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Lieb–Thirring and Jensen sums
for non-self-adjoint Schrödinger operators on the half-line

Leonid Golinskii and Alexei Stepanenko

Abstract. We prove upper and lower bounds for sums of eigenvalues of Lieb–Thirring type for
non-self-adjoint Schrödinger operators on the half-line. The upper bounds are established for
general classes of integrable potentials and are shown to be optimal in various senses by proving
the lower bounds for specific potentials. We consider sums that correspond to both the critical
and non-critical cases.

Introduction

There is a vast literature on the spectral theory of self-adjoint Schrödinger operators,
motivated by their numerous applications in various areas of mathematical physics.
One of the highlights of this theory is the seminal Lieb–Thirring inequality for oper-
ators on L2.Rd /, d 2 N, which describes the discrete spectrum of such operators.
For the case of real line d D 1, it reads [30]

X
�2�d .H/

j�j� � C.�/
1Z
�1

Œq�.x/�
�C1=2dx; � � 1

2
; (0.1)

where C.�/ > 0 depends only on �, H denotes a Schrödinger operator on R with
real-valued potential q and q�.x/ D max.0;�q.x//.

By comparison, the non-self-adjoint theory is in its youth. The results obtained
in the last two decades have revealed new phenomena and demonstrated crucial dif-
ferences between SA and NSA theories. Among the problems which have attracted
attention, let us mention spectral enclosure results and bounds on the number of
complex eigenvalues [1, 5, 11, 16, 20, 23, 27]. Another active area of interest is non-
self-adjoint generalisations of Lieb–Thirring inequalities for Schrödinger operators
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[4, 6, 12, 17, 19, 22, 26, 37], as well as for other types of operators [9, 13–15, 38]. Still,
many questions remain unanswered.

The main object under consideration in the present paper is a Schrödinger operator

H D Hq ´ � d
2

dx2
C q on L2.RC/ (0.2)

endowed with a Dirichlet boundary condition at 0, where the potential q 2 L1.RC/
may be complex-valued (here, RC ´ Œ0;1/). As is well known, the set of discrete
eigenvalues �d .H/ (i.e., eigenvalues of finite algebraic multiplicity in CnRC) may be
countably infinite and may accumulate only to RC. Lieb–Thirring-type inequalities
give information on the distribution of the eigenvalues and, in particular, on the rate
of accumulation to points in RC.

In this paper, we study sums of eigenvalues of the form

S".H/´
X

�2�d .H/

dist.�;RC/
j�j.1�"/=2 ; " � 0:

Here, eigenvalues of higher algebraic multiplicity are repeated in the sums accord-
ingly. We refer to S".H/ as the Lieb–Thirring sums. Note that, in the case when q
is real, the eigenvalues of Hq are all negative, so S".Hq/ coincides with the classical
Lieb–Thirring sum in (0.1), with � D .1C "/=2. Note also that, by [21], the spectral
enclosure j�j � kqk21 holds for every � 2 �d .H/ where, as usual,

kqk1´
1Z
0

jq.x/jdx; q 2 L1.RC/: (0.3)

So, there is a simple relation between the Lieb–Thirring sums with different "

S"2.Hq/ � kqk"2�"11 S"1.Hq/; 0 � "1 < "2:

We also study the sums

J.H/´
X

�2�d .H/

Im
p
�;

p� denotes the branch of the square root such that Im
p
z > 0 for all z 2 CnRC, and

we refer to J.H/ as the Jensen sums. Notably, J.H/ arises naturally from Jensen’s
formula in complex analysis. It follows immediately from the inequality [12,
Lemma 1]

j�j1=2 j Im
p
�j � dist.�;RC/ � 2j�j1=2 j Im

p
�j; (0.4)

that J.H/ is equivalent to S0.H/

J.H/ � S0.H/ � 2J.H/: (0.5)
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The aim of the paper is two-fold. On one hand, we shall establish upper bounds for
the sums S".H/, "� 0, and J.H/. While the upper bounds for the sums S".H/, " > 0,
(i.e., the non-critical case) hold for arbitrary integrable potentials, the upper bounds
for the sums J.H/ (i.e., the critical case) are only valid for sub-classes of integrable
potentials. On the other hand, corresponding lower bounds shall be proven for specific
potentials, demonstrating optimality of our upper bounds in various senses. Moreover,
in Section 3 we shall construct an integrable potential such that the sum J.H/ D1.

Summary of main results

Our analysis is based on identifying the square roots of eigenvalues of the Schrödinger
operator H (0.2) with the zeros of an analytic function in the upper-half of the com-
plex plane CC. The idea of using methods of complex analysis in the theory of
non-self-adjoint Schrödinger operator on the half-line goes back to the pioneering
papers of Naimark [32] and Levin [29], and reaches its culmination in the famous
series of papers by Pavlov [33–35], who found the threshold between finitely and
infinitely many eigenvalues in the case of a complex potential.

Let us first recall the notion of a Jost function, which will be useful for describing
the basic ideas of the proofs, and then proceed to give an account of our main results.

Jost functions. It is well known [32, Theorems 2.2.1 and 2.3.1] that, for any z 2 CC,
the Schrödinger equation on RC

�y00 C q.x/y D z2y; q 2 L1.RC/

has a unique solution eC.�; z/ with the property that eC.x; �/ is analytic on CC for all
x � 0 and

eC.x; z/ D eixz.1C o.1//; as x !1
uniformly on compact subsets of CC. eC.�; z/ is referred to as the Jost solution. The
Jost function is defined as eC.z/´ eC.0; z/, z 2 CC, and has the property that

� D z2 2 �d .H/ () eC.z/ D 0:

Moreover, the algebraic multiplicity (i.e., the rank of the Riesz projection) of z2 as an
eigenvalue ofH coincides with the multiplicity of z as a zero of eC (see, for instance,
[25, Theorem 5.4 and Lemma 6.2]).

Upper bound for the non-critical case. Our first result concerns a bound from
above for the Lieb–Thirring sums S".H/ in the non-critical case " > 0. It is valid
for Schrödinger operators with arbitrary integrable potentials.
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Theorem 0.1 (= Theorem 1.1). For every " > 0, there exists a constant K."/ > 0

depending only on ", such that for any potential q 2 L1.RC/, we have

S".Hq/ D
X

�2�d .Hq/

dist.�;RC/
j�j.1�"/=2 � K."/kqk

1C"
1 : (0.6)

Given a pair .˛; ˇ/ of positive parameters, we define a generalised Lieb–Thirring
sum S˛;ˇ .Hq/ by [18]

S2˛˛;ˇ .Hq/´
X

�2�d .Hq/

j�j˛
hdist.�;RC/

j�j
iˇ
D
X

�2�d .Hq/

distˇ .�;RC/
j�jˇ�˛ : (0.7)

In terms of such sums, Theorem 0.1 takes the form

S˛;1.Hq/ � C˛ kqk1; for all ˛ >
1

2
:

We study such generalised Lieb–Thirring sums in more detail in Proposition 2.10.
The proof of Theorem 0.1 is based on the application of a result of Borichev,

Golinskii and Kupin [7] concerning the Blaschke-type conditions on zeros of ana-
lytic functions on the unit disk D satisfying appropriate growth conditions at the
boundary. An analytic function on D is constructed from the Jost function eC using a
certain conformal mapping, and the growth conditions are verified by applying clas-
sical estimates for eC.

Upper bounds for the critical case. Let us address upper bounds for the Jensen sums
J.H/. We proceed by embarking on a study of sub-classes of L1.RC/.

To begin with, we introduce a pair of positive, continuous functions a and Oa on
RC, such that

Oa.x/ D x

a.x/
; a.x/ D x

Oa.x/ ; x 2 RC:

We will refer to a and Oa as weight functions. We require that

• a is monotonically increasing;

• Oa is strictly monotonically increasing, Oa.0/ D 0 and Oa.1/ D1.

Introduce the norm

kqka ´
1Z
0

a.x/jq.x/jdx;

which agrees with (0.3) for a � 1. We consider sub-classes of L1.RC/ of the form

Qa ´ ¹q 2 L1.RC/ W kqka <1º:

In its most general form, our upper bound for the Jensen sum reads as follows.
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Theorem 0.2 (= Theorem 1.4). Let a and Oa be a pair of weight functions as described
above. Assume also that

1Z
1

dx

xa.x/
<1: (0.8)

Then, for each potential q 2 Qa and each ı 2 .0; 1/, we have

J.Hq/ � y log
1C ı
.1 � ı/2 C

4

�
kqka

1Z
1
y

dx

xa.x/
; (0.9)

where y D y.ı; a; kqka/ > 0 is uniquely determined by

Oa
� 1
y

�
kqka D log.1C ı/:

We emphasise that this upper bound is not applicable for arbitrary potentials q 2
L1.RC/. Loosely speaking, the conditions kqka <1 and (0.8) may contradict each
other, as far as the growth of a goes. An instructive family of integrable potentials is
considered in Example 1.7, namely,

q.x/ D i

x log˛.x/
�Œe;1/.x/; ˛ > 1; x 2 RC; (0.10)

where � denotes the indicator function. For ˛ > 2, there exists an appropriate weight
function a, and Theorem 0.2 is applicable to q. For 1 < ˛ � 2, such a weight function
a does not exist.

We do not claim that J.Hq/ D 1 for the potentials q in (0.10) with 1 < ˛ � 2.
In Theorem 3.6, we construct an example of a potential for which the Jensen sum
diverges, showing that Theorem 0.2 cannot be extended to all integrable potentials.

As well as proving sufficient conditions for convergence of the Jensen sum (which
is not always true for integrable potentials, cf. Theorem 0.4), Theorem 0.2 may be
used to prove a plethora of quantitative upper bounds. As an application, we obtain
the following estimates, which have been optimised for potentials of the form q.�h/
in the limit h! 0 (this is equivalent to the semiclassical limit for fixed potentials).

(A) (See Corollary 1.5) Let p 2 .0; 1/ and a.x/D 1C xp . Then for each poten-
tial q 2 Qa, we have

J.Hq/ � 4
�
kqka log.1C kqka/C 9

p
kqka C 2:

In [37], Safronov has also obtained a bound for the Jensen sum J.H/, valid for poten-
tials q 2 L1.RC/ satisfying kxpqk1 < 1 for some p 2 .0; 1/. Comparatively, the
above result (A) offers an improved asymptotic estimate for semiclassical Schrödinger
operators (see Remark 1.6), though we do not currently have a proof that it is optimal.
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(B) (See Corollary 1.8) Suppose the potential q 2 L1.RC/ is compactly suppor-
ted. Then, for every R > 1 with supp.q/ � Œ0; R�, we have

J.Hq/ � 7
h 1
R
C kqk1.1C log.1C kqk1/C logR/

i
: (0.11)

Theorem 0.3 below shows that this gives an optimal asymptotic estimate for potentials
of the form q.�h/ in the limit h! 0 (and hence an optimal semiclassical estimate).

The proof of Theorem 0.2 centers around establishing improved estimates for the
Jost function eC corresponding to potentials in a given sub-classQa. These improved
estimates are obtained by combining the arguments for the classical case with the
following simple principle:

0 < A � min.X1; X2/ H) A D a.A/ Oa.A/ � a.X1/ Oa.X2/: (0.12)

The bound (0.9) of Theorem 0.2 is proven by using these improved estimates for eC
in conjunction with Jensen’s formula. The proofs of Corollaries 1.5 and 1.8 amount
to appropriate choices for a and ı.

Lower bounds for dissipative barrier potentials. The optimality of the above upper
bounds can be addressed by studying corresponding lower bounds for Schrödinger
operators with so-called dissipative barrier potentials. Precisely, for 
; R > 0, we
consider the Schrödinger operator

L
;R ´ � d
2

dx2
C i
�Œ0;R� on L2.RC/ (0.13)

endowed with a Dirichlet boundary condition at 0. The dissipative barrier poten-
tials find applications in the numerical computation of eigenvalues, where they are
considered as a perturbation of a fixed background potential [31, 40]. We focus on
establishing our estimates for large enough R. Observe that ki
�Œ0;R�k1 D 
R.

Theorem 0.3 (= Theorem 2.8). Suppose that R � 600.
3=4 C 
�3=4/.
(i) We have the following lower bound:

2J.L
;R/ � S0.L
;R/ � 
R

16�
logR: (0.14)

(ii) Let 0 < " < 1. Under the additional assumption on R

R � 4

e2

.64�/2=" C 1;

we have the lower bound

S".L
;R/ � 1

256�"

.
R/1C"

log"R
:
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The estimate (0.14) shows that

sup
0 6Dq2L1.RC/

S0.Hq/

kqk1 D C1:

An analogous, but slightly less explicit, result for Schrödinger operators on the whole
real line has appeared in [6] (cf. Remark 2.9). Notably, our proofs seem to use rather
different methods.

The main ideas in the proof of Theorem 0.3 are as follows. Starting from the Jost
function ofL
;R, we construct a countable family of equations, each of which is in the
form of a fixed point equation. We are able to use the contraction mapping principle
to prove that each equation has a unique solution corresponding to exactly one zero
of the Jost function eC (or, more precisely, one zero of the analytic continuation of eC
to C).

As it turns out, each equation has a convenient form that allows us to gain quant-
itative information about its solution, hence about an individual zero of eC. Estimates
for the different equations can be combined to obtain lower bounds for the sums
J.L
;R/ and S".L
;R/ as well as other quantities, such as the number of eigenval-
ues (see Corollary 2.5).

Finally, note that, when applied to the Schrödinger operators L
;R (0.13), the
upper bound (0.11) gives the optimal asymptotic estimate for dilated potentials, hence
an optimal semiclassical estimate (see Proposition 2.11)

J.L
;R/ D O.R logR/; as R!1:

Divergent Jensen sum. As mentioned, while Theorem 0.2 provides an upper bound
for J.H/ for a wide range of potentials, there exist integrable potentials to which it
does not apply. It is therefore natural to ask whether or not it is possible to extend
this upper bound to arbitrary integrable potentials. Our final result show that this is
impossible.

Theorem 0.4 (=Theorem 3.6). There exists a potential q 2 L1.RC/ such that

J.Hq/ D1:

The proof of this result uses two crucial ingredients. The first is an idea of Bögli
[2], which allows one to construct a Schrödinger operator whose eigenvalues approx-
imate the union of the eigenvalues of a given sequence of Schrödinger operators Ln,
n 2 N. The second is the lower bound of Theorem 0.3 for the Jensen sum J.L
;R/.
Indeed, the given sequence of Schrödinger operators Ln in our case shall have dis-
sipative barrier potentials. Note that the explicit condition R � 600.
3=4 C 
�3=4/ in
Theorem 0.3 plays an important role in Theorem 0.4.
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Remark (RC vs R). Given a potential q 2 L1.RC/, denote by Q its even extension
on the whole line. By Proposition 3.2 below, there is inclusion �d .Hq/ � �d .HQ/,
counting multiplicities, for the discrete spectra of Schrödinger–Dirichlet operator Hq
on L2.RC/ and Schrödinger operator HQ on L2.R/. Hence, the inequalityX

�2�d .Hq/

ˆ.�/ �
X

�2�d .HQ/

ˆ.�/; q 2 L1.RC/; (0.15)

holds with an arbitrary nonnegative function ˆ on the complex plane. Thereby, upper
bounds, such as (0.6), for Hq can be derived from the corresponding results for the
operator HQ. As an example, the spectral enclosure [21] mentioned above is a direct
consequence of the result for the whole line [1, Theorem 4].

Several inequalities of Lieb–Thirring-type for Schrödinger operators with com-
plex potentials on L2.R/ are known nowadays, but neither covers completely the
main results of the paper. The result of Frank and Sabin [22, Theorem 16] in dimen-
sion one is (0.6) with " > 1. The case " D 1 is a consequence of [17, Theorem 1.3].
The result of Demuth, Hansmann, and Katriel [12, Corollary 3] in dimension one
reads X

�2�d .HQ/

distpC".�;RC/

j�j 12C"
� C.p; "/kQkp

Lp.R/; p � 3

2
; " 2 .0; 1/:

Recently, Bögli [4] has extended this result considerably by including a much wider
class of sums. The results of both DHK and Bögli are not applicable for arbitrary L1

potentials, hence do not imply Theorem 0.1.
We believe that the results for Schrödinger operators with complex potentials on

L2.R/, analogous to our upper bounds, can be obtained along the same line of reas-
oning by using similar methods. The study of this problem should be carried out
elsewhere.

Outline of the paper. In Section 1, we focus on upper bounds for the Lieb–Thirring
sums with an arbitrary potential q 2 L1.RC/, and for the Jensen sums with potentials
q 2 Qa. Section 2 is devoted to the spectral analysis of Schrödinger operators with
dissipative barrier potentials and to the lower bounds for the Lieb–Thirring and Jensen
sums with such potentials. In Section 3 we prove Theorem 0.4.

1. Classes of potentials and inequalities for sums of eigenvalues

As we mentioned earlier in the introduction, a complex number � 2CC belongs to the
zero set Z.eC/ of the Jost function if and only if � D �2 2 �d .H/, and the zero mul-
tiplicity coincides with the algebraic multiplicity of the corresponding eigenvalue.
Therefore, the divisor Z.eC/ (zeros counting multiplicities) has a precise spectral
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interpretation. In this section, we study this divisor using various results from com-
plex analysis and hence obtain bounds for sums of Lieb–Thirring and Jensen types.
Throughout the section, we shall let

C0
C´ ¹z 2 C W Im z � 0; z 6D 0º:

1.1. Bounds for Lieb–Thirring sums

Recall that the Lieb–Thirring sum for a Schrödinger–Dirichlet operatorH is given by

S".H/ D
X

�2�d .H/

dist.�;RC/

j�j 1�"2
; 0 � " < 1:

Our first result gives an upper bound for S".H/ in the non-critical case of " > 0 and
arbitrary q 2 L1.RC/.
Theorem 1.1 (= Theorem 0.1). For every " > 0, there exists a constant K."/ > 0,
depending only on ", such that

S".Hq/ � K."/kqk1C"1 : (1.1)

Proof. A key ingredient of the proof is the following well-known inequality for the
Jost function (see, e.g., [41, Lemma 1])

jeC.z/ � 1j � exp
°kqk1
jzj

±
� 1; z 2 C0

C: (1.2)

Let

y ´ kqk1
�

> 0; � ´ log
3

2
:

By (1.2),

jeC.iy/ � 1j � 1

2
; jeC.iy/j � 1

2
:

Consider the function

g.z/´ eC.yz/

eC.iy/
; z 2 CC; g.i/ D 1:

By the definition of y, we have

jg.z/j � 2jeC.yz/j � 2 exp
°kqk1
yjzj

±
D 2 exp

° �
jzj
±
; (1.3a)

log jg.z/j � log 2C �

jzj < log 2
1C jzj
jzj : (1.3b)



L. Golinskii and A. Stepanenko 1354

To go over to the unit disk, we introduce a new variable,

w D w.z/ D z � i
z C i WCC ! D; z D z.w/ D i 1C w

1 � w : (1.4)

Write f .w/´ g.z.w//. Recall the elementary inequality

2

1C jzj � j1 � w.z/j �
2
p
2

1C jzj ; z 2 CC: (1.5)

Substituting (1.4) into (1.3) and using (1.5) gives the following bound for f

log jf .w/j � 2
p
2 log 2
j1C wj ; f .0/ D 1: (1.6)

The Blaschke-type conditions for zeros of such analytic functions in D are
obtained in [7] (see [8] for some advances)X

�2Z.f /

.1 � j�j/j1C �j" � K1."/; for all " > 0;

where K1."/ > 0 depends only on ". Going back to the upper half-plane and using
another elementary inequality

Im z

1C jzj2 � 1 � jwj �
8 Im z

1C jzj2 ; (1.7)

we come to the following relation for the divisor Z.g/X
�2Z.g/

Im �

1C j�j2
j�j"
j� C i j" � K2."/:

But � 2 Z.g/ is equivalent to � D y� 2 Z.eC/, so� �

kqk1
�1C" X

�2Z.eC/

Im � j�j"®
1C � �j� j

kqk1

�2¯ˇ̌ ��
kqk1
C i ˇ̌" � K2."/:

The aforementioned spectral enclosure result ensures that j�j � kqk1 for � 2 Z.eC/.
It follows that both factors in the denominator are bounded from above by some con-
stants depending only on ". We come toX

�2Z.eC/
.Im �/ j�j" � K."/kqk1C"1 ;

where a positive constant K depends only on ".
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To complete the proof, we employ the inequality (0.4), mentioned in the introduc-
tion. So, (1.1) follows.

1.2. Classes of potentials and Jensen sums

In the rest of the section, we study the behavior of the discrete spectrum for Schrö-
dinger operators within special classes of potentials.

Let a be a monotonically increasing and locally integrable, nonnegative function
on RC. Consider the classes of complex-valued potentials

Qa ´
²
q 2 L1.RC/ W

1Z
0

a.x/jq.x/jdx <1
³
:

The weight function a is fixed in the sequel, and dependence of constants on a is
sometimes omitted.

Define a function Oa on RC by

Oa.x/´ x

a.x/
; x 2 RC;

and put

!a.x; z/´ Oa
� 1
jzj
� 1Z
x

a.t/jq.t/jdt; x 2 RC; z 2 C0
C:

Proposition 1.2. Assume that both a and Oa are monotonically increasing functions
on RC. Then the Jost solution admits the bound

je�izxeC.x; z/ � 1j � exp.!a.x; z// � 1; x 2 RC; z 2 C0
C: (1.8)

Proof. We follow the arguments of M. A. Naimark for the classical case a � 1. The
Jost solution is known to satisfy the Schrödinger integral equation

eC.x; z/ D eixz C
1Z
x

sin..t � x/z/
z

q.t/eC.t; z/dt:

The latter can be resolved by the successive approximations method.
Introduce a new unknown function

f .x; z/´ e�ixzeC.x; z/ � 1;

which satisfies

f .x; z/ D g.x; z/C
1Z
x

k.t � x; z/q.t/f .t; z/dt; (1.9a)
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k.u; z/´ sinuz
z

eiuz; g.x; z/´
1Z
x

k.t � x; z/q.t/dt: (1.9b)

Let

f1.x; z/´ g.x; z/; fnC1.x; z/ D
1Z
x

k.t � x; z/q.t/fn.t; z/dt; n 2 N:

In view of an elementary bound for the kernel k

jk.u; z/j � min
�
u;

1

jzj
�
;

and monotonicity of a and Oa, we see that

jk.u; z/j D Oa.jk.u; z/j/ a.jk.u; z/j/ � Oa
� 1
jzj
�
a.u/; (1.10)

cf. (0.12).
We first estimate f1. By (1.10),

jf1.x; z/j �
1Z
x

jk.t � x; z/jjq.t/jdt � Oa
� 1
jzj
� 1Z
x

a.t � x/jq.t/jdt � !a.x; z/:

Assume for induction that

jfj .x; z/j � !
j
a .x; z/

j Š
; j D 1; 2; : : : ; n: (1.11)

We compute

d

dx
Œ!nC1a .x; z/� D .nC 1/ !na .x; z/

d

dx
Œ!a.x; z/�

D �.nC 1/ !na .x; z/ Oa
� 1
jzj
�
a.x/jq.x/j;

and so

jfnC1.x; z/j �
1Z
x

jk.t � x; z/jjq.t/j!
n
a .t; z/

nŠ
dt

� 1

nŠ
Oa
� 1
jzj
� 1Z
x

a.t/jq.t/j!na .t; z/dt
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D � 1

.nC 1/Š

1Z
x

d

dt
Œ!nC1a .t; z/�dt D !nC1a .x; z/

.nC 1/Š :

Hence, (1.11) indeed holds for all n 2 N.
It follows that the solution f to (1.9), which is known to be unique, satisfies

jf .x; z/j �
1X
nD1

jfn.x; z/j � exp
�
!a.x; z/

� � 1
(the latter series converges absolutely and uniformly on the compact subsets of .x 2
RC; z 2 C0

C/). The bound (1.8) follows.

The above result for a.x/ D x˛ , ˛ 2 Œ0; 1�, is due to Stepin [41, Lemma 1]. The
bound for the Jost function eC.z/ D eC.0; z/ is (1.8) with x D 0:

jeC.z/ � 1j � exp
°
Oa
� 1
jzj
�
kqka

±
� 1; kqka ´

1Z
0

a.t/jq.t/jdt: (1.12)

The following spectral enclosure result is a simple consequence of (1.12) and the
basic property of zeros of eC.

Corollary 1.3. Under the hypothesis of Proposition 1.2, define the value

� D �.a; q/´ inf
°
t > 0 W Oa.pt / � log 2

kqka
±
:

Then the discrete spectrum �d .Hq/ is contained in the closed disk

�d .Hq/ � B.0; ��1/:

The case Oa.1/ < log 2 kqk�1a implies that � D 1, and so the discrete spectrum is
empty.

As a matter of fact, in view of [21], we have a more precise inclusion

�d .Hq/ � B.0; r/; r ´ min.��1; kqk21/:

To study the distribution of eigenvalues of H for potentials from the class Qa,
we apply standard tools from complex analysis (the Jensen formula). Recall that the
Jensen sum is given by

J.H/ D
X

�2�d .H/

Im
p
�:

Here
p� D sqC.�/ is the branch of the square root, which maps CnRC onto the upper

half-plane CC.
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Theorem 1.4 (= Theorem 0.2). In addition to the hypothesis of Proposition 1.2,
assume that

(1) Oa is a continuous, strictly monotonically increasing function, and Oa.0/ D 0,
Oa.1/ D1;

(2) one thas
1Z
1

dx

xa.x/
<1:

Then, for each potential q 2 Qa, and each ı 2 .0; 1/, the following bound for the
Jensen sum holds:

J.Hq/ � y log
1C ı
.1 � ı/2 C

4

�
kqka

1Z
1
y

dx

xa.x/
; (1.13)

where y D y.ı; a; kqka/ > 0 is uniquely determined by

Oa
� 1
y

�
kqka D log.1C ı/: (1.14)

Proof. The argument is similar to that in Theorem 1.1. It follows from (1.12) and
(1.14) that

jeC.iy/ � 1j � 1C ı � 1 D ı; jeC.iy/j � 1 � ı;
so the normalised function

g.z/´ eC.yz/

eC.iy/
; g.i/ D 1;

satisfies
log jg.z/j � log

1

1 � ı C Oa
� 1

yjzj
�
kqka; z 2 CC:

Introduce a new variablew 2D, related to z 2CC by (1.4). For f .w/´ g.z.w//

one has, as above, f .0/ D 1 and

log jf .w/j � log
1

1 � ı C Oas
� 1
y

ˇ̌̌ 1 � w
1C w

ˇ̌̌�
kqka; w 2 D:

For w D rei� , j� j � � , it is easy to calculate

max
0�r�1

ˇ̌̌ 1 � rei�
1C rei�

ˇ̌̌
D

8̂<̂
:
1; j� j � �

2
;ˇ̌̌

tan
�

2

ˇ̌̌
;
�

2
< j� j < �;
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so

log jf .w/j �

8̂̂<̂
:̂

log
1C ı
1 � ı ; j� j � �

2
;

log
1

1 � ı C Oa
� 1
y

ˇ̌̌
tan

�

2

ˇ̌̌�
kqka; �

2
< j� j < �:

In view of assumption .2/, the Jensen formula providesX
�2Z.f /

.1 � j�j/ �
X

�2Z.f /

log
1

j�j

� 1

2
log

1C ı
.1 � ı/2 C

kqka
�

�Z
�=2

Oa
� 1
y

�
tan

�

2

��
d�

D 1

2
log

1C ı
.1 � ı/2 C

2kqka
�

1Z
1

Oa.y�1t /
1C t2 dt;

and hence X
�2Z.f /

.1 � j�j/ � 1

2
log

1C ı
.1 � ı/2 C

2kqka
�

1Z
1

Oa.y�1t /
t2

dt

� 1

2
log

1C ı
.1 � ı/2 C

2kqka
�y

1Z
1
y

dx

xa.x/
µ B:

Going back to the function g and the upper half-plane and using (1.7), we come
to X

�2Z.g/

Im �

1C j�j2 � B:

The relation between Z.g/ and Z.eC/ is straightforward:

� 2 Z.g/ () � D y� 2 Z.eC/I

and, hence, X
�2Z.eC/

Im �

1C ˇ̌ �
y

ˇ̌2 � By: (1.15)

As it follows from (1.12),

Oa
� 1
jzj
�
kqka < log 2 H) eC.z/ 6D 0:

Therefore,

Oa
� 1
j�j
�
kqka � log 2; � 2 Z.eC/;
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and so (see the choice of y (1.14)), by monotonicity of Oa,

Oa
� 1
j�j
�
kqka > Oa

� 1
y

�
kqka H)

ˇ̌̌ �
y

ˇ̌̌
< 1:

We conclude from (1.15), thatX
�2Z.eC/

Im � � 2By;

and (1.13) follows. The proof is complete.

As a first application of the above result, we study Schrödinger operatorsHq with
potentials q satisfying k.1C xp/qk1 <1 for some p 2 .0; 1/. Taking a.x/´ xp

and any fixed ı 2 .0; 1/ (e.g., ı D 1=2) in Theorem 1.4 easily yields the inequality

J.Hq/ � C.p/
� 1Z
0

xpjq.x/jdx
� 1
1�p

; p 2 .0; 1/:

The following corollary of Theorem 1.4 offers a refinement (in the semiclassical limit)
of this bound.

Corollary 1.5. Let p 2 .0; 1/ and a.x/ D 1C xp . Then for each potential q 2 Qa,
the following inequality holds:

J.Hq/ � 4
�
kqka log.1C kqka/C 9

p
kqka C 2: (1.16)

Proof. Put

ı WD exp
�

min
�1
2
kqka; �

��
� 1 2

�
0;
1

2

i
; � D log 3

2
:

Then, by (1.14),

A0´ log.1C ı/
kqka

D Oa
� 1
y

�
� 1

2
and log

1C ı
.1 � ı/2 � log 6:

Since Oa is monotonically increasing, with Oa.1/ D 1
2

, we must have y � 1. In
particular, this implies that

y�1

1C y�1 �
y�1

1C y�p D Oa.y
�1/ D A0; 1

y
� A0

1 � A0 ;

and so
1 � y � 1 � A0

A0
� 1

A0
: (1.17)
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If kqka � 2�, then ı D 1
2

, so y � 3kqka. On the other hand, if kqka < 2�, then
A0 D 1

2
, so y D 1 ( Oa is strictly monotonically increasing). We conclude that

y � 3kqka C 1: (1.18)

The right-hand side of (1.13) is the sum of two terms. We bound the first one as

A1´ y log
1C ı
.1 � ı/2 � log 6.3kqka C 1/ < 6kqka C 2:

The second (integral) term reads

A2´ 4

�
kqka

1Z
1=y

dx

x.1C xp/ :

The integral may be computed, and bounded above, as

1Z
1=y

dx

x.1C xp/ D
1

p
log
�
1C 1

yp

�
C logy

� 1

pyp
C logy:

Using the upper bound (1.18) and the lower bound (1.17) for y, we obtain

A2 � 4

�
kqkaŒlog.1C kqka/C log 3C 1

p
�

� 4

�
kqka log.1C kqka/C 3

p
kqka:

The bound (1.16) follows by combining the bounds for A1 and A2.

Remark 1.6. In [37], Safronov also studies Schrödinger operators Hq on RC with
potentials q satisfying k.1C xp/qk1 <1 for some p 2 .0; 1/, and obtains the estim-
ate

J.Hq/ � C.p/
� 1Z
0

xpjq.x/jdx
� 1Z
0

jq.x/jdx
�p
C
1Z
0

jq.x/jdx
�
: (1.19)

Consider the following Schrödinger–Dirichlet operators on RC,

Hh D �
d2

dx2
C q.xh/; h > 0;
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where q 2 L1.RC/ is fixed. A rescaling shows that h! 0 is equivalent to a semiclas-
sical limit. It can be seen that Corollary 1.5 gives

J.Hh/ D O.h�.1Cp/ log. 1
h
// as h! 0;

while the estimate (1.19) gives

J.Hh/ D O.h�.1C2p// as h! 0;

hence our result offers an improved asymptotic estimate for Hh.

The next example is more delicate. It presents an integrable potential q that is not
covered by Theorem 1.4. More precisely, q …Qa for any weight function a satisfying
the assumptions of Theorem 1.4.

Example 1.7. Take ˛ > 1 and put

q.x/´

8̂<̂
:

i

x log˛ x
; x � e;

0; 0 < x < e;

Then, q 2 L1.RC/. We distinguish two cases.

(1) Assume that ˛ > 2. Choose ˇ from 1 < ˇ < ˛ � 1 and denote

a.x/´
´

logˇ x; x � eˇ ;
ˇˇ ; 0 < x < eˇ ;

so a is a positive, monotonically increasing and continuous function on RC.
Then,

Oa.x/ D
8<:

x

logˇ x
; x � eˇ ;

ˇ�ˇx; 0 < x < eˇ :

Since ˇ > 1, both assumptions of Theorem 1.4 are met. Clearly, kqka <1,
so the Jensen sum J.Hq/ is finite for this potential.

(2) Let now 1 < ˛ � 2. We claim that there is no such weight function a. Assume,
on the contrary, that there are a and Oa, which satisfy the assumptions of The-
orem 1.4, and kqka <1. Then, for t � e,

1 >

1Z
t

a.x/

x log˛ x
dx � a.t/

1Z
t

dx

x log˛ x
D 1

˛ � 1
a.t/

.log t /˛�1
;

or
a.t/ � C1 .log t /˛�1; t � e:
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But ˛ � 1 � 1, and so
1Z
1

dt

ta.t/
D1:

A contradiction completes the proof.

Part (2) of the above example by no means claims that J.Hq/ D 1 for those
potentials.

As a final consequence of Theorem 1.4, we study the Jensen sums for Schrödinger
operators with compactly supported potentials.

Corollary 1.8. For any potential q 2 L1.RC/ with supp.q/ � Œ0; R�, R > 1, the
following inequality holds

J.Hq/ � 7
h 1
R
C kqk1.1C log.1C kqk1/C logR/

i
: (1.20)

Proof. We choose the weight functions

a.x/ D

8̂<̂
:
1; 0 < x � R;� log x

logR

�2
; x � R; Oa.x/ D

8̂<̂
:
x; 0 < x � R;

x
� logR

log x

�2
; x � R:

Since supp.q/ � Œ0; R�, we have kqka D kqk1.
Put

ı´ exp.min.kqk1R; �// � 1 2
�
0;
1

2

i
; � D log

3

2
:

Clearly,

log.1C ı/ D min.kqk1R; �/ � kqk1R; log.1C ı/
kqk1 � R;

and so the quantity y defined in (1.14) is given by

y D kqk1
log.1C ı/ :

The right-hand side of (1.13) is the sum of two terms, AD A1CA2. The first one
is

A1´ y log
1C ı
.1 � ı/2 D kqk1 C y log

1

.1 � ı/2 � kqk1
°
1C log 4

log.1C ı/
±

D kqk1
°
1C log 4

min.kqk1R; �/
±
:
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Hence,

A1 �

8̂<̂
:
kqk1

�
1C log 4

�

�
< 5kqk1; kqk1R � �;

kqk1 C log 4
R
D kqk1RC log 4

R
<

log 6
R

; kqk1R < �:

To estimate the second (integral) term A2, note that y�1 � R, and so
A2 D A21 C A22 with

A21´ 4

�
kqk1

RZ
1
y

dt

t
D 4

�
kqk1 log

kqk1R
log.1C ı/ ;

A22´ 4

�
kqk1 log2R

1Z
R

dt

t log2 t
D 4

�
kqk1 logR:

Hence,

A2 � 4

�
kqk1 logRC 4

�
kqk1 log

kqk1R
min.kqk1R; �/ ;

or

A2 �

8̂̂<̂
:̂
4

�
kqk1

�
logRC log.kqk1R/C log

1

�

�
; kqk1R � �;

4

�
kqk1 logR; kqk1R < �:

A combination of the above bounds (with appropriate calculation of the constants)
leads to (1.20), as claimed.

Remark 1.9. The celebrated Blaschke condition for zeros of analytic functions on
the upper half-plane reads (see [24, Section II.2, (2.3)])X

z2Z.f /

Im z

1C jzj2 <1:

It holds, for instance, for functions of bounded type (ratios of bounded analytic func-
tions). In view of the spectral enclosure jzj � kqk1, the bound J.Hq/ <1 is equi-
valent to the Blaschke condition for zeros of the Jost function.

2. Dissipative barrier potentials

As in the introduction (see (0.13)), let L
;R denote a Schrödinger-Dirichlet operator
on RC with the potential

qdb ´ i
�Œ0;R�; 
; R > 0: (2.1)
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We fix 
 throughout this section and shall be interested in largeR. The aim of the sec-
tion is to prove the bounds for the Lieb–Thirring and Jensen sums of the eigenvalues
of L
;R for large enough R.

2.1. Eigenvalues of Schrödinger operators with dissipative barrier potentials

The value z2 2 �d .L
;R/ if the equation

�y00 C i
�Œ0;R�.x/y D z2y (2.2)

has a solution y 2L2.RC/with y.0/D 0. An integration by parts with the normalised
eigenfunction gives

z2 D
1Z
0

jy0.t/j2dt C i

RZ
0

jy.t/j2dt 2 �C;

�C´ ¹� 2 C W Re � > 0; 0 < Im � < 
º:

It shall be convenient for us to work with two different branches sq˙ of the square-
root function. sq˙ have branch-cuts along R˙, respectively, and the corresponding
argument functions arg˙ satisfy

argC.�/ 2 Œ0; 2�/; arg�.�/ 2 Œ��; �/; � 2 CI sq˙.�/ D
p
j�je i2 arg˙.�/:

Since the solutions of the equation (2.2) are obviously computable, we may char-
acterise the eigenvalues of L
;R as the zeros of an explicit analytic function. Let

'R.z/´ .z � sqC.z
2 � i
//eiR sqC.z2�i
/ � .z C sqC.z

2 � i
//e�iR sqC.z2�i
/:

Lemma 2.1. For any R > 0 and any z 2 CC with z2 6D i
 ,

z2 2 �d .L
;R/ () 'R.z/ D 0:

Proof. Let R > 0 and z 2 CC such that z2 6D i
 . Recall that eC.�; z/ denotes the Jost
solution. Since eC.�; z/ spans the space of solutions of (2.2) in L2.RC/, we have

z2 2 �d .L
;R/ () eC.0; z/ D 0:

It suffices to show that eC.0; z/ D 0 if and only if 'R.z/ D 0. Since z ¤ 0 and
z2 ¤ i
 , eC must satisfy

eC.x; z/ D
´
c1.z/e

ix sqC.z2�i
/ C c2.z/e�ix sqC.z2�i
/; 0 < x < R

eixz; x � R;
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for some cj .z/ 2 C, j D 1; 2. c1 and c2 are determined by imposing the continuity of
eC.�; z/ and d

dx
eC.�; z/ at the point R,

c1.z/ D
sqC.z

2 � i
/C z
2 sqC.z2 � i
/

e�iR.sqC.z2�i
/�z/;

c2.z/ D
sqC.z

2 � i
/ � z
2 sqC.z2 � i
/

eiR.sqC.z2�i
/Cz/;

and so the expression for the Jost function eC.0; z/ is

e�iRz eC.0; z/

D .z C sqC.z
2 � i
//e�iR sqC.z2�i
/ � .z � sqC.z

2 � i
//eiR sqC.z2�i
/

2 sqC.z2 � i
/

D cos.R sqC.z
2 � i
// � izR sin.R sqC.z

2 � i
//
R sqC.z2 � i
/

:

Note that it is clear from this expression that eC is an entire function.
Finally, z2 ¤ i
 , so eC.0; z/ D 0 if and only if

'R.z/ D �2 sqC.z
2 � i
/e�iRzeC.0; z/ D 0:

The proof is complete.

Note that, 'R.z0/ D 0 for z20 D i
 , but z20 … �d .L
;R/.
Our strategy is to derive a countable family of equations, each of which has a

unique solution corresponding to exactly one zero of 'R. Introduce a new variable w
by

w´ sqC.z
2 � i
/:

For Re z > 0, we have z D sq�.z
2/ and so

z D sq�.w
2 C i
/: (2.3)

We refer to Figure 1 for an illustration of this change of variables.
Consider the family of equations

w D Gj;R.w/´ �Bj .w/C iA.w/
2R

; j 2 N; (2.4)

where

A.w/´ log
ˇ̌̌ sq�.w

2 C i
/ � w
sq�.w2 C i
/C w

ˇ̌̌
and

Bj .w/´ arg�
� sq�.w

2 C i
/ � w
sq�.w2 C i
/C w

�
C 2�j; j 2 N:
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Im Im

Re

Re

z plane w plane
sqC C/

Figure 1. An illustration of the new complex variable w. Regions of identical colours are
mapped to each other.

Clearly,

2�
�
j � 1

2

�
� Bj .w/ < 2�

�
j C 1

2

�
; j 2 N: (2.5)

Lemma 2.2. Let R > 0. If w 2 CC solves equation (2.4), and w2 C i
 2 CC, then
w2 C i
 2 �d .L
;R/.
Proof. Equation (2.4) can be written as

w D Gj;R.w/ D i

2R

�
log�

� sq�.w
2 C i
/ � w

sq�.w2 C i
/C w
�
C 2�ij

�
; (2.6)

where log� denotes the branch of the logarithm corresponding to arg�. Rearranging
this equation, it holds that

.sq�.w
2 C i
/ � w/eiRw � .sq�.w

2 C i
/C w/e�iRw D 0;

which is equivalent to 'R.z/ D 0, where z is defined by (2.3). Finally, w ¤ 0 implies
z2 ¤ i
 , and the hypothesis w2 C i
 2 CC ensures that z 2 CC so, by Lemma 2.1,
we have z2 D w2 C i
 2 �d .L
;R/.

From this point on, we shall restrict our attention to solutions of (2.4) in the angle

F1 D ¹w 2 C W Rew � 0 � Imw; jRewj � 2 Imwº

D
°
rei� W � � arctan

1

2
� � � �; r � 0

±
(2.7)
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and its subsets

Fj ´ ¹w 2 F1 W Bj .w/ � 2 jA.w/jº; j 2 N:

Since BjC1.w/ D Bj .w/C 2� , the family ¹Fj ºj�1 is nested

Fj � FjC1;
1[
jD1

Fj D F1:

As Bj .w/ � � for all w 2 F1, and A.0/ D 0, the set Fj is nonempty for all j 2 N.
The next result establishes existence and uniqueness of solutions in the regions Fj

for each equation (2.4) and large enough R. Precisely, we assume that

R � C0.
3=4 C 
�3=4/; C0 D 600: (2.8)

Proposition 2.3. For allR satisfying (2.8) and all j 2N, equation (2.4) has a unique
solution in F1 which lies in Fj . For different equations the solutions are different.

Proof. A key ingredient of the proof is the contraction mapping principle (see, e.g.,
[36, Theorem V.18]) on the complete metric space .Fj ; j � j/ with the usual absolute
value on C as a distance.

Fix j 2 N. Suppose we can show that, for R satisfying (2.8),

(a) Gj;R W Fj ! Fj ,

(b) Gj;R is a strict contraction mapping.

Then, the map Gj;RWFj ! Fj has a unique fixed point, and so the equation w D
Gj;R.w/ has a unique solution in Fj . Moreover, there are no solutions for the latter
equation outside Fj . Indeed, any solution w 2 F1 satisfies

w D Gj;R.w/ D �Bj .w/C iA.w/
2R

H) Bj .w/ � 2jA.w/j

so w 2 Fj . So, it suffices to prove the statements (a) and (b) above.
Put

w D uC iv; z D sq�.w
2 C i
/ D x C iy:

Let us show first that for each w 2 F1,

x D Re sq�.w
2 C i
/ � 0; jyj D j Im sq�.w

2 C i
/j � x D Re sq�.w
2 C i
/:

(2.9)
Indeed, the first inequality follows from the definition of sq�. As for the second one,
since Re.z2/ D Re.w2/ and juj � 2v, we have

u2 � v2 D x2 � y2; x2 D y2 C u2 � v2 � y2 C 3v2 H) jyj � x;

as claimed.
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Step 1. To prove statement (a), we show first that the following inequalities hold:

(1) ReGj;R.w/ < 0 � ImGj;R.w/, w 2 F1;

(2) jReGj;R.w/j � 2 ImGj;R.w/, w 2 Fj .

In view of the definition of Bj .w/ D �2R ReGj;R.w/, and the bounds (2.5) for Bj ,
the left inequality in (1) is obvious. To prove the right one, it suffices to show that
A.w/ � 0 for all w 2 F1. We write

jz ˙ wj2 D jzj2 C jwj2 ˙ 2 Re. Nwz/ D jzj2 C jwj2 ˙ 2.ux C vy/;

and so
jz � wj2 � jz C wj2 D �4.ux C vy/:

As we know, juj � 2v for w 2 F1, and also x � jyj, by (2.9). Hence,

jvyj � jujx
2
� juxj; ux C vy � ux C jvyj � ux C juxj D 0;

which implies

jz � wj2 � jz C wj2 D �4.ux C vy/ � 0; A.w/ D log
ˇ̌̌ z � w
z C w

ˇ̌̌
� 0;

and (1) follows. (2) is just the definition of Fj . So, Gj;RWFj ! F1.
Next, we want to check that for R satisfying (2.8),

Bj .Gj;R.w// � 2 jA
�
Gj;R.w/

�j; w 2 Fj ; (2.10)

or, in other words, Gj;R.w/ 2 Fj . It is shown above that, for w 2 Fj , we have that
Gj;R.w/ 2 F1 and jA�Gj;R.w/�j D A�Gj;R.w/� � 0. Then,

A
�
Gj;R.w/

� D log
j sq�.G

2
j;R.w/C i
/ �Gj;R.w/j2




� log
2.4jGj;R.w/j2 C 
/



D log

�8jGj;R.w/j2



C 2
�
:

For w 2 Fj one has 2jA.w/j � Bj .w/, and so, by (2.5),

jGj;R.w/j2 D
A2.w/C B2j .w/

4R2
� 5B2j .w/

16R2
� 5�2

4R2

�
j C 1

2

�2
:

Hence,

A
�
Gj;R.w/

� � log
�
2C 10�2.j C 1

2
/2


R2

�
: (2.11)

Clearly, 10�2 < 
R2 for R satisfying (2.8), so we come to

A.Gj;R.w// � log
�
2C

�
j C 1

2

�2�
< log

�
2
�
j C 1

2

�2�
; j 2 N: (2.12)
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Elementary calculus shows that

log 2C 2 log
�
j C 1

2

�
< �

�
j � 1

2

�
; j 2 N;

and so 2A.Gj;R.w//� Bj .Gj;R.w//, which completes the proof of (2.10). The state-
ment (a) is verified.

Step 2. We shall proceed with statement (b). Let h denote the function

h.w/´ sq�.w
2 C i
/ � w

sq�.w2 C i
/C w
D 1

i

.sq�.w

2 C i
/ � w/2: (2.13)

In view of (2.9) and u D Rew � 0, it is easy to see that for each w 2 F1,

sq�.w
2 C i
/ � w 2 G ´ ¹� 2 C W Re � � 0; j Im �j � Re �º;

and so hWF1 ! C�.
We conclude that the branch log� of the logarithm (corresponding to arg�) is

continuously differentiable on h.F1/. By the expression for Gj;R in (2.6), Gj;R is
continuously differentiable on F1. A direct computation yields

d

dw
Gj;R.w/ D �i

R sq�.w2 C i
/
:

It is easy to show (see the definition of F1 (2.7)) that

min
w2F1

jw2 C i
 j D C
; C D cos
�
2 arctan

1

2

�
>
1

2
;

and so ˇ̌̌ d
dw

Gj;R.w/
ˇ̌̌
< 1; w 2 F1;

as long as R satisfies (2.8). Hence, Gj;RWFj ! Fj is a strict contraction mapping for
such R, completing the proof.

2.2. The number of eigenvalues and Lieb–Thirring sums for L
;R

Now, that existence of solutions for the family of equations (2.4) has been established,
we may prove lower bounds for Lieb–Thirring sums. Throughout the remainder of the
section, we assume that j 2 N and R satisfies (2.8), and we let wj D wj .
; R/ 2 Fj
denote the unique solution to the equation w D Gj;R.w/ in Fj .

As it turns out, one has to impose some restriction on the values j to guarantee
that wj corresponds to an eigenvalue. Precisely, assume that

1 � j �MR ´
j 1

32�


R2

logR

k
: (2.14)
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Lemma 2.4. For R satisfying (2.8) and j satisfying (2.14), the inequalities

�

2
� Imw2j � 0 (2.15)

hold, so z2j D w2j C i
 2 CC and z2j 2 �d .L
;R/.
Proof. Firstly, we claim that for all 
 > 0 and R satisfying (2.8), we have

ˆ
 .R/´ 
R2

logR
>

C 20
2 logC0

: (2.16)

Since R � 2C0 >
p
e, the function ˆ
 .R/ is monotonically increasing and for each


 > 0

ˆ
 .R/ � f .
/´ C 20

.
3=4 C 
�3=4/2

logC0 C log.
3=4 C 
�3=4/

D C 20

3 C 2
3=2 C 1p


 logC0 Cp
 log.
3=2 C 1/ � 3
4

p

 log 


:

Since f .
/ � f .
�1/, 0 < 
 � 1, and C0 > e2, we see that

min

>0

f .
/ D min
0<
�1

f .
/ � C 20

logC0 C log 2C 3
2e

>
C 20

logC0 C 2 >
C 20

2 logC0
;

proving (2.16).
Next, we have

MR >
ˆ
 .R/

32�
� 1 > 1

32�

C 20
2 logC0

� 1 � 1; (2.17)

as long as
C 20

2 logC0
> 64�;

which is certainly true for the value C0 in (2.8). By (2.17),

ˆ
 .R/

32�
> 2;

ˆ
 .R/

96�
>
2

3
>
1

2
:

We assume that 1 � j �MR, so

j C 1

2
� ˆ
 .R/

32�
C 1

2
<
ˆ
 .R/

24�
D 1

24�


R2

logR
: (2.18)

Since A.wj / � 0, Bj .wj / > 0, we have

w2j D G2j;R.wj / D
B2j .wj / � A2.wj / � 2iBj .wj /A.wj /

4R2
;

Imw2j D �
Bj .wj /A.wj /

2R2
� 0:
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To prove the lower bound in (2.15), we apply (2.12) and (2.18)

A.wj / � log 2C 2 log
�
j C 1

2

�
< 2 log 
 C 4 logR;

and hence
Bj .wj /A.wj / � 4�

�
j C 1

2

�
.log 
 C 2 logR/:

But R > 
3=4, logR > 3
4

log 
 , and so, by (2.18),

log 
 C 2 logR <
10

3
logR; Bj .wj /A.wj / � 1

6


R2

logR
� 10
3

logR < 
R2:

The lower bound in (2.15) follows. The remaining claims follow from an application
of Lemma 2.2. The proof is complete.

The result of Lemma 2.4 immediately implies a lower bound for the number
N.L
;R/ of eigenvalues of L
;R, counting algebraic multiplicities.

Corollary 2.5. For R satisfying (2.8), we have the lower bound

N.L
;R/ �
j 1

32�


R2

logR

k
:

The next result amplifies the above corollary and will be used in our study of the
sums S˛;ˇ .Hq/ below. An analogous result for Schrödinger operators on the real line
has previously been obtained by Cuenin in [10, Theorem 4], by a different method.
Let N.L
;RI�/ denote the number of eigenvalues of L
;R in a given region � � C,
counting algebraic multiplicities.

Proposition 2.6. There exists constants R0; C1 > 0, depending only on 
 , such that
for the regions

†R ´
°
� 2 C W 


2
� Im.�/ � 
; C

�1
1 R2

log2R
� j�j � C1R

2

log2R

±
and all R � R0, we have

N.L
;RI†R/ � 1

128�


R2

logR
:

Proof. In this proof, we shall say that a statement holds for large enough R if there
exists R0 D R0.
/ > 0 such that the statement holds for all R � R0. Furthermore,
C D C.
/ > 0 will denote a constant that may change from line to line.
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Consider the unique solution wj D wj .
;R/ of the equation w D Gj;R.w/ in Fj ,
which exists for large enough R, withl 1

64�


R2

logR

m
� j �

j 1

32�


R2

logR

k
: (2.19)

By Lemma 2.4, �j ´ w2j C i
 is an eigenvalue of L
;R with 

2
� Im.�j / � 
 .

By (2.11), we have

jA.wj /j D jA.Gj;R.wj //j � log
�
2C 10�2.j C 1

2
/2


R2

�
� CR

for large enough R. Using the inequality Bj .wj / � 2�.j � 1
2
/ and the lower bound

in (2.19), we have

j�j j � jwj j2 � 
 D jBj .wj /j
2 C jA.wj /j2
4R2

� 
 � CR2

log2R

for large enough R. On the other hand, using the inequality Bj .wj / � 2�.j C 1
2
/ and

the upper bound in (2.19), we have

j�j j � jBj .wj /j
2 C jA.wj /j2
4R2

C 
 � CR2

log2R

for large enough R. It follows that �j 2 †R for some constant C1 D C1.
/ > 0 and
all large enough R. Finally, we have

N.L
;RI†R/ �
j 1

32�


R2

logR

k
�
l 1

64�


R2

logR

m
� 1

128�


R2

logR

for large enough R, completing the proof.

Remark 2.7. An upper bound for the number of eigenvalues for Schrödinger operat-
ors with potentials of the form qR D q C i
�Œ0;R�, where q is compactly supported,
is obtained in [39, Theorem 8]

N.HqR/ �
11

log 2

R2

logR
(2.20)

for large enough R. Our particular case corresponds to q � 0 and demonstrates that
(2.20) is optimal in the sense of order as R!1.

The result of Theorem 1.1 states that for each " > 0 there exists a constant
K."/ > 0, independent from q, so that

S".Hq/ � K."/ kqk1C"1
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for any integrable potential q. Our goal here is to obtain corresponding lower bounds
for the operators L
;R with potentials qdb (2.1) and, thereby, to demonstrate the
optimal character of this upper bound with respect to ". Precisely, we will show that
the value S0.L
;R/ tends to infinity fast enough as R!1.

Theorem 2.8 (= Theorem 0.3). Suppose that R satisfies (2.8).

(i) We have the lower bound

S0.L
;R/ � kqdbk1
16�

logR D 
R

16�
logR: (2.21)

(ii) Let 0 < " < 1. Under the stronger assumption on R

R � 4

e2

.64�/2=" C 1; (2.22)

we have the lower bound

S".L
;R/ � 1

256�"

.
R/1C"

log"R
: (2.23)

Proof. (i) The bound from below for S0.L
;R/ arises when we take a subset of the
eigenvalues, precisely, �j D z2j D w2j C i
 , with j from (2.14). So, for " D 0 we
have, in view of Lemma 2.4,

S0.L
;R/ �
MRX
jD1

Im.w2j C i
/
jw2j C i
 j1=2

� 


2

MRX
jD1

1p

 C jwj j : (2.24)

But, owing to (2.5),

jwj j2 D jGj;R.wj /j2 D jA.wj /j
2 C jBj .wj /j2
4R2

� 5jBj .wj /j2
16R2

� 5�2

4R2

�
j C 1

2

�2
;

and so

S0.L
;R/ � 


2

MRX
jD1

1p

 C 2�

R
.j C 1/ :

An elementary inequality

NX
jD1

1

aC b.j C 1/ >
NC1Z
2

dx

aC bx D
1

b
log

aC b.N C 1/
aC 2b ;

with a D p
 , b D 2�R�1, N DMR, gives

S0.L
;R/ � 
R

4�
log
p

 C 2�R�1.MR C 1/p


 C 4�R�1 � 
R

4�
log

1C
p

R

16 logR

1C 4�p

R

: (2.25)
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Let us check that, for R satisfying (2.8), one has

1C
p

R

16 logR

1C 4�p

R

> R1=4;

p

R

16 logR
C 1 > R1=4 C 4�p


R3=4
:

Indeed, p

R3=4

16 logR
D 
1=2R2=3

16

R1=12

logR
>
C
2=3
0

16

e

12
> 1

as long as

C0 >
�192
e

�3=2
;

which is true for C0 in (2.8) (at this point the value C0 D 600 comes about). Next,

4�p

R3=4

D 4�


1=2R2=3R1=12
<

4�

C
2=3
0

< 1

as long as C0 > .4�/3=2. The bound (2.21) follows directly from (2.25).
(ii) We have, as above in (i),

S".L
;R/ � 


2

MRX
jD1

1



1�"
2 C jwj j1�"

� 

1C"
2

2

MRX
jD1

1

1C � 2�p

R
.j C 1/�1�" ; (2.26)

and so

S".L
;R/ � 
1C
"
2R

4�

ˇ2Z
ˇ1

dy

1C y1�" ; ˇ1´ 4�p

R

; ˇ2´ 2�.MR C 1/p

R

:

An elementary inequality 1C y1�" � 2".1C y/1�" leads to the bound

S".L
;R/ � 
1C
"
2R

4�2"

ˇ2C1Z
ˇ1C1

dt

t1�"
D 
1C

"
2R

4�"2"
¹.1C ˇ2/" � .1C ˇ1/"º

D I1 � I2:

We apply once again .1C ˇ2/" � 2"�1.1C ˇ"2/ to estimate the first term

I1 � 
1C
"
2R

8�"

�
1C ˇ"2/ �


1C
"
2R

8�"

�2�.MR C 1/p

R

�"
>
.
R/1C"

128�"

1

log"R
: (2.27)

Concerning the second term, note that (2.22) implies
p

R > 8, and so

.1C ˇ1/" D
�
1C 4�p


R

�"
< 1C �

2
< �:
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Then

I2 � 
1C
"
2R

4"2"
D .
R/1C"

4"2"
1

.
p

R/"

<
.
R/1C"

4"

1

.
p

R/"

:

But, under assumption (2.22),
p

R

logR
D
p

R1=2

logR
R1=2 �

p

e

2
R1=2 � .64�/1=";

so � logRp

R

�"
� 1

64�
;

1

.
p

R/"

� 1

64� log"R
:

Hence,

I2 � .
R/1C"

256�" log"R
:

Comparing the latter with (2.27), we come to (2.23). The proof is complete.

Remark 2.9. The same methods lead to lower bounds for more general sums, which
were considered in [6]. Let p� 1. A slight modification of the proof of Theorem 2.8 (i)
yields X

�2�d .L
;R/

distp.�;RC/
j�j1=2 � 
pR logR

8� � 2p ; (2.28)

provided R satisfies (2.8). Indeed, the only place in the proof of Theorem 2.8 (i) that
needs to be modified is (2.24), and there we use the inequality

Im.w2j C i
/p � .
=2/p:
Furthermore, by the spectral enclosure [21] mentioned in the introduction, we

have
j�js�1=2 � kqdbk2s�11 D .
R/2s�1; � 2 �d .L
;R/; s � 1

2
;

so it follows from (2.28) thatX
�2�d .L
;R/

distp.�;RC/
j�js � 1

8� � 2p

pR logR
.
R/2s�1

: (2.29)

Now, take R D n and 
 D n�1 for n 2 N. Then, R satisfies (2.8), and so (2.29)
holds, for large enough n. Noting that kqdbkpLp.RC/ D 
pR and 
R D 1, and taking
the limit n!1, we conclude that

sup
0¤q2Lp.RC/\L1.RC/

1

kqkp
Lp.RC/

X
�2�d .Hq/

distp.�;RC/
j�js D1: (2.30)

In view of Proposition 3.2 below, the statement (2.29) holds analogously for Schrö-
dinger operators on L2.R/ with symmetric potentials i
�Œ�R;R�, hence (2.30) holds
for Schrödinger operators on L2.R/, which implies [6, Theorem 9].
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Recall that the generalised Lieb–Thirring sum S˛;ˇ .Hq/ is defined by (0.7). The
problem we are interested in now is the range of positive parameters .˛; ˇ/ for which

�˛;ˇ ´ sup
0¤q2L1.RC/

S˛;ˇ .Hq/

kqk1
<1:

The results are illustrated in Figure 2.

Proposition 2.10. We have

�˛;ˇ <1; for ˛ >
1

2
; ˇ � 1; (2.31)

and
�˛;ˇ D1; for ˛ > 0; 0 < ˇ < 1 and 0 < ˛ � 1

2
; ˇ D 1: (2.32)

Proof. Theorem 1.1 implies that we have �˛;1 < 1 for ˛ > 1
2

. Furthermore, by
dist.�;RC/ � j�j, the function f .ˇ/ D S˛;ˇ .Hq/ is monotone decreasing for fixed
˛, from which (2.31) follows.

By Proposition 2.6, for ˛ > 0 and 0 < ˇ < 1, we have

S2˛˛;ˇ .Hq/ � N.L
;RI†R/ inf
�2†R

�dist.�;RC/
j�j

�ˇ
j�j˛

� 1

128�


R2

logR

�

2

�ˇ�min¹C1; C�11 ºR2
log2R

�˛�ˇ
D C R2.1�ˇ/

.logR/1C2˛�2ˇ
.
R/2˛

for some constant C D C.
/ > 0 and all large enough R. The first statement in (2.32)
follows by considering the limit R!1.

By (2.29) with p D ˇ D 1 and s D 1 � ˛ � 1
2

, we have

S2˛˛;ˇ .L
;R/ D
X

�2�d .L
;R/

dist.�;RC/
j�j1�˛ � 1

16�
.
R/2˛ logR

for large enough R. The second statement in (2.32) follows by again considering the
limit R!1.

We are in a position now to obtain a two-sided bound for the Jensen sums J.L
;R/.
Recall that kqdbk1 D 
R.

Proposition 2.11. For allR satisfying (2.8), the following two-sided inequality holds:

1

32�
� J.L
;R/


R logR
� 42: (2.33)
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1

1=2
˛

ˇ

S˛;ˇ D 1
S˛;ˇ < 1

Figure 2. An illustration of Proposition 2.10.

Proof. The lower bound is a direct consequence of (2.21) and (0.5). To prove the
upper bound, we apply Corollary 1.8, so

J.L
;R/ � 7
h 1
R
C 
RC 
R logRC 
R log.1C 
R/

i
:

Note that (2.8) implies R > e and R2 > 
 C 
�1 C 1. Hence,

1

R
< 
R logR; 
R < 
R logR; log.1C 
R/ < 3 logR;

and inequality (2.33) follows.

3. An integrable potential with divergent Jensen sum

The aim of this section is to construct a potential q1 2 L1.RC/ such that J.Hq1/D
1. We shall begin, in Sections 3.1 and 3.2, by collecting some well-known facts about
Schrödinger operators on both the half-line and the full real line. We shall then pro-
ceed to prove two spectral approximation lemmas in Section 3.3. These will give us
information on the eigenvalues of Schrödinger operators on the half-line, for poten-
tials consisting of a sum of compactly supported functions whose supports are separ-
ated from one another by large enough distances. The consideration of Schrödinger
operators on the full real line is required in order to formulate one of these lemmas.
With these tools at hand, the potential q1 is constructed in Section 3.4.
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3.1. Case of the half-line

Consider the following differential equation on the positive half-line RC

hŒy�´ �y00 C q.x/y D z2y; q 2 L1.RC/; z 2 CC; (3.1)

where the potential q may be complex-valued. There exists a unique pair of solutions
e˙.�; zI q/ of (3.1), such that e˙.x; �I q/ are analytic on the upper half-plane CC, and

eC.x; zI q/ D eixz.1C o.1//; e0C.x; zI q/ D izeixz.1C o.1//; (3.2a)

e�.x; zI q/ D e�ixz.1C o.1//; e0�.x; zI q/ D �ize�ixz.1C o.1//; (3.2b)

as x ! C1, uniformly on compact subsets of CC (see, e.g., [32, Sections 2.2
and 2.3]). The Wronskian satisfies

W.z; q/ D W.eC; e�/ D �2iz: (3.3)

Recall that H D Hq denotes the Schrödinger–Dirichlet operator on L2.RC/.

3.2. Case of the real line

Consider the following differential equation on the real line R:

hŒy�´ �y00 C q.x/y D z2y; q 2 L1.R/; z 2 CC; (3.4)

where the potential q may be complex-valued.
The result below is likely to be well known. We provide the proof for the sake of

completeness.

Proposition 3.1. There exists a unique pair of solutions e˙.�; zI q/ of (3.4), known
as the Jost solutions, such that e˙.x; � Iq/ are analytic on the upper half-plane CC,

eC.x; zIq/ D eizx.1C o.1//; e0C.x; zIq/ D izeizx.1C o.1// (3.5)

as x !C1, and

e�.x; zIq/ D e�izx.1C o.1//; e0�.x; zIq/ D �ize�izx.1C o.1// (3.6)

as x ! �1, uniformly on compact subsets of CC.
�D z2 is the eigenvalue of the corresponding Schrödinger operator Hq onL2.R/

if and only if eC and e� are proportional, that is, the Wronskian

W.z;q/´ eC.0; zIq/e0�.0; zIq/ � e�.0; zIq/e0C.0; zIq/ D 0:

The algebraic multiplicity �.�;Hq/ of the eigenvalue � D z2 equals the multiplicity
of the corresponding zero of W.�;q/.
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Proof. The first statement, regarding the existence and analytic properties of the Jost
solutions, may be seen by extending appropriate Jost solutions on the half-line. Indeed,
let s.x; z/ and c.x; z/ denote the solutions of (3.4) such that

s.0; z/ D c0.0; z/ D 0; s0.0; z/ D c.0; z/ D 1:

We define

eC.x; zIq/ D c.x; z/eC.0; zI qC/C s.x; z/e0C.0; zI qC/;
e�.x; zIq/ D c.x; z/eC.0; zI q�/ � s.x; z/e0C.0; zI q�/;

where q˙ are potentials on the half-line such that

q˙.x/´ q.˙x/; x 2 RC:

Notice that the functions e˙.˙x;zIq/, x 2RC, solve the Schrödinger equations (3.1)
with q D q˙. By computing the boundary conditions of e˙.˙x; zI q/ at x D 0, we
see that

eC.x; zIq/ D eC.x; zI qC/; x 2 RC;

e�.x; zIq/ D eC.�x; zI q�/; x 2 R�:

The asymptotic relations (3.5) and (3.6) follow. The analyticity statement follows
from the fact that s.x; �/ and c.x; �/ are entire functions (see, for instance, [42,
Lemma 5.7]) as well as the analyticity of eC.0; �I q˙/ and e0C.0; �I q˙/ on CC.

Next, we prove the second statement, characterising the eigenvalues of Hq. If the
Jost solutions e˙ are proportional, the eigenfunction exists, and so z2 is the eigen-
value. Conversely, assume that eC and e� are linearly independent. The limit case on
each half-line (cf. (3.2)) means that e˙ … L2.R�/. Hence, all solutions of (3.4) from
L2.R˙/ are of the form c˙ e˙. If z2 2 �d .Hq/, there is a solution e 2 L2.R/ of (3.4)
with

e.x; zIq/ D
´
cCeC.x; zIq/; x 2 RC;

c�e�.x; zIq/; x 2 R�;

and so eC and e� are proportional. A contradiction completes the proof.
The final statement follows from [28, Theorem 28].

In what follows, we shall suppress indication of z dependence where appropriate.

Compactly supported potentials. Assume that q is compactly supported,
supp q � Œ�a; a�, a > 0. Then

e�.x;q/ D e�izx; e0�.x;q/ D �iz e�izx; x � �a: (3.7)
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Also, there exist A˙.z/ such that

eC.x;q/ D AC.z/eizx C A�.z/e�izx;
e0C.x;q/ D iz.AC.z/eizx � A�.z/e�izx/; x � �a: (3.8)

We can easily calculate the Wronskian. For x � �a,

W.eC; e�/ D .AC.z/eizx C A�.z/e�izx/.�ize�izx/
� iz.AC.z/eizx � A�.z/e�izx/e�izx D �2izAC.z/

and so
W.z;q/ D W.eC; e�/ D �2izAC.z/: (3.9)

Note that equations analogous to (3.7), (3.8), and (3.9) also hold for the opposite
half-line x � a.

Shifted potentials. Next, consider a shifted equation

hX Œy�´ �y00 C q.x �X/y D z2y; X > 0: (3.10)

All its solutions are shifts of the corresponding solutions of (3.4). In particular, the
Jost solutions satisfy

e˙.x;q.� �X// D e˙izX e˙.x �X;q/: (3.11)

Symmetrisation of potentials. The following result will allow us to apply the lower
bounds of Section 2 to even extensions of dissipative barrier potentials. We mentioned
it in the introduction, see (0.15).

Proposition 3.2. Given a potential q 2 L1.RC/, let qe be its even extension on the
line

qe.�x/ D qe.x/; x 2 RI qejRC D q:
Then �d .Hq/ � �d .Hqe /, and moreover, for each � 2 �d .Hq/, the algebraic multi-
plicity satisfies

�.�;Hq/ � �.�;Hqe /: (3.12)

Proof. It is clear from the definition, that

e�.x; zIqe/ D eC.�x; zIqe/; e0�.x; zIqe/ D �e0C.�x; zIqe/; x 2 R:

Hence, W.z;qe/ D �2eC.0; zIqe/ e0C.0; zIqe/. But qejRC D q, so

eC.x; zIqe/ D eC.x; zI q/; x 2 RCI W.z;qe/ D �2eC.0; zI q/ e0C.0; zI q/:

The result now follows from Proposition 3.1.
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3.3. Auxillary spectral approximation results

Large shifts. The following lemma and its corollary are crucial for the proof of The-
orem 3.6. A more general, but slightly less precise, version of this result has been
proven in [2, Lemma 4] by invoking the abstract notion of limiting essential spec-
trum (cf. [3]). In contrast to that result, it is important for us to account for algebraic
multiplicities, and our proof only relies on basic ODE theory and complex analysis.

Lemma 3.3. Let q 2 L1.RC/ and q 2 L1.R/ be potentials with compact supports.
For any X > 0, denote

q.x;X/´ q.x/C q.x �X/; x 2 RC:

Then q.�; X/ 2 L1.RC/ for all X > 0, and

lim
X!1

eC.0; zI q.�; X// D �eC.0; zI q/W.z;q/
2iz

D eC.0; zI q/W.z;q/
W.z; q/

(3.13)

uniformly on compact subsets of CC.

Proof. Assume that

supp q � Œ0; b�; supp q � Œ�a; a�; a; b > 0;

so that supp q.� �X/ � ŒX � a;X C a�. Assume also that X is so large that

b <
X

2
´ Y < X � a:

Then supp q.� � X/ � RC, and the supports of q and q.� � X/ are disjoint. For the
Jost solution, we have

eC.x; q.�; X// D
´
cCeC.x; q/C c�e�.x; q/; 0 � x � Y;
eC.x;q.� �X// D eizXeC.x �X;q/; x > Y;

(3.14)

for some c˙ D c˙.X; z/ 2 C. The adjustment conditions at Y yield

cCeC.Y; q/C c�e�.Y; q/ D eizX eC.�Y;q/;
cCe

0
C.Y; q/C c�e0�.Y; q/ D eizX e0C.�Y;q/;

or, in matrix form,�
eC.Y; q/ e�.Y; q/

e0C.Y; q/ e0�.Y; q/

��
cC

c�

�
D eizX

�
eC.�Y;q/
e0C.�Y;q/

�
:
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A matrix inversion yields�
cC

c�

�
D eizX

W.z; q/

�
e0�.Y; q/ �e�.Y; q/
�e0C.Y; q/ eC.Y; q/

��
eC.�Y;q/
e0C.�Y;q/

�
:

We can now calculate the Jost function from the upper relation in (3.14), taking
into account (3.2) and (3.3)

eC.0; q.�; X// D cCeC.0; q/C c�e�.0; q/

D �e
izY

2iz
ŒeC.0; q/ e�.0; q/�

�
� �iz C o.1/ �1C o.1/
eizX .�iz C o.1// eizX .1C o.1//

��
eC.�Y;q/
e0C.�Y;q/

�
D �e

izY

2iz
ŒeC.0; q/ e�.0; q/�

�
fC.X;q/

f�.X;q/

�
;

where

fC.X;q/´ .�iz C o.1//eC.�Y;q/C .�1C o.1//e0C.�Y;q/;

f�.X;q/´ eizX¹.�iz C o.1//eC.�Y;q/C .1C o.1//e0C.�Y;q/º; Y D X

2
:

Since Y > a, then, by (3.8),

eizY fC.X;q/ D .�iz C o.1//.AC C A�eizX /C .�iz C o.1//.AC � A�eizX /
D �2izAC C o.1/; X !1;

uniformly on compact subsets of CC. It is clear from (3.8), that

eizY f�.X;q/ D o.1/; X !1;

also uniformly on compact subsets of CC. The relation (3.9) completes the proof.

Before we move on, let us clarify what we shall mean by a collection of eigenval-
ues. When we say that there exists a collection of N 2 N eigenvalues �1; : : : ; �N of
an operator T , we mean that

(1) �j is an eigenvalue of T for each j 2 ¹1; : : : ; N º, and

(2) if � is repeated � times in the collection �1; : : : ; �N , then � is an eigenvalue
of T with algebraic multiplicity at least �.

An integer-valued function �.�; T / is said to be an algebraic multiplicity with
respect to a linear operator T if �.�; T / equals the algebraic multiplicity of � in
case when � 2 �d .T /, and �.�; T / D 0 otherwise.
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Corollary 3.4. Let the potentials q and q be defined as above. Given � 2 CnRC, put

� D �.�/´ �.�;Hq/C �.�;Hq/: (3.15)

Then � 2 �d .Hq/ [ �d .Hq/, if and only if there exists a collection of � eigenvalues
�
.1/
X , . . . , �.�/X of Hq.�;X/, X > 0 large enough, such that

lim
X!1

�
.j /
X D �; j D 1; 2; : : : ; �:

Proof. By Proposition 3.1 (and similar property of the Jost function eC.0; �I q/), � D
z2 2 �d .Hq/ [ �d .Hq/ if and only if z 2 CC is a root of the right-hand side (3.13)
with multiplicity equal to �.�/ (3.15). The rest is a direct consequence of Lemma 3.3
and Hurwitz’s theorem.

In particular, note that if �.�;Hq/ D �.�;Hq/ D 0, then � is separated from the
discrete spectra �d .Hq.�;X// for all large enough X .

Truncation. Given a potential q 2L1.RC/, we define its truncation at the levelX >0
as

qX .x/´
´
q.x/; 0 � x � X I
0; x > X:

(3.16)

Let .Xn/n2N be a sequence of positive numbers such that limn!1Xn D1. Put

qn´ qXn ; Hn´ Hqn :

Lemma 3.5. In the above notation, the limit relation

lim
X!1

eC.0; zI qX / D eC.0; zI q/ (3.17)

holds uniformly on compact subsets of CC. In particular, � 2 CnRC is an eigen-
value of H D Hq of algebraic multiplicity � if and only if there exists a collection of
eigenvalues �.1/n ; : : : ; �

.�/
n of Hn such that

lim
n!1

�.j /n D �; j D 1; 2; : : : ; �:

Proof. The argument is similar to one above. We have

eC.x; qX / D
´
cCeC.x; q/C c�e�.x; q/; 0 � x < X I
eizx; x � X;

c˙ D c˙.X; z/. The adjustment conditions at X yield

cCeC.X; q/C c�e�.X; q/ D eizX ;
cCe

0
C.X; q/C c�e0�.X; q/ D iz eizX ;
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or in matrix form �
eC.X; q/ e�.X; q/

e0C.X; q/ e0�.X; q/

��
cC

c�

�
D eizX

�
1

iz

�
The matrix inversion gives�

cC

c�

�
D �e

izX

2iz

�
e0�.X; q/ �e�.X; q/
�e0C.X; q/ eC.X; q/

��
1

iz

�
;

and so

cC.X; z/ D �e
izX

2iz
Œe0�.X; q/ � ize�.X; q/�;

c�.X; z/ D �e
izX

2iz
Œ�e0C.X; q/C izeC.X; q/�:

Finally,

eC.0; qX / D �e
izX

2iz

®
Œe0�.X; q/ � ize�.X; q/�eC.0; q/
C Œ�e0C.X; q/C izeC.X; q/�e�.0; q/

¯
;

and (3.17) follows from the asymptotic relations (3.2).
The second statement is clear thanks to Hurwitz’s theorem.

3.4. Main result

We are in a position now to prove the main result of the section.

Theorem 3.6. There exists a potential q1 2 L1.RC/ with infinite Jensen sum.

Proof. Let .
n/n2N ; .Rn/n2N ; .Xn/n2N � RC, to be further specified. Let us define
a sequence of Schrödinger operators on the line

Lny ´ �y00 C lny; ln.x/´ i
n�Œ�Rn;Rn�.x/ 2 L1.R/; n 2 N:

Let .Nn/n2N0 be defined such that N0 D 0 and, for n � 1, Nn � Nn�1 equals
the number of eigenvalues of Ln, counting algebraic multiplicity. We place all the
eigenvalues .�j /j2N of all operators Ln in a single sequence in such a way that

¹�Nn�1C1; : : : ; �Nnº D �d .Ln/; n 2 N:

Define consecutively a sequence of potentials

qn.x/´ qn�1.x/C i
n�ŒXn;XnC2Rn�.x/D qn�1.x/C ln.x �Xn �Rn/; n 2 N;
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q0 � 0, or, in other words,

qn.x/ D
nX
kD1

i
k�ŒXk ;XkC2Rk �.x/: (3.18)

We assume that XkC1 > Xk C 2Rk , so the intervals ŒXk; Xk C 2Rk�, k 2 N, are
disjoint.

Let Mn denote the cardinality of the discrete spectrum �d .Hqn/, counting algeb-
raic multiplicity

�d .Hqn/ D ¹�j;nºMnjD1:
In view of Corollary 3.4, we see that for large enough Xn,

Mn�1 CNn �Nn�1 �Mn; Nn �Nn�1 �Mn �Mn�1;

and, as M0 D N0 D 0, it follows Nn �Mn for all n 2 N.
By Corollary 3.4, for each n 2 N, we can set Xn large enough such that the col-

lection of eigenvalues �j;n, j D 1; : : : ; Nn, of Hqn (note that Nn �Mn) satisfy

j�j;n � �j j C j Im
q
�j;n � Im

q
�j j � 3

.�n/2
Im
q
�j ;

for j D Nn�1 C 1; : : : ; Nn; n 2 N; and

j�j;n � �j;n�1j C j Im
q
�j;n � Im

q
�j;n�1j � 3

.�n/2
Im
q
�j ;

for j D 1; : : : ; Nn�1; n D 2; 3; : : : :
For each fixed j 2 N, �j;n exists for all n � m, where m 2 N is such that �j 2

�d .Lm/. The sequence .�j;n/n�m is Cauchy, so there exists

�j ´ lim
n!1

�j;n:

Next, putting �j;m�1´ �j , we have for any k � mC 1
kX

nDm

.Im
q
�j;n � Im

q
�j;n�1/ D Im

q
�j;k � Im

q
�j ;

so

j Im
q
�j;k � Im

q
�j j �

kX
nDm

j Im
q
�j;n � Im

q
�j;n�1j

D j Im
q
�j;m � Im

q
�j j C

kX
nDmC1

j Im
q
�j;n � Im

q
�j;n�1j

� 3 Im
p
�j

�2

1X
nD1

1

n2
D 1

2
Im
q
�j ;
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whence it follows, as k !1, that

Im
p
�j � 1

2
Im
q
�j ; j 2 N;

and in particular, �j 2 CnRC.
Set


n D 1

.n log2.nC 2//4 < 1;

Rn D 1200 
�3=4n D 1200 .n log2.nC 2//3; n 2 N: (3.19)

Define a potential on RC

q1´
1X
nD1

i
n�ŒXn;XnC2Rn�:

Then,

kq1k1 D 2
1X
nD1


nRn D 2400
1X
nD1

1

n log2.nC 2/ <1;

so q1 2 L1.RC/.
The partial sums (3.18) can be viewed as truncations of q1 at the levelXnC 2Rn.

Lemma 3.5 implies that, for each j 2 N, �j is an eigenvalue of Hq1 with algebraic
multiplicity greater than or equal to the number of times it appears in the sequence
.�k/k2N . It follows that

J.Hq1/ �
1X
jD1

Im
p
�j � 1

2

1X
jD1

Im
q
�j D 1

2

1X
nD1

J.Ln/:

Recall that Ln ´ L
n;Rn is defined in (0.13) as the Schrödinger operator on
L2.RC/ with potential i
n�Œ0;Rn�. By Proposition 3.2, any eigenvalue of Ln is also
an eigenvalue of Ln, and (3.12) holds. Hence, employing the left inequality in Pro-
position 2.11, we have

J.Ln/ � J.Ln/ � 1

32�

nRn logRn; Rn � 600.
3=4n C 
�3=4n /:

The latter inequality is true for all n 2 N due to the choice of Rn (3.19) and 
n < 1.
Consequently,

J.Hq1/ �
1

64�

1X
nD1


nRn logRn D 600

32�

1X
nD1

logRn
n log2.nC 2/ : (3.20)

Since log Rn � 3 log n as n ! 1, the sum on the right-hand side of (3.20)
diverges. We conclude that the Jensen sum J.Hq1/ D1, completing the proof.
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