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Spectral analysis of an open ¢g-difference Toda chain
with two-sided boundary interactions
on the finite integer lattice

Jan Felipe van Diejen

Abstract. A quantum n-particle model consisting of an open g-difference Toda chain with two-
sided boundary interactions is placed on a finite integer lattice. The spectrum and eigenbasis
are computed by establishing the equivalence with a previously studied g-boson model from
which the quantum integrability is inherited. Specifically, the g-boson-Toda correspondence
in question yields Bethe Ansatz eigenfunctions in terms of hyperoctahedral Hall-Littlewood
polynomials and provides the pertinent solutions of the Bethe Ansatz equations via the global
minima of corresponding Yang—Yang-type Morse functions.

1. Introduction

The relativistic Toda chain is an ubiquitous one-dimensional n-particle model intro-
duced by Ruijsenaars that is integrable both at the level of classical and quantum
mechanics [19]. In the case of an open chain, integrable perturbations at the boundary
were implemented via the boundary Yang—Baxter equation [16,22]. At the quantum
level, the Hamiltonian of the relativistic Toda chain is given by a (g-)difference opera-
tor. Quantum groups connect the difference operator at issue to the quantum K-theory
of flag manifolds [2,11] and provide a natural representation-theoretical habitat for the
construction of its eigenfunctions [7, 20].

When considering the quantum dynamics on an integer lattice the eigenvalue
problem for the g-difference Toda chain can be solved in terms of g-Whittaker func-
tions that arise as a parameter specialization of the Macdonald polynomials, both in
the case of particles moving on an infinite lattice [10] and in the case of particles
moving on a finite periodic lattice [6]. From the perspective of integrable probability,
such particle models are of interest in connection with the g-Whittaker process [1].
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Representation-theoretical constructions for the pertinent g-Whittaker functions can
be found in [3,4, 8].

This note addresses the spectral problem for an open n-particle g-difference Toda
chain on the finite lattice {0, 1,2, ..., m} that is endowed with two-parameter bound-
ary interactions on both ends. The model could be thought of as a finite discrete and
g-deformed counterpart of Sklyanin’s open quantum Toda chain with general two-
sided boundary perturbations governed by Morse potentials [21]. In the limit m — oo,
the pertinent g-difference Toda Hamiltonian was diagonalized in terms of hyperocta-
hedral g-Whittaker functions that arise in turn through a parameter specialization of
the Macdonald—Koornwinder polynomials [27]. Here it will be shown that for finite
m an explicit eigenbasis can be constructed from Bethe Ansatz wave functions given
by Macdonald’s hyperoctahedral Hall-Littlewood polynomials [17]. The main idea
is to exploit an equivalence between g-difference Toda chains and g-boson models
pointed out in [6]. By establishing a version of this equivalence in the current situa-
tion of an open chain with boundary perturbations, our g-difference Toda Hamiltonian
is mapped to the Hamiltonian of a g-boson model previously diagonalized in [32]. The
upshot is that the commuting quantum integrals and the Bethe Ansatz eigenfunctions
for the g-difference Toda chain can in this approach be retrieved directly from those
in [32] for the corresponding g-boson model.

The material is organized as follows. Section 2 describes the Hamiltonian of
our g-difference Toda chain and verifies its self-adjointness. Section 3 establishes
the equivalence with the g-boson model from [32] and therewith retrieves the corre-
sponding Bethe Ansatz wave functions in terms of hyperoctahedral Hall-Littlewood
polynomials. The Bethe Ansatz equations of interest are of a convex type studied in
wider generality in [31], which entails an explicit description of the spectrum via the
global minima of associated Yang—Yang-type Morse functions detailed in Section 4.
The presentation closes in Section 5 with a description of the spectral analysis for the
q-difference Toda chain in the degenerate limit ¢ — 1.

2. Open ¢g-difference Toda chain with boundary interactions

2.1. Quantum Hamiltonian

Given m,n € N, the g-difference Toda chain under consideration describes the quan-
tum dynamics of n interacting particles hopping over the finite integer lattice

{0,1,2,...,m}.
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The positions of these particles are encoded by a partition . = (i1, Uz, ..., iy) in
the configuration space

AP = e Z" |m > py = po = -+ = g > O}
The dynamics is governed in turn by the following quantum Hamiltonian

H =41 —g"") + p-(1-4¢"")
+ Z(l — g (i T,

1<i<n

+ Z(l _ a_ql/«n_l)gnfi(l _ qlvbi_MH»l)Ti_l, .1

1<i<n

5 — 1 ifi =0, Lo = m,
" 1o ifi £0, | a1 =0.

Here T; and 7' denote hopping operators that act on n-particle wave functions v

with

via a unit translation of the i th particle to the left and to the right, respectively:

(TEV)(as oo oo pn) = V(U1 ooy it i F €, i1, .- ) (€ € {1,—1}).

The action of H (2.1) on wave functions ¥: A®mM 5 C is well defined in the
sense that the coefficient of (TY)(u1, ..., un) in (HY)(i1, ..., un) vanishes for
any (i1, ..., 1tn) € AP™ suchthat (1, ..., fic1, i + €, it1s-. ., n) & AT,
Notice also that the convention in the second brace below eq. (2.1) can be interpreted
as representing the positions of two additional particles fixed at the lattice end-points
0 and m, respectively. The parameter g € (—1, 1) \ {0} denotes a scale parameter of
the model governing the nearest neighbor interaction between the particles whereas
the parameters o4 € (—1, 1) and B+ € R represent coupling constants regulating
additional interactions at the boundary of the chain.

Our main goal is to solve the spectral problem for the g-difference Toda Hamil-
tonian H (2.1) in the ("7™)-dimensional Hilbert space £2(A ™™, A) of functions
¥ A s C, endowed with an inner product

(V.dha =D V(WAL (h ¢ € LA™, A))

ueAlrm

determined by positive weights given by perturbed ¢-multinomials on A ™)

(4:Dm

— (e A,
g (@ P m—py (=1 @) Hogsn (¢: ‘I)Mf—MH-l
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Here we have employed the standard g-shifted factorial

waor ! i1 =0,
a.q); =
D=V a0y —ag)-(1—ag™) ifl =123 ...

Proposition 2.1 (Self-adjointness). Foray € (—1,1), B+ € R, and g € (—1,1) \ {0},
the q-difference Toda Hamiltonian H (2.1) is self-adjoint in (AT A), e

(HY,¢)a = (Y, HP)a forall Y. ¢ € C(A™™ A).

Remark 2.2. For m — oo, the g-difference Toda Hamiltonian H (2.1) was diagonal-
ized in [27, Section 7] in terms of a unitary eigenfunction transform with a g-Whit-

taker kernel built from a parameter specialization of the Macdonald—Koornwinder
polynomials.

2.2. Proof of Proposition 2.1

The action of H (2.1) on ¥ € £2(A®™™ A is of the form

(HY) () = (B+(1 =" ™) + B (1= g™ )Y ()
+ D (=g TR — g T Y (1 + )

1<i<n
w+te; e (n.m)

+ Y (I —ag" ™) (1 = gH i)y (e — &),

1<i<n
u—e; e AT
where the vectors e, ..., e, represent the standard unit basis for Z".
Since all coefficients of the difference operator in question are real, the asserted

symmetry (Hy, ¢)a = (¥, H¢p) a is immediate from the following bilinear identity
for all ¥, ¢ € £L2(A™ A):

(0 X T (1= g Y+ ) ) (1) Ay

e .m 1<i<n

[ite; €Am)
O3 3 —agg )it (1= gF B Y () (7 — ) Ajiee,
jeAm-m)  1<i<n

fi—e; €A tnm)
(i) ~ oo . .11 ~
EX @ Y —angB (1= gF ) g~ e) ) Ag,
NG 1<i<n

fi—e; e A1)
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Step (i) hinges on the substitution u = fi — e;, which for a given i € {1,...,n}
determines a bijection from the subset {ji € A®™ | ji —e; € A"} onto the subset
(e A®™ | 1+ e; € A®™). Step (ii) uses the elementary recurrence

(1 _a+qm_ﬁ1)8i71 (1 _qllifl_ljvi‘i‘l)Aﬂ_ei = _O{_qlln_l)anfi (1 _qﬁi—ﬂiJrl)Aﬂ

for ji € A" such that fi —e; € A”™ (and the convention jig = m, jip4+1 = 0).

3. Eigenfunctions

3.1. Bethe Ansatz

While Proposition 2.1 implies that the existence of an orthogonal eigenbasis diago-
nalizing H (2.1) in £2(A®™  A) is evident from the spectral theorem for self-adjoint
operators in finite dimension, the aim here is to provide an explicit eigenbasis given
by Bethe Ansatz wave functions in the spirit of [25] forn = 1.

To this end let us recall that forany A= (A1, ..., A,n) € A and E=(&1,....Em)
belonging to

Riee =6 e R™ 28,8 —&.§ + & ¢2nZ, foralll < j #k <m}, (3.1)

Macdonald’s hyperoctahedral Hall-Littlewood polynomial (associated with the root
system BC,,) is given by [17, §10]

R, Em) = Y Clerkon)s- - €mbom) explieréoyrs + - + ienfo(myim)

oeSH
ee{l,—1}"
with
(=B fage®)
CErbm) =] =
1<j=<m
1 —ge =)\ 1 = geii+ék)
1 (= e ) G e )
1 — e~ i€ —60) 1 — e i +E)
1<j<k<m
where the summation is over all permutations o = ( 0(11) 0(22) . 0?:”)) of the symmet-
ric group S, and all sign configurations € = (€1, ..., €,) € {1,—1}".

For any A € A™™ and 0 < i < n we denote the multiplicity of i in A by
m;(A) =l <j=m|A; =i}|
Additionally, for 1 € A"™™ we write

’u’ — (Om—m 1T 2213 |, (n _ I)Mn—l_MnnMH) 3.2)
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for its conjugate partition u’ € A" (i.e., ‘with the columns and rows swapped’).
In other words, ' = (@}, 5, ..., i,,) is the (unique) partition in A1) guch that
m; (') = wi — pi+1 fori =0,...,n (where, recall, o = m and u,+1 = 0). Notice
in this connection that |A ™| = |A(mm)| = (”+m) and that the mapping u — '’
(3.2) defines a bijection from A™ onto A - ”).

From now on, it will moreover be assumed (unless explicitly stated otherwise)
that the boundary parameters o+, S+ have values such that the roots pi, g+ of the
two quadratic polynomials x2 — B+ x + o belong to the interval (—1, 1) \ {0}:

0r =pige and P =pi+qs withge,pr € (-1, D\{0}| (33)

or equivalently

0<oaf <1 and 4as <Bi <(1+as)* (3.4)

Theorem 3.1 (Bethe Ansatz wave function). Let g € (—1, 1) \ {0} and let the bound-
ary parameters a+, B+ belong to the domain specified in (3.3)—(3.4). Given § =
(1.....6m) € R, (B.1), we define the wave function g € (A A) through its
values on A™ as follows:

Ye() = R (Er o Em) (e AT, (3.5)

The wave function ¢ (3.5) solves the eigenvalue equation for the q-difference
Toda Hamiltonian H (2.1)

Hyy = E€)ye with E) =2(1—g) ) cos(&)). (3.6)

1<j<m

provided the spectral parameter £ € Rreg satisfies the algebraic system of Bethe Ansatz
equations
2ing; _ (1 — Biei +aye?ti) (1 - B_ei +a_e?E)
e /= - - - -
(%6 — B +ay) (25 —pe +ar)

X —— — forj=1,...,m 3.7
lslk_£m el(gj gk) — q)(el({:j +Ek) — q)
k#j
Remark 3.2. The hyperoctahedral Hall-Littlewood polynomial Ry (&1, ..., &x),
A € AU s in fact a symmetric polynomial in cos(£), . . ., cos(£,) of total degree

A1+ Az +--- 4 A,. Hence, it is clear that the Bethe Ansatz wave function ¢ in The-
orem 3.1 extends smoothly in the spectral parameter £ from values in ngg to values
in R™,
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3.2. Proof of Theorem 3.1

In [32], Propositions 8.4, 9.2, and (the proof of) Theorem 9.5 imply that the hyperoc-
tahedral Hall-Littlewood polynomials satisfy the following recurrence for A € A "):

EE)Ru(E) = (B+(1 = g™D) + B_(1 — g™ D) Ry ()
+ Y (1= apg™ P (1= g™ PRyt (6)

1<j<m
Ate;enlm-m)

+ 2 (1 —a g™ A =™ DR (). (3B

I<j<m
A—Ej EA(m‘n)

which is on-shell in the sense that the relation holds provided & = (§1,. . .,&,,) satisfies
the Bethe Ansatz equations (3.7). Substituting A = u’ with u € A leads us via
eq. (3.2) to the recurrence relation

E© Ry ) = (B (1 =" ) + B-(1 = ") Ry (€)
=g (1 =g ) Ry, )

1<j=m
Wte; e AU

18 m s (')
+) A —ag" )" (=g " )Ry, ().
1<j<m

M/—ejEA(m’”')

We now observe that, for any u € A and j € {1,...,m},

WHe e AW = e =(u+e) withi = pu) +1€{l,....n}
and

W—ee AN — 1/ —e; = (u—e¢) withi = Wi €{l,....n}.
The recurrence of interest can thus be rewritten in the form

E©Rw(®) = (B4(1=q" ™) + B-(1 = 4" )R (§)
+ D= eI (1 = g T R (6)

1<i<n
wte; e A

+ Z(l _ a_qun—l)b’n—i (1- qﬂi_l‘«i+l)R(u_ei),(§:)’
1<i<n

u—e; e AU

where we have employed once more eq. (3.2).
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4. Spectral analysis

4.1. Solutions for the Bethe Ansatz equations

The following system of transcendental equations provides a logarithmic form of the
Bethe Ansatz equations in Theorem 3.1:

208 + vpy (&) + Vg (&) + vp_ (§) + vg_ (&)
+ Y (& + &) + vg(E — &)

1<k<m

iy
=2n(m+1—j +«j), (4.1)

with j = 1,...,m, k € A" and

z

© /‘ (1—a?)dx . (1—ae'
Va(2) = =ilog( —
“ 1 — 2a cos(x) + a? Bz

)(—1<a<1). 42)
0

Indeed, upon multiplying eq. (4.1) by i (= +~/—1), and applying the exponential func-
tion on both sides, it is readily seen that any of its solutions gives rise to a solution of
the Bethe Ansatz equations (3.7) (where—recall—the boundary parameters o+, S+
and p4, g+ are related via eq. (3.3)).

For any « € A the system in (4.1)—(4.2) describes the critical point of a
Yang—Yang-type Morse function:

§+ék §—&k
Ve, ....6m) = Z ( /vq(x)dx—i—/vq(x)dx)
1<j<k<m 0 0
+ Z (néj2 —2n(m+1—j +«;)&;
1<j<m
§
[ W0+ 00, )+ 1)+ () )
0
4.3)
The function V, (&1, ..., &) belongs to a wider class of smooth, strictly convex

and radially unbounded Morse functions studied in [31, Section 3]. The upshot is

m:") solutions for the Bethe

Ansatz equations given by the respective minima of Vi (£, ..., &), k € A (cf.
[32, Remark 3.5]).

that via a Yang—Yang-type analysis, one arrives at (
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Proposition 4.1 (Solutions for the Bethe Ansatz equations). Letq € (—1,1) \ {0} and
let the boundary parameters o, B+ belong to the domain specified in (3.3)—(3.4).

(i)  Forany k € A™™ the logarithmic form of the Bethe Ansatz equations in
(4.1)~(4.2) has a unique solution &, € R™ given by the global minimum
of the strictly convex radially unbounded Morse function Vi (&1, ..., &m)
(see (4.3)).

(ii) The global minima &, k € A g part (i) are all distinct and located
within the open alcove

A" ={¢1.6,.. .5 eR" | >E >85> > &y >0 CRY

reg*
Moreover; at a global minimum & = &, the following estimates are fulfilled:

n(m+1—j+/cj)< <7r(m+1—j+/<j)

. 4.4
n+ K4 SE n+ K- (44)
(for 1 < j <m), and
rk—jrg—m) oo TR )
n+ Ky = - n+ K- '

(for 1 < j <k < m), where

2

Ki:(m—n(“r_lq')i1 1<<11J_r||§1||)i1 (11J:||Zil|>il

1—lq|
14 |p_|\£? 1—|g_|\ %t
+( lp I) +( lq I) )
1—[p-]| 1 —1g-|
Proof. The assertions of this proposition follow by applying [31, Propositions 3.1
and 3.2] to the Bethe Ansatz equations of Theorem 3.1 (cf. [32, Remark 3.5]). ]

Remark 4.2. From a mostly academic perspective, Proposition 4.1 invites us to com-
pute &, via the gradient flow of the pertinent Morse function

dé; .
d_gf”s,«vx(sl,...,sm):o, j=1...m,

which gives rise to the following system of differential equations (cf. eq. (4.1))

d .
S 2ty 4 0 ) vy )+ 05 §) + v (6
+ ) (g (& + &) + vg (65 — £0))

=21(m +1—j +«j). (4.6)
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j=1,...,m.Forn = 0and x = (0™), the corresponding gradient flow was analyzed
in [24] and seen to converge exponentially fast to the roots of the Askey—Wilson poly-
nomial py,(cos; py,q+p—.q—|q) [15, equation (14.1.1)] located within the interval
of orthogonality 0 < ¥ < 7. A minor variation of [24, Theorem 2] reveals that in our
present setting the equilibrium &, of the gradient system in eq. (4.6) remains glob-
ally exponentially stable, i.e., for any initial condition &, (0) the unique solution &, (),
t > 0 of the gradient system converges exponentially fast to the equilibrium &,. More
specifically, by slightly adapting the analysis in [24, Section 4] one readily deduces
that for any 0 < ¢ < 2(n + K—) (= a lower bound for the eigenvalues of the hessian
of Vi (&1, ...,&4)), there exists a constant C, > 0 such that

[1£c() — Eclloo < Cee™®* forallt > 0,

where ||£]|oo = maxi<;<m |§;|. Apart from ¢, the actual value of the constant C; in the
uniform estimate of the error term will depend on the choice of the initial condition
£.(0) e R™, aswellasonk € A”™ and ¢, p+,q+ € (—1, 1) (cf. Remark 4.4 below).
Notice that the g-difference Toda Hamiltonian H (2.1) degenerates to a discrete
Laplacian on A®" in the symplectic Schur limit o+, B+, g — 0. At this elemen-
tary point in the parameters space, one has that (cf. eq. (4.4))

(n(m+lc1) a(m—1+ k) am+1—j +«kj) n(1+/cm))

& — , e
m+n+1 m+n+1 m+n+1 m+n+1

g s ey

which serves as a convenient initial condition for the gradient flow (4.6). Indeed, at
this particular value of the spectral parameter the bounds in (4.4) and (4.5) are fulfilled

forany p+.g+.q € (—1,1).

4.2. Spectrum and eigenbasis

By combining Theorem 3.1 and Proposition 4.1, an eigenbasis of Bethe Ansatz wave
functions for the g-difference Toda Hamiltonian H (2.1) is found in the Hilbert space
£2(A™ | A) together with the corresponding eigenvalues.

Theorem 4.3 (Spectrum and eigenbasis). Let g € (—1,1) \ {0} and let the boundary
parameters o.x, B+ belong to the domain specified in (3.3)~(3.4). For any § € R[,
and k € A" the function Ve A®™ 5 R refers to the Hall-Littlewood Bethe
Ansatz wave function from Theorem 3.1 and &, € A™ C Rg’g denotes the unique global

minimum of Vi (€1, ..., Em) (4.3) detailed in Proposition 4.1.
(i)  The spectrum of the q-difference Toda Hamiltonian H (2.1) in the Hilbert
space L2(AT™ | A) consists of the eigenvalues E(Ec), k € AT™ where

E(&) is given by eq. (3.6).
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(ii)  The corresponding Bethe Ansatz wave functions g, k € AT constitute
an eigenbasis for H (2.1) in £2(A™™ | A) such that

Hye, = EE)Ye, (K € A™M), (4.7)

Proof. Tt is clear from Theorem 3.1 and Proposition 4.1 that for any k € A" the
Bethe Ansatz wave function V¢, solves the eigenvalue equation (4.7). Moreover, the
value of the Bethe Ansatz wave functions at the origin is given by Macdonald’s three-
parameter Poincaré series for the root system BC,, [17, §10]:

= Z C(flga(l)a cees emsa(m)) =

o€ESm
ee{1,—1}"

a-gm 70

(cf. also [32, Remark 3.4]). Hence, for any k € A1) the wave function Vg, consti-
tutes a proper (i.e., nontrivial) eigenfunction of the g-difference Toda Hamiltonian H
with eigenvalue E (&, ). To confirm the completeness of the Bethe Ansatz, it remains
to check that the wave functions in question indeed form a basis for £2(A ™ A), or
equivalently, that the hyperoctahedral Hall-Littlewood polynomials R, (§1, ..., &mn),
w € A®™ are linearly independent as functions on the Bethe spectrum {&, | x €
A"} This independence is immediate from the second part of [32, Theorem 3.1].

]

Remark 4.4. The g-difference Toda Hamiltonian H, the positive weights A, and
the Bethe Ansatz wave function ¢ clearly extend smoothly in the parameters to
the domain ¢, p1, g+ € (—1, 1). With the aid of the implicit function theorem, it
is seen that the same is true for the solutions &, k € A@m) of the (logarithmic)
Bethe Ansatz equation in Proposition 4.1 (cf. [32, Remark 3.6]). Indeed, the Morse
function Vi (&1, ..., &y) extends smoothly in the parameters and remains strictly con-
vex. Hence, for k € A" the Bethe Ansatz wave function Vg, constitutes in fact
an eigenfunction of H (2.1) in £2(A™™ A) with eigenvalue E (&) (3.6) for any
q, p+,q+ € (—1,1) (i.e., even if one or more of the parameters in question vanish).

Remark 4.5. The self-adjointness of H (2.1) in Proposition 2.1 implies that
(Ve Ve, )a =0 ifxk #v forallk,ve A

provided E (&) # E(&,). Rewritten in terms of the (real-valued) hyperoctahedral
Hall-Littlewood polynomials R (§) = R (&1, ..., &n), one obtains that in this sit-
uation:

Y RiEIRLENA, =0 ifk # v, (4.8)

AeAlmm
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with
N (4:D)m

A (@ Do) (@— Dy ) [To<i<n (@ Dy )

4.9)

(so A;u = A, for u € A To date, the latter orthogonality relation has been
checked directly without the proviso regarding the nondegeneracy of the correspond-
ing eigenvalues of H in the following four cases:

(a) ifg=0and ps+,q+ € (—1,1), cf. [29, Theorem 3.1];

(b) if0<g<1,ar =0and 1 € (—1,1), cf. [28, Section 11.4];
(¢c) ifq, p+,q+ € (—1,1)and n > 2m, cf. [26, Theorem 4.2];

(d) ifg, pr,q+ € (—1,1)and n = 1, cf. [26, Section 5.7].

In view of Remark 4.4, within these four subdomains the statements concerning the
spectrum and completeness formulated in parts (i) and (ii) of Theorem 4.3 there-
fore persist with the corresponding Bethe Ansatz eigenbasis being orthogonal in the
Hilbert space £2(A "™ A) (as expected).

Remark 4.6. In [32], eq. (3.8) is interpreted as the eigenvalue equation for a Hamil-
tonian of an m-particle g-boson model on the lattice {0, 1, ..., n}. The quantum
integrability of this m-particle g-boson Hamiltonian, which is thus given explicitly by
the difference operator acting at the right-hand side of eq. (3.8), was established for
a4+ = o— = 0in [28] (using the quantum inverse scattering method) and for general
boundary parameters in [32, Section 8] (using representations of the double affine
Hecke algebra of type CYC at the critical level ¢ = 0). As detailed explicitly for
the Hamiltonian in the proof of Theorem 3.1, the mapping & — ' from A®™ onto
A allows us to pull back the commuting quantum integrals for the g-boson model
from £2(A" A’ to £2(A?™  A). This maps the commuting quantum integrals
in question to an algebra of commuting difference operators in £2(A®™  A) con-
taining H, see (2.1). Since [32, Theorem 9.5] guarantees that the latter algebra of
commuting difference operators is (Harish—Chandra-)isomorphic to the algebra of
complex functions on the joint spectrum {& | k € A"} C A™ this establishes the
quantum integrability of our g-difference Toda Hamiltonian H (2.1).

5. The limitg — 1

5.1. Quantum Hamiltonian

Upon dividing out an overall scaling factor 1 — g, the g-difference Toda Hamiltonian
H (2.1) degenerates for ¢ — 1 to an elementary difference operator H with linear
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coefficients:

H = B10m—pu1) + B-(in)
+ Y (=)’ (imr = ) Ti + (1= @) (i — i )T, (5.1)

1<i<n

From Proposition 2.1, it follows that — assuming ¢4+ € (—1, 1) and S+ € R — this lim-
iting quantum Hamiltonian is self-adjoint in a Hilbert space £2(A ™ A) governed
by the weights of a two-parameter multinomial distribution on the partitions A ®*:

~ m!
Ay, =lim A, =
P T T (L —ag)m i (1 — a )i [ cn (i — Mit1)!
Wi —Hi
_ oy omizn e T (5.2)
l_[0§i5n(ﬂi - /fLi-f-l)!
with )
(1—ay)” o
n—D+(1—ap) T+(1—a_) T ifi =0,
- 1 . ;
lol - (n—1)+(1—a+)—1+(1—a_)—1 1f0 <1< n,
(1-a )7t ifi =n
n—D+0—ap) 1 +(1—a-)"! -
and
N=> A,=((r-D+A—ap) +1—a)™)" (5.3)
e .m
Notice in particular that pg = p, = ++- = p, = # ifoy =a_ =0.

5.2. Bethe Ansatz

The Bethe Ansatz wave function ¢ (3.5) degenerates in the limit ¢ — 1 to a wave
function 1}5: A®™ s C with values

Ye(n) = Ry (1. Em) (5.4)

that separate in terms of univariate (BC;-type) Hall-Littlewood polynomials. Specif-
ically, for any A € A“™ and £ € R, one has that

reg

Ri(er,.. . Em) =(}i_)ml Ry(€1. ... 6m) (5.5

=Y Ri, (Eo1) Ray (o) - Rip (om)

g€Sm,
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with
1= Boe i 4 g 20 .
R/ (®) = (1=F e = ) exp(il9) (5.6)
1— i 4 2i '
+ ( ,3+1e_ 62i5+e ) exp(—ild)

(I €{0,...,n}, V0 &nZ).
Heuristically, for the Bethe Ansatz wave function @g (5.4)—(5.6) to solve the
q — 1 eigenvalue equation

Hye = E§)e  with E(§) =27 cos(&)), (5.7)

1<j=<m

one expects the spectral parameter & to be required to satisfy the following decoupled
system of Bethe Ansatz equations arising from eq. (3.7) in the limit g — 1:

(1= By +aye?) (11— B_el®i + a_e?) 5.8)

e2nti . . . 4
(eZIEJ' — /3+e1§/ + og+) (32157 — ﬁ_elsj + a_) ’

j=1...,m.

5.3. Solutions for the Bethe Ansatz equations

It is illuminating to emphasize that for p1, g+, p—,g— € (—1, 1) the decoupled Bethe
Ansatz equations in eq. (5.8) can be conveniently solved in terms of the roots of the
Askey—Wilson polynomial py41(cos¥; p+,q+p—.q-|q) [15, eq. (14.1.1)] atq = 0.
Indeed, it is clear from the orthogonality relation [15, eq. (14.1.2)] that at q = O the
Askey—Wilson polynomials fall within a well-known class of orthogonal polynomials
studied by Bernstein and Szegd [23, Chapter 2.6]. The classical theory of Bernstein
and Szeg? tells us, moreover, that the polynomials in question can be written explicitly
as follows (cf. e.g. [30, Section 4.3]):

Pn+1(cos?; py.q+p—.q-|0)
(P+9+P-9-9" Dn+1
_ 1_[5=:|:(1 - Pee_“?)(l - QEe_H?)
- 1— e—Ziﬂ

[Te— (1 — pee?)(1 — gee*?)
1— 82i19

exp(i(n + 1)9)

+

exp(—i(n + 1)v)
(U € wZ). This explicit formula reveals in particular that the roots

O<to<th<--<Op<m 5.9
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of pyt+1(cos?; p+, g+ p—, q—|0) solve the Bethe Ansatz equation in eq. (5.8) (with
&; replaced by ). More specifically, the root ¢} corresponds to the solution of the
associated logarithmic Bethe Ansatz equation (cf. Remark 4.2 above)

2n% + vy (F) +vg, (B) +vp_(F) + v (F) = 27(k + 1),

withk € {0,1,...,n}.

The upshot is that to any k = (k1,...,km) € A1) e can now attach a solution
§K of the decoupled system of Bethe Ansatz equations in eq. (5.8) by forming the
following vector of ¢ = 0 Askey—Wilson roots:

Ee = (D1 Dene o Do) EEER™ | m> 6 25 > 25, >0} (5.10)
Notice that g,( encodes the unique global minimum of the decoupled Morse function

VeEro. o Em)
&

= Z (nsj2 —2n(k; + D& + /(vp+ (x) + vg, (x) + vp_(X) + vg_(x)) dx).
0

5.4. Spectrum and eigenbasis for ¢ — 1

When tying the above observations together, one is led to the following ¢ — 1 coun-
terpart of Theorem 4.3.

Theorem 5.1 (Spectrum and eigenbasis for ¢ — 1). Let the boundary parameters o+,
B+ be of the form in eq. (3.3) with p+,q+ € (—1,1). Forany§ e {§ e R™ | &, € nZ,
foralll < j <m}andk € A", the function 1/75 : A S R refers to the g = 1
Hall-Littlewood Bethe Ansatz wave function in eq. (5.4)—(5.6) and §K denotes the
solution in eq. (5.10) of the decoupled Bethe Ansatz equations (5.8).

(i)  The spectrum of H (5.1) in the Hilbert space £%(A @™ &) consists of the
eigenvalues E(£¢), k € AN where E() is given by eq. (5.7).

(i1)  The corresponding Bethe Ansatz wave functions 1/~/§K, k € AN constitute
an orthogonal eigenbasis for H (5.1) in £2(A®™ | A) such that

Hyy = EE)V;, (ke AT),

Remark 5.2. Systematic studies of orthogonal polynomials associated with the multi-
nomial distribution give rise to multivariate generalizations of the Krawtchouk poly-
nomials [5,9, 12—14,18]. For the particular instance of the two-parameter multinomial
distribution in (5.2)—(5.3), Theorem 5.1 suggests an intriguing link to the ¢ = 1 Hall-
Littlewood Bethe Ansatz wave function 1}5’(. When n = 1, this link is actually well
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understood in the literature as a relation between classical univariate Krawtchouk
polynomials and elementary symmetric polynomials, cf. e.g. [25, Equation (5.14)].

5.5. Proof of Theorem 5.1

In order to establish the claims of the theorem in full rigor avoiding tricky formal lim-
its, let us first check that the Bethe Ansatz wave functions 1}5’( k€ Amm) are indeed
orthogonal in the Hilbert space £2(A™™ A) (i.e., with the weights A « replacing
Ay

(Vg .0z )z =0 ifc#v foralli,ve AU, (5.11)

Rewritten in terms of the ¢ = 1 hyperoctahedral Hall-Littlewood polynomials, the
inner product on the left-hand side of eq. (5.11) becomes (cf. (4.8)—(4.9)):

(5.12)

3 Ry(Eo) Ry (Ey) m!

)LEA(m.n)(l — o)W (1 — o)™ D [T ., mi ()

with R (£) and g,( taken from (5.5) and (5.10), respectively. In particular, if m = 1
then the sum in eq. (5.12) is of the form

R, (W) R, (¥
Z 1 )L((;)l A( v)8 — (5.13)
oren(l =) (1 —a_)%
with 0 < k # v < n, where ¥y, ..., U, refer to the ¢ = 0 Askey—Wilson roots from

eq. (5.9). Since the sum in eq. (5.13) coincides with that of the inner product in case (a)
of Remark 4.5 (specialized to m = 1), in this simplest situation the asserted orthogo-
nality is immediate from the remark in question.

If on the other hand m > 1, then the inner product in eq. (5.12) decomposes into
a sum of contributions of the form

) Rjy (k) - Royy (D) Ry (Ony) -+~ Ry, (T, !
AeAlm.n) (1 - a_’_)mo(l)(l - a_)mn(/l) HOﬁiSn m; (k)'

-y Riy (Fxy) -+ Ry (D) Riy (Uny) -+ Ry (O

Sy Sp—n :
0<Ay,....Am<n Hlsjsm(l _O‘+) g (1 _O‘—) "

Rl,‘ (ﬁk_,')R/lj (1911_/')
=11 2 —

8. Sn_n.’
1<j<m oskjsn(l — o) (1 —a )™

where the m-tuple (kq, ks, ..., k;) denotes a reordering (ks (1), K5(2): - - - » Ko (m)) Of
k€ A and the m-tuple (ni,n,, ..., n,) denotes a reordering of v € A mn)
(not necessarily stemming from the same permutation o € S,). From the orthogo-
nality for m = 1, it is now clear that all such contributions vanish, unless k; = n; for
j =1,...,m,1ie., except when « = v and both reorderings coincide.
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It remains to verify that the eigenvalue equation in eq. (5.7) is satisfied at § = §K
for k € A" Rewritten in terms of A = p/ € A" this eigenvalue equation reads
explicitly (cf. eq. (3.8)):

E(E)Ry(8c) = (B+mo(A) + B—my (X)) Ry (Ee)
+ 31— )™ my, W) Ryse, (Eo)

1<j<m

Ate; e A

+ 3 =)’ my, (W) R, (o). (5.14)
1<j<m
he, )

For instance, if m = 1 then eq. (5.14) simplifies to

2¢08(9) Ry (D) = (B+83 + B=Sn-2) Ra (D) + (1 — )% (1 = 8, 3) Ryi1 (V)
+ (1= o) =2 (1 = §3) Raz1 (D). (5.15)

where 0 < k, A < n. Apart from a missing overall factor (1 — ¢g) on both sides (which
was actually divided out at the start of Subsection 5.1), eq. (5.15) coincides precisely
with the m = 1 specialization of the eigenvalue equation from Theorem 4.3 at u = A’
(which agrees with the observation that the dependence on g drops out when m = 1).
Upon recalling Remark 4.4, this settles the validity of eq. (5.15) for the full parameter
regime py,q+ € (—1,1).

Moreover, by virtue of eq. (5.15) one has more generally that for m > 1 and any
o€ Sy

2 Z cos(Vy;) 1—[ Ry Vi)

1<j<m 1<l<m
= 2(134—8/11' + ﬂ—gn—/\j) 1_[ Rl] (19160(1))
1<j<m 1<l<m
+ (= a)™ (1= 853 )Ryt o) [ | Riy i)
1<j=<m 1<l<m
I#]j
Sn_n
+ D (=)™ (1= 81, Ra; 1 Do) [ | Ray P
1<j<m 1<i<m
<l
= (Brmo() + B-ma ) [[ Rty Feyey) 7
1<l<m
+ Z(l - a+)8/\j m)tj (A‘)R)\j-i-l (ﬁlco'(j)) 1_[ R)\l (ﬂkg([))
1<j<m 1<l<m
Ate; Znimm I#]
+ DU =) " ma, WD Ry -1 By [ | Ray By,
1<j=<m 1<l<m

A—e; eAtm.m) I#]
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which entails eq. (5.14) through symmetrization by summing over all ¢ € S, on both
sides.

Funding. This work was partially supported by the Fondo Nacional de Desarrollo
Cientifico y Tecnologico (FONDECYT) Grant #1210015.
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