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A uniqueness result for the Calderón problem for
U.N/-connections coupled to spinors

Carlos Valero

Abstract. In this paper we define a Dirichlet-to-Neumann map for a twisted Dirac Laplacian
acting on bundle-valued spinors over a spin manifold. We show that this map is a pseudodif-
ferential operator of order 1 whose symbol determines the Taylor series of the metric and
connection at the boundary. We go on to show that if two real-analytic connections couple
to a spinor via the Yang–Mills–Dirac equations with appropriate boundary conditions, and have
equal Dirichlet-to-Neumann maps, then the two connections are globally gauge equivalent in
the smooth category. In the abelian case, the global gauge equivalence is in the real-analytic
category.

1. Introduction

In this paper, we consider a Calderón inverse problem for unitary connections on
Hermitian vector bundles over spin manifolds that couple to spinor fields via the
Yang–Mills–Dirac system. In particular, we consider the Dirichlet-to-Neumann map
for the twisted Dirac Laplacian acting on vector-valued spinors, and investigate how
the introduction of the spin structure affects the recovery of the metric and connection
from boundary data.

The Calderón problem has its origin in the physical question of whether one can
determine the conductivity of a medium by making measurements on the boundary
of potential functions and the induced currents. Geometrically, this corresponds to the
question of whether one can determine the metric on a manifold with boundary, up to
isometry, from knowledge of its Dirichlet-to-Neumann map, which sends a function
on the boundary to the normal derivative of its harmonic extension. Much work has
since been done on the Calderón problem for the scalar Laplacian; we refer the reader
to [20], or the more recent [5, Section 1], for a survey of uniqueness results in the
literature.
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Many natural extensions of this problem arise when one considers other important
second-order elliptic operators induced by some geometric structure. For example,
one may fix a vector bundle E over a Riemannian manifold .M; g/ with bound-
ary, and consider a connection r on this vector bundle. One may then ask to what
extent the Dirichlet-to-Neumann map for the connection Laplacian r�r determines
the connection, up to gauge equivalence. This problem has been studied in a few
recent works, in which a number of uniqueness results are proved. In [11], a Rieman-
nian manifold, Hermitian vector bundle, and connection are reconstructed from the
hyperbolic Dirichlet-to-Neumann map associated to the wave equation of the connec-
tion Laplacian. In [3], the elliptic Dirichlet-to-Neumann map is considered, and it is
shown using methods of complex geometrical optics that the Dirichlet-to-Neumann
map for a connection Laplacian determines the connection up to gauge for a class of
vector bundles over special Riemannian manifolds, namely conformally transversally
anisotropic manifolds with injective ray transform. Using new methods of geometric
analysis and Runge approximation, Cekić shows in [4] that a Hermitian vector bundle
and Yang–Mills connection can be recovered, up to gauge transformations, from the
Dirichlet-to-Neumann map of its connection Laplacian. Finally, in the recent pre-
print [7], the authors reconstruct a Euclidean vector bundle and connection from the
connection Laplacian Dirichlet-to-Neumann map when all of the data is real-analytic
and the dimension of M is at least 3.

On the other hand, inverse boundary problems for first-order Dirac operators have
also been studied in the literature. One important uniqueness result is due to Kurylev
and Lassas [10] who showed that a Riemannian manifold and super-vector bundle
can be recovered from the spectrum and eigenfunctions of the corresponding Dirac
operator on the boundary. There are also many works that consider the problem of
recovering magnetic potentials from boundary data corresponding to first-order Dirac
operators. Much in the spirit of the present paper, Salo and Tzou [16,17] have shown,
using the method of limiting Carleman weights, that a potential and magnetic field
can be recovered from the Cauchy data of an associated Dirac equation over a com-
pact domain in Rn. In the terminology used in the present paper, the magnetic field
corresponds to the curvature of an abelian connection.

In this paper, we consider the question of determining a U.N/-connection A up to
gauge equivalence, from the Dirichlet-to-Neumann map of the twisted Dirac Lapla-
cian /D2A. More precisely, we consider a compact spin manifoldM with boundary @M ,
and a Hermitian vector bundle E over M . Then the Dirac operator /D of M can be
defined, acting on its bundle of complex spinors S . Now, given any connection A
on E, we may endow the bundle S ˝E with the connection !s ˝ A, where !s is the
spin connection on S , induced by the Levi-Civita connection. With this connection,
we may define a twisted, or covariant, Dirac operator /DA, which like /D is a first-order,
elliptic, and self-adjoint operator acting on sections of S ˝E.
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In order for the Dirichlet problem to be well defined, we consider the square of this
operator, /D2A. The Dirichlet-to-Neumann map associated to /D2A can be thus defined by
sending any section � of S ˝Ej@M to the covariant normal derivative of its harmonic
extension with respect to /D2A. It is straightforward to generalize this to include non-
zero mass terms and zeroth-order potentials, provided that the Dirichlet-problem is
well defined. We summarize with the following definition.

Definition 1.1. Let M be an n-dimensional compact spin manifold with boundary
@M , and let g be a Riemannian metric on M . Let S be the spinor bundle associated
to some fixed spin structure on M , and let E be a Hermitian bundle of rank N on M .
Let A denote a U.N/-connection onE, and letZ be an endomorphism of S ˝E. For
any m 2 R such that m2 … Spec . /D2ACZ/, we define the Dirichlet-to-Neumann map

ƒg;A;Z;mWC
1.S ˝Ej@M /! C1.S ˝Ej@M /

as follows. For � 2 C1.S ˝Ej@M /, we may solve the Dirichlet problem´
/D2A ' CZ' �m

2' D 0;

'j@M D �;
(1.1)

to obtain a unique solution ' 2C1.S ˝E/. We then defineƒg;A;Z;m.�/´rA� 'j@M
where � is the inward unit normal to @M .

We will often suppress subscripts on the Dirichlet-to-Neumann map that are under-
stood to be fixed, and indicate only the relevant ones. For example, when we recover
the connection with the background metric, mass parameter, and endomorphism fixed
in Section 4, the Dirichlet-to-Neumann map is simply denoted ƒA.

Remark 1.2. The Dirichlet-to-Neumann map can be extended to a map

ƒg;A;Z;mWH
1
2 .S ˝Ej@M /! H�

1
2 .S ˝Ej@M /;

where for any vector bundle E and s 2 R, H s.E/ denotes the Hilbert space of
s-Sobolev sections of E . That is, H s.E/ denotes the space of distributional sections
of E that are represented by a tuple of H s functions in any smooth local trivializ-
ation. Indeed, there is a natural weak formulation of Definition 1.1 if we introduce
a modified Dirichlet-to-Neumann map yƒg;A;Z;m as follows: for any � 2 H

1
2 .S ˝

Ej@M /, we can again solve (1.1) to obtain a unique ' 2 H 1.S ˝ E/. We then define
yƒg;A;Z;m.�/ 2 H

� 12 .S ˝Ej@M / by the property that

h yƒg;A;Z;m.�/; �i D

Z
M

h /DA '; /DA  i �
Z
M

h.m2 �Z/'; i
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holds for all � 2 H
1
2 .S ˝ Ej@M /, where  2 H 1.S ˝ E/ is any extension of �,

which exists by the standard trace theorems for Sobolev spaces [2, Section 11]. For
�1; �2 2 �.S ˝ E/, the Green’s formula for the Dirac operator [12, equation 5.7]
yields Z

M

h /DA �1; �2i D
Z
M

h�1; /DA �2i �
Z
@M

h.�/ � �1; �2i

where .�/ denotes Clifford multiplication by �. This implies that, when restricted to
smooth sections, yƒg;A;Z;m.�/ D �.�/ /DA 'j@M , and so differs from ƒg;A;Z;m.�/

as given in Definition 1.1 by tangential derivatives. In particular, we may say that
yƒg;A;Z;m and ƒg;A;Z;m contain the same information about the geometric data, such
as the metric and connection. In this paper, we thus are free to restrict ourselves to
considering ƒg;A;Z;m.

We note that there are some natural gauge invariances that arise from Defini-
tion 1.1, which shall be explored in greater detail in Section 2. The first is the gauge-
invariance of the connectionA. Recall that two connectionsA andA0 are called gauge
equivalent if there exists a unitary automorphism G of E, otherwise called a gauge
transformation, such that their covariant derivatives are related by

r
A0
D G�1 ı rA ıG: (1.2)

We say that A and A0 are locally gauge equivalent about a point x 2 M if there is
an open neighbourhood U of x such that the restrictions of A and A0 to U are gauge
equivalent.

It is easy to see that if there exists a G as in (1.2) with Gj@M D id, then one
has ƒg;A0;Z0;m D ƒg;A;Z;m where Z0 D .idS ˝G/�1Z.idS ˝G/. Indeed, if ' is the
solution to (1.1) for A, then .idS ˝G/�1' is the solution to (1.1) with A replaced by
A0 and Z replaced with Z0. Therefore, we have

ƒg;A0;Z0;m.�/ D r
A0

� ..idS ˝G
�1/'/j@M

D .idS ˝G�1/rA� 'j@M D ƒg;A;Z;m.�/:

Thus, given ƒg;A;Z;m D ƒg;A0;Z0;m, we can only every recover the connection up to
a gauge transformation that is equal to the identity on the boundary.

Going further, we would like to say that the Definition 1.1, inasmuch as it depends
on the geometry of the metric g, depends only on the isometry class of g. However,
since spin structures, and hence spinor bundles, are defined with respect to a fixed
metric, we must take care in relating the Dirichlet-to-Neumann maps of two different
metrics. In Section 2, we explain how a diffeomorphism ˆWM !M induces an iso-
morphism of associated spinor bundles ẑ WSˆ�g ! Sg . Then it is easy to prove that
the Dirichlet-to-Neumann map is diffeomorphism-invariant.
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Lemma 1.3. Let ˆWM !M be a diffeomorphism such that ˆj@M D id. Then

ƒˆ�g;A;Z0;m D . ẑ ˝ idE /�1j@M ıƒg;A;Z;m ı . ẑ ˝ idE /j@M ;

where Z0 2 End.Sˆ�g ˝E/ is defined by Z0´ . ẑ ˝ idE /�1Z. ẑ ˝ idE /.

Since we shall be primarily interested in the inverse problem for U.N/-connec-
tions on a Hermitian vector bundle, the diffeomorphism-invariance of the Dirichlet-
to-Neumann map illustrated in Lemma 1.3 will not concern us.

In this paper, we want to consider a Calderón problem for a U.N/-connection A,
which couples to an E-valued spinor � through some natural equations arising from
physics. To this end, recall that given a connectionA, one may define its curvature FA.
If P denotes the principal U.N/-bundle of unitary frames of E, then FA is an
ad P -valued 2-form. We can thus consider FA as a 2-form with values in skew-
Hermitian endomorphisms ofE. In physics, the curvature of a connection corresponds
to a force field; if the connection is abelian, then its curvature is the electromagnetic
field. Now, let m 2 R be such that m2 is not in the Dirichlet spectrum of /D2A. We then
assume that there exists an E-valued spinor � such that .A; �/ satisfies the following
second-order Yang–Mills–Dirac system:´

/D2A � D m
2�;

d�AFA D J.�/;
(1.3)

where the current J.�/ is an ad P -valued 1-form depending quadratically on � as
defined in equation (4.3) below. Note that, in contrast to the case of a scalar field,
the current for a spinor field does not depend on the connection A (see [1]). The
system (1.3) arises when a gauge field interacts with fermionic matter, as represented
by the spinor field �. In this paper we prove the following result.

Theorem 1.4. Let .M; g/ be a compact n-dimensional real-analytic spin manifold
with boundary, and let E be a real-analytic Hermitian vector bundle over M . Let A
andB be real-analytic U.N/-connections onE, and let � and  be smoothE-valued
spinors on M , real-analytic in the interior, such that .A; '/ and .B;  / both sat-
isfy the second-order Yang–Mills–Dirac system (1.3), and such that 'j@M D  j@M . If
ƒg;A;0;mDƒg;B;0;m, then near every point inM ,A andB are locally gauge equival-
ent via a real-analytic gauge transformation. Moreover, A and B are globally gauge
equivalent via a smooth gauge transformation. If N D 1, then A and B are globally
gauge equivalent via a real-analytic gauge transformation.

In other words, if a connection A couples to an auxiliary E-valued spinor � via
the second-order Yang–Mills–Dirac system (1.3), then by making boundary measure-
mentsƒA.�/ of other spinor fields, one can determine the curvature of the connection
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at any point up to conjugation. In the abelian case, one can determine the connection
up to gauge.

2. Preliminaries

In this section, we recall some of the basic tools and constructions that we need to state
the central problem and prove the main result. We review the construction of spinor
bundles and the Dirac operator in Section 2.1, and extend this to bundle-valued spinors
in Section 2.2. Lastly, we review a few key results from the theory of pseudodifferen-
tial operators in 2.3.

2.1. Spinors and the Dirac operator

In this section, we briefly recall some basic notions of spin geometry, such as Clifford
algebras, Spin manifolds, the construction of the spinor bundle on a Spin manifold,
and the definition and fundamental properties of Dirac operators. The important res-
ults for our purposes are the local formulae (2.1) for the spin connection, and (2.2)
for the Dirac operator. For details on the results presented in this section, we refer the
reader to [12].

Definition 2.1. The Clifford algebra C`n is the real associative algebra generated by
vectors in Rn, with a product � satisfying the relation

v � w C w � v D �2hv;wi

for all v;w 2 Rn, where h�; �i denotes the standard inner product on Rn.

Note that we have a natural inclusion Rn�C`n, which can be extended to a vector
space isomorphism ƒ�Rn ! C`n by fixing an orthonormal basis ¹eiºniD1 of Rn and
sending

ei1 ^ � � � ^ eik 7! e1 � � � ek :

In particular, we have dim C`n D 2n.
Clifford algebras play an important role throughout geometry and physics. One

reason for this is that C`n naturally contains the spin group Spin.n/, which can be
defined as a double cover of the rotation group SO.n/. That is, there exists a surject-
ive Lie group homomorphism �W Spin.n/! SO.n/ such that ker� D ¹1;�1º. Thus,
� is a 2-sheeted covering map.

Remark 2.2. It follows from the preceding that Spin.n/ is in fact the universal cover
of SO.n/ for n � 3, since �1.SO.n// D Z2 for n � 3.
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Definition 2.3. Let .M; g/ be an oriented n-dimensional Riemannian manifold
without boundary. A spin structure PSpin on M is a principal Spin.n/-bundle, which
covers the SO.n/-bundle of orthonormal frames ofM , in such a way that the covering
map is compatible with the 2-fold covering map �W Spin.n/! SO.n/. When such a
bundle PSpin exists, we say M is spin.

Remark 2.4. Not every oriented Riemannian manifold is spin. In fact, the obstruc-
tion to being spin is entirely contained in the second Stiefel–Whitney class of M .
Even when M is spin, the spin structure need not be unique. See [12, Chapter I, Sec-
tions 1–5] for details.

A spin manifold is endowed with a distinguished complex vector bundle S called
the spinor bundle. It is defined as follows. First, fix a spin structure PSpin on M . Let
�WC`n! End Ck be an irreducible C`n-module. It follows from the structure of C`n
that k D 2Œ

n
2 �. Then � restricts to a representation of Spin.n/, called the spinor rep-

resentation. The spinor bundle S is then the bundle associated to PSpin and the spinor
representation, S´PSpin �� Ck . The sections of S are called (complex) spinors. One
can also define real spinors but they shall not concern us here.

Remark 2.5. The spinor representations have the property that �1 2 Spin.n/ acts
non-trivially. Since �.�1/ D 1, where �W Spin.n/ ! SO.n/ is the 2-fold covering
map described above, it follows that the spinor representations do not descend to
representations of SO.n/. Therefore, the spinor representations are in some sense the
simplest representations that do not correspond to representations of SO.n/.

Since the typical fibre of S is a C`n-module, it follows that S is bundle of modules
over C`.M/, the Clifford bundle of M , which is defined by C`.M/x ´ C`.TxM/.
In particular, since TM � C`.M/, we have a map  W TM ! End S , called Clifford
multiplication. It is possible to endow S with a Hermitian metric such that .e/ is
skew-symmetric for all unit vectors e 2 TM . We assume S has such a metric hence-
forward.

So, far we have presented these definitions for a spin manifold without boundary.
A spin manifold with boundary M is defined to be any closed domain of a spin man-
ifold N , whose spin structure is the restriction of the spin structure on N . All of the
above definitions then extend to this setting.

Now, the Levi-Civita connection ! on the oriented orthonormal frame bundle of
M lifts to a connection !s on any given spin structure, which we call the spin connec-
tion. This connection induces a covariant derivative rs on sections of S , which can
be explicitly described with respect to a local trivialization as follows.

Let .ei /i be a local orthonormal frame for M , and let !ij be the Levi-Civita
connection 1-form with respect to this frame, defined by the property that if r is the
Levi-Civita connection on TM , then for all vector fields X in the domain of .ei /i , we
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have
rXej D !

i
j .X/ei ;

where here r is the covariant derivative on TM induced by the Levi-Civita connec-
tion. Note that here, and in the rest of this paper, we use the summation convention,
so that a sum is implied over any index that occurs once in the superscript and once in
the subscript. For clarity, however, we shall write the sum explicitly when the Clifford
multiplication map  is involved.

Now, this frame .ei /i can be lifted to a local section of the spin structure PSpin,
which we can regard as a local frame .�˛/˛ for S (although there is another lifted
frame, namely .��˛/˛ , the choice of lift is immaterial here). Then, with respect to
this frame of spinors, the spin connection takes the form

r
s�˛ D �

1

2

X
i<j

!ij ˝ .ei /.ej /�˛: (2.1)

The structure of a Clifford module allows us to define the Dirac operator /D on
sections of S as follows. For ' 2 �.S/, let .ei /i be any orthonormal frame in an open
set U . Then, in U ,

/D' ´
nX
iD1

.ei /r
s
ei
': (2.2)

This definition does not depend on the choice of orthonormal frame. The Dirac oper-
ator plays a crucial role in physics, where it occurs in the equations of motion for
spinor fields, which represent fermionic matter. The square of the Dirac operator sat-
isfies the famous Lichnerowicz formula,

/D2 ' D .rs/�rs' C
1

4
R';

where .rs/� denotes the formal adjoint of rs with respect to the L2-inner product,
and R is the scalar curvature of g. Thus, one can transfer questions about the Dirac
Laplacian /D2 to questions about the spin connection Laplacian at the expense of a
curvature term.

2.2. U.N/-connections and bundle-valued spinors

We now want to introduce an auxiliary Hermitian vector bundle .E; h/ equipped with
a connection A, whose curvature FA corresponds to some physical force. Moreover,
we want to introduce a mechanism to couple this connection to spinor fields, corres-
ponding to the physical interaction between the force field FA and fermions. If the
connection is abelian, then its curvature is the familiar electromagnetic field.
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Let .E; h/ be a Hermitian vector bundle of rank N , which is associated to its
bundle of complex orthonormal frames P , which is a principal U.N/-bundle. Con-
sider the bundle S ˝ E, the bundle of E-valued spinors, which is associated to the
spliced principal bundle PSpin �M P , defined to be��M .PSpin �P / where�M WM !
M �M is the diagonal embedding. It has structure group Spin.n/ � U.N/. Given a
U.N/-connectionA on P , we can equip S ˝E with the connection !s˝A. The cor-
responding covariant derivative on sections of S ˝ E is denoted by rA. Thus, with
respect to a local trivialization of E, an E-valued spinor  is given by a tuple of N
complex spinors, and

.rAX /
a
D r

s
X 

a
C Aab.X/ 

b a 2 ¹1; : : : ; N º;

whereAa
b

are the components of the u.N /-valued 1-form representing the connection
A in this local trivialization. We can also define a twisted Dirac operator acting on
 2 �.S ˝E/ by

/DA  ´
nX
iD1

.ei /r
A
ei
 

where .ei /i is any local orthonormal frame on M . This definition does not depend on
the orthonormal frame .ei /i . Note that Clifford multiplication on E-valued spinors
acts on the S factor; that is, we have identified .ei / with .ei /˝ id. With respect to
a local trivialization of E, we can view  2 �.S ˝ E/ as N complex spinors, and
the twisted Dirac operator takes the form

. /DA  /a D
nX
iD1

.ei /r
s
ei
 a C Aab.ei /.ei / 

b; a 2 ¹1; : : : ; N º:

The twisted Dirac operator satisfies a twisted Lichnerowicz formula [12, Chapter II,
Theorem 8.17],

/D2A  D .r
A/�rA C

1

4
R CFA �  ; (2.3)

where the curvature operator FAWS ˝E ! S ˝E is defined by

FA.� ˝ �/´
1

2

nX
j;kD1

..ej /.ek/�/˝ .FA.ej ; ek/�/:

A gauge transformation is a section of U.E/, the bundle of unitary automorph-
isms of E. These sections form a group called the gauge group, which we denote
G.E/. A gauge transformation G 2 G.E/ acts on a connection A by taking it to the
connection A0 defined by

r
A0
D G�1 ı rA ıG:
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Two connections A and A0 are considered to be gauge equivalent if they lie in the
same G.E/-orbit. The notion of local gauge equivalence over an open set is similarly
defined using the restricted bundles and connections. If A0 is related to A by a local
gauge transformation G, then with respect to a local trivialization, the connection
1-forms representing A and A0 are related by

A0 D G�1AG CG�1dG:

Note that G�1dG is indeed a u.n/-valued 1-form.

2.3. Pseudodifferential calculus

The proof of Theorem 1.4 requires a few key results from the theory of pseudodif-
ferential operators, which we recall briefly here. For details and proofs, we refer the
reader to [19], for example.

LetW � Rn be open. Then the symbol class Sm.W / is defined to be the space of
all functions p 2 C1.W �Rn/ satisfying for all ˛; ˇ 2 Nn,

j@˛� @
ˇ
xp.x; �/j � C˛;ˇ h�i

m�j˛j;

where h�i ´
p
1C j�j2 is the usual regularization of j�j. The symbol class

Sm.W;Ck�k/ is then the space of all matrix-valued functions whose entries are in
Sm.W /. Each p 2 Sm.W;Ck�k/ yields a map P WC1c .W;C

k/! C1.W;Ck/ given
by

.Pw/.x/´

Z
eix��p.x; �/bw.�/ d�; (2.4)

where bw denotes the Fourier transform of w. We say that P 2 ‰m.W;Ck/ if P
has the form (2.4) for a symbol p 2 Sm.W;Ck�k/. A pseudodifferential operator
P 2 ‰m.W;Ck/ is called classical if its symbol p.x; �/ is given by an asymptotic
series in the sense that for any large positive M , there is an integer J such that

p.x; �/ �

JX
jD1

pmj .x; �/ 2 S
�M .W;Ck�k/;

where each term pmj is positive-homogeneous of degree mj in � , and the sequence
of real numbers mj is decreasing to �1. In this case, we write

p.x; �/ �
X
j�1

pmj .x; �/:

Now, letE be a vector bundle of rank k over a smooth manifoldM , and let D0.E/
be the space of E-valued distributions onM . A map P WC1c .M;E/! C1.M;E/ is
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called a pseudodifferential operator of order M if for every chart W of M and every
local trivialization of E over W , the induced map is in ‰m.W;Ck/. The space of
pseudodifferential operators onE of orderm is denoted‰m.M;E/. IfP 2‰m.M;E/
for all m 2 R, then we call P a smoothing operator. The space of smoothing operat-
ors is denoted ‰�1.M; E/. Moreover, if P 2 ‰m.M; E/, then it extends to a map
E0.E/!D0.E/, and ifM is compact, then P extends to a mapH s.E/!H s�m.E/.

We often work with pseudodifferential operators modulo ‰�1.M;E/, since then
composition of pseudodifferential operators becomes well defined. Thus, we will
treat two pseudodifferential operators as equivalent if their difference is a smooth-
ing operator. Each equivalence class then corresponds to a symbol modulo S�1, the
intersection of all symbol classes Sm. Note that in particular two classical pseudodif-
ferential operators differ by a smoothing operator if and only if their formal symbols
are equal modulo S�1.

If Pi 2 ‰mi .M; E/ for i D 1; 2, then their composition Q ´ P1 ı P2 is well
defined modulo smoothing operators, and its symbol q modulo S�1 is given in local
coordinates by

q.x; �/ �
X
˛

1

˛Š
@˛�p1.x; �/D

˛
xp2.x; �/: (2.5)

3. Boundary determination

In this section, we prove that the Dirichlet-to-Neumann mapƒg;A;Z;m is a pseudodif-
ferential operator of order 1whose symbol with respect to a local trivialization determ-
ines the Taylor series of g, Z, and A at the boundary, when A is in an appropriate
gauge. We shall see upon applying the recipe of Lee and Uhlmann that unlike the
analogous proofs for the scalar Laplacian [13] or the connection Laplacian [4], we
need not place any restrictions on the metric. In particular, we shall see that because
the connection coefficients of !s ˝ A involve the Levi-Civita connection, and thus
the derivatives of the metric, the Taylor series of the metric can be recovered without
fixing a representative in its conformal class as is done in [4].

Theorem 3.1. The Dirichlet-to-Neumann map in Definition 1.1 is an elliptic pseudo-
differential operator of order 1. Moreover, in any local trivialization where the normal
component An of the connection 1-form A vanishes, the total symbol of ƒg;A;Z;m
determines the Taylor series of g, A, and Z at the boundary.

We would like to say, therefore, that if ƒg;A;Z;m D ƒ
Qg; zA; zZ;m, then the Taylor

series of the data .g; A; Z/ and . Qg; zA; zZ/ agree at the boundary. This equality of
Dirichlet-to-Neumann maps, however, does not make sense, since they act on different
bundles. We can nevertheless compare these two maps by proceeding as follows.
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Suppose we have a Riemannian metric g on M inducing a spinor bundle S for a
fixed choice of spin structure. Then for a connectionA onE, and an endomorphismZ

of S ˝ E, we can construct the corresponding Dirichlet-to-Neumann map ƒg;A;Z;m
on .S ˝ E/j@M . Suppose we have also another Riemannian metric Qg on M , which
induces another spinor bundle zS corresponding to a choice of spin structure. Then
for any connection zA on E, and endomorphism zZ of zS ˝ E, we can construct the
corresponding Dirichlet-to-Neumann mapƒ

Qg; zA; zZ;m on . zS ˝E/j@M . To say that these
two Dirichlet-to-Neumann maps are equal is of course to mean that they are equal up
to isomorphism, but we must take care to specify what kind of isomorphism.

Definition 3.2. We say that the Dirichlet-to-Neumann maps ƒg;A;Z;m and ƒ
Qg; zA; zZ;m

corresponding to data .g; A; Z/ and . Qg; zA; zZ/ respectively are isomorphic if there
exists an isomorphismˆWS j@M ! zS j@M induced by an isomorphism of the restriction
of the SO.n/-structures of g and Qg to @M , such that

ƒ
Qg; zA; zZ;m D .ˆ˝ idE / ıƒg;A;Z;m ı .ˆ�1 ˝ idE /:

This is equivalent to saying that the local matrix representations of ƒg;A;Z;m and
ƒ
Qg; zA; zZ;m are equal when we choose local trivializations of S j@M and zS j@M induced

by orthonormal frames for g and Qg respectively.

Remark 3.3. An isomorphism between the SO.n/-structures of two metrics g and Qg
is equivalent to an isometry between g and Qg.

The precise meaning of Theorem 3.1 is then that if two sets of data .g; A;Z/ and
. Qg; zA; zZ/ lead to equivalent Dirichlet-to-Neumann maps, then the Taylor series of g
and Qg are equal at the boundary, as are the Taylor series of Z and zZ, and moreover,
after possibly making a gauge transformation of zA, the Taylor series of A and zA are
equal at the boundary in any local trivialization where An D 0 and zAn D 0 near the
boundary.

The proof of Theorem 3.1 follows the recipe of Lee and Uhlmann, which is by
now standard in the literature. The idea is to factor the second-order differential oper-
ator /D2ACZ � m

2 into a product of first-order pseudodifferential operators modulo
smoothing:

/D2ACZ �m
2
� .Dn C i.E � �n/ � iB/.Dn � i�n C iB/

where Dn D �i@n, E D �1
2
g˛ˇ@ng˛ˇ , �n D idS ˝An C !s

n ˝ idE , and B is some
pseudodifferential operator to be determined. We can inductively solve for the total
symbol ofB to show that such a pseudodifferential operator indeed exists. Then, using
this factorization and the theory of generalized heat equations, one can show that
Bj@M � ƒg;A;Z;m. Finally, we note that the inductive procedure used to determine
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the symbol of B in terms of the known data .g; A; Z/ can be inverted to inductively
solve for the normal derivatives of this data at the boundary.

Proof of Theorem 3.1. For this proof, we let x denote the coordinates in a fixed bound-
ary chart for g, and write x D .x0; xn/, where xn is the normal coordinate, and x0 D
.x1; : : : ; xn�1/ are the tangential coordinates. Greek letters run over ¹1; : : : ; n � 1º
while Latin indices run over ¹1; : : : ; nº. So, in particular, .x˛; 0/ form coordinates on
the boundary. We let Dk ´ �i@k . Finally, let � be the matrix valued 1-form repres-
enting the connection !s ˝ A in a local trivialization to be determined, where !s is
the spin connection. We now use the twisted Lichnerowicz formula (2.3),

/D2A D .r
A/�rA C

1

4
RC

1

2
FA

and the following formula for the connection Laplacian in a coordinate chart [15,
equation 2.7.31],

.rA/�rA D �gijrAi r
A
j C g

ij�kijr
A
k ;

where �kij are the Christoffel symbols of g with respect to this chart, given by

ri@j D �
k
ij @k :

It is a straightforward exercise to verify that the Christoffel symbols are also given by

�kij D
1

2
gk`.@igj` C @jgi` � @`gij /:

Now, using the expression for the connection Laplacian and the twisted Lichnerowicz
formula, we can write out the Dirac Laplacian in this boundary chart, and in this local
trivialization. Separating out the normal derivatives from the tangential derivatives,
we have

/D2ACZ �m
2
D D2

n C i.E � 2�n/Dn CQ2 CQ1 CQ0 (3.1)

where E D �1
2
g˛ˇ@ng˛ˇ , and where

Q2´ �g
˛ˇ@a@ˇ ;

Q1´ �2g
˛ˇ�˛@ˇ C g

˛ˇ�


˛ˇ
@ ;

Q0´ �g
ij .@i�j / � g

ij �i�j C g
ij�kij �k C

1

4
RC

1

2
FA CZ �m

2:

Here, � i
jk

are the Christoffel symbols of g corresponding to the boundary chart. Note
that Qi is an i -th order differential operator involving only tangential derivatives. We
want to show that there exists a pseudodifferential operator B.x;D0/ of order 1 such
that

/D2ACZ �m
2
D .Dn C i.E � �n/ � iB/.Dn � i�n C iB/C S (3.2)
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where S is a smoothing operator. In writing B.x; D0/, we mean that B is a map
Œ0; "/ ! ‰.@M/, which for each value xn yields a pseudodifferential operator
B.xn; x

0; D0/ on the corresponding tangential leaf. In particular, we have a well-
defined notion of restricting B to the boundary, B.0; x0; D0/. The motivation for this
factorization comes from the following Lemma, a proof of which is given following
the current proof.

Lemma 3.4. If B.x;D0/ exists, then Bj@M D ƒg;A;Z;m CR where R is a smoothing
operator.

An important implication of the preceding lemma is thatB.0;x0;D0/ has the same
total symbol as the Dirichlet-to-Neumann map, and so in doing symbol computations,
it suffices to work with the operator B appearing in the factorization.

We now proceed with the proof of Theorem 3.1. In order to show that such a
B.x; D0/ exists, we will use the factorization (3.2) to determine a formal symbol
whose corresponding pseudodifferential operator satisfies (3.2) in each degree. So, by
equations (3.1) and (3.2), we have

s.Dn C i.E � �n/ � iB/.Dn � i�n C iB/C S

D D2
n C i.E � 2�n/Dn CQ2 CQ1 CQ0; (3.3)

where S is a smoothing operator. Expanding the left-hand side of (3.3), we see that it
equals

D2
nC i.E � 2�n/DnC i ŒDn;B�� @n�nC .E � �n/�n � ŒB;�n��EB CB

2: (3.4)

Replacing the left-hand side of equation (3.3) with (3.4) and rearranging, we get

i ŒDn; B� � ŒB; �n� �EB C B
2
D Q2 CQ1 CQ

0
0 (3.5)

where
Q00´ Q0 C @n�n � .E � �n/�n:

We want to consider the total symbols of the left and right-hand sides of (3.5). Let
b.x; � 0/ be the symbol of B.x; D0/, and similarly for Q2; Q1 and Q00. Then equa-
tion (3.5) implies

@nb C Œ�n; b� �
X
�¤0

1

�Š
@��0b �D

�
x0�n �Eb C

X
�

1

�Š
.@��0b/.D

�
x0b/

D q2 C q1 C q
0
0; (3.6)

where � runs over multi-indices. Let us assume that b.x; � 0/ has a formal symbol
given by

b.x; � 0/ D
X
k�1

bk.x; �
0/ (3.7)
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where bk.x; � 0/ is homogeneous in � 0 of degree k away from 0. Plugging (3.7) into
(3.6) and taking the degree m part of the equation, we get

b21 D q2; (3.8)

2b1b0 C @nb1 �Eb1 C
X

.@�0b1/.Dx0b1/ D q1; (3.9)

2b1b�1 C @nb0 C Œ�n; b0� �
X
˛

.@�˛b1/.Dx˛�n/ �Eb0

C

X
jCkDj�j
0�j;k�1

1

�Š
.@��0bj /.D

�
x0bk/ D q

0
0; (3.10)

and

2b1bm�1 D �@nbm � Œ�n; bm��
X

0<j�j�1�m

1

�Š
@��0bmCj�j �D

�
x0�n CEbm

�

X
jCk�j�jDm
m�j;k�1

1

�Š
.@��0bj /.D

�
x0bk/ (3.11)

for m � �1. Note that since q2.x; � 0/ D g˛ˇ �˛�ˇ , equation (3.8) yields the solution

b1.x; �
0/´ �j� 0jg :

Note that we choose the principal symbol b1 to be negative as opposed to positive, as
was needed in the proof of Lemma 3.4 above. It is clear from equations (3.9)–(3.11)
that for m < 1, we can inductively determine bm�1 from the first jmj C 1 terms
in (3.7). Therefore, since we have a formal symbol that satisfies (3.6), the corres-
ponding pseudodifferential operator satisfies (3.3). This completes the proof that the
pseudodifferential operator B exists, and so along with Lemma 3.4, whose proof is
given at the end of this section, it follows that the Dirichlet-to-Neumann map is an
elliptic pseudodifferential operator of order 1.

In the other direction, suppose we know the Dirichlet-to-Neumann mapƒg;A;Z;m
associated to data .g;A;Z;m/. Then we know its total symbol in any boundary chart
and local trivialization of E over the boundary. By using equations (3.8)–(3.11), we
can work backwards and inductively extract the boundary data from the homogeneous
terms in the expansion of the symbol. To do this, we fix a boundary chart for @M ,
and an orthonormal frame e˛ on @M , which we extend into M via parallel transport
along en, the inward pointing normal. This orthonormal frame ei now induces a local
trivialization of the spinor bundle near @M in which the spin connection takes the
form (2.1). We also pick a local trivialization of E.
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To start with, the restriction of the metric at the boundary gj@M is encoded in
the function q2 and can therefore be recovered from the principal symbol b1 as per
equation (3.8). Upon simplifying and rearranging, equation (3.9) yields

b0 D ig
˛ˇ�˛

�ˇ

j�j
�
1

2
.Eg˛ˇ C

1

2
@ng

˛ˇ /
�˛�ˇ

j�j2
C F0.g˛ˇ j@M / (3.12)

for all � 2 T �@M n ¹0º, where F0 is some function of its arguments involving only
tangential derivatives along @M . In particular, F0 is known once gj@M is known.
Thus, from b0 we can determine the first two terms on the right-hand side of (3.12).
Moreover, since these first two terms have opposite parity with respect to �, we
can determine each term separately by substituting different values for �. Therefore,
knowing g˛ˇ j@M , we can recover �˛j@M , which by (2.1) takes the form

�˛j@M D idS ˝A˛j@M �
1

2

X
i<j

!ij .@˛/j@M.ei /.ej /˝ idE (3.13)

where !ij .@˛/ denotes the connection 1-form for the Levi-Civita connection with
respect to the orthonormal frame ei , evaluated on the coordinate vector @˛ . By the
Clifford relations, the matrices .ei /.ej / occurring in the second term of (3.13) are
traceless for i ¤ j . We can therefore recover A˛ as a partial trace over the spinor
bundle:

A˛.0; x
0/ D

1

rankS
TrS �˛j@M :

Since An D 0 in this gauge by assumption, we have recovered Aj@M . Knowing Aj@M ,
from equation (3.13) we can recover the matrix

�
1

2

X
i<j

!ij .@˛/j@M.ei /.ej /:

Using the fact that .ei /.ej / provide an orthonormal set of matrices with respect to
the trace inner product, we can extract !ij .@˛/j@M . The final obstacle is to obtain the
Christoffel symbols of g with respect to the boundary normal chart. For this, let h be
the matrix defined by @˛ D h

ˇ
˛eˇ . Then, if � i

jk
denotes the connection coefficients

in the boundary normal chart, we have

� i j̨ D .h
�1/ik.!

k
`.@˛//h

`
j C .h

�1/ik@˛h
k
j : (3.14)

Since h is known on the boundary, so is !ij .@˛/j@M , and we can recover � i j̨ . In
particular, we recover the normal derivative of the metric at the boundary, since

�n˛ˇ D �
1

2
@ng˛ˇ :
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Thus, we have recovered A˛j@M and @ngj@M . The next equation (3.10), upon rearran-
ging, leads to an equation of the form

b�1 D
i

2
g˛ˇ@n�˛

�ˇ

j�j2
C .T

˛ˇ
�1 .gj@M ; @ngj@M ; @

2
ngj@M ; @nAj@M /CZj@Mg

˛ˇ /
�˛�ˇ

j�j3

C F�1.gj@M ; @ngj@M ; Aj@M /; (3.15)

where F�1 is a function of its arguments involving only tangential derivatives along
@M , and the T ˛ˇ�1 term includes quantities which are not yet known, including the
curvature terms. Now, as before, we can recover @n�˛j@M . Moreover, since the local
trivialization of S is induced by an orthonormal frame, the matrices .ei / are constant,
and thus @n�˛ takes the form

@n�˛ D �
1

4
@n.!

i
j .@˛//.ei /.ej /˝ idE C idS ˝@nA˛:

Taking a partial trace over S as before, we can determine @nA˛j@M , and therefore
also @n.!ij .@˛//. Using the fact that eˇ is parallel along @n, and the fact that we have
determined � i

jk
j@M , it follows that @nhj@M is known. Therefore, taking the normal

derivative of the transformation law (3.14) for the connection coefficients, we get

@n�
i
j̨ D .h

�1/ik@n.!
k
`.@˛//h

`
j C S.hj@M ; @nhj@M ; gj@M ; @ngj@M /;

where S is a function of known quantities. We can therefore recover the normal deriv-
atives of the Christoffel symbols of g in the boundary normal chart, and in particular,
we can recover

@n�
n
˛ˇ j@M D �

1

2
@2ng˛ˇ j@M :

Thus, having recovered the second derivatives of the metric at @M , and the first deriv-
atives of the connection at @M , we also recover the curvature termsRj@M and FAj@M .
The only unknown remaining is the endomorphism Zj@M in the even term of (3.15),
which is now easily recovered.

Continuing in this fashion, at step m we get an equation of the form

b1�m D
i

2
g˛ˇ@m�1n �˛

�ˇ

j�jm
C .T

˛ˇ
1�m C @

m�2
n Zj@M /

�˛�ˇ

j�jmC1

C F1�m.g˛ˇ j@M ; : : : ; @
m�1
n g˛ˇ j@M ; A˛j@M ; : : : ;

@m�2n A˛j@M ; Zj@M ; : : : ; @
m�3
n Zj@M /;

where T ˛ˇ1�m is a known quantity depending on derivatives of g up to order m, deriv-
atives of A up to order m � 1, and derivatives of Z up to order m � 3. Therefore,
as before we can recover @m�1n �˛ , and by taking traces, @m�1n A˛ and @m�1n !ij .@˛/.
Then, taking derivatives of the transformation law, we can recover @m�1n �n

˛ˇ
as above.

In this fashion we recover the normal derivatives of A and g at the boundary.
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We now give a proof of Lemma 3.4, which is essentially identical to the proof
given in [13]; we nonetheless include it here in the interest of being self-contained.

Proof of Lemma 3.4. Let us suppose that a first-order pseudodifferential operator
B.x;D0/ exists that satisfies equation (3.2). Let � 2 H

1
2 .S j@M /, and let ' 2 D0.S/

be the solution to the Dirichlet problem (1.1). Since . /D2ACZ �m
2/' D 0, the factor-

ization (3.2) yields the following system of equations:

 ´ .Dn � i�n C iB/'; 'jxnD0 D �; (3.16)

h D.Dn C i.E � �n/ � iB/ ; (3.17)

where h is some smooth spinor field near @M given by h´�S . Note that, although
the regularity of  is not a priori known, we know that h is smooth since S is a
smoothing operator. Writing t ´ T � xn, we can write equation (3.17) as

@t � .B �E C �n/ D �ih: (3.18)

Equation (3.18) is a generalized backwards heat equation. Now, by elliptic regularity,
we know that ' is smooth in the interior, and therefore so is  by equation (3.16).
In particular,  jxnDT is smooth. As was shown in the proof of Theorem 3.1, we
can choose the principal symbol of B to be a negative scalar, which implies that the
backwards heat equation (3.18) with initial condition  jxnDT is well posed. Thus, the
solution operator is a smoothing operator, and since  jxnDT is smooth, so is  . In
particular,  jxnD0 is smooth. So, let us define an operator R by

R�´  j@M :

Then we have that R is smoothing by construction, and moreover

R�´  j@M D ..Dn � i�n C iB.x;D
0//'/j@M

D �i.rAn '/j@M C iB.0; x
0;D0/�

D �iƒg;A;Z;m�C iB.0; x
0;D0/�:

So, indeed, we have Bj@M D ƒg;A;Z;m modulo smoothing.

Remark 3.5. The proof of Theorem 3.1, unlike in the case of the scalar or connection
Laplacian, holds for dimM D 2. Moreover, it is unnecessary to normalize the metric
in order to obtain the Taylor series of the endomorphism Z at the boundary, as is
done for the connection Laplacian in [4]. These observations can be attributed to the
fact that conformal covariance of the Dirac operator does not extend to even powers
thereof; see [6] for details.
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4. Recovering real-analytic Yang–Mills–Dirac connections

From here on, we fix a background metric g on a compact spin manifold M with
boundary @M , and let S be the spinor bundle of M . Let E be a Hermitian vec-
tor bundle of rank N over M , associated to its principal U.N/-bundle P of unitary
frames, and letA be a U.N/-connection on P , whose spinorial Dirichlet-to-Neumann
map ƒA is given. We want to introduce an auxiliary E-valued spinor � to which A
couples in a physically interesting way, and whose boundary value is known, and
investigate the extent to which ƒA determines the connection A modulo the action of
the gauge group. To this end, we introduce the Yang–Mills–Dirac equations:

/DA � D m�; (4.1)

d�AFA D J.�/; (4.2)

wherem 2R, d�A is the L2-adjoint of the covariant derivative dA acting on sections of
ƒ2.M; adP /, and J W�.S ˝E/! ƒ1.M; adP / associates to each E-valued spinor
' its current, and is defined as follows: for ' 2 �.S ˝ E/, there is a unique J.'/ 2
ƒ1.M; adP / such that

h'; � � 'i D hJ.'/; �i (4.3)

for all � 2 ƒ1.M; adP /, where the action of ƒ1.M; adP / on S ˝ E is the tensor
product of Clifford multiplication and the action of ad P on E. The current map
J clearly defines a pointwise map between S ˝ E and the bundle of ad P -valued
1-forms. Note that for any gauge transformation G, we have J.G'/ D GJ.'/G�1.
The physical significance of equations (4.1)–(4.2) is that they represent a gauge field
A interacting with some matter field � of mass m, by means of its charge current
J.�/. For details on the Yang–Mills–Dirac system, we refer the reader to [1].

Because we are concerned primarily with the Dirichlet-to-Neumann map of the
second-order operator /D2A, we will assume that the connection A and the auxiliary
spinor field � satisfy the more general second-order system:

/D2A � D m
2�; (4.4)

d�AFA D J.�/: (4.5)

Note that every solution of (4.1)–(4.2) is a solution of (4.4)–(4.5), but not vice versa.
In this section, we prove the following result.

Theorem 4.1. Let A and B be real-analytic U.N/-connections as above and let �
and  be smooth E-valued spinors on M , real-analytic in the interior, such that
.A;�/ and .B; / both satisfy the second-order Yang–Mills–Dirac system (4.4)–(4.5),
and such that �j@M D  j@M . Ifƒg;A;0;m Dƒg;B;0;m, thenA and B are locally gauge
equivalent in a neighbourhood of any point inM via a real-analytic gauge transform-
ation.
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Theorem 1.4 follows from Theorem 4.1, as well as Corollaries 4.5 and 4.7 below.

Proof. We work in a real-analytic trivialization over an open set U intersecting the
boundary @M . We can find a smooth global gauge transformation F satisfying´

@nF D �AnF in U;

F j@M D id;

which is moreover real-analytic in U , since An is real-analytic there. By applying
this gauge transformation F , we get a pair .A0; �0/ that is real-analytic in U , such
that A0n D 0 in the local trivialization over U . Moreover, since F j@M D id, it follows
that ƒA0 D ƒA. Therefore, doing the same for B , we may assume without loss of
generality that A and B are smooth connections, satisfying An D Bn D 0 in the local
trivialization over U , and real-analytic there.

Since ƒA D ƒB , Theorem 3.1, implies that in this local trivialization we have

@kn.A � B/j@M D 0; k � 0:

That is,A andB have the same Taylor series at the boundary in this local trivialization.
We want to extend this observation to � and  . Note that by assumption �j@M D

 j@M . Using this fact, as well as the fact that An D Bn D 0 in U , the equality ƒA D
ƒB yields

@n.� �  /j@M D .r
A
n � � r

B
n  /j@M D ƒA.�j@M / �ƒB. j@M / D 0:

So, @n.� �  /j@M D 0 in this local trivialization. Moreover, (4.4) yields

@2n.� �  /j@M D . /D2B  � /D2A �/j@M D m
2. � �/j@M D 0;

where we again have used @n.� � /j@M D 0, .� � /j@M D 0, and @kn.A�B/j@M D
0 for k � 1. By taking derivatives of (4.4), similar arguments yield @kn.� � /j@M D 0.

Now, we want to make a local gauge transformation of A in U so that the new
connection A0 satisfies d�A0 D 0. The key ingredient in this step is the Cauchy–
Kovalevskaya theorem; this is one place where the real-analyticity hypothesis plays a
crucial role. To this end, we recall the following well-known result; see [8, Theorem
5.4], for example.

Lemma 4.2. Let g be a matrix Lie algebra. Then for S WRn ! g, we have

d.eS / D eS
�1 � e� adS

adS

�
.dS/ (4.6)

where adS 2 End g is the endomorphism X 7! ŒS;X�.
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For S 2 u.N /, let us denote the endomorphism in brackets acting on dS in (4.6)
by ‚.S/. Note that ‚.S/ is defined by a power series in ad S and is therefore real-
analytic in S . Moreover, note that ‚.0/ D id, and therefore ‚.S/ is invertible for
small values of S .

Now, let us consider the following Cauchy problem for S WU ! u.N /,8̂̂<̂
:̂
d�.e�SAeS C e�Sd.eS // D 0;

S jU\@M D 0;

@nS jU\@M D 0:

(4.7)

Using Lemma 4.2, equation (4.7) can be written in the form8̂̂<̂
:̂
�gijrirjS D ‚.S/

�1F.x; S; dS IA/

S jU\@M D 0;

@nS jU\@M D 0;

(4.8)

where

F.x; S; dS IA/ D gij e�S‚.�S/.@iS/Aj e
S
C gij e�S .riAj /e

S

C gij e�SAj e
S‚.S/.@iS/C g

ij .D‚/.S/.@iS; @jS/:

(4.9)

Note that since S 7! ‚.S/ is real-analytic near S D 0, as are the connection A
and metric g, the function F.x; S; dS I A/ is real-analytic in a neighbourhood of
.x; 0; 0IA/ for x 2 U \ @M . Therefore, since ‚.S/�1 is well defined and real ana-
lytic in a neighbourhood of S D 0, the Cauchy–Kovalevskaya theorem (see [18,
Section 16.4] for example) yields, after possibly shrinking U , the existence of a real-
analytic solution S WU ! u.N / to (4.8).

Therefore, eS yields a local gauge transformation over U . Applying this gauge
transformation to A, we get a new connection A0 ´ e�SAeS C e�Sd.eS / over U ,
which satisfies d�A0D 0. Moreover, since the Yang–Mills–Dirac equations (4.4)–(4.5)
are gauge-invariant, the pair .A0; �0/, where �0 ´ e�S�, continues to satisfy the
Yang–Mills–Dirac system. In particular, the pair .A0; �0/ satisfies the following non-
linear elliptic system over U , 8̂̂<̂

:̂
/D2A0 �

0 D m2�0;

d�A0FA0 D J.�
0/;

dd�A0 D 0:

(4.10)

In the same manner, we may conclude, after possibly shrinking U again, that there
exists an analytic function T W U ! u.N / such that the connection B 0 defined by
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B 0´ e�TBeT C e�T d.eT /, and the spinor  0´ e�T , also satisfy the nonlinear
elliptic system (4.10) over U .

We now want to show that S and T have the same Taylor series at the boundary.
To this end, note that since ‚.0/ D id, equation (4.9) yields ‚�1.0/F.x; 0; 0IA/ D
d�A.x/ for any x 2 @M . Furthermore, since S j@M D T j@M D 0 and @nS j@M D
@nT j@M D 0, it follows that dS j@M D dT j@M D 0. These observations, along with
(4.8) give us

@2n.S � T /j@M D .�S ��T /j@M D .F.�; 0; 0IA/ � F.�; 0; 0IB//j@M

D .d�A � d�B/j@M D 0;

the last equality holding since A and B have the same Taylor series at the bound-
ary. By taking derivatives of (4.8) and using @kn.A � B/j@M D 0 for all k, we get
@kn.T � S/ D 0 for all k. Therefore, it follows that @kn.A

0 � B 0/j@M D 0 and
@kn.�

0 � 0/j@M D 0 for all k � 0. Since .A0; �0/ and .B 0; 0/ both satisfy (4.10) in U ,
and have equal Taylor series at the boundary, it follows from the unique continuation
principle for elliptic systems with scalar principal part (see [9, Theorem 3.5.2] for
example) that .A0; �0/ D .B 0;  0/ in U . In particular, this shows that .A; �/ is gauge
equivalent to .B;  / over U , by a gauge transformation that is equal to the identity
on @M .

We have so far shown that the original pairs .A; �/ and .B;  / are locally gauge
equivalent near the boundary @M by a real-analytic gauge transformation. We now
want to extend this to the interior of M . For this final step, we use the real-analyticity
of A and B in the interior as follows.

First, we have the following lemma from [4], which is stated there for the case
L D d�AdA on some Hermitian vector bundle E. The proof easily extends to the case
L D /D2A�m

2 presently under consideration, provided of course that m2 … Spec /D2A.

Lemma 4.3. Let ˇ �M int be an embedding of Œ0; 1� intoM . Then there exists smooth
sections '1; : : : ; '`, harmonic with respect to L, and having supp .'i j@M / � � for
some given non-empty open subset � � @M , that form a frame for E ˝ S at every
point along ˇ.

Remark 4.4. The proof involves solving the Dirichlet problem for L, and then
extending the resulting sections to global ones. See [4, Lemma 6.1] for details.

Armed with Lemma 4.3, we fix a point x 2M , and let ˇ be a path from x to a point
y near @M such thatA andB are locally gauge equivalent near y. We consider a tubu-
lar neighbourhood W of ˇ, over which S ˝ E is trivial. Since A is real-analytic, the
harmonic sections 'i given by Lemma 4.3 are real-analytic. Therefore, they provide
a real-analytic trivialization of S ˝E over U .
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Now, let  i be the solution to´
/D2B  i D m

2 i ;

 i j@M D 'i j@M :

Since B is real-analytic, so are the  i . Let us construct the endomorphism

H0 D
X
j

 j ˝b'j (4.11)

where O'j indicates the dual frame of .S ˝E/� defined by

b'j .'k/ D ıjk :
Then H0 is real-analytic in W . Moreover, near y, we know that there exists a real-
analytic gauge transformation G taking A to B , satisfying Gj@M D id. Let G0 ´
id˝G. Then we have that G�10 'i D  i near @M . Indeed, both G�10 'i and  i satisfy
the same elliptic equation,

/D2B.G
�1
0 'i / D G

�1
0 /D2A 'i D m

2G�10 'i

and boundary condition G�10 'i j@M D  i j@M . Also, by equality of the Dirichlet-to-
Neumann maps,

r
B
n .G

�1
0 'i /j@M D G

�1
0 r

A
n 'i j@M D r

B
n  i j@M :

So, again, by unique continuation, we have that G�10 'i D  i near @M . This is pre-
cisely the property of H0 defined in (4.11). Therefore, H0 D G0 near @M . In partic-
ular, taking partial traces, we find

G D
1

rankS
TrS H0: (4.12)

Since G is unitary near @M , it follows from real-analyticity that the right-hand of
(4.12) is unitary inW . Denoting this right-hand side byH , it follows thatH is a unit-
ary automorphism ofE overW . Moreover, sinceB DH�1AH CH�1dH near @M ,
it follows again from real-analyticity that this holds overW . This proves that A and B
are gauge equivalent about any point in M , and are thus locally gauge equivalent.

The last part of the proof of Theorem 4.1 above constructs a local real-analytic
gauge transformation between A and B along a curve. By modifying the argument
given there, we can easily adapt the method of [4, Section 6] to show that A and B in
fact have equal holonomies along embedded loops at a point on the boundary, from
which it follows that they are globally gauge equivalent in the smooth category. We
therefore have the following result.
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Corollary 4.5. LetA andB be as above. ThenA andB are globally gauge equivalent
via a smooth gauge transformation.

Proof. First suppose that dimM > 2. Let p 2 @M, and let U be a neighbourhood of
p intersecting @M over which A and B are gauge equivalent by a real-analytic gauge
transformation G satisfying Gj@M D id. Let  W Œ0; 1� ! M be a smooth, embed-
ded loop based at p. We can approximate  in the C 1 norm by curves of the form
ˇ´ ˇ1 � ˇ2, where ˇ1 is a curve from p to some point q 2 U lying entirely in U ,
ˇ2 is a curve from q to p, and � denotes concatenation. We want to show that A and B
have the same holonomy along ˇ. Let W be a tubular neighbourhood of ˇ2. By con-
structingH0 as in (4.11), we obtain a real-analytic endomorphism on S ˝E overW .
The argument above shows that (4.12) holds in U \W . Therefore, gluing G and the
right-hand side of (4.12) yields a well defined real-analytic unitary automorphism K

of EndE over U [ W satisfying Kj@M D id. We therefore have that K is a gauge
equivalence between A and B in U [W satisfying K.p/ D id, from which we see
that A and B have the same holonomy along ˇ. It follows therefore that there exists a
smooth global gauge transformation between A and B [14, Theorem 4.4].

For dimM D 2, we note that  may have self-intersections. To deal with this case,
we first quote the following easy lemma [4, Lemma 6.3].

Lemma 4.6. Let † be a smooth compact surface with boundary, and E a vector
bundle over†. LetA andB be two connections onE, and denote their corresponding
parallel transport maps by PA and PB . If PA DPB for all embedded simple closed
curves at a point p 2 †, then A and B have the same holonomy at p.

Since the above argument for dimM > 2 holds in the case where dimM D 2 and
 has no self-intersections, the result follows.

For abelian connections, the global gauge transformation is real-analytic.

Corollary 4.7. Let A and B be as above. If rankE D 1, then A and B are globally
gauge equivalent via a real-analytic gauge transformation G satisfying Gj@M D 1.

Proof. In the case N D 1, global gauge transformations are elements of C1.M;S1/.
The same arguments use in preceding proof show that .A;�/ is locally gauge equival-
ent to .B; / everywhere in M . That is, about every point in M there exists a locally
defined smooth S1-valued function satisfying f � D  . Since � and  are solutions
to elliptic equations, the set on which they do not vanish is dense. It thus follows that
one can patch these local S1-valued functions to obtain a global well defined S1-val-
ued function, which is by definition a gauge transformation from A to B , and equal to
1 on @M .
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Remark 4.8. The ease with which we obtain the preceding corollary can be attributed
to the fact that Theorem 1.4 yields not only a gauge transformation between the con-
nections, but also between the spinors, on which the gauge action takes a particularly
simple form when N D 1.

Remark 4.9. In the proof of [4, Theorem 1.3], a unitary connection on a Hermitian
vector bundle is recovered up to gauge from the Dirichlet-to-Neumann map of its con-
nection Laplacian in the smooth category, by showing that the Dirichlet-to-Neumann
map determines the holonomy along any loop  starting and ending at a point on
the boundary. This is done by solving the Dirichlet-problem to get a smooth frame
along the curve  , and then constructing a local gauge transformation over  out of
this frame. While applying this method to the Dirichlet-to-Neumann map of the Dirac
Laplacian seems to produce an candidate endomorphism of S ˝ E over  , in the
smooth case, this local gauge transformation is not a priori of the form idS ˝G, as
desired to conclude that A and B are locally gauge equivalent along  . Nevertheless,
the methods used in [4] provide very useful tools for studying inverse problems of
connections on vector bundles, and so it is reasonable to suspect that they could also
be used to improve upon Theorem 1.4.

Here, as well as in the proof of Theorem 1.4, we have seen how the introduction
of a spinor field coupled to a unitary connection affects the recovery of the connection
up to gauge from the Dirichlet-to-Neumann map of its twisted Dirac Laplacian. This
motivates the following question: in what ways does the introduction of a spin struc-
ture affect the recovery of other geometric structures from boundary data associated
to a Dirac Laplacian? For instance, regarding the Calderón problem for the metric, it
would be worthwhile to study if the spin structure can be exploited to facilitate the
recovery of the metric up to isometry, even in dimension 2, from the Dirichlet-to-
Neumann map of the Dirac Laplacian.
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