
J. Spectr. Theory 13 (2023), 1393–1444
DOI 10.4171/JST/481

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Spectral theory of Jacobi operators with increasing coefficients.
The critical case

Dimitri Yafaev

Abstract. Spectral properties of Jacobi operators J are intimately related to an asymptotic
behavior of the corresponding orthogonal polynomials Pn.z/ as n ! 1. We study the case
where the off-diagonal coefficients an and, eventually, diagonal coefficients bn of J tend to
infinity in such a way that the ratio n ´ 2�1bn.anan�1/

�1=2 has a finite limit  . In the case
j j < 1 asymptotic formulas for Pn.z/ generalize those for the Hermite polynomials and the
corresponding Jacobi operators J have absolutely continuous spectra covering the whole real
line. If j j > 1, then spectra of the operators J are discrete. Our goal is to investigate the critical
case j j D 1 that occurs, for example, for the Laguerre polynomials. The formulas obtained
depend crucially on the rate of growth of the coefficients an (or bn) and are qualitatively differ-
ent in the cases where an !1 faster or slower than n. For the fast growth of an, we also have
to distinguish the cases jnj ! 1 � 0 and jnj ! 1C 0. Spectral properties of the correspond-
ing Jacobi operators are quite different in all these cases. Our approach works for an arbitrary
power growth of the Jacobi coefficients.

1. Introduction. Basic definitions

1.1. Jacobi operators

We consider Jacobi operators defined by three-diagonal matrices

J D

0BBBBBB@
b0 a0 0 0 0 � � �

a0 b1 a1 0 0 � � �

0 a1 b2 a2 0 � � �

0 0 a2 b3 a3 � � �

:::
:::

:::
: : :

: : :
: : :

1CCCCCCA
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in the canonical basis of the space `2.ZC/. Thus, if u D .u0; u1; : : :/> µ .un/ is a
column, then

.Ju/0 D b0u0 C a0u1 and .Ju/n D an�1un�1 C bnun C anunC1 for n � 1:

It is always supposed that an > 0, bn D Nbn so that the matrix J is symmetric and
commutes with the complex conjugation. The minimal Jacobi operator Jmin is defined
by the equality Jminu D Ju on the set D � `2.ZC/ of vectors u D .un/ with only a
finite number of non-zero components un. The operator Jmin is symmetric in the space
`2.ZC/ and Jmin WD !D . Its adjoint J �min coincides with the maximal operator Jmax

given by the same formula JmaxuD Ju on the set D.Jmax/ of all vectors u 2 `2.ZC/
such that Ju 2 `2.ZC/.

The operator Jmin is bounded if and only if both sequences an and bn are in
`1.ZC/. In general, Jmin may have deficiency indices .0; 0/ (that is, it is essentially
self-adjoint) or .1; 1/. Its essential self-adjointness depends on a behavior of solutions
to the difference equation

an�1Fn�1.z/C bnFn.z/C anFnC1.z/ D zFn.z/; n � 1: (1.1)

Recall that the Weyl theory developed by him for differential equations can be nat-
urally adapted to equations (1.1) (see, e.g., [1, Section 3 of Chapter 1] and refer-
ences therein). For Im z ¤ 0, equation (1.1) always has a non-trivial solution Fn.z/ 2
`2.ZC/. This solution is either unique (up to a constant factor) or all solutions of equa-
tion (1.1) belong to `2.ZC/. The first instance is known as the limit point case and the
second one – as the limit circle case. It turns out that the operator Jmin is essentially
self-adjoint if and only if the limit point case occurs; then the closure closJmin of Jmin

equals Jmax. In the limit circle case, the operator Jmin has deficiency indices .1; 1/.
It is well known that the limit point case occurs if an!1 as n!1 but not too

rapidly. For example, the condition

1X
nD0

a�1n D1 (1.2)

(introduced by T. Carleman in his book [5]) is sufficient for the essential self-adjoint-
ness of the operator Jmin. Under this condition, no assumptions on the diagonal ele-
ments bn are required. In general, the essential self-adjointness of Jmin is determined
by a competition between sequences an and bn. For example, if bn are much larger
than an, then Jmin is close to a diagonal operator so that it is essentially self-adjoint
independently of the growth of an.
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1.2. Orthogonal polynomials

Orthogonal polynomialsPn.z/ can be formally defined as “eigenvectors” of the Jacobi
operators. This means that a column

P.z/ D .P0.z/; P1.z/; : : :/
>

satisfies the equation JP.z/D zP.z/with z 2C being an “eigenvalue.” This equation
is equivalent to the recurrence relation

an�1Pn�1.z/C bnPn.z/C anPnC1.z/ D zPn.z/; n 2 ZC D ¹0; 1; 2; : : :º; (1.3)

complemented by boundary conditions P�1.z/ D 0, P0.z/ D 1. Determining Pn.z/,
n D 1; 2; : : : ; successively from (1.3), we see that Pn.z/ is a polynomial with real
coefficients of degree n: Pn.z/ D pnzn C � � � where pn D .a0a1 � � � an�1/�1.

The spectra of all self-adjoint extensions J of the minimal operator Jmin are simple
with e0 D .1; 0; 0; : : :/> being a generating vector. Therefore, it is natural to define the
spectral measure of J by the relation d„J .�/ D d hEJ .�/e0; e0i where EJ .�/ is the
spectral family of the operator J and h�; �i is the scalar product in the space `2.ZC/.
For all extensions J of the operator Jmin, the polynomials Pn.�/ are orthogonal and
normalized in the spaces L2.RI d„J /:

1Z
�1

Pn.�/Pm.�/d„J .�/ D ın;mI

as usual, ın;n D 1 and ın;m D 0 for n ¤ m. We always consider normalized poly-
nomials Pn.�/. They are often called orthonormal. If the operator Jmin is essentially
self-adjoint and J D closJmin, we write d„.�/ instead of d„J .�/.

It is useful to keep in mind the following elementary observation.

Proposition 1.1. If a sequence Fn.z/ satisfies equation (1.1), then

F ]n .z/ D .�1/
nFn.�z/

satisfies the same equation with the Jacobi coefficients .a]n; b
]
n/ D .an;�bn/. In par-

ticular, P ]n.z/ D .�1/nPn.�z/ are the orthonormal polynomials for the coefficients
.a
]
n; b

]
n/. In the limit point case, if J ] is the Jacobi operator in the space `2.ZC/

with matrix elements .a]n; b
]
n/, then J ] D �U�JU where the unitary operator U is

defined by .UF /n D .�1/nFn for n 2 ZC. The corresponding spectral measures are
linked by the relation d„].�/ D d„.��/. In particular, if bn D 0 for all n, then the
operators J and �J are unitarily equivalent.

The comprehensive presentation of the results described shortly above can be
found in the books [1, 6, 22] and the surveys [14, 21, 23, 24].
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1.3. Asymptotic results

We study the case an!1 as n!1 and are interested in the asymptotic behavior of
the polynomials Pn.z/ as n!1. The condition an!1 is fulfilled for the Hermite
polynomials where the Jacobi coefficients are

an D
p
.nC 1/=2 and bn D 0 (1.4)

and the Laguerre polynomials L.p/n .z/ where

an D
p
.nC 1/.nC 1C p/ and bn D 2nC p C 1; p > �1: (1.5)

In the general case there are two essentially different approaches to this problem. The
first one derives asymptotic formulas for Pn.z/ from the spectral measure d„.�/,
and the second proceeds directly from the coefficients an, bn. The first method goes
back to S. Bernstein (see his pioneering papers [3, 4] or G. Szegő’s book [22, Theo-
rem 12.1.4]), who obtained formulas generalizing those for the Jacobi polynomials. In
terms of the coefficients an, bn, the assumptions of [3,4] correspond to the conditions

an ! a1 > 0; bn ! 0 as n!1: (1.6)

Generalizations of the asymptotic formulas for the Hermite polynomials are known
as the Plancherel–Rotach formulas.

A study of an asymptotic behavior of the orthonormal polynomials for given coef-
ficients an, bn was initiated by P. Nevai in his book [18]. He (see also the papers [15,
25]) investigated the case of stabilizing coefficients satisfying condition (1.6), but, in
contrast to [3, 4], the results of [15, 18, 25] were stated directly in terms of the Jacobi
coefficients. The case of the coefficients an!1 was later studied in [11] by J. Janas
and S. Naboko and in [2] by A. Aptekarev and J. Geronimo. It was assumed in these
papers that there exists a finite limit

bn

2
p
an�1an

µ n ! ; n!1; (1.7)

where j j < 1 so that bn are relatively small compared to an. The Carleman condi-
tion (1.2) was also required. The famous example of this type is given by the Hermite
coefficients (1.4). In the general case the results are qualitatively similar to this par-
ticular case. Asymptotics of Pn.�/ are oscillating for � 2 R and Pn.z/ exponentially
grow as n!1 if Im z ¤ 0. Spectra of the operators J are absolutely continuous and
fill the whole real axis. If (1.7) is satisfied with j j > 1, then diagonal elements bn
dominate off-diagonal elements an. This ensures that the spectra of such operators J
are discrete. Note (see, e.g., [31]) that algebraic structures of asymptotic formulas for
the orthonormal polynomials are quite similar in the cases j j < 1 and j j > 1, but in
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the second case Pn.z/ exponentially grow as n!1 even for z 2 R (unless z is an
eigenvalue of J ).

The case of rapidly increasing coefficients an when the Carleman condition (1.2)
is violated, so that

1X
nD0

a�1n <1;

was investigated in a recent paper [27] where it was also assumed that j j ¤ 1. Aston-
ishingly, the asymptotics of the orthogonal polynomials in this a priori highly singular
case is particularly simple and general.

1.4. Critical case

In the critical case j j D 1, the coefficients an and bn are of the same order and
asymptotic formulas for Pn.z/ are determined by details of their behavior as n!1.

Thus, one has to require assumptions on the coefficients an and bn more specific
compared to (1.7). To make our presentation as simple as possible, we assume that,
asymptotically,

an D n
� .1C ˛n�1 CO.n�2//; n!1; (1.8)

and
bn D 2n

� .1C ˇn�1 CO.n�2//; n!1; (1.9)

for some ˛; ˇ;  2 R and1 � > 0. Thus, the operators with periodically modulated
coefficients (see, e.g., [7] and references therein) are out of the scope of this paper.
The critical case is distinguished by the condition j j D 1. In view of Proposition 1.1,
the results for  D 1 and  D �1 are equivalent. It turns out that the asymptotic
formulas for Pn.z/ depend crucially on the parameter

� D 2ˇ � 2˛ C �: (1.10)

Roughly speaking, the cases � < 0 (or � > 0) correspond to dominating off-diagonal
an (resp., diagonal bn) Jacobi coefficients.

All the results of this paper can be extended to a more general situation where
the terms ˛n�1 and ˇn�1 in (1.8), (1.9) are replaced by ˛n�p and ˇn�p for some
p 2 .0; 2/ and the error term O.n�2/ is replaced by O.n�r/ for r > max¹1; pº.

The classical example where the critical case occurs is given by the Laguerre coef-
ficients (1.5). In this case, we have  D 1, � D 1 and ˛ D 1C p=2, ˇ D .1C p/=2
so that � D 0. The corresponding Jacobi operators J D J .p/ have absolutely continu-
ous spectra coinciding with Œ0;1/. Another example is given by the Jacobi operators

1The case � > 3=2 was considered earlier in [29]
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describing birth and death processes investigated in [12] and [16]. The recurrence
coefficients of such operators are rather close to (1.5) so that spectral and asymptotic
results for these two classes of operators are similar.

Probably, a study of Jacobi operators in the critical case was initiatiated by J. Dom-
browsi and S. Pedersen in the papers [8,9] where spectral properties of such operators
were investigated under sufficiently general assumptions on the coefficients an and bn.
Asymptotics of the orthogonal polynomials in this situation was studied by J. Janas,
S. Naboko, and E. Sheronova in the pioneering paper [13]. They accepted conditions
(1.8), (1.9) with � 2 .1=2; 2=3/, ˛ D ˇ D 0 and studied equation (1.1) for real z D �.
Both oscillating for � > 0 (if  D 1) and exponentially growing (or decaying) for
� < 0 (if  D 1) asymptotics of solutions of equation (1.1) were investigated in [13].
The results of this paper imply that positive spectra of the operators J are absolutely
continuous and negative spectra are discrete. Recently, the results of [13] were gener-
alized and supplemented in [17] by some ideas of [2] – see Remark 7.9 below.

We note also the paper [20] by J. Sahbani where interesting spectral results were
obtained avoiding a study of asymptotics of the orthogonal polynomials. The paper
[20] relies on the Mourre method.

In the non-critical case j j ¤ 1, asymptotic formulas are qualitatively different for
� � 1 when the Carleman condition is satisfied and for � > 1 when the Carleman
condition fails. In the critical case, the borderline is � D 3=2. The case of rapidly
increasing coefficients where � > 3=2 was studied in [29]. For such � , the limit circle
case is realized (if � < 0) and the corresponding Jacobi operators have discrete spectra.

Our goal is to consistently study the regular critical case where j j D 1 and � �
3=2. Then the Jacobi operator Jmin is essentially self-adjoint, even if the Carleman
condition (1.2) fails. Its spectral properties turn out to be qualitatively different in the
cases � 2 .0; 1/, � D 1 and � 2 .1; 3=2�. Moreover, for � 2 .1; 3=2� the answers
depend crucially on the sign of the parameter � defined by (1.10). In all cases, our
asymptotic formulas are constructed in terms of the sequence

tn.z/ D �� n
�1
C zn�� : (1.11)

Note that the critical situation studied here is morally similar to a threshold behav-
ior of orthogonal polynomials for case (1.6). For such coefficients, the role of (1.7) is
played (see [15, 18, 28]) by the relation

lim
n!1

bn � �

2an
D �

�

2a1
:

Since the essential spectrum of the operator J is now Œ�2a1; 2a1�, the values � D
˙2a1 are the threshold values of the spectral parameter �. The parameter��=.2a1/
plays the role of  so that the cases j j< 1 (resp., j j> 1) correspond to � lying inside
the essential spectrum of J (resp., outside of it).
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1.5. Scheme of the approach

We use the traditional approach developed for differential equations

�.a.x/f 0.x; z//0 C b.x/f .x; z/ D zf .x; z/; x > 0; a.x/ > 0: (1.12)

To a large extent, x, a.x/, and b.x/ in (1.12) play the roles of the parameters n, an,
and bn in the Jacobi equation (1.1). The regular solution  .x; z/ of the differential
equation (1.12) is distinguished by the conditions

 .0; z/ D 0;  0.0; z/ D 1:

It plays the role of the polynomial solution Pn.z/ of equation (1.1) fixed by the con-
ditions P�1.z/ D 0, P0.z/ D 1.

A study of an asymptotics of the regular solution  .x; z/ relies on a construction
of special solutions of the differential equation (1.12) distinguished by their asymp-
totics as x!1. For example, in the case a.x/D 1, b 2L1.RC/, equation (1.12) has
a solution f .x; z/, known as the Jost solution, behaving like ei

p
zx , Im

p
z � 0, as

x!1. Under fairly general assumptions, equation (1.12) has a solution f .x; z/ (we
also call it the Jost solution) whose asymptotics is given by the classical Liouville–
Green formula (see Chapter 6 of the book [19])

f .x; z/ � G .x; z/�1=2 exp
�
i

xZ
x0

G .y; z/dy

�
µ A.x; z/ (1.13)

as x !1. Here x0 is some fixed number and

G .x; z/ D

s
z � b.x/

a.x/
; Im G .x; z/ � 0:

Note that the function A.x; z/ (the Ansatz for the Jost solution f .x; z/) satisfies
equation (1.12) with a sufficiently good accuracy.

For real � in the absolutely continuous spectrum of the operator

�
d

dx

�
a.x/

d

dx

�
C b.x/;

the regular solution  .x; �/ of (1.12) is a linear combination of the Jost solutions
f .x; �C i0/ and f .x; � � i0/ which yields asymptotics of  .x; �/ as x !1. For
example, in the case a.x/ D 1, b 2 L1.RC/ and � > 0, one has

 .x; �/ D �.�/ sin.
p
�x C �.�//C o.1/; x !1;

where �.�/ and �.�/ are known as the scattering (or limit) amplitude and phase,
respectively. If Im z ¤ 0, then one additionally constructs, by an explicit formula, a
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solution g.x; z/ of (1.12) exponentially growing as x !1. This yields asymptotics
of  .x; z/ for Im z ¤ 0.

An analogy between the equations (1.1) and (1.12) is of course very well known.
However it seems to be never consistently exploited before. In particular, the papers
cited above use also specific methods of difference equations. For example, the abso-
lute continuity of the spectrum is often deduced from the subordinacy theory, the
asymptotics of the orthonormal polynomials are calculated by studying infinite prod-
ucts of transfer matrices, etc. Some of these tools are quite ingenious, but, in the
author’s opinion, the standard approach of differential equations works perfectly well
and allows one to study an asymptotic behavior of orthonormal polynomials in a very
direct way. It permits an arbitrary growth of the coefficients an and bn (all values of
� in formulas (1.8), (1.9)) and naturally leads to a variety of new results, for example,
to a construction of the resolvents of Jacobi operators and to the limiting absorption
principle. For Jacobi operators with increasing coefficients, this approach was already
used in the non-critical case j j ¤ 1 in [31].

We are applying the same scheme to the regular critical case when conditions (1.8)
and (1.9) are satisfied with � � 3=2 and j j D 1 in (1.9). Under these assumptions the
limit point case occurs although for � > 1 the Carleman condition (1.2) is violated.

Let us briefly describe the main steps of our approach. In the non-critical case
j j ¤ 1, it was presented in [31].

(A) First, we distinguish solutions (the Jost solutions) fn.z/ of the difference
equation (1.1) by their asymptotics as n ! 1. This requires a construction of an
Ansatz An.z/ for the Jost solutions such that the relative remainder

rn.z/ WD .
p
an�1anAn.z//

�1
�
an�1An�1.z/C .bn � z/An.z/C anAnC1.z/

�
(1.14)

belongs at least to the space `1.ZC/.

(B) We seek An.z/ in the form

An.z/ D .�/
nn��ei'n.z/;  D ˙1; (1.15)

where the power � in the amplitude and the phases 'n are determined by the coeffi-
cients an, bn. Post factum, An.z/ turns out to be the leading term of the asymptotics
of fn.z/ as n!1:

fn.z/ D An.z/.1C o.1//: (1.16)

Actually, the Ansätzen we use are only distantly similar to the Liouville–Green
Ansatz (1.13). On the other hand, for � D 1, relation (1.15) is close to formulas of the
Birkhoff–Adams method significantly polished in [26] (see also [10, Theorem 8.36]).

(C) Then we make a multiplicative change of variables

fn.z/ D An.z/un.z/ (1.17)



Spectral theory of Jacobi operators with increasing coefficients. The critical case 1401

which permits us to reduce the Jacobi equation (1.1) for fn.z/ to a Volterra “integral”
equation for the sequence un.z/. This equation depends of course on the parameters
an, bn. In particular, for � > 1, it is qualitatively different in the cases � < 0 and � > 0.
However in all cases the Volterra equation for un.z/ is standardly solved by iterations
which allows us to prove that it has a solution such that un.z/! 1 as n!1. Then
the Jost solutions fn.z/ are defined by formula (1.17).

(D) To find an asymptotics of all solutions of the Jacobi equation (1.1) and, in
particular, of the orthonormal polynomials Pn.z/, we have to construct a solution
linearly independent with fn.z/. If a real z D � belongs to the absolutely continuous
spectrum of the operator J , then the solutions fn.�C i0/ and its complex conjugate
fn.� � i0/ are linearly independent. For regular points z, a solution gn.z/ of (1.1)
linearly independent with fn.z/ is constructed (see, e.g., Theorem 2.2 in [31]) by an
explicit formula

gn.z/ D fn.z/

nX
mDn0

.am�1fm�1.z/fm.z//
�1; n � n0; (1.18)

where n0 D n0.z/ is a sufficiently large number. It follows from (1.15), (1.16) that
this solution grows exponentially (for � < 3=2) as n!1:

gn.z/ D i~.z/.�/
nC1n��e�i'n.z/.1C o.1//I (1.19)

the factor ~.z/ here is given by equality (2.13), but it is inessential in (1.19). Since
gn.z/ is linearly independent with fn.z/, the polynomials Pn.z/ are linear combina-
tions of fn.z/ and gn.z/ which yields asymptotics of Pn.z/.

(E) Our results on the Jost solutions fn.z/ allow us to determine the spectral
structure of the operator J and to construct its resolvent R.z/. At the same time, we
obtain the limiting absorption principle for the operator J stating that matrix elements
of its resolvent R.z/, that is the scalar products hR.z/u; vi, Im z ¤ 0, are continuous
functions of z up to the absolutely continuous spectrum of the operator J if elements
u and v belong to a suitable dense subset of `2.ZC/.

All these steps, except possibly the construction of the exponentially growing
solution gn.z/, are rather standard. No more specific tools are required in the problem
considered.

Actually, the scheme described above works virtually in all asymptotic problems
in the limit point case, both for difference and differential operators. In the limit circle
case, some modifications are required; see [27, 29]. The important differences are
that, in the limit circle case, one has two natural Ansätzen A

.˙/
n D n��e˙i'n where

'n D N'n does not depend on the spectral parameter z 2C and � > 1=2 so that A
.˙/
n 2

`2.ZC/.
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To emphasize the analogy between differential and difference equations, we often
use the “continuous” terminology (Volterra integral equations, integration by parts,
etc.) for sequences labeled by the discrete variable n.

Our plan is the following. The main results of the paper are stated in Section 2. In
Section 3, we define the number � and the phases 'n in formula (1.15) for the Ansatz
An.z/ and check an estimate

rn.z/ D O.n�ı/; n!1; (1.20)

with an appropriate ı D ı.�/ > 1 for remainder (1.14). A Volterra integral equation
for un.z/ is introduced and investigated in Section 4. This leads to a construction
of the Jost solutions fn.z/ in Section 5. In this section, the proofs of Theorems 2.1,
2.3, and 2.4 are concluded. Asymptotics of the orthonormal polynomials Pn.z/ are
found in Section 6. The results for regular points z and for z in the absolutely con-
tinuous spectrum of the Jacobi operator J are stated in Theorems 6.6 and 6.11,
respectively. The results on spectral properties of the Jacobi operators are collected
in Theorem 2.11. Its proof is given in Section 7.

2. Main results

Our goal is to study the critical case when assumptions (1.8) and (1.9) are satisfied
with j j D 1. In proofs, we may suppose that  D 1. The results for  D �1 then
follow from Proposition 1.1.

The results stated below crucially depend on the values of � and � . In the cases
� 2 .1; 3=2� (� 2 .0; 1/) the first (resp., the second) term in (1.11) is dominating so
that the asymptotic formulas are qualitatively different in these cases.

2.1. Jost solutions

Our approach relies on a study of solutions fn.z/ of the Jacobi equation (1.1) distin-
guished by their behavior for n!1. Actually, we determine the sequences fn.z/ by
their asymptotics

fn.z/ D .�/
nn��ei'n.z/.1C o.1//; n!1: (2.1)

Here

� D

´
�=2 � 1=4 for � � 1;

�=4 for � � 1
(2.2)
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(observe that � takes the critical value � D 1=2 for the critical value � D 3=2) and

'n.z/ D

nX
mD0

�m.z/: (2.3)

The terms �n.z/ will be defined by explicit formulas below in this section. Note that

Im �n.z/ � 0: (2.4)

By an analogy with differential equations, it is natural to use the term “Jost solutions”
for fn.z/. In the situation we consider, formula (2.1) plays the role of the Liouville–
Green formula (1.13). Observe that, for an arbitrary constant C.z/, the sequence
C.z/fn.z/ can be also taken for the Jost solution. In particular, a finite number of
terms in equality (2.3) is inessential.

We denote…DC nR and…0DC nRC. The sequence tn.z/ is given by formula
(1.11) where � is number (1.10). The analytic function

p
t is defined on …0 and

Im
p
t > 0 for t 2…0. Below C , sometimes with indices, and c are different positive

constants whose precise values are of no importance.
We state the results about the Jost solutions fn.z/ separately for the cases � 2

.1; 3=2�, � 2 .0; 1/ and � D 1. Let us start with the case � > 1.

Theorem 2.1. Let assumptions (1.8), (1.9) with j j D 1 and � 2 .1; 3=2� be satisfied.
Set � D �=2 � 1=4,

�n.z/ D
p
tn.z/ (2.5)

and let 'n.z/ be sum (2.3).
If � < 0, then for every z 2 clos… equation (1.1) has a solution fn.z/ with asymp-

totics (2.1). For all n 2 ZC, the functions fn.z/ are analytic in… and are continuous
up to the cut along the real axis.

If � > 0, then asymptotic formula (2.1) is true for all z 2 C. In this case the
functions fn.z/ are analytic in the whole complex plane C.

For all � ¤ 0, formula (2.1) is uniform in z from compact subsets of C.

We emphasize that the asymptotic behavior of the solutions fn.z/ as n ! 1
is drastically different for small diagonal elements bn when � < 0 and for large bn
when � > 0 – cf. formulas (2.17) and (2.18), below. This manifests itself in spectral
properties of the corresponding Jacobi operators J – see Theorem 2.11 (1).

Remark 2.2. Formula (2.1) is true for all � > 3=2, but in this case it can be sim-
plified by setting z D 0 in the right-hand side of (2.1). Thus, the leading term of
the asymptotics of fn.z/ does not depend on z 2 C and the power � > 1=2 so that
fn.z/ 2 `

2.ZC/. This leads to important spectral consequences: for � > 3=2 the defi-
ciency indices of the minimal Jacobi operator Jmin are .1; 1/, and the spectra of all its
self-adjoint extensions are discrete. The case � > 3=2 was investigated in [29].
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Let us pass to the case � < 1. The phases �n.z/ are again defined by formula (2.5)
for � > 2=3, but their construction is more complicated for � � 2=3. Let us set

Tn.z/ D tn.z/C

LX
lD2

pl t
l
n.z/ (2.6)

where a sufficiently large L depends on � and the real numbers pl are defined in
Lemma 3.5. In particular, Tn.z/ D tn.z/ for � > 2=3. Given Tn.z/, the phases �n.z/
are defined by the formula

�n.z/ D
p
Tn.z/ (2.7)

playing the role of (2.5). It is easy to show (see Remark 3.7, for details) that Tn.z/ 2
…0; thus, �n.z/ are correctly defined.

Theorem 2.3. Let assumptions (1.8), (1.9) with j j D 1 and � 2 .0; 1/ be satisfied.
Set � D �=4 and define the functions �n.z/ by formulas (2.6), (2.7). Let 'n.z/ be sum
(2.3). Then for every z¤ 0 such that z 2  clos…0, equation (1.1) has a solution fn.z/
with asymptotics (2.1). For all n 2 ZC, the functions fn.z/ are analytic in z 2 …0

and are continuous up to the cut along the half-axis RC, with a possible exception
of the boundary point z D 0.

In the intermediary case � D 1, the definition of the phases �n.z/ is particularly
explicit and the construction of the Jost solutions is simpler than for � ¤ 1.

Theorem 2.4. Let assumptions (1.8), (1.9) with j j D 1 and � D 1 be satisfied. Set
� D 1=4, define the functions �n.z/ by the formula

�n.z/ D
p
�� C zn�1=2;

and let 'n.z/ be sum (2.3). Then for every z such that z 2 .� C clos…0/, z ¤
� , equation (1.1) has a solution fn.z/ with asymptotics (2.1). For all n 2 ZC, the
functions fn.z/ are analytic in z 2 .� C…0/ and are continuous up to the cut along
the half-axis .� CRC/, with a possible exception of the boundary point � .

We emphasize that in the case � � 1 the condition � ¤ 0 is not required.
It is convenient to introduce a notation

� D

8̂̂̂̂
<̂
ˆ̂̂:

R if � 2 .1; 3=2�; � < 0;

; if � 2 .1; 3=2�; � > 0;

.0;1/ if � 2 .0; 1/;

.�;1/ if � D 1:

(2.8)

We will see in Section 2.4 that the spectrum of the operator J is absolutely continuous
on the closed interval clos � , and it may be only discrete on R n clos � . Note that
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Theorems 2.1, 2.3 and 2.4 give asymptotic formulas for the Jost solutions fn.z/ for
all z in the complex plane with the cut along � , except the thresholds in the absolutely
continuous spectrum (z D 0 if � 2 .0; 1/ and z D � if � D 1). For � 2 � , equation
(1.1) has two linearly independent solutions fn.�C i0/ and its complex conjugate

fn.� � i0/ D fn.�C i0/:

Under the assumptions of any of these theorems the solution fn.z/ of equation
(1.1) is determined essentially uniquely by its asymptotics (2.1). This is discussed in
Section 5.5 (see Propositions 5.9, 5.11, and Remark 5.10).

Note that the values of um�1 and um for some m 2 ZC determine the whole
sequence un satisfying the difference equation (1.1). Therefore, it suffices to con-
struct sequences fn.z/ for sufficiently large n only. Then they are extended to all n as
solutions of equation (1.1).

We also mention that f ]n .z/ D .�1/nfn.�z/ is the Jost solution for the Jacobi
equation (1.1) with the coefficients .a]n; b

]
n/ D .an;�bn/.

2.2. Asymptotics at infinity

Here we find explicit asymptotic formulas for the phases �n.z/ and then for their sums
'n.z/ as n!1. These formulas depend crucially on the values of the parameters �
and � .

Suppose first that � 2 .1; 3=2� and that z 2 clos… for � < 0 and z 2 C for � > 0.
Then the term �� n�1 is dominating in (1.11) so that according to definition (2.5)

�n.z/D n
�1=2

p
j� j C zn1�� D˙

p
j� jn�1=2˙

z

2
p
j� j
n1=2�� CO.n3=2�2� / (2.9)

for˙ Im z � 0 if � < 0 and

�n.z/ D in
�1=2
p

� � zn1�� D i
p
�n�1=2 � i

z

2
p
�
n1=2�� CO.n3=2�2� / (2.10)

for all z 2 C if � > 0.
In the case � < 1, the term zn�� is dominating in (1.11). Moreover, for � � 2=3,

the phases �n.z/ are given by formula (2.7) more general than (2.5). The last circum-
stance is however inessential because the terms t ln with l > 1 in (2.6) are negligible
compared to tn. This yields an asymptotics

�n.z/ D
p
zn��=2.1CO.n��//; � > 0: (2.11)

In particular, these results imply the following assertion.



D. Yafaev 1406

Proposition 2.5. Set

� D

´
1=2 if � � 1;

�=2 if � � 1;
(2.12)

and

~.z/ D

8̂̂̂̂
<̂
ˆ̂̂:
˙
p
j� j if � > 1; � < 0; ˙ Im z � 0;

i
p
� if � > 1; � > 0; z 2 C;

p
z if � < 1; z 2 clos…0; z ¤ 0;
p
z � � if � D 1; z 2 � C clos…0; z ¤ �:

(2.13)

Then
�n.z/ D ~.z/n

��.1C o.1//: (2.14)

To pass to asymptotics of sums (2.3), we use the Euler–Maclaurin formula

nX
mD1

F.m/ D

nZ
1

F.x/dx C
F.n/C F.1/

2
C

nZ
1

F 0.x/
�
x � Œx� �

1

2

�
dx; (2.15)

where Œx� is the integer part of x. This formula is true for arbitrary functions F 2 C 1.
Formula (2.15) allows one to deduce an asymptotics as n!1 of sum (2.3) from

that of the phases �n. For example, for � D 1, we apply (2.15) to F.x/D x�1=2 which
yields

'n.z/ D 2
p
�� C z n1=2 C C C o.1/ (2.16)

with some constant C . The remainder C C o.1/ here can be neglected in asymptotics
(2.1) because the Jost solutions are defined up to a constant factor.

Next, we consider the case � 2 .1; 3=2/. If � < 0, it follows from (2.9) and the
Euler–Maclaurin formula (2.15) that

'n.z/D˙2
p
j� jn˙

zp
j� j.3 � 2�/

n3=2�� CO.n5=2�2� / for ˙ Imz � 0: (2.17)

So, up to error terms, the functions ei'n.z/ where z D �C i" contain oscillating

exp
�
˙2i

p
j� jn˙

i�p
j� j.3 � 2�/

n3=2��
�

and exponentially decaying2

exp
�
�

j"jp
j� j.3 � 2�/

n3=2��
�

2We say that a sequence xn tends to zero exponentially if xn D O.e
�na

/ for some a > 0.
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factors. Note that the strongly oscillating factor exp.˙2i
p
j� jn/ in the asymptotics of

fn.z/ as n!1 does not depend on z. In the case � > 0, we have

'n.z/ D 2i
p
� n �

iz
p
�.3 � 2�/

n3=2�� CO.n5=2�2� / if � 2 .1; 3=2/: (2.18)

Thus, the Jost solutions fn.z/ contain an exponentially decaying factor e�2
p
�n for

all z 2 C.
Formulas (2.17) and (2.18) remain true also for � D 3=2 if .3 � 2�/�1n3=2�� is

replaced by lnn. For example, for � < 0, we have

'n.z/ D ˙2
p
j� jn˙

zp
j� j

lnnC C C o.1/ for ˙ Im z � 0: (2.19)

In the case � < 1, asymptotics of the phases is given by relation (2.11). Therefore,
using formula (2.15), we find that

'n.z/ D 2
p
z.2 � �/�1n1��=2 CO.n�=2/: (2.20)

So, ei'n.z/ exponentially decays if z 62 Œ0;1/ and oscillates if z D �˙ i0 for � > 0.
In the case � D 1, relation (2.20) is true if

p
z is replaced by

p
�� C z.

Note that explicit formulas for �n.z/ allow one to find all power terms of asymp-
totic expansion of �n.z/ as n!1. In view of formula (2.15) this yields all growing
terms of the phases 'n.z/ as n!1.

It follows from asymptotic formula (2.1) for the Jost solutions fn.z/ and the
results about the phases 'n.z/ stated above that for all � 2 .0; 3=2/ (for � > 1 it
is also required that � ¤ 0) and Im z ¤ 0, fn.z/ tend to zero exponentially as n!1.
In the critical case � D 3=2, the same is true if � > 0. If � D 3=2 and � < 0, then
relations (2.1), (2.19) show that

fn.�C i"/ D .�/
ne˙2i

p
j� jnn˙i�1n�1=2�"1.1C o.1// for ˙ " > 0; (2.21)

where �1 D �=
p
j� j, "1 D j"j=

p
j� j.

In particular, we have the following.

Proposition 2.6. Under the assumptions of any of Theorems 2.1, 2.3, or 2.4 the inclu-
sion

fn.z/ 2 `
2.ZC/; z 62 clos � ; (2.22)

holds. In particular, (2.22) is true for Im z ¤ 0.

Let us compare relation (2.21) with asymptotic formula (2.6) in [29] for the singu-
lar case � > 3=2, � < 0. The formula in [29] is true for all z 2C, the oscillating factor
e˙2i

p
j� jn is the same as in (2.21), but the power of n is 1=4 � �=2. This coincides
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with expression (2.2), but 1=4 � �=2 < �1=2 for � > 3=2. In this case all solutions
of equation (1.1) are in `2.ZC/ so that the deficiency indices of the operator Jmin

are .1; 1/.
Finally, we note that, on the absolutely continuous spectrum, formula (2.1) is

consistent with a universal relation found in [30]. Indeed, let the assumptions of The-
orems 2.1, 2.3, or 2.4 be satisfied. Using asymptotic formulas (2.16), (2.17) or (2.20)
and calculating derivatives of the phases 'n.� ˙ i0/ in � we see that, with some
constant factor c˙.�/,

d'n.�˙ i0/=d� D c˙.�/n
& .1C o.1// (2.23)

where & D 3=2� � for � 2 Œ1; 3=2/ and & D 1� �=2 for � � 1; if � D 3=2, then n&

in (2.23) should be replaced by lnn. In view of definition (2.2), in all cases the powers
of n in the amplitude and phase in formula (2.1) are linked by the equality

2�C & D 1: (2.24)

This is one of the relations found in [30]; in the case � D 3=2, this relation reduces to
the equality � D 1=2.

For a comparison, we mention that, in the non-critical case j j < 1, we have � D
�=2 and & D 1 � � (see [31]) which is again consistent with equality (2.24).

2.3. Exponentially growing solutions

For regular points z 2 C, the solution gn.z/ of equation (1.1) linearly independent
with fn.z/ is constructed by formula (1.18). Using the asymptotic formulas of Sec-
tion 2.1 for the Jost solutions, we find a behavior of gn.z/ as n!1.

Theorem 2.7. Let one of the following three assumptions be satisfied.

(1) The conditions of Theorem 2.1 where either � < 0, � < 3=2 and Im z ¤ 0 or
� > 0 and z 2 C is arbitrary.

(2) The conditions of Theorem 2.3 where either  D 1 and z 62 Œ0;1/ or  D �1
and z 62 .�1; 0�.

(3) the conditions of Theorem 2.4 where either  D 1 and z 62 Œ�;1/ or  D �1
and z 62 .�1;���

Then the asymptotics of the solution gn.z/ of equation (1.1) is given by formula (1.19).
In particular,

gn.z/ … `
2.ZC/ if z 62 clos � : (2.25)

We emphasize that the definitions of the numbers � and of the sequences 'n.z/
are different under assumptions (1), (2), and (3), but asymptotic formula (1.19) is true
in all these cases.
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In the critical case � D 3=2 (and � < 0) the solution gn.z/ of equation (1.1)
behaves as a power of n as n!1.

Proposition 2.8. If � D 3=2, � < 0 and˙" > 0, then

gn.�C i"/ D .�/
ne˙2i

p
j� jnn˙i�1n�1=2C"1.1C o.1// (2.26)

where �1 D �=
p
j� j, "1 D j"j=

p
j� j. In particular, relation (2.25) is preserved.

Theorem 2.7 and Proposition 2.8 will be proven in Section 6.1.
All solutions of equation (1.1) and, in particular, the orthonormal polynomials

Pn.z/, are linear combinations of the solutions fn.z/ and gn.z/ for z 62 clos � or of
the solutions fn.�C i0/ and fn.� � i0/ for z D � 2 � . Therefore, the results stated
above yield an asymptotics of Pn.z/ as n!1. This is discussed in Section 6 – see
Theorem 6.6 and 6.11.

2.4. Spectral results

First, we discuss the essential self-adjointness of the minimal operator Jmin. Accord-
ing to the limit point/circle theory this is equivalent to the existence of solutions of
equation (1.1) where Im z ¤ 0 not belonging to `2.ZC/. Therefore, the following
result is a direct consequence of Theorem 2.7 and Proposition 2.8.

Proposition 2.9. Let assumptions (1.8), (1.9) with j j D 1 and some � 2 .0; 3=2� be
satisfied; for � > 1 we additionally suppose that � ¤ 0. Then the minimal operator
Jmin is essentially self-adjoint.

Of course, for � � 1 one can refer to the Carleman condition (1.2), but for � > 1
the series in (1.2) is convergent.

The case � > 3=2 was investigated in [29, Theorem 2.3]. According to [29, The-
orem 2.3 20], for � > 0, the operator Jmin remains essentially self-adjoint. The results
for the case � < 0 are more interesting. Combining Proposition 2.9 with [29, Theo-
rem 2.3 10], we can state the following result.

Proposition 2.10. Suppose that assumptions (1.8), (1.9) with j j D 1, � < 0 and some
� > 0 are satisfied. Then the minimal operator Jmin is essentially self-adjoint if and
only if � � 3=2.

Note that Proposition 2.10 does not contradict Theorem 2.1 of [9] because the
assumptions of [9] correspond to the case � D 0.

Below we always suppose that � � 3=2 and denote by J D clos Jmin the closure
of the essentially self-adjoint operator Jmin.

Spectral properties of Jacobi operators are determined by a behavior of solutions
of equation (1.1) for real z D �. In particular, oscillating solutions correspond to the
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absolutely continuous spectrum. On the contrary, for regular � or eigenvalues of J ,
one solution of (1.1) exponentially decays and another one exponentially grows. On
the heuristic level, the results of Section 2.1 imply that the absolutely continuous spec-
trum of a Jacobi operator J consists of �where�� n�1C �n�� � 0 (for large n). On
the contrary, the points � where �� n�1 C �n�� < 0 (again, for large n) are regular
or, eventually, are eigenvalues of J . This intuitive picture turns out to be correct.

Theorem 2.11. Suppose that assumptions (1.8), (1.9) with j j D 1 are satisfied.

(1) Let � 2 .1; 3=2�. If � < 0, then the spectrum of the operator J is absolutely
continuous and covers the whole real line. If � > 0, then the spectrum of the
operator J is discrete.

(2) Let � 2 .0; 1/. If  D 1, then the absolutely continuous spectrum of the oper-
ator J coincides with the half-axis Œ0;1/ and its negative spectrum of J is
discrete. If  D �1, then the absolutely continuous spectrum of the operator
J coincides with the half-axis .�1; 0� and its positive spectrum is discrete.

(3) Let � D 1. If  D 1, then the absolutely continuous spectrum of the operator
J coincides with the half-axis Œ�;1/ and its spectrum below the point � is
discrete. If  D �1, then the absolutely continuous spectrum of the operator
J coincides with the half-axis .�1;��� and its spectrum above the point ��
is discrete.

Parts (2) and (3) of Theorem 2.11 can be considered as generalizations of the
classical results about the Jacobi operators with the Laguerre coefficients (1.5). We
emphasize that, in the case (1), the are no conditions on the parameter � . The results
of part (1) seem to be of a new nature.

The results stated above apply to Jacobi operators with the coefficients an, bn
growing as n� where � is an arbitrary number in the interval .0; 3=2�. Together with
the results of [29] where the case � > 3=2 was considered, they cover an arbitrary
power growth of the Jacobi coefficients.

Thus, our results show that, in the critical case j j D 1, there are two “phase
transitions”: for � D 1 and for � D 3=2. Indeed, the absolutely continuous spectrum
of the Jacobi operator J coincides with a half-axis for � � 1. In the case � 2 .1; 3=2�,
the spectrum of J is either absolutely continuous and covers the whole real-axis for
� < 0 or it is discrete for � > 0. If � > 3=2, then the minimal Jacobi operator Jmin has
deficiency indices .1; 1/ and the spectra of all its self-adjoint extensions are discrete.

Our spectral results can be summarized in the following table where†ac and†ess

are the absolutely continuous and essential spectra of the operator J . For definiteness,
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we choose  D 1:

� 2 .0; 1/ H)†ac D †ess D Œ0;1/;

� D 1 H)†ac D †ess D Œ�;1/;

� 2 Œ1; 3=2�; � < 0H)†ac D R;

� 2 Œ1; 3=2�; � > 0H)†ess D ;;

� > 3=2 H)†ess D ;:

3. Ansatz

As usual, we suppose that the recurrence coefficients an, bn obey conditions (1.8),
(1.9) with j j D 1. We define the Ansatz An D An.z/ by formula (1.15) where the
power � and the phases 'n D 'n.z/ will be found in this section.

3.1. Construction

Our goal here is to determine � and 'n in such a way that remainder (1.14) satisfies
condition (1.20) for

ı D 1=2C � if � > 1 and some3 ı > 1C �=2 if � < 1: (3.1)

If � D 1, then ı D 2, so that the estimate of the remainder is more precise in this
particular case. We emphasize that estimate (1.20) with ı > 1 used in the non-critical
case j j ¤ 1 in [31] is not sufficient now.

Put

Bn D
AnC1

An

: (3.2)

Then expression (1.14) for the remainder can be rewritten as

rn.z/ D
r
an�1

an
B�1n�1 C

r
an

an�1
Bn C 2n �

z
p
an�1an

: (3.3)

Assumption (1.8) on an implies thatr
an

an�1
D .nC 1/�=2n��=2.1CO.n�2// D 1C

�=2

n
CO.n�2/ (3.4)

and
.anan�1/

�1=2
D n�� .1CO.n�1//:

3The precise value of ıD ı.�/ for � 2 .2=3;1/ is indicated in Propositions 3.4. For � � 2=3,
it can be deduced from the proof of Proposition 3.6, but we do not need it.
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Using also assumption (1.9) on bn, we see that sequence (1.7) satisfies a relation

n D 1C .�=2/n
�1
CO.n�2/; (3.5)

where � is defined by equality (1.10).
We seek An in form (1.15) where the phases 'n are defined as sums (2.3). The

power � and the differences
�n D 'nC1 � 'n

will be determined by condition (1.20). The sequences �n constructed below tend to
zero as n!1 and satisfy condition (2.4). It follows from (1.15) and (3.2) that

Bn D �.nC 1/
��n�ei�n D �.1 � �n�1 CO.n�2//ei�n : (3.6)

According to relations (3.4), (3.5), and (3.6) the following intermediary assertion
is a direct consequence of expression (3.3).

Lemma 3.1. Relative remainder (1.14) admits a representation

rnD�.1� .�=2/n�1/e�i�n�1 � .1C .�=2/n�1/ei�n C 2C � n�1 � zn�� CO.n�ı/

(3.7)
where

� D � � 2� (3.8)

and ı D min¹2; 1C �º.

Note that in view of (2.2) expressions (2.12) and (3.8) for � are equivalent.
For all � 2 .2=3; 3=2�, the phases �n are defined by the same formulas (1.11)

and (2.5), that is,

�n D �n.z/ D
p
�� n�1 C zn�� ; Im �n.z/ � 0; (3.9)

although the estimates of the remainder rn are rather different in the cases � > 1,
� D 1 and � < 1. For � � 2=3, expression (3.9) requires some corrections.

3.2. The case � > 1

For such � , we suppose that � ¤ 0. We treat the cases � < 0 and � > 0 parallelly
putting

p
�� > 0 if � < 0 and

p
�� D i

p
j� j if � > 0.

It follows from definition (3.9) that �n D O.n�1=2/, whence

ei�n D

3X
kD0

ik

kŠ
�kn CO.n

�2/: (3.10)



Spectral theory of Jacobi operators with increasing coefficients. The critical case 1413

Substituting (3.10) into representation (3.7), we see that

rn D
3X
kD0

r .k/n CO.n
�2/ (3.11)

where

r .0/n D �.1C .�=2/n
�1/ � .1 � .�=2/n�1/C 2C � n�1 � zn��

D � n�1 � zn�� D �tn; (3.12)

by definition (1.11), and

r .1/n D i.1 � .�=2/n
�1/�n�1 � i.1C .�=2/n

�1/�n; (3.13)

2r .2/n D .1 � .�=2/n
�1/�2n�1 C .1C .�=2/n

�1/�2n ; (3.14)

6r .3/n D �i.1 � .�=2/n
�1/�3n�1 C i.1C .�=2/n

�1/�3n : (3.15)

Since �2n D tn, it follows from (3.14) that

2r .2/n D .1 � .�=2/n
�1/tn�1 C .1C .�=2/n

�1/tn

D 2tn C .1 � .�=2/n
�1/.tn�1 � tn/: (3.16)

Comparing this equality with (3.12), we find that

r .0/n C r
.2/
n D 2

�1.1 � .�=2/n�1/.tn�1 � tn/ D O.n
�2/: (3.17)

The power � in (1.15) is determined by linear term (3.13) which we write as

r .1/n D i.�n�1 � �n/ � i.�=2/n
�1.�n C �n�1/: (3.18)

Let us distinguish the leading term in (3.9) setting

�n D
p

�� n�1 C Q�n (3.19)

where

Q�n D
p
�� n�1 C zn�� �

p

�� n�1 D
zn1=2��

p
�� C zn1�� C

p
��
D O.n1=2�� /:

(3.20)
Let us substitute (3.19) into (3.18) and observe that

.
p
.n � 1/�1 �

p

n�1/ � .�=2/n�1.
p
.n � 1/�1 C

p

n�1/

D .2�1 � �/n�3=2 CO.n�5=2/:
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According to (3.20) we have

Q�n � Q�n�1 D O.n
���1=2/: (3.21)

Thus, it follows from (3.18) that

r .1/n D i
p
��.2�1 � �/n�3=2 CO.n���1=2/:

The coefficient of n�3=2 here is zero if �D 1=2which, by (3.8), yields �D �=2� 1=4;
in this case r .1/n D O.n���1=2/.

It remains to consider the term r
.3/
n . In view of (3.15), it equals

6r .3/n D i.�
3
n � �

3
n�1/C i.�=2/n

�1.�3n C �
3
n�1/: (3.22)

Observe that
�3n � �

3
n�1 D .�n � �n�1/.�

2
n C �n�n�1 C �

2
n�1/: (3.23)

It follows from relations (3.19) and (3.21) that the first factor here is O.n�3=2/. The
second factor is O.n�1/ because �n D O.n�1=2/. Therefore, expression (3.23) is
O.n�5=2/. Obviously, the second term in the right-hand side of (3.22) satisfies the
same estimate.

Let us state the result obtained.

Proposition 3.2. Let the assumptions of Theorem 2.1 be satisfied, and let the phases
�n.z/ be given by formula (3.9). Define the Ansatz An.z/ by formula (1.15) where
� D �=2 � 1=4. Then remainder (1.14) satisfies estimate (1.20) where ı D � C 1=2.

3.3. The intermediary case � D 1

The results of this section are a particular case of Proposition 3.2, but the construction
of the phases is now simpler:

tn D .z � �/n
�1 and �n D

p
z � �n�1=2: (3.24)

The estimate of the remainder rn is also simpler and more precise than in the general
case. Indeed, according to (3.24), we now have

�n�1 � �n D 2
�1
p
z � �n�3=2 CO.n�5=2/:

Therefore, it follows from (3.13) where � D 1=2 that r .1/n D O.n�5=2/. The same
estimate for r .3/n is a direct consequence of (3.23). Estimate (3.17) remains of course
true. Thus, using equality (3.11) we can state the limit case of Proposition 3.2.

Proposition 3.3. Let the assumptions of Theorem 2.4 be satisfied, and let the phases
�n.z/ be given by formula (3.24). Define the Ansatz An.z/ by formula (1.15) where
� D 1=4. Then remainder (1.14) satisfies estimate (1.20) where ı D 2.
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3.4. The case � 2 .2=3; 1/

We again define the phases �n by formula (3.9), but now the term zn�� is dominating
so that, instead of (3.19), (3.20), we have a relation

�n D
p
tn D

p
zn��=2.1CO.n��1//: (3.25)

Therefore, the scheme exposed in Section 3.2 for the case � > 1 requires some mod-
ifications.

It again suffices to keep 4 terms in expansion of ei�n , but the remainders in for-
mulas (3.10) and (3.11) are now O.n�2� /. Estimates of r .k/n where k D 0; 1; 2; 3

are the same as in Section 3.2 if the roles of the terms �� n�1 and zn�� are inter-
changed. Relations (3.12) and (3.16) are preserved, but the remainder O.n�2/ in
(3.17) is replaced by O.n�1�� /. It directly follows from definition (1.11) that

tn�1 � tn D z�n
�1�� .1CO.n�1C� //: (3.26)

Similarly to (3.21), it follows from (3.25), (3.26) that

�n�1 � �n D 2
�1
p
z�n�1��=2.1CO.n�1C� //: (3.27)

Therefore, expression (3.18) equals

r .1/n D i
p
z.�=2 � �/n�1��=2 CO.n�2C�=2/: (3.28)

The coefficient at n�1��=2 is zero if � D �=2 which yields 2� D � � � D �=2; in this
case r .1/n DO.n�2C�=2/. Putting together equality (3.17) and estimate (3.26) , we see
that r .0/n C r

.2/
n D O.n

�1�� / which is O.n�2� / because � < 1. According to (3.25)
and (3.27), expression (3.23) is estimated by Cn�1�3�=2. In view of (3.22), the same
bound is true for r .3/n .

Thus, we arrive at the following result.

Proposition 3.4. Let the assumptions of Theorem 2.3 be satisfied with � 2 .2=3; 1/,
and let the phases �n.z/ be given by formula (3.9). Define the Ansatz An.z/ by for-
mula (1.15) where � D �=4. Then remainder (1.14) satisfies estimate (1.20) with
ı D min¹2�; 2 � �=2º > 1C �=2.

We emphasize that for all � 2 .2=3; 3=2� the phases �n are given by the same
formula (3.9). However asymptotics of �n are different for � > 1 and for � < 1 – cf.
(3.19), (3.20) with (3.25).

3.5. The case � � 2=3. Eikonal equation

The leading term of the asymptotics of the phases �n is again given by formula (3.25),
but, additionally, lower order terms appear. Now, we need to keep more terms in
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expansion (3.10) setting

ei�n D

KX
kD0

ik

kŠ
�kn CO.n

�.KC1/�=2/: (3.29)

Substituting (3.29) into representation (3.7), we see that

rn D
KX
kD0

r .k/n CO.n
�.KC1/�=2/; (3.30)

where r .0/n are again given by equality (3.12) and

�ikkŠr .k/n D.1 � .�=2/n�1/�kn�1 C .�1/
k.1C .�=2/n�1/�kn

D�kn�1 C .�1/
k�kn � .�=2/n

�1.�kn�1 � .�1/
k�kn /; k � 1: (3.31)

Of course, for k D 1;2; 3, this expression coincides with (3.13), (3.14), (3.15), respec-
tively. It is convenient to choose an even K D 2L with a sufficiently large L. We
suppose that

.LC 1=2/� > 1: (3.32)

Let us distinguish the terms corresponding to k D 0 and k D 1 in sum (3.30) and
then split it into the sums over even and odd k:

rn D r .0/n C r
.1/
n C r.ev/n C r.odd/n CO.n�.LC1=2/� /;

where r .0/n , r .1/n are given by formulas (3.12), (3.18) and

r.ev/n D

LX
lD1

r .2l/n ; r.odd/n D

L�1X
lD1

r .2lC1/n : (3.33)

To satisfy estimate (1.20) with a suitable ı, we now have to take the even terms
r
.2l/
n for all l � L into account. The odd terms r .2lC1/n turn out to be negligible. To

be precise, we define the phases �n by formula (2.7) where Tn is sum (2.6). The
coefficients pl will be found from the relation

r .0/n C r.ev/n D O.n�1�� / (3.34)

generalizing (3.17). To satisfy this relation, we use that the differences between �n
and �n�1 in the expression

.�1/lC1.2l/Šr .2l/n D �2ln�1 C �
2l
n � .�=2/n

�1.�2ln�1 � �
2l
n /
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(it is a particular case of (3.31)) can be neglected. Thus, we set

‚n D 2

LX
lD1

.�1/lC1

.2l/Š
�2ln :

Since r .0/n D �tn, we find that

r .0/n C r.ev/n D .�tn C‚n/C .1� .�=2/n
�1/

LX
lD1

.�1/l.2l/Š�1.�2ln � �
2l
n�1/: (3.35)

As we will see the sum here is negligible, and hence we can replace (3.34) by the
(approximate) eikonal equation

‚n D tn CO.n
�1�� /: (3.36)

Our goal is to solve this equation with respect to �2n . Note that ‚n D �2n if L D 1
so that (3.36) again yields expression �2n D tn. The following elementary assertion
shows that equation (3.36) can be efficiently solved for all L � 1. It is convenient to
consider this problem in a somewhat more general setting. Denote by P the set of
all polynomials (of the variable t ), and let PL D t

LC1P , that is, PL � P consists of
polynomials with zero coefficients at powers tk for all k D 0; 1; : : : ; L.

Lemma 3.5. Let L � 2 and a2; : : : ; aL be arbitrary given numbers. Then there exists
a polynomial

PL.t/ D

LX
lD2

pl t
l

such that the polynomial

QL.t/´ PL.t/C

LX
kD2

ak.PL.t/C t /
k
2 PL: (3.37)

Proof. For arbitrary p2; : : : ; pL, the polynomial QL.t/ defined by (3.37) has degree
L2 and it does not contain terms with zero and first powers of t . We have to choose
the numbers p2; : : : ; pL in such a way that the coefficients of QL.t/ at t l are zeros
for all l D 2; : : : ; L. This assertion is obvious for L D 2 because

Q2.t/ D P2.t/C a2.P2.t/C t /
2
D .p2 C a2/t

2
C 2a2p2t

3
C a2p

2
2 t
4;

and, so, Q2.t/ 2 P2 if p2 D �a2.
Let us pass to the general case. Suppose that (3.37) is satisfied. Then there exists

a number qLC1 such that

QL.t/ � qLC1t
LC1
2 PLC1: (3.38)
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We will find a number pLC1 such that the polynomial

PLC1.t/ D PL.t/C pLC1t
LC1 (3.39)

satisfies (3.37) for LC 1, that is,

QLC1.t/ WD PLC1.t/C

LC1X
kD2

ak.PLC1.t/C t /
k
2 PLC1: (3.40)

Let us calculate the polynomialQLC1.t/ neglecting terms in PLC1. First, we observe
that, for all k D 2; : : : ; L;LC 1, the difference

.PLC1.t/C t /
k
� .PL.t/C t /

k
D

kX
nD1

�
k

n

�
pnLC1t

.LC1/n.PL.t/C t /
k�n
2 PLC1:

Using also (3.39), we see that, up to terms in PLC1, polynomial (3.40) equals

QLC1.t/ D PL.t/C pLC1t
LC1
C

LX
kD2

ak.PL.t/C t /
k
C aLC1.PL.t/C t /

LC1

whence, by assumption (3.37),

QLC1.t/ D QL.t/C .pLC1 C aLC1/t
LC1
2 PLC1:

It follows from (3.38) that this relation is equivalent to

QLC1.t/ � .pLC1 C qLC1 C aLC1/t
LC1
2 PLC1:

Thus, inclusionQLC1.t/2PLC1 is true if pLC1D�aLC1� qLC1. This proves (3.37)
for LC 1.

Note particular cases

p2 D �a2; p3 D 2a
2
2 � a3:

Let us come back to relation (3.36). Let us use Lemma 3.5 with the coefficients
al D 2.�1/

lC1=.2l/Š, t D tn defined by equality (1.11), and let pl be the coefficients
constructed in this lemma. It follows from equality (3.37) that the phases

�2n D tn C

LX
lD2

pl t
l
nµ Tn (3.41)

satisfy, for some coefficients ql , the equation

2

LX
lD1

.�1/lC1

.2l/Š
�2ln � tn D

L2X
lDLC1

ql t
l
n D O.t

�L�1
n /: (3.42)
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Since tn D O.n�� /, the right-hand side here is O.n�.LC1/� / which is O.n�ı/ with
ı > 1C �=2 if condition (3.32) is satisfied.

The definition of the phases by formula (3.41) coincides of course with their defi-
nition by relations (2.6), (2.7). The asymptotics of �n as n!1 is given by formula
(2.11) generalizing (3.25). Next, we estimate the differences

�n�1 � �n D
Tn�1 � Tn

�n�1 C �n
:

According to (2.6) we have

Tn�1 � Tn D tn�1 � tn C

LX
lD2

pl.t
l
n�1 � t

l
n/

so that it satisfies the same relation (3.26) as tn:

Tn�1 � Tn D z�n
�1�� .1CO.n�1C� //:

Combining this relation with (2.11), we see that

�n�1 � �n D 2
�1
p
z�n�1��=2.1CO.n��// (3.43)

for some � > 0 (compared with (3.27) only the estimate of the remainder is changed).
It easily follows from (2.11) and (3.43) that

j�kn�1 � �
k
n j � Ckn

�1�k�=2 (3.44)

for all k D 1; 2; : : : :
Let us come back to Ansatz (1.15). Similarly to Section 3.4, the power � in (1.15)

is determined by the linear term r
.1/
n given by equality (3.18). It again satisfies relation

(3.28) (with the remainder O.n�2C�=2/ replaced by O.n�ı/ for some ı > 1C �=2).
The coefficient at n�1��=2 is zero if � D �=2 which yields � D �=4; in this case
r
.1/
n D O.n

�ı/:

Given inequalities (2.11) and (3.44), we can estimate the remainder rn essentially
similarly to Proposition 3.4. The only differences are that estimates of the remainders
are slightly weaker and that we have to take into account higher powers of �n. First,
we consider term (3.35) with even powers of �n. Both the first term �tnC‚n and the
sum on the right are O.n�1�� / by virtue of relations (3.42) and (3.44), respectively.
The term r.odd/n is also negligible. Indeed, according to (3.31) and (3.33) it equals

r.odd/n D i

L�1X
lD1

.�1/l

.2l C 1/Š

�
.�2lC1n�1 � �

2lC1
n / � .�=2/n�1.�2lC1n�1 C �

2lC1
n /

�
:

Relations (2.11) and (3.44) allow us to estimate all terms here by n�1�3�=2.
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Thus, we arrive at the following assertion generalizing Proposition 3.4.

Proposition 3.6. Let the assumptions of Theorem 2.3 be satisfied, and let the phases
�n.z/ be given by formulas (2.6), (2.7) with .L C 1=2/� > 1 and the coefficients
p2; : : : ; pL constructed in Lemma 3.5. Let the Ansatz An.z/ be defined by formula
(1.15) where � D �=4. Then remainder (1.14) satisfies estimate (1.20) with some ı >
1C �=2.

Remark 3.7. In all estimates, we suppose that z 2 clos…0, 0 < r � jzj � R <1

for some r and R and n � N D N.r; R/. Then it follows from equality (2.6) that
˙ Im Tn.z/ > 0 as long as ˙ Im tn.z/ > 0, that is, ˙ Im z > 0. Therefore, Tn.z/ 2
clos…0, and hence condition (2.4) is satisfied.

Note two particular cases. If � > 2=3, then we can take L D 1; this is the case
considered in Proposition 3.4. If � > 2=5, then L D 2 so that the formula for �n
contains only one additional (compared with (2.5)) term:

�n D

q
tn C t2n=6:

We, finally, note that constructions of Ansätzen were important steps also in the
papers [13, 17]. However, the form of the Ansatz An.z/ suggested in this section is
different from [13, 17]; in particular, the phases 'n.z/ in (1.15) are simplest in the
case � > 2=3 while this case was excluded in [13]. They are also different from [17]
– see Remark 7.9.

4. Difference and Volterra equations

Here we reduce a construction of the Jost solutions fn.z/ of the Jacobi equation (1.1)
to a Volterra “integral” equation which is then solved by iterations. In this section, we
do not make any specific assumptions about the recurrence coefficients an, bn and the
Ansatz An.z/ except of course that An.z/ ¤ 0; for definiteness, we set A�1 D 1.
We present a general scheme of investigation and then, in Section 5, apply it to
Jacobi operators with coefficients an and bn satisfying conditions (1.8) and (1.9)
with j j D 1.

4.1. Multiplicative change of variables

For a construction of fn.z/, we will reformulate the problem introducing a sequence

un.z/ D An.z/
�1fn.z/; n 2 ZC: (4.1)
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In proofs, we usually omit the dependence on z in notation; for example, we write fn,
un, rn.

First, we derive a difference equation for un.z/.

Lemma 4.1. Let the remainder rn.z/ be defined by formula (1.14). Set

ƒn.z/ D
an

an�1

AnC1.z/

An�1.z/
(4.2)

and

Rn.z/ D �

r
an

an�1

An.z/

An�1.z/
rn.z/: (4.3)

Then equation (1.1) for a sequence fn.z/ is equivalent to the equation

ƒn.z/.unC1.z/ � un.z// � .un.z/ � un�1.z// D Rn.z/un.z/; n 2 ZC; (4.4)

for sequence (4.1).

Proof. Substituting expression fn D Anun into (1.1) and using definition (1.14), we
see that

.
p
an�1anAn/

�1
�
an�1fn�1 C .bn � z/fn C anfnC1

�
D

r
an�1

an

An�1

An

un�1 C
bn � z
p
an�1an

un C

r
an

an�1

AnC1

An

unC1

D

r
an�1

an

An�1

An

.un�1 � un/C

r
an

an�1

AnC1

An

.unC1 � un/C rnun

D

r
an�1

an

An�1

An

�
.un�1 � un/Cƒn.unC1 � un/ �Rnun

�
where the coefficients ƒn and Rn are defined by equalities (4.2) and (4.3), respec-
tively. Therefore, equations (1.1) and (4.4) are equivalent.

Our next goal is to construct a solution of difference equation (4.4) such that

lim
n!1

un.z/ D 1: (4.5)

To that end, we will reduce equation (4.4) to a Volterra “integral” equation which can
be standardly solved by successive approximations.

4.2. Volterra equation

It is convenient to consider this problem in a more general setting. We now do not
make any specific assumptions about the sequences ƒn and Rn in (4.4) except that
ƒn ¤ 0. Denote

Xn D ƒ1ƒ2 � � �ƒn (4.6)
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and

Gn;m D Xm�1

m�1X
pDn

X�1p ; m � nC 1: (4.7)

The sequence un will be constructed as a solution of a discrete Volterra integral equa-
tion

un D 1C

1X
mDnC1

Gn;mRmum: (4.8)

Under natural assumptions, this equation can be standardly solved by successive
approximations. First, we estimate its iterations.

Lemma 4.2. Let us set
hm D sup

n�m�1

jGn;mRmj (4.9)

and suppose that
.hm/ 2 `

1.ZC/: (4.10)

Put u.0/n D 1 and

u.kC1/n D

1X
mDnC1

Gn;mRmu
.k/
m ; k � 0; (4.11)

for all n 2 ZC. Then estimates

ju.k/n j �
H k
n

kŠ
; for all k 2 ZC; (4.12)

where

Hn D

1X
pDnC1

hp; (4.13)

are true.

Proof. Suppose that (4.12) is satisfied for some k 2 ZC. We have to check the same
estimate (with k replaced by k C 1 in the right-hand side) for u.kC1/n . According to
definitions (4.9) and (4.11), it follows from estimate (4.12) that

ju.kC1/n j �

1X
mDnC1

hmju
.k/
m j �

1

kŠ

1X
mDnC1

hmH
k
m: (4.14)

Since Hm�1 D Hm C hm, we have an inequality

H kC1
m C .k C 1/hmH

k
m � .Hm C hm/

kC1
D H kC1

m�1 ;
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and hence, for all N 2 ZC,

.k C 1/

NX
mDnC1

hmH
k
m �

NX
mDnC1

.H kC1
m�1 �H

kC1
m / D H kC1

n �H kC1
N � H kC1

n :

Substituting this bound into (4.14), we obtain estimate (4.12) for u.kC1/n .

Now, we are in a position to solve equation (4.8) by iterations.

Theorem 4.3. Let assumption (4.10) be satisfied. Then equation (4.8) has a bounded
solution un. This solution satisfies an estimate

jun � 1j � e
Hn � 1 � CHn (4.15)

where Hn is sum (4.13). In particular, condition (4.5) holds.

Proof. Set

un D

1X
kD0

u.k/n (4.16)

where u.k/n are defined by recurrence relations (4.11). Estimate (4.12) shows that this
series is absolutely convergent. Using the Fubini theorem to interchange the order of
summations in m and k, we see that

1X
mDnC1

Gn;mRmum D

1X
kD0

1X
mDnC1

Gn;mRmu
.k/
m D

1X
kD0

u.kC1/n

D �1C

1X
kD0

u.k/n D �1C un:

This is equation (4.8) for sequence (4.16). Estimate (4.15) also follows from (4.12)
and (4.16).

Remark 4.4. A bounded solution un of (4.8) is of course unique. Indeed, suppose
that .vn/ 2 `1.ZC/ satisfies homogeneous equation (4.8), that is,

vn D

1X
mDnC1

Gn;mRmvm:

Then, by assumption (4.10), we have

jvnj �

1X
mDnC1

hmjvmj:
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Iterating this estimate, we find that

jvnj �
1

kŠ
H k
n max
n2ZC

¹jvnjº; for all k 2 ZC:

Taking the limit k !1, we see that vn D 0. Note however that we do not use the
unicity in our construction.

4.3. Back to the difference equation

It turns out that the construction above yields a solution of difference equation (4.4).

Lemma 4.5. Under assumption (4.10) a solution un of integral equation (4.8) satis-
fies an identity

unC1 � un D �X
�1
n

1X
mDnC1

Xm�1Rmum (4.17)

and difference equation (4.4).

Proof. It follows from (4.8) that

unC1 � un D

1X
mDnC2

.GnC1;m �Gn;m/Rmum �Gn;nC1RnC1unC1: (4.18)

According to (4.7), we have

GnC1;m �Gn;m D �X
�1
n Xm�1 and Gn;nC1 D 1:

Therefore, relation (4.18) can be rewritten as (4.17).
Putting together equality (4.17) with the same equality where nC 1 is replaced

by n, we see that

ƒn.unC1 � un/ � .un � un�1/

D �ƒnX
�1
n

1X
mDnC1

Xm�1Rmum CX
�1
n�1

1X
mDn

Xm�1Rmum:

Since Xn D ƒnXn�1, the right-hand side here equals Rnun, and hence the equation
obtained coincides with (4.4).

Corollary 4.6. It follows from (4.17) that

junC1 � unj � max
n2ZC

¹junjº jXnj
�1

1X
mDn

jXmRmC1j: (4.19)
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Lemma 4.5 allows us to reformulate Theorem 4.3 in terms of solutions of equa-
tion (4.4).

Theorem 4.7. Let assumption (4.10) be satisfied. Then difference equation (4.4) has
a solution un.z/ satisfying estimates (4.15) and (4.19). In particular, condition (4.5)
holds.

Let us now discuss the dependence on the spectral parameter z. Suppose that the
coefficients ƒn.z/ and Rn.z/ in equation (4.8) are functions of z 2 � on some open
set � � C.

Lemma 4.8. Let the coefficients ƒn.z/ and Rn.z/ be analytic functions of z 2 �.
Suppose that assumption (4.10) is satisfied uniformly in z on compact subsets of �.
Then the solutions un.z/ of integral equation (4.8) are also analytic in z 2 �. More-
over, if ƒn.z/ and Rn.z/ are continuous up to the boundary of � and assumption
(4.10) is satisfied uniformly on �, then the same is true for the functions un.z/.

Proof. Consider series (4.16) for a solution un.z/ of integral equation (4.8). Observe
that if the functions u.k/m .z/ in (4.11) depend analytically (continuously) on z, then
the function u.kC1/n .z/ is also analytic (continuous). Since series (4.16) converges
uniformly, its sums un.z/ are also analytic (continuous) functions.

In view of Lemma 4.5 this result applies also to solutions of difference equa-
tion (4.4).

5. Jost solutions

Here we use the results of the previous section to construct the Jost solutions fn.z/
of the Jacobi equation (1.1) with the coefficients an and bn satisfying conditions (1.8)
and (1.9) where j j D 1. This leads to Theorems 2.1, 2.3 and 2.4.

First, in Sections 5.1 and 5.2, we state some necessary technical results.

5.1. Discrete derivatives

Let us collect standard formulas for “derivatives”

x0n D xnC1 � xn

of various sequences xn:

.x�1n /0 D� x�1n x�1nC1x
0
n; (5.1a)

.exn/0 D.ex
0
n � 1/exn ; (5.1b)

.
p
xn/
0
Dx0n.

p
xn C

p
xnC1/

�1; (5.1c)
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and
.xnyn/

0
D xnC1y

0
n C x

0
nyn: (5.2)

Note the Abel summation formula (“integration by parts”):

mX
pDn

xpy
0
p D xmymC1 � xn�1yn �

mX
pDn

x0p�1ypI (5.3)

here m � n � 0 are arbitrary (we set x�1 D 0 so that x0�1 D x0).
We mention also an obvious estimate

jf .xnC1/ � f .xn/j � .max
jxj�1
jf 0.x/j/jx0nj (5.4)

valid for an arbitrary function f 2 C 1, an arbitrary sequence xn ! 0 as n!1 and
sufficiently large n.

Let us now consider equation (1.1). A direct calculation shows that, for two f D
.fn/

1
nD�1 and g D .gn/1nD�1 solutions of this equation, their Wronskian

W Œf; g�´ an.fngnC1 � fnC1gn/ (5.5)

does not depend on n D �1; 0; 1; : : :. In particular, for n D �1 and n D 0, we have

W Œf; g� D a�1.f�1g0 � f0g�1/ and W Œf; g� D a0.f0g1 � f1g0/

(the number a�1 ¤ 0 is arbitrary, but the products a�1f�1 do not depend on its
choice). Clearly, the Wronskian W Œf; g� D 0 if and only if the solutions f and g
are proportional.

5.2. Oscillating sums

Below we need to estimate sums of oscillating or exponentially growing terms. First,
we note an integration-by-parts formula. The following elementary assertion does not
require specific assumptions about amplitudes �n and phases 'n.

Lemma 5.1. Set �n D 'nC1 � 'n and

�n D �n.e
�i�n � 1/�1: (5.6)

Then
mX
pDn

�pe
�i'p D �me

�i'mC1 � �n�1e
�i'n �

mX
pDn

�0p�1e
�i'p (5.7)

for all n and m.
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Proof. According to (5.1) the left-hand side of (5.7) can be rewritten as
mX
pDn

�p.e
�i'p /0:

It follows from formula (5.3) that this sum equals the right-hand side of (5.7).

Corollary 5.2. Suppose that
�0n 2 `

1.ZC/ (5.8)

and Im�n � 0. Then ˇ̌̌ mX
pDn

�pe
�i'p

ˇ̌̌
� CeIm'mC1 (5.9)

where the constant C does not depend on n and m.

Remark 5.3. If
� 0n 2 `

1.ZC/; (5.10)

then condition (5.8) can be replaced by more convenient ones:

�n

�n
2 `1.ZC/ and

��n
�n

�0
2 `1.ZC/: (5.11)

Proof. It follows from (5.2) that

�0n D
��n
�n

�0 �nC1

e�i�nC1 � 1
C
�n

�n

� �n

e�i�n � 1

�0
: (5.12)

Note that the function f .�/ D �.e�i� � 1/�1 is C 1 in a neighborhood of the point
� D 0. Therefore, the sequence f .�n/ is bounded as n!1 and f 0.�n/ 2 `1.ZC/
according to estimate (5.4) and condition (5.10). Thus, conditions (5.11) imply that
both terms in the right-hand side of (5.12) are in `1.ZC/.

5.3. Estimate of the “integral” kernel

Recall that the sequences An DAn.z/ andƒn D ƒn.z/ are given by relations (1.15)
and (4.2), respectively. Our goal is to estimate the matrix elements Gn;m defined by
equalities (4.6) and (4.7) and to prove inclusion (4.10). Our estimates apply to all
values of � .

Putting together formulas (4.2) and (4.6), we see that

Xn D canAnC1An

where the constant c D .a0A1A0/
�1. According to definition (1.15) this yields equal-

ity
X�1n D �c�ne

�i'n (5.13)
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where
�n D n

�.nC 1/�a�1n (5.14)

and
'n D 'n C 'nC1: (5.15)

It follows from condition (1.8) that

�n D n
��
�
1C .� � ˛/n�1 CO.n�2/

�
; (5.16)

where � D � � 2� satisfies (2.12).
First, we reformulate Lemma 5.1 and its consequences in a particular form adapted

to our problem.

Lemma 5.4. Let the assumptions of one of Theorems 2.1, 2.3, or 2.4 be satisfied.
Define the sequences �n and 'n by equalities (5.14) and (5.15). Then estimate (5.9)
holds.

Proof. Set
�n D 'nC1 � 'n D �n C �nC1: (5.17)

It follows from relations (3.21) or (3.43) that inclusion (5.10) holds. Therefore, in
view of Remark 5.3, it suffices to check inclusions (5.11). By definition (2.7), we
have

�n�
�1
n D .n

��n/.n
�Sn/

�1; Sn D
p
Tn C

p
TnC1; (5.18)

where Tn is defined by equality (2.6) (in particular, Tn D tn if � > 2=3). Inclusions
.n��n/ 2 `

1.ZC/ and .n��n/0 2 `1.ZC/ are direct consequences of formula (5.16).
It follows from relations (2.9), (2.10), or (2.11) that the product n�Sn has a finite non-
zero limit (it is used here that z ¤ 0 under the assumptions of Theorem 2.3 and that
z ¤ � under the assumptions of Theorem 2.4). The inclusion .n�Sn/0 2 `1.ZC/ is
again a consequence of (3.21) or (3.43). Therefore, (5.18) implies inclusions (5.11)
which yields (5.9).

Now, we are in a position to estimate the matrix elementsGn;m. First, we note that

C1m
�e� Im'm � jXmj � C2m

�e� Im'm (5.19)

according to definition (5.13) and relation (5.16). Next, we apply inequality (5.9) to
elements (5.13) which yields ˇ̌̌m�1X

pDn

X�1p

ˇ̌̌
� CeIm'm : (5.20)

Combining (5.19) and (5.20), we obtain a convenient estimate on product (4.7).
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Lemma 5.5. Under the assumptions of any of Theorems 2.1, 2.3, or 2.4, we have an
estimate

jGn;mj � Cm
� (5.21)

where � is given by (2.12) and the constant C does not depend on n and m.

5.4. Solutions of the integral equation

Next, we consider integral equation (4.8). Observe that remainder (4.3) obeys the
same estimate (1.20) as rn. Thus, according to the results of Section 3 (see Proposi-
tions 3.2, 3.3, 3.4, and 3.6)

jRmj � Cm
�ı (5.22)

where ı satisfies conditions (3.1).
Putting together (5.21) and (5.22), we obtain an estimate on sequence (4.9):

hm � Cm
��ı :

Comparing (2.12) and (3.1), we see that � � ı <�1. It follows that sum (4.13) satisfies
an estimate

Hn � Cn
��ıC1:

Therefore, condition (4.10) holds, and Theorem 4.7 applies in our case. This yields
estimates (4.15) and (4.19). Moreover, the right-hand side of (4.19) can be estimated
explicitly. Indeed, note that Im 'n � Im 'm for m � n according to (2.4). Thus, it
follows from (5.13) and (5.16) that

jX�1n Xmj � jknk
�1
m je

Im.'n�'m/ � Cn��m� ; m � n;

so that inequality (4.19) yields an estimate

junC1 � unj � Cn
��

1X
mDn

m��ı � C1n
�ıC1:

We see that, under the assumptions of any of Theorems 2.1, 2.3 or 2.4, condition
(4.10) is satisfied. Hence, the following three results are direct consequences of Theo-
rem 4.7 (see also Lemma 4.8). Recall that the number � is defined by relations (2.12)
and ı satisfies conditions (3.1).

Theorem 5.6. Let the assumptions of Theorem 2.1 be satisfied.
If � < 0, then for every z 2 clos… equation (4.8) has a solution un.z/ satisfying

asymptotic relations
un.z/ D 1CO.n

��ıC1/ (5.23)
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and
u0n.z/ D O.n

�ıC1/ (5.24)

where � D 1=2 and ı > 1=2C � . For all n 2 ZC, the functions un.z/ are analytic in
… and are continuous up to the cut along the real axis.

If � > 0, then relations (5.23) and (5.24) are true for all z 2 C. In this case the
functions un.z/ are analytic in the whole complex plane C.

For all � ¤ 0, asymptotic formula (4.5) is uniform in z from compact subsets of C.

Theorem 5.7. Let the assumptions of Theorem 2.3 be satisfied. Then for every z ¤ 0
such that z 2  clos…0, equation (4.8) has a solution un.z/ with asymptotics (5.23),
(5.24) where � D �=2 and ı > 1 C �=2. For all n 2 ZC, the functions un.z/ are
analytic in z 2 …0 and are continuous up to the cut along the half-axis RC, with a
possible exception of the point z D 0.

Theorem 5.8. Let the assumptions of Theorem 2.4 be satisfied. Then for every z such
that z 2 .� C clos…0/, z ¤ � , equation (4.8) has a solution un.z/ with asymp-
totics (5.23), (5.24) where � D 1=2 and ı D 2. For all n 2 ZC, the functions un.z/
are analytic in z 2 .� C…0/ and are continuous up to the cut along the half-axis
.� CRC/, with a possible exception of the point � .

5.5. The Jost solutions

Now, it is easy to construct solutions of the Jacobi equation (1.1) with asymptotics
(2.1) as n!1. We call them the Jost solutions.

According to Lemma 4.1 equation (4.4) for the sequence un.z/ and equation (1.1)
for the sequence

fn.z/ D .�/
nn��ei'n.z/un.z/ (5.25)

are equivalent. Therefore, Theorems 2.1, 2.3, and 2.4 are direct consequences of The-
orems 5.6, 5.7, and 5.8, respectively.

Finally, we show that the Jost solutions are determined uniquely by their asymp-
totics (2.1). This is quite simple for regular z. Recall that the set � was defined by
relations (2.8).

Proposition 5.9. Let the assumptions of one of Theorems 2.1, 2.3, or 2.4 be satisfied.
If � D 3=2, we also assume that � > 0. Suppose that z 62 clos � . Then the solution of
fn.z/ of equation (1.1) satisfying condition (2.1) is unique.

Proof. Suppose that solutions fn and Qfn of equation (1.1) are given by equality (5.25)
where un and Qun obey condition (4.5). Then their Wronskian (5.5) equals

W Œf; Qf � D �ann
��.nC 1/��ei'nei'nC1.un QunC1 � unC1 Qun/: (5.26)
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As explained in Section 2.2, under the assumptions of Proposition 5.9 the sequence
ei'n tends to zero exponentially as n!1 whence W Œf; Qf � D 0 and consequently
Qfn D Cfn for some constant C . It now follows from (5.25) that Qun D Cun where
C D 1 by (4.5).

Remark 5.10. If � D 3=2 and � < 0, then instead of (4.5) we have to require a
stronger condition

un D 1CO.n
�1=2/: (5.27)

Note that in view of (2.21) this condition is satisfied for the Jost solution fn.�C i"/ of
equation (1.1) constructed in Theorem 2.1. Suppose that two solutions fn and Qfn are
given by formula (5.25) where un and Qun satisfy (5.27) whence un QunC1 � unC1 Qun D
O.n�1=2/. Since �D 1=2 now, it follows from asymptotic formula (2.21) and relation
(5.26) that

jW Œf; Qf �j D O.ann
�1�2j"j=

p
j� j.un QunC1 � unC1 Qun// D O.n

�2j"j=
p
j� j/ D 0

because " ¤ 0. This implies that Qfn D fn.

The results for z in the spectrum of the operator J are slightly weaker.

Proposition 5.11. Let the assumptions of one of Theorems 2.1, 2.3, or 2.4 be satisfied.
Suppose that z D � ˙ i0 where � 2 � . Then the solution fn.z/ of equation (1.1)
satisfying relation (5.25) with un obeying conditions (4.5) and (5.24) is unique.

Proof. Suppose that two solutions fn and Qfn of equation (1.1) satisfy these condi-
tions. Their Wronskian is given by equality (5.26) where

un QunC1 � unC1 Qun D un. QunC1 � Qun/C .un � unC1/ Qun D O.n
�ıC1/:

It follows that

W Œf; Qf � D O.n��ıC1/; � D � � 2�; n!1:

Putting together relations (2.12) and (3.1), we see that � � ı C 1 < 0 for all � 2
.0; 3=2�. Therefore, W Œf; Qf � D 0 and, consequently, Qf D f .

6. Orthogonal polynomials

Here we describe an asymptotic behavior as n!1 of all solutions Fn.z/ of equation
(1.1). In particular, these results apply to the orthonormal polynomials Pn.z/. We
have to distinguish values of z D � 2 � (this set was defined by relations (2.8)) in the
absolutely continuous spectrum of a Jacobi operator and regular points z 2C n clos� .
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6.1. Regular points

Our goal in this section is to prove Theorem 2.7 and Proposition 2.8. Let us proceed
from the following assertion.

Proposition 6.1 ([31, Theorem 2.2]). Let f .z/ D .fn.z// be an arbitrary solution
of the Jacobi equation (1.1) such that fn.z/ ¤ 0 for sufficiently large n, say n � n0.
Then sequence g.z/ D .gn.z// defined by (1.18) also satisfies equation (1.1), and the
Wronskian

W Œf .z/; g.z/� D 1;

so that the solutions f .z/ and g.z/ are linearly independent.

In this section, we suppose that z 2 C n clos � and fn D fn.z/ is the Jost solution
of equation (1.1). Its asymptotics is given by formulas (1.15), (1.16). Our aim is to
find an asymptotic behavior of the solution gn D gn.z/ as n!1. The dependence
on z will be omitted in notation. Let us set

†n D

nX
mDn0

.am�1fm�1fm/
�1; n � n0I (6.1)

then (1.18) reads as
gn D fn†n: (6.2)

Using equalities (1.15), (1.17) and notation (5.14), (5.15), we can rewrite sum
(6.1) as

†n D �

n�1X
mDn0�1

�mume�i'm where um D .umumC1/�1: (6.3)

In view of identity (5.1), we have

e�i'm D .e�i�m � 1/�1.e�i'm/0;

with �m given by (5.17). This allows us to integrate by parts in (6.3). Indeed, using
formula (5.3), we find that

�†ne
i'n D �n�1un�1 � �n0�2

un0�2e
�i'n0�1ei'n C z†ne

i'n (6.4)

where �n is defined by equality (5.6) and

z†n D �

n�1X
mDn0�1

.�m�1um�1/0e�i'm : (6.5)

We will see that asymptotics of†n as n!1 is determined by the first term in the
right-hand side of expression (6.4). Let us calculate it. Recall that un ! 1 as n!1
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according to Theorem 4.3. Therefore, putting together asymptotic formulas (2.14) for
�n and (5.16) for �n, we find that

lim
n!1

�nun D lim
n!1

�n D i~ (6.6)

with the coefficient ~ D ~.z/ given by (2.13).
The second term in the right-hand side of (6.4) tends to zero as n!1 due to the

factor ei'n . The same is true for the third term. To show this, we need to estimate the
derivatives in (6.5).

Lemma 6.2. Let the sequence �n be defined by equality (5.6). Then

�0n D O.n
�1�"/ (6.7)

for some " > 0.

Proof. Let us write �n as a product

�n D .�nn
�/.n��n/

�1.�n.e
�i�n � 1/�1/; � D � � 2�; (6.8)

and estimate all factors separately. It follows from relation (5.16) that the product
�nn

� tends to 1 and its derivative isO.n�2/ as n!1. Next, we consider .n��n/�1.
According to definitions (2.6) and (2.7) we have

n��n D .n
�
p
tn/

p
1C

L�1X
lD1

plC1t
l
n: (6.9)

By definition (1.11), the factor n�
p
tn has a finite non-zero limit as n!1. More-

over, its derivative is O.n�� / for � > 1 and O.n��2/ for � < 1 (it is zero if � D 1).
Similarly, the derivative of the second factor in (6.9) is O.n�2/ for � > 1 and
O.n�1�� / for � < 1. These arguments also show that � 0n D O.n�3=2/ for � > 1

and � 0n D O.n
��=2�1/ for � < 1. Therefore, the derivative of the third factor in (6.8)

is also O.n�1�"/, " > 0. This proves estimate (6.7) on product (6.8).

To estimate sum (6.5), we use the following elementary assertion of a general
nature.

Lemma 6.3. Suppose that a sequence xn 2 `1.ZC/ and a sequence #n � 0. Set

�n D

nX
mD0

#m (6.10)

and assume that
lim
n!1

�n D1: (6.11)
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Then

lim
n!1

e��n

nX
mD0

xme
�m D 0:

Proof. By definition (6.10), we have

e��n

nX
mD0

xme
�m D

1X
mD0

Xm.n/ (6.12)

where

Xm.n/ D xm exp
�
�

nX
pDm

#p

�
if m � n

and Xm.n/ D 0 if m > n. Clearly, Xm.n/ � xm because #n � 0 and Xm.n/ ! 0

as n ! 1 for fixed m by virtue of condition (6.11). Therefore, by the dominated
convergence theorem, sum (6.12) tends to zero as n!1.

Now, we are in a position to estimate the third term in (6.4).

Lemma 6.4. Sum (6.5) satisfies the condition

lim
n!1

z†ne
i'n D 0: (6.13)

Proof. It follows from estimates (5.24) and (6.7) that

j.�nun/0j � j�0njjunj C j�nC1jju
0
nj � Cn

�ıC1 (6.14)

where the value of ı is indicated in Theorems 5.6, 5.7 and 5.8. Therefore, by definition
(6.5) and the differentiation formula (5.1), we have

j z†nj � C

n�1X
mDn0�1

m�ıC1e�m D C

n�1X
mDn0�1

ym.e
�m/0; �m D Im'm; (6.15)

where
ym D m

�ıC1.e#m � 1/�1; #m D �mC1 � �m: (6.16)

Using relation (5.3) and integrating in the right-hand side of (6.15) by parts, we find
that

j z†nj � C
�
yn�1e

�n � yn0�2e
�n0�1 �

n�1X
mDn0�1

y0m�1e
�m

�
: (6.17)

Let us estimate expression (6.16). It follows from relations (2.9), (2.10), and (2.11)
that

�n D cn
��.1C o.1//
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for some c D c�;� > 0. Here � D �=2 if � � 1, � D 1=2 if � 2 Œ1; 3=2�, � > 0 and
� D � � 1=2 if � 2 Œ1; 3=2�, � < 0. Therefore, product (6.16) is estimated as

jynj � Cn
�ıC1C�: (6.18)

Note that �ıC 1C � < 0 for all values of � and � . Moreover, estimate (6.18) can be
differentiated which yields

jynj � Cn
�"; jy0nj � Cn

�1�"

for some " > 0.
Thus, it follows from inequality (6.17) that

e��n j z†nj � C
�
n�" C

n�1X
mDn0�1

m�1�"e��nC�m

�
which in view of Lemma 6.3 implies relation (6.13).

Let us now recall equality (6.4) and put relations (6.6) and (6.13) together. This
leads to the following result.

Lemma 6.5. Sum (6.1) satisfies the condition

lim
n!1

†ne
i'n D �i~: (6.19)

Proof of Theorem 2.7 and Proposition 2.8. Using equality (6.2) we can now conclude
the proofs of Theorem 2.7 and Proposition 2.8. Indeed, combining asymptotics (2.1)
and (6.19), we obtain relation (1.19). This implies both formulas (2.21) and (2.26).

Recall (see Section 1.1, for more details) that equation (1.1) is in the limit point
case if, for Im z ¤ 0, it has a unique, up to a constant factor, non-trivial solution
fn.z/ such that inclusion (2.22) is satisfied. This is equivalent to the essential self-
adjointness of the minimal Jacobi operator Jmin in the space `2.ZC/. In this case we
set closJmin D Jmax µ J .

According to Theorem 2.7 for Im z ¤ 0, the sequences gn.z/ tend to infinity
exponentially as n!1 and according to Proposition 2.8 they tend to infinity as a
power of n (or to zero but slower than n�1=2). In all cases, relation (2.25) is satisfied.
Therefore, it follows from the limit point/circle theory that under our assumptions the
operators Jmin are essentially self-adjoint. This proves Proposition 2.9.

Now, it is easy find an asymptotics of all solutions F D .Fn/ of equation (1.1).
Indeed, using Proposition 6.1, we see that

Fn D �W ŒF; f �gn C cfn
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for some constant c. The asymptotics of the solutions gn and fn are given by formulas
(1.19) and (2.1). Obviously, fn makes no contribution to the asymptotics of Fn. This
leads to the following result.

Theorem 6.6. Let one of the following three assumptions be satisfied:

(1) the conditions of Theorem 2.1 where either � < 0 and Im z ¤ 0 or � > 0 and
z 2 C is arbitrary;

(2) the conditions of Theorem 2.3 where either  > 0 and z 62 Œ0;1/ or  < 0

and z 62 .�1; 0�;

(3) the conditions of Theorem 2.4 where either  > 0 and z 62 Œ�;1/ or  < 0

and z 62 .�1;���.

Then an arbitrary solution F.z/ D .Fn.z// has an asymptotics, as n!1,

Fn.z/ D �iW ŒF.z/; f .z/�~.z/.�/
nC1n��e�i'n.z/.1C o.1//; z 62 clos � ;

where the coefficient ~.z/ is given by formula (2.13).

In particular, Theorem 6.6 applies to the orthonormal polynomials Pn.z/. Appar-
ently, in the critical case j j D 1, an asymptotic behavior of the orthonormal poly-
nomials Pn.z/ for regular points z 2 C was never investigated before (except of the
Laguerre polynomials). This is technically the most difficult part of this paper.

6.2. Continuous spectrum

First, we check that, on the continuous spectrum of the operator J , the Jost solutions
fn.�C i0/ and fn.� � i0/ D fn.�C i0/ of equation (1.1) are linearly independent.
Recall that the Wronskian of two solutions of this equation is given by formula (5.5),
the number � is defined by equalities (2.2) and the sequences �n.�/, 'n.�/ are con-
structed in Theorems 2.1, 2.3 and 2.4. Observe that boundary values of the coefficient
~.z/ defined by formula (2.13) are given by the equalities

~.�C i0/ D

8̂̂<̂
:̂
p
j� j if � > 1; � < 0; � 2 R;
p
� if � < 1; � > 0;
p
� � � if � D 1; � > �;

(6.20)

and ~.� � i0/ D �~.�C i0/.

Lemma 6.7. Let one of the following three assumptions be satisfied:

(1) the conditions of Theorem 2.1 with � < 0 and � 2 R;

(2) the conditions of Theorem 2.3 with � > 0;

(3) the conditions of Theorem 2.4 with � > � .
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Then the Wronskian

w.�/´
1

2i
W Œf .�C i0/; f .� � i0/� D ~..�C i0// > 0: (6.21)

Proof. Set 'nD 'n..�C i0//, unD un..�C i0//. It follows from formulas (1.15)
and (1.17) that

2iw.�/ D �ann
��.nC 1/��.ei'ne�i'nC1un NunC1 � e

�i'nei'nC1 NununC1/:

Using condition (1.8), we see that

w.�/ D �n� Im.e�i�nC1un NunC1/.1C o.1// (6.22)

where �n D 'nC1 � 'n and � D � � 2�. Observe that

Im.e�i�nC1un NunC1/ D Im..un � unC1/ NunC1/ � �nC1 Re.un NunC1/CO.�2nC1/:
(6.23)

According to Theorems 5.6, 5.7, or 5.8 the first term in the right-hand side of (6.23)
is O.n�ıC1/ where ı � 1 > �. It follows from (2.14) that the second term is

�~..�C i0//n��.1C o.1//:

Finally, the contribution of O.�2nC1/ to (6.22) is zero. Therefore, equality (6.21) is a
direct consequence of (6.22) and (6.23).

Let us introduce the Wronskian of the solutions P.z/ D .Pn.z// and f .z/ D
.fn.z// of equation (1.1):

�.z/ WD W ŒP.z/; f .z/� D a�1.P�1.z/f0.z/ � P0.z/f�1.z//

D �a�1f�1.z/; z 62 � : (6.24)

Lemma 6.8. The function �.z/ is analytic in C n clos � and �.z/ D 0 if and only if
z is an eigenvalue of the operator J . In particular, �.z/ ¤ 0 for Im z ¤ 0.

Proof. The analyticity of �.z/ is a direct consequence of definition (6.24) because
f�1.z/, as well as all functions fn.z/, is analytic. If�.z/D 0, thenP.z/ and f .z/ are
proportional whenceP.z/2 `2.ZC/ by virtue of Proposition 2.6. SinceP�1.z/D 0, it
follows that JP.z/D zP.z/ so that z is an eigenvalue of the operator J . For Imz ¤ 0,
this is impossible because J is a self-adjoint operator. Conversely, if z is an eigenvalue
of J , then P.z/ 2 `2.ZC/, and hence f .z/ and P.z/ are proportional.
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Now, we are in a position to find an asymptotic behavior of the polynomials Pn.�/
for � in the absolutely continuous spectrum (except thresholds) of the Jacobi opera-
tor J . Since the Jost solutions fn.� ˙ i0/ are linearly independent and Pn.�/ D
Pn.�/, we see that

Pn.�/ D c.�/fn.�C i0/C c.�/fn.� � i0/ (6.25)

for some complex constant c.�/. Taking the Wronskian of this equation with f .�C
i0/, we can express c.�/ via Wronskian (6.24):

�c.�/W Œf .�C i0/; f .� � i0/� D W ŒP.�/; f .�C i0/� D �.�C i0/

whence

c.�/ D �
�.�C i0/

2iw.�/
:

In view of formula (6.25), this yields the following result.

Lemma 6.9. For all � 2 � , we have the representation

Pn.�/ D
�.� � i0/fn.�C i0/ ��.�C i0/fn.� � i0/

2iw.�/
; n 2 ZC: (6.26)

Properties of the Wronskians �.�˙ i0/ are summarized in the following state-
ment.

Theorem 6.10. Let the assumptions of Lemma 6.7 be satisfied. Then the Wronskians
�.�C i0/ and �.� � i0/ D �.�C i0/ are continuous functions of � 2 � and

�.�˙ i0/ ¤ 0; � 2 � : (6.27)

Proof. The functions �.�˙ i0/ are continuous in the same region as the Jost solu-
tions. If�.�˙ i0/D 0, then, according to (6.26),Pn.�/D 0 for all n2ZC. However,
P0.�/ D 1 for all �.

Let us set

�.�/ D j�.�C i0/j; �.�˙ i0/ D �.�/e˙i�.�/: (6.28)

In the theory of short-range perturbations of the Schrödinger operator, the functions
�.�/ and �.�/ are known as the limit amplitude and the limit phase, respectively; the
function �.�/ is also called the scattering phase or the phase shift. Definition (6.28)
fixes the phase �.�/ only up to a term 2�m where m 2 Z. We emphasize that the
amplitude �.�/ and the phase �.�/ depend on the values of the coefficients an and bn
for all n, and hence they are not determined by an asymptotic behavior of an, bn as
n!1.

Combined together, relations (2.1) and (6.26) yield asymptotics of the orthonor-
mal polynomials Pn.�/.
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Theorem 6.11. Let one of the following three assumptions be satisfied:

(1) the conditions of Theorem 2.1 with � < 0 and � 2 R;

(2) the conditions of Theorem 2.3 with � > 0;

(3) the conditions of Theorem 2.4 with � > � .

Let the number � be defined by equalities (2.2), and letˆn.�/D 'n..�C i0// where
the sequences 'n.�/ are constructed in Theorems 2.1, 2.3, and 2.4. Then, for � 2 � ,

Pn.�/ D �.�/w.�/
�1.�/nn�� sin.ˆn.�/ � �.�//.1C o.1//; n!1; (6.29)

where the Wronskianw.�/ is given by equalities (6.20), (6.21) and the amplitude �.�/
and the phase �.�/ are defined by relations (6.28).

We emphasize that the definitions of the numbers � and ˆn.�/ are different under
assumptions (1), (2), and (3), but relation (6.29) is true in all these cases. Under the
assumptions of Theorem 6.11 the functions ˆn.�/ are real and ˆn.�/!1 so that
Pn.�/ are oscillating as n!1.

A formula completely similar to (6.29) is true for all real solutions of equation
(1.1). Only the coefficients �.�/ and �.�/ are changed.

7. Spectral results

7.1. Resolvent. Discrete spectrum

If the minimal Jacobi operator Jmin is essentially self-adjoint in the space `2.ZC/,
then, for Im z ¤ 0, equation (1.1) has a unique (up to a constant factor) solution
fn.z/ 2 `

2.ZC/. Let I be the identity operator in the space `2.ZC/, and let R.z/ D
.J � zI /�1 be the resolvent of the operator J D clos Jmin. Recall that the Wron-
skian�.z/ of the solutions Pn.z/ and fn.z/ of equation (1.1) was defined by formula
(6.24). The following statement is very close to the corresponding result for differen-
tial operators.

Proposition 7.1 ([31, Proposition 2.1]). In the limit point case, for all h D .hn/ 2

`2.ZC/, we have

.R.z/h/n D �.z/
�1
�
fn.z/

nX
mD0

Pm.z/hm C Pn.z/

1X
mDnC1

fm.z/hm

�
; Im z ¤ 0:

(7.1)
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Remark 7.2. Let e0; e1; : : : ; en; : : : be the canonical basis in the space `2.ZC/. Then
representation (7.1) can be equivalently rewritten as

hR.z/en; emi D �.z/
�1Pn.z/fm.z/ if n � m and hR.z/en; emi D hR.z/em; eni:

(7.2)

According to Theorem 2.7 and Proposition 2.8, under our assumptions the oper-
ator Jmin is essentially self-adjoint in the space `2.ZC/. In view of Proposition 2.6,
in this case fn.z/ is the Jost solution. Thus, the resolvent of the Jacobi operator J
admits representation (7.1) where fn.z/ is the Jost solution.

Spectral results about the Jacobi operators J are direct consequences of represen-
tation (7.1). As far as the discrete spectrum is concerned, we use that according to
Theorems 2.1, 2.3, and 2.4, the functions fn.z/, n D �1; 0; 1; : : : ; and, in particular,
�.z/ are analytic functions of z 2 C n clos � . In view of Lemma 6.8 this yields the
part of Theorem 2.11 concerning the discrete spectrum. Let us state it explicitly.

Theorem 7.3. Let assumptions (1.8), (1.9) with j j D 1 be satisfied.

(1) If � 2 .1; 3=2� and � > 0, then the spectrum of the operator J is discrete.

(2) If � 2 .0; 1/, then the spectrum of the operator J is discrete on the half-axis
.�1; 0/ for  D 1, and it is discrete on .0;1/ for  D �1.

(3) If � D 1, then the spectrum of the operator J is discrete on the half-axis
.�1; �/ for  D 1, and it is discrete on .��;1/ for  D �1.

7.2. Limiting absorption principle. Continuous spectrum

Next, we consider the absolutely continuous spectrum. According to Theorems 2.1,
2.3, and 2.4, the functions fn.z/, n D �1; 0; 1; : : : ; and, in particular, �.z/ are
continuous up to the cut along the interval � . Therefore, the following result is a
direct consequence of relation (6.27) and representation (7.1). Recall that the set
D � `2.ZC/ consists of finite linear combinations of the basis vectors e0; e1; : : : :

Theorem 7.4. Let the assumptions of Theorems 2.1 for � < 0, 2.3, or 2.4 be satisfied.
Then for all u;v 2D , the functions hR.z/u; vi are continuous in z up to the cut along
the interval � as z approaches � from upper or lower half-planes.

This result is known as the limiting absorption principle. It implies

Corollary 7.5. The spectrum of the operator J is absolutely continuous on the closed
interval clos � , except, possibly, eigenvalues at its endpoints. In particular, it is abso-
lutely continuous and coincides with the whole real axis R if � 2 .1; 3=2� and � < 0.
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Let us now consider the spectral projectorE.�/ of the operator J . By the Cauchy–
Stieltjes–Privalov formula for u; v 2 D , its matrix elements satisfy the identity

2�i
d hE.�/u; vi

d�
D hR.�C i0/u; vi � hR.� � i0/u; vi; � 2 � : (7.3)

Therefore, the following assertion is a direct consequence of Theorem 7.4.

Corollary 7.6. For all u; v 2 D , the functions hE.�/u; vi are continuously differen-
tiable in � 2 � .

Formulas (7.2) and (7.3) allow us to calculate the spectral family dE.�/ in terms
of the orthonormal polynomials and the Jost function. Indeed, substituting the expres-
sion

hR.�˙ i0/en; emi D �.�˙ i0/
�1Pn.�/fm.�˙ i0/; n � m; � 2 � ;

into (7.3) and using the identity �.� � i0/ D �.�C i0/, we find that

2�i
d hE.�/en; emi

d�
D Pn.�/

�.� � i0/fm.�C i0/ ��.�C i0/fm.� � i0/

j�.�˙ i0/j2
:

Combining this representation with formula (6.26) forPm.�/, we obtain the following
result.

Theorem 7.7. Let the assumptions of Theorems 2.1 for � < 0, 2.3 or 2.4 be satisfied.
Then for all n;m 2 ZC, we have the representation

d hE.�/en; emi

d�
D .2�/�1w.�/j�.�˙ i0/j�2Pn.�/Pm.�/; � 2 � ; (7.4)

where w.�/ and �.z/ are the Wronskians (6.21) and (6.24), respectively. In particu-
lar, the spectral measure of the operator J equals

d„.�/ WD d hE.�/e0; e0i D �.�/d�; � 2 � ;

where the weight �.�/ is given by the formula

�.�/ D .2�/�1w.�/j�.�˙ i0/j�2: (7.5)

Remark 7.8. Formulas (7.4), (7.5) are also true (see [31]) in the non-critical case
j j< 1 withw D

p
1 � 2 and � DR as well as (see [28]) for stabilizing coefficients

satisfying (1.6) with w.�/ D 2�1
p
1 � �2 and � D .�1; 1/ (if a1 D 1=2).

Remark 7.9. For the case � 2 .0; 1/, another representation for the weight �.�/ was
obtained in [17] – see formula [17, (4.12)]. It is difficult to compare these two repre-
sentations because the Jost solutions were defined in [17] in terms of infinite products
and formula [17, (4.12)] contains an implicit factor [17, (4.8)].
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Putting together Theorem 6.10 and formula (7.5), we obtain the following.

Theorem 7.10. Under the assumptions of Theorem 7.7 the weight �.�/ is a continu-
ous strictly positive function of � 2 � .

Note that this result was deduced in [13] from the subordinacy theory. The assump-
tions of [13] are more restrictive compared to Theorem 7.7; in particular, it was
required in [13] that � 2 .1=2; 2=3/.

In view of (7.5) the scattering amplitude �.�/ defined by (6.28) can be expressed
via the weight �.�/:

�.�/ D .2�/�1=2w.�/1=2�.�/�1=2:

Hence, asymptotic formula (6.29) can be rewritten as

Pn.�/ D .2�w.�/�.�//
�1=2.�/nn��

�
sin.ˆn.�/ � �.�//C o.1/

�
as n ! 1. This form seems to be more common for the orthogonal polynomials
literature.

Funding. Supported by project Russian Science Foundation 22-11-00070.
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