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Counting eigenvalues of Schrodinger operators
using the landscape function

Sven Bachmann, Richard Froese, and Severin Schraven

Abstract. We prove an upper and a lower bound on the rank of the spectral projections of
the Schrodinger operator —A + V' in terms of the volume of the sublevel sets of an effective
potential % Here, u is the ‘landscape function’ of G. David, M. Filoche, and S. Mayboroda
[Adv. Math. 390 (2021), article no. 107946], namely a solution of (—A + V)u = 1 in RY. We
prove the result for non-negative potentials satisfying a Kato-type and a doubling condition,
in all spatial dimensions, in infinite volume, and show that no coarse-graining is required. Our
result yields in particular a necessary and sufficient condition for discreteness of the spectrum.
In the case of nonnegative polynomial potentials, we prove that the spectrum is discrete if and
only if no directional derivative vanishes identically.

1. Introduction

In a celebrated body of work, Fefferman and Phong [12] carried out an extensive
analysis of the spectrum of self-adjoint differential operators based on the uncertainty
principle, namely the fact that there is lower bound on the localization of the Fourier
transform of a function that is well localized in space. Among the far reaching con-
sequences of this old observation, they show that the number of eigenvalues E; of
a Schrodinger operator with positive polynomial potential V', below an energy u, is
equivalent to a coarse-grained notion of the volume of the sublevel sets of the potential
at u. Precisely, they count the number of boxes of side length of order ;1 ~'/2 inside
which V is less than or equal to p. This coarse-graining is shown to be a necessary
feature that arises from the uncertainty principle: for a test function to fit into a very
narrow box, its kinetic energy must be large.

The Fefferman—Phong result is a wide generalization of the classical Weyl law,
which is an asymptotic result for the number of eigenvalues of —A — AV as A — oo,

see [50-53], and [20] for many extensions and variations. It is also closely related to
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the Lieb—Thirring inequalities [26] (see also [15] for a recent overview)

E:EY;slwdt/IKxY+d”dx.
j R

The case y = 0 of interest to us in this work was obtained in dimensions d > 3
independently and by very different techniques by Cwickl [8], Lieb [24], and Rozen-
blum [37,38], and we shall refer to it as the CLR inequality. It is well known that the
CLR inequality cannot hold in complete generality for dimensions d = 1, 2. A gen-
eral result in one dimension is the classical Calogero inequality [5]. It can further be
used to obtain CLR-type bounds in some two-dimensional cases, see e.g. [16,21-23,
39]. For more general kinetic energies and simplified proofs of the CLR inequality
see [14, 18, 19] and the references therein.

Shen generalized the results of Fefferman and Phong to potentials in some reverse
Holder class and also in the presence of a magnetic field [40, 41]. For this, he used
previously established L? estimates for such Schrodinger operators [43] (in the case
of non-negative polynomials, see also Smith [46] and Zhong [54]). These results rely
on estimates on the Green’s function, see Davey, Hill, and Mayboroda [9], as well
as Mayboroda and Poggi [34] for optimal kernel estimates for more general elliptic
operators and in the presence of a magnetic field, in dimensions d > 3. Poggi [33]
considered potentials of Kato-type defined in more general domains. In dimension
d = 2, Christ [7] obtained kernel estimates under stronger assumptions. We point out
that Otelbaev obtained similar two-sided estimates earlier [30, 31], see also [28, 29]
for related bounds.

The Fefferman—Phong approach was also extended by David, Filoche, and May-
boroda [10], who introduced a new technique which is central to the present work.
While the bounds of Fefferman and Phong only depend on the dimension and the
degree of polynomial, the dependence on the potential in DFM is more subtle and
relies on the so-called landscape function. One considers —A + V on finite boxes A,
of side length L and define the landscape function as the solution of

(—A +Vyur =1 (1.D

with suitable boundary conditions. A formal computation shows that the operator
—A + V on L?(Ap, dx) is unitarily equivalent to the elliptic operator

I ., 1
——divupV + —
uL ur,

on L2(Ar,u73 (x)dx). We shall henceforth call 1/uy, the effective potential. The land-
scape function encodes (via the effective potential) a substantial part of the spectral
information of the original Schrédinger operator. Among the many rigorous results
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using the effective potential [2—4,6, 10, 13,47-49], we are interested in the following,
see [10]: if N, LV () is the number of eigenvalues of —A + V, counted with multiplic-
ity, on the box with sidelength L (with periodic boundary conditions) that are smaller
than w, then there are constants ¢, C > 0 such that

N(ep, L) < N (w) < N(Cp, L),

where N (i, L) is the coarsed-grained volume corresponding to the effective potential,
namely it is the number of boxes of sidelength ~'/2 in which 1/u; < . While C
only depends on the dimension, the constant ¢ depends on the oscillation of uy,.

In this paper, we consider the setting of [42] where the potentials are Kato-class
and satisfy a doubling condition (the precise assumptions are (2.1)—(2.2)). We first
study the existence of the landscape function in the whole space R¢, namely the exis-
tence and positivity of solutions of (1.1). This purely PDE question is set in an a
priori inconvenient space since, unlike in the case of finite boxes considered in [10],
the right-hand side belongs to no L? space but for p = co. Not surprisingly, this
can be addressed by considering a sequence of compactly supported functions con-
verging pointwise to 1. A similar approach was used by Poggi [33, Theorem 1.18] in
dimension d > 3. With the landscape function and therefore the effective potential %
in hand, we turn to the problem of the counting of eigenvalues. We extend the DFM
result to the infinite volume setting and without coarse-graining. We show that the
effective potential is confining if and only if the spectrum of the Schrédinger operator
is discrete, in which case the measure of its sublevel sets is finite. We then prove that
this measure controls the eigenvalue counting function, namely

(c)??V(ep) < NV (1) < (C?V(Cp),

where
V() = /dx.
{(xeR?: 15 <)

Crucially, this CLR-type bound is valid in all spatial dimensions, and for all 4 € R.
The latter is one of the advantages of working immediately in infinite volume, since
otherwise the size of the domain Ay yields a lower bound on the energy levels p that
can be considered.

As already seen in other applications of the DFM landscape function, this bound
where the volume is not coarse-grained reflects the fact that the transformation

1 1
—A+V > ——divu’V 4+ —
u u

‘transfers’ some of the kinetic energy to the effective potential.
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One may wonder about the relationship of the effective potential with the semi-
classical limit. Not surprisingly, one partial answer is provided by microlocal analysis.
Indeed, the effective potential is given by the resolvent acting on the constant function.
The inverse of —A + V is a pseudo-differential operator whose symbol is given to
highest order by m In this approximation, we conclude that, formally,

1$x 1
u(x) = / v O = vy

In other words, the effective potential % is equal to the physical potential V up to lower
order corrections in the sense of microlocal analysis. It is precisely these corrections
however that remove the need for coarse-graining.

We conclude this introduction by commenting on the specific case V(x, y) =
x2y? in two dimensions. In [45], Simon provided five proofs that this operator has
discrete spectrum with strictly positive first eigenvalue, that the number of eigenval-
ues below any fixed energy u follows the Fefferman—Phong estimate (in particular,
the coarse-grained volume is finite), and established the precise asymptotics in [44].
These results are particularly remarkable given that the Lebesgue measure of {(x, y) €
R2 : x2y2 < u} is infinite for every y > 0. This shows in particular that the measure
of the sublevel sets of the potential do not capture the spectral information, unlike the
coarsed-grained volume associated with the potential x2y2. Using pseudo-differential
calculus [36] obtains similar results for more general degenerate polynomials. Our
result removes the need for coarse-graining, provided V' is replaced with the DFM
effective potential % Since it is simple to see that the effective potential is confin-
ing in this case (by Corollary 2.3), we obtain yet another proof of discreteness of the
spectrum of —A + x2y2 in R2.

2. Main results
We denote by u a particular weak solution of
A+ TV)u=1

in R¥, which can be realized as the pointwise limit of specific Lax—Milgram solutions.
It will be constructed in details in Section 3. Our main result is that the volume of

{rere: u(lx) <

is comparable to the rank of the spectral projection of (the Friedrich’s extension of)
—A + V at energies less than or equal to p.
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Theorem 2.1. Assume that V > 0,V £ 0 satisfies the following conditions.
(1) Kato-type condition. There exists Cx, 8 > 0, such that

1 1
rd——2+8/V(y)dy = CKm/V(J’)dy (2.1
B(x,r) B(x,R)

forallx € R and all r, R with0 < r < R.

(2) Doubling condition. There exists Cp > 0 such that
[rour <cof [vonay+ri2) )
B(x,2r) B(x,r)
forall x € R4 and all r > 0.
We denote by H the Friedrichs extension of the positive symmetric operator

A4V

defined on C2° (RY). Let N V(1) be the rank of the spectral projection Lo, (H ).
Then there exist constants ¢, C > 0 such that for all u € R,

()3 V(ep) < NV () < (C)EV(Ch), 2.3)

where
V() = /dx.

{(xeR?: s <)
The constants c, C depend only on Cg, Cp, § and the spatial dimension d.

Assumption (2.1) is a scale-invariant variant of the standard Kato condition. For
d > 3, one obtains via Fubini’s theorem that the condition (2.1) is equivalent to

V() ¢
/|x |d 2 - Rd Z/V(y)dy

B(x,R) B(x,R)

forall 0 < R, all x € R? and some C independent of x, R. Conditions (2.1)—(2.2) are
satisfied by potentials in the reverse Holder class (RH)g/» (see [43]). In particular,
this include non-negative polynomials and fractional power functions |x|% for o > —2
for d > 3. On the other hand, potentials with compact support or exponential growth
violate (2.1), respectively (2.2).

Combining the above theorem with the property that u varies slowly, we further
derive an analogous result to [40, Corollary 0.11].
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Corollary 2.2. Let V be as in Theorem 2.1. Then the spectrum of H is discrete if and
only if img— o [[u[| oo e\ B(0,R)) = ©-

We will present the proofs in Section 4, while in Section 5 we concentrate on the
case where V' is a polynomial. For polynomial potentials one can further analyze the
landscape function. In particular, one has the following.

Corollary 2.3. Let V be a polynomial that is bounded from below. Then the spec-
trum of H is discrete if and only if none of the directional derivatives of V vanishes
identically.

If the condition of the last corollary is violated, then the corresponding operator
has no eigenvalues. Indeed, after conjugating with a suitable rotation, we can assume
without loss of generality that the polynomial does not depend on the last variable.
We define 17(x1 yeeosXg—1) = V(x1,...,xq). By taking a Fourier transform in the last
variable, we get that the Friedrichs extension H of —A + V is unitarily equivalent to
the direct integral

(&)
[ (0 + )dp
R

where H = —Aga—1 + V. 1t follows from [35, Theorem XIII.85] that o(H) =
[min 0(1—~I ), 00) and H admits no eigenvalue.

Finally, we point out that Theorem 2.1 together with (3.7) below recover the result
of Shen [40, Theorem 0.9] in our class of potentials and in the absence of a magnetic
potential.

3. Existence of the landscape function in infinite volume

In this section we show the existence of the landscape function in infinite volume and
establish some estimates of the landscape function in terms of the Fefferman—Phong—
Shen maximal function. In [33, Theorem 1.18, Theorem 1.31] Poggi proves this for
d > 3. We briefly recall the construction and explain how to extend this to the case
d = 1,2. For this, we will rely on extensions of results for d > 3 due to Shen (see
[42, Proposition 1.8]). One of the key objects is the Fefferman—Phong—Shen maximal
function m(-, V'), which is defined as

1
m(x,V)

1
= sup{r >0 —— / V(y)dy < CD}, 3.1
r
B(x,r)
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where Cp is the constant in (2.2). This maximal function satisfies the following prop-
erties.

Lemma 3.1. Let V satisfy the conditions of Theorem 2.1.
(1) 0 <m(x,V) < oo for every x € R?.
(2) For every C’, there exists C, depending only on Cx, Cp, 8 and C’, such that

C'm(x,V)<m(y,V) < Cm(x,V) (3.2)

forall x,y € Rwith |x — y| < ;,,(S,/V)-

(3) There exists ko, C > 0, depending only on Cx,Cp, 8 and d, such that for all
x,y € R? we have

m(x,V) < Cm(y, V)(1 + |x — ylm(y, V))ko. (3.3)

(4) Letd <2andlet V(x,t) = V(x) forall (x,t) € R? x R. Then for all (x,t) €
R4+ and all 0 < r < R,

/ Poydz < cev2® L / 7(z)dz.

pd—143 RA—1+8
B((x,0),r) B((x,1),R)

Furthermore,
/ V(z)dz < 4CD( / V(z)dz + rd—l)
B(x,2r) B((x,t),r)

forall (x,t) e R and all r > 0.
Finally, there exists C > 0 depending on Cx, Cp, § and d such that

C'm(x,V) <m((x,1), V) < Cm(x,V) (3.4)

forall (x,t) € R¢ x R.

Note that in (3.4), the exponent in the maximal function involving V' is d, while
itis d + 1 in the one involving V.

Proof. First, we note that (2.1) yields forall 0 < r < R

1 1
R [voray = e o [ vy,
B(x,r) B(x,R)

Thus, lim,_, o4 r>7¢ S8y V(¥)dy = 0 and limg—oo R* 4 J3e.y V(3)dy = 0.
This implies that 0 < m(x, V) < oo.
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The validity of (2) and (3). for d > 3 is proved in [42, Proposition 1.8]. Hence, it
suffices to prove (4) for (2). and (3) to hold for all d > 1.

The fact that V satisfies both the Kato-type and the doubling condition are simple
computations. Since V satisfies the doubling condition in dimension d,

2r

[Teiz= [ [vorr+ - men)as
B((x,t),2r) —2r B(X,M)

1
= 2cD( / V(z)dz + r?1 / (1—02)(d_2)/2d0),
B((x,t),r) -1

which yields the claim upon noting that the last integral is bounded above by . For
the Kato-type condition, we first consider the case 0 < +/2r < R. Then we have

V(z)dz < / V(z)dz = 2r [ V(y)dy

B((x,t),r) BQx,r)x@—r,t+r) B(x,r)
c (2 ) r d—2+6 V( )d
seen(z5)
K R/ﬁ yyay
B(x,R//2)

d—1+6 ~
= CK<\/§%) / V(2)dz
B(x,R/2)x(t—R/~/2,t +R/~/2)
d—1+6 ~
< CK(«/E%) / 7(2)dz.
B((x,t),R)

R
V2

f V(z)dz < / P(z)dz < («/E%)‘HH / 7(z)dz.

B((x,t),r) B((x,t),R) B((x,t),R)

The bound is immediate if, on the other hand, <r < R, since

To show (3.4), we introduce the following maximal function

1

1
W = sup{r >0: _rd_2 / V(y)dy < CD},

o(x,r)
which is defined over cubes Q(x, r) centered at x and of sidelength r, rather than over

balls. Clearly, (3.4) holds true with C = 1 for m replaced by m . Thus, we only need
to show that m and m¢ are equivalent. For d < 2, the inclusion Q(x,r) C B(x,r)



Counting eigenvalues of Schrodinger operators using the landscape function 1453

and the positivity of V' yield immediately

1 1
V) = MoV’ and hence mQ()/cg, V) <
1

m(x, V). Reciprocally, let x € R? and let r = ﬁ Then for any R > C¢'"r,

Co = s [ YOIy = () s [ VI

(r/2)4-2 R/ (R/2)42
B(x,r/2) B(x,R/2)
< Rd_zjnVOOdy
O(x,R)

where we used (2.1) in the second inequality, and the fact that B(x, R/2) C Q(x, R)

in the third. It follows that < Cé/gr andsomg(x,V) > % u
K

1
mo(x,V) —
Let f € L%°(R¢) be compactly supported. We call u + a Lax—Milgram solution of
A+Vu=f

if uz is in the form domain # of H and

/ (Vuy(y) - Vo) + V(o ur ()v()dy = / FOWO)dy
R4 R4

for all v € J. Note that

g = {v e ' ®: [ Vo < oo},
Rd

see [11, Theorem 8.2.1]. The following proposition yields estimates for Lax—Milgram
solutions.

Proposition 3.2 ([42, Theorem 0.8, Theorem 2.16]). Let d > 3 and assume V satis-
fies the conditions of Theorem 2.1. For every x € R? there exists a function Ty (x,-) €
LfZ)C(Rd),for 1 < p <d/(d —2), such that for all f € L®(R?) with compact sup-
port and [ > 0, the unique Lax—Milgram solution uy of (—=A 4+ V)u = f can be
written as

up (x) = [ Ty (v, ) f()dy (3.5)

R4
for almost every x € R¥. Furthermore, one has the kernel estimate

Ce—£(1+|x—y|m(x,V))k0+l Ce—s(l+\x—y|m(x,V))1/(k0+”

<Ty(x,y) =< (3.6)

|x —y|d2 |x — yld=2
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Proof. Existence and uniqueness of Lax—Milgram solution follows directly from the
Lax—Milgram theorem on the form domain # equipped with its standard inner prod-
uct (v, w)ge = (Vv, Vw)2gay + (VVo, \/Vw>L2(Rd). The representation of the
Lax—Milgram solution in terms of the integral kernel I'y was shown in [42, Theo-
rem 2.16] and the estimate in terms of the Fefferman—Phong—Shen maximal function
follow from [42, Theorem 3.11, Remark 3.21, Theorem 4.15]. [

In what follows, we will also consider weak solutions of (—A + V)u = f for
f € L} (R?), namely a function u s such that

loc

/ ur (D) + V() dy = / FO0)e()dy

R4 R4

forall ¢ € Ccoo(Rd).

We shall now construct the landscape function in infinite volume. This is an
alternative and simpler approach, valid in the present setting, than that of [33, Theo-
rem 1.18].

Proposition 3.3. Let V be as in Theorem 2.1. Then there exist constants ¢, C > 0
depending only on Cx, Cp, § and d, and a weak solutionu € H! (R4) N C°(R?) of

loc
(—A 4+ V)u = 1 such that

<u(x) <

c
CENG oo

m(x, V)2’
for almost every x € R4.

For later purposes, we immediately note that the proof of the proposition yields the
following ‘finite volume’ result. If 4 > 3 we denote by u;, the Lax—Milgram solutions
of

(A +Vup = ]lB(O,L)- (3.8)

Then

<up(x) <

C
G S (3.9)

m(x, V)2’
for almost every x € R?. We remark that all the results work equally well if we
replace the indicator function over balls by indicator function over other compact sets
{Qr : L € N}suchthat @ € Qj for L < Land |J; ., 2L =RY.

Proof. First we consider the case d > 3. Denote by u, the Lax—Milgram solution (3.8)
given by Proposition 3.2. As 1p(o,1,) — 1B(o,L,) = 0 for L, > L1, we get from (3.5)
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that (u7)r>1 is monotone increasing almost everywhere. On the other hand, it is
essentially bounded since

0<ur(x) <

C / e—e(1+ly)!/kotD G

dy =
m(x. V)2 yliz P T vy
]Rd

for almost every x € R4 by (3.5)—(3.6). Thus, we can define
u(x) = lim uyp(x).
L—o0

As uj, are Lax-Milgram solutions of (—A + V)uy, = 1p(o,1), one easily checks that
u is a weak solution of (—A + V)u = 1. The lower bound for u follows from the
lower bound in (3.6).

We show now that u € lec(Rd) for d > 3. Fix any ball B € R¢ and a smooth
cut-off function yp € C2(R?) such that yp = 1 on B. As ypuy, € dom(H'/?) and
ur is a Lax—Milgram solution of (3.8), we get

/ Vur - V(xpur) + / Vur(xpur) = / urxelpo.r)-
R4 R4 R4
The product rule for Sobolev functions yields
/VUL -V(xpur) = / |Vur >z + / Vurg - (Vxpur.
R4 R4 R4

Using integration by parts for the second term on the right-hand side yields

/ Vur - (Vypus = — / (Axs)i? +uL (V) - Vuw).

R R
Thus, we get
1
/quLI2 < /)(BIVMLI2 = /ULXBHB(O,L)_/VXBU% +§/(AXB)14%-
B R4 R4 R4 R4

Hence, there exists a constant C > 0 depending only on the dimension such that

/(|VuL|2+Vuz) gfuLJrC/u{
B

2B 2B

for all balls B and all L > 0. By (3.9) and (3.3), we get that (Vuy)r>; is uniformly
bounded in L?(B) for fixed B. Therefore, by Banach—Alaoglu, there exists a subse-
quence uy, converging weakly to some gg € L2(R?). One readily checks that gg is

the weak derivative of u and hence u € H,! (R%).
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Next, we consider the case d = 2. For this, we use Hadamard’s method of descent.
Recall that V(x, 1) = V(x) for (x,7) € R x R. By Lemma 3.1, the function V/ satis-
fies (2.1)—(2.2), and therefore the first part yields a weak solution i of (—A + V)il = 1
onR3. Let @ € R. One readily checks that v7 (x,¢) = i (x,t + «) is a Lax-Milgram
solution of (—A + V)L = 15(0.0.4).2)- Thus, by (3.5), we have

TL(x.t+a) = / Co (6. 1) ) Laco.0.2) (7).
]R3

As Ty((x,1),-) € L'(R?) by (3.6), we get by dominated convergence

u(x,t +a)= Llim ur(x,t +a) = /Fg((x,t),y)dy = u(x,1).
—00
R3

Hence, for almost every x € R? there exists Cy such that for almost every t € R
we have #i(x,t) = Cy and we define u on R? by u(x) = Cy. Let ¢ € CZ(R?) and
¥ € C°(R) with [ ¥(r)dt = 1. Then, as [ ¥"(1)dt = 0 and i is a weak solution
of (—A + V)it = 1 on R3, we get

/ U (A + V()p(x)dx = / A0 1) (= + T ) () () dxdr

R2 R3

~ [wtwi = [ pwoax.

R3 R2

Therefore, (—A + V)u = 1 is a weak solution on R?. Inequality (3.7) follows from
(3.4). As shown before, we have @ € H,! (R?) and [Vu(x)| = |Vi(x,1)] as u(x,1)
is independent of . Hence, u € H,! (R?).

The case d = 1 follows similarly to the case d = 2.

Finally, continuity follows from [27, Corollary 1.5]. |

We point out that the weak solution u constructed above does in general not belong
to the form domain of H, and we will therefore often have to work with the Lax—
Milgram solution vy, instead of u. If V' is a polynomial, the maximal function m(-, V)
is equivalent to the function introduced in [46, 54]

M(x. V)= [0%V(x)|/1e1+2), (3.10)
aeN(’}

see (5.4) below. The sum is of course finite for a polynomial. We now consider
V(x) = |x|? on R?. Then M(x, V) is comparable to 1 + |x| and hence, by (3.7)
and (5.4), u(x) is comparable to (1 + |x|)~2 which is not square integrable for d > 2.
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In Lemma 5.3 we show that the landscape function, for polynomial potentials, belongs
to the form domain if and only if the landscape function is integrable.

The equivalence of the landscape function and the Fefferman—Phong—Shen max-
imal function exhibited in Proposition 3.3 allows one to prove a Harnack inequality
for the landscape function, see also [33, Corollary 1.38] for the case d > 3.

Corollary 3.4. Let V be as in Theorem 2.1. Then there exists a constant Cy > 1,
depending only on Cx, Cp, 8, and d, such that for almost every x € R? and almost

everyy € Q(x,2+/u(x)) we have
CH_lu(x) <u(y) < Cgu(x). (3.11)

Proof. This follows immediately from (3.2) and (3.7). [ ]

4. Proof of Theorem 2.1

In this section we show that we can estimate the rank & ¥ (1) of the spectral projection
of H in terms of the measure of the sublevel set V(i) of the effective potential %
both defined in Theorem 2.1.

For this, we introduce two types of coarse-grained volumes. A box of sidelength
£ is a set of the form de=1 [a;, b;] where b; — a; = £. For any £ > 0, we consider a
collection € of boxes of sidelength £ such that | Jyeq, O = R4 and Qc> N Qo’ =0
whenever Q # Q’. We define for any u > 0

1
N(p) = HQ €Q,-12 .1IQ1f; < /,L}‘
and

El

ne = {0 €@ S‘ﬁ <)

where infg, supy denote the essential infimum, respectively the essential supremum.

For the class of potentials considered here, namely those satisfying the Kato-type
and doubling conditions, both coarse-grained volumes are directly related to the mea-
sure V() of the sublevel set. We now pick the cubes in @, as having their corners on
eze.

Lemma 4.1. Let V satisfy the conditions of Theorem 2.1. Then
n(w) < pd2V(u) < N(u) < n(2Moe2Cul )

forall p € R.
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Proof. The first two inequalities are immediate as, up to null sets, n(u)/u?/? is the
measure of all boxes that are strictly contained in the sublevel set {1/u < u} and
N(w)/ /2 is the measure of all the boxes that intersect the sublevel set.

With our specific choice of cubes, the smaller ones are completely included in
exactly one larger one and hence, N(u) < n(2M°g2 Culyy), ]

We now turn to the proof of the main theorem, namely the bounds (2.3). Our
arguments are variational and adapted from the proofs of [10], which are themselves
inspired by Fefferman and Phong [12]. We start with the upper bound.

Lemma 4.2. Let V satisfy the conditions of Theorem 2.1. Then
N (1) < N(Cp)
forall C > max{2, 24} and all 1 € R.

Proof. In order to have that N V(/L) < N it suffices, by the Min—-Max principle (see
[35, Theorem XIII.2]), to exhibit a subspace #y  dom(H /2) with codimension at

most N such that
/<|w|2 +VP) > u/ of?
]Rd

R4

— :1n y
(( /‘L) 1/2

Hn = {vedom(Hl/z):/v=OforallQ e.‘F}.
Qo

Since the cubes are disjoint, the codimension of # is equal to || = N(Cpu).
First, we want to show that

1
(A + V), 0)2ray = <§¢’¢>L2(Rd) b

forallp € C° (R?). We start by considering d > 3. Denote by 1, the Lax—Milgram
solution of (3.8). By (3.3) and (3.9) we know that 1 /u; € L2 (R%) N Hl(l)c(]Rd), using

loc

the chain rule for Sobolev functions [25, Theorem 6.16]. This readily implies that
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|¢|?/uy is in the form domain of H for all ¢ € Cf°(Rd). As uy is a Lax-Milgram
solution of (3.8), we get

2 2 1
/(w,v('“”' >+VMLI¢| )=/ BO.L)| 2
uy, uy, uy,
R4 R4

Furthermore, using the product rule [25, Lemma 7.4] yields
Vur - V(lg*/ur) = |Vo|* —ui |V(p/ur)*.

Combining the last two equalities and taking L. — oo implies (4.1) for d > 3.

Ford <2, weset V(x,t) = V(x) forall (x,7) € R x R34 and denote by i the
landscape function of V. Let ¢ € Cc°°(Rd), Yy eCX (R3?) with Jr3—a ¥()dt =1
and (¢ ® ¥)(x,1) = @(x)¥(t) for all (x,7) € R? x R3¢, Then we have by the
previous computations for d = 3

(A + V)9, 0)2may = (A + V)@ @ V). 0 ® V) 2®3

1 1
> (— =\
- <‘l} (90 ® W)’ 4 ® 1//>L2(R3) <u¢’ g0>L2(]Rd).

The bound (4.1) extends, for all d > 1, by density of C>®° (R?) in the form domain
of H (see [11, Theorem 8.2.1])toall v € dom(Hl/z). This implies that

1

2 (9ol + vioPy = [(1VeP + L 1oP?)
u

R4 R4

for all v € dom(H '/2). With this, the statement of the lemma follows from the claim
that if v € #Hy \ {0}, then

1
/(|Vv|2+;|v|2) >2u/ P
R4 R4

We check this inequality using the partition into boxes. In any box Q ¢ ¥, we simply
use the bound ming 1/u > Cu. If Q € ¥, we recall that the integral of v vanishes
and use the Poincaré inequality with optimal constant %Z(C W) since the boxes have
sidelength (C u)_l/ 2, see [32]. Hence, the claimed lower bound holds for all C >
max{2, 721—%} indeed. ]

Next we turn to the lower bound in (2.3).
Lemma 4.3. Let V satisfy the conditions of Theorem 2.1. Then
n(p) < NV ((1+ (4Cu)*)p)

forall p € R.
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Proof. For alowerbound N < NV (Cp), it suffices, again by the Min—-Max principle,
to find a subspace #Hy < dom(H 1/2) of dimension at least N such that

/(|Vv|2 VP < CM/ ol
R4 R4

We define
1
F = {Q €@, -1/2 sup— < ,u}.
10) u

Furthermore, for a box Q we pick yo € H'(R¥) with0 < yo < 1,||Vxo | Loo Ry <
4put/2, Xo =1on Q/2and yp =0 on R4 \ Q (a possible choice for Xo is to
interpolate linearly from d(Q/2) to dQ). Since the functions ygu are non-zero and
orthogonal to each other, the space

Hn =span{you: Q € ¥}
is of dimension |F | = n(u).

By Proposition 3.3, we have u € H,! (R4) N L% (R¥) and thus Xou is in the

loc loc
form domain of H . Using the product rule for Sobolev function [25, Lemma 7.4] and

the fact that u solves the landscape equation, we get for all ¢, € C° (R%)

(Vu), Vo) 2ray + (Yu, Vo) 2ra)
= (Vu, V(¥ 9)) 2ray + (U, VY @) 2ray — (Vu, (VY)@) 12 (ra)
+(VY)u, Vo) 12ra)
= (V. @) r2way — (V. (VY)@) p2way + (VY)u, Vo) 2 Ray.

Now, we pick a sequence (¢, )nen S C° (R?) such that

supp(gn) €20, sup [|¢n|lpooay < 00
n
and ¢, — youin H'! (R?) and a similar approximation ,, — Xou and we get

/ (Vo) + Vidu?) = / (B + [VxoPu?)
R4 R4

and in turn

1
/(|V(XQ“)|2 + Vypu?) < (sgp ;)/nguz +42M/u2
Rd )

fu(/)(zgu2+42/u2).
0 Q
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Now, (3.11) implies that

[ <101sw <101 intessut <& [ w2 <€ [ g,
2
2 . 0/ R

where the last inequality follows from the properties of y . This yields the claim we
had set to prove. u

Together, Lemmas 4.2 and 4.3 yield the claim of Theorem 2.1. Finally, we prove
Corollary 2.2.

Proof of Corollary 2.2. If u vanishes at infinity, i.e., lim supg_, o SUpga\ g(o,z) ¥ = 0,
then each sublevel set of 1/u is bounded up to a null set and thus H has discrete
spectrum by (2.3). Assume on the other hand that u does not vanish at infinity.
There is ¢t > 0 and a sequence of points (x,),>1 such that lim, . |x,| = oo and
liminf, o+ infp(y, ¢ U > % for all n. Then by (3.11) we have

U Q. 2V Cu/p) S {x e RY - 1/u(x) < )

n>1

and hence, by (2.3), the spectrum of H is not discrete. ]

5. The case of polynomial potentials

When the potential V' is a polynomial, as in the original setting of Fefferman and
Phong, one can obtain more precise information of the landscape function. We start
by giving the proof for Corollary 2.3.

Proof of Corollary 2.3. Since the addition of a constant does not change the structure
of the spectrum, we assume that the polynomial satisfies V' > 1. We check first that
these polynomials satisfy (2.1) and (2.2). Condition (2.1) holds with § = 2 due to the
inequality

c sup V < / V(y)dy < sup V,
B(x,r) |B( B(x,r)
B (x,r)

where ¢ can be chosen to depend only on d and the total degree of V', but neither
x nor r. The upper bound is immediate. It is enough to show the lower bound for
r = 1 and x = 0 by scaling and translation. In that case, the claim follows from the
fact that the space of all polynomials in d variables and total degree at most D is a
finite-dimensional vector space and thus all norms are equivalent.
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For the same reason, and since polynomials are analytic functions, there exists a
constant C > 0 depending only on d and D such that

[voar=c [voa,

B(0,2) B(0,1)

which implies doubling after rescaling and translation. In particular, Cp can be chosen
to only depend on d and D.

Now, Corollary 2.2 and (3.7) imply that the spectrum of H is discrete if and only
if lim|y|—oo m(x, V) = co. For polynomials the Fefferman—Phong—Shen maximal
function m(x, V') is in fact equivalent to M (x, V') introduced in (3.10), in the sense
that

cMx,V)<m(x,V)<CM(x,V). 5.1

The equivalence was already noted in [40] and we provide a proof below for com-
pleteness, see Lemma 5.4.

With these preliminaries, we can now turn to the central claim of the corollary. If
one of the directional derivative vanishes, then —A + V' is unitarily equivalent (via a
suitable rotation) to —A + W where d; W = 0. In this case, M((¢,0,...,0), W) =
M (0, W), which implies by the remarks above that the spectrum of —A + W is not
discrete and hence also the spectrum of —A + V' is not discrete.

Next, we are going to show that if —A + V' does not have discrete spectrum,
then some directional derivative of V' vanishes identically. As —A + V' does not have
discrete spectrum, we must have that

lliminfM(x, V) =: My < o0. (5.2)

x|—o00
We consider the semi-algebraic set
A={x eR?: (3V(x)? < 2MZ?HD for all « € N?}
and the polynomial function
F:RY > ROV (s (0“V(x)?) gefo.p]d 2 -

Now, (5.2) implies that A is an unbounded set and we can therefore pick a sequence
(x("))neN C A such that |x(")| — 00 and

Jim F (™) =1y = (Vo) gepo, 0} 24

with |y | < MZ@TD.
Next, we would like to pass from a mere sequence to an analytic curve. This is

done by the following curve selection lemma at infinity.



Counting eigenvalues of Schrodinger operators using the landscape function 1463

Lemma 5.1 ([17, Lemma 2.17]). Let A C R? be a semi-algebraic set, and let the
function F': R4 — RN be a semi-algebraic map. Assume that there exists a sequence
(X("))neN C A such that lim,,_ s |x(”)| = 00 and limy,_ s F(x(")) =ye(RU
{+00})N. Then there exists an analytic curve y: (0,8) — A of the form

o0
y(6) =Y aPt/ (5.3)
j=—m
such that a©™ € RN \ {0}, m € Z~¢ and lim,_, o+ F(y(t)) = y.

Let y be a curve as given by the previous lemma. We would like to say that V
remains constant along y and thus get a direction in which the gradient of V' vanishes
identically. However, analytic functions can remain bounded on an unbounded set
without being constant. Thus, we truncate the series (5.3) at j = 0, thereby obtaining
a polynomial approximation of the curve y, and F' will still remain bounded along the
truncation.

Lemma 5.2. For every e > 0, there exists C > 0 such that for all v € R? with |v]| < &
we have for allt € (0,6/2)

0=<V(y@)+v)=<C.

Proof. By Taylor’s theorem, V(y(t) + v) = ) _,end %(8“ V)(y(¢)). The claim fol-
lows from the fact that [(0* V)(y(¢))| are all uniformly bounded for ¢ € (0,5/2). m

With this, we define polynomial function
m
G(s) = Za(_’)sf.
j=0

Note that every component of G is single variable polynomial. For every ¢ > 0 there
exists 0 < §; < § such that

() - GE™) <3
for all ¢ € (0, é.), and hence by the previous lemma

0<V(GE YY) <C.
Let now

P(s,x1,...,xq) = V(G(s) + x).
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For s > é and |x| < £, we get
0<P(s,x1,...,x9) <C

again by Lemma 5.2. Now, for any |x| < £, the function s > P (s, x) is a polynomial
that is bounded on an unbounded interval and thus constant. Therefore, d5 P (s, x) =0
on R x B, /,(0). By the identity theorem, we get that 95 P(s, x) = 0 on R?*1. But

0=0sP(s,x) = (VV)(G(s) + x) - G'(5).

As G is not constant, there is so € R such that G'(s9) # 0 and so the derivative of V
in direction G'(so) vanishes identically. ]

As mentioned before, the landscape function will not belong to the form domain
of H. For polynomial potentials, there is an easy criterion to check whether u €
dom(H/?).

Lemma 5.3. Let V > 0 be a non-zero polynomial. Then u € L' (R%) if and only if
u € dom(H/?).

Proof. AsV is smooth, we get by standard elliptic regularity theory that the landscape
function is a classical solution of the landscape equation. Multiplying the landscape
equation by ¢ € C° (R?) and integrating yields after integration by parts

/(p|Vu|2+/Vu2(p: /ugo—i—/uz(A(p).
R4 R4

R4 R4

We saw in the proof of Corollary 2.3 that either lim| |, o #(x) = 0 or that there is one
spatial coordinate along which u is constant. Hence, if u € L'(R?), then u vanishes
at infinity and automatically u € L>(R¢). However, then we can choose a sequence
of g, € C2°(R?) converging to 1 and obtain by monotone convergence

/(|Vu|2+Vu2)§/u+C/u2<oo
R4 R4 R4

and therefore u € dom(H '/?).

On the other hand, if u € dom(H!/?), then u € H'(R?) and in particular u €
L?(R%). Thus, we can take again a suitable sequence of test functions to obtain by
dominated convergence

/u=/|Vu|2+/Vu2—/u2<oo,
R4 R4 R4 R4

namely u € L'(R?). n
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Let us now return to the concrete example of Simon’s potential V(x, y) = x2y2.
First of all, we can now prove that the corresponding landscape function is in the form
domain of —A + V. Combining Proposition 3.3 and Lemma 5.4, it is enough to check
that M (-, x2y?)72 € L' (R?). An explicit calculation yields M ((x, y),x2y?) > |xy| +
\/m + \/m + 1, and thus its inverse is indeed square integrable in R?. Similarly,
we obtain the following two-sided estimate on the effective potential:

c(?y? + x|+ yl+ 1) < < C(*y* + x|+ |yl + D).

u(x, y)
This yields for u sufficiently large
g 2 g 0
Ll (— —H eR2:1<x<-t o< <—}‘<v .
3¢ 8 3c) (x.) S¥=3e 0=y sgay =V
we have

Vw = 1+ 4f{eny) € [LE ] xRoo s 2?2 4+ x| + Iy + 12 £}
1+4‘{x y)e[ —]xRZoz|xy|§%H

=14+ 47M log(%).

IA

The combination of those two estimates with Theorem 2.1 recovers Simon’s asymp-
totics [44, Theorem 1.4]

NP2 (1) = = log() + o(u¥/? log(p)).

up to multiplicative constants.

We conclude this section with a proof of the equivalence of the functions m(:, V)
and M (-, V') in the case of polynomials. We point out that the arguments in this section
show that in the case of polynomials, the constants appearing in Theorem 2.1, and a
fortiori the Harnack constant, depend only on the spatial dimension and the degree of
the polynomial.

Lemma 5.4. Let V > 0 a polynomial on R? of total degree D > 0. Then there exist
constants C, ¢ > 0 depending only on d, D such that

cMx,V)<m(x,V)<CM(x,V), 5.4)
where m(-, V), M(-, V) were defined in (3.1) and (3.10).

Proof. By translating the potential, we can pick x = 0. Furthermore, for all A > 0 we
have m(x, V3) = Am(Ax, V) and M(x,V3) = AM(Ax, V), where V3 (x) = A2V(Ax).
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Hence, we can assume that M (0, V') = 1 and then need to show that there exists ¢ > 0
depending only on d, D such that m(0, V) > c.
Since V + 9%V is a linear map on a finite-dimensional space,

0°V(©0)] = sup [0*V(x)[<c sup [V(x)],
x€B(0,1) x€B(0,1)

and so

I=M©O.V)< Y (¢ sup V(x)l+2

aeNg x€B(0,1)
<c(( sup V)24 ( sup V(x)V P,
x€B(0,1) x€B(0,1)

Hence, we have sup,cp(,1) V(x) > ¢ > 0.Forr > 1, we get

cr2 5}’2

up V) = [ VO,
x€B(0,r) r
B(0,r)

Recall that Cp can be chosen to only depend on d, D, therefore the right-hand side is
greater than Cp, for r large enough, which yields an upper bound on m. Hence,

m(0,V)>c=cM(,V).

We turn to the lower bound. First of all, a simple Taylor expansion yields (see [46,
Lemma 2.5])

0°V(y)| < CM(x, V)*F2(1 4 |x — y|[M(x, V)P,
so that
M(y. V) < CM(x,V)(1 + |x — y|M(x, V)2, (5.5)
for all x, y € R?. Thus, if m(0, V) = 1 then
G5+ Pm©.v)* = [Vidy < 1BO.D] s V()

B(0,1
B(0,1) yeB@©.1)

<|B(0,1)] sup M(y,V)?
y€B(0,1)

< C?M(0,V)**P,

by (5.5), which again yields the desired estimate by translating and rescaling. ]
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6. The potential well

In this section we explicitly compute the landscape function for potential wells
elp(o,8)c, where B(0,8)¢ = R4 \ B(0,48) and &,§ > 0. We shall observe first of all
that the minimum of the effective potential properly reflects the value of the bottom of
the spectrum in the sense that both are of order ¢ as ¢ — 0. Secondly, we will see that
the estimates of the main theorem are not tight enough to distinguish the difference
between d = 1, 2, where an eigenvalue is present for all ¢ > 0, and d > 3 where this
is not the case.

We start by observing that the landscape function corresponding to the spherical
well are radially symmetric. Indeed, all the Lax—Milgram solutions (3.8) are invariant
under rotation of the first d variables and thus the landscape function, given as a
pointwise limit of those solutions, shares the same symmetry. Passing to spherical
coordinates, we see that the radial part f(]x|) = u(x) solves the ODE

d—1
—f"(r) = Tf/(") + elfs,00)(r) f(r) =1
on (0, 00). The general solution of this ODE on (0, §) is given, for d # 2, by
7'2 as
f(’"):_ﬁ‘f‘al +rd—_2,

respectively by the same expression with r~@~2) replaced by log(r) for d = 2. As
lim, o+ f(r) =lim,_, o+ u(re;) = u(0), we conclude in the case d > 2 that a, = 0.
The same follows for d = 1 as u is even and C ! (R).

On the other hand, on (8, c0), the general solution is given by

1 _d 14 d
f(r) = z +b1r' T K ypapa(Ver) + bor YT L (Ver),

where [I,,,, K, denote the modified Bessel function of the first, respectively the second
kind. We have lim; s o0 I (r) = 00 and limy— oo K (r) = 0 form > —1/2 (use [1,
(9.6.10) and 9.6.23] and K_1 /5 (x) = /me ™™ /~/2x, I_12(x) = ~/2cosh(x)//7x).
As 0 is not in the spectrum of —A + el (g s)c, we get that u is bounded and hence
b, = 0. This yields
2
—— +ai, r €(0,9),
foy=1,2
- +bir' T2 K i 1apa(Ver), e (8, 00).

Finally, the coefficients can be determined by the fact that f € C!(R~¢). In dimen-
sions d = 1, 3 the Bessel functions can be expressed in elementary functions and the
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solutions are given by

X2 1§ 82
Sttt X =6

u(x) = ! 2 5 e Ve
TPV (B4R )] > §
s+ﬁe , | x|
ford = 1 and by
x> 1 /1 1
—— -+ -+ —— <4
4+ (6+1+¢§3)’ x| <6,
u(x) = (6.1)

5§ e vElxl-9)
-+
e 1+ /&b | x|

: x| > 8

ford = 3.

In all dimensions, we have that u is radially symmetric and its radial part is mono-
tone decreasing (even exponentially). Furthermore, we have lim|y|— o u(x) = % This
implies that the sublevel set V() of the effective potential 1/u is monotone increas-
ing, remains finite for u < ¢ and lim,, .~ V(1) = oo. This is consistent with the fact
that the bottom of the essential spectrum is € and ¢ < 1, C > 1 in Theorem 2.1.

For d = 1, the smallest eigenvalue o of —A + elp(o,s)c, for 0 < e sufficiently
small, is the smallest positive solution of

VE = o = /1o tan(/1o).

Thus, for § > 0 fixed, we obtain g = (1 — O(+/¢)) as ¢ — 0T. As discussed at the
beginning of the section, this is the same asymptotic behaviour as that of the minimum
of 1/u, see (6.1). The same holds for d = 3 where however the bottom of the spectrum
is the bottom of the essential spectrum, namely N (1) = 0 for . < ¢ and N () = o0
for u > e. Here, V() is arbitrarily large for © — &=, showing that ¢ < 1in (2.3).
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