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Abstract. A family F of sets is said to be t -intersecting if jA \ Bj � t for any A; B 2 F . The
seminal Complete Intersection Theorem of Ahlswede and Khachatrian (1997) gives the maximal
size f .n; k; t/ of a t -intersecting family of k-element subsets of Œn� D ¹1; : : : ; nº, together with a
characterisation of the extremal families, solving a longstanding problem of Frankl.

The forbidden intersection problem, posed by Erdős and Sós in 1971, asks for a determination
of the maximal size g.n; k; t/ of a family F of k-element subsets of Œn� such that jA \ Bj ¤ t � 1
for any A;B 2 F .

In this paper, we show that for any fixed t 2 N, if o.n/ � k � n=2 � o.n/, then g.n; k; t/ D
f .n; k; t/. In combination with prior results, this solves the problem of Erdős and Sós for any
constant t , except for the ranges n=2 � o.n/ < k < n=2C t=2 and k < 2t .

One key ingredient of the proof is the following sharp ‘stability’ result for the Complete Inter-
section Theorem: if k=n is bounded away from 0 and 1=2, and F is a t -intersecting family of
k-element subsets of Œn� such that jF j � f .n; k; t/ �O.

�n�d
k

�
/, then there exists a family G such

that G is extremal for the Complete Intersection Theorem, and jF n G j D O.
�n�d
k�d

�
/. This proves a

conjecture of Friedgut (2008). We prove the result by combining classical ‘shifting’ arguments with
a ‘bootstrapping’ method based upon an isoperimetric inequality.

Another key ingredient is a ‘weak regularity lemma’ for families of k-element subsets of Œn�,
where k=n is bounded away from 0 and 1. This states that any such family F is approximately
contained within a ‘junta’ such that the restriction of F to each subcube determined by the junta is
‘pseudorandom’ in a certain sense.
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1. Introduction and statement of results

We write Œn� WD ¹1; : : : ; nº. If X is a set, we write P .X/ for the power set of X , and
we write

�
X
k

�
WD ¹A � X W jAj D kº for the set of all k-element subsets of X . A family

F �P .Œn�/ (i.e., a family of subsets of Œn�) is said to be increasing if A� B 2 F implies
A 2 F , and intersecting if for any A;B 2 F , we have A \ B ¤ ;. For t 2 N, F is said
to be t-intersecting if for any A;B 2 F , we have jA \ Bj � t . A dictatorship is a family
of the form

®
S �

�
Œn�
k

�
W i 2 S

¯
WD Di for some i 2 Œn�, and a t -umvirate is a family of

the form
®
S �

�
Œn�
k

�
W B � S

¯
DW �B , for some B 2

�
Œn�
t

�
. If X is a set, we write Sym.X/

for the symmetric group on X . We say that two families F ;G � P .Œn�/ are isomorphic if
there exists a permutation � 2 Sym.Œn�/ such that G D ¹�.S/ W S 2 F º; in this case, we
write F Š G .

The classical Erdős–Ko–Rado theorem [15] determines the maximal size of an inter-
secting family F �

�
Œn�
k

�
.

Theorem 1.1 (Erdős–Ko–Rado, 1961). Let k < n=2, and let F �
�
Œn�
k

�
be an intersecting

family. Then jF j �
�
n�1
k�1

�
. Equality holds if and only if F is a dictatorship.

This theorem is the starting point of an entire subfield of extremal combinatorics,
concerned with bounding the sizes of families of sets, under various intersection require-
ments on sets in the family. Such results are often called Erdős–Ko–Rado type results. For
more background and history on Erdős–Ko–Rado type results, we refer the reader to the
surveys [10, 26, 55] and the references therein.

Also in [15], Erdős, Ko and Rado showed that for n sufficiently large depending
on k and t , the maximal size of a t -intersecting family F �

�
Œn�
k

�
is
�
n�t
k�t

�
. For general

.n; k; t/ 2 N3, we write f .n; k; t/ for this maximum. The determination of f .n; k; t/
for a general triple .n; k; t/ 2 N3 remained a major open problem for more than three
decades. Frankl [20] conjectured that for any .n; k; t/ 2 N3, there exists r 2 N [ ¹0º
such that the family

Fn;k;t;r WD

²
S 2

�
Œn�

k

�
W jS \ Œt C 2r�j � t C r

³
is a t -intersecting subfamily of

�
Œn�
k

�
of maximal size. For brevity, in what follows we

say that a family F �
�
Œn�
k

�
is a Frankl family if it is isomorphic to some Fn;k;t;r , or

equivalently if there exists a set S 2
�
Œn�
tC2r

�
such that F D ¹A 2

�
Œn�
k

�
W jA\ S j � t C rº.

Following partial results by Frankl [20] and Wilson [61], Frankl’s conjecture was eventu-
ally proved by Ahlswede and Khachatrian [2]:

Theorem 1.2 (Ahlswede–Khachatrian ‘Complete Intersection Theorem’, 1997). Let
n; k; t 2 N, and let F �

�
Œn�
k

�
be a t -intersecting family. Then jF j � maxr jFn;k;t;r j,

and equality holds only if F is isomorphic to Fn;k;t;r for some r � 0. In particular, if
n � .t C 1/.k � t C 1/, then jF j � jFn;k;t;0j D

�
n�t
k�t

�
.
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In 1971, Erdős and Sós (see [14]) raised the question of what happens if the t -
intersecting condition is replaced by the weaker condition that no two sets in F have
intersection of size exactly t � 1.

Problem 1.3 (Erdős–Sós, 1971). For n; k; t 2 N, what is the maximal size g.n; k; t/ of a
family F �

�
Œn�
k

�
such that jA \ Bj ¤ t � 1 for any A;B 2 F ?

In 1980, Frankl [21] showed that g.n; k; t/ � c.k/
�
n�t
k�t

�
provided k � 3t and n is

sufficiently large depending on k and t . Significant progress on this problem was made in
1985 by Frankl and Füredi [25], who showed the following:

Theorem 1.4 (Frankl–Füredi, 1985). For any k; t 2 N such that k � 2t , there exists
n0.k; t/ 2 N such that the following holds. Let n � n0.k; t/, and let F �

�
Œn�
k

�
be such

that jA \ Bj ¤ t � 1 for any A;B 2 F . Then jF j �
�
n�t
k�t

�
. Equality holds if and only if

F is a t -umvirate.

As pointed out by Frankl and Füredi [25], the hypothesis k � 2t in Theorem 1.4 is
necessary, in the sense that g.n; k; t/ >

�
n�t
k�t

�
if k < 2t , for all sufficiently large n. Frankl

proved in [22] that if k < 2t and k � t C 1 is a prime, then g.n;k; t/�
�
n
t�1

��
2k�t
k

�
=
�
2k�t
t�1

�
,

and that equality holds if and only if there exists a Steiner.n;2k � t; t � 1/ system. (Recall
that a Steiner.n; k; s/-system is a family � �

�
X
k

�
, where X is an n-element set, and every

s-element subset of X is contained in exactly one of the sets in � .) Frankl conjectured
in [22] that the hypothesis of k � t C 1 being prime (in the above statement) can be
removed; this remains open, though Frankl and Wilson proved in [27] that the inequality
holds in fact whenever k � t C 1 is a prime power.

In 2007, Keevash, Mubayi and Wilson [45] presented a complete solution of the case
.k D 4; t D 2/, for all n 2 N; this had earlier been resolved for all sufficiently large n
by Frankl [19]. Recently, the second and third authors [46] proved that for any t 2 N,
there exists c D c.t/ > 0 such that g.n; k; t/ D

�
n�t
k�t

�
whenever 1=c � k � cn; the

extremal families in this range are precisely the t -umvirates. However, no general result
was known for k D ‚.n/, and in particular, in any case where the extremal families are
not t -umvirates.

In this paper, we prove the following Ahlswede–Khachatrian type result for the Erdős–
Sós problem, resolving the latter in the case where t is fixed, k=n is bounded away from 0

and 1=2, and n is large.

Theorem 1.5. For any t 2 N and any � > 0, there exists n0.t; �/ 2 N such that the
following holds. Let n� n0.t; �; /, let n;k 2N with �n< k < .1=2� �/n, and let F �

�
Œn�
k

�
be such that no two sets in F have intersection of size t � 1. Then jF j � f .n; k; t/, and
equality holds only if F is isomorphic to Fn;k;t;r for some r � 0.

Combined with the aforementioned previous results, this resolves the Erdős–Sós prob-
lem for all triples .n; k; t/ 2 N3 such that 2t � k � .1=2� �/n and n is sufficiently large
depending on t and �, for any � > 0, giving also a characterisation of the extremal fam-
ilies in these cases. Since Problem 1.3 is trivial for k � .nC t /=2 (as in this case, any
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two distinct sets in
�
Œn�
k

�
have intersection of size at least t ), the only remaining cases are

k < 2t and n=2 � o.n/ < k < .nC t /=2.
Our first main tool in proving Theorem 1.5 is the following sharp ‘stability’ result for

the Ahlswede–Khachatrian theorem, which in itself proves a conjecture of Friedgut [29]
from 2008.

Theorem 1.6. For any t 2 N and any � > 0, there exists C D C.t; �/ > 0 such that the
following holds. Let n; k; d 2 N be such that �n < k < .1=2� �/n, and let F �

�
Œn�
k

�
be

a t -intersecting family such that jF j > f .n; k; t/ � 1
C

�
n�d
k

�
. Then there exists G �

�
Œn�
k

�
isomorphic to some Fn;k;t;r such that jF n G j < C

�
n�d
k�d

�
, where r � C .

Theorem 1.6 is tight, up to a factor depending only on t and �, as evidenced by the
families

Hn;k;t;r;d

WD

²
A 2

�
Œn�

k

�
W jA \ Œt C 2r�j � t C r; A \ ¹t C 2r C 1; : : : ; t C 2r C dº ¤ ;

³
[

²
A 2

�
Œn�

k

�
W jA \ Œt C 2r�j D t C r � 1; ¹t C 2r C 1; : : : ; t C 2r C dº � A

³
for sufficiently large n and d .

Our second main tool in proving Theorem 1.5 is a ‘weak regularity lemma’ for fami-
lies F �

�
Œn�
k

�
, where k=n is bounded away from 0 and 1. This states that such a family

F is approximately contained within a ‘junta’ (i.e., a family depending upon few coordi-
nates) such that the restriction of F to each subcube determined by the junta is ‘pseudo-
random’ in a certain sense. To state it formally, we need some more definitions.

For 0 � k � n, we write � for the uniform measure on
�
Œn�
k

�
, i.e.

�.F / WD jF j=

�
n

k

�
; F �

�
Œn�

k

�
:

For F �
�
Œn�
k

�
and B � J � Œn�, we write F B

J D ¹S nB W S 2 F ; S \ J D Bº �
�
Œn�nJ
k�jBj

�
.

We call these families slices of F .
For J � Œn�, we say that a family J �

�
Œn�
k

�
is a J -junta if there exists a family G �

P .J / such that S 2 J if and only if S \ J 2 G for all S 2
�
Œn�
k

�
. In this case, we say that

F is the J -junta generated by G , and we write J D hG i.
The crucial definition is as follows. For ı > 0 and h 2 N, we say a family F �

�
Œn�
k

�
is .ı; h/-slice-quasirandom if for any J � Œn� with jJ j � h, and any B � J , we have
j�.F B

J /� �.F /j < ı. In other words, for every B � J , �.F B
J / is close to �.F /, which

of course would be the expected value of �.F B
J / if F were a random subset of

�
Œn�
k

�
with density �.F /. (We emphasise that we regard F B

J as a subset of
�
Œn�nJ
k�jBj

�
, and so

�.F B
J / D jF

B
J j=

�
n�jJ j
k�jBj

�
.)

Here, then, is our ‘weak regularity lemma’.
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Theorem 1.7. For any �; ı; " 2 .0; 1/ and h 2 N, there exists j D j.�; ı; h; "/ 2 N and
n0 D n0.�; ı; h; "/ 2 N such that the following holds. Let n � n0, let �n < k < .1� �/n,
and let F �

�
Œn�
k

�
. Then there exist a set J � Œn� with jJ j � j and a subset G � P .J /

such that:

(1) �.F n hG i/ < ":

(2) For eachB 2G , the family F B
J is a .ı;h/-slice-quasirandom family satisfying�.F B

J /

> "=2.

Informally, Theorem 1.7 says that for any family F �
�
Œn�
k

�
, there exists a set J � Œn�

such that the 2jJ j slices ¹F B
J W B � J º can be divided into two ‘types’: ‘good’ slices

for which F B
J is ‘random-like’ and not too small, and ‘bad’ slices, with small total size.

Alternatively, condition (1) says that F is almost contained within the J -junta hG i, and
condition (2) says that for each subcube of the form ¹S � Œn� W S \ J D Bº with B 2 G ,
the restriction of F to that subcube is ‘random-like’ and not too small.

The remainder of this paper is structured as follows. In Section 1.1, we discuss some
related prior work on stability for Erdős–Ko–Rado type theorems. In Section 1.2, we
discuss regularity lemmas in general, and compare some previously known ones with
ours. In Section 1.3, we sketch the methods we will use to prove our main theorems.
In Section 1.4 we describe some follow-up works which use our results. In Section 2
we present some of the known results and techniques which we will use in our proofs
– concerning juntas, influences, shifting, cross-intersecting families, and reduction to the
‘biased measure’ setting. In Section 3, we prove Theorem 1.6, our stability result for the
Ahlswede–Khachatrian theorem. In Section 4, we prove Theorem 1.7, our weak regularity
lemma for hypergraphs of linear uniformity. In Section 5, we prove Theorem 1.5, our main
result on the Erdős–Sós problem. We conclude with some open problems in Section 6.

1.1. Stability for the Erdős–Ko–Rado and Ahlswede–Khachatrian theorems

Over the last fifty years, several authors have obtained stability results for the Erdős–Ko–
Rado (EKR) and the Ahlswede–Khachatrian (AK) theorems. In general, a stability result
asserts that if the size of a family is ‘close’ to the maximum possible size, then that family
is ‘close’ (in an appropriate sense) to an extremal family.

One of the first such results is due to Hilton and Milner [36], who showed in 1967 that
if the size of an intersecting family is very close to

�
n�1
k�1

�
, then the family is contained

in a dictatorship. A similar result for the complete intersection theorem in the domain
n� .k � t C 1/.t C 1/was obtained in 1996 by Ahlswede and Khachatrian [1]. A simpler
proof of the latter result was presented by Balogh and Mubayi [6], and an alternative result
of the same class was obtained by Anstee and Keevash [4].

For families whose size is not very close to the maximum, Frankl [23] obtained in
1987 a strong stability version of the EKR theorem which implies that if an intersect-
ing family F satisfies jF j � .1 � "/

�
n�1
k�1

�
, then there exists a dictatorship Di such that

jF nDi j D O."
log1�p p/

�
n
k

�
, where p � k=n. Frankl’s result is tight and holds not only

for jF j close to
�
n�1
k�1

�
but rather whenever jF j � 3

�
n�2
k�2

�
� 2

�
n�3
k�3

�
. Proofs of some-
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what weaker results using entirely different techniques were later presented by Dinur
and Friedgut [11], Friedgut [29] and Keevash [42]. In [44], Keevash and Mubayi used
Frankl’s result to prove an EKR-type theorem on set systems that do not contain a sim-
plex or a cluster. A different notion of stability for the EKR theorem was suggested by
Bollobás, Narayanan and Raigorodskii [7]; this has been studied in several subsequent
papers (e.g., [5, 9]).

The case of the AK theorem appeared much harder. The first stability result was
obtained by Friedgut [29], who showed in 2008 that for any " �

p
.logn/=n, � > 0 and

�n < k < .1=.t C 1/� �/n, if a t -intersecting F �
�
Œn�
k

�
satisfies jF j � f .n; k; t/.1� "/,

then there exists a t -umvirate G such that jF n G j D Ot;� ."/
�
n
k

�
. The proof of Friedgut

uses Fourier analysis and spectral methods. In [13], the present authors proved a strong
version of Friedgut’s result, which asserts that under the conditions of Friedgut’s theo-
rem, jF n G j D O."log1�p p/

�
n
k

�
(where p � k=n) for some t -umvirate G , and showed

that it is tight by an explicit example. The main technique of [13] is to utilize isoperimetric
inequalities on the hypercube.

All the results described above apply only in the so-called ‘principal domain’ k <
n=.t C 1/, in which the extremal example has the simple structure of a t -umvirate. In
the general case, where the extremal examples are the more complex Frankl families
Fn;k;t;r , no stability result has been obtained so far (to the best of our knowledge). This
situation resembles the history of the ‘exact’ results, where Theorem 1.2 was proved for
k < n=.t C 1/ by Wilson [61] in 1984, but it was 13 more years until the general case
was resolved by Ahlswede and Khachatrian.

The main conjecture stated in Friedgut’s 2008 paper [29] is that his stability result
holds for all �n < k < .1=2 � �/n. To state the conjecture, we need some additional
explanation.

A direct computation shows that for any ˇ 2 .0; 1=2/ and any t 2 N, there
is either a unique value of r or two consecutive values of r that maximize
limn!1

�
jFn;bˇnc;t;r j=

�
n
bˇnc

��
(as n!1). Indeed, it is easy to check that

jFn;k;t;rC1j � jFn;k;t;r j D

�
n � t � 2r � 2

k � t � r

��
t C 2r

t C r

��
.t C r/.k � t � r/

.r C 1/.n � k � r � 1/
� 1

�
I

this quantity is positive if and only if r < .k.t C 1/� n� t2C 1/=.n� 2kC 2t � 2/, and
is zero if and only if r D .k.t C 1/� n� t2 C 1/=.n� 2k C 2t � 2/. Hence, setting k D
bˇnc and taking the limit as n!1, we see that if ..t C 1/ˇ � 1/=.1 � 2ˇ/ 2 N [ ¹0º,
then there are two consecutive values of r that maximize the above limit, namely r D
..t C 1/ˇ � 1/=.1� 2ˇ/DW r� and r D r�C 1; in this case we say that ˇ is singular for t .
If, on the other hand, we have ..t C 1/ˇ � 1/=.1� 2ˇ/ … N [ ¹0º, then there is a unique
value of r that maximizes the above limit, namely r D d..t C 1/ˇ � 1/=.1� 2ˇ/e DW r�;
in this case we say that ˇ is non-singular for t .

We can now state Friedgut’s conjecture.
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Conjecture 1.8 ([29, Conjecture 4.1]). Let t 2 N, let � > 0, let ˇ 2 Œ�; 1=2 � �� be non-
singular for t , let " > 0, and let k D bˇnc. If F �

�
Œn�
k

�
is a t -intersecting family such

that jF j � .1� "/jF .n; k; t; r�/j, then there exists a set B � Œn� of size t C 2r� such that
j¹A 2 F W jA \ Bj � t C r�ºj � .1 �Ot;� ."//jF j. If ˇ is singular for t , then either the
above holds or the corresponding statement for r� C 1 holds.

Theorem 1.6 immediately implies Conjecture 1.8. In fact, Theorem 1.6 implies that
the conclusion of Conjecture 1.8 can be strengthened to j¹A 2 F W jA\Bj � t C r�ºj �

.1�Ot;� ."
log1�ˇ ˇ //jF j (or j¹A 2F W jA\Bj � tC r�C1ºj � .1�Ot;� ."

log1�ˇ ˇ //jF j,
if ˇ is singular for t ). Combining Theorem 1.6 with [13, Theorem 1.5], one obtains a
stability version of the Complete Intersection Theorem for all k < .1=2 � �/n, sharp up
to a constant factor depending only upon t and �.

1.2. Regularity lemmas

Over the last forty years, ‘regularity lemmas’ have been crucial ingredients in a wide
variety of important results in combinatorics. The earliest such lemma is the classical
Szemerédi regularity lemma for graphs [60]. Roughly speaking, this states that the ver-
tex set of any large, dense graph G can be partitioned into a bounded number of parts
V0; V1; : : : ; VN , where V0 is small, jV1j D � � � D jVN j, and for most pairs ¹i; j º 2

�
ŒN �
2

�
,

the induced bipartite subgraph GŒVi ; Vj � of G with parts Vi and Vj is ‘pseudorandom’, in
the sense that for any large subsets A � Vi and B � Vj , e.GŒA;B�/ is close to what one
would expect if GŒVi ; Vj � were a random bipartite graph with the same edge density.

Since Szemerédi proved his celebrated lemma, ‘regularity lemmas’ for a wide variety
of combinatorial structures have been obtained. Broadly speaking, such lemmas state that
a sufficiently large combinatorial structure can be partitioned into a bounded number of
pieces which are ‘random-like’ in the sense that they behave roughly as if they were ‘ran-
dom’ structures of the same density, together with a small amount of ‘waste’ or ‘noise’.

Gowers [33], and independently Rödl and Skokan [58], proved analogues of Sze-
merédi’s regularity lemma for hypergraphs of fixed uniformity. Green [34] proved a reg-
ularity lemma for Boolean functions on Abelian groups; the Zn2 case of this states that
for any f W Zn2 ! ¹0; 1º, there exists a subgroup H � Zn2 of bounded index such that
on most cosets C of H , the restriction of f to C is ‘pseudorandom’ in the sense of hav-
ing small non-trivial Fourier coefficients. Jones [37, Theorem 2] (following unpublished
work of O’Donnell, Servedio, Tan and Wan) and independently Mossel [54, Lemma
5.3] proved variants of the Zn2-case of Green’s regularity lemma, where the subgroup
H is of the form ¹x 2 Zn2 W xi D 0 8i 2 Sº for some S � Œn�, and the notions of
pseudorandomness are somewhat weaker than Green’s. Mossel’s notion of pseudoran-
domness is termed ‘resilience’: a function f W Zn2 ! R is said to be .r; ˛/-resilient if
jEŒf j ¹S D zº� � EŒf �j � ˛ for all S � Œn� with jS j � r and all z 2 ZS2 . Our notion of
pseudorandomness is precisely the analogue of resilience for Boolean functions on

�
Œn�
k

�
.1

1The notion of pseudorandomness used by Jones [37] is stated in terms of the noise operator,
and is somewhat stronger than resilience.
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Our ‘weak regularity lemma’ (Theorem 1.7) is a natural variant of the above results
of Jones [37] and of Mossel [54], for Boolean functions on

�
Œn�
k

�
, where k=n is bounded

away from 0 and 1. In fact, the regularity lemma of Jones can be generalised straightfor-
wardly to the p-biased measure case, and it is not too hard to deduce our weak regularity
lemma from this generalisation. Indeed, given a family F �

�
Œn�
k

�
, one takes p D k=nCp

.logn/=n and applies the aforementioned generalisation to the function

f W ¹0; 1ºn ! Œ0; 1�; x 7!

´
Pr
T2.S.x/k /

ŒT 2 F � if jS.x/j � k;

0 if jS.x/j < k;

where S.x/ D ¹i 2 Œn� W xi D 1º, and the above probability refers to T being chosen
uniformly at random from

�
S.x/
k

�
. We give a different, more self-contained proof of The-

orem 1.7, one which we believe to be more natural. (We remark that it does not seem
possible to deduce Theorem 1.7 from the lemma of Mossel, even though his regularity
lemma applies to the p-biased measure; this is because we require a junta hG i such that
all the slices of F corresponding to G are highly pseudorandom.)

We call Theorem 1.7 a ‘weak regularity lemma’ because, as with the so-called ‘weak
regularity lemma’ of Frieze and Kannan [31], our notion of .�; h/-slice-quasirandomness
does not imply a general ‘counting lemma’ for hypergraphs with a fixed number of edges,
in the sense of [33, 56] (see Remark 4.1). It should be noted, however, that our proof of
Theorem 1.7 gives j; n0 D 2 "" 1=.�O.h/ı2"/, where form > 0, 2 "" m denotes a tower
of twos of height dme. Most known regularity lemmas come with tower-type bounds or
worse, and such bounds have been shown to be necessary in many cases by Gowers [32],
and by Conlon and Fox [8]. One exception is the aforementioned ‘weak regularity lemma’
of Frieze and Kannan, where the bound on the number of parts is only exponential.

Theorem 1.7 can be seen as a ‘regularity lemma’ for hypergraphs of linear uniformity
(i.e., uniformity linear in the number of vertices). We remark that the hypergraph regu-
larity lemmas of Gowers [33] and of Rödl and Skokan [58] do not apply to hypergraphs
of linear uniformity. The notions of ‘pseudorandomness’ in these lemmas are very differ-
ent from ours; unlike ours, both notions admit general ‘counting lemmas’ [33, 56] giving
asymptotic estimates on the number of copies of a hypergraph with a fixed number of
edges in a ‘pseudorandom’ hypergraph.

1.3. Some more details on our proof techniques

Stability for t -intersecting families

We first outline our proof of Theorem 1.6. As in several previous works on stability for
Erdős–Ko–Rado type theorems (e.g., [11,13,29]), it is more convenient for us to work first
with the biased measure on P .Œn�/, rather than with the uniform measure on

�
Œn�
k

�
. Hence,

we first consider t -intersecting families F �P .Œn�/, and seek to maximize their p-biased
measure�p.F /, defined by�p.F / WD

P
S2F p

jS j.1�p/n�jS j. The biased version of the
AK theorem (presented clearly in [16]) is as follows.
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Theorem 1.9 (Biased AK Theorem). Let t 2 N, let 0 < p < 1=2, and let F � P .Œn�/

be a t -intersecting family. Then �p.F / � f .n;p; t/ WDmaxr �p.Fn;t;r /, where Fn;t;r WD

¹S � Œn� W jS \ Œt C 2r�j � t C rº, and equality holds iff F is isomorphic to one of the
Fn;t;r families. In particular, if p < 1=.t C 1/, then �p.F / � �p. QFn;t;0/ D pt , with
equality iff F Š Fn;t;0.

We prove the following stability version of Theorem 1.9.

Theorem 1.10. For any t 2 N and any � > 0, there exists C D C.t; �/ > 0 such that
the following holds. Let p 2 Œ�; 1=2 � ��, and let " > 0. If F � P .Œn�/ is a t -intersecting
family such that �p.F / � f .n; p; t/.1 � "/, then there exists a family G isomorphic to
some Fn;t;r such that �p.F n G / � C"log1�p p .

In particular, if r�

tC2r��1
C � < p < r�C1

tC2r�C1
� � for some r� 2 N, then the above

holds with G Š Fn;t;r� .

Theorem 1.10 is tight up to a factor depending only upon t and �, as evidenced by the
families

QHn;t;r;s

D ¹A � P .Œn�/ W jA \ Œt C 2r�j � t C r; A \ ¹t C 2r C 1; : : : ; t C 2r C sº ¤ ;º

[ ¹A � P .Œn�/ W jA \ Œt C 2r�j D t C r � 1; ¹t C 2r C 1; : : : ; t C 2r C sº � Aº

for sufficiently large n and s. The computation showing this is presented in Section 3.3.
Theorem 1.10 follows from combination of three ingredients:

� A bootstrapping lemma showing that if a t -intersecting F is somewhat close to some
Fn;t;r then it must be very close to that Fn;t;r . More precisely, there exists c > 0 such
that if �p.F n Fn;t;r / > c, and if G is another t -intersecting family which is a small
modification of F , in the sense that �p.F n G / < c=2, then �p.G nFn;t;r / > c. Hence,
there is a ‘barrier’ which one cannot cross while making only small modifications.

� A shifting argument showing that given a t -intersecting family F , one can transform it
into a junta (i.e., a function that depends on only O.1/ coordinates) QF with �p. QF / �
�p.F / by a series of small modifications.

� An observation that if a t -intersecting junta QF satisfies �p. QF / > f .n; p; t/.1 � "/ for
a sufficiently small ", then it must be isomorphic to one of the Fn;t;r ’s.

While the shifting part is based on ‘classical’ shifting arguments summarised in [16], the
bootstrapping relies on an isoperimetric argument [13]. It seems that the combination of
the classical shifting tools with isoperimetry is the main novelty of the proof.

Next, we deduce Theorem 1.6 from Theorem 1.10. For this, we first use a standard
reduction from the k-uniform setting to the biased-measure setting to obtain a ‘weak’
stability theorem for t -intersecting families of k-element sets. Then, we ‘bootstrap’ this
weak stability result to obtain Theorem 1.6, using an argument introduced in [13], relying
on the Kruskal–Katona theorem and some extremal results on cross-intersecting families.
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Our weak regularity lemma

In common with many other regularity-type results, the proof of our ‘weak regularity
lemma’ (Theorem 1.7) uses a potential argument. We define a non-positive potential func-
tion � W P .

�
Œn�
k

�
/ �P .Œn�/! Œ�1=e; 0� such that

� �.F ; S/ � �.F ; S 0/ if S � S 0;

� if k=n is bounded away from 0 and 1, then for any F �
�
Œn�
k

�
and any S � Œn�, either

there exists an S -junta G � P .S/ such that G satisfies the conclusion of Theorem 1.7
(with J D S ), or there exists a set S 0 � S that is not much larger than S such that
�.F ; S 0/ is significantly larger than �.F ; S/.

Using our potential function �, we prove the existence of a junta satisfying the con-
clusion of Theorem 1.7 as follows. We start by setting S D ;. By the second property
of �, either there exists an S -junta GS � P .S/ such that G satisfies the conclusion of
Theorem 1.7 (with J D S ), or else there exists a set S 0 � S that is not much larger than S
such that �.F ; S 0/ is significantly larger than �.F ; S/. In the former case, we are done;
in the latter case, we replace S by S 0 and repeat. Since � is bounded from above by 0, the
former case must occur after a bounded number of steps.

Roughly speaking, our proof yields a sequence of juntas (depending on successively
larger, nested sets of coordinates) approximately containing F . At each stage, we have
a set S of coordinates and an S -junta JS approximately containing F . If a significant
part of the mass of F lies in subcubes (determined by S ) on which F is not sufficiently
random-like, then � may be increased by a significant amount. When � stops increasing
by a significant amount, we have our required junta.

The function � is entropy-related, so loosely speaking, our method can be viewed
as an ‘entropy-increment’ strategy, as opposed to the more common ‘energy-increment’
strategy. The former turns out to be slightly cleaner in our case, but the exact choice of � is
not particularly important, as we do not seek to optimise j D j.�; ı;h; "/ in the conclusion
of Theorem 1.7.

Families with a forbidden intersection: A stability result and an exact result

Given a family F �
�
Œn�
k

�
that contains no two sets with intersection of size t � 1 (where

k=n is bounded away from 0 and 1), we first apply Theorem 1.7 to find a junta J D hG i

such that F is approximately contained within J, and for each B 2 G , the family F B
J is

highly slice-quasirandom and not too small. Next, we prove a lemma about pairs of slice-
quasirandom families (Lemma 4.5): if k=n and l=n are bounded away from 0 and 1=2,
then for any pair A �

�
Œn�
k

�
and B �

�
Œn�
l

�
of highly slice-quasirandom families which

are not too small, and for any fixed t 2 N, there exist A 2 A and B 2 B such that
jA \ Bj D t � 1. In other words, slice-quasirandomness allows one to achieve any fixed
intersection size. (We prove this by using the slice-quasirandomness property to reduce
to the case t D 1, i.e., to a statement about cross-intersecting families; this can be tackled
using known techniques, again translating from the uniform setting to the biased-measure
setting.)
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We use Lemma 4.5 to show that the junta J must in fact be t -intersecting, so F

is approximately contained within a t -intersecting family (namely, J). It follows that if
F has size close to f .n; k; t/, then the t -intersecting family J also has size close to
f .n; k; t/. We then apply Theorem 1.6 to deduce that J (and therefore F ) is close in
symmetric difference to one of the Frankl families Fn;k;t;r , where r is bounded.

To summarize, the above argument yields a stability result for families with a forbid-
den intersection: if k=n is bounded away from 0 and 1=2, and F �

�
Œn�
k

�
is a family such

that no two sets in F have intersection of size t � 1 and jF j is close to f .n; k; t/, then F

has small symmetric difference with some Fn;k;t;r , where r is bounded. Finally, we can
show that if F is a small perturbation of one of the families Fn;k;t;r (where r is bounded),
then F is smaller than Fn;k;t;r , hence deducing Theorem 1.5 from our stability result.

1.4. Follow-up works

Since the initial version of this paper appeared on the arXiv, our results have been used
in several other papers. Keevash, Lifshitz, Long and Minzer [43] used our stability ver-
sion of the Ahlswede–Khachatrian theorem (Theorem 1.6 above) in their solution of the
‘forbidden intersection problem’ for codes, i.e., subsets of Œm�n, where m � 3 and the
size of the forbidden intersection (t , say) are fixed, and n is sufficiently large depending
on m and t . Filmus [17] used Theorem 1.6 in his proof of a version of the Ahlswede–
Khachatrian theorem over an infinite set of elements (with respect to the biased measure).
Lifshitz [52] used our weak regularity lemma (Theorem 1.7 above) to obtain a bound on
the maximal size of set families without a simplex-cluster.

A few more (related) works which do not make direct use of our techniques should
also be mentioned. In [51], Lifshitz applied the ‘weak regularity lemma strategy’ (exem-
plified by Theorem 1.7) in the more general setting of Turán problems for expanded
hypergraphs. Lee, Siggers, and Tokushige [50] obtained another stability version of the
Ahlswede–Khachatrian theorem, which is incomparable with our Theorem 1.6. Finally,
Kupavskii and Zakharov [49] obtained a major advancement on the Erdős–Sós problem
in the setting where the size of the forbidden intersection increases with n, using the
breakthrough results of Alweiss, Lovett, Wu, and Zhang [3] on the sunflower problem.

2. Prior results and techniques we use

Our proofs use several previous results and techniques from extremal and probabilistic
combinatorics. In this section we present the notation, definitions, and previous results
and techniques that will be used in what follows. As some of the results were not proved
in the form we use them, we present their proofs here for sake of completeness. The reader
may find it helpful to look through this section briefly at first, and then go back to specific
results when they are used.
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2.1. Notation

If F � P .Œn�/, then we write NF WD ¹Œn� n A W A 2 F º, and we write F � WD P .Œn�/ n NF

for the dual of F . For each k 2 Œn� [ ¹0º, the kth layer of F is F \
�
Œn�
k

�
DW F .k/. If

F � P .Œn�/, we define the increasing family generated by F to be

F " D ¹A � Œn� W 9B 2 F with B � Aº;

i.e., it is the minimal increasing family that contains F .
In Sections 2–3.2, we will often regard p 2 .0; 1/ as fixed, and we will sometimes

suppress it from our notation.
For fixed .n; p; t/ with n; t 2 N and 0 < p < 1=2, E will denote the collection of

extremal families for the biased AK theorem corresponding to .n;p; t/ (i.e., the collection
of all t -intersecting F with �p.F / D f .n; p; t/). Note that for any A 2 E and any p 2
Œ�; 1=2 � ��, we have �p.A/ D ‚t;� .1/.

For any F , we denote by �p.F n E/ the ‘minimal distance’ minG2E �p.F n G /.
For k 2 Œn�, .E/.k/ denotes the kth layers of elements of E, i.e., ¹A \

�
Œn�
k

�
W A 2 Eº.

For F �
�
Œn�
k

�
, we denote by jF n .E/.k/j the ‘minimal distance’ minG2.E/.k/ jF n G j.

For B � J � Œn�, we define F B
J WD ¹A � Œn� n J W A [ B 2 F º.

For a fixed c > 0, we say that G is a c-small modification of F if �p.F n G / � c.
A uniform family is a subset of

�
Œn�
k

�
for some k 2 Œn� [ ¹0º. When k is understood,

we will sometimes write � for the uniform measure on
�
Œn�
k

�
, defined by

�.A/ D
jAj�
n
k

� 8A �

�
Œn�

k

�
:

The lower shadow of a uniform family A �
�
Œn�
k

�
is defined as @.A/ WD ¹B 2

�
Œn�
k�1

�
W

9A 2 A with B � Aº.
All logs in this paper are to the base e, unless otherwise indicated by a subscript, e.g.

logb .
We use the (now standard) asymptotic notation, as follows. If f D f .x/ and gD g.x/

are non-negative functions, we write f D O.g/ if there exists C > 0 such that f .x/ �
Cg.x/ for all x. We write f D�.g/ if there exists c > 0 such that f .x/� cg.x/ for all x,
and we write f D‚.g/ if f DO.g/ and f D�.g/. If f D f .xI˛/ and g D g.xI˛/ are
non-negative functions, then we write f D O˛.g/ if for all ˛, there exists C D C.˛/ > 0
such that f .xI ˛/ � Cg.xI ˛/ for all x. Similarly, we use the notation f D �˛.g/ and
f D ‚˛.g/. (Here, we view ˛ as a parameter; note that ˛ may be vector-valued.)

2.2. The p-biased measure, influences and juntas

Let 0 < p < 1 and let n 2 N. Recall that the p-biased measure on P .Œn�/ is defined by
�p.F / D

P
A2F pjAj.1 � p/n�jAj for all F � P .Œn�/.

Definition. Let F � P .Œn�/ and i 2 Œn�. The set of i -influential elements with respect
to F is

Ii .F / WD ¹S W j¹S; S 4 ¹iºº \ F j D 1º:
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The influence of the i th coordinate on F with respect to �p is Ipi .F / WD �p.Ii .F //. The
total influence of F with respect to �p is Ip.F / WD

Pn
iD1 Ii .F /. When there is no risk

of confusion, we will often suppress p from this notation, writing Ii .F / D I
p
i .F / and

I.F / D Ip.F /.

Influences play an important role in a variety of applications in combinatorics, the-
oretical computer science, mathematical physics and social choice theory (see e.g. the
survey [40]).

We need the following well-known isoperimetric inequality for total influence with
respect to �p; this appears for example in [38].

Theorem 2.1. Let F � P .Œn�/ be an increasing family, and let 0 < p < 1. Then

pIp.F / � �p.F / logp.�p.F //: (1)

We also need the well-known Margulis–Russo lemma (due independently to Margulis
[53] and Russo [59]), which relates the total influence of an increasing family F to the
derivative of the function p 7! �p.F /.

Lemma 2.2 (Margulis–Russo Lemma). Let F � P .Œn�/ be an increasing family and let
0 < p0 < 1. Then

d�p.F /
dp

ˇ̌̌̌
pDp0

D Ip0.F /:

We will use the following consequence of the Margulis–Russo lemma and Theo-
rem 2.1 (this appears e.g. in [35, Theorem 2.38]).

Lemma 2.3. Let F �P .Œn�/ be increasing. Then the function p 7! logp.�p.F // is non-
increasing on .0; 1/.

Proof. Let f .p/ WD logp �p.F / D log�p.F /=logp. We have

df
dp
D

1
�p.F /

d�p.F /
dp logp � 1

p
log�p.F /

.logp/2
D

1
�p.F /

Ip.F / logp � 1
p

log�p.F /

.logp/2
� 0;

(2)
using the Margulis–Russo lemma and (1).

Definition. If J � Œn� and F � P .Œn�/, F is said to be a J -junta if it depends only upon
the coordinates in J – formally, if there exists G � P .J / such that S 2 F if and only if
S \ J 2 G , for all S � Œn�. A family F � P .Œn�/ is said to be a j -junta if it is a J -junta
for some J 2

�
Œn�
j

�
. Note that F � P .Œn�/ is a j -junta if and only if Ii .F /D 0 for at least

n � j coordinates i 2 Œn� (provided 0 < p < 1).

Friedgut’s junta theorem [28] states that a family F � P .Œn�/ with bounded total
influence with respect to the �p measure can be approximated by a junta depending upon
a bounded number of coordinates.
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Theorem 2.4 (Friedgut’s Junta Theorem). For any � > 0, there exists C D C.�/ > 0 such
that the following holds. Let � � p � 1 � �, let " > 0, and let F � P .Œn�/. Then there
exists a j -junta J � P .Œn�/ such that �p.F 4 J/ < ", where j � exp.CIp.F /="/.

Friedgut’s proof of Theorem 2.4 is based upon the Fourier-analytic proof of the Kahn–
Kalai–Linial theorem [39].

We will also need another, simpler relation between influences and juntas: if all influ-
ences of an increasing family are large, then the family must be a junta.

Proposition 2.5. Let F �P .Œn�/ be increasing, let 0<p<1 and let c >0. If mini I
p
i .F /

� c, then n � 1
c2p.1�p/

.

Proof. Let f D
P
S�Œn�

Of .S/�S be the Fourier expansion of the characteristic function
f D 1F , with respect to the measure �p . An easy calculation presented in [57, Proposi-
tion 8.45] shows that

Ip.F / D

nX
iD1

Of .¹iº/p
p.1 � p/

:

By the Cauchy–Schwarz inequality and Parseval’s identity,

Ip.F / D

nX
iD1

Of .¹iº/p
p.1 � p/

�

p
n

qPn
iD1
Of .¹iº/2p

p.1 � p/
�

r
n

p.1 � p/
kf k2 �

r
n

p.1 � p/
:

If mini I
p
i .F / � c, we have cn � Ip.F / �

q
n

p.1�p/
. Rearranging yields the assertion.

Another observation we use is that the measure of a t -intersecting junta F cannot be
‘too close’ to f .n; p; t/, unless F is isomorphic to one of the Fn;t;r families (which are,
of course, juntas).

In what follows, we define Enp;t to be the collection of extremal families for the
biased AK theorem corresponding to the parameters .n; p; t/ (i.e., the collection of all
t -intersecting F � P .Œn�/ with �p.F / D f .n; p; t/).

Proposition 2.6. Let t 2N, let � > 0, and letm 2N. There exists "D ".t; �;m/ > 0 such
that if 0 < p � 1=2 � �, and F � P .Œm�/ is a t -intersecting family satisfying �p.F / �
f .m; p; t/.1 � "/, then F 2 Emp;t .

Proof. By Theorem 1.9, for any r 2 N [ ¹0º and any r
tC2r�1

� p � rC1
tC2rC1

, any t -
intersecting F 2 P .Œm�/ n Em

t;�
satisfies �p.F / < �p.F m

t;r /. Consider the set

Cmr D

²
�q.Fm;t;r / � �q.G / W G 2 P .Œm�/ n Emq;t ; G is t -intersecting;

r

t C 2r � 1
� q �

r C 1

t C 2r C 1

³
:

Asm is fixed, Cmr is compact and all its elements are positive. Hence, cmr D minCmr > 0.
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We have

Œ0; 1=2 � �� �
[̀
rD0

�
r

t C 2r � 1
;

r C 1

t C 2r C 1

�
for some ` D `.t; �/ 2 N. Let " D min0�r�` cmr . It is clear by the choice of " that for all
p 2 .0;1=2� ��, if F �P .Œm�/ is a t -intersecting family with�p.F /� f .m;p; t/.1� "/
> f .m; p; t/ � " then we must have F 2 Emp;t . This completes the proof.

2.3. Shifting

Shifting (also called ‘compression’) is one of the most classical techniques in extremal
combinatorics (see, e.g., [24]).

Definition. For F � P .Œn�/, a set A 2 F , and 1 � j < i � n, the shifting operator �ij
is defined as follows: �ij .A/D .A n ¹iº/[ ¹j º if i 2 A, j … A, and .A n ¹iº/[ ¹j º 62 F ;
and �ij .A/ D A otherwise. We define �ij .F / D ¹�ij .A/ W A 2 F º.

F is called n-compressed if .A n ¹nº/ [ ¹j º 2 F for all A 2 F such that A \ ¹j; nº
D n, i.e., if �nj .F / D F for all j < n; and F is called shifted if �ij .F / D F for all
j < i .

The following properties of the shifting operator are easy to check.

Claim 2.7. Let F � P .Œn�/ be increasing and t -intersecting, and let 0 < p < 1. Then
�ij .F / satisfies the following properties:

(a) �p.�ij .F // D �p.F /;

(b) �p.F n �ij .F // � Ii .F /;

(c) Ii .�ij .F // � Ii .F /, with equality if and only if �ij .F / D F ;

(d) �ij .F / is increasing and t -intersecting.

2.3.1. n-compression by small modifications. The following proposition shows that any
increasing t -intersecting F can be transformed into an n-compressed increasing t -inter-
secting G with�p.G /D�p.F / by a sequence of c-small modifications, where cDIn.F /.

Proposition 2.8. Let 0 < p < 1, and let F � P .Œn�/ be an increasing t -intersecting
family that is not n-compressed. Denote ı D In.F /. Then there exist families F D

F0;F1; : : : ;Fm � P .Œn�/ such that Fm is n-compressed and for each i 2 Œm�,

(a) �p.Fi / D �p.F /;

(b) Fi is increasing and t -intersecting;

(c) �p.Fi�1 n Fi / � ı;

(d) In.Fi / < ı.

Proof. We define Fi inductively. Suppose that Fi�1 is not n-compressed. Then for some
j 2 Œn�, we have �nj .Fi�1/ ¤ Fi�1. We choose such a j arbitrarily and define Fi D

�nj .Fi�1/. By Claim 2.7, Fi satisfies the desired properties. Thus, we only need to show
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that for some m 2 N, Fm is n-compressed. Indeed, by Claim 2.7, In.Fi / is strictly
decreasing (as a function of i ). Since all of ¹In.Fi / W i 2 Nº belong to a finite set of
values, this process cannot last forever.

2.3.2. Increasing the measure by a small modification. Our next goal is to show that if
F is an n-compressed, increasing, t -intersecting family, then it can be transformed to a t -
intersecting G with�p.G / >�p.F / by a c-small modification, where cD In.F /. That is,
if F is already n-compressed, then its measure can be increased by a small modification,
without sacrificing the t -intersection property.

To show this, we need several claims. These claims were proved in [16] under the
assumption that F is shifted, but it turns out that the proof of [16] applies also under the
weaker assumption that F is n-compressed. For the sake of completeness, we present the
claims below.

Lemma 2.9. Let F � P .Œn�/ be a t -intersecting n-compressed family and let a; b 2 Œn�.
LetA 2 F .a/ andB 2 F .b/ be such that jA\Bj D t and n 2A\B . Then aC b D nC t
and A [ B D Œn�.

Proof. It is clearly sufficient to show that A [ B D Œn�. Suppose for a contradiction
that i … A [ B . As F is n-compressed, we have A0 D .A n ¹nº/ [ ¹iº 2 F . However,
jA0 \ Bj D t � 1, contradicting the fact that F is t -intersecting.

The next proposition shows that if an n-compressed t -intersecting family F satisfies
F \ In.F /ª

�
Œn�

.nCt/=2

�
, then the measure of F can be increased by a small modification.

Proposition 2.10. Let 0 < p < 1=2. Let F � P .Œn�/ be an increasing t -intersecting n-
compressed family. Denote In D In.F /. Let a ¤ b 2 Œn� be such that a C b D nC t .
Then the families

G1 WD .F n .In \ F /.a// [ .In n F /.b�1/;

G2 WD .F n .In \ F /.b// [ .In n F /.a�1/

are t -intersecting, and
�p.F / � max ¹�p.G1/; �p.G2/º; (3)

with equality only if G1 D G2 D F .

Proof. We only show that G1 is t -intersecting. Let A; B 2 G1, and suppose for a con-
tradiction that jA \ Bj � t � 1. Hence, either A 2 .In n F /.b�1/ or B 2 .In n F /.b�1/

or both. Assume, without loss of generality, B 2 .In n F /.b�1/. Then B 0 WD B [ ¹nº 2
.In \F /.b/. Note thatA0 WDA[ ¹nº 2F . Indeed, eitherA 2F and thenA0 2F since F

is increasing, or A 2 .In nF /.b�1/ and then A0 2 .In \F /.b/. Since F is t -intersecting,
this implies

t � jA0 \ B 0j � jA \ Bj C 1 � t: (4)

This allows applying Lemma 2.9 to A0; B 0, to get jA0j D a.
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Now, as j.A0 n ¹nº/ \ B 0j D t � 1 and F is t -intersecting, we have A0 n ¹nº … F .
Hence, A0 2 .In \ F /.a/, which yields A0 … G1. As A 2 G1, we must have A D

A0 n ¹nº … F . By the construction of G1, this means that A 2 .In nF /.b�1/, and therefore
jA0j D a D b, a contradiction.

The proof of (3) is a straightforward calculation. Write A1 D .In \ F /.a/ and A2 D

.In \ F /.b/. Suppose without loss of generality that �p.A1/ � �p.A2/. Then

�p.G2/ D �p.F / � �p.A2/C
1 � p

p
�p.A1/ > �p.F /;

as asserted. It is also clear that equality can hold only if A1 D A2 D ;, that is, if G1 D

G2 D F . This completes the proof.

The following proposition complements the previous one by showing that the measure
of an n-compressed t -intersecting F can be increased by a small modification even if
F \ In.F / �

�
Œn�

.nCt/=2

�
. Somewhat abusing notation, we denote by Di a ‘dictatorship’

¹A 2 P .Œn�/ W i 2 Aº.

Proposition 2.11. Let n; t 2 N be such that nC t is even, and let 0 < p < 1. Let F �

P .Œn�/ be an increasing n-compressed t -intersecting family such that In.F / > 0. Denote
a D nCt

2
. For 1 � i � n � 1, let

Gi D .F n .F \ In \Di /
.a// [ .In n .F [Di //

.a�1/:

Then the families Gi are t -intersecting. Moreover, if 0 < p � 1=2 � �, n > t=.2�/ and
.In \ F /.a/ ¤ ;, then

max
i2Œn�1�

�p.Gi / > �p.F /: (5)

Proof. First we prove that for all i , Gi is t -intersecting. Let A;B 2 Gi , and suppose for a
contradiction that jA\Bj � t � 1. DenoteA0 WDA[ ¹nº andB 0 WDB [ ¹nº, and assume
without loss of generality B … F , and hence jB 0j D a and i … B 0.

By the same argument as in the proof of Proposition 2.10, we have A0 2 F \ In. On
the other hand, by Lemma 2.9 (applied for A0; B 0) we have A0 [ B 0 D Œn�, and hence
i 2 A0 and jA0j D a. Thus, A0 2 .F \ In \ Di /

.a/, which implies A0 62 Gi . This is a
contradiction, as A 2 Gi and Gi is increasing.

Now we prove (5). Note that for any i � n � 1, there is a one-to-one correspondence
between the families .In n .F [Di //

.a�1/ and .F \ In \Dc
i /
.a/. Hence,

�p.Gi / D �p.F / � �p..F \ In \Di /
.a//C

1 � p

p
�p..F \ In \Dc

i /
.a//

D �p.F / � �p..F \ In/
.a//C �p..F \ In \Dc

i /
.a//

C
1 � p

p
�p..F \ In \Dc

i /
.a//

D �p.F / � �p..F \ In/
.a//C

1

p
�p..F \ In \Dc

i /
.a//:
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Let Ki WD F \ In \Dc
i . We have

Ei Œ�p.Ki /� D
1

n � 1

n�1X
iD1

X
A2Ki

�p.A/ D
1

n � 1

X
A2.F\In/.a/

X
¹i W i 62Aº

�p.A/

D
n � a

n � 1
�p..F \ In/

.a//:

Thus, there exists i 2 Œn � 1� such that �p.Ki / �
n�a
n�1

�p..F \ In/
.a//. This implies

max�p.Gi / � �p.F /C
n � a � .n � 1/p

.n � 1/p
�p..F \ In/

.a// > �p.F /;

where the last inequality holds since n � a � .n � 1/p > 0 for all n > t=.2�/. This com-
pletes the proof.

Combining Propositions 2.10 and 2.11 we obtain:

Corollary 2.12. Let � > 0, let 0 < p � 1=2 � � and let n 2 N with n > t=.2�/. Let
F � P .Œn�/ be an increasing n-compressed t -intersecting family that depends on the nth
coordinate .i.e., In.F / > 0/. Then there exists a t -intersecting family G � P .Œn�/ such
that �p.G / > �p.F / and �p.F n G / � In.F /.

While G obtained in Corollary 2.12 is t -intersecting, it is not necessarily n-com-
pressed. However, by Proposition 2.8 it can be transformed into an n-compressed fam-
ily QG by a sequence of small modifications, without decreasing the measure. Then Corol-
lary 2.12 can be applied to QG to increase the measure again. As we show in Section 3.2
below, the process can be continued until the nth coordinate becomes non-influential, i.e.,
the effective number of coordinates decreases. Then one may repeat the whole process
with the .n � 1/th coordinate etc., so that ultimately, F can be transformed into a junta
by a sequence of small modifications.

2.4. Reduction from k-element sets to the biased measure setting

As shown in several previous works (e.g., [11, 29]), EKR-type results for t -intersecting
subsets of

�
Œn�
k

�
, for a sufficiently large n, can be proved by reduction to similar results

on the �p measure of t -intersecting subsets of P .Œn�/, for an appropriately chosen p. In
this subsection we present the lemmas required for performing such a reduction for the
stability version of the Ahlswede–Khachatrian theorem.

The reduction (in our case) works as follows. Let F �
�
Œn�
k

�
be a t -intersecting family

with jF j > f .n; k; t/ � "
�
n
k

�
. Recall that F " denotes the increasing family generated

by F (i.e., the minimal increasing family that contains F ). We take p slightly larger
than k=n, and show that

(a) �p.F "/ & jF j

.nk/
> f .n;k;t/

.nk/
� ";
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(b) f .n; p; t/ � f .n;k;t/

.nk/
;

(c) �p.F " n E/ � jF n.E/
.k/j

.nk/
.

This essentially reduces stability for subsets of
�
Œn�
k

�
to stability in the �p setting. We

present now three propositions that justify the ‘�’ in (a)–(c). These propositions, or close
variants thereof, were proved in previous works; as they do not appear in the exact form
we use them, we present the simple proofs here.

The first proposition, which was essentially proved by Friedgut [29], shows that (a)
holds.

Proposition 2.13 (Friedgut). Let ı > 0, let n; k 2 N with k � n, let

k C
p
2n log.1=ı/
n

� p � 1

and let F � P .Œn�/ be increasing. Then

�p.F / �
jF .k/j�
n
k

� .1 � ı/:

Proposition 2.13 can be proved using the following simple corollary of the local LYM
inequality.

Proposition 2.14. Let F � P .Œn�/ be an increasing family. For any 1 � k � m � n, we
have jF .m/j=

�
n
m

�
� jF .k/j=

�
n
k

�
.

Proof of Proposition 2.13. By Proposition 2.14, we have

�p.F / �

nX
mDk

jF .m/j�
n
m

� �p

��
Œn�

m

��
�
jF .k/j�
n
k

� nX
mDk

�p

��
Œn�

m

��
D
jF .k/j�
n
k

� �p.¹S � Œn� W jS j � kº/

�
jF .k/j�
n
k

� .1 � ı/;

where the last inequality follows from the choice of p by a standard Chernoff bound.

The second proposition, proved by Dinur and Safra [12], shows that (b) holds.

Proposition 2.15 (Dinur and Safra). Let j 2 N, �; " 2 .0; 1/, and p 2 Œ�; 1 � ��. There
exist ı0 D ı0."; j / and n0 D n0.j; �; "/ 2 N such that the following holds for all n > n0.
For any k 2 Œ�n; .1� �/n�\N such that jp � k=nj< ı0 and for any j -junta J �P .Œn�/,
we have ˇ̌̌̌

�p.J/ �

ˇ̌
J \

�
Œn�
k

�ˇ̌�
n
k

� ˇ̌̌̌
< ": (6)
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Proof. Assume without loss of generality that J depends only on the coordinates in Œj �.
Since j is fixed, it is sufficient to prove that (6) holds when J D JC WD ¹A � Œn� W

A \ Œj � D C º for any C � Œj �. And indeed,ˇ̌̌̌
�p.J/ �

j¹A 2
�
Œn�
k

�
W A \ Œj � D C ºj�
n
k

� ˇ̌̌̌
D

ˇ̌̌̌
pjC j.1 � p/j�jC j �

�
n�j
k�jC j

��
n
k

� ˇ̌̌̌
D

ˇ̌̌̌
pjC j.1 � p/j�jC j �

k � : : : � .k � jC j C 1/ � .n � k/ � : : : � .n � k C 1 � j C jC j/

n � : : : � .n � j C 1/

ˇ̌̌̌
<

ˇ̌̌̌
pjC j.1 � p/j�jC j �

�
k

n

�jC j�
n � k

n

�j�jC j ˇ̌̌̌
C on!1.1/ < ";

where n0; ı0 can clearly be chosen such that the last inequality holds.

The third proposition, a variant of which was proved by Dinur and Friedgut [11],
shows that (c) holds.

Proposition 2.16 (Dinur and Friedgut). Let j 2 N, �; ı00 2 .0; 1/; and p 2 Œ�; 1 � ��.
There exist C D C.�; j / > 0 and n0.t; �; ı00/ 2 N such that the following holds for all
n > n0 and all k 2 Œ�n; .1 � �/n� \N such that p > kC

p
2n log2
n

. Let F � P .Œn�/ be an
increasing family, and let J be a j -junta such that �p.F n J/ < ı00. Then

j.F n J/.k/j < Cı00
�
n

k

�
:

Proof. Suppose without loss of generality that J depends on the coordinates in Œj �. Since
j is fixed, it is sufficient to prove that for any E … J, we have

j¹A 2 F .k/
W A \ Œj � D Eºj � C 0ı00

�
n

k

�
for some C 0 D C 0.�; j / > 0. We show that

j¹A 2 F .k/
W A \ Œj � D Eºj <

2ı00

pjE j.1 � p/j�jE j

�
n � j

k � jEj

�
; (7)

which is sufficient, as the right hand side of (7) is � C 0ı00
�
n
k

�
by the proof of Proposi-

tion 2.15. Suppose for a contradiction that (7) fails. By Proposition 2.13 (with ı0 D 1=2),
we have

�p.F
E
Œj �/ >

2ı00

pjE j.1 � p/j�jE j
� .1 � 1=2/ D

ı00

pjE j.1 � p/j�jE j
:

Hence, �p.F n J/ � pjE j.1 � p/j�jE j�p.F
E
Œj �
/ > ı00, a contradiction. This completes

the proof.
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2.5. Cross-intersecting families

Definition. Families F ; G � P .Œn�/ are said to be cross-intersecting if A \ B ¤ ; for
any A 2 F and B 2 G .

The first generalization of the Erdős–Ko–Rado theorem to cross-intersecting fami-
lies was obtained in 1968 by Kleitman [47], and since then, many extremal results on
cross-intersecting families have been proved. Such results assert that if F ; G are cross-
intersecting then they cannot be ‘simultaneously large’, where the latter can be expressed
in various ways. We need several such results. The first is a consequence of the Kruskal–
Katona theorem [41, 48].

Lemma 2.17. Let n; k; l 2 N with n � k C l , let r 2 N [ ¹0º, and let A �
�
Œn�
k

�
and

B �
�
Œn�
l

�
be cross-intersecting families. Suppose that jAj �

�
n
k

�
�
�
n�r
k

�
. Then jBj

�
�
n�r
l�r

�
.

Proof. Let NA WD ¹Œn� nA W A 2Aº; then j NAj �
�
n
n�k

�
�
�
n�r
n�k�r

�
. By the Kruskal–Katona

theorem, we have j@n�k�l . NA/j �
�
n
l

�
�
�
n�r
l�r

�
. Since A and B are cross-intersecting, we

have B \ @n�k�l . NA/ D ;. Hence, jBj �
�
n
l

�
� j@n�k�l . NA/j �

�
n�r
l�r

�
, as required.

Straightforward estimates for the binomial coefficients yield the following conse-
quence.

Lemma 2.18. For each � > 0, there exists c D c.�/ > 1 such that the following holds. Let
�n � k1; k2 � .1=2� �/n, and let A�

�
Œn�
k1

�
and B �

�
Œn�
k2

�
be cross-intersecting families.

If �.A/ > 1 � ", then �.B/ D O� ."c/.

The second extremal result we need is a consequence of Lemma 2.3. It was first proved
in [13]; we reproduce the proof here, for completeness.

Proposition 2.19 ([13, Lemma 2.7]). Let 0 < p � 1=2, and let F ;G � P .Œn�/ be cross-
intersecting families. Then �p.F / � .1 � �p.G //log1�p p .

Proof. Since F and G are cross-intersecting, we have F � G �. Hence, �1�p.F / �
�1�p.G

�/ D 1 � �1�p. NG / D 1 � �p.G /. Consequently, by Lemma 2.3, �p.F / �
.�1�p.F //

log1�p.p/ � .1 � �p.G //
log1�p.p/, as required.

Note that equality holds in Proposition 2.19 when F D ¹S � Œn� W B � Sº DW ANDB ,
and G D ¹S � Œn� W B \ S ¤ ;º DW ORB , where B � Œn�.

A special case of Proposition 2.19, with a much simpler proof, is as follows.

Lemma 2.20. If F ;G � P .Œn�/ are cross-intersecting, then

�1=2.F /C �1=2.G / � 1:

Proof. Let A � �1=2. Then �1=2.F / D PrŒA 2 F �. On the other hand, Œn� n A is also
distributed according to �1=2. Therefore, �1=2.G / D PrŒŒn� n A 2 G �. Since the families
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F ;G are cross-intersecting, the events ¹A 2 F º and ¹Œn� nA 2 G º are disjoint. Therefore,

�1=2.F /C�1=2.G /D PrŒA 2 F �C PrŒŒn� nA 2 G �D PrŒ¹A 2 F º [ ¹Œn� nA 2 G º�� 1;

as required.

Before we state the third extremal result, we need a few preliminaries.

Notation 2.21. For X � N, i 2 N and F �
�
X
i

�
, we write L.F / for the initial segment

of the lexicographic order on
�
X
i

�
with size jF j. We say a family C �

�
X
i

�
is lexicograph-

ically ordered if it is an initial segment of the lexicographic order on
�
X
i

�
, i.e., L.C/D C .

The following result was proved by Hilton (see [23, Theorem 1.2]).

Proposition 2.22 (Hilton). If F �
�
Œn�
k

�
and G �

�
Œn�
l

�
are cross-intersecting, then L.F /

and L.G / are also cross-intersecting.

The third extremal result we need on cross-intersecting families is the following, which
was first proved in [13]; we reproduce the proof for completeness.

Lemma 2.23 ([13, Lemma 4.7]). For any �> 0 andC � 0, there exists c0D c0.�;C /2N
such that the following holds. Let n; l; k; d 2 N [ ¹0º with n � .1C �/l C k C c0 and
l � k C c0 � 1. Suppose that A �

�
Œn�
l

�
and B �

�
Œn�
k

�
are cross-intersecting, and that

jAj �

ˇ̌̌̌
ORŒd� \

�
Œn�

l

�ˇ̌̌̌
D

�
n

l

�
�

�
n � d

l

�
:

Then

jAj C C jBj �

�
n

l

�
�

�
n � d

l

�
C C

�
n � d

k � d

�
:

Proof. We use induction on k. For k D 0 the lemma holds trivially. Assume now that
k � 1, and that the statement holds for k � 1. For d D 0, the statement holds trivially,
so we may assume throughout that d � 1. By Proposition 2.22, we may assume that
A and B are lexicographically ordered. Since d � 1, we have jAj �

�
n
l

�
�
�
n�1
l

�
D
�
n�1
l�1

�
,

so A � F
.l/
1 , where F

.i/
1 WD ¹A 2

�
Œn�
i

�
W 1 2 Aº for each i 2 Œn�.

We split into two cases: A D F
.l/
1 and A ¨ F

.l/
1 .

Case 1: AD F
.l/
1 . First note that B � F

.k/
1 . Indeed, suppose on the contrary that B 2B

and 1 … B . Since n� kC l , there exists A 2
�
Œn�
l

�
such that 1 2 A and A\B D ;. Hence,

A 2 F
.l/
1 D A, and A\ B D ;, a contradiction. Hence, we may assume that B D F

.k/
1 .

We must prove that�
n � 1

l � 1

�
C C

�
n � 1

k � 1

�
�

�
n

l

�
�

�
n � d

l

�
C C

�
n � d

k � d

�
8d � 1: (8)

This clearly holds (with equality) if d D 1. To verify it for all d � 2 it suffices to show
that �

n � 1

l � 1

�
C C

�
n � 1

k � 1

�
�

�
n

l

�
�

�
n � 2

l

�
;
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or equivalently

C

�
n � 1

k � 1

�
�

�
n � 2

l � 1

�
:

We have �
n�1
k�1

��
n�2
l�1

� D n � 1

n � k

�
n�2
k�1

��
n�2
l�1

� � 2 .l � 1/.l � 2/ : : : k

.n � k � 1/.n � k � 2/ : : : .n � l/

� 2

�
l � 1

n � k � 1

�l�k
� 2

�
l � 2

l C �l C c � 1

�c�1
�
1

C

provided c0 is sufficiently large depending on � and C , as required.

Case 2: A ¨ F
.l/
1 . If jAj �

�
n�2
l�2

�
, then

jAj C C jBj �

�
n � 2

l � 2

�
C C

�
n

k

�
�

�
n � 1

l � 1

�
�

�
n

l

�
�

�
n � d

l

�
C C

�
n � d

k � d

�
;

where the second inequality holds since�
n
k

��
n�1
l�1

�
�
�
n�2
l�2

� D �
n
k

��
n�1
l�2

� D n

n � k

�
n�1
k

��
n�1
l�2

�
� 2

.l � 2/.l � 3/ : : : .k C 1/

.n � k � 1/.n � k � 2/ : : : .n � l C 2/

� 2

�
l � 2

n � k � 1

�l�k�2
� 2

�
l � 2

l C �l C c � 1

�c�3
�
1

C
;

provided c0 is sufficiently large depending on � and C . Hence, we may assume that�
n � 2

l � 2

�
� jAj �

�
n � 1

l � 1

�
:

Therefore, since A is lexicographically ordered, we have A � ¹S 2
�
Œn�
l

�
W 1; 2 2 Sº.

Hence,B \ ¹1;2º¤; for allB 2B. (If there existsB 2B withB \ ¹1;2ºD;, then since
n� kC l , there existsA 2

�
Œn�
l

�
withA\B D; and 1;2 2A, but the latter impliesA 2A,

a contradiction.) Therefore, since B is lexicographically ordered, we have B � F
.k/
1 .

Observe that

A
¹1º

¹1;2º
� .Œn� n Œ2�/.l�1/ and B

¹2º

¹1;2º
� .Œn� n Œ2�/.k�1/

are cross-intersecting, and trivially jA¹1º
¹1;2º
j �

�
n�2
l�1

�
. Hence, by the induction hypothesis

(which we may apply since n � 2 � .1C �/.l � 1/C .k � 1/C c0 and l � 1 � k � 1C
c0 � 1, choosing d D n � 2), we have

jA
¹1º

¹1;2º
j C C jB

¹2º

¹1;2º
j �

�
n � 2

l � 1

�
;
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and therefore

jAj C C jBj D

�
n � 2

l � 2

�
C jA

¹1º

¹1;2º
j C C

�
n � 1

k � 1

�
C C jB

¹2º

¹1;2º
j

�

�
n � 2

l � 2

�
C

�
n � 2

l � 1

�
C C

�
n � 1

k � 1

�
D

�
n � 1

l � 1

�
C C

�
n � 1

k � 1

�
�

�
n

l

�
�

�
n � d

l

�
C C

�
n � d

k � d

�
;

using (8) for the last inequality. This completes the proof.

We need the following consequence of Lemma 2.23.

Proposition 2.24. Let n;j;M 2N, � 2 .0;1=2/, and let �n� k1;k2 � .1=2� �/n be such
that jk2 � k1j � j . There exists cD c.M;�;j / 2N such that the following holds. Let F ��
Œn�
k1

�
and G �

�
Œn�
k2

�
be cross-intersecting families such that for some d 2 ¹c; cC 1; : : : ;k2º,

we have �
n � d

k2 � d

�
� jG j �

�
n � c

k2 � c

�
: (9)

Then jF j CM jG j �
�
n
k1

�
�
�
n�d
k1

�
CM

�
n�d
k2�d

�
.

Proof. By Lemma 2.22, we may assume that F and G are lexicographically ordered. In
addition, by an appropriate choice of c, we may assume throughout that n � n0 for any
n0 D n0.M; �; j / 2 N.

Consider the families F ;
Œc�

and G
Œc�

Œc�
(for c to be specified below), which are clearly

cross-intersecting. As G is lexicographically ordered, assumption (9) implies G � �Œc�.
Moreover, G

Œc�

Œc�
is also lexicographically ordered, and hence by (9) we have �¹cC1;:::;dº

� G
Œc�

Œc�
. Since F ;

Œc�
cross-intersects G

Œc�

Œc�
, this implies F ;

Œc�
� OR¹cC1;:::;dº, and thus,

jF ;Œc�j �

�
n � c

k1

�
�

�
n � d

k1

�
:

This allows us to apply Lemma 2.23 to the cross-intersecting families

F ;Œc� � .Œn� n Œc�/
.k1/; G

Œc�

Œc�
� .Œn� n Œc�/.k2�c/;

with the parameters n0 D n � c, l 0 D k1, k0 D k2 � c, d 0 D d � c, C 0 DM and �0 D �
provided that c WD c0.�;M/C j , to obtain

jF ;Œc�j CM jG
Œc�

Œc�
j �

�
n � c

k1

�
�

�
n � d

k1

�
CM

�
n � d

k2 � d

�
: (10)

(Note that n0 � .1C �0/l 0 C k0 C c0 provided n0.M; �; j / is sufficiently large.) Finally,
we clearly have

jF j �

�
n

k1

�
�

�
n � c

k1

�
C jF ;Œc�j;
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and assumption (9) implies jG Œc�
Œc�
j D jG j. Therefore, (10) yields

jF j CM jG j �

�
n

k1

�
�

�
n � c

k1

�
C jF ;Œc�j CM jG

Œc�

Œc�
j

�

�
n

k1

�
�

�
n � c

k1

�
C

�
n � c

k1

�
�

�
n � d

k1

�
CM

�
n � d

k2 � d

�
D

�
n

k1

�
�

�
n � d

k1

�
CM

�
n � d

k2 � d

�
;

as asserted.

We also need a ‘stability result’ for cross-intersecting families, giving structural infor-
mation about one of the families, when the other family is somewhat large. A similar
result (with a similar proof) appears in Dinur and Friedgut [11, Lemma 3.2]. One of the
main tools is the biased version of Friedgut’s Junta Theorem (Theorem 2.4).

Lemma 2.25. For any �; " 2 .0; 1/, there exist s D s.�; "/ and n0 D n0.�; "/ 2 N such
that the following holds. Let n � n0, let 0 � k1; k2 � .1=2� �/n, let F �

�
Œn�
k1

�
; G �

�
Œn�
k2

�
be cross-intersecting, and suppose that �.G / � ". Then there exists S � Œn� such that
jS j � s and �.F ¿

S / < "=2.

Informally, this lemma says that if we have a pair of cross-intersecting families of
uniformity bounded away from n=2, and one of the families occupies a positive fraction
of its layer, then all but a small number of the sets in the other family have non-trivial
intersection with some set of bounded size.

Proof of Lemma 2.25. Clearly, the families F " and G" are cross-intersecting. Hence, by
Lemma 2.20, we have

�1=2.F
"/C �1=2.G

"/ � 1:

Therefore, using Proposition 2.13, we have

�1=2.F
"/ � 1 � �1=2.G

"/ � 1 � �.G /C exp.��2n=2/ � 1 � "C exp.��2n=2/

� 1 � "=2

provided n is sufficiently large depending on � and ". Let p D 1
2
.k1
n
C

1
2
/. The Margulis–

Russo Lemma and the Mean Value Inequality imply that there exists q 2 .p; 1=2/ such
that

I q.F "/ D
d�q.F "/

dq
�
�1=2.F

"/ � �p.F
"/

1
2

�
1
2
�
k1
n

� �
2

�
:

By Theorem 2.4, there exists J � Œn� with jJ j D O�;".1/ and a J -junta hH i (i.e.,
H � P .J /) such that �q.F " 4 hH i/ < "2=16. Note also that since q � 1=2, F " is
monotone, and the function x 7! �x.A/ is non-decreasing for any increasing family
A � P .Œn�/, we have

�q.F
"/ � �1=2.F

"/ � 1 � "=2:
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Claim 2.26. �q..F "/¿J / < "=4:

Proof. Suppose for a contradiction that �q..F "/¿J / � "=4. Then

�q.F
"
n hH i/ D

X
B…H

qjBj.1 � q/jJ j�jBj�q..F
"/BJ /

�

X
B…H

qjBj.1 � q/jJ j�jBj"=4 �
"

4
.1 � �q.hH i//

�
"

4

�
1 � �q.F

"/ � �q.hH i n .F
"//
�

�
"

4

�
"

2
�
"2

16

�
>
"2

16
;

a contradiction.

Since .F ¿
J /
" D .F "/¿J , we have

�.F ¿
J / � �q..F

"/¿J /C exp
�
�
1

2

�
�

2
�
j

n

�2
n

�
<
"

2

provided n is sufficiently large depending on �, " and j , using Proposition 2.13 again.
This completes the proof.

3. Proof of our stability result for the Ahlswede–Khachatrian theorem

In this section, we prove Theorem 1.6, our stability result for the Ahlswede–Khachatrian
theorem.

3.1. A bootstrapping lemma

In this subsection, we present a bootstrapping argument showing that if a t -intersecting F

is already ‘somewhat’ close to E, then it must be ‘very’ close to E. We use this argument
to show that there exists a ‘barrier’ in the distance of F from E that cannot be crossed by
performing only small modifications.

Lemma 3.1 (Bootstrapping Lemma). Let t 2 N and let � > 0. Then there exists C D
C.t; �/ > 0 such that the following holds. Let � � p � 1=2� �, let " > 0, let F � P .Œn�/

be a t -intersecting family, and let G 2 E. If

�p.F \ G / � �p.G /.1 � "/;

then
�p.F n G / � C"log1�p p:

Proof. Without loss of generality, we may assume that G D Fn;t;r for some r 2 N. Note
that, since p � 1=2� �, we have r � r0.t; �/ (this argument was already used in the proof
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of Proposition 2.6). Hence, the assumption �p.F \ Fn;t;r / � �p.Fn;t;r /.1 � "/ implies
that for any D 2 F2rCt;t;r , we have

�p.F
D
Œ2rCt�/ � 1 �Ot;� ."/: (11)

It is clear that for eachE …F2rCt;t;r , there existsD 2F2rCt;t;r such that jD \Ej � t � 1.
Since F is t -intersecting, for any such D;E, the families F D

Œ2rCt�
and F E

Œ2rCt�
are cross-

intersecting. By Proposition 2.19 and (11), this implies

�p.F
E
Œ2tCr�/ � .1 � �p.F

D
Œ2rCt�//

log1�p p � .Ot;� ."//
log1�p p D Ot;� ."

log1�p p/:

Therefore,

�p.F n Fn;t;r / D
X

E…F2rCt;t;r

pjE j.1 � p/2rCt�jE j�p.F
E
Œ2rCt�/

� Ot;� ."
log1�p p/

X
E2P Œ2rCt�

pjE j.1 � p/2rCt�jE j D Ot;� ."
log1�p p/:

This completes the proof.

The following corollary shows that in order to prove Theorem 1.10, it is sufficient to
show that as �p.F /! f .n; p; t/, the distance �p.F n E/ is smaller than a sufficiently
small constant c.

Corollary 3.2. Let t 2N and � > 0. There exist positive constants QC ;c;"0 depending only
on � and t such that for any t -intersecting family F � P .Œn�/ and any p 2 Œ�; 1=2� ��, if

�p.F n E/ � c and �p.F / � f .n; p; t/.1 � "/

for some " � "0, then
�p.F n E/ � QC"log1�p p:

Proof. By the assumption on F , there exists G 2 E such that

�p.F \ G / � f .n; p; t/.1 � "/ � c:

Hence, by Lemma 3.1, we have �p.F n E/ � C." C c=f .n; p; t//log1�p p for some
C D C.t; �/. Let c be sufficiently small (as a function of t; �) such that C �
.2c=f .n; p; t//log1�p p � c=2 for all p 2 Œ�; 1=2 � ��. If " > c=f .n; p; t/, then

�p.F n E/ � C."C c=f .n; p; t//log1�p p � C � .2"/log1�p p � QC"log1�p p;

and we are done. Otherwise, we have

�p.F n E/ � C."C c=f .n; p; t//log1�p p � C � .2c=f .n; p; t//log1�p p < c=2:

In such a case, we can repeat the process with the same " and c=2 instead of c. At some
stage, c will become sufficiently small so that " > c=f .n; p; t/, and then (as in the first
case) we have �p.F n E/ � QC"log1�p p , as asserted.
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Finally, we can use the proof of Corollary 3.2 to show the existence of a barrier that
cannot be crossed by small modifications.

Corollary 3.3. Let t 2 N and let � > 0. Let F � P .Œn�/ be t -intersecting, and let p 2
Œ�; 1=2� ��. Let c; "0 be as in Corollary 3.2, and let "1 WD min."0; c=f .n;p; t//. Suppose
that

�p.F / � f .n; p; t/.1 � "1/ and �p.F n E/ > c:

Let G � P .Œn�/ be a t -intersecting family with �p.G / > �p.F / which is a .c=2/-small
modification of F (i.e., �p.F n G / < c

2
). Then

�p.G n E/ > c:

Proof. Suppose for a contradiction that �p.G n E/ � c. By the proof of Corollary 3.2, we
have �p.G n E/ < c=2. This yields

�p.F n E/ � �p.F n G /C �p.G n E/ < c;

a contradiction.

3.2. Proof of Theorem 1.10

Let us recall the statement of Theorem 1.10.

Theorem. For any t 2 N and any � > 0, there exists C D C.t; �/ > 0 such that the
following holds. Let p 2 Œ�; 1=2 � ��, and let " > 0. If F � P .Œn�/ is a t -intersecting
family such that �p.F / � f .n; p; t/.1 � "/, then there exists a family G isomorphic to
some Fn;t;r such that �p.F n G / � C"log1�p p .

Proof. Let c; "1 be as in Corollary 3.3, and let

"2 WD "

�
t; �;max

�
t C 2`.t; �/; t=.2�/;

4

c2p.1 � p/

��
in the notations of Proposition 2.6. Define "3 WD min."1; "2/. Let r WD `.t; �/.

Let F � P .Œn�/ be a t -intersecting family. By replacing F with F ", we may assume
that F is increasing. We may also assume that

�p.F / � f .n; p; t/.1 � "3/:

(There is no loss of generality in this assumption, as C can be chosen such that the theo-
rem holds trivially for all " > "3.) We would like to show that �p.F n E/ � c. This will
complete the proof of the theorem by Corollary 3.2.

We let F0 D F and construct a sequence .Fi / of increasing t -intersecting families
such that each Fi is obtained from Fi�1 by a series of c=2-small modifications. Each
‘step’ in the sequence is composed of compression (using the process of Section 2.3.1) and
measure increase (using the process of Section 2.3.2). The construction of Fi from Fi�1
is defined as follows:



The complete intersection theorem and the forbidden intersection problem 29

(1) If either Fi�1 depends on at most max¹t C 2r; t=.2�/º coordinates, or else

min
j W Ij .Fi�1/>0

Ij .Fi�1/ � c=2;

then stop.

(2) Consider the set of coordinates with non-zero influence on Fi�1. Assume without loss
of generality that this set is Œm�, and that minj2Œm� Ij .Fi�1/ D Im.Fi�1/. Transform
Fi�1 to an m-compressed increasing t -intersecting family Gi�1 with �p.Gi�1/ D
�p.Fi�1/ by a sequence of small modifications (as described in Proposition 2.8).

(3) Transform Gi�1 into an increasing t -intersecting family Fi with �p.Fi / > �p.Gi�1/
by a small modification (as described in Corollary 2.12, which can be applied since
m > t=.2�/) and then taking the up-closure to turn the family into an increasing
family.

We claim that during all the process, all modifications are c=2-small, and that the process
terminates after a finite number of steps.

Indeed, Proposition 2.8 ensures that all modifications in the m-compression process
are Im.Fi�1/-small, and we have Im.Fi�1/ < c=2, as otherwise the process terminates
by (1). Similarly, Corollary 2.12 (which can be applied to Gi�1, since Gi�1 is m-com-
pressed) ensures that the transformation to Fi is an Im.Gi�1/-small modification, and by
Proposition 2.8, Im.Gi�1/� Im.Fi�1/ < c=2. By the construction, the sequence .�p.Fi //
of measures is strictly increasing in i . As the measure of a family Fi �P .Œn�/ can assume
only a finite number of values, the sequence eventually terminates.

Let F` be the last element of the sequence. As the sequence terminated at
the `th step, either F` depends on at most max ¹t C 2r; t=.2�/º coordinates or
else minj W Ij .F`/¤0 Ij .F`/ � c=2. In the latter case, by Proposition 2.5, F` depends
on at most 4

c2p.1�p/
coordinates. Thus, in either case F` depends on at most

max ¹t C 2r; t=.2�/; 4
c2p.1�p/

º coordinates. Since �p.F`/ > �p.F /� f .n;p; t/.1� "3/,
Proposition 2.6 implies that F` 2 E. In particular, �p.F` n E/ D 0 < c.

Now, we unroll the steps of the sequence. As F` was obtained from F`�1 by a c=2-
small modification, Corollary 3.3 implies �p.F`�1 n E/ < c. The same holds for any step
of the sequence, and thus, by (reverse) induction, we get �p.F n E/ D �p.F0 n E/ < c.
As mentioned above, this completes the proof of the theorem by Corollary 3.2.

3.3. Tightness of Theorem 1.10

As mentioned in the introduction, Theorem 1.10 is tight (up to a factor depending upon t
and � alone) for the families

QHn;t;r;s

WD ¹A � P .Œn�/ W jA \ Œt C 2r�j � t C r; A \ ¹t C 2r C 1; : : : ; t C 2r C sº ¤ ;º

[ ¹A � P .Œn�/ W jA \ Œt C 2r�j D t C r � 1; ¹t C 2r C 1; : : : ; t C 2r C sº � Aº
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for all sufficiently large n and s. Here is the computation showing this. Let � � p �
1=2 � �. Choose r 2 N [ ¹0º such that p 2 Œ r

tC2r�1
; rC1
tC2rC1

�; then we have

f .n; p; t/ D �p.Fn;t;r / D

tC2rX
iDtCr

�
t C 2r

i

�
pi .1 � p/tC2r�i (12)

for all n � t C 2r . For all n � t C 2r C s, we have

�p. QHn;t;r;s/ D f .n; p; t/.1 � .1 � p/
s/C

�
t C 2r

t C r � 1

�
ptCr�1.1 � p/rC1ps; (13)

and

�p. QHn;t;r;s n Fn;t;r / D

�
t C 2r

t C r � 1

�
ptCr�1.1 � p/rC1ps : (14)

Note that all the expressions (12)–(14) are independent of n. Moreover, since � < p <

1=2� �, we have r DOt;� .1/ and therefore
�
tC2r
tCr�1

�
ptCr�1.1�p/rC1D‚t;� .1/. Hence,

for all s � s0.t; �/ and all n � t C 2r C s, we have

�p. QHn;t;r;s/ D f .n; p; t/.1 � .1 � p/
s/C‚t;� .1/p

s
� f .n; p; t/

�
1 � 1

2
.1 � p/s

�
;

while �p. QHn;t;r;s n Fn;t;r / D ‚t;� .1/p
s . Writing " WD 1

2
.1 � p/s , we have

�p. QHn;t;r;s/ � f .n; p; t/.1 � "/; �p. QHn;t;r;s n Fn;t;r / D ‚t;� ."
log1�p p/;

which is tight for Theorem 1.10.
We remark that it is very easy to see that the families Hn;k;t;r;d (defined in the Intro-

duction) are tight for Theorem 1.6, for n and d sufficiently large.

3.4. Proof of Theorem 1.6

In this section we present the proof of Theorem 1.6. First, we deduce a ‘weak stability’
result from Theorem 1.10, using the reduction technique presented in Section 2.4. Then,
we use a ‘bootstrapping’ technique similar to that in the proof of Lemma 3.1, to leverage
the weak stability result to the assertion of the theorem.

Proposition 3.4 (Weak stability theorem). Let t 2 N and �; " > 0. There exist C D
C.t; �/ > 0 and n0.t; �; "/ 2 N such that the following holds for all n > n0, all k 2
Œ�n; .1=2 � �/n� \N and p D kC

p
4n logn
n

. Let F �
�
Œn�
k

�
be a t -intersecting family that

satisfies jF j � f .n; k; t/ � "
�
n
k

�
. Then there exists G isomorphic to some Fn;k;t;r such

that jF n G j � C"log1�p p
�
n
k

�
, where r � C .

Proof. Let F ; k and p satisfy the assumption of the proposition, and let F " � P .Œn�/ be
the increasing family generated by F . By Proposition 2.13, for a sufficiently large n,

�p.F
"/ �

�
f .n; k; t/�

n
k

� � "

��
1 �

1

n

�
�
f .n; k; t/�

n
k

� � 2":
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Let Fn;p;t;r 2 E be a family for which the maximal �p measure is attained, i.e.,
�p.Fn;p;t;r /D f .n;p; t/. As p � 1=2� �=2 (which holds assuming that n is sufficiently
large), Fn;p;t;r depends on at most j coordinates for some j D j.t; �/ 2 N. Hence, by
Proposition 2.15,

f .n; p; t/ D �p.Fn;p;t;r / <
jF

.k/
n;p;t;r j�
n
k

� C " �
f .n; k; t/�

n
k

� C ":

Thus, �p.F "/ � f .n; p; t/ � 3". Since F " is t -intersecting, we can apply to it Theo-
rem 1.10 to get

�p.F
"
n QG / � C 0"logp.1�p/

for some QG 2 E and C 0 D C 0.t; �/. Finally, denoting G WD QG .k/, by Proposition 2.16 we
obtain

jF n G j D j.F " n QG /.k/j < C"log1�p p
�
n

k

�
for a sufficiently large C D C.t; �/, as asserted.

Proposition 3.4 shows that the assertion of Theorem 1.6 holds for all n � n0.t; �; "/.
This is not sufficient for Theorem 1.6, in proving which we may only assume n to be
large in terms of t; � (and not in terms of "). However, we can apply Proposition 3.4 with
any moderately small "0.t; �/ > 0 to conclude that for any n � n1.t; �/, if F satisfies
the assumption of Theorem 1.6 then there exists G Š Fn;k;t;r such that jF n G j � "0

�
n
k

�
.

In the proof of Theorem 1.6 below, we use this weak stability version, with "0 chosen in
such a way that we will be able to use Proposition 2.24 to bootstrap the ‘weak stability’
to ‘strong stability’.

Let us recall the formulation of Theorem 1.6.

Theorem. Let n; t; d 2 N, � 2 .0; 1=2/, and k 2 .�n; .1=2 � �/n/. There exists C D
C.t; �/ > 0 such the following holds. Let F �

�
Œn�
k

�
be a t -intersecting family with jF j >

f .n;k; t/� 1
C

�
n�d
k

�
. Then there exists G isomorphic to some Fn;k;t;r such that jF n G j<

C
�
n�d
k�d

�
, where r � C .

Proof of Theorem 1.6. Recall that for fixed t; �, all elements of E are juntas on at most
j D j.t; �/ elements. Denote c D c.2j ; t; �/ in the notations of Proposition 2.24. Let
F be a family that satisfies the assumption of the theorem (with a sufficiently large
C D C.t; �/ > 0 to be specified below). Clearly, we may assume that d � k C 1. By
increasing C if necessary, we may assume that d � d0.t; �/ for any d0.t; �/ 2 N and that
n � n0.t; �/ for any n0.t; �/ 2 N.

Provided n0 D n0.t; �/ is sufficiently large, we have
�
n�c�j
k�c�j

�
D ‚t;� .

�
n
k

�
/. Hence, we

can apply Proposition 3.4 to conclude that there exists G 2 .E/.k/ such that

jF n G j <

�
n � c � j

k � c � j

�
: (15)
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Suppose without loss of generality that G depends only on the coordinates in Œj �, and
denote by G 0 the restriction of G to P .Œj �/ (i.e., G 0 D ¹A\ Œj � W A 2 G º). Let O … G 0 be
such that jF O

Œj �
j is maximal. We would like to show that jF O

Œj �
j �

�
n�d
k�d

�
. This will complete

the proof, as
jF n G j D

X
S2P .Œj �/nG 0

jF S
Œj �j � 2

j
jF O
Œj �j:

Suppose for a contradiction that

jF O
Œj �j >

�
n � d

k � d

�
: (16)

It is clear that there exists I 2 G 0 such that jI \Oj � t � 1. We have

jF j D
X

S2P .Œj �/

jF S
Œj �j � jF

I
Œj �j C 2

j
jF O
Œj �j C

�
jG j �

�
n � j

k � jI j

��
(17)

(where the two last summands are upper bounds on
P
S2P .Œj �/nG 0 jF

S
Œj �
j andP

S2G 0n¹I º jF
S
Œj �
j, respectively). Now, we note that since F is t -intersecting, the fami-

lies F I
Œj �

and F O
Œj �

are cross-intersecting. We have

jF O
Œj �j �

�
n � c � j

k � c � j

�
�

�
n � j � c

k � jOj � c

�
(where the first inequality follows from (15) and the second holds provided n0 D n0.t; �/
is sufficiently large), and on the other hand,

jF O
Œj �j �

�
n � d

k � d

�
�

�
n � j � d

k � jOj � d

�
(where the first inequality follows from (16) and the second holds trivially). Thus, we can
apply Proposition 2.24 to get

jF I
Œj �j C 2

j
jF O
Œj �j �

�
n � j

k � jI j

�
�

�
n � j � d

k � jI j

�
C 2j

�
n � j � d

k � jOj � d

�
:

By (17), this implies

jF j �

�
n � j

k � jI j

�
�

�
n � j � d

k � jI j

�
C 2j

�
n � j � d

k � jOj � d

�
C

�
jG j �

�
n � j

k � jI j

��
D jG j �

�
n � j � d

k � jI j

�
C 2j

�
n � j � d

k � jOj � d

�
� f .n; k; t/ �

1

C

�
n � d

k

�
;

where the last inequality holds for all d0� d � kC 1 and all n� n0 providedC DC.t;�/,
n0 D n0.t; �/ and d0 D d0.t; �/ are all sufficiently large. This contradicts our assumption
on F , completing the proof.
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4. Proof of our weak regularity lemma

In this section we prove Theorem 1.7, our ‘weak regularity lemma’ for hypergraphs of
uniformity linear in the number of vertices. First, we need some preliminaries.

Jensen’s inequality states that for any convex function f WR! R, and for any real-
valued, integrable random variable X , we have

EŒf .X/� � f .EŒX�/: (18)

It turns out that under certain conditions, if inequality (18) is approximately an equal-
ity, then X is ‘highly concentrated’ around its mean. The following is a restatement of
Lemma 7 of Fox [18]; it may be seen as a stability version of Jensen’s inequality for the
function x 7! x log x.

Lemma 4.1. Let � be a finite probability space, let X W�! R�0 be a random variable,
let f WR�0 ! R be the convex function defined by

f .x/ WD

´
x log x; x > 0;

0; x D 0;

and let ˇ 2 .0; 1/. Then

EŒf .X/� � f .EŒX�/C .1 � ˇ C f .ˇ//Pr
�
X � ˇEŒX�

�
EŒX�:

The following is an easy corollary of Lemma 4.1.

Corollary 4.2. Let f be the function in Lemma 4.1. For each �; ı 2 .0; 1/ and C > 0,
there exists �D �.�; ı;C / > 0 such that the following holds. Let� be a finite probability
space, and suppose that Pr.!/ � � for all ! 2�. Let X W�! R�0 be a random variable
such that EŒX� � C and

EŒf .X/� < f .EŒX�/C �:

Then
kX � EŒX�k1 < ı:

Corollary 4.2 says that if Jensen’s inequality (18) is close to being an equality for the
function f and a ‘well-behaved’ random variableX , then the random variableX is highly
concentrated around its mean.

Proof of Corollary 4.2. Let � D �.�; ı; C / > 0 to be chosen later. Suppose that

EŒf .X/� < f .EŒX�/C �;

and suppose for a contradiction that kX �EŒX�k1 � ı. First suppose that min!2�X.!/
� EŒX� � ı. Then

Pr
�
X �

�
1 �

ı

EŒX�

�
EŒX�

�
� �;
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so by applying Lemma 4.1 with ˇ D 1 � ı=EŒX�, we have

EŒf .X/� � f .EŒX�/C

�
ı

EŒX�
C f

�
1 �

ı

EŒX�

��
�EŒX�:

Let 
 WD ı=EŒX�; then 
 2 Œ0; 1�. It is easily checked that


 C f .1 � 
/ � 
2=2 8
 2 Œ0; 1�:

It follows that

EŒf .X/� � f .EŒX�/C
�ı2

2EŒX�
�
�ı2

2C
:

Second, suppose that min!2�X.!/ >EŒX�� ı; then max!2�X.!/�EŒX�C ı. Let

M D min
!2�

X.!/I

then
.1 � �/M C �.EŒX�C ı/ � EŒX�;

so

M � EŒX� �
�ı

1 � �
:

Hence, by the argument above, replacing ı with �ı=.1 � �/, it follows that

EŒf .X/� � f .EŒX�/C
�3ı2

2.1 � �/2C
:

Choosing

� D min
²
�ı2

2C
;

�3ı2

2.1 � �/2C

³
yields a contradiction.

A ‘potential’ argument

The idea of the proof of Theorem 1.7 is to define a non-positive potential function � W
P
��
Œn�
k

��
�P .Œn�/! Œ�1=e; 0� with the following properties:

(1) �.F ; S/ D 0 if and only if F is an S -junta.

(2) If S � S 0 � Œn�, then �.F ; S/ � �.F ; S 0/.

(3) If k=n is bounded away from 0 and 1, then for any F �
�
Œn�
k

�
and any S � Œn�,

either there exist sets B1; : : : Bl � S such that the junta h¹B1; : : : ; Blºi satisfies the
conclusion of Theorem 1.7, or there exists a set S 0 � S that is not much larger than S
and such that �.F ; S 0/ is significantly larger than �.F ; S/. In the latter case, we
replace S by S 0 and repeat; since � is bounded from above by 0, the former case
must occur after a bounded number of steps.

We now proceed to define our potential function �.
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Definition (The .n; k; J /-biased distribution). For each J � Œn�, we define the .n; k; J /-
biased distribution on P .J / by

�.n;k;J /.B/ D Pr
A�.Œn�k /

ŒA \ J D B� 8B � J;

where A �
�
Œn�
k

�
denotes a uniform random element of

�
Œn�
k

�
. We write B � �.n;k;J / if B

is chosen according this distribution.
For F �

�
Œn�
k

�
and J � Œn�, we define ˛BJ WD �.F

B
J / for each B � J . We define our

potential function � W P .
�
Œn�
k

�
/ �P .Œn�/! R by

�.F ; J / D E
B��.n;k;J/

˛BJ log˛BJ 8F �

�
Œn�

k

�
; J � Œn�:

Since �1=e � f .x/ � 0 for all x 2 Œ0; 1�, we have �1=e � �.F ; J / � 0 for all
F �

�
Œn�
k

�
and all J � Œn�; and �.F ; J / D 0 if and only if F is a J -junta. Moreover,

it follows from Jensen’s inequality that �.F ; S/ � �.F ; S 0/ for any S � S 0. We note
the similarity between the definition of � and the definition of the entropy of a random
variable. We note also that the product space analogue of the function � (in the slightly
simpler setting where �.n;k;J / is replaced by a product distribution on P .J /) was consid-
ered by Friedgut and Regev [30], and used in a similar way to in the sequel.

Definition. We say that a family F �
�
Œn�
k

�
is .�; h/-potentially stable if �.F ; J / <

�.F ;¿/C � for all sets J � Œn� with jJ j � h.

We recall from the Introduction the definition of slice-quasirandomness.

Definition. If �> 0 and h2N, we say that a family F �
�
Œn�
k

�
is .ı;h/-slice-quasirandom

if for any J � Œn� with jJ j � h, and any B � J , we have j�.F B
J / � �.F /j < ı.

By virtue of Corollary 4.2, there is a close connection between potential stability and
slice-quasirandomness. Indeed, the following lemma says that if k=n is bounded away
from 0 and 1, then .�;h/-potential stability implies .ı;h/-slice-quasirandomness provided
� is sufficiently small.

Lemma 4.3. For any �; ı > 0 and h 2 N there exist � D �.ı; h; �/ > 0 and n0 D

n0.�; h/ 2 N such that the following holds. Let n � n0, let �n � k � .1 � �/n, and let
F �

�
Œn�
k

�
be .�; h/-potentially stable. Then F is .ı; h/-slice-quasirandom.

Proof. Let F be as in the statement of the lemma, and let � D �.ı; h; �/ > 0 to be cho-
sen later. Let J � Œn� with jJ j � h. Let � D P .J /, and equip � with the probability
distribution �.n;k;J /. Since �n � k � .1 � �/n, we have

Pr.!/ �

�
n�h
d�ne�h

��
n
d�ne

� � ��n � hC 1
n � hC 1

�h
� .�=2/h 8! 2 �

provided n � 2h=�.
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Let X be the non-negative random variable defined by X.B/ D ˛BJ . Then we have
EŒX� D �.F /, f .EŒX�/ D �.F / log�.F / D �.F ;¿/ and EŒf .X/� D �.F ; J /. The
fact that F is .�;h/-potentially stable implies that EŒf .X/� < f .EŒX�/C �. Corollary 4.2
(with � D .�=2/h and C D 1) implies that kX � EŒX�k1 < ı provided � is sufficiently
small depending on ı; h and �. This in turn implies that j�.F B

J / � �.F /j < ı for any
B � J . It follows that F is .ı; h/-slice-quasirandom, as required.

Armed with this lemma, we can now prove Theorem 1.7.

Proof of Theorem 1.7. Let � D �.ı; h; �=2/ be as in the statement of Lemma 4.3, and let
n0 2 N to be chosen later, depending on ı, h, � and ". Given a set S � Œn�, we define a
partition of P .S/ into three parts:

� We let GS � P .S/ be the family of all sets B � S such that �.F B
S / > "=2 and such

that the family F B
S is .�; h/-potentially stable. We call these the ‘good’ sets.

� We let BS � P .S/ be the family of all sets B � S such that �.F B
S / > "=2 and such

that the family F B
S is not .�; h/-potentially stable. We call these the ‘bad’ sets.

� We let ES � P .S/ be the family of all sets B � S such that �.F B
S / � "=2. We call

these the ‘exceptional’ sets.

By Lemma 4.3 (applied with �=2 in place of �), for each B 2 GS , the family F B
S

is .ı; h/-slice-quasirandom provided � is sufficiently small depending on �; ı and h, and
provided n is sufficiently large depending on �, h and jS j. It suffices to show that there
exists a set S of size bounded from above in terms of �; ı; h and " such that �.F n hGS i/
< ". The next claim says that if this does not hold, then S can be replaced by a set S 0 � S
of size at most h � 2jS j such that �.F ; S 0/ is significantly larger than �.F ; S/.

Claim 4.4. For each S � Œn�, either �.F n hGS i/ < ", or else there exists a set S 0 � S
with jS 0j � h2jS j C jS j such that

�.F ; S 0/ � �.F ; S/C �"=2:

Proof. Suppose that �.F n hGS i/ � ". We have

" � �.F n hGS i/ D
X
B�S
B…GS

�.n;k;S/.B/�.F
B
S /

D

X
B2BS

�.n;k;S/.B/�.F
B
S /C

X
B2ES

�.n;k;S/.B/�.F
B
S /

� �.n;k;S/.BS /C "=2;

and therefore
�.n;k;S/.BS / � "=2:

For each B 2 BS , let SB � Œn� n S be such that jSB j � h and

�.F B
S ; SB/ � �.F

B
S ;¿/C �:
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Writing
S 0 D

� [
B2BS

SB

�
P[ S;

we have

�.F ; S 0/ � �.F ; S/ D E
B��.n;k;S/

Œ�.F B
S ; S

0
n S/ � �.F B

S ;¿/�

� E
B��.n;k;S/

Œ1B2BS .�.F
B
S ; SB/ � �.F

B
S ;¿//�

� E
B��.n;k;S/

Œ1B2BS � �� D � � �.n;k;S/.BS / � �"=2:

This proves the claim.

Let J0 D¿. By Claim 4.4, either �.F n hGJ0i/ < ", or else there exists J1 � Œn� such
that jJ1j � h � 20 C 0 and

�.F ; J1/ � �.F ; J0/C �"=2:

We now repeat the process with the set J1, and so on, producing, for each m 2 N with
m � 2=.e�"/, a set Jm � Œn�, such that either

�.F n hGJm�1i/ < ";

or else
�.F ; Jm/ � �.F ;GJm�1/C �"=2;

Since �.F ;¿/ � �1=e, there exists m � 2
e�"

such that

�.F n hGJm�1i/ < ":

The size of Jm�1 is bounded above by a constant depending only upon �, h and ". By
definition, F B

Jm�1
is .�; h/-potentially stable for each B 2 GJm�1 . Provided n0 is suffi-

ciently large (depending on �, �, h and "), we may apply Lemma 4.3 with �=2 in place
of �, n � jJm�1j in place of n, and k � jBj in place of k, implying that F B

Jm�1
is .ı; h/-

slice-quasirandom for each B 2 GJm�1 . Hence, we may take J D Jm�1, completing the
proof.

Remark 4.1. We note that there is no general ‘counting lemma’ for .�; h/-slice-quasiran-
dom families, for hypergraphs with a bounded number of edges – unsurprisingly perhaps,
given the relative weakness of the constraint. To see this, let n be even, let k D n=2, and
consider a random family F produced by including exactly one of S and Œn� n S (with
probability 1=2 each), independently at random for each pair ¹S; Œn� n Sº �

�
Œn�
n=2

�
. Clearly,

�.F /D 1=2, and F contains no copy of the hypergraph consisting of two disjoint edges.
Moreover, for any J � Œn� and any B � J , jF B

J j � Bin.
�
n�jJ j
k�jBj

�
; 1=2/, and therefore by a

Chernoff bound,

PrŒj�.F B
J / � 1=2j � �� < 2 exp

�
�
2

3
�2
�
n � jJ j

k � jBj

��
:
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Hence, using a union bound, the probability that there exists J � Œn� with jJ j � h and
B � J such that j�.F B

J / � 1=2j � � is at most

X
J�Œn�
jJ j�h

X
B�J

2 exp
�
�
2

3
�2
�
n � jJ j

k � jBj

��

� 2 � 2h �

� hX
iD1

�
n

i

��
exp

�
�
2

3

�
n � h

n=2 � h

��
D o.1/

as n ! 1 for any fixed � and h. Therefore, F is .�; h/-slice-quasirandom with high
probability.

To obtain results on families with a forbidden intersection size, we will need the fol-
lowing property of pairs of slice-quasirandom families.

Lemma 4.5. For any "; � 2 .0; 1/ and any t 2 N, there exist � D �."/ > 0, h0 D
h0."; �; t/ 2N and n0D n0."; �; t/ 2N such that the following holds. Let t � 1� k1; k2 �
.1=2� �/n, and let A�

�
Œn�
k1

�
and B �

�
Œn�
k2

�
be ."=5; h0/-slice-quasirandom families with

�.A/ � " and �.B/ � ". Then there exist A 2 A and B 2 B such that jA\Bj D t � 1.
.We may take � D "=5./

This lemma says that if A and B are sufficiently slice-quasirandom, and have unifor-
mity bounded away from n=2, then we can find a pair of sets A 2 A; B 2 B with any
bounded intersection size. The idea of the proof is to use the slice-quasirandomness prop-
erty to reduce to the case of t D 1, where we can apply a result about cross-intersecting
families (Lemma 2.25). Note that Lemma 2.25 immediately implies the t D 1 case of
Lemma 4.5.

Proof of Lemma 4.5. Let n � n0 and let A �
�
Œn�
k1

�
and B �

�
Œn�
k2

�
be .�; h0/-slice-quasir-

andom families, such that �.A/ � " and �.B/ � ", where � D "=5, and h0; n0 are to be
chosen later.

It is easy to check that A0 WD A
Œt�1�

Œt�1�
and B 0 WD B

Œt�1�

Œt�1�
are .2�; h0 � t C 1/-slice-

quasirandom families with
�.A0/; �.B 0/ � " � �:

By Lemma 2.25, if A0 and B 0 were cross-intersecting, then there would exist S � Œn�with
jS j � s.�; " � �/ and �..A0/¿S / < ." � �/=2 provided n0 is sufficiently large depending
on " and �. But then

�.A0/ � �..A0/¿S / > " � � � ." � �/=2 � 2�;

contradicting the fact that A0 is .2�;h0 � t C 1/-slice-quasirandom provided h0 � t C 1�
s." � �; �/. Hence, there exist C 2 A0 and D 2 B 0 such that C \ D D ¿. We have
C [ Œt � 1� 2A,D [ Œt � 1� 2B and j.C [ Œt � 1�/\ .D [ Œt � 1�/j D t � 1, as required.
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5. Proof of our forbidden intersection theorem

5.1. Approximations by juntas

We can now prove that if k=n is bounded away from 0 and 1=2, and F �
�
Œn�
k

�
is a family

such that no pair of sets in F have intersection of size t � 1, then F is approximately
contained within a t -intersecting junta.

Theorem 5.1. For any "; � > 0 and t 2 N there exist j D j.t; �; "/ 2 N and n1 D
n1.t; �; "/ 2N such that the following holds. Let n� n1, let �n� k � .1=2� �/n, and let
F �

�
Œn�
k

�
be such that no two sets in F have intersection of size t � 1. Then there exists

a t -intersecting j -junta J such that jF n Jj < "
�
n
k

�
.

Proof. Let t 2N, let "; � > 0, let �D "=10 and let h;n1 2N to be chosen later (depending
on t; � and "). Let n� n1, let �n� k� .1=2� �/n, and let F �

�
Œn�
k

�
be a family containing

no pair of sets whose intersection has size t � 1.
By Theorem 1.7, there exists j D j.�; �; h; "/ 2 N, a set J � Œn� with jJ j � j , and

a J -junta J D hG i (i.e., G � P .J /) such that �.F n J/ < " and for each B 2 G , the
family F B

J is an .�; h/-slice-quasirandom family with �.F B
J / � "=2. It suffices to show

that the junta J is t -intersecting.
Suppose for a contradiction that there exist A1;A2 2 J such that jA1 \A2j < t . Then

there exist B1; B2 2 G and C1; C2 � Œn� n J such that

A1 D B1 [ C1; A2 D B2 [ C2:

Note that the families F
B1
J and F

B2
J are each .�; h/-slice quasirandom with measure at

least "=2. Write jB1 \ B2j DW t 0 � t � 1. Provided h � maxt 002Œt�1�[¹0º h0."=2; �=2; t 00/
and n1 is sufficiently large depending on t , � and ", Lemma 4.5 (applied with A D F

B1
J ,

B D F
B2
J , "=2 in place of ", and �=2 in place of �) implies that there exist D1 2 F

B1
J

and D2 2 F
B2
J such that

jD1 \D2j D t � 1 � t
0:

This is a contradiction, because B1 [ D1 2 F , B2 [ D2 2 F and j.B1 [ D1/ \
.B2 [D2/j D t � 1.

5.2. A stability result for the forbidden intersection problem

We now apply Theorems 1.6 and 5.1 to obtain the following stability version of Theo-
rem 1.5. Recall that we say that a family F �

�
Œn�
k

�
is a Frankl family if there exists a set

S 2
�
Œn�
tC2r

�
such that F D ¹A 2

�
Œn�
k

�
W jA\ S j � t C rº. If t 2 N and � > 0 are fixed and

�n � k � .1=2� �/n, we say such a Frankl family is a Frankl junta if r is bounded from
above in terms of t and �.

Theorem 5.2. For any "; � > 0 and any t 2N, there exist ı > 0 and n0 2N such that the
following holds. Let n � n0, let �n � k � .1=2 � �/n, and let A �

�
Œn�
k

�
be a family that
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does not contain two sets whose intersection is of size t � 1. If jAj � f .n; k; t/ � ı
�
n
k

�
,

then there exists a Frankl family F �
�
Œn�
k

�
such that �.A n F / < ". Moreover, F can be

taken to be a j -junta, where j D j.t; �/ 2 N.

Proof. Let ı D ı.t; �; "/ > 0 and n0 D n0.t; �; "/ 2 N to be chosen later. Let n � n0,
let �n � k � .1=2 � �/n, let A �

�
Œn�
k

�
be a family that does not contain a pair of sets

with intersection of size t � 1, and suppose that jAj � f .n; k; t/� ı
�
n
k

�
. By Theorem 5.1,

provided n0 is sufficiently large depending on t; �; " and ı, there exists a t -intersecting
family J � P .Œn�/ such that �.A n J/ < min ¹ı; "=2º. In particular, we have

jJj � jAj � ı

�
n

k

�
� f .n; k; t/ � 2ı

�
n

k

�
:

Provided ı is sufficiently small depending on t; � and ", Theorem 1.6 implies that there
exists a Frankl family F , which is an O�;t .1/-junta, such that �.J n F / < "=2. We have

�.A n F / � �.A n J/C �.J n F / < ";

completing the proof.

5.3. The Frankl families are locally extremal

In the previous subsection, we showed that if A �
�
Œn�
k

�
is a family that does not contain

two sets whose intersection is of size t � 1, and if jAj is close to f .n; k; t/, then A has
small symmetric difference with a Frankl junta. In this subsection, we show that such a
family A is no larger than a Frankl junta. This will complete the proof of Theorem 1.5.
The following lemma will be a key tool.

Lemma 5.3. For any � > 0 and any j; t 2 N, there exist "0 D "0.t; �; j / > 0 and n0 D
n0.t; �; j / 2N such that the following holds. Let n� n0, and let �n� k � .1=2� �/n. Let
F �

�
Œn�
k

�
be a family not containing a pair of sets whose intersection is of size t � 1. Let

J 2
�
Œn�
j

�
, and let G � P .J / be a maximal t -intersecting family. Suppose that �.F B

J / >

1 � "0 for any B 2 G . Then �.F / � �.hG i/, with equality only if F D hG i.

Proof. Let ı D maxB…G �.F
B
J /, and let " D maxA2G .1 � �.F

A
J //. We observe the fol-

lowing.

Claim 5.4. There exists c D c.t; �; j / > 1 such that ı D Ot;�;j ."c/.

Proof. Let B … G be such that �.F B
J / D ı. Since G � P .J / is maximal t -intersecting,

there exists A 2 G such that jA \ Bj < t . By averaging, there exists C � Œn� n J with
jC j D t � 1 � jA \ Bj and �.F B[C

J[C / � �.F
B
J / D ı. Note that F A[C

J[C and F B[C
J[C are

cross-intersecting, otherwise F would contain two sets whose intersection is of size t � 1.
Note also that

1 � �.F A[C
J[C / �

�
n�j
k�jAj

��
n�j�jC j
k�jAj�jC j

� .1 � �.F A
J // D Ot;�;j .1 � �.F

A
J // D Ot;�;j ."/:

The claim now follows by applying Lemma 2.18 to F A[C
J[C and F B[C

J[C .
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Since �.F / D
P
B�J �.n;k;J /.B/�.F

B
J /, and since �.n;k;J /.B/ D ��;j .1/ for all

B � J (provided n is sufficiently large depending on � and j ), we have

�.F / � �.hG i/C ı ��t;�;j ."/:

Therefore, by Claim 5.4, we have

�.F / � �.hG i/COt;�;j ."
c/ ��t;�;j ."/

for some c > 1. Provided "0 is sufficiently small (depending on t; � and j ), this implies
that either �.F / < �.hG i/ or F D hG i, proving the lemma.

We may now prove Theorem 1.5.

Proof of Theorem 1.5. Given � > 0 and t 2N, we choose j D j.t; �/ 2N as in Theorem
5.2, we choose "0 D "0.t; �; j / > 0 as in Lemma 5.3, and we let "1 D "1."0; �; j / > 0
and n0 D n0.t; �/ 2 N to be chosen later.

Let n� n0, let �n� k � .1=2� �/n, let A�
�
Œn�
k

�
be a family that does not contain two

sets whose intersection is of size t � 1, and suppose that jAj � f .n; k; t/. We will show
that A is a Frankl family. By Theorem 5.2, provided n0 is sufficiently large depending on
t , � and "1, there exists a Frankl family F such that F is a j -junta, and

�.A n F / < "1:

Let J 2
�
Œn�
j

�
and let G � P .J / be such that F D hG i. For any B 2 G , we have

�.n;k;J /.B/.1 � �.A
B
J // � �.F nA/ � �.A n F / < "1:

Provided n is sufficiently large depending on � and j , we have �.n;k;J /.B/D��;j .1/ for
all B � J . Hence, provided "1 is sufficiently small depending on "0, � and j , we have
�.AB

J / > 1� "0 for allB 2 G . Therefore, by Lemma 5.3, provided n0 is sufficiently large
depending on t , � and j , we have �.A/ � �.F /, with equality only if A D F , proving
the theorem.

6. Conclusion and open problems

For fixed t 2 N, the results in this paper, combined with the previous results mentioned
in the Introduction, resolve the Erdős–Sós problem (i.e., Problem 1.3) for 2t � k �
.1=2 � o.1//n. However, the problem remains unsolved for k=n very close to 1=2. We
believe that new techniques will be required to tackle the case where k=n � 1=2.

It would also be interesting to determine the optimal dependence of j D j.�; ı; h; "/
on �, ı, h and ", in Theorem 1.7. As stated above, our proof gives j � 2 "" 1=.�O.h/ı2"/.
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[15] Erdős, P., Ko, C., Rado, R.: Intersection theorems for systems of finite sets. Quart. J. Math.
Oxford Ser. (2) 12, 313–320 (1961) Zbl 0100.01902 MR 0140419

[16] Filmus, Y.: The weighted complete intersection theorem. J. Combin. Theory Ser. A 151, 84–
101 (2017) Zbl 1366.05111 MR 3663490

[17] Filmus, Y.: More complete intersection theorems. Discrete Math. 342, 128–142 (2019)
Zbl 1400.05251 MR 3886256

[18] Fox, J.: A new proof of the graph removal lemma. Ann. of Math. (2) 174, 561–579 (2011)
Zbl 1231.05133 MR 2811609

[19] Frankl, P.: On families of finite sets no two of which intersect in a singleton. Bull. Austral.
Math. Soc. 17, 125–134 (1977) Zbl 0385.05003 MR 0457226
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