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The Schwartzman group of an affine transformation

David Damanik, Íris Emilsdóttir, and Jake Fillman

Abstract. We compute the Schwartzman group associated with an ergodic affine automorphism
of a compact connected abelian group given by the composition of an automorphism of the
group and a translation by an element in the path component of the identity. We show that the
Schwartzman group can be characterized by evaluating the invariant characters of the automor-
phism at the group element by which one translates. As a byproduct, we show that the set of
labels associated with the doubling map on the dyadic solenoid is trivial, which in turn allows us
to show that any ergodic family of Jacobi matrices defined over the doubling map has connected
almost-sure essential spectrum.

1. Introduction

We are interested in the study of ergodic Schrödinger operators of the form

ŒH!u� D u.n � 1/C u.nC 1/C f .T
n!/u.n/; n 2 Z; (1.1)

where ! 2 �, � denotes a compact metric space, T W�! � is a homeomorphism,
and f 2 C.�;R/. In this case, we call .�; T / a topological dynamical system. If
� denotes a T -ergodic Borel probability measure on �, then there is a set † D †�,
called the almost-sure spectrum of the family, such that �.H!/D† for �-a.e. ! 2�;
see, for example, [7, 9] for background.

Naturally, since the operators H! are bounded and self-adjoint, † is a compact
subset of R, so its complement is the union of at most countably many disjoint open
intervals, called the gaps of the spectrum. The spectrum itself can have many different
topological structures: it may be connected, it may be totally disconnected, it may
consist of a finite union of nondegenerate closed intervals, and so on. This naturally
leads to interest in the structure of the complement R n†, that is, in the structure of
the gaps. The gap-labelling theorem gives an invaluable tool in the study of the gaps.
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Associated with the family ¹H!º!2�, there is a function k called the integrated
density of states (IDS), which computes the average proportion of eigenvalues of cut-
offs of H! that lie below a given threshold; see (2.3) below for the definition of
the IDS. The crucial feature of the IDS is that the spectrum is precisely the set of
growth points of the function k. In particular, the IDS is constant on each connected
component of R n†, and it assumes different constant values on different connected
components. The value assumed by k on a gap is called the label of the gap. The
gap-labelling theorem then asserts that there is a countable subgroup of R that only
depends on .�; T; �/ such that all labels must belong to this group.

There are some different versions of gap-labelling. One version, due to Bellissard
and coworkers [2], identifies a set of labels with a normalized trace on a suitable
C � algebra. The version due to Johnson identifies a set of labels with the range of a
particular homomorphism [16]. This group will be denoted by A.�; T; �/, called the
Schwartzman group [22], and defined precisely in Section 2.1. Given the relationship
between A.�; T;�/ and operators defined by the dynamical system .�; T / via (1.1),
it is naturally of interest to compute A.�; T; �/ for as many dynamical systems as
possible. This was carried out in many standard examples in [8].

Our main result computes Schwartzman groups associated with affine transfor-
mations of suitable groups. Recall that a topological group is a Hausdorff topological
space that is also a group for which the group operations (multiplication and inver-
sion) are continuous. If � is a topological group, we write Aut.�/ for the set of
continuous group automorphisms AW� ! �. If A 2 Aut.�/ and b 2 �, we write
TA;bW! 7! A! C b for the corresponding affine automorphism. We denote by y� the
group of continuous homomorphisms from � to T WD R=Z, which is called the Pon-
tryagin dual group of �. Naturally, any A 2 Aut.�/ induces a dual map yAW y�! y�
via yA� D � ı A for � 2 y�. For additional background about topological groups and
their duals, see textbook treatments in [14, 17, 20].

Let us now state our main result. Here and throughout the paper, � denotes the
canonical projection R! R=Z sending x 2 R to its equivalence class modulo Z in
R=Z.

Theorem 1.1. If � is a compact connected abelian group, A 2 Aut.�/, b 2 �
belongs to the path component of the identity of �, and � is a TA;b-ergodic prob-
ability measure on �, then the Schwartzman group of .�; TA;b; �/ is given by

A.�; TA;b; �/ D ¹ˇ 2 RWˇ 2 ��1.�b/ for some � 2 ker. yA � I /º

D

[
�2ker. yA�I/

��1.�b/: (1.2)
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Remark. Let us make a few comments about the theorem.

(a) Since the torus Td is a compact connected abelian group (and every b 2 Td

of course belongs to the path component of the identity), Theorem 1.1 is a
generalization of [8, Theorem 8.1].

(b) There are compact connected abelian groups that are not tori and are not path-
connected. In particular, the assumption that b lies in the path component of
0 is not automatically satisfied, even though � is assumed to be connected.

(c) The assumption of connectedness in Theorem 1.1 cannot be dropped entirely.
We give a simple detailed example in the Appendix; see Corollary A.2.

(d) The proof we give requires the assumption that b lies in the path component
of the identity. We regard it as an interesting problem to determine whether
the result needs this assumption.

(e) If A D I , then ker. yA � I / D y�, the whole dual group of �. In this case,
(1.2) equates the Schwartzman group of the translation ! 7! ! C b with the
frequency module of .�;b/. Thus, one recovers a special case of the classical
gap-labelling theorem for almost-periodic dynamical systems. In particular,
in the case A D I , the result holds for all compact groups � and all b 2 �
without any connectedness assumptions; compare [8, 13, 15].

The proof of Theorem 1.1 follows the general contours of the proof of [8, The-
orem 8.1]. However, it yields some surprisingly powerful conclusions. For instance,
Theorem 1.1 allows us to answer several questions related to operators defined by
the doubling map, and indeed the answers that we get would have been surprising
in a vacuum. More specifically, [10] shows that the almost-sure essential spectra of
Schrödinger operators defined by the doubling map are connected, and did so by prov-
ing triviality of the range of the Schwartzman group restricted to maps on the solenoid
factoring through the doubling map. However, we will show in Corollary 4.1 that the
result above implies triviality of the range of the Schwartzman homomorphism for
arbitrary maps on the standard solenoid. At the time [10] was written, the authors sus-
pected that this would not be the case. Similarly, [11] studied Jacobi matrices defined
by the doubling map and proved connectedness of the almost-sure essential spectra
for such operators under the assumption of nonvanishing off-diagonals. We will use
Theorem 1.1 to show that the results of [11] indeed hold for arbitrary off-diagonals
and hence hold in maximal generality; see Corollary 5.2.

We will give some background in Section 2, prove Theorem 1.1 in Section 3, and
discuss some interesting applications in Sections 4 and 5.
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2. Background

2.1. Topological dynamics and the Schwartzman group

We define a topological dynamical system to consist of a pair .�; T / in which �
is a compact metric space and T W� ! � is a homeomorphism; in particular, we
consider invertible dynamics. A Borel probability measure on� is called T -invariant
if �.T �1B/ D �.B/ for all Borel sets B and T -ergodic if it is T -invariant and any
T -invariant measurable function is a.e. constant.

Given an ergodic topological dynamical system .�; T; �/, its suspension is given
by X D��R= �, where .T n!; t/ � .!; t C n/ for .!; t/ 2��R and n 2 Z. This
can be made into a continuous-time dynamical system via

� s.Œ!; t �/ D Œ!; t C s�;

where Œ!; t � denotes the equivalence class of .!; t/ in X . Likewise, the ergodic mea-
sure � induces a � -ergodic measure, �, on X viaZ

X

g d� D

Z
�

1Z
0

g.Œ!; t �/ dt d�.!/:

Given g 2 C.X;T /, one can lift the function gx W t 7! g.� tx/ to a map Qgx WR!R.
The limit

lim
t!1

Qgx.t/

t

exists for �-a.e. x, is �-a.e. constant, and only depends on the homotopy class of g.
Denoting by C ].X;T / the set of homotopy classes of mapsX ! T , the induced map
F� WC

].X;T /! R is called the Schwartzman homomorphism and its range is known
as the Schwartzman group, denoted

A.�; T; �/ D F�.C
].X;T //:

For later use (in the proof of Lemma 3.1), it is helpful to note that two maps X ! T

are homotopic if and only if their difference lifts to a map X ! R. Thus, C ].X;T /
is equivalent to C.X;T /=H.X;T / whereH.X;T / denotes the subgroup of C.X;T /
consisting of maps of the form x 7! �.f .x// where f WX ! R is continuous and
� WR! R=Z is the standard projection; compare [8, Proposition 4.10].

2.2. Gap labels for Jacobi matrices

We also will discuss ergodic Jacobi matrices and the topological structure of their
almost-sure spectrum. To introduce these objects, let .�; T / be a topological dynam-
ical system, that is,� is a compact metric space and T W�!� is a homeomorphism.
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Given q 2 C.�;R/ and p 2 C.�;C/, we consider the family of Jacobi matrices
¹J!º!2�, acting in `2.Z/, given by

ŒJ! �.n/ D p.T n�1!/ .n � 1/C q.T
n!/ .n/C p.T n!/ .nC 1/:

The discrete Schrödinger operators in equation (1.1) are a special case of ergodic
Jacobi matrices with q D f and p � 1.

Fix a T -ergodic Borel probability measure � on �. We assume

supp� D �; (2.1)

where supp� denotes the topological support of �, that is, the smallest closed set
having full �-measure. Let us mention that assumption (2.1) is non-restrictive, since
one can always replace the dynamical system .�; T / by .supp�; T jsupp�/. Having
chosen the measure �, we call ¹J!º an ergodic family of Jacobi matrices. The density
of states measure (DOSM) is given byZ

f d� D lim
N!1

Z
f d�!;N WD lim

N!1

1

N
Tr.f .J!�Œ0;N///; �-a.e. ! 2�; (2.2)

and the integrated density of states (IDS) is then given by

k.E/ D

Z
�
.�1;E�

d�: (2.3)

We have the following gap-labelling result for ergodic families of Jacobi matrices.

Theorem 2.1 ([11, Theorem 1.1]). Suppose .�; T / is an invertible topological
dynamical system and � is a fully supported T -ergodic Borel probability measure
on �. Given p 2 C.�;C/ and q 2 C.�;R/, let ¹J!º denote the associated ergodic
family of Jacobi matrices, † the almost-sure spectrum of this family, and k its IDS.
For all E 2 R n†, we have

k.E/ 2 A.�; T; �/:

2.3. The dyadic solenoid

In order to demonstrate that Theorem 1.1 contains new content, we show that it can
be applied to solenoids. To that end, let us introduce three realizations of the dyadic
solenoid, which we will denote by �1, �2, and �3. The first representation can be
defined by

�1 WD .R � Z2/=A

where Z2 denotes the 2-adic integers, and A denotes the discrete, hence closed, sub-
group A D ¹.a;�a/W a 2 Zº � R � Z2. The doubling map on �1 is given by

T1Œr; s� D Œ2r; 2s�:
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In [19, Appendix of Chapter 1], it is shown that this is equivalent to the inverse limit

�2 WD lim
 �

R=2nZ D
°
.xn/n�0 2

Y
n�0

R=2nZW �nxnC1 D xn for all n
±

of the projective system .R=2nZ; �n/, where �n denotes the canonical projection
�nW x mod 2nC1Z 7! x mod 2nZ, n � 0. The doubling map on �2 is defined by

.T2x/n D 2xn:

Finally, in [5, Chapter 1], the solenoid is realized as the attractor of an iterated
function system on the solid torus. More precisely, let 	 D T � xD denote the solid
torus (where xD D ¹.x; y/ 2 R2W x2 C y2 � 1º). Choosing some � 2 .0; 1=2/, the
transformation F W	 ! 	 is given by

F.!; x; y/ D
�
2!; �x C

1

2
cos.2�!/; �y C

1

2
sin.2�!/

�
:

The solenoid is then given by the attractor of this system, that is,

�3 WD

1\
nD0

F n.	/:

The restriction of F to �3 represents the doubling map, and is denoted by T3.

Proposition 2.2. All three realizations of the doubling map on the dyadic solenoid
are topologically conjugate to one another.

Proof. This statement is well known in the literature. For the reader’s convenience,
we sketch the main steps and provide references. It is mentioned in [19] that the
definitions of �1 and �2 are equivalent and in [5] the equivalence between �3 and �2

is discussed. Let us describe this in more detail.
Letting �nWT � xD ! R=2nZ be the map �n.�; r; s/ D 2n� mod 2nZ, we define

hW �3 ! �2 � …n�0R=2nZ by

.h.!; x; y//n D �n.T
�n
3 .!; x; y//;

which can be done because T3 is invertible on �3. One can then check that this h is a
homeomorphism that maps �3 to �2 and satisfies T2 ı hD h ı T3. See [5, Section 1.9]
for additional discussion.

Next, we discuss a conjugacy �1! �2. Writing ZC D ¹0; 1; 2; : : :º and writing a
typical element z 2 Z2 as

P
j2ZC

zj 2
j , define gWR � Z2 ! �2 by

.g.r; z//n D r C

n�1X
jD0

zj 2
j ; n 2 ZC:
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The reader can verify that this is a well-defined homomorphism with ker.g/ D A,
which descends to a map NgW �1 ! �2 satisfying T2 ı Ng D Ng ı T1. See [19, appendix
to Chapter 1] for further details.

Since all three realizations of the doubling map on the solenoid are topologically
equivalent, they all have the same Schwartzman group, which can be seen from the
following proposition.

If .�1; T1; �1/ and .�2; T2; �2/ are ergodic topological dynamical systems, we
say that they are equivalent if .�1; T1/ and .�2; T2/ are topologically conjugate via
a homeomorphism hW�1 ! �2 such that h��1 D �2.

Proposition 2.3. If .�1; T1; �1/ and .�2; T2; �2/ are equivalent ergodic topological
dynamical systems, then

A.�1; T1; �1/ D A.�2; T2; �2/:

Proof. Let hW�1 ! �2 be as in the definition of equivalence. Letting .Xj ; �j ; �j /
denote the corresponding suspensions, h induces a map NhWX1 ! X2 via Œ!1; t � 7!
Œh!1; t �. Since

Nh.ŒT n1 !1; t � n�/ D ŒhT
n
1 !1; t � n� D ŒT

n
2 h!1; t � n� D Œh!1; t � D

Nh.Œ!1; t �/;

we see that Nh is a well-defined homeomorphism. A similar calculation shows Nh ı � s1 D
� s2 ı
Nh for all s. Finally, one has Nh��1 D �2 on account of

Z
f d. Nh��1/ D

Z
f ı Nh d�1 D

1Z
0

Z
�1

f .Œh!1; t �/ d�1.!1/ dt

D

1Z
0

Z
�2

f .Œ!2; t �/ d�2.!2/ dt D

Z
f d�2;

where we used h��1 D �2 in the penultimate step. Thus, Nh gives a topological con-
jugacy from .X1; �1; �1/ to .X2; �2; �2/. This in turn gives a map P WC.X2;T /!
C.X1;T / by defining

Pf D f ı Nh; f 2 C.X2;T /:

Since Nh is a homeomorphism, P is a bijection that maps homotopic functions to
homotopic functions and thus induces a bijection P ]WC ].X2;T /! C ].X1;T /.

Claim 2.4. F�2
.Œ��/ D F�1

.P ]Œ��/ for every � 2 C.X2;T /:
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Proof of the claim. For x2 2 X2, recall �x2
.t/ D �.� t2x2/, and that Q�x2

W R ! R

denotes a lift. Note that

.P�/x1
.t/ D .P�/.� t1x1/ D �.

Nh� t1x1/ D �.�
t
2
Nhx1/ D � Nhx1

.t/:

In particular, Q� Nhx1
is a lift of .P�/x1

, so we takeA.P�/x1
D Q� Nhx1

. For j D 1;2, choose
sets X 0j � Xj of full �j -measure such that one has

F�1
.ŒP��/ D lim

t!1

A.P�/x1
.t/

t
; F�2

.Œ��/ D lim
t!1

Q�x2
.t/

t

for all xj 2 X 0j . On account of Nh��1 D �2, the set X?2 D X
0
2 \
NhŒX 01� has full �2-mea-

sure. Choosing x2 2 X?2 , one has Nh�1x2 2 X 01 and thus

F�2
.Œ��/ D lim

t!1

Q�x2
.t/

t
D lim

t!1

A.P�/ Nh�1x2
.t/

t
D F�1

.ŒP��/;

which proves the claim.

With the claim proved, we see that the ranges of F�1
and F�2

are identical, as
desired.

3. Computing the Schwartzman group

As in the proof of [8, Theorem 8.1] we structure the argument via two lemmas. First,
we characterize the homotopy classes from the suspension of .�; TA;b; �/ to the cir-
cle T . We then use this to compute the relevant Schwartzman group. To that end, let
us fix a compact connected abelian group �, and write Xb WD � � Œ0; 1�=..!; 1/ �
.TA;b!; 0// for the suspension of .�; TA;b/.

Lemma 3.1. Suppose � is a compact connected abelian group, A 2 Aut.�/, and
b 2 �. For � 2 K WD ker.I � yA/ and ˇ 2 ��1.�b/ define g�;ˇ WXb ! T by

g�;ˇ .Œ!; t �/ D �! C ˇt mod Z: (3.1)

(a) For each � 2 K and ˇ 2 ��1.�b/, g�;ˇ is a well-defined continuous map.

(b) Every g 2 C.X0;T / is homotopic to g�;ˇ for some � 2 K and ˇ 2 Z.1

(c) If b is in the path component of the identity of �, then Xb is homeomorphic
to X0.

1Here, Z arises because b D 0 and ��1.¹�0º/ D ��1.¹0º/ D Z.
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(d) If b is in the path component of the identity of �, one has

C ].Xb;T / D ¹Œg�;ˇ �W� 2 K; ˇ 2 �
�1.�b/º:

Proof. (a) Given � 2 K and ˇ 2 ��1.�b/, � ı A D � and �b D ˇmod Z imply

g�;ˇ .Œ!; 1�/ D �! C ˇ D �.A! C b/ D g�;ˇ .ŒA! C b; 0�/;

which suffices to show that g�;ˇ is well defined and continuous.

(b) Let g 2 C.X0;T / be given. We show that g is homotopic to some g�;ˇ in a
sequence of steps.

Step 1. For each t , let �t D ¹Œ!; t �W! 2 �º represent the corresponding fiber in X0.
Since � is compact and connected, every continuous map from � to T is homo-
topic to exactly one element in y� [21] (see also [18] for earlier work under stronger
assumptions). Consequently, for each t 2 T , the map g.t/W�! T given by

g.t/.!/ D g.Œ!; t �/

is homotopic to a unique �t 2 y�. Since g.t/ is homotopic to g.s/ for all t and s, there
is a single � 2 y� with � D �t for all t .

Step 2. Since g.0/ is homotopic to � and to g.1/ D g.0/ ıA, � is homotopic to � ıA,
which by [21] implies � ı A D �, that is, � 2 K.

Step 3. Consider the circle S0 D ¹Œ0; t �W t 2 Rº. By a standard fact from topology,
there exists ˇ 2 Z such that Œ0; t � 7! g.Œ0; t �/ is homotopic to the map Œ0; t � 7! ˇt .

Step 4. Let us take the � from Step 1 and ˇ from Step 3. By construction, there exists
g? 2 C.X0;T / homotopic to g such that g?Œ!; 0� D �! and g?Œ0; t � D ˇt . Since g
is homotopic to g?, note that g.t/? W! 7! g?.Œ!; t �/ is homotopic to � for all t .

Step 5. Define h WD g? � g�;ˇ . From the definitions of g? and g�;ˇ , we know that h
vanishes on the set �0 [ S0 and h.t/W! 7! h.Œ!; t �/ is nullhomotopic for every t .

We will make use of the following fact: a map f from a compact metric space Y
to T is nullhomotopic if and only if there exists a continuous function Qf WY !R such
that � ı Qf D f where � WR! T denotes the canonical projection (in fact we will
apply this principle to both Y D� and Y D X below); see, e.g., [8, Proposition 4.10]
for a proof. For each t 2 Œ0; 1�, there is a continuous Qh.t/W�! R such that

� ı Qh.t/ D h.t/ and Qh.t/.0/ D 0

by [8, Proposition 4.10]. Moreover, each of these lifts is unique: any two lifts of
h.t/ must differ by a locally constant function, which is then necessarily constant
by connectedness of �. Then, defining Qh.Œ!; t �/ D Qh.t/.!/, we see that Qh satisfies
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� ı Qh D h. Moreover, we claim that Qh is continuous. To see this, consider for each
! 2 �

f! W Œ0; 1�! T ; s 7! h.Œ!; s�/:

For each !, there is a unique lift Qf! W Œ0; 1�! R with � ı Qf! D f! and Qf!.0/ D 0.
Since h.Œ0; t �/D 0 for every t , we have f0.s/D 0 for all s. Putting everything together,
for each s 2 Œ0; 1�, ! 7! Qf!.s/ is continuous and satisfies �. Qf!.s// D h.Œ!; s�/ and
thus by uniqueness, one has Qf!.s/ D Qh.s/.!/ for all s and !. Moreover, by uniform
continuity of h, ! 7! Qf! 2 C.Œ0; 1�/ is continuous if C.Œ0; 1�/ is given the uniform
topology. The continuity of Qh follows. At last, this implies that h is nullhomotopic.

Since h D g? � g�;ˇ is nullhomotopic and g? is homotopic to g, it follows that g
is homotopic to g�;ˇ and we are done.

(c) Assume b is in the path component of the identity, and choose 
 W Œ0; 1�! �

continuous with 
.0/ D 0 and 
.1/ D b. Note that 
 0 WD A�1 ı 
 gives a path from 0

to A�1b. One can then define the desired homeomorphism 'WXb ! X0 via

'.Œ!; t �/ D Œ! C 
 0.t/; t �:

By construction .!; t/ 7! .! C 
 0.t/; t/ is a continuous map � � Œ0; 1� to itself. One
then only needs to check that ' is well defined, which one can see from

'.Œ!; 1�/ D Œ! C 
 0.1/; 1� D Œ! C A�1b; 1�

D ŒA! C b; 0� D '.ŒA! C b; 0�/:

Thus, ' is well defined and continuous. One can check that ' is invertible with con-
tinuous inverse, concluding the argument.

(d) This follows from part (c) exactly as in [8].

Lemma 3.2. With the same assumptions and notation as in Lemma 3.1, we have

F�.Œg�;ˇ �/ D ˇ for every � 2 K; ˇ 2 ��1.�b/:

Proof. The proof is analogous to the proof of [8, Lemma 8.3]. Fix � and ˇ, and denote
� D g�;ˇ . For each x D Œ!; s� 2 X , let us define �x WR! R by �x.t/ D �.� tx/. Its
lift Q�x WR! R is a continuous function chosen so that �x D � ı Q�x where � is the
canonical projection map. Using (3.1), we see that we may take

Q�x.t/ D f�! C ˇ.s C t /; t 2 R; (3.2)

where f�! 2 R is any element from ��1.�!/. For �-a.e. x, we have

F�.�/ D lim
t!1

Q�x.t/

t
:
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Fixing such an x and using (3.2) gives

F�.�/ D lim
t!1

f�! C ˇ.s C t /
t

D ˇ;

which finishes the proof.

Proof of Theorem 1.1. This is a consequence of Lemmas 3.1 and 3.2.

4. The doubling map on the dyadic solenoid

As a consequence of Theorem 1.1, we can compute labels associated with affine autor-
morphisms on solenoids. For instance, we can show that the set of labels associated
with the doubling map on the dyadic solenoid (see Section 2.3) is Z.

Corollary 4.1. Let� be the dyadic solenoid,�DR�Z2=¹.a;�a/Wa 2Zº. Let T be
the doubling map on the solenoid, T .Œr; s�/ D Œ2r; 2s� and � be a T -ergodic measure
on �, then

A.�; T; �/ D Z:

At first glance, one may find Corollary 4.1 somewhat surprising. Indeed, the main
result of [10] was the conclusion that F.Œ��/ 2 Z for any � 2 C.X;T / that factors
through the (non-invertible) doubling map on the circle (recall that F denotes the
Schwartzman homomorphism). At the time, the authors suspected that that conclusion
did not hold for more general functions on the solenoid and that one could leverage
the local Cantor structure to produce continuous invariant sections having nonintegral
rotation numbers. However, Corollary 4.1 implies that this is not the case.

Theorem 1.1 applies to the doubling map on the dyadic solenoid.

Proposition 4.2. The solenoid, �1 is a compact connected abelian group, the dou-
bling map T1 is an automorphism on �1 and there exists a fully supported T1-ergodic
measure on �1.

Proof. It is known that the dyadic solenoid is a compact connected abelian group. It
is then straightforward to check that the doubling map, T1, is an automorphism. All
that remains is to construct a fully-supported T1-ergodic measure on �1. As discussed
in [11], there exists a Bowen–Margulis measure (as well as a Sinai–Ruelle–Bowen
measure), �, on �3 that is fully supported and T3-ergodic. Pushing this measure for-
ward using the maps discussed in the proof of Proposition 2.2, we obtain a measure
on �1 with the desired properties.

Proof of Corollary 4.1. Proposition 4.2 implies that we can apply Theorem 1.1 to
construct the set of labels associated with .�1; T1; �1/ where �1 is a fully supported
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T1-ergodic measure on �1. The result follows by noting thatK defined in Theorem 1.1
is trivial in this case. Indeed, if � 2K, then �.2!/D �.!/ for all !, which then forces
�.!/ D 0.

5. Applications to Jacobi matrices

As a byproduct of our results, we are able to answer a question posed in [11] about
gap labels for ergodic Jacobi matrices defined by the doubling map. Recall that a
dynamically defined family of Jacobi matrices is specified by

ŒJ! �.n/ D p.T n�1!/ .n � 1/C q.T
n!/ .n/C p.T n!/ .nC 1/; (5.1)

where ! 2�, a compact metric space, T W�!� is a homeomorphism, p 2C.�;C/,
and q 2 C.�; R/. Fixing a fully supported T -ergodic Borel probability measure
on �, the density of states measure and integrated density of states are given by (2.2)
and (2.3).

Corollary 5.1. Suppose � is a compact connected abelian group, A 2 Aut.�/, b is
in the path component of the identity of �, and � is a fully supported TA;b-ergodic
probability measure on �. Given continuous p and q, let ¹J!º denote the associated
family of Jacobi operators as in (5.1). Then,

k.E/ 2 ¹ˇWˇ 2 ��1.�b/ for some � 2 ker. yA � I /º

for all E 2 R n†, where † denotes the almost-sure spectrum of the family ¹J!º!2�
and k denotes the associated IDS.

Proof. This is a consequence of Theorem 1.1 and [11, Theorem 1.1].

Corollary 5.2. Suppose .�;T / denotes the doubling map on the dyadic solenoid and
� is a fully supported T -ergodic measure. Given continuous p and q, let ¹J!º denote
the associated family of Jacobi operators as in (5.1). Then, the almost-sure spectrum
† is connected.

Proof. This is a consequence of Corollaries 4.1 and 5.1.

Using Corollary 5.2, we can apply the method of [10] to see that half-line Jacobi
matrices dynamically defined by the doubling map on T have no gaps in their essential
spectra, which extends [11, Theorem 1.6] to the more general setting. As discussed
in [11, Remark 4.1], this could not be done solely with the work in [11] and required
new insights.



The Schwartzman group of an affine transformation 1293

Suppose � D T , T W� ! � is the doubling map T! D 2!, and � denotes
Lebesgue measure on T . Given continuous p and q, let ¹J!º denote the associated
family of half-line Jacobi operators given by

ŒJ!u�.n/ D

´
p.T n�1!/u.n � 1/C q.T n!/u.n/C p.T n!/u.nC 1/ n > 0;

q.!/u.0/C p.!/u.1/ n D 0:

Notice that we cannot discuss whole-line operators in this setting, since T is not
invertible. Operators generated by the doubling map on T have been studied by a
number of authors; see, for example, [1, 3, 4, 6, 10–12, 23].

Given this setup, there exists † � R such that �ess.J!/ D † for �-a.e. ! 2 �.
In [11], the authors asked whether this almost-sure essential spectrum may have any
gaps.

Corollary 5.3. With�, T , p, q, and† as in the previous paragraph,† is connected.

Proof. This follows from Corollary 5.2 and a repetition of the arguments in [11, Sec-
tion 4].

A. A disconnected example

We start with the following helpful observation, which applies to arbitrary finite
dynamical systems.

Theorem A.1. Suppose � is a finite set with the discrete topology, T W�! � is a
bijection, and � is a T -ergodic probability measure on �. One has

A.�; T; �/ D
1

p
Z;

where p D # supp�.

Proof. By ergodicity, supp�D¹!;T!; : : : ;T p�1!º for some! 2 supp�, so .supp�;
T jsupp�/ is conjugate to the shift S W! 7!!C 1 on Z=pZ. Thus, using Proposition 2.3
and [8, Proposition 6.1], one has

A.�; T; �/ D A.supp�; T jsupp�; �/ D A.Z=pZ; S; �/ D p�1Z;

where � denotes normalized counting measure on Z=pZ.

Corollary A.2. There exists a disconnected group �, an affine transformation T D
TA;bW�! � with A 2 Aut.�/ and b in the path component of the identity, and a
T -ergodic measure � on � such that

A.�; T; �/ ¤ ¹ˇWˇ 2 ��1.�b/ for some � 2 ker. yA � I /º: (A.1)

In particular, the assumption of connectedness cannot be removed from Theorem 1.1.
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Proof. Let us consider � D Z=pZ with the discrete topology. It is well known and
not hard to check that the affine homeomorphisms on� have the form T! D A! C b

with A 2 .Z=pZ/� (the group of units modulo p) and b 2 �. Since � is totally
disconnected, b is in the path component of 0 if and only if b D 0, so we only consider
TAW ! 7! A!. The dual group of � is also isomorphic to � via the identification
m 2 �$ �m 2 y�, where

�m.!/ D m!=p:

With this identification, one can check that yA�m D �Am by the following direct cal-
culation:

Œ yA�m�.!/ D �m.A!/ D m.A!/=p D .Am/!=p D �Am.!/:

In particular, writing K D ker. yA � I /, we have

K D ¹�mWAm D mmodpZº:

For the automorphism TAW ! 7! A! on � D Z=pZ with A a unit modulo p, let
us denote the right-hand side of (A.1) by G.p; A/. Choosing � to be normalized
counting measure on ¹1; 2º, we see that A.Z=3Z; T2; �/ D

1
2
Z ¤ Z D G.3; 2/.
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