
J. Spectr. Theory 13 (2023), 1445–1472
DOI 10.4171/JST/488

© 2024 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Counting eigenvalues of Schrödinger operators
using the landscape function

Sven Bachmann, Richard Froese, and Severin Schraven

Abstract. We prove an upper and a lower bound on the rank of the spectral projections of
the Schrödinger operator ��C V in terms of the volume of the sublevel sets of an effective
potential 1

u
. Here, u is the ‘landscape function’ of G. David, M. Filoche, and S. Mayboroda

[Adv. Math. 390 (2021), article no. 107946], namely a solution of .��C V /u D 1 in Rd . We
prove the result for non-negative potentials satisfying a Kato-type and a doubling condition,
in all spatial dimensions, in infinite volume, and show that no coarse-graining is required. Our
result yields in particular a necessary and sufficient condition for discreteness of the spectrum.
In the case of nonnegative polynomial potentials, we prove that the spectrum is discrete if and
only if no directional derivative vanishes identically.

1. Introduction

In a celebrated body of work, Fefferman and Phong [12] carried out an extensive
analysis of the spectrum of self-adjoint differential operators based on the uncertainty
principle, namely the fact that there is lower bound on the localization of the Fourier
transform of a function that is well localized in space. Among the far reaching con-
sequences of this old observation, they show that the number of eigenvalues Ej of
a Schrödinger operator with positive polynomial potential V , below an energy �, is
equivalent to a coarse-grained notion of the volume of the sublevel sets of the potential
at �. Precisely, they count the number of boxes of side length of order ��1=2 inside
which V is less than or equal to �. This coarse-graining is shown to be a necessary
feature that arises from the uncertainty principle: for a test function to fit into a very
narrow box, its kinetic energy must be large.

The Fefferman–Phong result is a wide generalization of the classical Weyl law,
which is an asymptotic result for the number of eigenvalues of �� � �V as �!1,
see [50–53], and [20] for many extensions and variations. It is also closely related to
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the Lieb–Thirring inequalities [26] (see also [15] for a recent overview)X
j

E

j � L;d

Z
Rd

V.x/Cd=2dx:

The case  D 0 of interest to us in this work was obtained in dimensions d � 3
independently and by very different techniques by Cwickl [8], Lieb [24], and Rozen-
blum [37, 38], and we shall refer to it as the CLR inequality. It is well known that the
CLR inequality cannot hold in complete generality for dimensions d D 1; 2. A gen-
eral result in one dimension is the classical Calogero inequality [5]. It can further be
used to obtain CLR-type bounds in some two-dimensional cases, see e.g. [16, 21–23,
39]. For more general kinetic energies and simplified proofs of the CLR inequality
see [14, 18, 19] and the references therein.

Shen generalized the results of Fefferman and Phong to potentials in some reverse
Hölder class and also in the presence of a magnetic field [40, 41]. For this, he used
previously established Lp estimates for such Schrödinger operators [43] (in the case
of non-negative polynomials, see also Smith [46] and Zhong [54]). These results rely
on estimates on the Green’s function, see Davey, Hill, and Mayboroda [9], as well
as Mayboroda and Poggi [34] for optimal kernel estimates for more general elliptic
operators and in the presence of a magnetic field, in dimensions d � 3. Poggi [33]
considered potentials of Kato-type defined in more general domains. In dimension
d D 2, Christ [7] obtained kernel estimates under stronger assumptions. We point out
that Otelbaev obtained similar two-sided estimates earlier [30, 31], see also [28, 29]
for related bounds.

The Fefferman–Phong approach was also extended by David, Filoche, and May-
boroda [10], who introduced a new technique which is central to the present work.
While the bounds of Fefferman and Phong only depend on the dimension and the
degree of polynomial, the dependence on the potential in DFM is more subtle and
relies on the so-called landscape function. One considers ��C V on finite boxesƒL
of side length L and define the landscape function as the solution of

.��C V /uL D 1 (1.1)

with suitable boundary conditions. A formal computation shows that the operator
��C V on L2.ƒL; dx/ is unitarily equivalent to the elliptic operator

�
1

u2L
divu2Lr C

1

uL

onL2.ƒL;u2L.x/dx/. We shall henceforth call 1=uL the effective potential. The land-
scape function encodes (via the effective potential) a substantial part of the spectral
information of the original Schrödinger operator. Among the many rigorous results
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using the effective potential [2–4,6,10,13,47–49], we are interested in the following,
see [10]: if N V

L .�/ is the number of eigenvalues of ��C V , counted with multiplic-
ity, on the box with sidelength L (with periodic boundary conditions) that are smaller
than �, then there are constants c; C > 0 such that

N.c�;L/ � N V
L .�/ � N.C�;L/;

whereN.�;L/ is the coarsed-grained volume corresponding to the effective potential,
namely it is the number of boxes of sidelength ��1=2 in which 1=uL � �. While C
only depends on the dimension, the constant c depends on the oscillation of uL.

In this paper, we consider the setting of [42] where the potentials are Kato-class
and satisfy a doubling condition (the precise assumptions are (2.1)–(2.2)). We first
study the existence of the landscape function in the whole space Rd , namely the exis-
tence and positivity of solutions of (1.1). This purely PDE question is set in an a
priori inconvenient space since, unlike in the case of finite boxes considered in [10],
the right-hand side belongs to no Lp space but for p D 1. Not surprisingly, this
can be addressed by considering a sequence of compactly supported functions con-
verging pointwise to 1. A similar approach was used by Poggi [33, Theorem 1.18] in
dimension d � 3. With the landscape function and therefore the effective potential 1

u

in hand, we turn to the problem of the counting of eigenvalues. We extend the DFM
result to the infinite volume setting and without coarse-graining. We show that the
effective potential is confining if and only if the spectrum of the Schrödinger operator
is discrete, in which case the measure of its sublevel sets is finite. We then prove that
this measure controls the eigenvalue counting function, namely

.c�/d=2V.c�/ � N V .�/ � .C�/d=2V.C�/;

where
V.�/ D

Z
¹x2Rd W 1

u.x/
��º

dx:

Crucially, this CLR-type bound is valid in all spatial dimensions, and for all � 2 R.
The latter is one of the advantages of working immediately in infinite volume, since
otherwise the size of the domain ƒL yields a lower bound on the energy levels � that
can be considered.

As already seen in other applications of the DFM landscape function, this bound
where the volume is not coarse-grained reflects the fact that the transformation

��C V 7! �
1

u2
divu2r C

1

u

‘transfers’ some of the kinetic energy to the effective potential.
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One may wonder about the relationship of the effective potential with the semi-
classical limit. Not surprisingly, one partial answer is provided by microlocal analysis.
Indeed, the effective potential is given by the resolvent acting on the constant function.
The inverse of �� C V is a pseudo-differential operator whose symbol is given to
highest order by 1

j�j2CV.x/
. In this approximation, we conclude that, formally,

u.x/ '

Z
Rd

ei��x

j�j2 C V.x/
ı.�/d� D

1

V.x/
:

In other words, the effective potential 1
u

is equal to the physical potential V up to lower
order corrections in the sense of microlocal analysis. It is precisely these corrections
however that remove the need for coarse-graining.

We conclude this introduction by commenting on the specific case V.x; y/ D
x2y2 in two dimensions. In [45], Simon provided five proofs that this operator has
discrete spectrum with strictly positive first eigenvalue, that the number of eigenval-
ues below any fixed energy � follows the Fefferman–Phong estimate (in particular,
the coarse-grained volume is finite), and established the precise asymptotics in [44].
These results are particularly remarkable given that the Lebesgue measure of ¹.x;y/2
R2 W x2y2 � �º is infinite for every � > 0. This shows in particular that the measure
of the sublevel sets of the potential do not capture the spectral information, unlike the
coarsed-grained volume associated with the potential x2y2. Using pseudo-differential
calculus [36] obtains similar results for more general degenerate polynomials. Our
result removes the need for coarse-graining, provided V is replaced with the DFM
effective potential 1

u
. Since it is simple to see that the effective potential is confin-

ing in this case (by Corollary 2.3), we obtain yet another proof of discreteness of the
spectrum of ��C x2y2 in R2.

2. Main results

We denote by u a particular weak solution of

.��C V /u D 1

in Rd , which can be realized as the pointwise limit of specific Lax–Milgram solutions.
It will be constructed in details in Section 3. Our main result is that the volume of°

x 2 Rd W
1

u.x/
� �

±
is comparable to the rank of the spectral projection of (the Friedrich’s extension of)
��C V at energies less than or equal to �.
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Theorem 2.1. Assume that V � 0; V 6� 0 satisfies the following conditions.

(1) Kato-type condition. There exists CK; ı > 0, such that

1

rd�2Cı

Z
B.x;r/

V.y/dy � CK
1

Rd�2Cı

Z
B.x;R/

V.y/dy (2.1)

for all x 2 Rd and all r; R with 0 < r < R.

(2) Doubling condition. There exists CD > 0 such thatZ
B.x;2r/

V.y/dy � CD

� Z
B.x;r/

V.y/dy C rd�2
�

(2.2)

for all x 2 Rd and all r > 0.

We denote by H the Friedrichs extension of the positive symmetric operator

��C V

defined on C1c .R
d /. Let N V .�/ be the rank of the spectral projection 1.1;��.H/.

Then there exist constants c; C > 0 such that for all � 2 R,

.c�/
d
2 V.c�/ � N V .�/ � .C�/

d
2 V.C�/; (2.3)

where
V.�/ D

Z
¹x2Rd W 1

u.x/
��º

dx:

The constants c; C depend only on CK; CD; ı and the spatial dimension d .

Assumption (2.1) is a scale-invariant variant of the standard Kato condition. For
d � 3, one obtains via Fubini’s theorem that the condition (2.1) is equivalent toZ

B.x;R/

V.y/

jx � yjd�2
dy �

C

Rd�2

Z
B.x;R/

V.y/dy

for all 0 < R, all x 2 Rd and some C independent of x;R. Conditions (2.1)–(2.2) are
satisfied by potentials in the reverse Hölder class .RH/d=2 (see [43]). In particular,
this include non-negative polynomials and fractional power functions jxj˛ for ˛ >�2
for d � 3. On the other hand, potentials with compact support or exponential growth
violate (2.1), respectively (2.2).

Combining the above theorem with the property that u varies slowly, we further
derive an analogous result to [40, Corollary 0.11].
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Corollary 2.2. Let V be as in Theorem 2.1. Then the spectrum ofH is discrete if and
only if limR!1 kukL1.RdnB.0;R// D 0.

We will present the proofs in Section 4, while in Section 5 we concentrate on the
case where V is a polynomial. For polynomial potentials one can further analyze the
landscape function. In particular, one has the following.

Corollary 2.3. Let V be a polynomial that is bounded from below. Then the spec-
trum of H is discrete if and only if none of the directional derivatives of V vanishes
identically.

If the condition of the last corollary is violated, then the corresponding operator
has no eigenvalues. Indeed, after conjugating with a suitable rotation, we can assume
without loss of generality that the polynomial does not depend on the last variable.
We define zV.x1; : : : ; xd�1/D V.x1; : : : ; xd /. By taking a Fourier transform in the last
variable, we get that the Friedrichs extension H of ��C V is unitarily equivalent to
the direct integral Z̊

R

.p2 C zH/dp

where zH D ��Rd�1 C
zV . It follows from [35, Theorem XIII.85] that �.H/ D

Œmin �. zH/;1/ and H admits no eigenvalue.
Finally, we point out that Theorem 2.1 together with (3.7) below recover the result

of Shen [40, Theorem 0.9] in our class of potentials and in the absence of a magnetic
potential.

3. Existence of the landscape function in infinite volume

In this section we show the existence of the landscape function in infinite volume and
establish some estimates of the landscape function in terms of the Fefferman–Phong–
Shen maximal function. In [33, Theorem 1.18, Theorem 1.31] Poggi proves this for
d � 3. We briefly recall the construction and explain how to extend this to the case
d D 1; 2. For this, we will rely on extensions of results for d � 3 due to Shen (see
[42, Proposition 1.8]). One of the key objects is the Fefferman–Phong–Shen maximal
function m.�; V /, which is defined as

1

m.x; V /
D sup

²
r > 0 W

1

rd�2

Z
B.x;r/

V.y/dy � CD

³
; (3.1)
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where CD is the constant in (2.2). This maximal function satisfies the following prop-
erties.

Lemma 3.1. Let V satisfy the conditions of Theorem 2.1.

(1) 0 < m.x; V / <1 for every x 2 Rd .

(2) For every C 0, there exists C , depending only on CK; CD; ı and C 0, such that

C�1m.x; V / � m.y; V / � Cm.x; V / (3.2)

for all x; y 2 R with jx � yj � C 0

m.x;V /
.

(3) There exists k0; C > 0, depending only on CK ; CD; ı and d , such that for all
x; y 2 Rd we have

m.x; V / � Cm.y; V /.1C jx � yjm.y; V //k0 : (3.3)

(4) Let d � 2 and let zV.x; t/D V.x/ for all .x; t/ 2Rd �R. Then for all .x; t/ 2
RdC1 and all 0 < r < R,

1

rd�1Cı

Z
B..x;t/;r/

zV.z/dz � CK
p
2
d�1Cı 1

Rd�1Cı

Z
B..x;t/;R/

zV.z/dz:

Furthermore, Z
B.x;2r/

zV.z/dz � 4CD

� Z
B..x;t/;r/

zV.z/dz C rd�1
�

for all .x; t/ 2 RdC1 and all r > 0.
Finally, there exists C > 0 depending on CK; CD; ı and d such that

C�1m.x; V / � m..x; t/; zV / � Cm.x; V / (3.4)

for all .x; t/ 2 Rd �R.

Note that in (3.4), the exponent in the maximal function involving V is d , while
it is d C 1 in the one involving zV .

Proof. First, we note that (2.1) yields for all 0 < r < R

Rı
1

rd�2

Z
B.x;r/

V.y/dy � CKr
ı 1

Rd�2

Z
B.x;R/

V.y/dy:

Thus, limr!0C r
2�d

R
B.x;r/

V.y/dy D 0 and limR!1 R
2�d

R
B.x;R/

V.y/dy D 1.
This implies that 0 < m.x; V / <1.
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The validity of (2) and (3). for d � 3 is proved in [42, Proposition 1.8]. Hence, it
suffices to prove (4) for (2). and (3) to hold for all d � 1.

The fact that zV satisfies both the Kato-type and the doubling condition are simple
computations. Since V satisfies the doubling condition in dimension d ,Z

B..x;t/;2r/

zV.z/dz �

2rZ
�2r

CD

� Z
B.x;
p
r2�s2=4/

V.y/dy C .r2 � s2=4/.d�2/=2
�
ds

D 2CD

� Z
B..x;t/;r/

zV.z/dz C rd�1
1Z
�1

.1 � �2/.d�2/=2d�

�
;

which yields the claim upon noting that the last integral is bounded above by � . For
the Kato-type condition, we first consider the case 0 <

p
2r < R. Then we haveZ

B..x;t/;r/

zV.z/dz �

Z
B.x;r/�.t�r;tCr/

zV.z/dz D 2r

Z
B.x;r/

V.y/dy

� CK.2r/
� r

R=
p
2

�d�2Cı Z
B.x;R=

p
2/

V.y/dy

D CK

�p
2
r

R

�d�1Cı Z
B.x;R=

p
2/�.t�R=

p
2;tCR=

p
2/

zV.z/dz

� CK

�p
2
r

R

�d�1Cı Z
B..x;t/;R/

zV.z/dz:

The bound is immediate if, on the other hand, Rp
2
� r < R, sinceZ

B..x;t/;r/

zV.z/dz �

Z
B..x;t/;R/

zV.z/dz �
�p

2
r

R

�d�1Cı Z
B..x;t/;R/

zV.z/dz:

To show (3.4), we introduce the following maximal function

1

mQ.x; V /
D sup

²
r > 0 W

1

rd�2

Z
Q.x;r/

V.y/dy � CD

³
;

which is defined over cubesQ.x; r/ centered at x and of sidelength r , rather than over
balls. Clearly, (3.4) holds true with C D 1 form replaced bymQ. Thus, we only need
to show that m and mQ are equivalent. For d � 2, the inclusion Q.x; r/ � B.x; r/
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and the positivity of V yield immediately 1
m.x;V /

�
1

mQ.x;V /
, and hencemQ.x; V / �

m.x; V /. Reciprocally, let x 2 Rd and let r D 2
m.x;V /

. Then for any R > C 1=ıK r ,

CD D
1

.r=2/d�2

Z
B.x;r=2/

V.y/dy � CK

� r
R

�ı 1

.R=2/d�2

Z
B.x;R=2/

V.y/dy

�
1

Rd�2

Z
Q.x;R/

V.y/dy

where we used (2.1) in the second inequality, and the fact that B.x;R=2/ � Q.x;R/
in the third. It follows that 1

mQ.x;V /
� C

1=ı
K r and so mQ.x; V / �

m.x;V /

2C
1=ı
K

.

Let f 2 L1.Rd / be compactly supported. We call uf a Lax–Milgram solution of

.��C V /u D f

if uf is in the form domain H of H andZ
Rd

.ruf .y/ � rv.y/C V.y/uf .y/v.y//dy D

Z
Rd

f .y/v.y/dy

for all v 2 H . Note that

H D

²
v 2 H 1.Rd / W

Z
Rd

V.y/jv.y/j2dy <1

³
;

see [11, Theorem 8.2.1]. The following proposition yields estimates for Lax–Milgram
solutions.

Proposition 3.2 ([42, Theorem 0.8, Theorem 2.16]). Let d � 3 and assume V satis-
fies the conditions of Theorem 2.1. For every x 2Rd there exists a function �V .x; �/ 2
L
p
loc.R

d /, for 1 < p < d=.d � 2/, such that for all f 2 L1.Rd / with compact sup-
port and f � 0, the unique Lax–Milgram solution uf of .�� C V /u D f can be
written as

uf .x/ D

Z
Rd

�V .x; y/f .y/dy (3.5)

for almost every x 2 Rd . Furthermore, one has the kernel estimate

ce�".1Cjx�yjm.x;V //
k0C1

jx � yjd�2
� �V .x; y/ �

Ce�".1Cjx�yjm.x;V //
1=.k0C1/

jx � yjd�2
: (3.6)
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Proof. Existence and uniqueness of Lax–Milgram solution follows directly from the
Lax–Milgram theorem on the form domain H equipped with its standard inner prod-
uct hv; wiH D hrv;rwiL2.Rd / C h

p
V v;
p
V wiL2.Rd /. The representation of the

Lax–Milgram solution in terms of the integral kernel �V was shown in [42, Theo-
rem 2.16] and the estimate in terms of the Fefferman–Phong–Shen maximal function
follow from [42, Theorem 3.11, Remark 3.21, Theorem 4.15].

In what follows, we will also consider weak solutions of .�� C V /u D f for
f 2 L1loc.R

d /, namely a function uf such thatZ
Rd

uf .y/.��'.y/C V.y/'.y//dy D

Z
Rd

f .y/'.y/dy

for all ' 2 C1c .R
d /.

We shall now construct the landscape function in infinite volume. This is an
alternative and simpler approach, valid in the present setting, than that of [33, Theo-
rem 1.18].

Proposition 3.3. Let V be as in Theorem 2.1. Then there exist constants c; C > 0

depending only on CK; CD; ı and d , and a weak solution u 2 H 1
loc.R

d / \ C 0.Rd / of
.��C V /u D 1 such that

c

m.x; V /2
� u.x/ �

C

m.x; V /2
; (3.7)

for almost every x 2 Rd .

For later purposes, we immediately note that the proof of the proposition yields the
following ‘finite volume’ result. If d � 3we denote by uL the Lax–Milgram solutions
of

.��C V /uL D 1B.0;L/: (3.8)

Then
c

m.x; V /2
� uL.x/ �

C

m.x; V /2
; (3.9)

for almost every x 2 Rd . We remark that all the results work equally well if we
replace the indicator function over balls by indicator function over other compact sets
¹�L W L 2 Nº such that �L � �zL for L � zL and

S
L�1�L D Rd .

Proof. First we consider the case d � 3. Denote by uL the Lax–Milgram solution (3.8)
given by Proposition 3.2. As 1B.0;L2/ � 1B.0;L1/ � 0 for L2 � L1, we get from (3.5)
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that .uL/L�1 is monotone increasing almost everywhere. On the other hand, it is
essentially bounded since

0 � uL.x/ �
C

m.x; V /2

Z
Rd

e�".1Cjyj/
1=.k0C1/

jyjd�2
dy D

zC

m.x; V /2

for almost every x 2 Rd by (3.5)–(3.6). Thus, we can define

u.x/ D lim
L!1

uL.x/:

As uL are Lax–Milgram solutions of .��C V /uL D 1B.0;L/, one easily checks that
u is a weak solution of .�� C V /u D 1. The lower bound for u follows from the
lower bound in (3.6).

We show now that u 2 H 1
loc.R

d / for d � 3. Fix any ball B � Rd and a smooth
cut-off function �B 2 C1c .R

d / such that �B � 1 on B . As �BuL 2 dom.H 1=2/ and
uL is a Lax–Milgram solution of (3.8), we getZ

Rd

ruL � r.�BuL/C

Z
Rd

V uL.�BuL/ D

Z
Rd

uL�B1B.0;L/:

The product rule for Sobolev functions yieldsZ
Rd

ruL � r.�BuL/ D

Z
Rd

jruLj
2�B C

Z
Rd

ruL � .r�B/uL:

Using integration by parts for the second term on the right-hand side yieldsZ
Rd

ruL � .r�B/uL D �

Z
Rd

..��B/u
2
L C uL.r�B/ � ruL/:

Thus, we getZ
B

jruLj
2
�

Z
Rd

�B jruLj
2
D

Z
Rd

uL�B1B.0;L/ �

Z
Rd

V�Bu
2
L C

1

2

Z
Rd

.��B/u
2
L:

Hence, there exists a constant C > 0 depending only on the dimension such thatZ
B

.jruLj
2
C V u2L/ �

Z
2B

uL C C

Z
2B

u2L

for all balls B and all L > 0. By (3.9) and (3.3), we get that .ruL/L�1 is uniformly
bounded in L2.B/ for fixed B . Therefore, by Banach–Alaoglu, there exists a subse-
quence uLk converging weakly to some gB 2 L2.Rd /. One readily checks that gB is
the weak derivative of u and hence u 2 H 1

loc.R
d /.
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Next, we consider the case d D 2. For this, we use Hadamard’s method of descent.
Recall that zV.x; t/ D V.x/ for .x; t/ 2 R2 �R. By Lemma 3.1, the function zV satis-
fies (2.1)–(2.2), and therefore the first part yields a weak solution Qu of .��C zV / QuD 1
on R3. Let ˛ 2R. One readily checks thatfvL.x; t/DfuL.x; t C ˛/ is a Lax–Milgram
solution of .��C zV /fvL D 1B..0;0;˛/;L/. Thus, by (3.5), we have

fuL.x; t C ˛/ D Z
R3

� zV ..x; t/; y/1B..0;0;˛/;L/.y/dy:

As � zV ..x; t/; �/ 2 L
1.R3/ by (3.6), we get by dominated convergence

Qu.x; t C ˛/ D lim
L!1

fuL.x; t C ˛/ D Z
R3

� zV ..x; t/; y/dy D Qu.x; t/:

Hence, for almost every x 2 R2 there exists Cx such that for almost every t 2 R

we have Qu.x; t/ D Cx and we define u on R2 by u.x/ D Cx . Let ' 2 C1c .R
2/ and

 2 C1c .R/ with
R

R .t/dt D 1. Then, as
R

R 
00.t/dt D 0 and Qu is a weak solution

of .��C zV / Qu D 1 on R3, we getZ
R2

u.x/.��C V.x//'.x/dx D

Z
R3

Qu.x; t/.��C zV.x; t//.'.x/ .t//dxdt

D

Z
R3

'.x/ .t/dt D

Z
R2

'.x/dx:

Therefore, .��C V /u D 1 is a weak solution on R2. Inequality (3.7) follows from
(3.4). As shown before, we have Qu 2 H 1

loc.R
3/ and jru.x/j D jr Qu.x; t/j as u.x; t/

is independent of t . Hence, u 2 H 1
loc.R

2/.
The case d D 1 follows similarly to the case d D 2.
Finally, continuity follows from [27, Corollary 1.5].

We point out that the weak solution u constructed above does in general not belong
to the form domain of H , and we will therefore often have to work with the Lax–
Milgram solution uL instead of u. If V is a polynomial, the maximal functionm.�; V /
is equivalent to the function introduced in [46, 54]

M.x; V / D
X
˛2Nn

0

j@˛V.x/j1=.j˛jC2/; (3.10)

see (5.4) below. The sum is of course finite for a polynomial. We now consider
V.x/ D jxj2 on Rd . Then M.x; V / is comparable to 1 C jxj and hence, by (3.7)
and (5.4), u.x/ is comparable to .1C jxj/�2 which is not square integrable for d > 2.
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In Lemma 5.3 we show that the landscape function, for polynomial potentials, belongs
to the form domain if and only if the landscape function is integrable.

The equivalence of the landscape function and the Fefferman–Phong–Shen max-
imal function exhibited in Proposition 3.3 allows one to prove a Harnack inequality
for the landscape function, see also [33, Corollary 1.38] for the case d � 3.

Corollary 3.4. Let V be as in Theorem 2.1. Then there exists a constant CH � 1,
depending only on CK; CD; ı; and d , such that for almost every x 2 Rd and almost
every y 2 Q.x; 2

p
u.x// we have

C�1H u.x/ � u.y/ � CHu.x/: (3.11)

Proof. This follows immediately from (3.2) and (3.7).

4. Proof of Theorem 2.1

In this section we show that we can estimate the rank N V .�/ of the spectral projection
of H in terms of the measure of the sublevel set V.�/ of the effective potential 1

u
,

both defined in Theorem 2.1.
For this, we introduce two types of coarse-grained volumes. A box of sidelength

` is a set of the form�diD1Œai ; bi � where bi � ai D `. For any ` > 0, we consider a
collection Q` of boxes of sidelength ` such that

S
Q2Q`

Q D Rd and VQ \ VQ0 D ;
whenever Q ¤ Q0. We define for any � > 0

N.�/ D
ˇ̌̌°
Q 2 Q��1=2 W inf

Q

1

u
� �

±ˇ̌̌
and

n.�/ D
ˇ̌̌°
Q 2 Q��1=2 W sup

Q

1

u
� �

±ˇ̌̌
;

where infQ; supQ denote the essential infimum, respectively the essential supremum.
For the class of potentials considered here, namely those satisfying the Kato-type

and doubling conditions, both coarse-grained volumes are directly related to the mea-
sure V.�/ of the sublevel set. We now pick the cubes in Q` as having their corners on
`Zd .

Lemma 4.1. Let V satisfy the conditions of Theorem 2.1. Then

n.�/ � �d=2V.�/ � N.�/ � n.2dlog2 CHe�/

for all � 2 R.
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Proof. The first two inequalities are immediate as, up to null sets, n.�/=�d=2 is the
measure of all boxes that are strictly contained in the sublevel set ¹1=u � �º and
N.�/=�d=2 is the measure of all the boxes that intersect the sublevel set.

With our specific choice of cubes, the smaller ones are completely included in
exactly one larger one and hence, N.�/ � n.2dlog2 CHe�/.

We now turn to the proof of the main theorem, namely the bounds (2.3). Our
arguments are variational and adapted from the proofs of [10], which are themselves
inspired by Fefferman and Phong [12]. We start with the upper bound.

Lemma 4.2. Let V satisfy the conditions of Theorem 2.1. Then

N V .�/ � N.C�/

for all C > max¹2; 2d
�2
º and all � 2 R.

Proof. In order to have that N V .�/ � N it suffices, by the Min–Max principle (see
[35, Theorem XIII.2]), to exhibit a subspace HN � dom.H 1=2/ with codimension at
most N such that Z

Rd

.jrvj2 C V jvj2/ > �

Z
Rd

jvj2

for all v 2 HN . Let F be the collection of boxes such that

F D
°
Q 2 Q.C�/�1=2 W inf

Q

1

u
� C�

±
;

where C > 0 will be chosen later, and let

HN D

²
v 2 dom.H 1=2/ W

Z
Q

v D 0 for all Q 2 F

³
:

Since the cubes are disjoint, the codimension of HN is equal to jF j D N.C�/.
First, we want to show that

h.��C V /'; 'iL2.Rd / �
D 1
u
'; '

E
L2.Rd /

(4.1)

for all ' 2 C1c .R
d /. We start by considering d � 3. Denote by uL the Lax–Milgram

solution of (3.8). By (3.3) and (3.9) we know that 1=uL 2L1loc.R
d /\H 1

loc.R
d /, using

the chain rule for Sobolev functions [25, Theorem 6.16]. This readily implies that
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j'j2=uL is in the form domain of H for all ' 2 C1c .R
d /. As uL is a Lax–Milgram

solution of (3.8), we getZ
Rd

�
ruL � r

�
j'j2

uL

�
C V uL

j'j2

uL

�
D

Z
Rd

1B.0;L/
uL

j'j2:

Furthermore, using the product rule [25, Lemma 7.4] yields

ruL � r.j'j
2=uL/ D jr'j

2
� u2Ljr.'=uL/j

2:

Combining the last two equalities and taking L!1 implies (4.1) for d � 3.
For d � 2, we set zV.x; t/D V.x/ for all .x; t/ 2 Rd �R3�d and denote by Qu the

landscape function of zV . Let ' 2 C1c .R
d /,  2 C1c .R

3�d / with
R

R3�d  .t/dt D 1

and .' ˝  /.x; t/ D '.x/ .t/ for all .x; t/ 2 Rd � R3�d . Then we have by the
previous computations for d D 3

h.��C V /'; 'iL2.Rd / D h.��C
zV /.' ˝  /; ' ˝  iL2.R3/

�

D 1
Qu
.' ˝  /; ' ˝  

E
L2.R3/

D

D 1
u
'; '

E
L2.Rd /

:

The bound (4.1) extends, for all d � 1, by density of C1c .R
d / in the form domain

of H (see [11, Theorem 8.2.1]) to all v 2 dom.H 1=2/. This implies that

2

Z
Rd

.jrvj2 C V jvj2/ �

Z
Rd

�
jrvj2 C

1

u
jvj2

�
for all v 2 dom.H 1=2/. With this, the statement of the lemma follows from the claim
that if v 2 HN n ¹0º, thenZ

Rd

�
jrvj2 C

1

u
jvj2

�
> 2�

Z
Rd

jvj2:

We check this inequality using the partition into boxes. In any boxQ … F , we simply
use the bound minQ 1=u > C�. If Q 2 F , we recall that the integral of v vanishes
and use the Poincaré inequality with optimal constant �

2

d
.C�/ since the boxes have

sidelength .C�/�1=2, see [32]. Hence, the claimed lower bound holds for all C >

max¹2; 2d
�2
º indeed.

Next we turn to the lower bound in (2.3).

Lemma 4.3. Let V satisfy the conditions of Theorem 2.1. Then

n.�/ � N V ..1C .4CH/
2/�/

for all � 2 R.
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Proof. For a lower boundN �N V .C�/, it suffices, again by the Min–Max principle,
to find a subspace HN � dom.H 1=2/ of dimension at least N such thatZ

Rd

.jrvj2 C V jvj2/ � C�

Z
Rd

jvj2:

We define

F D
°
Q 2 Q��1=2 W sup

Q

1

u
� �

±
:

Furthermore, for a boxQ we pick �Q 2H 1.Rd /with 0� �Q � 1;kr�QkL1.Rd / �
4�1=2, �Q � 1 on Q=2 and �Q � 0 on Rd n Q (a possible choice for �Q is to
interpolate linearly from @.Q=2/ to @Q). Since the functions �Qu are non-zero and
orthogonal to each other, the space

HN D span¹�Qu W Q 2 F º

is of dimension jF j D n.�/.
By Proposition 3.3, we have u 2 H 1

loc.R
d / \ L1loc.R

d / and thus �Qu is in the
form domain of H . Using the product rule for Sobolev function [25, Lemma 7.4] and
the fact that u solves the landscape equation, we get for all '; 2 C1c .R

d /

hr. u/;r'iL2.Rd / C h u; V'iL2.Rd /

D hru;r. '/iL2.Rd / C hu; V 'iL2.Rd / � hru; .r /'iL2.Rd /

C h.r /u;r'iL2.Rd /

D h ; 'iL2.Rd / � hru; .r /'iL2.Rd / C h.r /u;r'iL2.Rd /:

Now, we pick a sequence .'n/n2N � C
1
c .R

d / such that

supp.'n/ � 2Q; sup
n
k'nkL1.Rd / <1

and 'n ! �Qu in H 1.Rd / and a similar approximation  n ! �Qu and we getZ
Rd

.jr.�Qu/j
2
C V�2Qu

2/ D

Z
Rd

.�2QuC jr�Qj
2u2/

and in turn Z
Rd

.jr.�Qu/j
2
C V�2Qu

2/ �
�

sup
Q

1

u

� Z
Q

�2Qu
2
C 42�

Z
Q

u2

� �

�Z
Q

�2Qu
2
C 42

Z
Q

u2
�
:
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Now, (3.11) implies thatZ
Q

u2 � jQj sup
Q

u2 � jQjC 2H inf
Q=2

essu2 � C 2H

Z
Q=2

u2 � C 2H

Z
Rd

�2Qu
2;

where the last inequality follows from the properties of �Q. This yields the claim we
had set to prove.

Together, Lemmas 4.2 and 4.3 yield the claim of Theorem 2.1. Finally, we prove
Corollary 2.2.

Proof of Corollary 2.2. If u vanishes at infinity, i.e., lim supR!1 supRdnB.0;R/uD 0,
then each sublevel set of 1=u is bounded up to a null set and thus H has discrete
spectrum by (2.3). Assume on the other hand that u does not vanish at infinity.
There is � > 0 and a sequence of points .xn/n�1 such that limn!1 jxnj D 1 and
lim inf"!0C infB.xn;"/ u �

CH
�

for all n. Then by (3.11) we have[
n�1

Q.xn; 2
p
CH=�/ � ¹x 2 Rd W 1=u.x/ � �º

and hence, by (2.3), the spectrum of H is not discrete.

5. The case of polynomial potentials

When the potential V is a polynomial, as in the original setting of Fefferman and
Phong, one can obtain more precise information of the landscape function. We start
by giving the proof for Corollary 2.3.

Proof of Corollary 2.3. Since the addition of a constant does not change the structure
of the spectrum, we assume that the polynomial satisfies V � 1. We check first that
these polynomials satisfy (2.1) and (2.2). Condition (2.1) holds with ı D 2 due to the
inequality

c sup
B.x;r/

V �
1

jB.x; r/j

Z
B.x;r/

V.y/dy � sup
B.x;r/

V;

where c can be chosen to depend only on d and the total degree of V , but neither
x nor r . The upper bound is immediate. It is enough to show the lower bound for
r D 1 and x D 0 by scaling and translation. In that case, the claim follows from the
fact that the space of all polynomials in d variables and total degree at most D is a
finite-dimensional vector space and thus all norms are equivalent.
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For the same reason, and since polynomials are analytic functions, there exists a
constant C > 0 depending only on d and D such thatZ

B.0;2/

V.y/dy � C

Z
B.0;1/

V.y/dy;

which implies doubling after rescaling and translation. In particular, CD can be chosen
to only depend on d and D.

Now, Corollary 2.2 and (3.7) imply that the spectrum of H is discrete if and only
if limjxj!1 m.x; V / D 1. For polynomials the Fefferman–Phong–Shen maximal
function m.x; V / is in fact equivalent to M.x; V / introduced in (3.10), in the sense
that

cM.x; V / � m.x; V / � CM.x; V /: (5.1)

The equivalence was already noted in [40] and we provide a proof below for com-
pleteness, see Lemma 5.4.

With these preliminaries, we can now turn to the central claim of the corollary. If
one of the directional derivative vanishes, then ��C V is unitarily equivalent (via a
suitable rotation) to ��CW where @1W � 0. In this case, M..t; 0; : : : ; 0/; W / D
M.0;W /, which implies by the remarks above that the spectrum of ��CW is not
discrete and hence also the spectrum of ��C V is not discrete.

Next, we are going to show that if �� C V does not have discrete spectrum,
then some directional derivative of V vanishes identically. As ��C V does not have
discrete spectrum, we must have that

lim inf
jxj!1

M.x; V /µM0 <1: (5.2)

We consider the semi-algebraic set

A D ¹x 2 Rd W .@˛V.x//2 < 2M 2.2Cj˛j/
0 for all ˛ 2 Nd

º

and the polynomial function

F WRd ! R.DC1/
d

; x 7! .@˛V.x/2/˛2Œ0;D�d\Zd :

Now, (5.2) implies that A is an unbounded set and we can therefore pick a sequence
.x.n//n2N � A such that jx.n/j ! 1 and

lim
n!1

F.x.n//µ y D .y˛/˛2Œ0;D�d\Zd

with jy˛j �M
2.2Cj˛j/
0 .

Next, we would like to pass from a mere sequence to an analytic curve. This is
done by the following curve selection lemma at infinity.
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Lemma 5.1 ([17, Lemma 2.17]). Let A � Rd be a semi-algebraic set, and let the
function F WRd ! RN be a semi-algebraic map. Assume that there exists a sequence
.x.n//n2N � A such that limn!1 jx

.n/j D 1 and limn!1 F.x
.n// D y 2 .R [

¹˙1º/N . Then there exists an analytic curve  W .0; ı/! A of the form

.t/ D

1X
jD�m

a.j /tj (5.3)

such that a.�m/ 2 RN n ¹0º, m 2 Z>0 and limt!0C F..t// D y.

Let  be a curve as given by the previous lemma. We would like to say that V
remains constant along  and thus get a direction in which the gradient of V vanishes
identically. However, analytic functions can remain bounded on an unbounded set
without being constant. Thus, we truncate the series (5.3) at j D 0, thereby obtaining
a polynomial approximation of the curve  , and F will still remain bounded along the
truncation.

Lemma 5.2. For every " > 0, there exists C > 0 such that for all v 2 Rd with jvj < "
we have for all t 2 .0; ı=2/

0 � V..t/C v/ � C:

Proof. By Taylor’s theorem, V..t/C v/ D
P
˛2Nd

v˛

˛Š
.@˛V /..t//. The claim fol-

lows from the fact that j.@˛V /..t//j are all uniformly bounded for t 2 .0; ı=2/.

With this, we define polynomial function

G.s/ D

mX
jD0

a.�j /sj :

Note that every component of G is single variable polynomial. For every " > 0 there
exists 0 < ı" < ı such that

j.t/ �G.t�1/j <
"

2

for all t 2 .0; ı"/, and hence by the previous lemma

0 � V.G.t�1// � C:

Let now

P.s; x1; : : : ; xd / D V.G.s/C x/:
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For s > 1
ı"

and jxj < "
2

, we get

0 � P.s; x1; : : : ; xd / � C

again by Lemma 5.2. Now, for any jxj < "
2

, the function s 7! P.s; x/ is a polynomial
that is bounded on an unbounded interval and thus constant. Therefore, @sP.s; x/D 0
on R � B"=2.0/. By the identity theorem, we get that @sP.s; x/ D 0 on RdC1. But

0 D @sP.s; x/ D .rV /.G.s/C x/ �G
0.s/:

As G is not constant, there is s0 2 R such that G0.s0/ ¤ 0 and so the derivative of V
in direction G0.s0/ vanishes identically.

As mentioned before, the landscape function will not belong to the form domain
of H . For polynomial potentials, there is an easy criterion to check whether u 2
dom.H 1=2/.

Lemma 5.3. Let V � 0 be a non-zero polynomial. Then u 2 L1.Rd / if and only if
u 2 dom.H 1=2/.

Proof. As V is smooth, we get by standard elliptic regularity theory that the landscape
function is a classical solution of the landscape equation. Multiplying the landscape
equation by ' 2 C1c .R

d / and integrating yields after integration by partsZ
Rd

'jruj2 C

Z
Rd

V u2' D

Z
Rd

u' C

Z
Rd

u2.�'/:

We saw in the proof of Corollary 2.3 that either limjxj!1 u.x/D 0 or that there is one
spatial coordinate along which u is constant. Hence, if u 2 L1.Rd /, then u vanishes
at infinity and automatically u 2 L2.Rd /. However, then we can choose a sequence
of 'n 2 C1c .R

d / converging to 1 and obtain by monotone convergenceZ
Rd

.jruj2 C V u2/ �

Z
Rd

uC C

Z
Rd

u2 <1

and therefore u 2 dom.H 1=2/.
On the other hand, if u 2 dom.H 1=2/, then u 2 H 1.Rd / and in particular u 2

L2.Rd /. Thus, we can take again a suitable sequence of test functions to obtain by
dominated convergenceZ

Rd

u D

Z
Rd

jruj2 C

Z
Rd

V u2 �

Z
Rd

u2 <1;

namely u 2 L1.Rd /.
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Let us now return to the concrete example of Simon’s potential V.x; y/ D x2y2.
First of all, we can now prove that the corresponding landscape function is in the form
domain of��C V . Combining Proposition 3.3 and Lemma 5.4, it is enough to check
thatM.�;x2y2/�2 2L1.R2/. An explicit calculation yieldsM..x;y/;x2y2/� jxyjCp
jxj C

p
jyj C 1, and thus its inverse is indeed square integrable in R2. Similarly,

we obtain the following two-sided estimate on the effective potential:

c.x2y2 C jxj C jyj C 1/ �
1

u.x; y/
� C.x2y2 C jxj C jyj C 1/:

This yields for � sufficiently large

�

3C
log
� �
3C

�
D

ˇ̌̌°
.x; y/ 2 R2 W 1 � x �

�

3C
; 0 � y �

�

3Cx

±ˇ̌̌
� V.�/:

we have

V.�/ � 1C 4
ˇ̌̌°
.x; y/ 2

h
1;
�

c

i
�R�0 W x

2y2 C jxj C jyj C 1 �
�

c

±ˇ̌̌
� 1C 4

ˇ̌̌°
.x; y/ 2

h
1;
�

c

i
�R�0 W jxyj �

�

c

±ˇ̌̌
D 1C

4�

c
log
��
c

�
:

The combination of those two estimates with Theorem 2.1 recovers Simon’s asymp-
totics [44, Theorem 1.4]

N x2y2.�/ D
1

�
�3=2 log.�/C o.�3=2 log.�//:

up to multiplicative constants.
We conclude this section with a proof of the equivalence of the functions m.�; V /

andM.�;V / in the case of polynomials. We point out that the arguments in this section
show that in the case of polynomials, the constants appearing in Theorem 2.1, and a
fortiori the Harnack constant, depend only on the spatial dimension and the degree of
the polynomial.

Lemma 5.4. Let V � 0 a polynomial on Rd of total degree D � 0. Then there exist
constants C; c > 0 depending only on d;D such that

cM.x; V / � m.x; V / � CM.x; V /; (5.4)

where m.�; V /;M.�; V / were defined in (3.1) and (3.10).

Proof. By translating the potential, we can pick x D 0. Furthermore, for all � > 0 we
havem.x;V�/D �m.�x;V / andM.x;V�/D �M.�x;V /, where V�.x/D �2V.�x/.
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Hence, we can assume thatM.0;V /D 1 and then need to show that there exists c > 0
depending only on d;D such that m.0; V / � c.

Since V 7! @˛V is a linear map on a finite-dimensional space,

j@˛V.0/j � sup
x2B.0;1/

j@˛V.x/j � c sup
x2B.0;1/

jV.x/j;

and so

1 DM.0; V / �
X
˛2Nn

0

.c sup
x2B.0;1/

V.x//1=.j˛jC2/

� c.. sup
x2B.0;1/

V.x//1=2 C . sup
x2B.0;1/

V.x//1=.DC2//:

Hence, we have supx2B.0;1/ V.x/ � c > 0. For r � 1, we get

cr2 � r2 sup
x2B.0;r/

V.x/ �
c

rn�2

Z
B.0;r/

V.y/dy:

Recall that CD can be chosen to only depend on d;D, therefore the right-hand side is
greater than CD for r large enough, which yields an upper bound on 1

m.0;V /
. Hence,

m.0; V / � c D cM.0; V /:

We turn to the lower bound. First of all, a simple Taylor expansion yields (see [46,
Lemma 2.5])

j@˛V.y/j � CM.x; V /j˛jC2.1C jx � yjM.x; V //D;

so that
M.y; V / � CM.x; V /.1C jx � yjM.x; V //D=2; (5.5)

for all x; y 2 Rd . Thus, if m.0; V / D 1 then

C
�.2CD/
D m.0; V /2CD D

Z
B.0;1/

V.y/dy � jB.0; 1/j sup
y2B.0;1/

V.y/

� jB.0; 1/j sup
y2B.0;1/

M.y; V /2

� C 2M.0; V /2CD;

by (5.5), which again yields the desired estimate by translating and rescaling.
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6. The potential well

In this section we explicitly compute the landscape function for potential wells
"1B.0;ı/c , where B.0; ı/c D Rd n B.0; ı/ and "; ı > 0. We shall observe first of all
that the minimum of the effective potential properly reflects the value of the bottom of
the spectrum in the sense that both are of order " as "! 0. Secondly, we will see that
the estimates of the main theorem are not tight enough to distinguish the difference
between d D 1; 2, where an eigenvalue is present for all " > 0, and d � 3 where this
is not the case.

We start by observing that the landscape function corresponding to the spherical
well are radially symmetric. Indeed, all the Lax–Milgram solutions (3.8) are invariant
under rotation of the first d variables and thus the landscape function, given as a
pointwise limit of those solutions, shares the same symmetry. Passing to spherical
coordinates, we see that the radial part f .jxj/ D u.x/ solves the ODE

�f 00.r/ �
d � 1

r
f 0.r/C "1Œı;1/.r/f .r/ D 1

on .0;1/. The general solution of this ODE on .0; ı/ is given, for d ¤ 2, by

f .r/ D �
r2

2d
C a1 C

a2

rd�2
;

respectively by the same expression with r�.d�2/ replaced by log.r/ for d D 2. As
limr!0C f .r/D limr!0C u.re1/D u.0/, we conclude in the case d � 2 that a2 D 0.
The same follows for d D 1 as u is even and C 1.R/.

On the other hand, on .ı;1/, the general solution is given by

f .r/ D
1

"
C b1r

1�d2K�1Cd=2.
p
"r/C b2r

�1Cd2 I�1Cd=2.
p
"r/;

where Im;Km denote the modified Bessel function of the first, respectively the second
kind. We have limr!1 Im.r/ D 1 and limr!1Km.r/ D 0 for m � �1=2 (use [1,
(9.6.10) and 9.6.23] andK�1=2.x/D

p
�e�x=

p
2x; I�1=2.x/D

p
2 cosh.x/=

p
�x).

As 0 is not in the spectrum of ��C "1B.0;ı/c , we get that u is bounded and hence
b2 D 0. This yields

f .r/ D

8̂̂<̂
:̂
�
r2

2d
C a1; r 2 .0; ı/;

1

"
C b1r

1�d2K�1Cd=2.
p
"r/; r 2 .ı;1/:

Finally, the coefficients can be determined by the fact that f 2 C 1.R>0/. In dimen-
sions d D 1; 3 the Bessel functions can be expressed in elementary functions and the
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solutions are given by

u.x/ D

8̂̂<̂
:̂
�
jxj2

2
C
1

"
C

ı
p
"
C
ı2

2
; jxj � ı;

1

"
C

ı
p
"
e�
p
".jxj�ı/; jxj > ı

for d D 1 and by

u.x/ D

8̂̂̂<̂
ˆ̂:
�
jxj2

6
C
1

"
C ı2

�1
6
C

1

1C
p
"ı

�
; jxj � ı;

1

"
C

ı3

1C
p
"ı

e�
p
".jxj�ı/

jxj
; jxj > ı

(6.1)

for d D 3.
In all dimensions, we have that u is radially symmetric and its radial part is mono-

tone decreasing (even exponentially). Furthermore, we have limjxj!1 u.x/D 1
"
. This

implies that the sublevel set V.�/ of the effective potential 1=u is monotone increas-
ing, remains finite for � < " and lim�!"� V.�/D1. This is consistent with the fact
that the bottom of the essential spectrum is � and c < 1; C > 1 in Theorem 2.1.

For d D 1, the smallest eigenvalue �0 of ��C "1B.0;ı/c , for 0 < " sufficiently
small, is the smallest positive solution of

p
" � �0 D

p
�0 tan.

p
�0ı/:

Thus, for ı > 0 fixed, we obtain �0 D ".1�O.
p
"// as "! 0C. As discussed at the

beginning of the section, this is the same asymptotic behaviour as that of the minimum
of 1=u, see (6.1). The same holds for d D 3where however the bottom of the spectrum
is the bottom of the essential spectrum, namely N .�/ D 0 for � < " and N .�/ D1

for � � ". Here, V.�/ is arbitrarily large for �! "�, showing that c < 1 in (2.3).
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