extend the results of Andreatta–Iovita–Stevens, Belläıche and Chenevier
to prove that there exists Galois representations VX ≃ O⊕2

X and V ′
X ≃ O⊕2

X which
interpolate Deligne’s representations over X , and which come equipped with a

Galois equivariantOW -linear pairing V ′
X⊗OW

VX
〈 , 〉W−−−→ OW . One may then extend

the scalars to obtain an OX -valued pairing V ′
X ⊗OW

(OX ⊗OW
VX )

〈 , 〉X−−−→ OX .

2.2. In [1], we constructed a big Beilinson–Kato class BKIw(X )∈H1
Iw(Q, V ′

X (1)) :=

H1
Iw(Q, V ′

X (1)⊗̂Λ(Γ)) interpolating Kato’s classes for eigenforms fy corresponding
to classical points y ∈ X cl(E) ⊂ X (E).
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2.3. By the work of Kedlaya–Pottharst–Xiao, the (ϕ,Γ)-module D†
rig(VX ) of rank-

2 admits a triangulation D ⊂ D†
rig(VX ) (which is a non-saturated (ϕ,Γ)-submodule

of rank one; the non-saturation is another incarnation of θ-criticality). The OX -
module Dcris(D) := DΓ=1 is free of rank one, and Nakamura has constructed a
big exponential map EXP on it. We fix a generator η, and define our 2-variable
“Kato” p-adic L-function

LK
p (X) := 〈resp(BKIw(X )), 1 ⊗ EXP(Xη) +X ⊗ EXP(η)〉X ∈ OX ⊗̂H(Γ) .

2.4. The 2-variable p-adic L-function LK
p (X ) has the following interpolation prop-

erties.

K0) For all x0 6= y ∈ X cl(E), LK
p (X)|y coincides (up to a non-zero factor)

with the Manin–Vishik p-adic L-function attached to the corresponding
eigenform fy.

K1) LK
p (X, ρχj)|x0

= 0 for integers 1 ≤ j ≤ k − 1 and finite-order characters ρ
of Γ.

K2) If Property (GP) holds (see §2.5 below),
∂

∂X
LK
p (X, ρχj)|x0

=̇
L(f, ρ−1, j)

Ω±
f

.

We would like to think of property (K1) as an extreme exceptional zero phe-
nomenon. Our main motivation was to understand the arithmetic aspects of this
phenomenon, which lead us to define an (Iwasawa theoretic) L-invariant, extended
Selmer groups, whose behaviour indeed justify this stand point. I have discussed
some of this in my talk, but space does not permit to record them as part of these
notes, and the interested reader may refer to [2].

2.5. A p-adic L-function LS
p(X) with analogous interpolation properties has been

constructed by Belläıche, using modular symbols (i.e. interpolating Betti co-
homology). We can indeed compare his p-adic L-function with ours: We have
LK
p (X) = u · LS

p(X) for some u ∈ OX . Note that u ∈ O×
X if and only if (on

shrinking X as necessary) u(x0) 6= 0. We remark that u(x0) ∈ E is a canonically
defined constant, and its non-vanishing is equivalent to the following property:

(GP)
(
Vk := VX /(X

2)
)
|GQp

6⊃ V (α) ⊕ V (α).

2.6. Let us make a note of various interesting properties of Vk ≃ (E[X ]/(X2))⊕2,
which is the infinitesimal deformation of Vf along the eigencurve. It turns out

that Vk is not de Rham (since H1
g (Q, ad0Vf ) = 0), and it turns out that Dcris(Vk)

is 3-dimensional, with Hodge–Tate weights (0, 1 − k, 1 − k), and ϕ-eigenvalues β
and α with multiplicity 2. The property (GP) is then equivalent to require that

Dcris

(
Dk := D/(X2)

)
6⊂ Filk−1Dcris(Vk), i.e. “triangulation is in general position

relative to Hodge filtration” on DdR(Vk). Our discussion in §2.5 shows that if
LK
p (X)|x0

∈ H(Γ) is not identically zero, then the above properties of Vk hold
true. In other words, we may study the properties of the deformation of Vf along
the eigencurve with the aid of our p-adic L-function.
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2.7. We conclude our note with an instance where we can check the required non-
vanishing statements. Suppose that f = fE is the newform attached to an elliptic
curve E/Q of analytic rank one. Since f admits a θ-critical p-stabilization, it
follows from a work of Serre (combined with the discussion in §1) that f has CM.
Combining the work of Lei–Loeffler–Zerbes [6] (which establishes a comparison
of LK

p (X)|x0
with a branch of Katz p-adic L-function with empty interpolation

range) with that of Rubin’s [7] (expressing the logarithms of Heegner points with
the value of a Katz p-adic L-function outside its range of interpolation), we prove
that LK

p (X)|x0
is not identically zero. This suggests that the proof of (GP) or

the non-vanishing of the Iwasawa theoretic L-invariant LIw will require a highly
non-trivial transcendental input (akin to the non-vanishing of a non-critical value
of Katz p-adic L-function outside its range of interpolation).
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[2] Denis Benois and Kâzım Büyükboduk, Arithmetic of critical p-adic L-functions, preprint
available at https://maths.ucd.ie/~kazim_b/research.html.

[3] Christophe Breuil and Matthew Emerton, Représentations p-adiques ordinaires de GL2(Qp)
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Super-Hölder functions and vectors

Laurent Berger

(joint work with Sandra Rozensztajn)

1. Motivation

Let K∞ = Qp(µp∞) be the cyclotomic extension of Qp. The Galois group Γ =
Gal(K∞/Qp) is isomorphic to Z×

p via the cyclotomic character. The action of Γ

on K∞ extends to a continuous action of Γ on K̂∞. How can we recover K∞ from
the p-adic Banach representation K̂∞ of Γ? The space K∞ is the space of smooth

vectors K̂sm
∞ = {x ∈ K̂∞ such that Stab(x) is open in Γ}. The space K∞ is also

(see [BC16]) the space of locally analytic vectors K̂ la
∞ = {x ∈ K̂∞ such that the

orbit map γ 7→ γ(x) is a locally analytic function on Γ}.
Let E = Fp((X)) and En = Fp((X

1/pn)) for n ≥ 0 and E∞ = ∪n≥0En and let

Ẽ be the X-adic completion of E∞. The group Γ = Z×
p acts on E by a · f(X) =

f((1+X)a−1), and this action extends to Ẽ. The motivation for our work was the
following analogue of the above question: how can we recover E∞ from the valued
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Fp-representation Ẽ of Γ? One can prove that Ẽsm = Fp, so smooth vectors are
not enough. In order to answer the question, we define super-Hölder functions,
that seem to be a characteristic p analogue of locally analytic functions.

2. Super-Hölder functions

Let G be a uniform pro-p-group of rank d and let Gi = Gp
i

for i ≥ 0 (for example,
one could take G = Zdp, so that Gi = piZdp). Let M be an Fp-vector space,
equipped with a valuation valM for which it is separated and complete. We say
that a function f : G → M is super-Hölder if there exist constants λ, µ ∈ R
and e > 0 such that valM (f(g) − f(h)) ≥ pλ · pei + µ whenever gh−1 ∈ Gi, for
all g, h ∈ G and i ≥ 0. We let Hλ,µe (G,M) denote the corresponding space of
functions. For example, the map Zp → Fp[[X ]] given by a 7→ (1 + X)a belongs to

H0,0
1 (Zp,Fp[[X ]]).
These super-Hölder functions seem to be the analogue in characteristic p of

locally analytic functions. As further evidence, take G = Zp and let M be as
above. If {mn}n≥0 is a sequence of M with mn → 0, the map z 7→∑

n≥0

(
z
n

)
mn

defines a continuous function Zp → M . Conversely, every continuous function
Zp → M can be written in this way in one and only one way. Such a function is
then in Hλ,µe (Zp,M) if and only if valM (mn) ≥ pλ · pei + µ whenever n ≥ pi, for
all i ≥ 0. This criteria (see §1.3 of [BR22]) is the analogue of a criteria of Amice
characterizing locally analytic functions in terms of their Mahler expansion.

3. Super-Hölder vectors

We now assume that M is endowed with an Fp-linear action of G by isometries.
We say that m ∈ M is a super-Hölder vector if the orbit map g 7→ g(m) is a
super-Hölder function G→ M . We denote by MG-e-sh,λ,µ the elements for which
the orbit map is in Hλ,µe (G,M). Let MG-e-sh,λ = ∪µMG-e-sh,λ,µ and MG-e-sh =
∪λMG-e-sh,λ. If H is an open uniform subgroup ofG, note that MG-e-sh = MH-e-sh.

We can now answer the above question. Let M = Ẽ, with valM = valX , and
let G = 1 + pkZp with k ≥ 1 (or k ≥ 2 if p = 2). Theorem 2.9 of [BR22] now

says that Ẽ1+pkZp-1-sh = E∞. More precisely, Ẽ1+pkZp-1-sh,k−n = En for n ≥ 0.

The proof of this result in [BR22] uses Colmez’ analogue in Ẽ of Tate’s normalized
trace maps. In [BR23], we prove a more general result that implies the above one:
see §5 of this report.

4. (ϕ,Γ)-modules

Let Γ = Z×
p . In this report, a (ϕ,Γ)-module is a finite dimensional Fp((X))-vector

space D, endowed with a semilinear injective Frobenius map ϕ : D → D (acting
by f(X) 7→ f(Xp) on Fp((X))), and a compatible action of Γ. These objects
correspond, via Fontaine’s equivalence (see [Fon90]), to Fp-linear representations
of Gal(Qalg

p /Qp). Such an object has a Γ-stable lattice, which allows us to define

an X-adic valuation on D. Proposition 3.9 of [BR22] says that D = D1+pkZp-1-sh,k.
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Let ψ be the usual map on D, defined by ψ(y) = y0 if one writes y ∈ D as

y =
∑p−1

i=0 (1+X)iϕ(yi) with yi ∈ D. Following Colmez (see [Col10]), let D+ be the
set of x ∈ D such that {ϕi(x)}i≥0 is bounded, and let D♯ be the largest sub Fp[[X ]]-
module of finite rank of D that is stable under ψ and on which ψ is surjective. For
example, if D = Fp((X)), then Fp((X))+ = Fp[[X ]] and Fp((X))♯ = X−1 · Fp[[X ]].
Let M = lim←−ψD♯ = {(y0, y1, . . .) where yi ∈ D♯ and ψ(yi+1) = yi for all i ≥ 0}.

The space M is an Fp[[X ]]-module; we can define an X-adic valuation on it.
The group Γ acts on M by isometries (note: the X-adic topology on M is not the
natural topology of M , and the action of Γ on M is not continuous for the X-adic
topology). There is a map i : D+ →M given by y 7→ (y, ϕ(y), ϕ2(y), . . .). We then

have M1+pkZp-1-sh,k = i(D+). When D = Fp((X)), this result is proved in §3.4 of
[BR22]. The D 7→ lim←−ψD♯ construction is an important part of the construction

of the p-adic local Langlands correspondence for GL2(Qp), and the previous result
shows that we can “invert” this construction using super-Hölder vectors.

5. The field of norms

We now explain how super-Hölder vectors allow us to recover the field of norms
of certain extensions by decompleting their tilt. This material is in [BR23]. Let
K be a finite extension of Qp, and let K∞ be an almost totally ramified Galois
extension of K, whose Galois group Γ is a p-adic Lie group of dimension ≥ 1.

Such an extension is then deeply ramified (equivalently, K̂∞ is perfectoid) and also
strictly arithmetically profinite (see [Win83]). One can then attach two objects

to K∞/K. The first object is the field ẼK∞
, the fraction field of lim←−x 7→xp

OK∞
/p

(now called the tilt of K̂∞). This is a perfect valued field of characteristic p, on
which Γ acts by isometries.

The second object is the field of norms. Let E = {E/K such that E/K is finite
and E ⊂ K∞}. Let XK(K∞) = lim←−NF/E

E = {(xE)E∈E with xE ∈ E and such

that NF/E(xF ) = xE whenever E ⊂ F}. The set XK(K∞) can be given (see
[Win83]) a natural structure of a valued field of characteristic p, on which Γ acts
by isometries. It is then isomorphic to kK∞

((π)) where kK∞
is the residue field

of K∞ and π is a norm compatible sequence of uniformizers. Furthermore (see

ibid), there is a natural map XK(K∞)→ ẼK∞
, and ẼK∞

is the completion of the
perfection ∪n≥0XK(K∞)1/p

n

of XK(K∞).

Theorem A of [BR23] says that ∪n≥0XK(K∞)1/p
n

= ẼΓ-d-sh
K∞

. In the “cyclo-
tomic” case, with K∞ = Qp(µp∞), we have d = 1 and XK(K∞) = Fp((X))

and ẼK∞
= Ẽ and the action of Γ on Ẽ is the one coming from a · f(X) =

f((1 + X)a − 1). Hence the result above implies the answer to the question for-
mulated at the beginning.
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6. Examples

Here are two examples of super-Hölder functions with interesting properties.

6.1. A locally analytic function that has a nonisolated zero is locally constant at
this point. Here is a function f : Zp → Fp[[X ]] that is super-Hölder and has a
nonisolated zero but is nowhere locally constant.

Set f(0) = 0 and if a ∈ Z×
p and i ≥ 0, let f(pia) = ((1 +X)a − (1 +X))p

i

.

6.2. If α ∈ Z≥1, then
∑
n≥0X

pnα+p−n ∈ Fp[[X ]] is a super-Hölder vector for the

action of 1 + 2pZp on Fp[[X ]] with e = α/(1 + α), but not for e > α/(1 + α).
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Analytic cohomology of Lubin-Tate (ϕL,ΓL)-modules

Rustam Steingart

The goal of my talk was to explain the some finiteness results for analytic coho-
mology of Lubin-Tate (ϕL,ΓL)-modules over relative Robba rings and a variant of
Shapiro’s Lemma for Iwasawa cohomology from [Ste22a],[Ste22b]. These results
are applied in work in progress (joint with Milan Malčić, Otmar Venjakob and Max
Witzelsperger) on a variant of the local ε-conjecture for analytic (ϕL,ΓL)-modules.

1. Analytic Lubin-Tate (ϕL,ΓL)-modules

Let L/Qp be a finite extension and fix an embedding L→ Cp. Let ϕL(T ) ∈ oL[[T ]]
be a Frobenius power series for some uniformiser πL of L. We denote by L∞ the
Lubin-Tate extension attached to ϕL and set ΓL := Gal(L∞/L). Fontaine showed
that the category of étale (ϕQp ,ΓQp)-modules is equivalent to the category of p-
adic representation of GQp . If one wants to reconstruct the invariants attached to
a representation by p-adic Hodge theory, one has to work over the Robba ring RL
consisting of Laurent series with coefficients in L, which converge on the half-open
annulus [r, 1) for some r ∈ [0, 1). The equivalence of categories still works over the
Robba ring in the classical case (cf. [CC98]). In the Lubin-Tate case the category
of étale (ϕL,ΓL)-modules over RL is equivalent to the category of overconvergent
representations and if L 6= Qp then there exist Galois representations which are
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not overconvergent. A sufficient condition for overconvergence of a representation
is analyticity. An L-linear representation V of GL is called L-analytic if the Cp-
semilinear representation Cp ⊗L,σ V is trivial for every σ 6= id . Berger showed
that the category of L-analytic representations is equivalent to the category of
analytic étale (ϕL,ΓL)-modules over RL (cf. [Ber16]). A (ϕL,ΓL)-module over
RL is called L-analytic if the derived action of ΓL is L-bilinear.

2. Analytic cohomology and Iwasawa cohomology

Interestingly, the categories of overconvergent (resp. analytic) (ϕL,ΓL)-modules
are not stable under extensions. By the usual recipe one can produce from an
extension 0 → M → E → RL → 0 a continuous cocycle of the monoid ϕN0

L × ΓL
with values in M, which is L-analytic (with repsect to the discrete topology on ϕN0

L )
if and only if E is analytic. More generally, we can define the analytic cohomology
as the cohomology of the complex

C•
an(ϕN0

L × ΓL,M) ∼= Tot[C•
an(ΓL,M)

ϕL−1−−−−→ C•
an(ΓL,M)]

of locally L-analytic cochains with values in M. There is a natural map to the
complex of continuous cochains which induces an isomorphism (resp. an injec-
tion) when taking H0 (resp. H1). The analytic nature of the complex makes
it difficult to obtain results for higher cohomology groups. The key inputs to
make the theory more algebraic are the following: Let us fix an open subgroup
U ⊂ ΓL isomorphic to oL. By the results of [ST01] the rigid analytic variety XU
parametrising locally L-analytic characters of oL is isomorphic to an open unit disc
after base change to a sufficiently large field K (e.g. K = Cp). The global sections
of XU are isomorphic to the algebra D(U,L) of locally L-analytic distributions.
If we henceforth assume that K is large enough, we can assume that D(U,K) is
isomorphic to a ring of convergent power series in some variable Z. By adapting
the results from [Koh11] one can show that the analytic cohomology Hi

an(U,M)
is isomorphic to ExtiD(U,K)(K,M) which leads to a purely algebraic description of
analytic cohomology. The latter groups can be computed by the two-term com-

plex [M
Z−→M ], which in turn means that C•

an(ϕN0

L × U,M) can be computed by

a three term complex CϕL,Z(M) : [M
(ϕL−1,Z)−−−−−−→M2 Z⊕(1−ϕL)−−−−−−−→ M ] similar to the

classical Herr complex (in the classical case (assuming p 6= 2) one takes Z = γ− 1
for a topological generator γ of ΓQp). Using the explicit description of the complex
and general results on bounded complexes of Banach modules one can deduce the
perfectness of analytic cohomology which leads to similar results as in [KPX14].

Using the left-inverse Ψ of ϕL one can define CΨ(M) : [M
Ψ−1−−−→ M ]. In the clas-

sical case this complex computes Iwasawa cohomology and can be related to the
Galois cohomology of the cyclotomic deformation of a (ϕ,Γ)-module by a variant
of Shapiro’s Lemma. There is an analogue of the latter comparison in our case.
One can define a family Dfm(M) of (ϕL,ΓL)-modules over XU which is roughly
speaking given as the base change D(U,K)⊗̂KM. In [Ste22b] it is shown that the
natural map CΨ(M)→ CΨ,Z(Dfm(M)) is a quasi-isomorphism provided that the
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cohomology groups of CΨ(M) are coherent sheaves on XU . The latter condition is
necessary due to the finiteness properties of the right-hand side. We do not know
whether this condition holds in general. We show it in some cases in [Ste22b].
This question is closely related to understanding the D(U,K)-structure on the
heart C(M) := (1 − ϕL)(MΨ=1). We expect that the heart is projective of rank
[ΓL : U ]rk(M). This result would imply the validity of the Euler-Poincaré formula
for analytic cohomology.

3. Applications

The results above are applied in joint work in progress with Milan Malčić, Otmar
Venjakob and Max Witzelsperger. In [Nak14] Nakamura generalises Kato’s ε-
conjecture to cyclotomic (ϕ,Γ)-modules over the Robba ring. Roughly speaking,
the conjecture says that to a family M of (ϕ,Γ)-modules over an affinoid, one can
attach a line bundle ∆(M) (essentially the determinant of the Galois cohomology
of M) and a unique trivialisation of ∆(M) which interpolates the ε-constants of
Deligne at de Rham points. Inspired by his construction, we explore a variant
for analytic (ϕL,ΓL)-modules over RK . The preceding finiteness results allow us
to define the fundamental line ∆(M) as the determinant of analytic cohomology.
For an L-analytic de Rham representation, we have a decomposition DdR(V ) =⊕

σ : L→LDdR,σ(V ) (similarly for Dpst(V )). In contrast to Nakamura’s variant
we restrict to the ε-constants attached to the identity component. We construct
the desired ε-isomorphisms in the rank one case as global sections on XΓL , which
satisfy the interpolation property at de Rham points.
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Deligne’s Conjecture on critical values of L-functions for
Hecke characters

Han-Ung Kufner

In this talk we discussed a proof of Deligne’s rationality conjecture for Hecke L-
functions. We first recall the statement of the conjecture in this case and afterwards
give a sketch of the proof.

1. The Statement

1.1. Notations. All number fields will be equipped with a fixed embedding into
C. Let L and T be number fields. We write JL for the set of embeddings Hom(L,C)
and let IL denote the free abelian group on JL. For α ∈ IL and ℓ ∈ L× we set
ℓα =

∏
σ∈JL

σ(ℓ)α(σ). We also denote d(α) =
∑
σ∈JL

α(σ). Let χ be an algebraic
Hecke character of L with values in T of conductor f ⊂ OL. We also regard χ as
a continuous homomorphism χ : A×

L → T×.

1.2. Hecke L-functions. For each embedding ι ∈ JT , we consider the L-series
given by

L(ι ◦ χ, s) =
∑

a⊂OL,(a,f)=1

(ι ◦ χ)(a)

Nas
,

which converges absolutely for s ∈ C with sufficiently large real part. Using the
usual identification T ⊗C ∼= CJT , we assemble these into a T ⊗C-valued L-function

L(χ, s) = (L(ι ◦ χ, s))ι∈JT
.

The function L(χ, s) admits a meromorphic continuation and satisfies a functional
equation. We say that χ is critical if the Γ-factors on both sides of the functional
equation have no pole at s = 0. If χ is critical, it follows that L is either totally
real or that L contains a CM-field.

1.3. The period c+(χ). Attached to χ is a motive (for absolute Hodge cycles)
M(χ) defined over L and with coefficients in T such that its motivic L-function co-
incides with the function L(χ, s) defined above. Let RM(χ) denote the restriction
of scalars of M(χ) from L to Q, RM(χ)+B the subspace in the Betti realization
fixed by the involution induced by complex conjugation and let F • denote the
Hodge filtration. If χ is critical, the composite

I+ : RM(χ)+B ⊗ C→ RM(χ)B ⊗ C
I−1
∞−−→ RM(χ)dR ⊗ C→ RM(χ)dR/F

0 ⊗ C,
where I∞ denotes the comparison isomorphism between de Rham and Betti real-
izations, is an isomorphism. This allows to define a period

c+(χ) = det(I+) ∈ (T ⊗ C)×,

where the determinant is calculated with respect to T -bases of RM(χ)+B and
RM(χ)dR/F

0. Note that c+(χ) is really only well-defined up to element in T×.
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1.4. Main result. In our talk we discussed the following result which is an in-
stance of a more general conjecture of Deligne ([2]) for the motive M(χ):

Theorem 1. Let χ be a critical algebraic Hecke character of L with values in T .
Then the value L(χ, 0) agrees with c+(χ) up to a factor in T .

Previously, the theorem was known if L is a totally real field (due to work of
Euler, Siegel and Klingen), if L is imaginary quadratic (Goldstein-Schappacher)
and more generally when L is a CM-field (Blasius [1]). For arbitrary critical χ, the
result above was announced by Harder-Schappacher ([4]) but details were never
published. For arbitrary number fields L containing a CM-field, Kings-Sprang ([5])
were able to relate the L-value L(χ, 0) to periods of abelian varieties with complex
multiplication by L up to an algebraic integer. This allowed them to establish
Deligne’s conjecture up to a factor in T ⊗ Q. Central to their approach is a novel
construction of equivariant coherent cohomology classes attached to CM abelian
varieties.

2. Sketch of proof

2.1. Outline. It is a key insight of Blasius that one can recover c+(χ) (up to a
factor in T×) in terms of a period construction on a different motive RM(Ξ). The
advantage of this motive is that it admits an alternative description in terms of
abelian varieties with CM by L. This makes it possible to define an element in
RM(Ξ)dR using the aforementioned classes of Kings-Sprang. By reformulating
and extending their results in this context, one shows that the associated period
coincides with the L-value L(χ, 0) and one concludes by using Blasius’ result.

2.2. Blasius’ period relation. Let us fix a number field L containing a CM-field
and a critical algebraic Hecke character χ : A×

L → T×. Then the embeddings σ of
L on which the infinity-type χa of χ takes on negative values form a CM-type Φ
of L (lifted from its maximal CM-subfield) and one can split up χa in the form

χa = β − α,

where α (resp. β) is supported on Φ (resp. Φ) such that α(σ) ≥ 1 and β(σ) ≥ 0
for all σ ∈ Φ. Let E denote the reflex field of (L,Φ) and Φ∗ ∈ IE denote the reflex
CM-type of Φ. Consider the algebraic Hecke character

Ξ = (χ ◦ Φ∗)−1 ·Nd(β)
E/Q · εΦ : A×

E → T×,

where εΦ is a certain sign character attached to Φ.

Theorem 2 (Blasius [1]). Let n = d(α) +d(β). Then dimT F
nRM(Ξ)dR = 1 and

there exists a ”special” 1-dimensional T -subspace ∆ ⊂ RM(Ξ)B⊗Q such that, for
any non-zero elements ω ∈ FnRM(Ξ)dR and δ ∈ ∆, one has

I∞(ω) = (2πi)d(β)c+(χ) · δ mod T×.
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2.3. Relation to CM abelian varieties. Let F/E be a finite extension and
A/F an abelian variety of CM-type (L,Φ) with CM-character ψ : A×

F → L×. The
dual abelian variety A∨ canonically acquires a CM-structure from A and has CM-
character ψ. Comparing infinity-types, we see that for sufficiently large F/E, one
has

Ξ ◦NF/E = ψαψβ .

Here it is necessary to also enlarge the field of values T suitably. This is no problem
since Deligne’s conjecture is invariant under extension of coefficients. Extending a
technique of Goldstein-Schappacher ([3]) to motives, the above identity allows to
recover M(Ξ) as a direct summand in

RF/E(h1(A)α ⊗T h1(A∨)β)

Here h1(A)α is constructed from h1(A) and a motive for the Hecke character ψα.
By construction, one can attach to every γ ∈ h1(A)B an element γα ∈ h1(A)αB .

2.4. Relation to L-values. For every σ ∈ JF , let γσ ∈ h1(Aσ)B be an L-basis
and let γ∨σ ∈ h1(Aσ,∨)B denote dual basis with respect to the canonical pairing
h1(Aσ) ⊗ h1(Aσ,∨) → 2πiL. The following theorem uses results of Kings-Sprang
as the main input and reformulates them in our context:

Theorem 3. There is a class EK ∈ Fn(h1(A)α ⊗ h1(A∨)β)dR such that

I∞(EKσ) = tσ · (2πi)d(β)(L(ι ◦ χ, 0)ι|E=σ|E · (γασ ⊗ (γ∨σ )β),

where tσ ∈ T× is a certain factor (depending on the choice of γσ’s).

Consider the image of EK in RM(Ξ)dR and simply denote it by EK again. The
above theorem then implies

I∞,RM(Ξ)(EK) =
∑

σ∈JF

I∞(EKσ) = (2πi)d(β) · L(χ, 0) · δ

for an element δ ∈ RM(Ξ)B ⊗ Q. Finally, one checks that δ lies in the special
subspace ∆ from Blasius’ Theorem.
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On the geometry of integral models of Shimura varieties of
abelian type

Yujie Xu

The construction of smooth (resp. normal) integral models of Shimura varieties
plays an important part in number theory. In this report, we discuss some recent
advancements on the geometry of integral models of Shimura varieties of abelian
type. Such results as Theorems 4 and 5 have been useful in various aspects of
number theory, e.g. in the construction of p-adic L-functions using Euler systems
(see for example [24]), in the arithmetic intersection theory of special cycles on
Shimura varieties and their integral models as in the Kudla-Rapoport program
and Gross-Zagier program etc. (see for example [18]).

Let (G,X) be a Shimura datum of Hodge type1, i.e. it is equipped with an
embedding (G,X) →֒ (GSp(V, ψ), S±), where V is a Q-vector space equipped with
a symplectic pairing ψ. The embedding of Shimura data induces an embedding
of Shimura varieties ShK(G,X) →֒ ShK′(GSp, S±) for suitable choices of compact
opens K ⊂ G(Af ) and K ′ ⊂ GSp(Af ). For K ′ sufficiently small, the moduli in-
terpretation of the Siegel modular variety ShK′(GSp, S±) naturally gives rise to
an integral model SK′(GSp, S±). We consider the integral model SK(G,X) of
ShK(G,X) with hyperspecial (resp. parahoric) level structure Kp at p, as con-
structed in [1] (resp. [2]), which is initially defined as the normalization of the
closure of ShK(G,X) inside SK′(GSp, S±). One of the results discussed in this re-
port concerns the author’s recent work [15], which shows that this construction can
be simplified, in that the normalization step is redundant, and that SK(G,X) is
simply the closure of ShK(G,X) inside SK′(GSp, S±). For the precise statements,
see Theorem 4 and Theorem 5.

A key input in the above-mentioned result lies in the author’s recent joint work
with Gleason and Lim [20], which resolves the following long-standing conjecture
(see [22]) on the geometry of affine Deligne–Lusztig varieties, which parametrize
mod p isogeny classes on (global) integral models of Shimura varieties. More pre-

cisely, let (G, b, µ) be a p-adic Shtuka datum, and X
Kp
µ (b) its associated affine

Deligne–Lusztig variety at level Kp. Let I be the Galois group of Q̆p. In [21],

Kottwitz defined a map κG : G(Q̆p) → π1(G)I , which induces the map ωG in
Conjecture 1. We refer the reader to [20] for the precise notations.

Conjecture 1. If (b, µ) is Hodge-Newton irreducible, the following map is bijective

ωG : π0(XKp
µ (b))→ cb,µπ1(G)ϕI

Theorem 1 (Gleason-Lim-Xu). [20] For all p-adic shtuka datum (G, b, µ) and all
parahoric subgroups Kp ⊆ G(Qp), Conjecture 1 holds.

1Since abelian type integral models are built out of Hodge type integral models as building
blocks, most of our results such as Theorems 4 and 5 hold for general abelian type integral
models.
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As a corollary, we have the following “CM lifting” theorem on the integral model
SK(G,X), which is an analogue of the classical CM lifting theorem: every abelian
variety over a finite field lifts–up to a finite field extension–to a CM abelian variety
in characteristic zero.

Theorem 2 (Gleason-Lim-Xu). [20] Every mod p isogeny class on SK(G,X) con-
tains a CM-liftable point.

The following corollaries concern the geometry of integral models SK(G,X).

Corollary 1 (Gleason-Lim-Xu). [20] (a) The “almost product structure” of the
Newton strata in SKp,F̄p

(G,X) holds.

(b) Every EKOR stratum in SKp(G,X)Fp
is quasi-affine.

A further consequence of our Theorem 1 is the following result on p-adic uni-
formization. Let Mint

G,b,µ be the local Shimura varieties considered in [23].

Theorem 3 (Gleason-Lim-Xu). [20] Mint
G,b,µ is representable by a formal scheme

MG,b,µ, and we obtain a p-adic uniformization isomorphism of OĔ-formal schemes

Ix(Q)\(MG,b,µ ×G(Apf )/Kp)→ ( ̂SK ⊗OE OĔ)/I(x).

The following result uses Theorem 2 as a key ingredient.

Theorem 4 (Xu). [15, 16] For K ⊂ G(Af ) small enough, there exists some K ′ ⊂
GSp(Af ), such that we have a closed embedding (“the Hodge embedding”)

SK(G,X) →֒ SK′(GSp, S±)

More precisely, the normalization step SK(G,X)
ν−→ S

−
K(G,X) is redundant as

the closure S
−
K(G,X) is already smooth (resp. normal), and the integral model

SK(G,X) has a moduli interpretation inherited from that of SK′(GSp, S±).

In particular, the Hodge morphism is a closed embedding in the PEL case2,
where we consider integral models constructed in [3] (resp. [4]). For the result
in that case, see [16] for details. Note that, in this case, finiteness of the Hodge
morphism follows from finiteness of certain fppf-cohomology, see [17] for details.

In the general Hodge type case, the mod p points of the integral model SK(G,X)
can be interpreted as abelian varieties equipped with certain “mod pHodge cycles”,
which come from reduction mod p of Hodge cycles in characteristic zero. These
mod p Hodge cycles are indeed motivated cycles in characteristic p in the sense
of [7–9]. We denote the mod p Hodge cycle at a mod p point x ∈ SK(G,X) by
a tuple (sα,ℓ,x, sα,cris,x), which is determined by either its ℓ-adic étale component
sα,ℓ,x or its cristalline component sα,cris,x (see Proposition 1). This is analogous to
the case of Hodge cycles in characteristic 0, which are determined by either their
étale components or their de Rham components [10].

More specifically, let S
−
K(G,X) be the closure of ShK(G,X) in SK′(GSp, S±).

By a criterion in [5] (resp. [6]), two mod p points x, x′ ∈ SK(G,X)(k) that have the

2This terminology can cause ambiguity. The reader should note that we mean Kottwitz’
(hyperspecial) or Rapoport-Zink’s (parahoric) PEL moduli problem.
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same image in S
−
K(G,X)(k) are equal if and only if sα,cris,x = sα,cris,x′ . Therefore,

to show that the normalization morphism is an isomorphism, it reduces to proving
the following statement on cohomological tensors:

Proposition 1 (Xu). [15] sα,ℓ,x = sα,ℓ,x′ =⇒ sα,cris,x = sα,cris,x′ .

By the CM lifting result, i.e. Theorem 2, these cohomological tensors lift, up
to G-isogenies, to Hodge cycles on CM abelian varieties. A key observation is
that when two mod p points x, x′ ∈ SK(G,X)(k) map to the same image in
S
−
K(G,X)(k), they can be CM-lifted using the same torus, whose cocharacter

induces the filtration on the Dieudonné modules D(Ax) = D(Ax′) which then
identifies the filtrations on the Dieudonné modules associated to CM-liftable mod
p points, giving rise to an isogeny in characteristic zero between the two CM lifts.
This observation allows us to match up the mod p cristalline tensors using the
input from ℓ-adic étale tensors, precisely due to the rationality of Hodge cycles in
characteristic zero and the existence of an isogeny lift in characteristic zero.

It is worth pointing out that, in the case where the aforementioned cohomologi-
cal tensors are algebraic–for example, at points where the Hodge conjecture is true–
the family of Hodge cycles (tensors) sα that naturally lives over the Hodge type
integral model SK(G,X) becomes a flat family of algebraic cycles over SK(G,X).
In this case, sα,ℓ,x = sα,ℓ,x′ implies that the two algebraic cycles corresponding
to the two ℓ-adic cycles are ℓ-adic cohomologically equivalent, hence numerically
equivalent, and we only need to show that they are also cristalline-cohomologically
equivalent. Recall that the Grothendieck Standard Conjecture D says that nu-
merical equivalence and cohomological equivalence agree for algebraic cycles. The
proof of 1 thus follows from a cristalline realisation of this Standard Conjecture
D, for points on the integral model of Hodge type and their associated cristalline
tensors, which are mod p Hodge cycles. Our result essentially establishes, uncon-
ditionally, rationality for mod p Hodge cycles that live on mod p points of Hodge
type Shimura varieties. In general, without the algebraicity of sα, Proposition
1 is essentially an instance of a conjecture due to Yves André on the rationality
of motivated cycles in characteristic p > 0 [7, 9], which has implications for the
Tannakian category constructed by Langlands-Rapoport [11].

Finally, we state the following analogue of Theorem 4 for toroidal compactifi-
cations of integral models of Hodge type constructed in [12] (the PEL cases were
constructed earlier in [13]). Combining Theorem 4 with an analysis as in [14] on
the boundary components of toroidal compactifications, one obtains the following
result, a special case of which has been used in [24] to construct Euler systems.

Theorem 5 (Xu). [15] Let (G,X) be a Shimura datum of Hodge type. For each
K ⊂ G(Af ) sufficiently small, there exist collections Σ and Σ′ of cone decomposi-
tions, and K ′ ⊂ GSp(Af ), such that we have a closed embedding of toroidal com-

pactifications of integral models SΣK(G,X) →֒ SΣ
′

K′(GSp, S±) extending the Hodge
embedding of integral models.
In particular, the normalization step is redundant, and SΣK(G,X) can be con-

structed by simply taking the closure of ShK(G,X) inside SΣ
′

K′(GSp, S±).
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Special values of Zeta functions and Deligne cohomology

Matthias Flach

The main topic of the talk was a construction in homological algebra: Gluing the
solid and liquid categories of Clausen and Scholze [4]. The motivation for such a
construction comes from Deligne cohomology and its role in describing values of
Zeta functions.

1. Motivation: Deligne cohomology and Zeta values

Let X be a regular scheme, proper and flat over Spec(Z). One has the Beilinson
regulator

Bn : RΓ(X ,Z(n))→ RΓD(X/R,Z(n))

from motivic cohomology to Deligne cohomology. This map is important in de-
scribing Zeta-values. For example:

Theorem 1. (Borel) Let X = Spec(OF ) for a number field F and n ≥ 2. Then
coker(Bn) has compact cohomology groups and ζF (n) ∼Q× covol(Bn).

In particular one should view RΓD(X/R,Z(n)) as an object of the derived cat-

egory of locally compact abelian groups Db(LCA) [3]. This category was also
used in [1], [2] to formulate a conjecture describing ords=n ζ(X , n) and ζ∗(X , n) ∈
R×/{±1} for any X and any n ∈ Z (under some assumptions). To make progress
on these conjectures one wants to view Deligne cohomology as a variant of motivic
cohomology which takes into account the topology of the base field R or C. The
definition of RΓ(X ,Z(n)) in terms of algebraic cycles (higher Chow complexes)
seems unsuitable for this goal but the K-theoretic definition

RΓ(X ,Z(n)) ≃ grnMotK(X )[−2n]

has an analogue for Deligne cohomology. One has

RΓD(X/C,Z(n)) ≃ grnMotKD(X/C)[−2n]

where

KD(X/C) := Ktop(X (C)) ×HP (XC) HC
−(XC).

In particular, there is an exact triangle

(1) HC(XC)[1]→ KD(X/C)→ Ktop(X (C)).

The theory of condensed sets of Clausen and Scholze [4], [5] allows to view K(XC)
as a condensed spectrum whose underlying spectrum is however still the usual
algebraic K-theory spectrum. The hope is that a suitably modified K-theory func-
tor will have underlying spectrum KD(X/C). This modified functor should take
values in the category CCC introduced in the next section and the exact triangle
(1) should coincide with (2) in the next section.
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2. Complete complexes of condensed abelian groups

Recall the two full reflective stable subcategories of DCond(Ab) [5]

DLiquid ⊂ DCond(Ab); DSolid ⊂ DCond(Ab)

where Liquid is formed with respect to a fixed parameter 0 < p ≤ 1. For the left
adjoints L≀, L� of these two inclusions we shall also use the notations

M⊗̂R := L≀(M); M� := L�(M)

respectively. We would like to define a smallest full reflective stable subcategory
of DCond(Ab) containing both DLiquid and DSolid. This category will then also
naturally contain Db(LCA) (note that for example R/Z is neither solid nor liquid).
Following the localization theory of presentable categories we make the following
definition.

Definition 1. Let

i : CCC ⊆ DCond(Ab)

be the full subcategory of local objects for the (strongly saturated) class of mor-
phisms S≀ ∩ S� where S≀, resp. S�, is the (strongly saturated) class of morphisms
mapped to equivalences under L≀, resp. L�. We call CCC the ∞-category of
complete complexes of condensed abelian groups.

Remark 1. CCC depends on the same parameter 0 < p ≤ 1 as does Liquid which
we leave implicit.

Proposition 1.
a) The ∞-category CCC is stable and has all limits and colimits. The inclusion

i has a left adjoint L and preserves limits and colimits.

b) The stable ∞-category CCC has a semiorthogonal decomposition

(DSolid, DLiquid)

with associated functorial exact triangle

(2) RHom(R,M)→M →M� →
for all objects M of CCC. Here RHom is the internal Hom in DCond(Ab). The
stable ∞-category CCC has another semiorthogonal decomposition

(DLiquid, DSolidc)

with associated functorial exact triangle

(3) M c →M →M⊗̂R→
where DSolidc ⊂ CCC is a full stable subcategory equivalent but not equal to
DSolid.

c) The ∞-category CCC has a symmetric monoidal structure ⊗̂ preserving col-
imits in both variables, and so that the localization functor

L : DCond(Ab)→ CCC
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is symmetric monoidal. The inclusion

DLiquid ⊂ CCC

is symmetric monoidal.

d) The stable ∞-category CCC has a t-structure so that L is right t-exact, the
inclusions

DLiquid ⊂ CCC, DSolid ⊂ CCC

are t-exact and CCC♥ is generated under colimits and extensions by objects LZ[S]

for S profinite. If M ∈ CCC♥ then πi(M) = 0 for i 6= 0,−1. If M ∈ CCC♥ and
π0(M) = 0 then M = 0.

e) Define

CCond(Ab) := CCC∩Cond(Ab).

Then CCond(Ab) is an additive subcategory of CCC♥ containing Solid and Liquid.
Denoting by πcci the homotopy object for the t-structure in d) there is a natural
transformation

ηi : πi → πcci

for any i ∈ Z. For M ∈ CCC and i ∈ Z the following are equivalent

i) πi(M)→ πcci (M) is an equivalence
ii) πcci+1(M), πcci (M) ∈ CCond(Ab)

iii) πi(M) ∈ CCond(Ab)

Denote by

D CCond(Ab) ⊆ CCC

the full subcategory of objects satisfying i)-iii) for all i ∈ Z. Then D CCond(Ab)
is an additive subcategory of CCC containing DSolid and DLiquid.

f) There are fully faithful embeddings

LCA ⊂ CCond(Ab), Db(LCA) ⊂ D CCond(Ab)

where LCA denotes the category of locally compact abelian groups and Db(LCA)
was defined in [3]. If A• and B• are bounded complexes of locally compact abelian
groups of finite ranks in the sense of [3][Def. 2.6] there is an isomorphism

A•⊗̂B• ∼−→ A• ⊗LHS B•

where ⊗LHS was defined in [3][Rem. 4.3]. If A,B ∈ LCA have finite ranks and

π0(A⊗̂B) ∈ LCA

then π0(A⊗̂B) ≃ A⊗HS B where A ⊗HS B denotes the underived tensor product
defined in [3][Def. 3.13].

Example 1. If M is a commutative Lie group with tangent space T∞M then (2)
canonically identifies with the exponential triangle

T∞M
exp−−→M →M� →
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associated to M . This follows from the fact that continuous homomorphisms be-
tween Lie groups are automatically analytic together with

Homan(R,M) ≃ T∞M.

Moreover, M� ≃ K(π0M, 0) × K(π1M, 1) is a perfect complex of abelian groups
representing the homotopy type of M under the Dold-Kan equivalence.
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The nonvanishing of Selmer groups of certain symplectic
Galois representations

Samuel Mundy

Fix a prime p. For an integer n ≥ 1, let Gn denote the split orthogonal group
SO(n, n+ 1). Let π be a cuspidal automorphic representation of Gn which is dis-
crete series at infinity. Assuming the validity of the main results of Arthur’s
book [1], one can attach to π a continuous, semisimple Galois representation
ρπ : GQ → GL2n(Qp) such that ρπ ∼= ρ∨π (1), and such that ρπ factors through

GSp2n(Qp). Normalized this way, the center of the functional equation for the
L-function L(s, ρπ) is s = 0.

Write ρ for half the sum of positive roots forGn (with respect to a fixed pinning),
and χπ∞

for (the dominant weight which represents) the infinitesimal character of
the archimedean component π∞ of π. Also write λ0 = χπ∞

− ρ. The following is
our main theorem, which depends on [1] in several ways.

Theorem. Assume that the weight λ0 is regular, that the order of vanishing
ords=0 L(s, ρπ) is odd, and that π is unramified at p and 2. Then the Bloch–Kato
Selmer group H1

f (Q, ρπ) is nonzero.

We remark that this is in accordance with the Bloch–Kato conjectures, which
in this case predict that

ords=0 L(s, ρπ) = dimQp
H1
f (Q, ρπ).

We also remark that when n = 1, this theorem is a consequence of the work of
Skinner–Urban [5], whose general method underlies the proof of our main theorem.
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We now discuss some aspects of the proof of this theorem. The main point is to
construct congruences between Eisenstein series built from π and cusp forms. To
this end, let M = GL1 ×Gn, which is a Levi subgroup of the parabolic subgroup

P =







t ∗ ∗

g ∗
t−1




∣∣∣∣∣∣
t ∈ GL1, g ∈ Gn



 .

of Gn+1. Let e1 : M → GL1 be the projection. Then we let Π be the unique
irreducible quotient of the (unitary) parabolic induction

Ind
Gn+1(A)
P (A) (|e1|1/2 ⊗ π).

We would like to p-adically deform Π into a generically cuspidal family of co-
homological automorphic representations of Gn+1. The cohomological properties
of Π itself are described in the theorem below.

For a dominant weight λ, let Vλ be the representation of Gn+1(C) of highest
weight λ. This determines local systems on the locally symmetric spaces attached
to Gn+1, and we consider their cohomology now. Let K∞ denote a maximal
compact subgroup of Gn+1(R), and let

Hi(X̃, λ) = lim−→
Kf⊂Gn+1(Af )
open compact

Hi(Gn+1(Q)\Gn+1(A)/KfK∞),

which is naturally a Gn+1(Af )-module.

Theorem. If ords=0 L(s, ρπ) is odd, then the finite part Πf of Π occurs in

Hi(X̃, λ0) N times, where N =
(
n+1
n/2

)
if n is even, and N =

(
n+1

(n+1)/2

)
if n is

odd.

We now describe the p-adic deformation. Fix an embedding Qp ⊂ C. Let

Kp
f ⊂ Gn+1(Apf ) be an open compact subgroup such that Πf has fixed vectors

under Kp
fGn+1(Zp). We define Hp = C∞

c (Kp
f \Gn+1(Af )/Kp

f ,Qp). Let Up be the

commutative algebra of Up-operators for Gn+1(Qp), and define H = Hp ⊗Zp Up.
We single out a particular critical p-stabilization Πcrit

f of Πf . Then using the

machinery of Urban’s eigenvariety [6] we prove the following.

Theorem. There is an affinoid rigid space X over Qp which is finite over a neigh-
borhood of λ0 in the (n + 1)-dimensional weight space of Gn+1, and a Qp-linear
map JX : H → O(X) satisfying the following two properties: First, for general
points x ∈ X(Qp) lying above a regular classical weight λ, we have that x◦JX is an

irreducible summand of the trace of H on cuspidal cohomology, tr(·|H∗
cusp(X̃, λ));

second, there is a point x0 ∈ X(Qp) above λ0 such that x0 ◦ JX contains tr(·|Πcrit
f )

as a summand.

Using this we construct a Galois representation ρX : GQ → GL2n+2(Frac(O(X)))
interpolating those attached to the representations whose traces are given by x◦JX
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for x over general regular classical weights λ. One constructs a lattice L in ρX
such that x0 ◦ L has unique irreducible quotient ρπ. One has either

L ∼




1 ∗ ∗
χcyc ∗1

ρπ


 , or L ∼



χcyc ∗2 ∗

1 ∗
ρπ


 ,

with ∗1 nontrivial. We rule out the second case, in which one can show that ∗2 is
nontrivial; checking Selmer conditions (more on this below) shows that 0 6= ∗2 ∈
H1
f (Q,Qp(1)) = 0, which is a contradiction. Thus we are in the first case, and ∗1

gives a nontrivial class in H1
f (Q, ρ∨π (1)) = H1

f (Q, ρπ).

For ℓ a bad prime for π, let us write (r0, N0) for the Weil–Deligne representation
attached to ρπ|GQℓ

, and for x over general regular classical weights λ, write (r,N)
for the Weil–Deligne representation attached to x ◦ L. Then 0 ⊕ 0 ⊕ N0 ≺ N for
x near x0. (The relation N1 ≺ N2 means that the Zariski closure of the adjoint
orbit of N2 contains N1). To check the Selmer conditions of ∗1 or ∗2 at ℓ, it
suffices to show that 0 ⊕ 0 ⊕ N0 ∼ N (that is, they are conjugate by a matrix
in GL2n+2). Assuming otherwise for sake of contradiction, then using work of
Atobe [2], building on that of Moeglin, which gives explicit descriptions in terms
of Langlands parameters of the Jacquet modules of the ℓ-component Πx,ℓ of the
representation whose trace is x ◦ JX, we show that tr(·| JacL(Qℓ)(Πℓ)) contains
a constituent which limx→x0

tr(·|JacL(Qℓ)(Πx,ℓ)) does not; here, L is the Levi of
Gn+1 which supports a supercuspidal, call it σ, which supports both Πℓ and Πx,ℓ,
and the traces are taken for Hecke operators in the Hecke algebra H(σ) associated
with a type for σ. Such types exists (if ℓ 6= 2) by Miyauchi–Stevens [4].

In fact, Miyauchi–Stevens construct types for Gn+1(Qℓ) which are covers of

those of L(Qℓ). Let H̃(σ) be the Hecke algebra associated with a type for Gn+1

which covers σ. By Bushnell–Kutzko [3], there is a map t : H(σ) → H̃(σ) such
that

tr(f | JacL(Qℓ)(Πx,ℓ)) = tr(t(f)|Πx,ℓ)

for any f ∈ H(σ), and similarly for Πℓ. But the above theorem implies that the
trace of such operators t(f) on Πx,ℓ are analytic in x, which gives the desired
contradiction.
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Rational p-adic Hodge theory for rigid-analytic varieties

Guido Bosco

Let p be a prime number. In this talk, we explained how one can use the con-
densed and solid formalisms, recently developed by Clausen–Scholze, to study the
rational p-adic Hodge theory of general rigid-analytic varieties, without proper-
ness or smoothness assumptions. The study of this subject for varieties that are
not necessarily proper is in part motivated by the desire of finding a geometric
incarnation of the p-adic Langlands correspondence in the p-adic cohomology of
local Shimura varieties.

Let us begin by observing that the p-adic (pro-)étale, de Rham, etc. coho-
mology groups of non-proper rigid-analytic varieties are usually huge. Therefore,
it becomes important to exploit the topological structure that such cohomology
groups carry in order to study them. But, in doing so, one quickly runs into several
topological issues, mainly due to the fact that the category of topological abelian
groups is not abelian. On the other hand, the category of condensed abelian groups
is a nice abelian category, containing most topological abelian groups of interest as
well as new objects that were invisible in the topological world; moreover, Clausen–
Scholze defined a full abelian subcategory of condensed abelian groups, called the
category of solid abelian groups, which play the role of “complete modules”, [4].

Thus, to state our first main result, given a commutative solid ring A, we
denote by Modsolid

A the symmetric monoidal category of A-modules in solid abelian

groups, endowed with the solid tensor product ⊗�

A, and we write D(Modsolid
A ) for

the associated derived ∞-category.
We denote by K a complete discretely valued non-archimedean extension of

Qp with perfect residue field. We fix an algebraic closure K of K and we let

GK := Gal(K/K) denote the absolute Galois group of K. We denote by C := K̂
the completion of K, by OC its ring of integers, and by kC its residue field. We
let Ainf := W (O♭C), we denote by

YFF := Spa(Ainf , Ainf) \ V (p[p♭])

the mixed characteristic punctured open unit disk, and we write B for the con-
densed ring of analytic functions on YFF.

In the following theorem, which relies on results in p-adic Hodge theory pio-
neered by Bhatt–Morrow–Scholze [1] (in particular, on results of Le Bras, [11],
and Česnavičius–Koshikawa, [3]), we state the existence of a cohomology theory
for rigid-analytic varieties over C, which interpolates between other rational p-adic
cohomology theories for such varieties — namely, the rational p-adic pro-étale co-
homology, the Hyodo–Kato cohomology defined by Colmez-Nizio l, [6, §4] (a re-
finement of the de Rham cohomology endowed with a (ϕ,N)-module structure),
and the infinitesimal cohomology over B+

dR, [1, §13], [9] (a deformation of the de

Rham cohomology along the pro-infinitesimal thickening B+
dR → C).
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Theorem 1 ([2], [11]). There exists a cohomology theory for rigid-analytic vari-
eties X over C

RΓB(X)

called B-cohomology, taking values in D(Modsolid
B ), endowed with a filtration

Fil⋆RΓB(X)

and a ϕB-semilinear automorphism

ϕ : RΓB(X)→ RΓB(X)

preserving Fil⋆, and satisfying the following comparison results.

(1) (Pro-étale comparison) Let i ≥ 0. Define the syntomic Fargues–Fontaine

cohomology of X with coefficients in Qp(i) as the complex of D(Modsolid
Qp

)

RΓsyn,FF(X,Qp(i)) := FiliRΓB(X)ϕ=p
i

.

We have a natural isomorphism in D(Modsolid
Qp

)

τ≤iRΓsyn,FF(X,Qp(i))
∼−→ τ≤iRΓproét(X,Qp(i)).

(2) (Hyodo–Kato comparison) Assume X connected and paracompact. We

have a natural isomorphism in D(Modsolid
B )

RΓB(X) ≃ (RΓHK(X)⊗L �

C̆
Blog)N=0

compatible with the action of ϕ, and the action of GK in the case when X
is the base change to C of a rigid-analytic variety over K. Here, we denote
C̆ := W (kC)Qp , we write Blog for the log-crystalline condensed period ring

(endowed with a (ϕ,N,GK)-module structure satisfying BN=0
log = B), and

we denote by

RΓHK(X) ∈ D(ϕ,N)(Modsolid
C̆

)

the Hyodo–Kato cohomology of X, satisfying éh-descent and

RΓHK(X) = RΓcris(XOC/p/W (kC)0)Qp

in the case X has a semistable formal model X over OC .
Moreover, we have a natural isomorphism in D(Modsolid

B+

dR

)

RΓHK(X)⊗L �

C̆
B+

dR ≃ RΓinf(X/B
+
dR)

where the right hand side denotes the infinitesimal cohomology over B+
dR.

(3) (De Rham comparison) Assume X as in (2). We have a natural isomor-

phism in D(Modsolid
B+

dR

)

RΓB(X)⊗L �

B B+
dR ≃ RΓinf(X/B

+
dR)

compatible with the Hyodo-Kato comparison.

If X =X0⊗̂KC with X0/K, we have a natural isomorphism in D(Modsolid
B+

dR

)

RΓinf(X/B
+
dR) ≃ RΓdR(X0)⊗L �

K B+
dR
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compatible with the action of GK , where RΓdR(X0) denotes the éh-de Rham
cohomology of X0, [8] (agreeing with the usual de Rham cohomology in the
smooth case).

We emphasize that the definition of the B-cohomology theory, for which we refer
the reader to [2], is purely in terms of X and it is global in nature, contrary to the
definition of the Hyodo–Kato cohomology which is first defined in the semistable
reduction case and then globalized (using that locally for the éh-topology X has
a semistable formal model, thanks to the alterations of Hartl and Temkin).

Moreover, we remark that Theorem 1 can be reinterpreted in terms of the
Fargues–Fontaine curve FF = YFF/ϕ

Z, thus giving a cohomology theory for rigid-
analytic varieties over C, taking values in filtered solid quasi-coherent complexes
over the Fargues–Fontaine curve, which compares to the rational p-adic pro-étale
cohomology, the Hyodo–Kato cohomology, and the infinitesimal cohomology over
B+

dR.
As a corollary of Theorem 1, we obtain the following result, expressing the

rational p-adic pro-étale cohomology in terms of de Rham data. For smooth rigid-
analytic varieties, a similar result was obtained by Colmez–Nizio l, [6, Theorem 1.1],
by a different method, namely via the syntomic cohomology of Fontaine–Messing
combined with alterations.

Theorem 2. Let X be a connected, paracompact, rigid-analytic variety defined
over K. For any i ≥ 0, we have a GK-equivariant isomorphism in D(Modsolid

Qp
)

τ≤iRΓproét(XC ,Qp(i))

≃ τ≤i fib((RΓHK(XC)⊗L �

C̆
Blog)N=0,ϕ=pi → (RΓdR(X)⊗L �

K B+
dR)/Fili).

We remark that Theorem 2 can be extended to the case X is defined over C,
using the infinitesimal cohomology over B+

dR.
From such general derived comparison results, one can deduce in some special

cases a refined description of the single rational p-adic (pro-)étale cohomology
groups in terms of de Rham data. For X a proper (possibly singular) rigid-
analytic variety over C, we prove in [2] a version of the semistable conjecture
for X ; in the case when X is the base change to C of a rigid-analytic variety X0

defined over K, this result relies on the degeneration at the first page of the Hodge-
de Rham spectral sequence associated to X0 ([12, Corollary 1.8], [8, Proposition
8.0.8]). Another case in which the Hodge-de Rham spectral sequence simplifies
is for smooth Stein spaces, thanks to Kiehl’s acyclicity theorem. In this case, we
show the following theorem which reproves results of Colmez–Dospinescu–Nizio l
[5] (in the semistable reduction case) and Colmez–Nizio l [7].

Theorem 3. Let X be a smooth Stein space over C. For any i ≥ 0, we have a
short exact sequence in Modsolid

Qp

0→ Ωi−1(X)/ kerd→ Hi
proét(X,Qp(i))→ (Hi

HK(X)⊗�

C̆
Blog)N=0,ϕ=pi → 0.
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A recent conjecture of Hansen, [10, Conjecture 1.10], suggests that any local
Shimura variety is a Stein space, therefore Theorem 3 potentially applies to any
such variety.

As a final curiosity, we note that for smooth affinoid rigid spaces, the Hodge-
de Rham spectral sequence simplifies similarly to smooth Stein spaces, thanks to
Tate’s acyclicity theorem. Using this, we prove in [2] a version of Theorem 3 for
smooth affinoid rigid spaces over C of dimension 1; we observe that, in this case,
the de Rham and Hyodo–Kato cohomology groups in the condensed world are
examples of new objects that were invisible in the topological world.
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Duality for p-adic pro-étale cohomology of analytic varieties

Wies lawa Nizio l

(joint work with Pierre Colmez, Sally Gilles)

Let p be a prime. Let K be a finite extension of Qp. Let K be an algebraic closure

of K and let C = K̂ be its p-adic completion; let GK = Gal(K/K). Or analytic
varieties are separated.
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1. Arithmetic duality

We have just finished writing a proof of the following result.

Theorem 1. (Poincaré duality for curves) Let X be a smooth, geometrically irre-
ducible, dagger variety of dimension 1 over K. Then:

(1) There exists a natural trace map of solid Qp-vector spaces

TrX : H4
proét,c(X,Qp(2))

∼→ Qp.

(2) Let i, j ∈ Z. The pairing

Hi
proét(X,Qp(j)) ⊗�

Qp
H4−i

proét,c(X,Qp(2− j)) ∪→ H4
proét,c(X,Qp(2))

TrX−−→Qp[−4]

is perfect, i.e., it induces isomorphisms

γX,i : Hi
proét(X,Qp(j))

∼→ H4−i
proét,c(X,Qp(2− j))∗,

γcX,i : Hi
proét,c(X,Qp(j))

∼→ H4−i
proét(X,Qp(2− j))∗,

where (−)∗ := HomQp
(−,Qp).

Remark 1. (i) If X is a Stein variety over K with an exhaustive covering by affi-
noids {Un}n∈N, Un ⋐ Un+1, then the compactly supported pro-étale cohomology
is defined as

RΓproét,c(X,Qp(j)) := fib(RΓproét(X,Qp(j))→ RΓproét(∂X,Qp(j))),

RΓproét(∂X,Qp(j)) := colimnRΓproét(X \ Un,Qp(j)).

If X is of dimension 1 then RΓproét,c(X,Qp) is the same as Huber’s étale coho-
mology with compact support. We think that this is true in any dimension.

(ii) Let X be a smooth dagger variety over K, of dimension 1. Then if X is
proper the pro-étale cohomology groups are finite; if X is Stein, Hi

proét(X,Qp(j))

is nuclear Fréchet and Hi
proét,c(X,Qp(j)) is of compact type; if X is a dagger

affinoid then it is the opposite.
(iii) If X is Stein, we actually prove a derived duality in D(Qp,�), i.e., the cup

product pairing gives a natural quasi-isomorphism

γX : RΓproét(X,Qp(j))
∼→ D(RΓproét,c(X,Qp(2− j))[4]),

where D(−,Qp) := RHomQp
(−,Qp).

Having that, we get the quasi-isomorphism γX,i above by taking cohomol-
ogy and using the fact that Exts(Hi

proét,c(X,Qp(j)),Qp) = 0, s ≥ 1, because

Hi
proét,c(X,Qp(j)) is of compact type (hence a colimit of Smith spaces, which are

projective solid objects). The quasi-isomorphism γcX,i follows because Hi
proét,c(X,

Qp(j)) is reflexive (in the classical world, in fact).
(iv) In higher dimensions we venture the following conjecture:

Conjecture 1. Let X be a smooth, geometrically irreducible, Stein variety of
dimension d over K. Then:

(1) The cohomology groups Hi
proét(X,Qp(j)) and Hi

proét,c(X,Qp(j)) are nu-
clear Fréchet and of compact type, respectively.
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(2) There exists a natural trace map of solid Qp-vector spaces

TrX : H2d+2
proét,c(X,Qp(d+ 1))

∼→ Qp.

(3) The pairing

RΓproét(X,Qp(j)) ⊗�

Qp
RΓproét,c(X,Qp(d+ 1− j))

∪→ RΓproét,c(X,Qp(d+ 1))
TrX−−→Qp[−2d− 2]

is perfect, i.e., it induces (quasi-)isomorphisms

γX : RΓproét(X,Qp(j))
∼→ D(RΓproét,c(X,Qp(d+ 1− j))[2d+ 2]),(1)

γX,i : Hi
proét(X,Qp(j))

∼→ H2d+2−i
proét,c (X,Qp(d+ 1− j))∗,

γcX,i : Hi
proét,c(X,Qp(j))

∼→ H2d+2−i
proét (X,Qp(d+ 1− j))∗.

We note that the duality (quasi-)isomorphisms (1) hold for X proper, smooth,
and algebraic by Galois descent from the geometric Poincaré duality (proved by
Mann and Zavyalov).

(v) The starting point of our work on arithmetic dualities was the following
computation:

Example 1. Let X = D be the open unit disc. The we compute (noncanonically)

H1
proét(X,Qp(1)) ≃ (O(D)/K)⊕H1(GK ,Qp(1)),

H3
proét,c(X,Qp(1)) ≃ O(∂D)/O(D)⊕H1(GK ,Qp).

These groups are dual via the Galois and coherent duality:

Hi(GK ,Qp) ≃ H2−i(GK ,Qp(1))∗,

H0(D,Ω1
D) ≃ H1

c (D,OD)∗.

We used here that O(D)/K
∼→ H0(D,Ω1

D), O(∂D)/OD
∼→ H1

c (D,OD). We note
that the coherent duality is a K-duality, which can be transformed into Qp-duality
because [K : Qp] <∞.

(vi) Solid versus classical functional analysis. Most of our work could
be done in the set-up of classical functional analysis. We had to pass to the
solid formalism because (a) we needed a well-behaved derived dual (b) we needed
topological Hochschild-Serre spectral sequences.

2. Geometric duality

Our work on geometric dualities is still in progress. We are writing down a proof
of the following result (which works in any dimension):

Theorem 2. (Verdier Duality) Let X be a smooth, Stein rigid analytic variety
over C, connected, dimension d. Then there is a natural quasi-isomorphism

RΓproét(X,Qp(j))
∼→ R HomV S(RΓproét,c(X,Qp(d+ 1− j))[2d],Qp(1)),

where V S is the category of solid Vector Spaces, i.e., v-sheaves of solid Qp-vector
spaces on PerfC .
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The strategy is to pass to syntomic cohomology (via a geometric version of a
comparison theorem), represent syntomic cohomology via a complex of solid quasi-
coherent sheaves on the Fargues-Fontaine curve, prove a Poincaré duality for this
complex, and then project it down to the VS category. The Poincaré duality on
the curve reduces to Hyodo-Kato duality on the whole curve and B+

dR-duality at
infinity (both of which are known). The functional analytic problems can be solved
because all the infinite data “come from the base” and can be “taken out” via a
projection formula.

Remark 2. It is likely that Conjecture 1 will follow from the above theorem via
Galois descent (as is the classical algebraic case)

Reporter: Max Witzelsperger
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