
J. Spectr. Theory 13 (2023), 1173–1224
DOI 10.4171/JST/484

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Concentration and non-concentration of eigenfunctions of
second-order elliptic operators in layered media

Assia Benabdallah, Matania Ben-Artzi, and Yves Dermenjian

Abstract. This work is concerned with operators of the type AD�Qc� acting in domains�´
�0 � .0;H/�Rd �RC: The diffusion coefficient Qc > 0 depends on one coordinate y 2 .0;H/
and is bounded but may be discontinuous. This corresponds to the physical model of “layered
media,” appearing in acoustics, elasticity, optical fibers. . . . Dirichlet boundary conditions are
assumed. In general, for each " > 0; the set of eigenfunctions is divided into a disjoint union
of three subsets: FNG (non-guided), FG (guided) and Fres (residual). The residual set shrinks
as "! 0: The customary physical terminology of guided/non-guided is often replaced in the
mathematical literature by concentrating/non-concentrating solutions, respectively.

For guided waves, the assumption of “layered media” enables us to obtain rigorous esti-
mates of their exponential decay away from concentration zones. The case of non-guided waves
has attracted less attention in the literature. While it is not so closely connected to physical
models, it leads to some very interesting questions concerning oscillatory solutions and their
asymptotic properties. Classical asymptotic methods are available for c.y/ 2 C 2 but a lesser
degree of regularity excludes such methods. The associated eigenfunctions (in FNG) are oscil-
latory. However, this fact by itself does not exclude the possibility of “flattening out” of the
solution between two consecutive zeros, leading to concentration in the complementary seg-
ment. Here we show it cannot happen when c.y/ is of bounded variation, by proving a “minimal
amplitude hypothesis.” However the validity of such results when c.y/ is not of bounded varia-
tion (even if it is continuous) remains an open problem.

1. Introduction

Let �0 � Rd , d D 1; 2; : : : be an open bounded smooth domain. In particular, the
eigenfunctions of �� in �0 (subject to zero boundary values) form a complete basis
in L2.�0/: Our domain of interest is

� D �0 � .0;H/ � Rd �RC: (1.1)
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Observe that our regularity assumption on�0 can be relaxed. Indeed, the basic require-
ment is the completeness of the eigenfunctions, but this is not the main thrust of the
present paper.

In this paper one type of self-adjoint second-order elliptic operators is considered
(details are given in Section 2 below)

A D �Qc� in L2.�I Qc.x/�1 d x/ with domain H 2.�/ \H 1
0 .�/: (1.2)

Our study deals with layered media, namely, the diffusion coefficient Qc depends
only on the single spatial coordinate y 2 .0;H/; so that Qc.x/ D Qc.x0; y/ D c.y/: We
use the terminology of diffusion coefficient for lack of a better choice since it appears
in the “diffusive term.” Note that in the study of the associated wave equation it has
the physical meaning of the variable speed of sound.

The dependence of Qc on a single coordinate results in studying the spectral proper-
ties of A via an infinite set of ordinary differential operators with effective increasing
potentials (See Remark 2.1).

We always assume homogeneous Dirichlet boundary conditions. Generally speak-
ing, the family of eigenfunctions is split into two categories: those sets of eigenfunc-
tions (or sequences with increasing eigenvalues) involving concentration of mass in
proper subdomains of �; and those for which such concentration does not occur.

These two categories have been studied by physicists since a long time, investigat-
ing diverse phenomena ranging from acoustics to elasticity and to optical fibers1. In
general, the terminology used in the physical literature has referred to guided or non-
guided waves, corresponding, respectively, to concentrating or non-concentrating
modes. We shall use these terms interchangeably, as is appropriate in a particular
context.

The reader is referred to [22] for a survey of the geometrical structure of the eigen-
functions of the Laplacian, with very extensive bibliography. We mention that there
has been some recent interest in non-concentration phenomena under ergodic proper-
ties of the geodesic flow. One can associate a semiclassical measure with sequences of
eigenfunctions and one proves that for a subsequence of density one of all eigenfunc-
tions this semiclassical measure is the Liouville measure, that is, the uniform measure
on phase space; see for instance the lecture notes [3]. The unique quantum ergodic-
ity conjecture of Rudnick and Sarnak states that this result holds for the sequence of
eigenfunctions [34]. In this paper we do not look at such properties in phase space. In
fact, the low regularity assumed on the diffusion coefficient, while suitable for physi-
cal applications but makes it difficult to consider the phase space situation.

1Optical fibers are associated with the Maxwell system and are a good illustration to the
material in this paper, see [11]
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As far back as 1930, Epstein [19] established (in unbounded domains) the exis-
tence of acoustic guided waves that are generalized eigenfunctions, i.e., not belonging
to the domain of the operator, and are evanescent outside a “guiding channel.” The
underlying speeds were analytic functions depending on a single vertical coordinate.
See [33] for a more general study of Epstein’s profiles. An extensive study of guided
waves in the acoustic case can be found in [38] and its bibliography. We mention
briefly some other physical instances where guided waves play a significant role.

• The step-index fiber [11]. It is a basic model of a cylindrical fiber consisting of
a core and external shell (“cladding”) carrying two speeds with that of the core
smaller than that of the shell. It is a good example of the concentration of the
energy in the core. This concentration is increasing when the radius of the core is
diminishing.

• In optoelectronics much attention is focused on the phenomenon of guided waves,
governed by the Maxwell system [11, 29]. In fact, in the “TE&TM ” framework
the second-order equation for the amplitudes of eigenfunctions [23, equation (13)]
is equivalent to our equation for the amplitude (see below equation (2.4)).

• The system of linear elasticity in the half-space�DRn � .0;C1/ subject to free
surface condition. It gives rise to the Rayleigh surface wave, that is particularly
destructive in the case of an earthquake, see [16,35,36]. Related phenomena where
studied by physicists such as Lamb, Love, and Stoneley. Refer also to [14] and
references therein.

The terms concentration and non-concentration do not always carry the same
meaning when used by various authors. The following definition clarifies their mean-
ings in this paper.

For an open set ! � � and v 2 L2.�/; define

R!.v/ D
kvk2

L2.!/

kvk2
L2.�/

:

Definition 1.1. If ¹vj º1jD1 �L2.�/ is a sequence of normalized eigenfunctions asso-
ciated with an increasing sequence of eigenvalues and

lim
j!1

R!.vj / D 0

then we say that ¹vj º1jD1 concentrates in � n !:
On the other hand, if

lim inf
j!1

R!.vj / > 0; for all ! � �;

then the sequence is non-concentrating.
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Remark 1.2. Later on we shall extend these notions also to sets of eigenfunctions
that are not necessarily arranged as such sequences. Note that we study concentration
and non-concentration for infinite subsets of eigenfunctions and not necessarily for
the whole set of eigenfunctions.

In general, the occurrence of concentration phenomena for second-order operators
of the types (1.2) depends on two features:

• the shape of the boundary @�;

• the geometric properties of the diffusion coefficient Qc.x/:
The literature concerning the concentration/non-concentration phenomena as related
to the shape of � is very extensive. A well-known aspect is the connection of “quan-
tum ergodicity” to “classically chaotic systems” [8–10,24,31] and references therein.
The paper [32] deals with spherical and elliptical domains.

In contrast, in this paper we are interested in the effects of the layered medium.
Thus, it is more closely related to the study of operators of the type LD �r � .cr/C
V on a finite domain, where the potential V.x/ � 0 is positive on a subset of positive
measure. Typically, eigenfunctions associated with eigenvalues below ess sup V.x/
are concentrating. In [4] the authors replace V by an effective potential u.x/ satis-
fying Lu D 1: They show concentration and exponential decay of eigenfunctions as
derived from the geometry of u: Our operator A (1.2) does not involve a potential but
the concentration of suitable sequences of eigenfunctions results from the geometry
of the diffusion coefficient. As we shall see in Theorem 2.4 below there is a strong
underlying geometric aspect; the concentration expresses the fact that the masses of
eigenfunctions “flow” (as the eigenvalues increase) into the “wells” (or “valleys”).

Turning to the non-concentration case, we observe that the existing literature is
less extensive, perhaps due to the fact that it is not directly related to physical or indus-
trial applications. Nevertheless we shall see that it leads to some interesting mathe-
matical questions concerning the structure and asymptotics of eigenfunctions (typi-
cally associated with large eigenvalues). Recent publications in this direction are [25]
dealing with non-concentration in partially rectangular billiards and [12] concerning
piecewise smooth planar domains. A non-concentration result in a stricter sense is
that “almost all eigenfunctions of a rational polygon are uniformly distributed” [30].
Estimates for nodal sets such as [17] were extended in [26,27] motivated by questions
from control theory and [28] that deals with non-concentration in the Sturm–Liouville
theory. Note that in the 1-D case issues of non-concentration are closely related to
details of oscillatory solutions in the Sturm–Liouville theory. We shall come back to
it later in this introduction.

This paper deals with both concentration and non-concentration phenomena for
eigenfunctions of layered operators. As already pointed out the latter is less studied in
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the literature, especially when the diffusion coefficient c.y/ is not regular (even dis-
continuous). As a result, the non-concentration case plays a greater role in this paper.
For such eigenfunctions we extend the scope of the study; not only facts pertaining
to non-concentration but a more detailed study of the structure of the solutions in
terms of the oscillatory character, amplitudes and their ratios and asymptotic behav-
ior. In contrast to the concentrating case, we shall see that the essential features of
the non-concentrating solutions depend primarily on the maximum and minimum of
Qc.x/ D Qc.x0; y/ D c.y/ and, going deeper into the structures, on the total variation
of c.y/: Our main tool will be the minimal amplitude hypothesis (see Definition 2.7),
applied to families of diffusion coefficients.

The paper is organized as follows.
In Section 2 we introduce all relevant notations and details concerning the func-

tional setting. In our case, the eigenvalues are classified by a double-index enumera-
tion, with a conic sector (in index space .�2

k
; �/, see Figure 3) distinguishing eigenval-

ues (see (2.9)) associated with concentrating eigenfunctions (FG) from those
(see (2.12)) associated with non-concentrating eigenfunctions (FNG). This curve
serves as the analog to the maximal value of a perturbation potential that separates
concentrating from non-concentrating eigenfunctions in the potential perturbation
framework.

• Our main result for the concentrating case (FG) is stated in Theorem 2.4. In par-
ticular, it yields exponential decay of the eigenfunctions outside the concentration
layers.

• In order to deal with non-concentration of certain families of eigenfunctions
(FNG) we introduce the aforementioned minimal amplitude hypothesis. This
hypothesis is a geometric assumption on the asymptotic behavior of the ampli-
tudes in the .u; u0/ phase plane. The non-concentration of sets of oscillatory
solutions follows directly from the geometric assumption (Theorem 2.9).

Section 3 deals with guided waves for A D �Qc�: The main result Theorem 2.4
is proved and, on the way, we prove the existence of sequences of eigenvalues satis-
fying the hypotheses of this theorem (see condition (2.7)). The exponential decay of
eigenfunctions is derived from sharp estimates of the Green function.

In Section 4 we turn to the case of non-concentrating eigenfunctions (non-guided
waves in the physical literature) for A D �Qc�: The set of corresponding eigenvalues
is Ac" (see Definition 2.6) that are located in the aforementioned upper conic sector in
the index grid.

The first approach that comes to mind is to transform the problem to a canonical
form. In other words, to use coordinate transformations so that the diffusion coeffi-
cient becomes a “manageable” perturbation of a constant one. In fact, this is done
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in Section 4.1 under the assumption that c.y/ 2 C 2.Œ0; H�/: In this case the classi-
cal Liouville transformation can be invoked, leading to a detailed asymptotic (almost
sinusoidal) behavior of the non-concentrating eigenfunctions.

Once the diffusion coefficient c.y/ is less regular, establishing non-concentration
becomes considerably more delicate since the classical asymptotic methods are not
applicable. Thus, in the rest of Section 4 we focus on proving the minimal ampli-
tude hypothesis that implies Theorem 2.9. Furthermore, the hypothesis is established
simultaneously for a full family K of coefficients (see (2.11)). It underlines the fact
that only the extremal values of c.y/ come into play for Lipschitz continuous or
monotone diffusion coefficients. We exploit different methods in handling various
classes of functions c.y/; such as Lipschitz functions in Section 4.4.1 or monotone
functions in Section 4.4.2. In each case, additional properties of the solutions are
obtained, such as given in Corollary 4.10 for the case of monotone coefficients. The
ultimate case where we were able to establish the minimal amplitude hypothesis is for
c.y/ being of bounded total variation. As a result non-concentration is shown to hold
simultaneously for the full family of diffusion coefficients of total variation T V.c/
below a fixed V: More specifically we get

Theorem. Fix 0 < cm < cM ; " > 0; V > 0: Let

KV D ¹c.y/; cm � c.y/ � cM ; 0 < y < H; T V.c/ � V º:

Consider (for every c.y/ 2 KV ) the subset of eigenvalues Ac" (see (2.12)) and the
associated eigenfunctions ¹v�º: For an interval .a; b/� .0;H/ let !´ !0 � .a; b/�
�; where !0 � �0 is an open set. If !0 ¤ �0 assume that the family ¹�k.x0/º1kD1 of
eigenfunctions of the Laplacian in �0 � Rd does not concentrate in �0 n !0: Then
there exists f! > 0 such that

f! �
kv�kL2.!/
kv�kL2.�/

� 1

uniformly for all c.y/ 2 KV and all eigenvalues in Ac" :

This theorem will be proved as part of the more detailed Theorem 4.13.

Remark 1.3. The uniformity statement in KV is relevant for physical applications,
where the coefficient c.y/ is only approximately known.

Remark that the case of a continuous c.y/; but not of bounded variation, remains
an open problem, whence the following question arises naturally.

What degree of regularity of c.y/ could serve as necessary and sufficient in order
to satisfy the minimal amplitude hypothesis (Definition 2.7)? As already men-
tioned, the model of piecewise constant coefficients is prevalent in the physical and
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engineering literature. We have therefore chosen to include Section 5, where we treat
in a self-contained way the case of a piecewise constant diffusion coefficient c.y/ in
both guided and non-guided cases. In this treatment we implement more explicitly
some tools that appear frequently in the physical literature, such as detailed expres-
sions for the solutions in layers and their transmission relations across layers. In fact,
some estimates obtained here are sharper than those derived in Sections 3 and 4.

Appendix A is added for auxiliary results.
In a subsequent paper we shall deal with the concentration and non-concentration

issues for operators in divergence form.

2. Setup and main results

Recall (see (1.1)) that �´ �0 � .0; H/: The coordinates in � are designated as
x D .x0; y/ 2 �0 � .0; H/: We introduce a diffusion coefficient .x0; y/! Qc.x0; y/
such that Qc.x0; y/ D c.y/ for all x0 2 �0 and of which we shall assume at least the
following condition.

Assumption (H). We suppose

0 < c.y/ 2 L1.Œ0;H�/; (2.1a)

0 < cm D ess inf¹c.y/; y 2 Œ0;H�º < cM D ess sup¹c.y/; y 2 Œ0;H�º: (2.1b)

We focus on the operator A D �Qc �: For the Laplacian ��x0 acting in L2.�0/
with domain H 2.�0/ \H 1

0 .�
0/, we denote by ¹.�2

k
; �k/ºk�1 the sequence of pairs

(nondecreasing sequence of eigenvalues counting multiplicity, normalized eigenfunc-
tions). As the coefficient function Qc.x0; y/ D c.y/ depends only on the last coordi-
nate y; a separation of coordinates is natural. Using spectral decomposition in the
x0�coordinate the operator A ´ �Qc � is unitarily equivalent to a direct sum of
reduced operators in the form

�Qc � �
M
k2N�

Ak acting in
M
k2N�

L2..0;H/; c.y/�1dy/ (2.2)

Ak ´ c.y/
�
�2k �

d2

dy2

�
; k D 1; 2; : : : ; (2.3)

with
D.Ak/ D H 2.0;H/ \H 1

0 .0;H/:

The eigenvalues of A are ordered by a two-index system, namely

�.A/ D ¹ˇk;`; k; ` � 1º
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where ƒk D ¹ˇk;1; ˇk;2; : : :º is the increasing sequence of the eigenvalues of Ak : In
other words, for each eigenvalue � of A there exists at least one k 2 N� such that � is
a simple eigenvalue of Ak; whence there exists at least a pair .k; `/ 2 N� �N� such
that � D ˇk;` (there is a one-to-one relationship between the pairs .k; `/ and .�; k/).
Note that in general if � is not a simple eigenvalue, there is a finite number of pairs
.k; `/ such that � D ˇk;`:

We construct an orthonormal basis of eigenfunctions B D ¹vk;`ºk�1;`�1 associ-
ated with the eigenvalues ˇk;`: They are given by vk;`.x0; y/ D �k.x0/uk;`.y/ where
uk;`.y/ satisfies

c.y/u00k;` C .ˇk;` � c.y/�2k/uk;` D 0; uk;`.0/ D uk;`.H/ D 0: (2.4)

Remark 2.1. As is typical in “separation of variables” situations, the study of the
spectral properties of the partial differential operator A is carried out by controlling
the behavior of the infinite set of ordinary differential operators of the type (2.4).

Henceforth, we use the notation u�;k instead of uk;`. We often write v� instead
of vk;` W

� D ˇk;` H) v�.x
0; y/ D vk;`.x0; y/ D �k.x0/u�;k.y/; (2.5)

with u�;k.y/ normalized in L2..0; H/; c.y/�1dy/: In this paper, we are primarily
interested in the phenomena of concentration or non-concentration of the mass of
eigenfunctions.

Definition 2.2. For a < b; a layer of � will be noted �a;b ´ �0 � .a; b/ � �:
(1) On the concentration

Definition 2.3. Let ! D �˛;ˇ be a layer of �: We say that ! is a well for the profile
c.y/ if there exists c1 > 0 such that´

0 < cm < c1;

c.y/ � c1 > 0; a.e. y 2 .0;H/ n .˛; ˇ/; (2.6)

(See Figures 1 and 2).

In the concentration case we have the following theorem, which yields exponential
decay outside a well. The proof is given in Section 3. Observe that the only hypothesis
imposed on c.y/ is (2.1).
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Theorem 2.4 (Concentration in the layer �˛;ˇ ). Let �˛;ˇ be a well for the profile c
and � is an eigenvalue of Ak (hence of A) such that

�2 D �2�;k ´ 2
�
�2k �

�

c1

�
> 0: (2.7)

Let �a;b � x� n�˛;ˇ and denote by d the distance between �a;b and �˛;ˇ , thenZ
�a;b

v�.x/
2 d x

� sup
y2.˛;ˇ/

ˇ̌̌c1 � c.y/
c1c.y/

ˇ̌̌ �
�3
e��t d

t d

Z
�˛;ˇ

v�.x/
2 d x; for any 0 < t < 1: (2.8)

Consequently, if
cm �

2
k � � � .c1 � "/�2k (2.9)

and if we normalize, i.e.,
R
�
v�.x/

2 Qc.x/�1dx D 1; then

lim
�!1

Z
�a;b

v�.x/
2 dx D 0: (2.10)

Observe that the assumption (2.9) guarantees that � ����!
�!1

1:

Remark 2.5. In Section 3.2 below we show that indeed there are infinitely many
eigenvalues satisfying (2.7).

The exponential decay in estimate (2.8) can be compared to the results of [4]. In
our proof the 1-D dependence of c.y/ enables us to use sharp estimates of Green’s
kernel. On the other hand, in [4] the authors deal with a positive potential perturbation,
that leads to a construction of an “effective potential.” In terms of this potential the
exponential decay is expressed by an “Agmon-type” [1] metric. In our case, from (2.4)
we can view the term c.y/�2

k
as the equivalent of a potential (but unbounded as

k !1).

(2) On the non-concentration. The second type of results concerns the sets (indexed
by " > 0) of non-guided normalized eigenfunctions (the set FNG of the Section 1).
They are associated with eigenvalues

� D ˇk;` > .cM C "/�2k; cM ´ ess supy c.y/:

This set is characterized by the fact that there is a positive lower bound for the masses
in any layer �a;b; uniformly for all its elements.
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Recall that � can correspond to several pairs .k; `/ and only some of them satisfy
the above inequality.

The geometrical interpretation of non-concentration is clear in the one-dimen-
sional case �0 D .0; L/ and � D ˇk;` > cM�2k: at each interface the angle between
the wave and the normal is less than the critical angle stipulated by geometric optics.
So, the eigenfunction can travel across each layer without big loss.

In physical applications it is conceivable that the diffusion coefficient c.y/ is
known only approximately. It is therefore interesting to extend our study to deal with
sets of such coefficients. Let 0 < cm < cM be fixed. We assume that every coefficient
c.y/ satisfies condition (H) (see (2.1)) and denote by

K D ¹c.y/; cm D ess infy c.y/ < cM D ess supy c.y/º (2.11)

the family of all such coefficients.
In various cases, we shall impose further assumptions on the elements of K: We

introduce the set of eigenvalues as above, whose associated eigenfunctions will be
shown to be (perhaps under additional assumptions) non-concentrating.

Definition 2.6. Fix " > 0: For any fixed �k; let `0;k be the first ` satisfying ˇk;`0;k �
.cM C "/�2k :

We designate (see Figure 3)

Ac" D
1[
kD1

¹.�k; �/; � D ˇk;`; ` � `0;kº: (2.12)

Next we define the minimal amplitude of the family of the associated solutions
(of (2.4)) as follows.

r2c;" D inf
y2Œ0;H�;
.�k ;�/2A

c
"

Œu�;k.y/
2 C u0�;k.y/2�: (2.13)

In the subsequent discussion the parameter " > 0 is fixed and to simplify notation we
omit it and write rc D rc;":

Definition 2.7. Let us take c.y/2K:We say that c.y/ satisfies the minimal amplitude
hypothesis with respect to Ac" if

rc > 0: (2.14)

Remark 2.8. Note that this hypothesis has a very clear geometric interpretation by
means of the Prüfer substitution [6].

Observe that while the minimal amplitude deals with the sum of squares

u�;k.y/
2 C u0�;k.y/2;
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the non concentration involves only the integral of u�;k.y/2 over various intervals.
The following Theorem 2.9 connects these topics, showing that the minimal amplitude
hypothesis implies non-concentration. Here we state it using the physical model with
the spectral parameter �: It is proved in a somewhat more detailed form (using the
reduced eigenfunctions u�;k) as Theorem 4.5 in Section 4.2.

Theorem 2.9 (Non-concentration in any layer). Let c.y/ 2 K be a diffusion coeffi-
cient satisfying the minimal amplitude hypothesis. For any .�k; �/ 2 Ac" let v�.x/ be
an associated eigenfunction.

Let ! ´ !0 � .a; b/ � � be an open set. If !0 ¤ �0 assume that the family
¹�k.x0/º1kD1 of eigenfunctions of the Laplacian in �0 � Rd does not concentrate in
�0 n !0 (see Definition 1.1 and Remark 1.2).

Then there exists a constant C! > 0 such that

0 < C! � inf
.�k ;�/2A

c
"

kv�kL2.!/
kv�kL2.�/

� 1:

Remark 2.10. We shall see that in various cases we can find subsets K1 � K such
that the inequality (2.14) holds uniformly with respect to c 2 K1:

Remark 2.11. (1) In Section 4 we show that any eigenfunction associated with eigen-
values in Ac" behaves in an oscillatory fashion. This is a straightforward consequence
of the comparison principle. However, it does not exclude the possibility that some
of the sections of the oscillatory solution may “flatten out,” namely their amplitudes
shrink as �!1: The condition (2.14) ensures that such phenomena do not happen,
as is stated in Theorem 2.9.

(2) Section 4.2 we discuss the meaning of the minimal amplitude hypothesis. If the
function c.y/ is of bounded total variation we prove (Theorem 4.13) that it satisfies
the hypothesis with respect to Ac" : This covers the cases of functions in C 1.Œ0;H�/ as
well as functions in W 1;1.Œ0;H�/, piecewise constant functions. . . .

3. Guided waves (see Theorem 2.4)

We refer to the geometric setup in Definition 2.3 above. The simplified case with
˛ D 0; namely that the well is a bottom band, is common in the physical literature
dealing with band structure. It was our starting point at the early stage of this work [5].
Without loss of generality we shall assume this structure in some proofs below. In this
section we always assume (2.1).
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2
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2
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c.y/ satisfies the minimal amplitude hypothesis

zone Ac
" of non guided eigenvalues for "

zone of guided eigenvalues
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"

Figure 3

3.1. Proof of Theorem 2.4

Using the notation in Definition 2.3 and (2.5) we are interested in the behavior of
u�;k (solution to (2.4)) as �!1. Note that for all .�; k/; � D ˇk;`; the function
w�;k.y/´ u�;k.y/

2 is a solution to (where we use w for simplicity)8̂<̂
:w
00.y/ � 2

�
�2k �

�

c.y/

�
w.y/ D g.y/ on .0;H/;

w.0/ D w0.0/ D w.H/ D w0.H/ D 0;

where g D 2.u0
�;k
/2. The introduction of � D

q
2
�
�2
k
� �
c1

�
transforms the previous

equation into ´
w00 � �2w D �f C g.y/ on .0;H/;

w.0/ D w0.0/ D w.H/ D w0.H/ D 0; (3.1)
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with

f .y/ D 2�c1 � c.y/
c1c.y/

w.y/; y 2 .0;H/: (3.2)

Some properties of the solutions of (3.1). We now derive upper and lower bounds
for solutions of (3.1).

Claim 3.1 (Upper pointwise bounds for the geometric situation as in Definition 2.3).
Let w be a solution to (3.1)–(3.2). Let d.y; .˛; ˇ// be the distance of y to the interval
.˛; ˇ/: Then, if cm �2k � � < c1�2k; we have

y 2 .0;H/ n .˛; ˇ/

H) w.y/ � sup
y02.˛;ˇ/

ˇ̌̌c1 � c.y0/
c1c.y0/

ˇ̌̌�
�
e��d.y;.˛;ˇ//

ˇZ
˛

w.z/ d z: (3.3)

Proof. For simplicity of the presentation we take ˛ D 0: We use the Green function
G of the Dirichlet operator w00 � �2w and prove exponential decay outside the well if
� < c1�

2
k
; depending on the distance of y to the well.

The Green function is given by

G.y; y0I �/ WD

8̂̂<̂
:̂
� sinh.�y/
� sinh.�H/

sinh.�.H � y0//; y < y0;

� sinh.�y0/
� sinh.�H/

sinh.�.H � y//; y > y0:

for all y; y0 2 .0;H/:

(3.4)
Then, from (3.1),

w.y/ D �
HZ
0

G.y; y0I �/ f .y0/ dy0

C 2
HZ
0

G.y; y0I �/.u0k;�/2.y0/ dy0 for all y 2 .0;H/;

and, as G � 0, we get

w.y/ � �
HZ
0

G.y; y0I �/ f .y0/ dy0 for all y 2 .0;H/:

In view of (2.6) one has c.y/ � c1 outside .0; ˇ/ and, as f is nonpositive on .0;H/ n
.0; ˇ/ and G � 0; this implies

w.y/ � �
ˇZ
0

G.y; y0I �/ f .y0/ dy0 for all y 2 .0;H/ n .0; ˇ/: (3.5)
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The estimate (3.5) becomes

w.y/ � �2�
ˇZ
0

�
sup

y02.0;ˇ/

ˇ̌̌c1 � c.y0/
c1c.y0/

ˇ̌̌�
G.y; y0I �/w.y0/ dy0

since �G � 0 and w.y/ � 0: Taking y 2 .0;H/ n .0; ˇ/; the definition of G applied
to (3.5) gives

w.y/ � 2�
�

sup
y02.0;ˇ/

ˇ̌̌c1 � c.y0/
c1c.y0/

ˇ̌̌sinh.�.H � y//
sinh.�H/

ˇZ
0

sinh.�y0/w.y0/ dy0:

The estimate (3.3) is deduced from

sinh.�.H � y//
sinh.�H/

� e��y ; sup
Œ0;ˇ�

sinh.�y0/ � 1

2
e�ˇ ;

since the distance of y to .0; ˇ/ is d.y; .0; ˇ// D y � ˇ.

Claim 3.2 (Lower pointwise bounds for the solution). Let Œa; b� � Œ0; ˛/ [ .ˇ; H�
and d D d..˛; ˇ/; .a; b//: Then, for all t 2 .0; 1/, any w solution of (3.1) verifies

a > ˇ H) w.taC .1 � t /ˇ/ � 1

2
�2.1 � t /d

bZ
a

w.y/ dy; (3.6a)

b < ˛ H) w.tb C .1 � t /˛/ � 1

2
�2.1 � t /d

bZ
a

w.y/ dy: (3.6b)

Proof. Again, for simplicity we take ˛D 0: Taking into account that we havew.H/D
w0.H/ D 0, if a > ˇ, we integrate twice (3.1) fromH . As .u0

k;�
/2 � 0 and f � 0 on

.ˇ;H/, we obtain with 
 D taC .1 � t /ˇ; 0 < t < 1;

w.
/ �
HZ



HZ
y

�2w.z/ d z dy D �2
HZ



.y � 
/w.y/ dy

� �2.a � 
/
bZ
a

w.y/ dy for all a > ˇ:

Conclusion of the proof of Theorem 2.4. The estimates (2.8)–(2.10) follow directly
by combining (3.3) and (3.6).
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Remark 3.3. In the estimates above we have used the explicit form of the Green
kernel. As an alternative we could use general trace estimates that are applicable also
for divergence-type operators �r � . Qcr/; where an explicit kernel is not available.
However, this method yields only a polynomial rate of decay O

�
1

�
2.1�s/
k

�
in (2.8).

This approach will be used in a subsequent paper.

Observe that if the profile c.y/ has two equal minima and we consider a layer
containing only one minimum, then the method of proof of Theorem 2.4 fails. Thus,
we need the full layer .˛; ˇ/ in order to conform to Definition 2.3.

Remark 3.4 (Estimating in terms of a subdomain of the well). Note that in the right-
hand side of the estimate (2.8) the mass in the well is

Z
�˛;ˇ

v�.x/
2 d x D

ˇZ
˛

uk;l.yI�; k/2dy �
Z
�0
j�k.x0/j2dx0:

Suppose that there exists an open domain !0 � �0 and a subsequence (retaining the
same index) ¹�k.x0/º1kD1 that does not concentrate in �0 n !0: Then clearlyZ

�˛;ˇ

v�.x/
2 d x

can be replaced by

C

Z
!0�.˛;ˇ/

v�.x/
2 d x:

3.2. Existence of eigenvalues compatible with assumption (2.9)

The previous results rely on the existence of infinitely many eigenvalues satisfying
Assumption (2.9). This fact is established in the following theorem.

Theorem 3.5. The number of eigenvalues satisfying Assumption (2.9) goes to infinity
with k:

Proof. We use three ingredients. Let ˛; ˇ be as in (2.6). First, the function Œ0; H� 3
y 7! R

c.y0/�y dy0 being continuous there exists a nonempty open set U � .˛; ˇ/ and
"0 > 0 satisfying cm � c.y/ < c1 � 2"0; y 2 U: Second, for each k 2N� the smallest
eigenvalue ˇk;1 of Ak is given by

inf
w2H1

0
.0;H/

RH
0
.jw0.y/j2 C �2

k
jw.y/j2/ dyRH

0
c�1.y/jw.y/j2/ dy

:
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Third, we know that

inf
w2H1

0
.U /

R
U
jw0.y/j2 dyR

U
jw.y/j2 dy

is the smallest eigenvalue �1 > 0 of the operator � d2

dy2
defined on U with Dirichlet

boundary conditions. So, we can write

ˇk;1 � inf
w2H1

0
.U /

R
U
.jw0.y/j2 C �2

k
jw.y/j2/ dyR

U
c�1.y/jw.y/j2/ dy

� .c1 � 2"0/ inf
w2H1

0
.U /

R
U
.jw0.y/j2 C �2

k
jw.y/j2/ dyR

U
jw.y/j2 dy

� .c1 � 2"0/.�2k C �1/: (3.7)

Take K > 0 sufficiently large, so that "0�2k > .c1 � 2"0/�1 when k > K: Then
from (3.7) we get

ˇk;1 < .c1 � "0/�2k; for k > K:

Then the sequence .ˇk;1/k satisfies Assumption (2.9) for k > K: This proof exhibits
only a sequence but we can build other sequences satisfying this assumption. We skip
a detailed discussion of this fact for the sake of brevity.

4. Non-guided waves

An (infinite) set of non-guided normalized eigenfunctions is characterized by the fact
that in each layer �a;b there is a uniform positive lower bound for the masses in the
layer, valid for all elements of the set.

As observed in the introduction, for each eigenvalue � of A; there exists at least
one pair .k; `/ so that � D ˇk;` is the `-th eigenvalue of Ak : Let � D ˇk;` > 0 be an
eigenvalue of�c.y/� inL2.�;c.y/�1dx0dy/ and u.yI�;k/´ u�;k.y/ the normal-
ized associated (reduced) eigenfunction (as in (2.4) and (2.5)). The function u.yI�;k/
satisfies

u00.yI�; k/C �2k p.yI�; k/u.yI�; k/ D 0; p.yI�; k/ D �

�2
k
c.y/

� 1: (4.1)

u.0I�; k/ D u.H I�; k/ D 0 and
RH
0
u.yI�; k/2c.y/�1dy D 1I

We shall deal in this section with eigenvalues � such that (see (2.12))

.�k; �/ 2 Ac" :

In particular, for such values we have p.yI�; k/ > 0:
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A desirable way to treat this equation is by transforming the equation into a canon-
ical equation of the type

d2�

d�2
C �2k� D �.�I�; k/�

with some new variable � and new unknown �: This classical procedure, known as
the Liouville transformation, can be carried out only if c.y/ is twice continuously
differentiable, and is used in Section 4.1 when c 2 C 2.Œ0; H�/; .cM C "/�2k < � <
.cM Cƒ/�2k; 0 < " < ƒ:

The aim of the subsequent subsections is to claim that the set of eigenfunctions
associated with eigenvalues satisfying .�k; �/ 2 Ac" ; for any diffusion coefficient
c.y/ 2 K (see (2.11)) consists of non-guided eigenfunctions when a particular suf-
ficient condition is satisfied, with c.y/ less regular than C 2:

Consider a pair .�k; �/ 2 Ac" : Let u.yI �; k/ be a normalized solution to (4.1),
associated with .�k; �/: In view of (2.12),

p.yI�; k/ � "

cM
; y 2 Œ0;H�: (4.2)

Let

Z.�; k/ D ¹z0 D 0 < z1 < z2 < � � � < zs DH;u.zi I�; k/ D 0; 0 � i � sº � Œ0;H�

be the set of zeros of the function u.yI�;k/: It follows from (4.2) and the comparison
principle [6, Section X.6], [13, Section 8.1] that

ziC1 � zi � 2���1k
r
cM

"
; 0 � i � s � 1: (4.3)

The following claim extends (4.3) and will be useful in the sequel. It says that the
distance between two consecutive zeros of an (oscillatory) eigenfunction can be made
arbitrarily small, if we drop a finite number of eigenfunctions associated with “low”
eigenvalues. The threshold �˛;" applies uniformly to all coefficients c.y/ 2 K:

Claim 4.1. Let c.y/ 2K: For each ˛ > 0; " > 0 there exists �˛;" such that .�k; �/ 2
Ac" ; � > �˛;" implies

ziC1 � zi < ˛; 0 � i � s � 1:

In particular, �˛;" can be chosen uniformly for all c.y/ 2 K: For each c.y/ 2 K

there are at most finitely many eigenvalues � < �˛;":

Proof. Recall that we are assuming .�k; �/ 2 Ac" so that p.yI �; k/ � "
cM

by (4.2).

Pick a fixed large 
 > 0 and take�0;" > 

q
cM
"
: Then�2

k
p.yI�;k/ > 
2 if�k >�0;"
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(and all associated values of �). Next choose �0;" such that �0;"
cM
��20;" > 
2: Clearly,

for any � > �0;" and �k � �0;" we have �2
k
p.yI�; k/ > 
2:

In summary, we take �˛;" D maxŒ.cM C "/�20;"; �0;"�: It follows from the above
that

�2kp.yI�; k/ > 
2; .�k; �/ 2 Ac" ; � > �˛;":

Thus, by the Sturm comparison theorem [6, Chapter X, Section 6, Theorem 3] it
suffices to compare the zeros of solutions of (4.1) with those of the constant coefficient
equation v00 C 
2v D 0: Since for the latter the interval between zeros is �



and we

can take any large 
 the proof is complete.

In what follows we assume that c.y/ 2 K and consider spectral values .�k; �/ 2
Ac" : The following claim, an immediate consequence of (4.2), will be useful in the
sequel, when estimating masses of eigenfunctions in intervals.

Claim 4.2. Let u.yI�;k/ be a solution to (4.1), where .�k;�/ 2Ac" : Then it is strictly
convex (or concave) in every interval

y 2 .zi ; ziC1/; 0 � i � s:

In particular, without further assumptions, the solutions are oscillatory and are
convex (or concave) between consecutive zeros. However, in various sub-intervals
their amplitudes might decay to zero, hence concentrating in the complementary
domain. It is precisely this behavior that we seek to exclude.

We start off with the classical case of a C 2 coefficient c.y/: In this case, a full
asymptotic characterization of the eigenfunctions is possible.

4.1. The regular case: The Liouville transformation with c.y/ 2 C 2.Œ0;H �/

This case is of interest, as it yields an almost sinusoidal behavior of the eigenfunctions,
not only estimates on the mass in a band.

Theorem 4.3. Let ƒ > " and set

Ac";ƒ D Ac" \ ¹� � .cM Cƒ/�2kº:

Assume that c.y/ 2 C 2.Œ0;H�/: Let u.yI�; k/ be a normalized solution to (4.1).
Then for every interval .a; b/ � .0;H/

inf
.�k ;�/2A

c
";ƒ

bZ
a

u.yI�; k/2c.y/�1dy > 0; (4.4)

that is equivalent to inf.�k ;�/2Ac";ƒ
R
�a;b

v�.x/
2 Qc.x/�1dx > 0:
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Recall that Qc is introduced at the beginning of Section 2 and�a;b in Definition 2.2.

Proof. The hypotheses imposed in the theorem imply that

cM

c.y/
� 1C "

c.y/
� p.yI�; k// � cM

c.y/
� 1C ƒ

c.y/
; y 2 Œ0;H�:

Thus, there exist constants 0 < �1 D "
cM

< �2 D cMCƒ
cm

such that

�1 � p.yI�; k/ < �2; y 2 Œ0;H�; .�k; �/ 2 Ac";ƒ: (4.5)

We apply the Liouville transformation [20, Chapter IV]:

� D
yZ
0

p
p.t I�; k/dt; �.�I�; k/ D Œp.yI�; k/� 14u.yI�; k/: (4.6)

Note that � 2 Œ0; xH�; and

xH D
HZ
0

s
�

�2
k
c.t/
� 1 d t � H

s
cM Cƒ
cm

� 1:

The function �.�I�; k/ satisfies the equation

d2�

d�2
C �2k� D �.�I�; k/�; (4.7)

where

�.�I�; k/ D 1

4

p00.yI�; k/
p.yI�; k/2 �

5

16

p0.yI�; k/2
p.yI�; k/3 :

Note that the form of (4.7) is the starting point for the asymptotic behavior of
solutions involving potential perturbations. However in our case the potential depends
on the spectral parameter.

Observe that under our assumptions the family

B D ¹�.�I�; k/; .�k; �/ 2 Ac";ƒº

is uniformly bounded.
Since �.0I�; k/ D 0; equation (4.7) entails, with ˛ D ��1

k
�0.0I�; k/;

�.�I�;k/D ˛ sin.�k�/C��1k
�Z
0

sin.�k.� � �//�.� I�;k/�.� I�;k/d�; � 2 Œ0; xH�:

(4.8)
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The uniform boundedness of the family B implies that the Volterra integral equa-
tion (4.8) is solvable for any sufficiently large �k [37, Chapter 1]. Furthermore, there
exist s; �0 > 0 so that

j�.�I�; k/ � ˛ sin.�k�/j � s��1k ; � 2 Œ0; xH�; �k > �0; � 2 B: (4.9)

We now make the following observations.

• Recall that
HZ
0

u.yI�; k/2c.y/�1dy D 1;

hence in light of (4.5) and � � .cM Cƒ/�2k there exist two constants 0 < �1 <
�2 <1 so that

�1 �
xHZ
0

�.�I�; k/2d� � �2; �k > �0: (4.10)

• It follows from (4.9)–(4.10) that there exist two constants 0 < r1 < r2 < 1 so
that

r1 � j˛j � r2; �k > �0: (4.11)

Let .�1; �2/ be the interval corresponding to .a; b/: The Cauchy–Schwarz inequality,
applied to (4.9), yields

k�.�I�; k/kL2..�1;�2/;d�/ � j˛jk sin.�k�/kL2..�1;�2/;d�/ � s��1k .�2 � �1/
1
2 ;

namely,

k�.�I�; k/kL2..�1;�2/;d�/ � j˛j
h�2 � �1

2
� 1

2�k
sin.2�k�/

ˇ̌̌�2
�1

i 1
2 � s��1k .�2 � �1/

1
2 :

Increasing �0 (if needed) so that �0 > 4
�2��1

we conclude that

k�.�I�; k/kL2..�1;�2/;d�/ �
�1
4
j˛j � s��1k

�
.�2 � �1/ 12

Noting (4.11) and requiring �0 > 8s
r1
; we finally obtain

�2Z
�1

�.�I�; k/2d� �
�r1
8

�2
.�2 � �1/; �k > �0:
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Note that there are at most finitely many normalized eigenfunctions associated with
values �k < �0; since � is bounded from above.

Switching back to the original variable y and the function u.yI�; k/ we get (4.4).

Remark 4.4. Note that the hypotheses of Theorem 4.3 entail not only the conclusion
that the eigenfunctions do not concentrate in sub-domains of .0; H/ but also their
asymptotic (sinusoidal) form, as in (4.9).

4.2. Beyond the regular case (see Theorem 2.9)

The implications of the assumption that c.y/ is subject only to the minimal amplitude
hypothesis (Definition 2.7) will now be studied. No regularity is required of c.y/; and
only condition H (see (2.1)) is imposed.

We have already seen that the lack of regularity does not affect the oscillatory
character of the solutions. The remaining issue is to see that the masses of the oscilla-
tory solutions ¹u.yI �; k/; .�k; �/ 2 Ac"º in any interval remain uniformly bounded
away from zero. This is addressed in the following theorem which is a somewhat
more detailed form of Theorem 2.9. Its proof is straightforward, reducing the non-
concentration issue to a study of the minimal amplitude hypothesis for various func-
tional classes.

Theorem 4.5. Let c.y/2K satisfy the minimal amplitude hypothesis (Definition 2.7).
Consider the family ¹u.yI�; k/; .�k; �/ 2 Ac"º of normalized solutions to (4.1).

Then, for every interval .a; b/ � .0;H/; there exist constants

• d > 0 depending on "; cM ; cm; b � a; rc;

• �0 > 0 depending on "; cM ; cm; b � a
such that

bZ
a

u.yI�; k/2c.y/�1dy � d; � > �0:

This estimate is equivalent toZ
�a;b

v�.x/
2 Qc.x/�1dx � d;

where v� is the eigenfunction of �Qc� associated with �:

Proof. By Claim 4.2 the graph of u.yI�; k/ is convex (or concave) in .zi ; ziC1/ and
there exists a unique point ziC 12 2 .zi ; ziC1/ so that

u.ziC 12
I�; k/2 is maximal in the interval and u0.ziC 12 I�; k/ D 0: (4.12)
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In particular,
u.ziC 12

I�; k/2 � r2c ; 0 � i � s: (4.13)

Let Nu.yI �; k/ be the continuous piecewise linear function connecting .zi ; 0/ to
.ziC 12

; u.ziC 12
I�; k// then to .ziC1; 0/: It is readily verified that

ziC1Z
zi

Nu.yI�; k/2dy D 1

3
.ziC1 � zi /u.ziC 12 I�; k/

2; (4.14)

and, due to the convexity,

ziC1Z
zi

u.yI�; k/2dy �
ziC1Z
zi

Nu.yI�; k/2dy:

By (4.14) and (4.13),

ziC1Z
zi

u.yI�; k/2dy � 1

3
r2c.ziC1 � zi /: (4.15)

Let .a; b/� Œ0;H�: In view of Claim 4.1 we have �0 D �0.b � a; "/ > 0 such that
for any � > �0 there are zeros a � zi0 < zi1 � b and ja� zi0 j C jb � zi1 j< 1

3
.b � a/:

In particular, summing in (4.15) yields

bZ
a

u.yI�; k/2dy �
zi1Z
zi0

u.yI�; k/2dy � 1

3
� 2
3

r2c.b � a/;

which concludes the proof of the theorem.

4.3. More on the minimal amplitude hypothesis

Recall that the minimal amplitude was defined by (2.13):

r2c D inf
y2Œ0;H�
.�k ;�/2A

c
"

Œu�;k.y/
2 C u0�;k.y/2�:

We now consider this quantity in more detail.
The next proposition supplements equation (4.13).

Proposition 4.6. Let u.yI �; k/ a normalized solution to (4.1) where c.y/ 2 K and
.�k; �/ 2 Ac" : Let

r2c;�k ;� D inf
y2Œ0;H�

Œu.yI�; k/2 C u0.yI�; k/2�: (4.16)
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Then there exists a positive Q�0 such that for any � > Q�0;

r2c;�k ;� D min
0�i<s

u.ziC 12
I�; k/2: (4.17)

Proof. Suppose that u.yI�; k/ is convex in the interval .zi ; ziC1/ (see Claim 4.2). In
light of equation (4.1) the function u.yI�; k/ satisfies

u00.yI�; k/C �2kp.yI�; k/u.yI�; k/ D 0; (4.18)

hence

d

dy
Œu.yI�; k/2 C u0.yI�; k/2� D 2.1� �2kp.yI�; k//u0.yI�; k/u.yI�; k/: (4.19)

In the interval we have u.yI�; k/ < 0 and by convexity

u0.yI�; k/
8<:< 0; y 2 Œzi ; ziC 12 /;
> 0; y 2 .ziC 12 ; ziC1�:

As in the proof of Claim 4.1, we can now find Q�0 so that �2
k
p.yI�;k/ > 1 for � > Q�0:

Inserting this in (4.19) we obtain

d

dy
Œu.yI�; k/2 C u0.yI�; k/2�

8<:< 0; y 2 .zi ; ziC 12 /;
> 0; y 2 .ziC 12 ; ziC1/:

Equation (4.17) clearly follows by considering all intervals.

As a corollary to the proof of Proposition 4.6 we have the following corollary.

Corollary 4.7. If � > Q�0, then, for every 0 � i < s,

minŒju0.zi I�; k/j2; ju0.ziC1I�; k/j2� � ju.ziC 12 I�; k/j
2:

4.4. Diffusion coefficients satisfying the minimal amplitude hypothesis

In this section we present several subsets of the set K of diffusion coefficients c.y/ for
which the minimal amplitude hypothesis can be verified. In fact, our ultimate subset
is that of functions of bounded total variation (see Section 4.5), that contains all the
subsets considered here. To justify our special treatment of the more restricted subsets,
we call attention to the following points.

• As we narrow down the admissible coefficients c.y/ (as we did above for c.y/ 2
C 2) we can extract more information on the general structure of the corresponding
non-guided eigenfunctions.
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• The methods of proof in the different cases are quite different from each other.
Given the important role of the minimal amplitude in these investigations and the
fact that the most general case (namely all c.y/ 2 K) is still open, it seems to us
worthwhile to expound the various methods.

• The special case of piecewise constant coefficients is in the focus of much of the
physical literature, and some of the estimates obtained in this context will prove
to be crucial in establishing the more general case.

4.4.1. First case

c.y/ Lipschitz. The first subset to be considered in the following proposition is that
of Lipschitz functions.

Proposition 4.8. Let c.y/ 2 K be in W 1;1.Œ0; H�/: Then it satisfies the minimal
amplitude hypothesis with respect to Ac" :

Proof. Let u.yI �; k/ be a normalized solution to (4.1). We just need to prove the
estimate (2.14). Equation (4.1) can be rewritten as

u00.yI�; k/C ˛2.yI�; k/u.yI�; k/ D 0

where
˛.yI�; k/ D �k

p
p.yI�; k/: (4.20)

Observe that in light of (4.2) r
"

cM
�k � ˛.yI�; k/: (4.21)

We now replace u; u0 by u1; u2 as follows (suggested in the recent paper [2]).

u1.yI�; k/ D u.yI�; k/; u2.yI�; k/ D u0.yI�; k/
˛.yI�; k/ ;

and note that the vector function

U.yI�; k/ D
�
u1.yI�; k/
u2.yI�; k/

�
satisfies

U 0.yI�; k/ D
�

0 ˛.yI�; k/
�˛.yI�; k/ 0

�
U.yI�; k/C

�
0 0

0 �˛0.yI�;k/
˛.yI�;k/

�
U.yI�; k/:

(4.22)
It readily follows that

d

dy
.u21 C u22/ D �2

˛0.yI�; k/
˛.yI�; k/ u

2
2: (4.23)
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Now,
˛0

˛
D 1

2p
p0;

hence
˛0

˛
D �1

2

�2
k
c.y/

� � �2
k
c.y/

�c0.y/

�2
k
c.y/2

D �1
2

�

� � �2
k
c.y/

c0.y/

c.y/
:

Since �2
k
c.y/ � �2

k
cM D �2kcM cMC"

cMC"
� cM

cMC"
�, it follows that

�

� � �2
k
c.y/

� 1

1 � cM
cMC"

D cM C "
"

:

Finally, ˇ̌̌˛0
˛

ˇ̌̌
� cM C "

2"
sup

y2Œ0;H�

jc0.y/j
c.y/

;

that implies

�C.u21 C u22/ �
d

dy
.u21 C u22/ � C.u21 C u22/; C D cM C "

"
sup

y2Œ0;H�

jc0.y/j
c.y/

:

Since u21 C u22 > 0 in the interval Œ0;H�, we conclude that there exists a constant
R > 0; so that for all .�k; �/ 2 Ac" and for any y1; y2 2 Œ0;H�

.u21 C u22/.y2/ � R.u21 C u22/.y1/:

Furthermore, since u.yI�; k/ is normalized
RH
0
u.yI�; k/2c.y/�1dy D 1; it follows

that there exists a constant � > 0; so that for all .�k; �/ 2 Ac" ;

.u21 C u22/.y/ � �; y 2 Œ0;H�:

This estimate, combined with the definition of u1; u2 and (4.21) implies the required
estimate (2.14) and concludes the proof of the proposition.

4.4.2. Second case

c.y/monotone nondecreasing. In the following proposition we relax the regularity
of the coefficient c.y/: In fact, it is no more required to be continuous but on the other
hand a monotonicity assumption is imposed.

Proposition 4.9. Let c.y/ 2 K and assume that c.y/ is nondecreasing. Then it satis-
fies the minimal amplitude hypothesis with respect to Ac" :
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Proof. Let u.yI �; k/ be a normalized solution to (4.1) where .�k; �/ 2 Ac" : Define
rc;�k ;� as in (4.16) and use the transformation (as in the proof of Proposition 4.8)

u1.yI�; k/ D u.yI�; k/; u2.yI�; k/ D u0.yI�; k/
˛.yI�; k/ ;

p.yI�; k/ D �

�2
k
c.y/

� 1; ˛.yI�; k/ D �k
p
p.yI�; k/:

We first show that even though ˛.yI�; k/ is not necessarily continuous, (4.22)–(4.23)
can be extended (in distribution sense) so that

d

dy
.u21 C u22/ D �

.˛2.yI�; k//0
˛2.yI�; k/ u

2
2: (4.24)

Indeed, we first have
d

dy
u21 D 2u1u01 D 2˛u1u2:

Now, let ¹˛m.yI�; k/º1mD1 � C1Œ0;H� be a uniformly bounded sequence converg-
ing to ˛.yI �; k/ a.e. (hence in distribution sense)2. We may also assume that it is
uniformly bounded away from zero. Under these conditions the sequence

u0.yI�; k/2
˛2m.yI�; k/

(resp. the sequence d
dy

u0.yI�;k/2
˛2m.yI�;k/

) converges (in distribution sense) to u2.yI �; k/2
(resp. d

dy
u2.yI�; k/2). Since u0 2 H 1 we have (using (4.1))

d

dy

hu0.yI�; k/2
˛2m.yI�; k/

i
D 1

˛4m.yI�; k/
� � 2˛2.yI�; k/˛2m.yI�; k/u0.yI�; k/u.yI�; k/
� .˛2m.yI�; k//0u0.yI�; k/2

�
:

Clearly, the right-hand side in this equation converges, in the sense of distributions, to

�2u0.yI�; k/u.yI�; k/ � .˛
2.yI�; k//0u0.yI�; k/2

˛4.yI�; k/

2Choose 0 � � 2 C1
0
.R/;

R
�.y/dy D 1 and a continuation Q̨ .y/ of ˛; nonincreasing

on .�1; H C 1/; with compact support on R. We set ˛m ´ . Q̨ � �m/jŒ0;H� with �m.y/ D
1
m
�. y
m
/. From ˛m.y/ D

R Q̨ .y � z/�m.z/dz, we see that ˛m is nonincreasing and j˛.y/ �
˛m.y/j � supjzj< 1

m
j˛.y/ � ˛m.y � z/j that proves the convergence a.e. on Œ0; H�, hence in

L1.0;H/
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and substituting u0.yI�; k/ D ˛.yI�; k/u2.yI�; k/ we obtain (4.24). Since

.˛2.yI�; k//0 � 0;

we conclude that

The function u21.yI�; k/C u22.yI�; k/ is nondecreasing in y 2 Œ0;H�: (�)

As above, let

Z.�; k/D ¹z0 D 0 < z1 < z2 < � � � < zs DH; u.zi I�; k/D 0; 0 � i � sº � Œ0;H�

be the set of zeros of u.yI �; k/: Recall that the set ¹ziC 12 º is defined as in (4.12).
From Proposition 4.6 and (�), deduce that there is Q�0 such that for any � > Q�0;

u.ziC 12
IyI�; k/2 � u.ziC 32 IyI�; k/

2; 0 � i < s � 1 (4.25)

and
r2c;�k ;� D u.z 12 IyI�; k/

2: (4.26)

The proof will be complete if we prove

Qrc ´ inf
�>Q�0;

.�k ;�/2A
c
"

rc;�k ;� > 0: (4.27)

Indeed, there are only finitely many eigenfunctions with .�k; �/ 2 Ac" and � � Q�0;
hence

rc D min¹ Qrc; min
��Q�0; .�k ;�/2A

c
"

rc;�k ;�º:

Note that by excluding at most a finite number of eigenvalues we shall be able
to obtain a more explicit lower bound for the Qrc in (4.27). This will be evident in
Corollary 4.10 below.

It remains to prove (4.27). This is done in two steps.

(1) Controlling the nonincreasing function ˛.yI�; k/2. For i < j , we have that
˛.zjC 12

I�;k/2 � ˛.ziC 12 I�;k/
2: On the other hand, by the monotonicity of c.y/ and

by (4.20)–(4.21) there exists a constant 
 > 0; depending only on "; cm; cM such that
for i < j

1 �
˛.ziC 12

I�; k/2
˛.zjC 12

I�; k/2 � 
; .�k; �/ 2 Ac" : (4.28)
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(2) Controlling the extremal values u.z
iC 1

2
I�;k/2. Integrate the equation

d

dy
u0.yI�; k/2 D �˛.yI�; k/2 d

dy
u.yI�; k/2; ˛.yI�; k/2 D �2kp.y; �; k/;

over the interval ŒziC 12 ; zjC 12 �; i < j:Using the Riemann–Stieljes integration by parts3

we get

˛.zjC 12
I�; k/u.zjC 12 I�; k/

2 � ˛.ziC 12 I�; k/u.ziC 12 I�; k/
2

D
z
jC 1

2Z
z
iC 1
2

u.yI�; k/2d.˛.yI�; k//:

Since ˛.yI�;k/2 is nonincreasing, the right-hand side is nonpositive and we conclude

˛.zjC 12
I�; k/2u.zjC 12 I�; k/

2 � ˛.ziC 12 I�; k/
2u.ziC 12

I�; k/2: (4.29)

We have u.ziC 12 I �; k/
2 � u.zjC 12 I �; k/

2 (see (4.25)). From (4.29) and (4.28) we
infer that there exists a constant c > 0 depending solely on "; cm; cM such that

u.zjC 12
I�; k/2 � cu.ziC 12

I�; k/2; 0 � i < j � s � 1; � > Q�0: (4.30)

Since u.yI�; k/ is normalized we have, in view of (4.12)

s�1X
iD0

u.ziC 12
I�; k/2.ziC1 � zi / �

HZ
0

u.yI�; k/2dy � cm:

Combining this estimate with (4.26), (4.30) we obtain

Hc2r2c;�k ;� � cm;

and (4.27) readily follows.

In the course of the proof of Proposition 4.9 we have actually obtained interesting
(and non-trivial) facts concerning the behavior of the normalized non-guided oscilla-
tory solutions u.yI�; k/ for nondecreasing coefficients c.y/: They are highlighted in
the corollary below.

First, we fix " > 0, 0 < cm < cM , and define K; Ac" as in (2.11), (2.12), respec-
tively. Let K1 � K be the set of all nondecreasing diffusion coefficients.

Observe that the threshold value Q�0 depends only on "; cm; cM : Also the constant
c appearing in (4.30) depends solely on these parameters.

3Note that u2 is continuous and ˛ is a BV function. See [21, Theorems 12.14 and 12.15].



A. Benabdallah, M. Ben-Artzi, and Y. Dermenjian 1202

Corollary 4.10. (1) The minimal amplitude for all solutions with � > Q�0 is strictly
positive:

rK1 ´ inf
c.y/2K1

inf
�>Q�0

rc;�k ;� > 0:

(2) The amplitudes of any solution u.yI �; k/ between zeros are growing as y
moves from 0 to H: However, the ratios of the amplitudes remain universally (for all
c.y/ 2 K1) bounded for � > Q�0.

4.4.3. Third case

c.y/ piecewise constant. We turn next to the case that c.y/ is a piecewise constant
function. In Theorem 4.13 below we discuss our most general case, namely c.y/ of
bounded variation. To this end, a detailed treatment of the piecewise constant case is
needed.

We shall use the following notation. There exist 0D h�1 < h0 < h1 < � � �< hN D
H; and positive constants c0; c1; : : : ; cN so that

c.y/ D cjC1; y 2 .hj ; hjC1/; j D �1; 0; : : : ; N � 1:

We show that c.y/ satisfies the minimal amplitude hypothesis, where the relevant
constants depend only on its total variation.

Notational comment. In order to keep the notational uniformity with the other sec-
tions, we retain the notation cm; cM for the minimal and maximal values, respectively,
of c.y/:Of course, they coincide with some c0j s but the distinction in various estimates
(such as (4.40)) will be completely clear.

Recall that u.yI �; k/ satisfies equation (4.1) with p.yI�; k/ D �

�2
k
c.y/
� 1; so

that

p.yI�;k/D pjC1 D �

�2
k
cjC1

� 1; y 2 .hj ; hjC1/; j D�1; 0; : : : ;N � 1: (4.31)

Proposition 4.11. Assume that c.y/ is piecewise constant as above, and let

V D
N�1X
jD0

jcjC1 � cj j

be the total variation of c.y/: Let u.yI�; k/ be a normalized solution to (4.1) where
.�k; �/ 2 Ac" : Then

(1) c.y/ satisfies the minimal amplitude hypothesis with respect to Ac" ;with rc>0

depending only on "; cm; cM ; V I
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(2) for every .a; b/ � Œ0; H� there exist constants d > 0 and �0 > 0 depending
only on a; b; "; cm; cM ; V; such that

bZ
a

u.yI�; k/2c.y/�1dy > d; � > �0: (4.32)

Note in particular that d and �0 do not depend on the size N of the partition.

Proof. In light of Theorem 4.5, we need first to prove the validity of the minimal
amplitude hypothesis. Consider an interval Ij D .hj ; hjC1/: The solution u.yI �; k/
to (4.1) in Ij is given by

u.yI�; k/ D ǰ sin.�k
p
pjC1.y � 
j //; y 2 Ij (4.33)

where ǰ ; 
j are suitable constants. Recall from (4.2) that jpjC1j � �; j D�1;0; : : : ;
N � 1; where � D "

cM
:

In the interval Ij , we have

u.yI�; k/2 C u0.yI�; k/2 � ˇ2j min.1; �2kpjC1/ � ˇ2j min.1; �2k�/: (4.34)

As �k � �1 > 0, to complete the proof we need to show the existence of a constant
ı > 0; depending only on "; cm; cM ; V so that

j ǰ j � ı; j D �1; 0; : : : ; N � 1: (4.35)

We observe the following facts concerning the coefficients ¹ ǰ ºN�1jD�1:

• We have
ǰ ¤ 0; j D �1; 0; : : : ; N � 1;

since otherwise u.yI�; k/ � 0:
• There exists a constant � > 1; depending only on cm; cM ; "; V; such that

ˇ2j

ˇ2jC1
;
ˇ2jC1

ˇ2j
� .1C �jcjC2 � cjC1j/; j D �1; 0; : : : ; N � 2: (4.36)

To establish (4.36) we proceed as follows. Denote, for j D �1; 0; : : : ; N � 2

Aj D �kppjC1.hjC1 � 
j /; BjC1 D �kppjC2.hjC1 � 
jC1/:

The continuity of u.yI�; k/ and u0.yI�; k/ at hjC1 implies that

ǰ sin.Aj / D ǰC1 sin.BjC1/;

ǰ�k
p
pjC1 cos.Aj / D ǰC1�k

p
pjC2 cos.BjC1/:
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Recall that ǰ ¤ 0 for all j: It follows that for j D �1; 0; : : : ; N � 2

ˇ2j D ˇ2jC1
�
1C

hpjC2
pjC1

� 1
i

cos2.BjC1/
�
; (4.37a)

ˇ2jC1 D ˇ2j
�
1C

hpjC1
pjC2

� 1
i

cos2.Aj /
�
: (4.37b)

From (4.31), it readily follows that

pjC2

pjC1
� 1 D �

� � �2
k
cjC1

� cjC1 � cjC2
cjC2

;

pjC1

pjC2
� 1 D �

� � �2
k
cjC2

� cjC2 � cjC1
cjC1

; j D �1; 0; 1; : : : ; N � 2:

The fact that .�k; �/ 2 Ac" entailsˇ̌̌pjC1
pjC2

� 1
ˇ̌̌
;
ˇ̌̌pjC2
pjC1

� 1
ˇ̌̌
� �jcjC1 � cjC2j; j D �1; 0; : : : ; N � 2; (4.38)

where � > 0 depends only on cm; cM ; ": In conjunction with (4.37) the estimate (4.36)
is established.

From (4.37), we deduce for any q 2 ¹0; 1; : : : ; N � 1º upper and lower estimates8<:ˇ2q � ˇ2�1
Qq�1
jD�1.1C �jcjC1 � cj j/ � ˇ2�1e�

Pq�1
jD�1 jcjC1�cj j;

ˇ2q � ˇ2�1
Qq�1
jD�1.1C �jcjC1 � cj j/�1 � ˇ2�1e��

Pq�1
jD�1 jcjC1�cj j:

Thus, for all q 2 ¹0; 1; : : : ;N � 1º, the coefficients ˇ�1 and ˇq are comparable in the
sense that

ˇ2�1e
��V � ˇ2q � ˇ2�1e�V : (4.39)

The normalization of u.yI�; k/ in conjunction with (4.33) and (4.39) implies

1 D
HZ
0

u.yI�; k/2c.y/�1dy � c�1m
N�1X
jD�1

ˇ2j .hjC1 � hj / � c�1m Hˇ2�1e
�V : (4.40)

Thus, finally the estimate (4.35) follows from (4.39) and (4.40).
The estimates (4.34) and (4.35) imply that the minimal amplitude hypothesis is

satisfied

r2c D inf¹u.yI�; k/2 C u0.yI�; k/2; y 2 Œ0;H�º � ı2 min.1; �21�/ > 0; (4.41)

and rc depends only on "; cm; cM ; V:
The non-concentration estimate (4.32) is now a consequence of the general Theo-

rem 4.5.
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In analogy with the case of the subset of all nondecreasing coefficients (Corol-
lary 4.10), we deduce from (4.41) a similar result for all piecewise constant coeffi-
cients having a uniform bound of their total variations.

Corollary 4.12. Let KPCV � K be the set of all piecewise constant diffusion coeffi-
cients, with total variation less than V:

(1) We have
rPCV ´ inf

c.y/2KPCV
rc > 0: (4.42)

(2) Let u.yI �; k/ be a solution as in Proposition 4.11. Then the ratios of two
consecutive amplitudes ˇ̌̌u.ziC 12 I�; k/

u.ziC 32
I�; k/

ˇ̌̌
are uniformly bounded (above and below), for all coefficients in KPCV:

Proof. The estimate (4.42) follows from (4.41). The second item follows from (4.39).

4.5. The ultimate case – c.y/ of bounded variation

Our ultimate result concerns the case that

c.y/ 2 KV D ¹c 2 K; T V .c/ � V º:
Recall that K was defined in (2.11). We establish non concentration for spectral pairs
.�k;�/2Ac" (see (2.12)). As in the cases studied above, the proof relies on the validity
of the minimal amplitude hypothesis, via the fundamental Theorem 4.5.

Theorem 4.13. Let c.y/ be of bounded variation. Then it satisfies the minimal ampli-
tude hypothesis with respect to Ac" ; uniformly for all ¹c.y/ 2 K; T V .c/ � V º:

More precisely, as in (2.13),

r2c D inf
y 2 Œ0;H�;
.�k; �/ 2 Ac"

Œu�;k.y/
2 C u0�;k.y/2� > 0; (4.43)

and
r2V ´ inf

c2KV
r2c > 0: (4.44)

Furthermore, for any .a; b/ � .0; H/ there exists a constant fa;b > 0 such that, for
every c.y/ 2 KV ; and for every normalized u.yI�; k/ associated with .�k; �/ 2 Ac" ;

bZ
a

u.yI�; k/2c.y/�1dy � fa;b: (4.45)
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Finally, let ! D !0 � .a; b/: If !0 ¤ �0 assume that the family ¹�k.x0/º1kD1 of eigen-
functions of the Laplacian in �0 � Rd does not concentrate in �0 n !0: Then there
exists f! > 0 such the eigenfunction v�.x0; y/ D u.yI�; k/�k.x0/ satisfies

f! �
kv�kL2.!/
kv�kL2.�/

� 1

uniformly for all c.y/ 2 KV and all eigenvalues in Ac" :

The proof consists of approximating c.y/ by a sequence of piecewise constant
functions and using the results of Proposition 4.11 and Corollary 4.12. The approxi-
mation procedure is based on the following result [7, pp. 12f].

Claim 4.14. Suppose that c.y/ 2K and is of total variation V > 0: Then there exists
a sequence of piecewise constant functions ¹c.n/.y/º1nD1; so that

lim
n!1

c.n/.y/ D c.y/; uniformly in y 2 Œ0;H�I
sup¹T V.c.n//º1nD1 � V D T V.c/I (4.46)

and
0 < cm D ess inf c.y/

� c.n/m D ess inf c.n/.y/

� c.n/M D ess sup c.n/.y/

� cM D esssup c.y/; n D 1; 2; : : : :

Recall (see Section 1) that we denote

Qc.x0; y/ D c.y/; e
c.n/.x0; y/ D c.n/.y/; x D .x0; y/ 2 � D �0 � .0;H/;

with associated operators

A D �Qc�; A.n/ D �ec.n/�:

For the Laplacian ��x0 acting in L2.�0/ with domainH 2.�0/\H 1
0 .�

0/, we denote
by .�2

k
;�k/k�1 the sequence of normalized eigenfunctions and their associated eigen-

values, ordered by �k � �kC1: The eigenfunctions of A (resp. A.n/) are

v�.x/ D u.yI�; k/�k.x0/; v
.n/

�
.x/ D u.n/.yI�; k/�k.x0/;

where u.yI �; k/ (resp. u.n/.yI �; k/) satisfies equation (4.1) (resp. equation (4.1)
with c; p replaced by c.n/; p.n/) and is normalized in L2..0; H/; c.y/�1dy/ (resp.
L2..0;H/; c.n/.y/�1dy/).
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We consider eigenfunctions associated to spectral pairs .�k; �/ 2 Ac" : The fol-
lowing perturbation lemma is at the basis of the proof of the theorem. We postpone
its proof to the end of this section, following the proof of the theorem. Note that in
this lemma no assumption is needed concerning the total variations of the involved
functions.

Lemma 4.15 (Convergence of eigenvalues and eigenfunctions). Let ¹c.n/º1nD1 � K

converge uniformly (in Œ0; H�) to c.y/: Let A.n/ and A be the corresponding oper-
ators. Let � > 0 be an eigenvalue of A; with associated normalized eigenfunction
u.yI�;k/�k.x0/: Then there existN > 0 and a sequence of eigenvalues ¹�.n/º1nDN of
¹A.n/º1nDN ; with associated normalized eigenfunctions ¹u.n/.yI �.n/; k/�k.x0/º1nDN
such that

lim
n!1

�.n/ D �; (4.47a)

lim
n!1

u.n/.�I�.n/; k/ D u.�I�; k/ in H 2.0;H/: (4.47b)

Proof of Theorem 4.13. Pick some � � .cM C "/�2k :
Let ¹u.n/.yI�.n/; k/º1nDN be a sequence as in Lemma 4.15. Note that the conver-

gence (4.47a) implies that, for sufficiently large index n the condition

�.n/ >
�
cM C "

2

�
�2kj

holds. In view of the uniform bound (4.46) on total variations we can invoke Corol-
lary 4.12 to get

.rapp
c /2´ inf

N�n<1
inf

y2Œ0;H�
.u.n/.yI�.n/; k/2 C u.n/0.yI�.n/; k/2/ > L2; (4.48)

where L > 0 depends only on "; V; cm; cM (see (4.41)).
The H 2 convergence (4.47b) entails uniform convergence of both the functions

and their derivatives. Hence,

u.yI�; k/2 C u0.yI�; k/2 � L2:

The estimate (4.43) now follows from the fact that, in view of Corollary 4.12, the
estimate (4.48) holds uniformly for all approximating sequences for any solution
u.yI �; k/ associated with .�k; �/ 2 Ac" : In fact, we get the uniform estimate (4.44)
since rc depends only on V:

Finally, we turn to the non-concentration statement (4.45). The general Theo-
rem 4.5 ensures the existence of d > 0; �0 > 0 depending on "; cM ; cm; b � a; rc;

such that
bZ
a

u.yI�; k/2c.y/�1dy � d; � > �0:
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Due to (4.44), this estimate is uniformly valid (with the same d; �0) for all c.y/ 2 K

with T V.c/ � V:
However, for every c.y/ 2 K with T V.c/ � V there are finitely many eigenfunc-

tions that are excluded, namely, those with � < �0: Clearly, these eigenfunctions vary
with c.y/: We now show that they can be included in (4.45). The price to be paid is
that the lower bound f depends in a more delicate way on the various parameters (and
not only on "; cM ; cm; b � a; rc).

To obtain a contradiction, we introduce a sequence

¹c.n/.y/; T V .c.n// � V º1nD1 � K:

Let ¹�nº1nD1 be a sequence of eigenvalues with associated normalized eigenfunctions
¹un.yI�n; kn/º1nD1 satisfying

u00n.yI�n; kn/C
� �n

c.n/.y/
� �2kn

�
un.yI�n; kn/ D 0:

Assume further that

.cM C "/�2kn < �n < �0; n D 1; 2; : : : :

Suppose that for some interval .0; H/ and some subsequence (we do not change
indices)

lim
n!1

bZ
a

un.yI�n; kn/2c.n/.y/�1dy D 0: (4.49)

The sequence is normalized and clearly the coefficients
®

�n
c.n/.y/

��2
kn
; nD 1; 2; : : :¯

are uniformly bounded, hence ¹unº1nD1 is uniformly bounded in the Sobolev space
H 2.0;H/: From the Sobolev embedding theorem and (4.49) we infer

lim
n!1

bZ
a

.un.yI�n; kn/2 C u0n.yI�n; kn/2/c.n/.y/�1dy D 0:

This is a contradiction to the fact (see (4.44))

un.yI�n; kn/2 C u0n.yI�n; kn/2 � r2V ; n D 1; 2; : : : :

Proof of Lemma 4.15. We use the direct sum representation (2.2) both for the operator
A and the operators A.n/: Since the eigenfunctions ¹�k.x0/º do not depend on the
index n; the reduced operators A.n/

k
(see (2.3)) are given by

A
.n/

k
D c.n/.y/

�
�2k �

d2

dy2

�
; k D 1; 2; : : : ;
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with
D.A

.n/

k
/ D H 2.0;H/ \H 1

0 .0;H/:

Fix k 2 N� so that � is an eigenvalue of Ak . The corresponding (reduced) eigenfunc-
tion u.yI�; k/ satisfies the equation (see (4.1))

u00.yI�; k/C
� �

c.y/
� �2k

�
u.yI�; k/ D 0; u.yI�; k/.0/ D u.yI�; k/.H/ D 0:

LetB.�; ı/�C be the disk of radius ı centered at � and consider the following linear
initial value problem, with a complex parameter z 2 B.�; ı/;8<:w

00.yI z/C
� z

c.y/
� �2k

�
w.yI z/ D 0;

w.0I z/ D 0; w0.0I z/ D u0.0I�; k/:
(4.50)

For every y 2 Œ0;H� the function w.yI z/ is analytic as a function of z [13, Chap-
ter 1, Theorem 8.4] and this is true in particular for f .z/´ w.H I z/: Note that z
is an eigenvalue of A if and only if f .z/ D 0; since if w is an eigenfunction then so
is aw; for any a ¤ 0: Clearly, f .�/ D 0: This is the only zero of f in B.�; ı/ for
sufficiently small ı > 0; since � is an isolated eigenvalue of Ak :

By standard formulas for zeros of analytic functions, since � is a simple zero,

1 D 1

2�i

Z
jz��jDr

f 0.z/

f .z/
dz; � D 1

2�i

Z
jz��jDr

z
f 0.z/

f .z/
dz: (4.51)

Replacing in (4.50) c.y/ by c.n/.y/, we obtain solutions w.n/.yI z/: From the
equation and the initial condition, we infer that ¹w.n/.yI z/; z 2 B.�; ı/º1nD1 is uni-
formly bounded in the Sobolev space H 2.0; H/: Fix z 2 B.�; ı/ and let ¹z.n/º �
B.�; ı/ be a sequence converging to z: The Rellich compactness theorem yields the
existence of a subsequence ¹w.nj /º1jD1 and a limit function Qw.yI z/ such that

lim
j!1

w.nj /.yI z.nj // D Qw.yI z/; lim
j!1

w.nj /
0
.yI z.nj // D Qw0.yI z/; (4.52)

strongly in L2.0;H/, and w.nj /
00
.yI z.nj // converges strongly to Qw00.yI z/ due to the

equation itself. It follows that Qw.yI z/ satisfies (4.50) with the same initial data, so by
uniqueness Qw.yI z/ D w.yI z/: In particular, since all converging subsequences have
the same limit, (4.52) can be replaced by

lim
n!1

w.n/.yI z.n// D w.yI z/; lim
n!1

w.n/
0
.yI z.n// D w0.yI z/; (4.53)

strongly in L2.0;H/.
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Setting f .n/.z/ D w.n/.H I z/ we obtain from (4.51), in view of the convergence
(4.53) and for sufficiently large n;

1 D 1

2�i

Z
jz��jDr

f .n/
0
.z/

f .n/.z/
dz; �.n/ D 1

2�i

Z
jz��jDr

z
f .n/

0
.z/

f .n/.z/
dz;

where the real sequence ¹�.n/º satisfies lim
n!1

�.n/ D �:
In addition, �.n/ (for sufficiently large n) is an eigenvalue ofA.n/

k
andw.n/.yI�.n//

is an associated (not necessarily normalized) eigenfunction. To conclude the proof of
the lemma we take

u.n/.yI�.n/; k/ D w.n/.yI�.n//�RH
0
jw.n/.yI�.n//j2.c.n/.y//�1dy� 12 :

5. The diffusion coefficient is piecewise constant–detailed study

There is special physical interest in the case that the diffusion coefficient is piecewise
constant. For this reason, we focus here on this case, providing detailed information
for both guided and non guided waves. Of course, in this case c.y/ is of bounded vari-
ation, hence the results of Theorem 2.4 and Theorem 4.13 are applicable. However,
we get here more detailed estimates by using more direct methods.

Notational comment. As in Section 4.4.3, in order to keep the notational uniformity
with the other sections, we retain the notation cm; cM for the minimal and maximal
values, respectively, of c.y/: Of course, they coincide with some c0j s but the distinc-
tion in various estimates will be completely clear.

This particular case is related to optical fibers for their industrial applications in
both acoustics and optics and to printed circuit boards. The simplest example of an
optical fiber is the step-index fiber: the fiber has two cylindrical parts sharing the same
axis: a core of radius a surrounded by a ring of thickness b, the cladding. A buffer
and a jacket protect these two elements by surrounding them. The index of the core
is n D n1 > 0 and that of the cladding are n D n2 < n1: Our coefficient of diffusion
c is exactly c D 1

n
. According to the choices of the respective constants a; b; n1; n2

and of the used pulse, the fiber is a single-mode fiber or a multiple-mode fiber. The
non-specialist reader interested in these modes of data transport could consult many
sites.4

4See for example
httpsW//en.wikipedia.org/wiki/Optical_fiber

httpsW//en.wikipedia.org/wiki/Printed_circuit_board

https://en.wikipedia.org/wiki/Optical_fiber
https://en.wikipedia.org/wiki/Printed_circuit_board
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The cross-section of a fiber is a disk that we match to our open set �´ .0; L/ �
.0; H/ which are therefore not diffeomorphic. The analogy between the step-index
fiber and this subsection is achieved by taking N D 1; c0 < c1 in the notations that
follow. A pulse being fixed, a link between our work and the properties of the optical
fibers is the following one: in the both cases we reduce the question to a one-dimen-
sional problem by separation of variables, replacing our variable y by r; the distance
to the center of the disk. For the fiber the problem reduces to a family of Bessel equa-
tions according to modes E, H, . . . , and the chosen simplifications whereas it is (2.2)
for us. This correspondence has certainly theoretical limits: for the Dirichlet Laplacian
in a disk there are eigenfunctions associated to high eigenvalues that are concentrated
close to the boundary of the disk (see [32, Section 7.7] and [22]). As a matter of fact,
the frequencies not going to infinity in applications, this influence is reduced.

5.1. Guided waves for monotone piecewise constant c.y/

This self contained subsection is a special case of Section 3 by assuming c is piecewise
constant and monotone increasing when 0 < y < H; which is the common structural
assumption in physical applications, in particular in studies of optical fibers. With
the above-mentioned precautions we are therefore dealing with the analogous case of
the graduated-index fibers when the index n is piecewise constant and we prove the
existence of these specific modes that are evanescent in the cladding. In our problem
we find again the same properties of concentration of energy in the first layers of �:
This concentration is increasing when their thickness decreases.

We begin by listing the hypotheses in this part (see Figure 4).

• Let N � 1,

h�1´ 0 < h0 < h1 < � � � < hN�1 <hN ´ H;

c0 < c1 < � � �< cN and c defined in
S
�1�j�N�1.hj ; hjC1/ by cj.hj ;hjC1/D cjC1

for j D �1; : : : ; N � 1:
• Let us fix i 2 ¹1; : : : ; N º and assume that, for a certain pair .k; `/; the eigenvalue

� D ˇk;` 2 .ci�1�2k; ci�2k/.
• Let us denote

�2´ �2k;i D 2
�
�2k �

�

ci

�
:

Recall v�.x0; y/ D vk;`.x0; y/ D �k.x0/u�;k.y/.
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h 1 D 0 h0 h1 h2 hi 1 hi hN 1 hN D H

c0

c1

c2

ci

cN

c.y/

f .y/ D 0

Figure 4

Then, for an eigenfunction u�;k associated to ˇk;`, the functionwD u2
�;k

is a solution
of (3.1) with f given by

f .y/ D
8<:�

ci � cj
cicj

w.y/; y 2 .hj�1; hj /; j 2 ¹0; : : : ; N º n ¹iº;

0; y 2 .hi�1; hi /;
(5.1)

and g as in (3.1).

Proposition 5.1 (Upper pointwise bounds). There exists C > 0 independent of k;�; i
such that if w.y/ is a solution to (3.1), ı 2 Œ0;H � hi�1/, then

w.hi�1 C ı/ � �

�

� X
0�j�i�1

ci � cj
cicj

e��.hi�1Cı�hj /
hjZ

hj�1

w.y/ dy
�

� C �
�
e��ı

hi�1Z
0

w.y/ dy:
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Proof. Using the Green kernel G (see (3.4)) we can write

w.y/ D �
HZ
0

G.y; y0I �/ f .y0/ dy0

C 2
HZ
0

G.y; y0I �/u0�;k.y0/2 dy0; for all y 2 .0;H/:

Then the definitions of G and f (see (5.1)), combined with the monotonicity of c and
y < x D hi�1 C ı if y 2 Œ0; hi�1�, imply

w.hi�1 C ı/ � 2�

�

X
0�j�i�1

ci � cj
cicj

sinh.�.H � hi�1 � ı//
sinh.�H/

hjZ
hj�1

sinh.�y0/ w.y0/ dy0;

where we used

sinh.�.H � hi�1 � ı//
sinh.�H/

� e��.hi�1Cı/; sup
.hj�1;hj /

sinh.�y0/ � 1

2
e�hj :

Proposition 5.2 (Lower pointwise bounds). Let ı 2 Œ0;H � hi�1/, Œa;b�� Œhi�1C ı;
H�, then any w solution of (3.1) verifies

w.hi�1 C ı/ � �2.a � hi�1 � ı/
bZ
a

w.y/ dy:

Proof. Taking into account that w.H/D w0.H/D 0, integrating twice (3.1) and tak-
ing into account that .u0

k;�
/2 � 0; we obtain

w.hi�1 C ı/ � 2
HZ

hi�1Cı

HZ
y

�2w.z/ d z dy � �2.a � hi�1 � ı/
bZ
a

w.y/ dy:

Theorem 5.3 (Concentration in Œ0;hi�1�). Let ı 2 Œ0;H � hi�1/ and Œa;b�� .hi�1C
ı;H�: Then there exists C > 0 such that for all k � 1, i 2 ¹1; : : : ; nº, all � D ˇk;` 2
.ci�1�

2
k
; ci�

2
k
/, the eigenfunction u�;k; satisfies

bZ
a

u2�;k.y/ dy � C �

�3

X
0�j�i�1

e��.hi�1Cı�hj /
hjZ

hj�1

u2�;k.y/ dy: (5.2)
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Proof. It suffices to apply Propositions 5.1 and 5.2 with

C D 1

a � hi�1 � ı
max

0�j�i�1

ci � cj
cicj

:

While the estimate (5.2) is more precise than (2.8), it implies the same type of
exponential decay of the eigenfunctions v�.x/ D �k.x0/u�;k.y/ as follows.

Corollary 5.4. Let ı 2 Œ0;H � hi�1/ and Œa; b� � .hi�1 C ı;H�: Then for all k � 1,
i 2 ¹1; : : : ; nº, all eigenvalues �D ˇk;` 2 .ci�1�2k; ci�2k/ and each eigenfunction v�;
one has (see Definition 2.2)Z

�a;b

v2�.x/ d x � 1

a � hi�1 � ı
ci � c0
cic0

�

�3
e��ı

Z
�0;hi�1

v2�.x/ d x:

The reader may wonder if the concentration takes place only in the layer
�hi�2;hi�1 , the concentration in the other layers�hip ;hipC1 ; 0� p � i � 3; becoming
negligible when k !1? Theorem 5.5 is a counter-example with the eigenfunctions
v� D �k.x0/u�;k.y/ where

u�;k.y/ D

8̂̂̂̂
<̂
ˆ̂̂:
a0 sin.�0y/; 0 < y < h0; �0 D

q
�
c0
� �2

k
;

a1 sin.�1y/C b1 cos.�1y/ h0 < y < h1; �1 D
q

�
c1
� �2

k
;

a2 sinh.�2.H � y//; h1 < y < H; �2 D
q
�2
k
� �
c2
:

Theorem 5.5. Let c.y/ be piecewise constant, taking three increasing values c0 <
c1 < c2 and let ¹v�nº1nD1 be a sequence of eigenfunctions associated with the eigen-
values �n D ˇkn;ln satisfying .c1 C "/�2kn < ˇkn;`n < .c2 � "/�2kn where 0 < " <
c2�c1
2

. Then the L2 norms of the eigenfunctions v�n concentrate in �0;h0 [�h0;h1
(the lower two layers) when n!1 as follows:

h1 � a < b < H H)
Z

�a;b

jv�n.x/j2 d x Ñ
e�2�2.a�h1/

�2

Z
�0;h0

jv�n.x/j2 d x

and Z
�0;h0

jv�n.x/j2 d x Ñ
Z

�h0;h1

jv�n.x/j2 d x:
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Proof. The following transmission conditions hold:

a1 sin.�1h0/C b1 cos.�1h0/ D a0 sin.�0h0/;

a1�1 cos.�1h0/ � �1b1 sin.�1h0/ D a0�0 cos.�0h0/;

a1 sin.�1h1/C b1 cos.�1h1/ D a2 sinh.�2.H � h1//;
a1�1 cos.�1h1/ � �1b1 sin.�1h1/ D �a2�2 cosh.�2.H � h1//:

A straightforward calculation gives

a21 C b21 D a20
�

sin2.�0h0/C
��0
�1

�2
cos2.�0h0/

�
; (5.3)

a21 C b21 D a22
�

sinh2.�2.H � h1//C
��2
�1

�2
cosh2.�2.H � h1//

�
;

a22 D a20
sin2.�0h0/C

�
�0
�1

�2 cos2.�0h0/

sinh2.�2.H � h1//C
�
�2
�1

�2 cosh2.�2.H � h1//
:

As we assume .c1 C "/�2k < � < .c2 � "/�2k we have �2 !1 as well as

c1"

c2.c2 � c1 � "/ �
��2
�1

�2
� c1.c2 � c1 � "/

c2"

and
c1.c2 � c0 � "/
c0.c2 � c1 � "/ �

��0
�1

�2
� c1.c1 � c0 C "/

c0"
:

So, for each sequence of distinct eigenvalues .�k/k; �k D ˇk;lk the coefficients a21 C
b21 and a20 are comparable from (5.3). Moreover, there exist two constantsM1;M2>0,
depending on "; such that

M1e
�2�2.H�h1/ �

�a2
a0

�2
�M2e

�2�2.H�h1/;

i.e., .a2=a0/2 Ñ e�2�2.H�h1/. This concludes the proof.

It remains to be proved that the condition in Theorem 5.5 is not void, namely,
that for each index i and each k sufficiently large there exists at least one eigenvalue
ˇk;` located in .ci�1�2k; ci�

2
k
/: This is proved in the following theorem subject to

an additional hypothesis which restricts the class of operators considered. Note that
Theorem 3.5 does not guarantee that eigenvalues ˇk;` are included in the interval
.ci�1�

2
k
; ci�

2
k
/: The additional hypothesis mentioned above is sufficient to obtain

this fact.
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Theorem 5.6. For " > 0 sufficiently small, a sufficient condition for the existence of
an infinite sequence of eigenvalues

¹ˇk;`k º1kD1 � ..c1 C "/�2k; .c2 � "/�2k/

of the operator A D �Qc � iss
c1.c1 � c0/
c0.c2 � c1/ <

h1 � h0
H � h0 : (5.4)

Note that the inequality (5.4) requires c21 < c0c2: For the proof, see Appendix A.

Remark 5.7. (1) In this Section 5.1, we have considered a monotone increasing func-
tion c: So, for a guided eigenvalue �D ˇk;`, the concentration takes place in the union
of layers such that °

.x0; y/Iy < inf
z

° �
�2
k

C " < c.z/
±±
:

(2) Wilcox [38] studied similar stratified media but the operator �c.y/� acted in
RnC1 or RnC1C whence the point spectrum was empty. Idem in [15] where eigenvalues
could appear by perturbing the coefficient c: The concentration in a layer needed a
local minimum of c in this layer.

(3) In the last page of [5], we pointed out that, if �1 ! 0, the concentration could
take place in the layer �1 but it is not clear that the phenomenon could actually take
place.

5.2. Non-guided waves for general piecewise constant c.y/

For the non-guided waves, we can apply Proposition 4.11 and its proof. That proof
was technically involved, as we looked for estimates depending only on total vari-
ation, independent of the number N of intervals. Since we want this section to be
independent of the preceding ones, we give here the statement and a simplified proof,
addressing directly the non-concentration for a class of eigenfunctions.

Our setup here is identical to that of Section 5.1 with the exception that no mono-
tonicity assumption is imposed on the c0j s W There exist

0 D h�1 < h0 < h1 < � � � < hN D H;

and positive constants c0; c1; : : : ; cN so that

c.y/ D cjC1; y 2 .hj ; hjC1/; j D �1; 0; : : : ; N � 1:

Recall (2.12) that
Ac" D ¹.�k; �/; � � .cM C "/�2kº:
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Proposition 5.8. Consider the set of normalized solutions u.yI�; k/ to (4.1), where
.�k; �/ 2 Ac" : Then there are constants �0 > 0; d > 0; depending on "; cM ; b � a;
such that

bZ
a

u.yI�; k/2dy � d; .�k; �/ 2 Ac" ; � > �0:

In order to replace
R b
a
u.yI�; k/2dy by

R
!
v�.x/

2dx we must keep the same restric-
tion as in Theorem 2.9.

Proof. We may assume that cj ¤ cjC1; j D 0; : : : ;N � 1: The function p of (4.1) is
given by

p.yI�; k/ D pjC1 D �

�2
k
cjC1

� 1; y 2 .hj ; hjC1/; j D �1; 0; : : : ; N � 1; (5.5)

so that
p.yI�; k/ � "

cM
; y 2 Œ0;H�: (5.6)

Consider an interval Ij D .hj ; hjC1/: The normalized solution u.yI�; k/ to (4.1)
in Ij is given by

u.yI�; k/ D ǰ sin.�k
p
pjC1.y � z.j /0 //; y 2 Ij ; (5.7)

where we denote a zero of u.yI�; k/ in Ij by z.j /0 . Observe that (by the comparison
principle) there exists a constant �0 > 0; such that if � > �0 then there are at least
two zeros hj < z

.j /
0 < z

.j /
1 < hjC1 of u.yI �; k/ in every interval Ij : Furthermore,

we can assume that

z
.j /
1 � z.j /0 �

1

2
.hjC1 � hj /; j D �1; 0; : : : ; N � 1:

Suppose now that for some � > 0 depending only on cm; cM ; "; we have

min
�1�j�N�1

j ǰ j � �: (5.8)

Then the assertion of the proposition is established as follows: it can be assumed that
the interval .a; b/ � Ij for some j; since it can be replaced by a non-void intersection
with some Ij : Furthermore, we can increase (if necessary) the constants �0 so that
u.yI�; k/ has at least two zeros a < y1 < y2 < b; with y2 � y1 > b�a

2
when � > �0:

Next in view of (5.6) , (5.7), and (5.8),

bZ
a

u.yI�; k/2dy �
y2Z
y1

u.yI�; k/2dy � 1

4
.b � a/ˇ2j �

1

4
.b � a/�2:
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Thus, we need to establish (5.8).
We claim that there exists a constant C > 1; independent of �k; �; such that

C�1 �
N�1X
jD�1

ˇ2j � C: (5.9)

Indeed, j ǰ j � ju.yI�; k/j for y 2 Ij hence

N�1X
jD�1

ˇ2j .hjC1 � hj / �
HZ
0

.u.yI�; k//2dy � cm
HZ
0

.u.yI�; k//2c.y/�1dy D cm:

Thus,
N�1X
jD�1

ˇ2j �
cm

max jhjC1 � hj j : (5.10)

On the other hand, use (5.7) between two zeros in Ij ;

HZ
0

.u.yI�; k//2dy �
N�1X
jD�1

z
.j/
1Z

z
.j/
0

.u.yI�; k//2dy

� 1

2

N�1X
jD�1

.z
.j /
1 � z.j /0 /ˇ2j

� min.hjC1 � hj /
4

N�1X
jD�1

ˇ2j : (5.11)

Combining (5.10) and (5.11), we obtain (5.9).

Claim 5.9. The ratios
ˇ̌
ǰC1
ǰ

ˇ̌
and

ˇ̌
ǰ

ǰC1
ˇ̌
, for j D �1; 0; : : : ; N � 2, are uniformly

bounded for � > �0.

To prove this claim, we set for any �1 � j � N � 2

Aj D �kppjC1.hjC1 � z.j /0 /; BjC1 D �kppjC2.hjC1 � z.jC10 /:

The continuity of u.yI�; k/ and u0.yI�; k/ at hjC1 implies that

ǰ sin.Aj / D ǰC1 sin.BjC1/;

ǰ
p
pjC1 cos.Aj / D ǰC1

p
pjC2 cos.BjC1/:
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Thus,

ˇ2j

ˇ2jC1
D sin2 BjC1 C pjC2

pjC1
cos2 BjC1;

ˇ2jC1

ˇ2j
D 1

sin2 BjC1 C pjC2
pjC1

cos2 BjC1
:

Since the ratios pjC2
pjC1 and pjC1

pjC2 are uniformly bounded for � > �0 (as readily seen
from (5.5)) Claim 5.9 follows.

Combining Claim 5.9 and (5.9) we obtain (5.8).

In Section 1 (Remark 1.3), we noted the fact that the coefficient c.y/ is often only
approximately known. It is reflected in Proposition 5.8: if we equip

KPC ´ ¹c.y/ piecewise constant function, 0 < cm � c.y/ � cM º

with the uniform norm kck1Dmaxc.y/; the map KPC 3 c! .�0; d / is continuous.

A. Proof of Theorem 5.6

The proof uses two steps for fixed k; which circumvent the issue of multiplicity of
eigenvalues of ��x0 in �0. Recall that Ak is given in (2.3).

Step 1: Existence of eigenvalues ofAk between c0�
2
k

and .c2 � "/�
2
k

. We use Œr�
to designate the largest integer below r . Let .0; h0/ be divided into

n D
hh0
�

r
c1 � c0
c0

�k

i
subintervals of equal length h D h0

n
; and let.h0; h1/ be divided into

N D
hh1 � h0

�

r
c2 � " � c1

c1
�k

i
subintervals of equal length hD h1�h0

N
: It follows readily that c0..�h /

2C�2
k
/� c1�2k

and c1..�h /
2 C �2

k
/ � .c2 � "/�2:
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Define a set of nCN functions ¹'pºnCNpD1 � H 1
0 .0;H/ as follows:

• if 1 � p � n,

'p.y/ D

8̂<̂
:
r
2

h
sin
��
h
.y � .p � 1/h//

�
if .p � 1/h < y < ph;

0 otherwise;

• if nC 1 � p � nCN;

'p.y/ D

8̂̂̂<̂
ˆ̂:
s
2

h
sin
��

h
.y � .h0 C .p � 1/h//

�
if h0 C .p � 1/h < y

< h0 C ph;

0 otherwise:

The functions ¹'pºnCNpD1 are normalized (inL2) and pairwise orthogonal. Furthermore,
the restrictions of 'p to ..p � 1/h;ph/; 1� p � n (resp. nC 1� p � nCN ) are the
first Dirichlet–Laplacian eigenfunctions on their supporting subintervals, associated
with the eigenvalue .�

h
/2 (resp. .�

h
/2).

In particular, for any linear combinations we have

'.y/ D
nX

pD1


p'p.y/

H)
HZ
0

Œ.'0/2 C �2k'2� dy D c0
���
h

�2
C �2k

� HZ
0

c�1'2 dy;

and

'.y/ D
NX

pDnC1


p'p.y/

H)
HZ
0

Œ.'0/2 C �2k'2� dy D c1
���

h

�2
C �2k

� HZ
0

c�1'2 dy:

Now, we use the following max�min principle to evaluate the r-th eigenvalue
of Ak [18, Chapter XIII, Section 9, Exercises D2, pp. 1543–1544)]: if

�.r/´ ¹Hr � H 1
0 .0;H/; Hr is a linear space with dim Hr D rº;

then the r-th eigenvalue of Ak (in the weighted space L2..0;H/; c.y/�1dy/) is given
by

ˇk;r D inf
Hr2�.r/

sup
v2Hr ;v 6D0

ak.v; v/

.v; v/
; (A.1)
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where

ak.v; v/ D
HZ
0

.v0/2 C �2kv2/ dy; .v; v/ D
HZ
0

v2c.y/�1 dy:

Let r D n and take Hn D V ´ span¹'pºnpD1:
Since

sup
v2V;v 6D0

ak.v; v/

.v; v/
D c0

���
h

�2
C �2k

�
;

it follows from the definition of h that

ˇk;n � c0
���
h

�2
C �2k

�
� c1�2k :

We conclude that there are at least n eigenvalues less than or equal to c1�2k .
Applying a similar argument to the full set ¹'pºnCNpD1 , we infer that

ˇk;nCN � max
°
c0

���
h

�2
C �2k

�
; c1

���
h

�2
C �2k

�±
� .c2 � "/�2k;

where in the final estimate we used the assumptions on h; h:

As above, we conclude that, for a fixed k there are at least nCN eigenvalues of
Ak smaller than or equal to .c2 � "/�2k .

Step 2: Existence of eigenvalues ofAk between .c1C "/�
2
k

and .c2 � "/�
2
k

. Con-
sider the self-adjoint operator A0

k
u D �c0u00 C c0�2ku acting in L2.0; H I c�10 dy/

subject to Dirichlet boundary conditions. It is associated to the variational form

a0k.v; w/ D
HZ
0

.v0.y/w0.y/C �2kv.y/w.y//dy; v; w 2 H 1
0 .0;H/:

Let ¹ˇ0
k;p
D c0 �2H2p2 C c0�2kº1pD1 be the nondecreasing sequence of its eigenvalues.

Using (A.1) the comparison with the eigenvalues of Ak is straightforward since the
forms ak; a0k are identical. We conclude that

ˇ0k;p � ˇk;p; p D 1; 2; : : : :

The explicit expression of ˇ0
k;p

entails that if p > H
�

q
c1C"�c0

c0
�k then .c1C "/�2k <

ˇ0
k;p
� ˇk;p: On the other hand, for p � n C N; we saw at the end of Step 1 that

ˇk;p � .c2 � "/�2k : So, to obtain eigenvalues of Ak in ..c1 C "/�2k; .c2 � "/�2k/ it
suffices to find an integer p such that

H

�

r
c1 C " � c0

c0
�k < p �

h0

�

r
c1 � c0
c0

�k C
h1 � h0
�

r
c2 � " � c1

c1
�k � 2:
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Such an integer exists if

h0

�

r
c1 � c0
c0

�k C
h1 � h0
�

r
c2 � " � c1

c1
�k �

H

�

r
c1 C " � c0

c0
�k > 3: (A.2)

It is readily seen that (A.2) holds for sufficiently large �k ifs
c1.c1 C " � c0/
c0.c2 � " � c1/

�
1 � h0

H

r
c1 � c0

c1 C " � c0
�
<
h1 � h0
H

: (A.3)

The validity of (A.3) with " D 0 follows exactly from the condition (5.4). By conti-
nuity, (A.3) will be satisfied for " < "0; for sufficiently small "0 > 0:
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