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Hochschild homology of reductive p-adic groups

Maarten Solleveld

Abstract. Consider a reductive p-adic groupG, its (complex-valued) Hecke algebra H .G/, and the
Harish-Chandra–Schwartz algebra �.G/. We compute the Hochschild homology groups of H .G/

and of �.G/, and we describe the outcomes in several ways.
Our main tools are algebraic families of smooth G-representations. With those we construct

maps from HHn.H .G// and HHn.�.G// to modules of differential n-forms on affine varieties.
For n D 0, this provides a description of the cocentres of these algebras in terms of nice linear
functions on the Grothendieck group of finite length (tempered) G-representations.

It is known from [J. Algebra 606 (2022), 371–470] that every Bernstein ideal H .G/s of H .G/

is closely related to a crossed product algebra of the form O.T /ÌW . Here O.T / denotes the regular
functions on the variety T of unramified characters of a Levi subgroup L of G, and W is a finite
group acting on T . We make this relation even stronger by establishing an isomorphism between
HH�.H .G/s/ and HH�.O.T / ÌW /, although we have to say that in some cases it is necessary
to twist CŒW � by a 2-cocycle.

Similarly, we prove that the Hochschild homology of the two-sided ideal �.G/s of �.G/ is iso-
morphic to HH�.C1.Tu/ ÌW /, where Tu denotes the Lie group of unitary unramified characters
of L. In these pictures of HH�.H .G// and HH�.�.G//, we also show how the Bernstein centre
of H .G/ acts.

Finally, we derive similar expressions for the (periodic) cyclic homology groups of H .G/ and
of �.G/ and we relate that to topological K-theory.
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1. Introduction

The Hochschild homology of an algebra A (by default over C) is a fairly subtle invariant.
For finitely generated commutative algebras, it gives more or less the differential forms
on the underlying affine variety – exactly that when the algebra is smooth, and other-
wise HH�.A/ detects some singularities of the variety. For general algebras, Hochschild
homology is related to noncommutative versions of differential forms [18, Chapter 1].

The vector space HH0.A/ is particularly interesting, because it equals the cocentre
A=ŒA;A� and via the trace pairing contains information about the set of irreducible repre-
sentations of A. The higher Hochschild homology groups HHn.A/ also have their uses:
they say something about higher extensions of A-modules (via Hochschild cohomology)
and they interact with further invariants of algebras like (periodic) cyclic homology. When
A is the group algebra of a discrete group � , HH�.A/ computes the group cohomology
of the groups Z�.
/ with 
 2 � [12].

Categories of representations of reductive p-adic groups. Let G be a reductive group
over a non-Archimedean local field, connected as algebraic group. We aim to determine
the Hochschild homology ofG, by which we mean the Hochschild homology of a suitable
group algebra of G. The most natural choice is the Hecke algebra H .G/, because the
category Mod.H .G// of nondegenerate left H .G/-modules is naturally equivalent to the
category Rep.G/ of complex smooth G-representations. By definition,

HHn
�
H .G/

�
D TorH.G/˝H.G/op

n

�
H .G/;H .G/

�
;

so HHn.H .G// depends only on the category of H .G/-bimodules, which is equivalent
to the category of smooth G �Gop-representations.

Alternatively, we have the Harish-Chandra–Schwartz algebra �.G/, whose category of
nondegenerate left modules equals the category Rept .G/ of tempered G-representations,
according to the conventions from the appendix of [26]. We consider �.G/ as a bornolog-
ical algebra and use the complete bornological tensor product y̋ [19]. In that setting,

HHn
�
�.G/

�
D Tor�.G/ y̋�.G/op

n

�
�.G/; �.G/

�
;

which depends only on the category of bornological �.G/-bimodules.
On the other hand, the full group C �-algebra C �.G/ or its reduced version C �r .G/

would not be suitable here, because

HHn
�
C �.G/

�
D HHn

�
C �r .G/

�
D 0 for n > 0:

We approach our main goal with representation theory. We start with the Bernstein decom-
position

Rep.G/ D
Y

s2B.G/

Rep.G/s;
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which induces decompositions in two-sided ideals

H .G/ D
M

s2B.G/

H .G/s and �.G/ D
M

s2B.G/

�.G/s: (1.1)

Hochschild homology decomposes accordingly, so we may focus on the algebras H .G/s

and �.G/s. We will make ample use of the Morita equivalence between H .G/s and
the opposite algebra of EndG.…s/, where …s is a progenerator of Rep.G/s [25, The-
orem 1.8.2.1]. In [34], we made a detailed analysis of EndG.…s/

op, which links it to
algebras whose Hochschild homology groups have already been determined.

Let � be a supercuspidal representation of a Levi subgroup L of G, representing
s D ŒL; ��. Let L1 � L the group generated by all compact subgroups of L. Then the
compactly induced representation indL

L1
.�/ is a progenerator of Rep.L/ŒL;��. Let PL be

a parabolic subgroup of G with Levi factor L. As shown first in [6, Section III.4.1], it
follows from Bernstein’s second adjointness theorem that the parabolically induced rep-
resentation

…s D I
G
PL

indL
L1
.�/ (1.2)

is a progenerator of Rep.G/s. This progenerator was especially convenient for the com-
putations in [34], and therefore we use it throughout this paper.

To s one can associate a finite group W.L;s/ of transformations of the complex torus
of unramified characters Xnr.L/, satisfying

Z
�

Rep.G/s
�
Š Z

�
EndG.…s/

op�
Š O

�
Xnr.L/

�W.L;s/
:

There exists a 2-cocycle \s ofW.L;s/ such that the twisted group algebra CŒW.L;s/; \s�
acts “almost” on the objects of Rep.G/s by intertwining operators. Here “almost” means
that these intertwining operators depend rationally on �2Xnr.L/, and they can have poles.
In this setting, [34, Theorem A] provides an isomorphism of O.Xnr.L//

W.L;s/-algebras

C
�
Xnr.L/

�W.L;s/
˝O.Xnr.L//W.L;s/

EndG.…s/
op
Š C

�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
: (1.3)

This isomorphism is canonical on C.Xnr.L// and on a Weyl group contained in W.L;s/.
However, for the remaining elements of W.L;s/ the images on the left-hand side of (1.3)
are in general only canonical up to scalars.

Although H .G/s and O.Xnr.L// ÌCŒW.L;s/; \s� are usually not Morita equivalent,
it has turned out that these algebras nevertheless share many properties. By (1.1) and
the definition of temperedness for G-representations, the category Rept .G/s of tempered
representations in Rep.G/s Š Mod.H .G/s/ is Mod.�.G/s/. This subcategory is stable
under tensoring with elements ofXunr.G/, the group of unitary unramified characters ofG.
Like above, from [33] one can expect strong similarities between �.G/s andC1.Xunr.L//

ÌCŒW.L; s/; \s�.
Let R.A/ denote the Grothendieck group of the category of finite length A-represen-

tations. We abbreviate R.G/s D R.H .G/s/ and Rt .G/s D R.�.G/s/.
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Theorem A (See Theorem 3.5). There exists a group isomorphism

�_ W R.G/s ! R
�
O.Xnr.L/

�
ÌC

�
W.L; s/; \s

��
which restricts to a bijection

�_t W R
t .G/s ! R

�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
:

These bijections are compatible with parabolic induction and with twists by unramified
characters. When an isomorphism (1.3) has been fixed, �_ and �_t are canonical.

Hochschild homology and twisted extended quotients. In a sense that we will make
precise later, Theorem A induces isomorphisms on Hochschild homology.

Theorem B (See Theorems 3.14 and 4.13). There exist C-linear bijections (canonical
when (1.3) has been fixed)

HHn.�
_/ W HHn

�
O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

��
! HHn

�
H .G/s

�
;

HHn.�
_
t / W HHn

�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
! HHn

�
�.G/s

�
:

The Hochschild homology of twisted crossed product algebras like

O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
and C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

�
was determined in [35, Section 1]. It can be interpreted in terms of the twisted extended
quotient�
Xnr.L/==W.L; s/

�
\s
WD
®
.�; ��/ W � 2 Xnr.L/; �� 2 Irr

�
C
�
W.L; s/; \s

��¯
=W.L; s/:

Loosely speaking, HHn.O.Xnr.L// Ì CŒW.L; s/; \s�/ is the O.Xnr.L//
W.L;s/-module

of differential n-forms on .Xnr.L/==W.L; s//\s , and similarly for

HHn
�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
and

�
Xunr.L/==W.L; s/

�
\s
:

Let Irrcusp.L/ be the set of supercuspidal irreducible L-representations (up to isomor-
phism), so that Irr.L/s is oneXnr.L/-orbit in Irrcusp.L/. The groupW.G;L/DNG.L/=L
acts naturally on Irr.L/. Let W.G;L/s be the stabilizer of Irr.L/s in W.G;L/. The cov-
ering map

Xnr.L/! Irr.L/s W � 7! � ˝ �

induces a bijection �
Xnr.L/==W.L; s/

�
\s
!
�

Irr.L/s==W.G;L/s
�
\s
:

Combining such maps, we obtain a bijectionG
s2Irrcusp.L/=Xnr.L/ÌW.G;L/

�
Xnr.L/==W.L; s/

�
\s
!
�

Irrcusp.L/==W.G;L/
�
\L
;
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where \L is a shorthand for the data from the various 2-cocycles \s. This twisted extended
quotient (in the more general sense from [2, Section 2.1]) is related to the idealM

s2Irrcusp.L/=Xnr.L/ÌW.G;L/

H .G/s of H .G/:

Let Lev.G/ be a set of representatives for the conjugacy classes of Levi subgroups of G.
Theorem B and the above entail that HHn.H .G// can be regarded as the Z.Rep.G//-
module of algebraic differential n-forms onG

L2Lev.G/

�
Irrcusp.L/==W.G;L/

�
\L
:

Similarly, we may interpret HHn.�.G// as the Z.Rept .G//-module of smooth differen-
tial n-forms on G

L2Lev.G/

�
Irrtcusp.L/==W.G;L/

�
\L
:

Notice that these descriptions mainly involve data that are much easier than Rep.G/s;
only the 2-cocycles \s contain information about non-supercuspidal representations. For-
tunately, \s is known to be trivial in many cases, and we expect that it is trivial whenever
G is quasi-split. We find it remarkable that such a simple description of a strong invariant
of very complicated algebras is possible.

Hochschild homology via families of representations. For more precise statements, we
employ algebraic families of G-representations. The families relevant for us come from a
parabolic subgroup P D MU of G and a tempered representation � of a Levi factor M
of P . All the representations IGP .�˝ �/ with � 2 Xnr.M/ can be realized on the same
vector space VP;� , and their matrix coefficients depend algebraically on �. The family of
representations

F.M; �/ D
®
IGP .�˝ �/ W � 2 Xnr.M/

¯
induces an O.Xnr.L//

W.L;s/-algebra homomorphism

FM;� W H .G/s ! O
�
Xnr.M/

�
˝ EndC;fr.VP;�/

f 7!
�
� 7! IGP .� ˝ �/.f /

�
;

where the subscript “fr”stands for finite rank.Via Morita equivalences and the Hochschild–
Kostant–Rosenberg theorem, that yields a map

HHn.FM;�/ W HHn
�
H .G/s

�
! �n

�
Xnr.M/

�
:

For �2Xunr.M/, the members of F.M;�/ are tempered.Then Harish-Chandra’s Plancherel
isomorphism (as in Theorem 2.2) shows that for f 2 �.G/s the matrix coefficients of
IGP .�˝ �/.f / are smooth functions on Xunr.M/. We obtain a map

HHn.F
t
M;�/ W HHn

�
�.G/s

�
! �nsm

�
Xunr.M/

�
;
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where the subscript “sm” means smooth differential forms on a real manifold. With [35,
Section 1.2], this setup can be generalized to algebraic families of virtual representations,
then we may speak of algebraic families in C ˝Z R.G/

s or in C ˝Z R
t .G/s.

For each w 2 W.L; s/ and each connected component Xnr.L/
w
c of Xnr.L/

w , we will
construct a particular algebraic family

F.w; c/ D
®
�1w;� W � 2 Xnr.L/

w
c

¯
in C ˝Z R.G/

s:

From \s W W.L; s/ �W.L; s/! C�, we get a character \ws of ZW.L;s/.w/.

Theorem C (See Theorems 3.13 (b) and 4.10).

(i) The algebraic families F.w; c/ induce a C-linear bijection

HHn
�
H .G/s

�
!

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
:

(ii) Their tempered versions Ft .w; c/ D ¹�1w;� W � 2 Xunr.L/
w
c º induce an isomor-

phism of Fréchet spaces

HHn
�
�.G/s

�
!

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
:

The canonicity of Theorem B can be formulated in similar terms. Namely, for each
algebraic family F.M; �/ in Rep.G/s there are equalities

HHn.FM;�/ ıHHn.�
_/ D HHn.FM;�_.�//;

HHn.F
t
M;�/ ıHHn.�

_
t / D HHn.F

t
M;�_.�//:

Hochschild homology groups in degree 0. Theorem C admits a nice alternative descrip-
tion in degree n D 0. Let us say that a linear function on C ˝Z R.G/

s is regular if it
transforms every algebraic family F.M; �/ into a regular function on Xnr.M/. Similarly,
we call a linear function on C˝Z R

t .G/s smooth if it transforms Ft .M;�/ into a smooth
function on Xunr.M/.

Theorem D (See Propositions 3.9 and 4.11).

(i) The trace pairing H .G/s �R.G/s ! C induces a natural isomorphism of
Z.Rep.G/s/-modules

HH0
�
H .G/s

�
!
�
C ˝Z R.G/

s
��

reg:

(ii) The trace pairing �.G/s �Rt .G/s ! C induces a natural isomorphism of
Z.Rept .G/s/-modules

HH0
�
�.G/s

�
!
�
C ˝Z Rt .G/

s
��
1
:

We note that Theorem D (i) was already shown in [5], with much more elementary
methods. Theorem D (ii) implies that the traces of irreducible tempered representations in
Rep.G/s span a dense subspace of the space of trace functions on �.G/s.
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The action of the Bernstein centre. Theorems B and C do not yet reveal how the Bern-
stein centre

Z
�

Rep.G/s
�
Š O

�
Xnr.L/

�W.L;s/
acts on HHn.H .G/s/. That action is more tricky than it could seem, because the bijec-
tions in Theorem A do not always match the canonical actions of O.Xnr.L//

W.L;s/ on
the two sides. We are aided by the finer decomposition of Rt .G/ and �.G/ in “Harish-
Chandra blocks”. Namely, to each square-integrable (modulo centre) representation ı of
a Levi subgroup M of G, one canonically associates a direct factor Rt .G/d of Rt .G/,
and a two-sided ideal �.G/d of �.G/. If the supercuspidal support of ı is .L; �/, then
Rt .G/d � Rt .G/s where d D ŒM; ı� and s D ŒL; ��. The Plancherel isomorphism (see
[37] or Theorem 2.2) entails that

�.G/s D
M

d2�s
G

�.G/d (1.4)

for a suitable finite set �s
G of square-integrable (modulo centre) representations of Levi

subgroups of G. This gives rise to a decomposition

HHn
�
�.G/s

�
D

M
d2�s

G

HHn
�
�.G/d

�
:

For H .G/s no decomposition like (1.4) exists. Nevertheless, something similar can be
achieved with Hochschild homology groups; see below.

Again by Harish-Chandra’s Plancherel isomorphism (Theorem 2.2),

Z
�

Rept .G/d
�
Š C1

�
Xunr.M/

�W.M;d/
;

for a certain finite group W.M; d/ of transformations of Xnr.M/. Let us represent the
O.Xnr.L//

W.L;s/-character of ı by �ı tCı , where �ı 2 Xunr.L/ and tC
ı
2 Hom.L;R>0/.

The natural map Z.Rep.G/s/! Z.Rept .G/d/makes C1.Xunr.M//W.M;d/ into a set of
functions on �ı tCı Xunr.M/ � Xnr.L/.

Theorem E (See Theorem 4.14 (b), Lemmas 3.10 and 4.8).

(i) There exists a canonical decomposition

HHn
�
H .G/s

�
D

M
d2�s

G

HHn
�
H .G/s

�d
;

where HHn.H .G/s/d is the inverse image of HHn.�.G/d/ under the natural
map HHn.H .G/s/! HHn.�.G/

s/.

(ii) Suppose thatZ.Rept .G/d/ does not annihilate the contribution (via Theorem C)
of �nsm.Xunr.L/

w
c / to HHn.�.G/s/. Then we can arrange that Xunr.L/

w
c is

contained in �ıXunr.M/. For � 2 Xunr.L/
w
c , Z.Rept .G/d/ acts on the fiber

of HHn.�.G/s/ over W.L; s/.w; �/ via the character W.M;d/��1
ı
�.

(iii) In the setting of part (ii), for � 2 Xnr.L/
w
c , Z.Rep.G/s/ acts on the fiber of

HHn.H .G/s/ over W.L; s/.w; �/ via the character W.L; s/tC
ı
�.
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Other homology theories. There are standard techniques to derive the cyclic homology
HC�.A/ and the periodic cyclic homology HP�.A/ from the Hochschild homology of
a C-algebra A [18]. In our cases A D H .G/s and A D �.G/s, we can get them as the
homology of HH�.A/ with respect to the usual exterior differential on forms.

Theorem F (See (5.7), (5.8) and Corollary 5.3). Theorem C induces isomorphisms

HPn
�
H .G/s

�
Š HPn

�
�.G/s

�
Š

M
m2Z

� M
w2W.L;s/

HnC2m
dR

�
Xnr.L/

w
�
˝ \ws

�W.L;s/
:

The periodic cyclic homology of a Fréchet algebra relates to its topological K-theory
via a Chern character. We can pass from �.G/s to its C �-completion via suitable Morita
equivalent Fréchet subalgebras. In this way, we compute the topological K-theory of any
Bernstein block in the reduced C �-algebra of G.

Theorem G (See Theorem 5.2). There is an isomorphism of vector spaces

K�
�
C �r .G/

s
�
˝Z C Š K�W.L;s/;\s

�
Xunr.L/

�
˝Z C:

Here K�
W;\

denotes W -equivariant K-theory, twisted by a 2-cocycle \. Theorem G
confirms [2, Conjecture 5], modulo torsion elements in the K-groups.

Relation with previous work and outlook. The Hochschild homology of H .G/ has
been determined earlier in [21]. The methods of Nistor are completely different from
ours, he obtains a description of HHn.H .G// in terms of several algebraic subgroups of
G and of the continuous group cohomology of certain modules. This arises from a gener-
alization of the standard techniques for discrete groups, a filtration of H .G/ as bimodule,
and spectral sequences. In [21, Section 6], a “parabolic induction map” HHn.H .G//!

HHn.H .M// is constructed for a Levi subgroupM ofG. It would be interesting to relate
this to our methods and results; probably that could provide some information about super-
cuspidal representations.

A technique prominent in Nistor’s work is localization of HH�.H .G// at conjugacy
classes in G. That can be regarded as a higher order version of taking the trace of a repre-
sentation at a conjugacy class. Of particular interest is the localization of HH�.H .G// at
the set of compact elements ofG, for that yields the periodic cyclic homologyHP�.H.G//
[16]. While localization at one conjugacy class inG appears to be intractable in our setup,
localization at all compact elements is within reach. Since every compact element lies in
the kernel of every unramified character, such localization removes all differential forms
that are not locally constant on (subvarieties of)Xnr.L/. Moreover, in the description from
Theorem C the locally constant differential forms constitute a set of representatives for
HP�.H .G//, that follows from Lemma 5.4 (and with Theorem F it also works for �.G/).
Hence the localization of HH�.H .G// at the compact elements of G is given precisely
by the subspace of locally constant differential forms.

At the same time, HP�.H .G// is naturally isomorphic to the equivariant homology
of the Bruhat–Tits building of G, which yields yet another, more geometric, picture of
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HH�.H .G// andHH�.�.G//. It would be nice if the Bernstein decomposition of H .G/

and of �.G/ could be expressed in such geometric terms, as suggested in [4].

Structure of the paper. This paper is part of a larger project that includes [17, 35]. Ini-
tially, those two and the current text were conceived as one paper. When that grew too
big, two parts were split off and transformed into independent papers. Although neither
[35] nor [17] deals with p-adic groups, both prepare for this paper. Many results in Sec-
tion 3 rely on the study of the Hochschild homology of slightly simpler algebras in [35].
In Section 4, we need several nontrivial results about topological algebras and modules
involving smooth functions. These are formulated and proven in larger generality in [17].

Section 2 is preparatory, its main purpose is to describe precisely what kind of families
of representations we will use. Already there we see that it is convenient to replace H .G/s

by its subalgebra of functions that are bi-invariant under a well-chosen compact open
subgroup K.

We start our investigations of the Hecke algebra in earnest by transforming it into
simpler algebras via Morita equivalences, in Section 3.1. This relies largely on [34], but
we go a little further and establish Theorem A. In Section 3.2, we set up a good array of
algebraic families of G-representations, and we approachHHn.H .G/s/ via formal com-
pletions at central characters. That yields a rough description in terms of differential forms
on varieties like Xnr.M/, not yet indexed byW.L;s/ as desired, but already sufficient for
Theorem D (i). The local results thus obtained are glued together in Section 3.3. When
that is done, Theorems B, C, and E for H .G/s follow quickly.

For the Schwartz algebra �.G/, no such simplifying Morita equivalences are available,
but Harish-Chandra’s Plancherel isomorphism from Theorem 2.2 works better than for
H .G/. Our main technique to determineHHn.�.G/s/ is to derive it fromHHn.H .G/s/

via a comparison of formal completions with respect to central characters. To carry out that
strategy completely, we need to check that the relevant modules are Fréchet spaces, which
is done in Section 4.1. In Section 4.2, we first show Theorem E (ii), so that we can work
withC1.Xunr.M//W.M;d/-modules. That plays a role in the proof of Theorem C (ii), from
which Theorem D (ii) follows readily. Then we establish Theorem B (ii) and we compare
HHn.�.G/

d/ with HHn.H .G/s/d.
Section 5 contains the derivation of the (periodic) cyclic homology of H .G/s and of

�.G/s. We also draw conclusions for the topological K-theory of G. In the final section,
we work out the examples G D SL2.F / and G D GLn.F /.

2. Algebraic families of G -representations

Let G be a connected reductive group defined over a non-Archimedean local field F , and
consider the group of rational points G D G .F /. Let Rep.G/ be the category of smooth
G-representations and let Repf .G/ be the subcategory of finite length representations. Let
R.G/ be the Grothendieck group of Repf .G/. By imposing temperedness, we obtain the
category Rept

f
.G/ and the Grothendieck group Rt .G/.
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We fix a Haar measure on G and we let H .G/ be the algebra of locally constant com-
pactly supported complex-valued functions on G, endowed with the convolution product.
Recall that the Schwartz algebra �.G/ [37, Section III.6] satisfies Irr.�.G// D Irrt .G/,
where the latter denotes the space of irreducible tempered G-representations. We fix a
compact open subgroup K of G and we consider the algebras H .G;K/ and �.G;K/ of
K-bi-invariant functions in, respectively, H .G/ and �.G/. By definition,

H .G/ D lim
�!
K

H .G;K/ and �.G/ D lim
�!
K

�.G;K/;

where the inductive limit runs over the set of all compact subgroups K of G, partially
ordered by reverse inclusion.

LetXnr.G/ be the group of unramified characters ofG and letXunr.G/ be the subgroup
of unitary unramified characters. The first is a complex algebraic torus and the second is a
compact real torus of the same dimension.

Let P be a parabolic subgroup of G with a Levi factor M , and let IGP W Rep.M/!

Rep.G/ be the normalized parabolic induction functor. Let � 2 Rept
f
.M/ and suppose

that the space IGP .V� /
K , which has finite dimension by the admissibility of IGP .�/, is

nonzero. Since IGP .V� / can be realized as a space of functions on a good maximal compact
subgroup of G, we may identify the vector spaces

IGP .V� /
K and IGP .V� ˝ �/

K for � 2 Xnr.M/:

Every f 2 �.G;K/ gives a family of operators IGP .� ˝�/.f / on IGP .V� /
K , parametrized

by �2Xunr.M/. It turns out [37, Proposition VII.1.3] that IGP .�˝�/.f / depends smoothly
on �. When f 2H .G;K/, this even works for all � 2 Xnr.M/, and the outcome depends
algebraically on �. More precisely, this enables us to define algebra homomorphisms

FM;� W H .G;K/! O
�
Xnr.M/

�
˝ EndC

�
IGP .V� /

K
�
;

F t
M;� W �.G;K/! C1

�
Xunr.M/

�
˝ EndC

�
IGP .V� /

K
�

f 7!
�
� 7! IGP .� ˝ �/.f /

�
:

(2.1)

Recall the natural pairing

HH0
�
H .G;K/

�
� Repf .G/! C

.h; �/ 7! tr
�
�.h/; V�

�
D tr

�
�.h/; V K�

�
:

This and its analogue for �.G;K/ induce bilinear maps

HH0
�
H .G;K/

�
�C ˝Z R.G/! C;

HH0
�
�.G;K/

�
�C ˝Z R

t .G/! C:
(2.2)

We say that a linear function f on C ˝Z R.G/ is regular if

Xnr.M/! C W � 7! f
�
IGP .� ˝ �/

�
is a regular function;
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for all .M; �/ as above. Similarly, we call f 2 .C ˝Z R
t .G//� smooth if

Xunr.M/! C W � 7! f
�
IGP .� ˝ �/

�
is a smooth function;

for all .M; �/ as above. We write�
C ˝Z R.G/

��
reg D

®
f 2

�
C ˝Z R.G/

��
W f is regular

¯
;�

C ˝Z R
t .G/

��
1
D
®
f 2

�
C ˝Z R

t .G/
��
W f is smooth

¯
:

With these notations, (2.1) and (2.2) induce maps

HH0
�
H .G;K/

�
!
�
C ˝Z R.G/

��
reg;

HH0
�
�.G;K/

�
!
�
C ˝Z R

t .G/
��
1
:

(2.3)

It is easy to see that the former is a homomorphism of Z.H .G;K//-modules and that the
latter is a homomorphism of Z.�.G;K//-modules.

The normalized parabolic induction functor IGP induces a Z-linear map

IGM W R.M/! R.G/:

It may be denoted this way, because given a Levi subgroup M of G it does not depend on
the choice of the parabolic subgroup P with Levi factor M . We define

RI .G/ D R.G/ \Q˝Z

X
M¨G

IGM
�
R.M/

�
;

where the sum runs over all proper Levi subgroups M of G. We say that a finite dimen-
sional G-representation is elliptic if it admits a central character and does not belong to
RI .G/. By [5, Proposition 3.1], every Bernstein component of Irr.G/ contains only a finite
number of Xnr.G/-orbits of irreducible elliptic representations. It follows from the Lang-
lands classification that every such Xnr.G/-orbit contains a tempered G-representation.

Definition 2.1. Let � 2 Irr.M/ be elliptic and tempered. Then

F.M; �/ D
®
IGP .�˝ �/ W � 2 Xnr.M/

¯
is an algebraic family of G-representations. Its dimension is dimC.Xnr.M//, that is, the
dimension of the maximal split torus in Z.M/. The subset

Ft .M; �/ D
®
IGP .�˝ �/ W � 2 Xunr.M/

¯
is a tempered algebraic family ofG-representations, also of dimension dimR.Xunr.M//D

dimC.Xnr.M//.

We fix a minimal parabolic subgroup P0 of G and a maximal split torus S0 of P0. A
parabolic (resp., Levi) subgroup of G is standard if it contains P0 (resp., S0). In the above
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definition, it suffices to consider standard parabolic and standard Levi subgroups of G,
because every pair .P;M/ is G-conjugate to such a standard pair.

Consider a Bernstein block Rep.G/s of Rep.G/, determined by a tempered super-
cuspidal representation of a standard Levi subgroup L of G. Let R.G/s be the Grothen-
dieck group of Repf .G/

s. Similarly, we define Rt .G/s as the Grothendieck group of
the category Rept

f
.G/s of tempered modules in Repf .G/

s. If we restrict to standard
parabolic/Levi subgroups ofG (as we will often do tacitly), Rep.G/s contains only finitely
algebraic families of G-representations as in Definition 2.1. Moreover, by [5, Corol-
lary 3.1] these families span Q˝Z R.G/

s.
We want to minimize the redundancy, by choosing a smaller collection of algebraic

families ofG-representations. One step in that direction is to determine which members of
an algebraic family are equivalent inR.G/. To that end, we briefly recall Harish-Chandra’s
Plancherel isomorphism for G [37].

Consider a Levi subgroup M of G and an irreducible square-integrable modulo cen-
tre representation .ı; Vı/ of M. Harish-Chandra’s disjointness theorem [37, Proposition
III.4.1] asserts that every irreducible tempered G-representation is a direct summand of
IGP .ı/ for such a pair .M; ı/, which moreover is unique up to G-conjugation. Irreducible
square-integrable modulo centre representations ofM become discrete series upon restric-
tion to the derived subgroup of M , so the only way to deform them continuously is
twisting with unitary unramified characters of M . Therefore, the connected components
of the space Irrt .G/ are parametrized by pairs .M; ı/ modulo the equivalence relation

.M; ı/ �
�
gMg�1; g � .ı ˝ �/

�
g 2 G; � 2 Xunr.M/: (2.4)

We denote such an equivalence class by d D ŒM; ı�. (When ı is supercuspidal, we also
have the equivalence class sD ŒM; ı�, which includes the tensoring by non-unitary unram-
ified characters and determines an entire Bernstein component of Irr.G/.)

Let P be a parabolic subgroup of G with Levi factor M and let � 2 Xunr.M/. To
.M; ı; �/ we associate the tempered G-representation IGP .ı ˝ �/, whose isomorphism
class does not depend on the choice of P . Then the connected component of Irrt .G/
associated to .M; ı/ consists of the irreducible summands (or equivalently subquotients)
of the representations IGP .ı ˝ �/ with � 2 Xunr.M/.

The Plancherel isomorphism describes the image of F t
M;ı

, as the invariants for an
action of a certain finite group. The group

Xnr.M; ı/ D
®
� 2 Xnr.M/ W ı ˝ � Š ı

¯
is finite and contained in Xunr.M/, because it consists of characters that are trivial on
Z.M/. Consider the subset

Irr.M/d D
®
ı ˝ � W � 2 Xnr.M/

¯
of Irr.M/:

The map � 7! ı ˝ � provides a diffeomorphism

Xnr.M/=Xunr.M; ı/! Irr.M/d: (2.5)
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It is not canonical, because it depends on the choice of ı in Irr.M/dt . For each �0 2
Xnr.M; ı/, we fix a unitary M -isomorphism ı Š ı ˝ �0, and we induce it to a family
of G-isomorphisms

I.�0; P; ı; �/ W IGP .ı ˝ �/! IGP .ı ˝ �
0�/: (2.6)

We write
Wd D

®
w 2 NG.M/=M W w stabilizes Irr.M/d

¯
:

By [33, Lemma 3.3], the action of an element w 2 Wd on Irr.M/d can be lifted (non-
canonically) along (2.5), to an automorphism of the complex algebraic variety Xnr.M/

such that
w � .ı ˝ �/ Š ı ˝ w.�/ for all � 2 Xunr.M/:

By [37, Lemme V.3.1], there exists a unitary G-isomorphism

I.w; P; ı; �/ W IGP .ı ˝ �/! IGP
�
ı ˝ w.�/

�
; (2.7)

depending smoothly and rationally on � 2 Xunr.M/. Let W.M; d/ be the group of trans-
formations of Xnr.M/ generated by Xnr.M; ı/ and the actions of elements of Wd. Now
we apply [33, Lemma 3.3] to the covering of tori

Xnr.M/! Xnr.M/=Xnr.M; ı/;

and we obtain a short exact sequence

1! Xnr.M; ı/! W.M;d/! Wd ! 1: (2.8)

The intertwining operators (2.6) and (2.7) give rise to analogous families of G-isomor-
phisms for any element of W.M; d/. These are far from unique, but for any fixed � 2
Xunr.M/ they are unique up to scalars. The group W.M; d/ acts on C1.Xunr.M// ˝

EndC.I
G
P .Vı/

K/ by�
w � .f ˝ A/

�
.�/ D f .w�1�/˝ I.w; P; ı; w�1�/AI.w;P; ı; w�1�/�1:

Let�G;K be a set of representatives for the .M; ı/ with IGP .Vı/
K ¤ 0, modulo the equiv-

alence relation (2.4). We assume that everyM occurring here is a Levi factor of a standard
parabolic subgroup P .

Theorem 2.2 ([37, Section VIII.1]). There is an isomorphism of Fréchet algebras:

�.G;K/!
M

.M;ı/2�G;K

�
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/

f 7!
M

.M;ı/2�G;K

F t
M;ı.f /:
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An important ingredient of the proof of this theorem is Harish-Chandra’s commut-
ing algebra theorem [27, Theorem 5.5.3.2], a description of the involved spaces of G-
homomorphisms. Namely, for �1; �2 2 Xunr.M/,

HomG

�
IGP .ı ˝ �/; I

G
P .ı ˝ �

0/
�

D span
®
I.w; P; ı; �/ W w 2 W.M;d/; w.�/ D �0

¯
: (2.9)

Consider an algebraic family F.M 0; �0/ contained in Rep.G/s. We may assume that
M 0 � M and �0 � IM

0

M 0\P0M
.ı ˝ �0/ for some .M; ı/ 2 �G;K . Let W.M 0; M; �0/ be

the subgroup of W.M; s/ that stabilizes

F.M0; �0/ D
®
IGP0M 0.�

0
˝ �0/ W �0 2 Xnr.M

0/
¯
;

with respect to the action via the intertwining operators I.w; P; ı; �/.

Lemma 2.3. Two members of F.M 0; �0/ in the same W.M 0;M; �0/-orbit have the same
trace. Two generic members of F.M 0; �0/ have the same trace if and only if they belong
to the same W.M 0;M; �0/-orbit. Here a generic point of F.M 0; �0/ means: if an element
w 2W.M;s/ fixes the point or the intertwining operator associated tow has a singularity
at the cuspidal support of the point, thenw has that property for all members of F.M 0; �0/.

Proof. The action ofw 2W.M;d/ on the collection of direct summands of the IGP .ı˝ �/
comes from an algebraic action on Xnr.M/ and conjugation by some operator. Hence, for
a generic � D IGP0M 0.�

0˝ �0/ 2F.M 0; �0/, the representation w� lies in F.M 0; �0/ if and
only if w 2 W.M 0; M; �0/. In combination with (2.9), that implies the second claim for
generic tempered members of F.M 0; �0/.

In fact, Harish-Chandra’s commuting algebra theorem (2.9) also holds for generic
�1;�22Xnr.M/; one only needs to avoid the poles of the intertwining operators I.w;P;ı;�/.
This follows for instance from [1, Theorem 1.6]. Then the above argument can be applied
to all generic members and yields the first claim.

For any f 2 H .G/ and w 2 W.M 0;M; �0/,

tr
�
f; IGP0M 0.�

0
˝ �0/

�
and tr

�
f; IGP0M 0.�

0
˝ w�0/

�
are algebraic functions of �0 2 Xnr.M

0/. These two functions agree for generic tempered
�0 2 Xunr.M

0/, so they agree on the whole of Xnr.M
0/.

Now we can finally describe how to choose a minimal set of algebraic families of
G-representations in Rep.G/s.

We start with the family F.L; �/ and proceed recursively. Suppose that for every
dimension D > d we have chosen a set of D-dimensional algebraic families F.Mi ; !i /,
where i runs through some index set ID , with the following property: for generic �i 2
Xnr.Mi / the set®

IGPj .!j ˝ �j / W j 2 ID; D > d; Sc
�
IGPj .!j ˝ �j /

�
D Sc

�
IGPi .!i ˝ �i /

�¯
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is linearly independent in Q˝Z R.G/
s. Here we regard all �j in oneW.Mj ;M;!j /-orbit

as the same, because by Lemma 2.3 they yield the same element IGPj .!j ˝ �j / in R.G/s.
Next we consider the set of d -dimensional algebraic families F.M 0i ;!

0
i /with .P 0i ;M

0
i /

standard. Suppose that for generic �0i 2 Xnr.M
0
i /, the representation IG

P 0i
.!0i ˝ �

0
i / is Q-

linearly independent from®
IGPj .!j ˝ �j / W j 2 ID; D > d; Sc

�
IGPj .!j ˝ �j /

�
D Sc

�
IG
P 0i
.!0i ˝ �

0
i /
�¯
;

where we still regard �j as an element ofXnr.Mj/=W.Mj;M;!j/. Then we add F.M 0i ;!
0
i /

to our collection of algebraic families.
Consider the remaining d -dimensional algebraic families. For F.M 0j ; !

0
j /, we look at

the same condition as for F.M 0i ;!
0
i /, but now with respect to the index set

S
D>d ID [¹i

0º

instead of
S
D>d ID . If that condition is fulfilled, we add F.M 0j ;!

0
j / to our set of algebraic

families. We continue this process until none of the remaining d -dimensional algebraic
families is (over generic points of that family) Q-linearly independent from the algebraic
families that we chose already. At that point, our set of d -dimensional algebraic families
is complete, and we move on to families of dimension d � 1.

In the end, this algorithm yields a collection®
F.Mi ; !i / W i 2 Id ; 0 � d � dimXnr.L/

¯
such that the following hold:

• the representations ®
IGPi .!i ˝ �i /; i 2

[
d

Id ; �i 2 Xnr.Mi /
¯

(2.10)

span Q˝Z R.G/
s,

• if we remove any index from
S
d Id , the previous bullet does not hold any more,

• for generic � 2 Xnr.Mi /, IGPi .!i ˝ �i / does not belong to the span in Q˝Z R.G/
s

of the other families F.Mj ; !j /.

We note that these conditions do not imply that (2.10) is a basis of Q˝Z R.G/
s. Some

linear dependence is still possible for representations with a specific cuspidal support
.L; � ˝ �/, namely when the algebraic R-group of � ˝ � acts on IGP0L.� ˝ �/ via a
projective, non-linear representation. That does not happen often though.

The formula (2.1) for the partial Fourier transform FM;ı also applies with any elliptic
M -representation instead of ı (which is square-integrable modulo centre). For each i 2SdimXnr.L/

dD0
Id , this provides algebra homomorphisms

FMi ;�i W H .G;K/! O
�
Xnr.Mi /

�
˝ EndC

�
IGPi .V�i /

K
�

F t
Mi ;�i

W �.G;K/! C1
�
Xunr.Mi /

�
˝ EndC

�
IGPi .V�i /

K
�

f 7!
�
� 7! IGPi .�i ˝ �/.f /

�
:
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These induce maps on Hochschild homology:

HHn.FMi ;�i / W HHn
�
H .G;K/

�
! �n

�
Xnr.Mi /

�
;

HHn.F
t
Mi ;�i

/ W HHn
�
�.G;K/

�
! �nsm

�
Xunr.Mi /

�
:

(2.11)

We added a subscript “sm” to emphasize that we consider smooth differential forms on
a real manifold. We will describe HHn.H .G; K// and HHn.�.G; K// in terms of the
maps (2.11).

3. The Hecke algebra of G

Let B.G/ be the set of inertial equivalence classes s D ŒL; ��G . Let H .G/s be the two-
sided ideal of H .G/ corresponding to Rep.G/s, so that

H .G/ D
M

s2B.G/

H .G/s: (3.1)

At this point, we need the following continuity property of the functors HHn from [18,
Exercise E.1.1.3]. Namely, let A D lim

�!i
Ai be an inductive limit of algebras. Then

HHn.A/ Š lim
�!
i

HHn.Ai /; n 2 Z�0: (3.2)

In particular,
HHn

�
H .G/

�
D

M
s2B.G/

HHn
�
H .G/s

�
:

We fix a Bernstein block Rep.G/s in Rep.G/, where sD ŒL; ��G . According to [7], there
exist arbitrarily small compact open subgroups K of G such that

H .G;K/s D H .G/s \H .G;K/

is Morita equivalent with H .G/s. Notice that H .G; K/s is unital but H .G/s is not. In
fact, H .G/s is the direct limit of the algebras H .G; Ki /

s, where each Ki has the same
property as K and

T1
iD1Ki D ¹1º. All the inclusions H .G;Ki /

s ! H .G;Kj /
s induce

isomorphisms on Hochschild homology, by Morita invariance. Applying (3.2) another
time, we find

HHn
�
H .G/s

�
Š lim
i!1

HHn
�
H .G;Ki /

s
�
Š HHn

�
H .G;K/s

�
:

The centre of H .G;K/s is isomorphic to the centre of the category Rep.G/s. The latter
can be made more explicit with the notations from Section 2. Namely, (2.5) induces an
algebra isomorphism

O
�

Irr.L/s
�
Š O

�
Xnr.L/=Xnr.L; �/

�
D O

�
Xnr.L/

�Xnr.L;�/
:
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An instance of the short exact sequence (2.8) gives

1! Xnr.L; �/! W.L; s/! Ws ! 1:

By [7, Proposition 3.14] and (2.8), there are isomorphisms

Z
�
H .G;K/s

�
Š Z

�
Rep.G/s

�
Š O

�
Irr.L/s

�Ws
Š O

�
Xnr.L/

�W.L;s/
: (3.3)

It is also known from [7, Section 3.13] that

H .G;K/s has finite rank as Z
�
H .G;K/s

�
-module: (3.4)

3.1. Structure of the module category

We aim to describe H .G;K/s and its modules locally on Xnr.L/. We write

XCnr .L/ D Hom.L;R>0/

and we fix u 2 Xunr.L/. Let W.L; s/u be the stabilizer of u in W.L; s/. We let Uu �
Xnr.L/ be a connected neighborhood of u in Xnr.L/ (for the analytic topology) satisfying
[34, Condition 6.3]:

• Uu is stable under W.L; s/u and under XCnr .L/,

• W.L; s/u \ Uu D ¹uº,

• a technical condition to ensure that u is the “most singular” point of Uu.

The tangent space at 1 of the complex torus Xnr.L/ is

t WD C ˝Z X
�.L/;

and the exponential map exp W t! Xnr.L/ is equivariant for W.L;s/1. We modify it to a
W.L; s/u-equivariant map

expu W t! Xnr.L/

� 7! u exp.�/:

This means that we regard t also as the tangent space ofXnr.L/ at u. Let logu be the branch
of exp�1u with logu.u/ D 0. By [34, Condition 6.3], expu restricts to a diffeomorphism,

logu.Uu/! Uu:

From [34, Section 7], we get a root system ˆu in t, whose Weyl group is a subgroup of
W.L; s/u, a basis �u of ˆu, a parameter function ku W �u ! R�0, and a 2-cocyle \u of
W.L; s/=W.ˆu/. In [34], some of these objects have a subscript � ˝ u instead of u, but
since W.L; s/u is naturally isomorphic with .Ws/�˝u, we may omit �˝. To these data
one can associate a twisted graded Hecke algebra H.t; W.L; s/u; ku; \u/. For any Levi
subgroupM ofG containingL, there is a parabolic subalgebra H.t;W.M;L;s/u;ku; \u/,
constructed in the same way.
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Theorem 3.1 ([34, Corollary 8.1 and its proof, Proposition 9.5 (a)]). There is an equiva-
lence between the following categories:

• finite length G-representations, all whose irreducible subquotients have cuspidal sup-
port in .L; � ˝W.L; s/Uu/ D ¹.L; � ˝ �/ W � 2 W.L; s/Uuº,

• finite length right H.t; W.L; s/u; ku; \u/-modules, all whose O.t/W.L;s/u -weights
belong to logu.Uu/.

This equivalence commutes with parabolic induction and preserves temperedness.

The opposite algebra of H.t; W.L; s/u; ku; \u/ is naturally isomorphic to

HG
u WD H

�
t; W.L; s/u; k

u; \�1u
�

via the simple map

Twf 7! Tw�1f; w 2 W.L; s/u; f 2 O.t/: (3.5)

Hence we may replace right H.t;W.L;s/u; ku; \u/-modules by left HG
u -modules in The-

orem 3.1. We note that

Z
�
H .G;K/s

�
Š O

�
Xnr.L/

�W.L;s/
corresponds to Z.HG

u / Š O.t/W.L;s/u via the maps expu and logu. For later use, we
sketch the steps taken in [34] to obtain the algebra HG

u in Theorem 3.1.

Construction 3.2.
(i) Let…s be the progenerator of Rep.G/s from (1.2). Then there are equivalences

of categories

Mod
�
H .G;K/s

�
Š Rep.G/s Š Mod

�
EndG.…s/

op�: (3.6)

In particular, the centres of the algebras H .G;K/s and EndG.…s/
op are canon-

ically isomorphic.

(ii) Localize EndG.…s/
op at W.L; s/Uu by extending its centre O.Xnr.L//

W.L;s/

to the algebra of W.L; s/-invariant analytic functions C an.W.L; s/Uu/
W.L;s/

on W.L; s/Uu. We call the resulting algebra EndG.…s/
op
W.L;s/Uu

.

(iii) The maximal commutative subalgebra of EndG.…s/
op
W.L;s/Uu

is

C an�W.L; s/Uu� D M
w2W.L;s/=W.L;s/u

C an.wUu/:

The algebra 1Uu EndG.…s/
op
W.L;s/Uu

1Uu is a Morita equivalent subalgebra of
EndG.…s/

op
W.L;s/Uu

.

(iv) Localize HG
u at logu.Uu/ by extending its centre O.t/W.L;s/u to the algebra

C an.logu.Uu//
W.L;s/u , and call the result HG

Uu
.
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(v) Check that the above localizations do not change the categories of finite dimen-
sional modules with O.Xnr.L//-weights (resp., O.t/-weights) in the set on which
one localizes.

(vi) Show that the isomorphism

C an� logu.Uu/
�W.L;s/u

ŠC an�W.L;s/uUu�W.L;s/u ŠC an�W.L;s/Uu�W.L;s/
induced by expu induces an isomorphism

1Uu EndG.…s/
op
W.L;s/Uu

1Uu Š HG
Uu
: (3.7)

To make full use of Theorem 3.1, we also need a variation on step (iii) above. We
will construct an algebra HG

W.L;s/u
which is Morita equivalent with HG

u and closer to
EndG.…s/

op than HG
u . We start with

L
wu2W.L;s/uHG

wu. In this algebra, the unit element
of HG

wu is denoted by ewu. For every element wu 2 W.L; s/u, we fix a w which has
minimal length in wW.L; s/u (see [34, end of Section 3] for the definition of the length
function). From [34, Lemma 8.3], we get an isomorphism

Ad.Tw/ W H
�
t; W.L; s/u; k

u; \u
�
! H

�
t; W.L; s/wu; k

wu; \wu
�
;

and hence also an isomorphism between their opposite algebras:

Ad.Tw/ W HG
u ! HG

wu:

The advantage of this particular isomorphism comes from [34, Lemma 8.3 (b)]:

Ad.Tw/� W Rep.HG
wu/! Rep.HG

u /

intertwines Theorem 3.1 for wu with Theorem 3.1 for u. Ad.Tw/ really is conjugation by
an element Tw in a larger algebra and satisfies

Ad.Tw/f D f ı w�1 for f 2 O.t/ D O
�
Tu.Xnr.L/

��
;

Ad.Tw/jCŒW.L;s/u;\�1u � D conjugation by Tw in C
�
W.L; s/; \s

�
:

Here we use the 2-cocycle \s D \�1 of W.L; s/ from [34, Lemma 5.7] which by [34,
Lemma 7.1] extends \�1u . As vector spaces, we define

HG
W.L;s/u D

M
wu2W.L;s/u

�
HG
wu ˝

M
Qwu2W.L;s/u

CewuTwT �1
Qw e Qwu

�
;

The multiplication of HG
W.L;s/u

is given by

.h1 ˝ ew1uTw1T
�1
w2
ew2u/.h2 ˝ ew2uTw2T

�1
w3
ew3u/

D h1 Ad.Tw1/Ad.Tw2/
�1.h2/˝ ew1uTw1T

�1
w3
ew3u;
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where hi 2 HG
wiu

and all the wi are as chosen above. The elements ewuTwT �1
Qw
e Qwu of

HG
W.L;s/u

multiply like matrices with just one nonzero entry. It follows readily that

HG
W.L;s/u ŠMjW.L;s/uj.H

G
u /: (3.8)

We note that this algebra is of the form H.V; G; k; \/, as in [35, Section 2.3]. The centre
of this algebra is

Z
�
HG
W.L;s/u

�
Š

� M
wu2W.L;s/u

O
�
Twu

�
Xnr.L/

���W.L;s/
Š O

�
Tu
�
Xnr.L/

��W.L;s/u
D Z

�
HG
u

�
: (3.9)

Let HG
W.L;s/Uu

be the algebra obtained from HG
W.L;s/u

by extending its centre to� M
wu2W.L;s/u

C an� logwu.wUu/
��W.L;s/

:

This algebra contains HG
Uu

as a Morita equivalent subalgebra, analogous to (3.8).

Proposition 3.3.
(a) The diffeomorphismG

wu2W.L;s/u

expwu W
G

wu2W.L;s/u

logwu.wUu/! W.L; s/Uu

induces an algebra isomorphism EndG.…s/
op
W.L;s/Uu

Š HG
W.L;s/Uu

. That fits in
a commutative diagram

EndG.…s/
op
W.L;s/Uu

Š HG
W.L;s/Uu

HG
W.L;s/u

oo

1Uu EndG.…s/
op
W.L;s/Uu

1Uu

OO

Š HG
Uu

OO

HG
u :

oo

OO

(b) In this diagram, the vertical arrows are inclusions of Morita equivalent subalge-
bras and each of the two horizontal arrows induces an equivalence between the
categories of finite length modules all whose weights for (3.9) belong toG

wu2W.L;s/u

logwu.wUu/:

Proof. (a) The elements Tw involved in HG
W.L;s/u

stem from [34, Section 5]. It was shown
in the proof of [34, Lemma 8.3] that

Tw1Uu 2 EndG.…s/
op
W.L;s/Uu
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and that

Ad.Tw/ W 1Uu EndG.…s/
op
W.L;s/Uu

1Uu ! 1wUu EndG.…s/
op
W.L;s/Uu

1wUu

is an algebra isomorphism. It follows that the isomorphism (3.7) extends canonically to
the required isomorphism.

(b) The vertical arrows were already discussed before. The claim about the lower
horizontal arrow was shown in [34, Lemma 7.2 (a)], based on [24, Proposition 4.3]. The
same argument applies to the upper horizontal arrow.

We define the parabolic subalgebras of HG
u to be the analogous algebras

HM
u D H

�
t; W.M;L; s/u; k

u; \�1u
�
;

constructed from Levi subgroups M of G containing L, as in [34, Lemma 7.2 (b)]. The
translation from right to left modulesvia (3.5) commuteswith parabolic induction. Namely,
for a right H.t; W.M; L; s/u; ku; \u/-module V there is a natural isomorphism of HG

u -
modules

V ˝H.t;W.M;L;s/u;ku;\u/ H
�
t; W.L; s/u; k

u; \u
�
! HG

u ˝HM
u
V

v ˝ Tw 7! Tw�1 ˝ v;
(3.10)

v 2 V , w 2 W.L; s/u. The subalgebras HM
u , with

tM D C ˝Z X
�.M/ and tM D C ˝Z X

�.L \Mder/;

fulfill the conditions from [35, pp. 13–14]. Indeed, that follows from (3.10), Theorem 3.1,
and the properties of elliptic G-representations discussed at the start of Section 2.

Let F.M; �/ be an algebraic family in Rep.G/s, with � irreducible and elliptic. We
may and will assume that M is standard and we let P be the unique standard parabolic
subgroup of G with Levi factor M . All the representations IGP .�˝ �/ with � 2 Xnr.M/

admit a central character, so Z.H .G; K/s/ acts by a character on IGP .� ˝ �/
K . With

[35, Lemma 2.3] we see that

FM;ı W H .G;K/s ! O
�
Xnr.M/

�
˝ EndC

�
IGP .Vı/

K
�

is a homomorphism of Z.H .G;K/s/-algebras and that HHn.FM;ı/ is a homomorphism
of Z.H .G;K/s/-modules.

Assume that some members of F.M;�/ have cuspidal support in .L;� ˝W.L;s/Uu/.
Then the image of F.M; �/ under Theorem 3.1 is an algebraic family F.M; z�/ of HG

u -
modules, where z� 2 Irr.HM

u / is elliptic and tempered. More precisely, Theorem 3.1 only
applies to an open part of F.M; �/, and the image of that is the part of F.M; z�/ with
O.t/W.L;s/u -weights in logu.Uu/. By the Langlands classification (for graded Hecke alge-
bras in [14], generalized to our setting with the method from [29, Section 2.2]), every such
family of HG

u -modules arises from an elliptic representation of

Hu;M D H
�
tM ; W.M;L; s/u; k

u; \�1u
�
: (3.11)
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Hence there exists a � 2 iR ˝Z X
�.M/ such that O.tM / � HM

u acts on C� ˝ z� by
evaluation at 0. We may replace z� by C� ˝ z� without changing F.M; z�/. Then z� has
O.tM /-weights in

R�M;u � R˝Z X
�.L \Mder/: (3.12)

In general, the full structure of the algebra EndG.…s/ (or its opposite) seems to be rather
complicated. Fortunately, it can be approximated with simpler algebras. The normalized
parabolic induction functor IGP0L gives an embedding

O
�
Xnr.L/

�
! EndG.…s/:

From (3.6) and (3.3), we know that

Z
�

EndG.…s/
�
Š O

�
Xnr.L/

�W.L;s/
:

Let C.Xnr.L// be the quotient field of O.Xnr.L//, i.e. the field of rational functions on
the complex affine variety Xnr.L/. It is easy to see that the multiplication map

C
�
Xnr.L/

�W.L;s/
˝O.Xnr.L//W.L;s/

O
�
Xnr.L/

�
! C

�
Xnr.L/

�
(3.13)

is a field isomorphism. According to [34, Corollary 5.8], (3.13) extends to an algebra
isomorphism

C
�
Xnr.L/

�W.L;s/
˝O.Xnr.L//W.L;s/

EndG.…s/
�
�! C

�
Xnr.L/

�
ÌC

�
W.L; s/; \

�
: (3.14)

With (3.5), we also obtain the opposite version

C
�
Xnr.L/

�W.L;s/
˝O.Xnr.L//W.L;s/

EndG.…s/
op �
�! C

�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
:

(3.15)
Unfortunately, the isomorphisms (3.14) and (3.15) are not canonical; they depend on the
choice of a suitable � 2 Irr.L/s and on the normalization of certain intertwining operators.
In the remainder of this paragraph, we fix those choices.

We emphasize that (except in very special cases)

EndG.…s/
op is not isomorphic with O

�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
:

Remarkably, it turns out that nevertheless there is a canonical bijection

�_ W R.G/s Š R
�
H .G;K/s

�
! R

�
O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

��
: (3.16)

We describe step-by-step how it is obtained.

Construction 3.4.
(i) With the equivalences of categories (3.6),we go fromR.G/s toR.EndG.…s/

op/.

(ii) Bydecomposing finite length EndG.…s/
op-modules along their O.Xnr.L//

W.L;s/-
weights, it suffices to consider G-representations � as in Theorem 3.1.
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(iii) Via Theorem 3.1 and (3.5), we obtain the HG
u -module 1Uu HomG.…s; �/.

(iv) There is a canonical Z-linear bijection

�_u W R.H
G
u /! R

�
O.t/ ÌC

�
W.L; s/u; \

�1
u

��
:

The construction is given in [31, Theorem 2.4], while the bijectivity follows
from [32, Theorem 1.9].

(v) The map expu provides a diffeomorphism R ˝Z X
�.L/ ! uXCnr .L/. Trans-

late the action of O.t/ on �_u .1Uu HomG.…s; �// to an action of O.Xnr.L//,
by first replacing O.t/ and O.Xnr.L// by analytic functions and then pullback
along expu. This is similar to steps (ii)–(vi) from Construction 3.2, and results
in an O.Xnr.L// Ì CŒW.L; s/u; \�1u �-module with all O.Xnr.L//-weights in
uXCnr .L/.

(vi) From [34, Lemma 7.1], we get a canonical algebra isomorphism

C
�
W.L; s/u; \

�1
u

�
! C

�
W.L; s/u; \s

�
:

With that we define

�_.�/ D indO.Xnr.L//ÌCŒW.L;s/;\s�

O.Xnr.L//ÌCŒW.L;s/u;\�1u �
�_u
�
1Uu HomG.…s; �/

�
:

Theorem 3.5. The map �_ from (3.16) has the following properties.

(a) �_ is Z-linear and bijective.

(b) � 2 R.G/s is tempered if and only if �_.�/ is tempered (i.e., all its O.Xnr.L//-
weights lie in Xunr.L/).

(c) If all the irreducible subquotients of � 2 R.G/s have cuspidal support in � ˝
W.L; s/uXCnr .L/, then all O.Xnr.L//-weights of �_.�/ lie in W.L; s/uXCnr .L/.

(d) In the setting of (c), suppose that � is tempered. Then

�_.�/ D indO.Xnr.L//ÌCŒW.L;s/;\s�
O.Xnr.L//ÌCŒW.L;s/u;\s�

.Cu ˝ �u/;

where �u denotes the restriction of 1Uu HomG.…s; �/ to CŒW.L; s/u; \s�.

(e) �_ commutes with parabolic induction and unramified twists, in the sense that

�_
�
IGP .�˝ �/

�
D indO.Xnr.L//ÌCŒW.L;s/;\s�

O.Xnr.L//ÌCŒW.M;L;s/;\s�

�
�˝ �_M .�/

�
for tempered � 2 R.M/s and � 2 Xnr.M/.

Proof. (a) Since each step in Construction 3.4 is Z-linear and bijective, so is �_. The
bijectivity of (vi) comes from the Morita equivalence between

C an.Uu/ ÌC
�
W.L; s/u; \s

�
and C an�W.L; s/Uu� ÌC

�
W.L; s/; \s

�
:
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(b) By Theorem 3.1, steps (i)–(iii) respect temperedness. It is known from [31, The-
orem 2.4] that �_u in (iv) respects temperedness, and for (v) that is obvious because the
O.Xnr.L//-weights are not changed in that step. Modules of O.Xnr.L// Ì CŒ�; \s�, for
any subgroup � of W.L; s/, are tempered if and only if all their O.Xnr.L//-weights lie
in Xunr.L/. The functor indO.Xnr.L//ÌCŒW.L;s/;\s�

O.Xnr.L//ÌCŒW.L;s/u;\s�
respects this, so step (vi) does that as

well.
(c) Step (i) translates “cuspidal support .L; � ˝ W.L; s/�/” into “all O.Xnr.L//-

weights inW.L;s/�”. After that the only step that changes the O.Xnr.L//-weights is (iv),
and by [31, Theorem 2.4.(3)] it only adjusts O.Xnr.L//-weights by elements of XCnr .L/.

(d) The only tricky point is to see that step (iv) of Construction 3.4 sends

1Uu HomG.…s; �/ to C0 ˝
�
1Uu HomG.…s; �/

�ˇ̌
CŒW.L;s/u;\�1u �

;

where C0 means that O.t/ acts via evaluation at 0 2 t. That is the content of [31, Theo-
rem 2.4 (4)].

(e) First we check that �_ respects parabolic induction, at least when the input is a
tempered (virtual) representation tensored with an unramified character. Steps (i) and (ii)
commute with parabolic induction by [33, Condition 4.1 and Lemma 6.1]. For step (iii)
that follows from [34, Lemma 6.6 and Proposition 7.3]. In step (iv), property (e) is an
important part of the construction of �_u in [31, Theorem 2.4], that is where we need
the shape of the input. That step (v) respects parabolic induction that follows from the
properties of the isomorphism between the analytically localized versions of the involved
algebras, as in [34, Proposition 7.3]. For step (vi), we obtain the desired behavior from [34,
Lemma 6.6].

The compatibility with unramified twists requires an explicit computation. By the
above it suffices to check that

�_.�˝ �/ D �˝ �_.�/; � 2 Rt .G/s; � 2 Xnr.G/; (3.17)

where�
�˝ �_.�/

�
.f Tw/ D f .�/�

_.�/.f Tw/; f 2 O
�
Xnr.G/

�
; w 2 W.L; s/:

In steps (i) and (ii), (3.17) holds by construction; see [34, Section 6]. In step (iii), the
appropriate version of (3.17) is known from [31, Theorem 2.4 (2)]. Consider the tem-
pered EndG.…s/

op-module � WD HomG.…s; �/. By step (ii), we may assume that all
O.Xnr.L//-weights of � lie in W.L; s/uXCnr .L/. Step (iii), with �j�j�1u in the role of u,
sends �˝ � to

1U�j�j�1u.�˝ �/ D 1U�j�j�1u

�
j�j ˝ �j�j�1 ˝ �

�
D log j�j ˝ 1U�j�j�1u

�
�j�j�1 ˝ �

�
(3.18)

with log j�j 2 t
W.L;s/
R as character of O.t/. Step (iv) transforms (3.18) to

log j�j ˝
�
1U�j�j�1u

�
�j�j�1 ˝ �

��ˇ̌
CŒW.L;s/�j�j�1u;\s�

D log j�j ˝ .1Uu�/jCŒW.L;s/u;\�1u �;



Hochschild homology of reductive p-adic groups 25

where the equality holds because � isW.L;s/-invariant. Now step (v), again with respect
to � j�j�1u, yields

j�j ˝ �j�j�1u˝ .1Uu�/jCŒW.L;s/u;\�1u � D C�u ˝ .1Uu�/jCŒW.L;s/u;\�1u �:

Finally, using the W.L; s/-invariance of � again, step (vi) returns

indO.Xnr.L//ÌCŒW.L;s/;\s�

O.Xnr.L//ÌCŒW.L;s/u;\�1u �

�
C�u ˝ .1Uu�/jCŒW.L;s/u;\�1u �

�
D �˝ indO.Xnr.L//ÌCŒW.L;s/;\s�

O.Xnr.L//ÌCŒW.L;s/u;\�1u �

�
Cu ˝ .1Uu�/jCŒW.L;s/u;\�1u �

�
:

Similar computations show that the last expression equals �˝ �_.�/.

The properties listed in Theorem 3.5 imply for instance that �_ maps algebraic fami-
lies in R.G/s (or equivalently in R.H .G;K/s/ to algebraic families in R.O.Xnr.L// Ì
CŒW.L; s/; \s�/.

3.2. Local descriptions of Hochschild homology

In this section, we will determine the Hochschild homology of H .G/ with a method
based on the families of G-representations from Section 2. With the same procedure as
around (2.10), we pick a finite number (say ns) of algebraic families of G-representations
F.Mi ; �i /, such that the �i are irreducible and the members of these families span
Q˝Z R.G/

s in a minimal way. We may assume that each Mi is the standard Levi factor
of a standard parabolic subgroup Pi of G. Writing

Fs D

nsM
iD1

FMi ;�i

we obtain a homomorphism of Z.H .G;K/s/-modules

HHn.Fs/ W HHn
�
H .G;K/s

�
!

nsM
iD1

�n
�
Xnr.Mi /

�
;

where Z.H .G;K/s/ acts on the right-hand side via the central characters of the involved
representations �.Mi ; �i ; �i /.

We aim to establish an analogue of [35, Theorems 1.13 and 2.8] for HHn.Fs/. The
families that have no cuspidal supports in � ˝ W.L; s/Uu can be ignored for the cur-
rent purposes (we may call them Uu-irrelevant). For the remaining families, as explained
above, we may assume without loss of generality that (3.12) holds. Select ��i 2 uXunr.Mi /

such that
Sc.�i / 2 � ˝W.M;L; s/��iX

C
nr .L/: (3.19)

By Theorem 3.1, the algebraic families of HG
u -representations F.Mi ; z�i / span the part

of Q ˝Z R.HG
u / with O.t/W.L;s/u -weights in logu.Uu/. As logu.Uu/ contains tR D

R˝Z X
�.L/ and is open in t, the geometric structure of Irr.HG

u / [30, Section 11] entails
that the F.Mi ; z�i / span the whole of Q˝Z R.HG

u /. Thus we are in the setting of [35,
Lemma 4.2–Theorem 4.8].
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For g 2 W.L; s/u and v 2 tg , in [35, (1.19)] an element

�g;v 2 C ˝Z R
�
O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

��
was defined, as evaluation at .g; v/ in one picture ofHH0.O.Xnr.L// ÌCŒW.L;s/; \s�/.
As in [35, (2.8)], applying .�_u /

�1 produces a virtual HG
u -representation

�1g;vD .�
_
u /
�1�g;vD

nsX
iD1;Uu-rel

�g;i tr�
�
Mi ; z�i ;�g;i .v/

�
; g 2W.L;s/u; v 2 tg ; (3.20)

which also occurs in [35, (2.10)]. Here the Uu-irrelevant indices i are left out of the sum,
but we may still include by setting �g;i D 0 for those i . From [35, Lemma 1.10], we know
that each �g;i W tg ! tMi is given by an element ofW.L;s/u. Hence �g;i induces regular
maps

�g;i W uXnr.L/
g;ı
D expu.t

g/! expu.t
Mi / D uXnr.Mi /;

��1�i �g;i W uXnr.L/
g;ı
! Xnr.Mi /:

(3.21)

The �g;i are not defined when i is Uu-relevant. Using (3.21), we put

�1g;u0 D

nsX
iD1;Uu-rel

�g;i tr�
�
Mi ; �i ; �

�1
�i
�g;i .u

0/
�
; g 2 W.L; s/u; u

0
2 Uu:

Since the right-hand side is well defined for any u0 2 uXnr.L/
g;ı, we may extend the defi-

nition of �1g;u0 to such u0. The map (3.21) induces a homomorphism of O.Xnr.L//
W.L;s/-

algebras

��1�i �
�
g;i W O

�
Xnr.Mi /

�
˝ EndC

�
IGPi .V�i /

K
�

! O
�
uXnr.L/

g;ı
�
˝ EndC

�
IGPi .V�i /

K
�
: (3.22)

Here O.Xnr.L//
W.L;s/ acts on the domain via the central characters of the members of

F.Mi ; �i /, whereas the O.Xnr.L//
W.L;s/-module structure on the range is given at � 2

uXnr.L/
g;ı by W.L; s/�tC�i , where the central character of �i is represented by ��i t

C
�i

with tC�i 2 X
C
nr .L/. In other words, the natural module structure on the right-hand side of

(3.22) is adjusted by the positive part of the central character of �i . When we consider
the map on Hochschild homology induced by (3.22), the range does not depend on i , but
the O.Xnr.L//

W.L;s/-module structure still does. Like in [35, (1.33) and (2.14)], we can
combine the maps on Hochschild homology induced by the homomorphisms (3.22) to a
C-linear map

HHn.�
�
u/ D

M
g2hW.L;s/ui

nsX
iD1;Uu-rel

�g;iHHn.�
�1
�i
��g;i / W

nsX
iD1;Uu-rel

�n
�
Xnr.Mi /

�
!

M
g2hW.L;s/ui

�n
�
uXnr.L/

g;ı
�
:

The maps HHn.��u/, for u 2 Xunr.L/, are our main tools to describe HHn.H .G;K/s/.
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Recall that the formal completion of a commutative algebra A with respect to a finite
set of characters X is denoted by yAX . With that notation, for u0 2 Uu there are algebra
isomorphisms

4O�Xnr.L/
�W.L;s/
W.L;s/u0

Š
4O�Xnr.L/

�W.L;s/u0
u0

Š bO.t/W.L;s/u0logu.u0/

Š bO.t/W.L;s/u
W.L;s/u logu.u0/

: (3.23)

Proposition 3.6. For u0 2 Uu, the following modules over the formal completion (3.23)
are isomorphic:

(a) 4O.Xnr.L//
W.L;s/u0
u0 ˝Z.H.G;K/s/ HHn.H .G;K/s/,

(b) bO.t/W.L;s/u0logu.u0/
˝Z.HG

W.L;s/u
/ HHn.H

G
W.L;s/u

/,

(c) bO.t/W.L;s/u0logu.u0/
˝Z.HG

u /
HHn.HG

u /,

(d) bO.t/W.L;s/u0logu.u0/
˝O.t/W.L;s/uHHn.�

�/�1.
L
g2hW.L;s/ui

.�n.tg/˝ \
g
s /
ZW.L;s/u .g//,

(e) 4O.Xnr.L//
W.L;s/u0
u0 ˝O.Xnr.L//W.L;s/

HHn.�
�
u/
�1

�.
L
g2hW.L;s/ui

.�n.uXnr.L/
g;ı/˝ \

g
s /
ZW.L;s/u .g//.

The isomorphism between (a) and (d) is induced by HHn.Fs/.

The character \gs W ZW.L;s/u.g/! C� figuring in parts (d) and (e) is defined as

\gs .h/ D TgThT
�1
g T �1h ; h 2 ZW.L;s/u.g/:

It extends naturally to a map W.L; s/! CŒW.L; s//; \s� with good properties; see [35,
Lemma 1.3].

Proof. Recall the explanation of Theorem 3.1 between (3.5) and (3.22). By the Morita
invariance of Hochschild homology [18, Section 1.2]:

HHn
�
H .G;K/s

�
Š HHn

�
EndG.…s/

op� as Z
�
H .G;K/s

�
-modules: (3.24)

Let Iu0 � O.Xnr.L// be the maximal ideal of functions vanishing at u0. As

O
�
Xnr.L/

�
=Imu0 Š C

an�W.L; s/Uu�=Imu0C an�W.L; s/Uu�
for any m 2 N, the algebras O.Xnr.L//

W.L;s/ and C an.W.L;s/Uu/
W.L;s/ have the same

formal completion at u0. It follows that in the process described between (3.5) and (3.7) the
analytic localization steps do not change the formal completions of the involved algebras
(at u0 and logu.u

0/, resp.). Then Proposition 3.3 yields the isomorphism between (a), (b),
and (c).

The isomorphism between (c) and (d) is a consequence of [35, Theorem 2.8]. As
F.Mi ; z�i / is constructed from F.Mi ; �i / via Theorem 3.1, (3.23) induces isomorphisms
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of bO.t/W.L;s/u0logu.u0/
-modules

bO.t/W.L;s/u0logu.u0/
˝O.t/W.L;s/u

nsM
iD1;Uu-rel

�n.tMi /

Š
4O�Xnr.L/

�W.L;s/u0
u0 ˝O.Xnr.L//W.L;s/

nsM
iD1;Uu-rel

�n
�
uXnr.Mi /

�
:

By Theorem 3.1, this restricts to an isomorphism between (d) and (e).
The isomorphism between (c) and (d) is obtained by evaluating elements of HG

u at the
families F.Mi ; z�i /. Hence the isomorphism between HHn.EndG.…s/

op/ and (d) comes
from evaluating elements of EndG.…s/

op at the same algebraic families. When we pass
from (d) to (e), the families F.Mi ; z�i / are translated to the families F.Mi ; �i /. The iso-
morphism between (a) and (e) can be constructed from that between HHn.EndG.…s/

op/

and (e) by composing with (3.24), which is induced by a Morita equivalence. Thus the iso-
morphism between (a) and (e) is given by evaluating H .G;K/s at the families F.Mi ; �i /.
In other words, it is given by HHn.Fs/, while ignoring the Uu-irrelevant families.

We will lift Proposition 3.6 to a statement about HHn.H .G; K/s/ on the whole of
Xnr.L/.

Lemma 3.7. The map HHn.Fs/ is an injection from HHn.H .G;K/s/ to the set of ! 2Lns

iD1�
n.Xnr.Mi // such that

HHn.�
�
u/! 2

M
g2hW.L;s/ui

�
�n
�
uXnr.L/

g;ı
�
˝ \gs

�ZW.L;s/u .g/ 8u 2 Xunr.L/:

The injection is O.Xnr.L//
W.L;s/-linear if we endow each �n.uXnr.Mi // with the

O.Xnr.L//
W.L;s/-module structure coming from the central characters of H .G; K/s-

representations in F.Mi ; �i /.

Proof. First we consider an arbitrary complex affine variety V and a finitely generated
O.V /-module M . It is known from [35, Lemma 2.9] that

if the formal completion yMv is 0 for all v 2 V; then M D 0: (3.25)

Since H .G;K/s has finite rank as a module over the Noetherian algebra Z.H .G;K/s/,
so does HHn.H .G;K/s/. Consider a nonzero x 2 HHn.H .G;K/s/. In view of (3.25),
theZ.H .G;K/s/-submodule generated by x has at least one nonzero formal completion,
say at W.L;s/u0. Then x is nonzero in that completion, and by Proposition 3.6 the image
of HHn.Fs/x (in a formal completion) is nonzero. Hence HHn.Fs/ is injective.

Proposition 3.6 shows that the specialization of HHn.Fs/x at any central charac-
ter W.L; s/u0 � W.L; s/Uu has the property involving HHn.��u/. Hence HHn.Fs/x

satisfies the stated condition, at least on Uu. For each g, the required property extends
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from Uu \�
n.uXnr.L/

g;ı/ to �n.uXnr.L/
g;ı/, because Uu is Zariski-dense and the g-

component of HHn.Fs/x is an algebraic differential form. Thus the image of HHn.Fs/

is contained in the set specified in the statement.

To attain surjectivity in Lemma 3.7, we have to take the relations between specializa-
tion at u and at wu into account. This is where the algebras from Proposition 3.3 show
their usefulness. Let HHn.z��u/ be the map HHn.z��/ from [35, (2.17)], for HG

W.L;s/u
.

According to [35, Proposition 2.16], there is a C-linear bijection

HHn.z�
�
u/ ıHHn.F1/ W HHn.H

G
W.L;s/u/

!

� M
g2ŒW.L;s/=W.L;s/u�

M
w2W.L;s/u

�n
�
g
�
uXnr.L/

w;ı
��
˝ \gwg

�1

s

�W.L;s/
: (3.26)

Here HHn.F1/ is a version of HHn.Fs/ for HG
W.L;s/u

; see [35, around (2.23)].

Theorem 3.8.
(a) The O.Xnr.L//

W.L;s/-linear map HHn.Fs/ is a bijection from HHn.H.G;K/
s/

to the set of ! 2
Lns

iD1�
n.Xnr.Mi // such that

HHn.z�
�
u/!2

� M
g2ŒW.L;s/=W.L;s/u�

M
w2W.L;s/u

�n
�
g
�
uXnr.L/

w;ı
��
˝\gwg

�1

s

�W.L;s/
for all u 2 Xunr.L/.

(b) The restriction of HHn.Fs/HHn.H .G;K/s/ to W.L; s/Uu is isomorphic to� M
g2ŒW.L;s/=W.L;s/u�

M
w2W.L;s/u

�n
�
g
�
uXnr.L/

w;ı
��
˝ \gwg

�1

s

�W.L;s/
via HHn.z��u/.

Proof. (a) From Proposition 3.6 (b), (3.26), and (3.23), we obtain an alternative descrip-
tion of the formal completion ofHHn.H .G;K/s/ atW.L;s/u0, namely the formal com-
pletion at W.L; s/u0 of

HHn.z�
�
u/
�1
� M
g2ŒW.L;s/=W.L;s/u�

M
w2W.L;s/u

�n
�
g
�
uXnr.L/

w;ı
��
˝ \gwg

�1

s

�W.L;s/
:

(3.27)
Like in Lemma 3.7, it follows that the image of HHn.Fs/ is contained in (3.27) for all
u 2 Xunr.L/. The advantage is that now the behavior at the entire W.L; s/-orbit of u0 is
captured by (3.27). Consider the intersection of the spaces (3.27), over all u 2 Xunr.L/.
Divide that by the image ofHHn.Fs/. Proposition 3.6 and (3.26) tell us that the quotient is
an O.Xnr.L//

W.L;s/-module all whose formal completions are zero. As each O.Xnr.Mi //

is a finitely generated O.Xnr.L//
W.L;s/-module, so are

Lns

iD1�
n.Xnr.Mi // and its sub-

modules. Hence we may apply (3.25), which says that the quotient under consideration is
the zero module. In other words, the image of HHn.Fs/ is precisely the intersection of
the spaces (3.27).
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(b) Here restriction means that we only consider the

�n
�
Xnr.Mi /

�
with Xnr.Mi / \W.L; s/Uu ¤ ;:

Suppose that x 2 HHn.Fs/HHn.H .G;K/s/ is nonzero on W.L; s/Uu. Pick a u0 2 Uu
at which x is nonzero. Then Proposition 3.6 shows that HHn.z��u/x cannot be zero. This
proves the injectivity.

The map HHn.z��u/ is O.Xnr.L//
W.L;s/-linear if we let that algebra act on

nsM
iD1

�n
�
Xnr.Mi /

�
via the maps

Xnr.Mi /! Xnr.L/ W � 7! ��i�: (3.28)

Fix a character �2W.L;s/Uu of O.Xnr.L//
W.L;s/. There are only finitely many H.G;K/s-

representations �.Qi ; �i ; �i / with ��i�i 2 W.L; s/�, so together these support only
finitely many central characters. By (3.19) all those central characters lie in W.L; s/Uu.
Then Proposition 3.6 and (3.26) imply that HHn.Fs/HHn.H .G;K/s/ and (3.27) have
isomorphic formal completions at W.L; s/�, with the respect to the O.Xnr.L//

W.L;s/-
module structure coming from (3.28).

Hence the cokernel of HHn.z��u/ is a finitely generated O.Xnr.L//
W.L;s/-module all

whose formal completions at points of W.L; s/Uu are zero. Thus

Im� cokerHHn.z��u/ D cokerHHn.z��u/ 8� 2 W.L; s/Uu; m 2 Z>0: (3.29)

Furthermore, cokerHHn.z��u/ is of the form O.Xnr.L/=W.L; s//
r=N for some submod-

ule N of O.Xnr.L/=W.L; s//
r . Then (3.29) entails

O
�
Xnr.L/=W.L; s/

�r
D Im� O

�
Xnr.L/=W.L; s/

�r
CN

for all � 2W.L;s/Uu and allm 2Z>0. With the Zariski-density ofW.L;s/Uu, it follows
that

N D O
�
Xnr.L/=W.L; s/

�r
:

Hence cokerHHn.z��u/ D 0 and HHn.z��u/ is surjective.

Recall that HH0.H .G// and HH0.H .G; K/s/ were already computed in [5]. We
will now recover those results via families of representations. For a variation using only
tempered representations we refer to [20].

Proposition 3.9.
(a) HH0.Fs/ provides an isomorphism betweenHH0.H .G;K/s/ and the set of ele-

ments of
Lns

iD1O.Xnr.Mi// that descend to linear functions on C˝ZR.H.G;K/
s/.

(b) Part (a) yields an isomorphism of Z.H .G;K/s/-modules

HH0.H .G;K/s/ Š .C ˝Z R.G/
s/�reg:



Hochschild homology of reductive p-adic groups 31

Proof. (a) With Theorem 3.1 and Proposition 3.3, we reduce this to an issue for HG
W.L;s/u

.
In that setting, [35, Proposition 2.16 (a)] is equivalent to Theorem 3.8 (a), and the desired
description is (3.26).

(b) The definition ofHH0.Fs/ involves the generalized trace map and the Hochschild–
Kostant–Rosenberg theorem, like in [35, Section 1.2]. Unwinding this, we find that the
map

HH0
�
H .G;K/s

�
!
�
C ˝Z R

�
H .G;K/s

���
from part (a) is just (2.3). In particular, every element of HH0.H .G;K/s/ determines a
regular linear function on C˝Z R.H .G;K/s/. The map is injective becauseHHn.Fs/ is
injective and because for f 2

Lns

iD1O.Xnr.Mi // the values f .Pi ; ıi ; vi / can be recovered
from the image of f in .C ˝Z R.H .G;K/s//�. By Morita equivalence, we may replace
R.H .G;K/s/ with R.G/s.

Conversely, for every � 2 .C ˝Z R.H .G;K/s//�reg the canonical pairing with FMi ;�i

produces a regular function on Xnr.Mi /, so � comes from an element of

nsM
iD1

O
�
Xnr.Mi /

�
:

Let �s
G be a set of representatives for the inertial equivalence classes of square-

integrable modulo centre representations ı of standard Levi subgroups M of G, such
that IGP .ı/ 2 Rep.G/s. From Theorem 2.2, we see that the category of tempered repre-
sentations in Rep.G/s decomposes as

Rept .G/s D
M

dDŒM;ı�2�s
G

Rept .G/d; (3.30)

where Rept .G/d is the full subcategory generated by the subquotients of IGP .ı ˝ �/ with
� 2 Xunr.M/. With Theorem 3.1 and the same arguments as in the proof of [35, Theo-
rem 2.2], (3.30) induces a decomposition

Rt .HG
u / D

M
d2�s

G

Rt
�
HG
u

�d
: (3.31)

By Proposition 3.3, Rt .HG
W.L;s/u

/ decomposes in the same way.
It is known from [34, Proposition 9.5] that the equivalence of categories in Theo-

rem 3.1 sends square-integrable modulo centre representations to tempered essentially
discrete series representations. With that and the same process that made z� out of �,
described around (3.11), we can associate to dD ŒM; ı� 2�s

G a discrete series representa-
tion zı of HM . Thus (3.31) is a decomposition of the kind considered in [35, Theorem 2.2
and (2.25)]. We define

Fd D

nsM
iD1;i�d

FMi ;�i :
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Lemma 3.10.
(a) There is a canonical decomposition

HHn
�
H .G;K/s

�
D

M
d2�s

G

HHn
�
H .G;K/s

�d
;

where the part indexed by d D ŒM; ı� is obtained by applying HHn.Fs/
�1 to

HHn.Fd/HHn
�
H .G;K/s

�
D

M
i�d

�n.tMi / \HHn.Fs/HHn
�
H .G;K/s

�
:

(b) Select �ı 2 Xunr.L/; t
C

ı
2 XCnr .L/ such that �ı tCı represents the Z.H .G;K/s/-

character of ı. The map

HHn.z�
�
u/ ıHHn.Fd/ W HHn

�
H .G;K/s

�d
!

� M
g2ŒW.L;s/=W.L;s/u�

M
w2W.L;s/u

�n
�
g
�
uXnr.L/

w;ı
��
˝ \gwg

�1

s

�W.L;s/
is O.Xnr.L//

W.L;s/-linear if we let O.Xnr.L//
W.L;s/ act on the target such that

the following conditions hold:

• if g.uXnr.L/
w;ı/ � �ıXnr.M/, then it acts at gu� with � 2 Xnr.L/

w;ı via
the character W.L; s/u�tC

ı
,

• in the same situation O.Xnr.L//
W.L;s/ acts at hu�, where h 2 W.L; s/ and

� 2 Xnr.L/
w;ı, also via the character W.L; s/u�tC

ı
,

• if h.uXnr.L/
w;ı/ 6� �ıXnr.M/ for any h 2 W.L; s/, then O.Xnr.L//

W.L;s/

annihilates �n.g.uXnr.L/
w;ı//.

Proof. (a) This follows from [35, Lemma 2.12, (2.25), Corollary 2.13] and Theorem 3.8.
(b) The condition in the third bullet means that for i � d no map

�w;i W uXnr.L/
w;ı
! �ıXnr.M/

can exist. In that case, �w;iD0 and the image ofHHn.H .G;K/s/d in�n.g.uXnr.L/
w;ı//

is 0. From that and (3.22), we see that, for each i separately, there exists such an
O.Xnr.L//

W.L;s/-module structure as indicated, only with tC�i 2 X
C
nr .L/ instead of tC

ı
.

By [35, Corollary 2.13], HHn.z��u/ ıHHn.Fd/ is O.Xnr.L//
W.L;s/-linear if we let it

act according to the central characters of thevirtual representations�d
g;w;v from [35, (2.26)].

That means that the natural module structure is adjusted by a representative cc.ı/ 2 tR

of the central character of ı (as representation of HG
u ). So in that setting log.tC�i / and

log.cc.ı// represent the same central character, for all i � d. We have translated these to
H.G;K/s-representations with Theorem 3.1 and Proposition 3.3. Then cc.ı/ becomes tC

ı
.

Hence W.L; s/tC�i D W.L; s/t
C

ı
for all i � d.

Thus the O.Xnr.L//
W.L;s/-module structures for the i�d agree, and combine to make

HHn.z�
�
u/ ıHHn.Fd/ a module homomorphism with the indicated character shift.
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3.3. Hochschild homology for one entire Bernstein component

We would like to combine the local conditions involving HHn.��u/ to a smaller set of
conditions that describe HHn.H .G; K/s/ globally on Xnr.L/. This is difficult because
the algebras HG

u and HG
W.L;s/u

do not vary continuously with u 2Xunr.L/. To compensate
for that, we relate the local conditions coming from u; u0 2 Xunr.L/ that are close. When
W.L; s/u0 � W.L; s/u, we define

HHn.�
�
u/u0 D

M
w2W.L;s/u0

nsX
iD1;Uu-rel

�w;iHHn.�
�1
�i
��w;i /:

Lemma 3.11.
(a) Let u0 2 Uu \Xunr.L/. Then

HHn.�
�
u0/
�1
u0

� M
w2W.L;s/u0

�
�n
�
u0Xnr.L/

w;ı
�
˝ \ws

�ZW.L;s/u0 .w/�
D HHn.�

�
u/
�1
u0

� M
w2W.L;s/u0

�
�n
�
uXnr.L/

w;ı
�
˝ \ws

�ZW.L;s/u .w/�:
(b) Part (a) also holds for u 2 u0Xunr.L/

W.L;s/u0 ;ı.

Proof. (a) Notice that W.L; s/u0 � W.L; s/u by the conditions on Uu. We may choose
Uu0 so small that it is contained in Uu. From the proof of [35, Proposition 2.16 (a)] we
know thatM

w2W.L;s/u0

�
�n.u0Xnr.L/

w;ı/˝ \ws
�ZW.L;s/u0 .w/

Š

� M
g2ŒW.L;s/=W.L;s/u0 �

M
w2W.L;s/u0

�n
�
g
�
u0Xnr.L/

w;ı
��
˝ \gwg

�1

s

�W.L;s/
:

By construction, HHn.��u0/
�1
u0 of the left-hand side equals HHn.z��u0/

�1 of the right-hand
side of the isomorphism. In view of Theorem 3.8 (b), this describes precisely the restriction
of HHn.Fs/HHn.H .G;K/s/ to W.L; s/Uu0 . Similarly,

HHn.�
�
u/
�1
u

� M
w2W.L;s/u

�
�n
�
uXnr.L/

w;ı
�
˝ \ws

�ZW.L;s/u .w/�
describes precisely the restriction ofHHn.Fs/HHn.H .G;K/s/ toW.L;s/Uu. Restrict-
ing that further, W.L; s/Uu0 means that we remove the summands for w 2 W.L; s/u
that do not fix u0, because for those Uu0 \ Xnr.L/

w D ; and w.Uu0/ \ Uu0 D ;, by the
properties of Uu0 . That leaves us with

HHn.�
�
u/
�1
u0

� M
w2W.L;s/u0

�
�n
�
uXnr.L/

w;ı
�
˝ \ws

�ZW.L;s/u .w/�:
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(b) Pick a path p from u0 to u in u0Xunr.L/
W.L;s/u0 ;ı. We even assume thatW.L;s/y D

W.L;s/u0 for all y on p, because that condition holds on an open dense subset ofXunr.L/.
By the compactness of Xunr.L/, we can choose a finite subset Y of p, such that the Uy
with y 2 Y cover p. Choose a finite sequence y1; y2; : : : ; ym in Y , such that u0 2 Uy1 ,
u 2 Uym , and

Uyi \ UyiC1 \ p ¤ ; for all 1 � i < m:

For 1 � i < m, we pick zi 2 Uyi \ UyiC1 \ p. We follow the new sequence

u0; y1; z1; y2; z2; : : : ; zm�1; ym; u:

At each step part (a) guarantees that the relevant preimages under HHn.��‹ /u0 do not
change.

For c 2 �0.Xnr.L/
w/, we denote the corresponding connected component of w-fixed

points byXnr.L/
w
c . ThenW.L;s/ acts naturally on the set of such components, and on the

set of pairs .w; c/. We denote the stabilizer of .w; c/ by W.L;s/w;c ; this is a subgroup of
ZW.L;s/.w/. We register these connected components with the list of pairs .w; c/, where
w 2 W.L; s/ and c 2 �0.Xnr.L/

w/. We write .w0; c0/ � .w; c/ if Xnr.L/
w 0

c0 � Xnr.L/
w
c ,

.w0; c0/ � .w; c/ if Xnr.L/
w 0

c0 � Xnr.L/
w
c , and .w0; c0/ > .w; c/ if Xnr.L/

w 0

c0 © Xnr.L/
w
c .

We are ready to reorganize the conditions that describe Hn.Fs/HHn.H .G;K/s/ in
Theorem 3.8. This is done by decreasing induction on the dimension of the connected
components Xnr.L/

w
c , or equivalently on the pairs .w; c/.

Construction 3.12.
(i) We start withwD 1 andXnr.L/

w
c DXnr.L/. Pick u1 2Xunr.L/withW.L;s/u1

D ¹1º. Then HHn.��1;c/ WD HHn.�
�
u1
/ is just a map

nsM
iD1

�n.Xnr.Mi //! �n.u1Xnr.L// D �
n.Xnr.L//;

and it sendsHHn.Fs/HHn.H.G;K/
s/ to�n.Xnr.L//

W.L;s/. By Lemma 3.11,
this completely describes the restriction of HHn.Fs/HHn.H .G; K/s/ to the
subset of Xnr.L/ not fixed by any nontrivial element ofW.L;s/. Remove .1; c/
from the list of pairs.

(ii) Assume that for some connected components Xnr.L/
w
c we have already chosen

a map

HHn.�
�
w;c/ W

nsM
iD1

�n
�
Xnr.Mi /

�
! �n

�
uw;cXnr.L/

w;ı
�
D �n

�
Xnr.L/

w
c

�
;

(3.32)
of the form

Pns

iD1;Uu-rel �w;iHHn.�
�1
�i
��w;i / coming from HHn.�

�
u/ for some

u D uw;c with uw;c 2 Xnr.L/
w
c but not in any connected component of smaller
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dimension. Assume that the set of pairs .w; c/ for which this has been done
is closed under passing to larger pairs. Assume that all those pairs have been
removed from the list. Finally and most importantly, we assume that for all those
pairs .w; c/ the restriction of HHn.Fs/HHn.H .G;K/s/ to Xnr.L/

w
c without

the connected components of smaller dimension equals\
.w 0;c0/�.w;c/

HHn.�
�
w 0;c0/

�1
�
�n
�
Xnr.L/

w 0

c0

�
˝ \w

0

s

�W.L;s/w0;c0 : (3.33)

(iii) From the list of remaining pairs, pick a .g; c/ with Xnr.L/
g
c of maximal dimen-

sion. Select uDug;c inXunr.L/
g
c but not in any connected component of smaller

dimension. Define

HHn.�
�
g;c/ D

nsX
iD1;Uu-rel

�g;iHHn.�
�1
�i
��g;i /; (3.34)

a part of HHn.��u/. If there are other h 2 W.L; s/ with Xnr.L/
h
c D Xnr.L/

g
c ,

then we take uh;c D ug;c and we define HHn.��h;c/ in the same way. We need
to check that\

.w 0;c0/>.g;c/

HHn.�
�
w 0;c0/

�1
�
�n
�
Xnr.L/

w 0

c0

�
˝ \w

0

s

�W.L;s/w0;c0
\

\
.h;c/�.g;c/

HHn.�
�
h;c/
�1
�
�n
�
Xnr.L/

h
c

�
˝ \hs

�W.L;s/h;c (3.35)

equals

HHn.�
�
u/
�1

M
w2hW.L;s/ui

�
�n
�
uXnr.L/

w;ı
�
˝ \ws

�ZW.L;s/u .w/: (3.36)

This follows from Lemma 3.11, which says that all the parts HHn.��u/u0 with
u0 2Uu and u0 …Xnr.L/

g
c are accounted for by the .w0; c0/ > .g;c/. Lemma 3.11

also tells us that expressions (3.35) and (3.36) describe exactly the restriction of
HHn.Fs/HHn.H .G;K/s/ to Xnr.L/

g
c without the components of smaller di-

mension.

(iv) For components .g0; c0/ in the W.L; s/-orbit of .g; c/ or any of the .h; c/, we
define the maps HHn.��g 0;c0/ by imposing W.L; s/-equivariance (where the
group acting involves the characters \gs ). This construction ensures that

HHn.�
�
g;c/
�1
�
�n
�
Xnr.L/

g
c

�
˝ \gs

�W.L;s/g;c
D

� X
.g 0;c0/2W.L;s/.g;c/

HHn.�
�
g 0;c0/

��1
�

� M
.g 0;c0/2W.L;s/.g;c/

�n
�
Xnr.L/

h
c

�
˝ \hs

�W.L;s/
: (3.37)



M. Solleveld 36

(v) Remove .g; c/ and the pairs .h; c/ � .g; c/ from the list of pairs. Stop if there
are no pairs left, otherwise return to step (iii).

With (3.34) we associate to .w; �/ the virtual H .G;K/s-representation

�1w;� D

nsX
iD1;Uu-rel

�w;i tr�
�
Mi ; �i ; �

�1
�i
�w;i .�/

�
: (3.38)

In other words, the specialization of HHn.��w;c/ at � 2 Xnr.L/
w
c corresponds to the map

on Hochschild homology induced by �1w;�. This means that

HHn.�
�
w;c/ ıHHn.Fs/ W HHn

�
H .G;K/s

�
! �n.Xnr.L/

w
c / (3.39)

is induced by the algebraic family of virtual representations ¹�1w;� W � 2 Xnr.L/
w
c º. From

[35, Lemma 2.5 (a)] (translated to the current setting with Theorem 3.1) and step (iv)
above we see that

�1
gwg�1;g�

D \ws .g/�
1
w;�: (3.40)

Considering �1w;� as virtual G-representation via the equivalence of categories (3.6), we
deduce from (3.34) and (3.20) that

�_.�1w;�/ D �w;�: (3.41)

The above procedure gives rise to a description ofHHn.H .G;K/s/ that is more concrete
than Theorem 3.8.

Theorem 3.13. For each w 2 W.L;s/ and each c 2 �0.Xnr.L/
w/, let HHn.��w;c/ be as

above. We define

HHn.z�
�
s / D

M
w2W.L;s/;c2�0.Xnr.L/w /

HHn.�
�
w;c/:

(a) The map

HHn.z�
�
s / W

nsM
iD1

�n
�
Xnr.Mi /

�
!

M
w2W.L;s/;c2�0.Xnr.L/w /

�n
�
Xnr.L/

w
c

�
is injective.

(b) HHn.z�
�
s / gives a C-linear bijection

HHn.Fs/HHn
�
H .G;K/s

�
!

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
:

(c) For d 2 �s
G , the restriction of HHn.z��s / ı HHn.Fs/ to the direct summand

HHn.H .G;K/s/d of HHn.H .G;K/s/ becomes O.Xnr.L//
W.L;s/-linear if we

endow the target with the same module structure as in Lemma 3.10.
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Proof. (a) Recall that the specialization of HHn.��w;c/ at � 2 Xnr.L/
w
c came from a vir-

tual representation of HG
�j�j�1

, translated to a virtual representation �1;w;� of H .G; K/s

via Theorem 3.1 and Proposition 3.3.
Consider one u 2 Xunr.L/. From (3.33) and Theorem 3.8, we see that the �1;w;� with

central characters in W.L; s/Uu span the same set of virtual representations with cen-
tral characters in W.L; s/Uu as all the virtual representations �g;u0 defined via HG

u . The
latter collection spans the entire part of C ˝Z R.H .G; K/s/ with central characters in
W.L;s/Uu, so the �w;� span that as well. It follows that the specialization of HHn.��s /x
at � 2 W.L; s/Uu is zero if and only if the specialization of HHn.z��u/x at � is zero.

From [35, Lemmas 1.12 and 2.7] we know thatHHn.��u/ andHHn.z��u/ are injective,
for twisted graded Hecke algebras and for H.V;G; k; \/ as in [35, Section 2.3], and hence
also for the algebras HG

u and HG
W.L;s/

. By the above considerations with virtual represen-
tations,HHn.z��s / contains at least as much information asHHn.z��u/. HenceHHn.z��s /x
is nonzero as soon as x 2

Lns

iD1�
n.Xnr.Mi // does not vanish on Uu. That holds for every

u 2 Xunr.L/, so HHn.z��s /x is injective.
(b) We already know from Lemma 3.7 and part (a) that HHn.z��s / ı HHn.Fs/ is

injective. From Theorem 3.8, (3.33), and (3.37), we know that the assertion holds locally.
Hence

HHn.z�
�
s / ıHHn.Fs/HHn

�
H .G;K/s

�
�

� M
w2W.L;s/; c2�0.Xnr.L/w /

�n
�
Xnr.L/

w
c

�
˝ \ws

�W.L;s/
: (3.42)

Both sides are finitely generated O.Xnr.L//
W.L;s/-modules (for natural module structure,

not the module structure determined by the characters of the underlying virtual represen-
tations). We consider the quotient moduleM . Since the two sides of (3.42) are isomorphic
locally, all formal completions of M with respect to characters of O.Xnr.L//

W.L;s/ are
zero. By (3.25) M D 0, so the inclusion (3.42) is an equality. Finally, we note thatM

c2�0.Xnr.L/w /

�n
�
Xnr.L/

w
c

�
D �n

�
Xnr.L/

w
�
:

(c) This follows from Lemma 3.10, since every component of HHn.z��s / occurs as
component of an HHn.z��u/.

Recall that H .G; K/s is Morita equivalent with EndG.…s/
op and that in (3.15) we

fixed an isomorphism of O.Xnr.L//
W.L;s/-algebras:

C
�
Xnr.L/

�W.L;s/
˝O.Xnr.L//W.L;s/

EndG.…s/
op �
�! C

�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
:

Recall the bijection �_ from (3.16) and Theorem 3.5.

Theorem 3.14. There exists a unique C-linear bijection

HHn.�
_/ W HHn

�
O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

��
! HHn

�
H .G;K/s

�



M. Solleveld 38

such that
HHn.FM;�/ ıHHn.�

_/ D HHn.FM;�_.�//

for all algebraic families F.M; �/ in Rep.G/s.

Proof. By [35, Theorem 1.2], there is an O.Xnr.L//
W.L;s/-linear bijection

HHn
�
O
�
Xnr.L/

�
ÌC

�
W.L;s/; \s

��
!

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
: (3.43)

It is not canonical, but from [35, (1.15) and (1.17)] we know that the non-canonicity is
limited to one scalar factor for each direct summand indexed by a conjugacy class in
W.L;s/. We can fix these scalar factors by requiring that (3.43) on the summand indexed
by w is induced by the algebraic family of virtual representations®

�w;� W � 2 Xnr.L/
w
¯
: (3.44)

Indeed, the bijection (3.43) is recovered in that way in [35, Theorem 1.13 (a)]. The only
issue is that [35, Section 1.2] applies not to tori like Xnr.L/, but to complex vector spaces.
Fortunately, [35, Theorem 1.13] can easily be extended to our setting by localization of
O.Xnr.L//

W.L;s/ to sets of the form W.L; s/Uu=W.L; s/. Thus we make (3.43) canoni-
cal.

By Lemma 3.7 and Theorem 3.13 (b),

HHn.z�
�
s / ıHHn.Fs/ W HHn

�
H .G;K/s

�
!

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
is a C-linear bijection. We defineHHn.�_/ as the composition of (3.43) with .HHn.z��s / ı
HHn.Fs//

�1. From (3.39), (3.41), and (3.44), we see that

HHn.F / ıHHn.�
_/ D HHn.�

_
ı F / (3.45)

whenever F is one of the families ¹�1w;� W � 2 Xnr.L/
w
c º with c 2 �0.Xnr.L/

w/. Since
every such F is a linear combination of algebraic families of H .G;K/s-representations,
(3.45) is implied by the condition in the theorem. Hence HHn.�_/ is unique.

It remains to check that

HHn.FM;�/ ıHHn.�
_/ D HHn.FM;�_.�// (3.46)

for an arbitrary algebraic family in Rep.G/s. By [35, Lemma 1.9], the virtual representa-
tions �w;�, with w 2 ŒW.L; s/� and v 2 Xnr.L/

w=ZW.L;s/.w/ such that

\ws
�
W.L; s/v \ZW.L;s/.w/

�
D 1;

form a basis of
C ˝Z R

�
O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

��
: (3.47)
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Hence there exist coefficients c.w; v; �/ 2 C such that

F
�
M; �_.�/; �

�
D

X
w;v

c.w; v; �/�w;v:

Then (3.41) and the bijectivity of Theorem 3.5 imply that

F.M; �; �/ D
X
w;v

c.w; v; �/�1w;v:

Recall from (3.38) that �1w;v is a linear combination of the F.Mi ; �i ; vi /. With Theo-
rem 3.5 that can be transferred to (3.47). Hence there exist c0.i; �; vi / 2 C such that

F.M; �; �/ D
X
i;vi

c0.i; �; vi /F.Mi ; �i ; vi /;

F
�
M; �_.�/; �

�
D

X
i;vi

c0.i; �; vi /F
�
Mi ; �

_.�i /; vi
�
:

From (3.45), we deduce that

HHn
�
F.M; �; �/

�
ıHHn.�

_/ D HHn
�
F
�
M; �_.�/; �

��
:

The same argument for all � 2 Xnr.M/ simultaneously yields (3.46).

Theorem 3.14 is a homological counterpart to [34, Theorem 9.9], which matches the
irreducible representations of H .G;K/s with those of O.Xnr.L// ÌCŒW.L; s/; \s�.

4. The Schwartz algebra of G

The Harish-Chandra–Schwartz algebra of a reductive p-adic group is an inductive limit
of Fréchet spaces, but itself not a Fréchet algebra. To do homological algebra with such
topological algebras, we have to agree on a suitable topological tensor product. The best
choice is to work in the category of complete bornological vector spaces, with the com-
plete bornological tensor product [19, Chapter I]. We denote it by y̋ , which is reasonable
since for Fréchet algebras it agrees with the projective tensor product [19, Theorem I.87].

The Hochschild homology of a complete bornological algebra A is defined as

HHn.A/ D TorA y̋A
op

n .A;A/; (4.1)

working in the category of complete bornological A-modules. When A is unital,HH�.A/
can be computed with the completed bar-complex Cn.A/ D A

y̋nC1 and the usual differ-
ential

bn.a0˝ � � � ˝ an/D

n�1X
iD0

a0˝ � � � ˝ aiaiC1˝ � � � ˝ anC .�1/
nana0˝ a1˝ � � � ˝ an�1:

Under additional conditions, these functors HHn are continuous.



M. Solleveld 40

Lemma 4.1. Suppose that A D lim
�!i

Ai is a strict inductive limit of nuclear Fréchet alge-
bras (where strict means that the transition maps Ai ! Aj are injective and have closed
range). Then there is a natural isomorphism

HHn.A/ Š lim
�!
i

HHn.Ai /:

Proof. In [8, Theorem 2], this was shown with respect to the inductive tensor product.
Under the assumptions of the lemma, inductive tensor products agree with completed
bornological tensor products, for the Ai and for A [19, Theorem I.93].

Recall that �.G/ is the inductive limit of the algebras �.G;K/, whereK runs over the
compact open subgroups ofG. As �.G;K/ is a closed subspace of �.G;K 0/ when K 0�K,
�.G/ is even a strict inductive limit. The Plancherel isomorphism from Theorem 2.2
shows that each �.G; K/ is nuclear Fréchet algebra. Thus Lemma 4.1 applies and says
that

HHn
�
�.G/

�
Š lim
�!
K

HHn
�
�.G;K/

�
: (4.2)

The decomposition (3.1) induces a decomposition of the Schwartz algebra ofG as a direct
sum of two-sided ideals:

�.G/ D
M

s2B.G/

�.G/s;

indexed by the inertial equivalence classes s D ŒL; ��G of cuspidal pairs for G. This
persists to the subalgebras of K-bi-invariant functions:

�.G;K/ D
M

s2B.G/

�.G;K/s;

but for each K only finitely many of the �.G;K/s are nonzero. The analogue of (4.2) for
�.G/s reads

HHn
�
�.G/s

�
D HHn

�
lim
�!
K

�.G;K/s
�

Š lim
�!
K

HHn
�
�.G;K/s

�
: (4.3)

Whenever H .G/s and H .G;K/s are Morita equivalent (which by [7] happens for arbi-
trarily small K), also �.G/s and �.G; K/s are Morita equivalent. Let us denote that
situation by s 2 B.G;K/. Then (4.2) and (4.3) imply that

HHn
�
�.G/

�
Š lim
�!
K

M
s2B.G;K/

HHn
�
�.G;K/s

�
Š

M
s2B.G/

HHn
�
�.G/s

�
and that each HHn.�.G/s/ is isomorphic with HHn.�.G;K/s/ when s 2 B.G;K/.
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4.1. Topological algebraic aspects

We want to determine the Hochschild homology of the nuclear Fréchet algebra �.G;K/s,
which is also the closure of H .G;K/s in �.G/. We have to take the topology of �.G;K/s

into account, which creates challenges that were absent in the purely algebraic setting of
Section 3. Before we start the actual computation, we first settle most issues of topological-
algebraic nature.

Recall from Theorem 2.2 that there is an isomorphism of Fréchet algebras:

�.G;K/s Š
M

dD.M;ı/2�s
G

�
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/

: (4.4)

By [15, Théorème 0.1], (4.4) restricts to an algebra isomorphism

H .G;K/s Š
�
O
�
Xnr.L/

�
˝ EndC

�
IGP0L.V� /

K
��

\

M
dD.M;ı/2�s

G

�
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/

: (4.5)

Let ed 2 �.G;K/ be the central idempotent corresponding to the direct summand of (4.4)
indexed by d. We define �.G;K/d D ed�.G;K/, so that by (4.4)

�.G;K/d Š
�
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/

: (4.6)

Then �.G;K/s D
L

d2�s
G

�.G;K/d and

Z
�
�.G;K/s

�
D

M
d2�s

G

Z
�
�.G;K/d

�
Š

M
d2�s

G

C1
�
Xunr.M/

�W.M;d/
: (4.7)

For d 2 �s
G we have Wd � Ws. The relation between W.M;d/ and W.L;s/ is less clear,

because the groups Xnr.M; ı/ and Xnr.L; �/ from (2.8) may differ.
To analyze (Fréchet) modules over (4.7), we will make ample use of the following

result. It is the specialization of [17, Lemma 3.4] to the affine variety Xnr.M/ with the
submanifold Xunr.M/ and the action of W.M;d/.

Proposition 4.2. Let zY be an affine variety with an embedding { in Xnr.M/. Suppose that

• {. zY / is closed in Xnr.M/ and isomorphic to zY ,

• Y WD {�1.Xunr.M// is a real analytic Zariski-dense submanifold of zY and diffeomor-
phic to {.Y /.

Let p be an idempotent in the ring of continuous C1.M/W.M;d/-linear endomorphisms
of �nsm.Y /, such that p stabilizes �n. zY /. Then the natural map

C1
�
Xunr.M/

�W.M;d/
˝O.Xnr.M//W.M;d/ p�

n. zY /! p�nsm.Y /

is an isomorphism of Fréchet C1.Xunr.M//W.M;d/-modules.
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The dense subspace edH .G;K/s of �.G;K/d is a subalgebra because ed is central,
but it is not contained in H .G;K/. Its irreducible representations are the constituents of
the IGP .ı˝ �/ with � 2Xnr.M/. Its centre is the restriction ofZ.H .G;K/s/ to F .M; ı/,
so

Z
�
edH .G;K/s

�
D edZ

�
H .G;K/s

�
Š O

�
Xnr.M/

�W.M;d/
: (4.8)

Lemma 4.3.
(a) The multiplication map

�d W Z
�
�.G;K/d

�
˝edZ.H.G;K/s/ edH .G;K/s ! �.G;K/d

is an isomorphism of Fréchet Z.�.G;K/d/-modules.

(b) TheZ.�.G;K/d/-module �.G;K/d is generated by a finite subset of edH.G;K/s.

Proof. (a) From (4.6) and (4.7), we see that Z.�.G; K/d/-module �.G; K/ is a direct
summand of

C1
�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
�
Š C1

�
Xunr.M/

�dim.IGP .Vı /
K /2

I

namely, it is the image of the idempotent of the averages over W.M; d/. It follows from
(4.5) that

edH .G;K/s Š
�
O
�
Xnr.M/

�
˝ EndC

�
IGP .Vı/

K
��

\
�
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/

:

From this and (4.6), (4.7), and (4.8), we see that we are in the right position to apply
Proposition 4.2, which yields exactly the statement.

(b) This follows from part (a) and (3.4).

We note that there are natural homomorphisms of Z.H .G;K/s/-modules

HHn
�
H .G;K/s

�d
! HHn

�
H .G;K/s

�
! HHn

�
edH .G;K/s

�
;

and the outer sides should be closely related. However, the composed map is in general
not bijective; HHn.edH .G;K/s/ can be more intricate.

As discussed around (4.1), we compute the Hochschild homology of Fréchet algebras
with respect to the complete projective tensor product. We establish some topological
properties of the Hochschild homology groups of �.G;K/s, making use of [17].

Proposition 4.4. HHn.�.G; K/s/ is a quotient of two closed submodules of a finitely
generated Fréchet Z.�.G; K/s/-module. In particular, HHn.�.G; K/s/ is a Fréchet
Z.�.G;K/s/-module.

Proof. To compute HHn.�.G; K/s/ according to the definition (4.1), we can use any
(bornological or Fréchet) projective bimodule resolution of �.G;K/s. One such resolution
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was constructed in [23, Theorem 4.2], for �.G;K/ but that is enough because �.G;K/s is
a direct summand of �.G;K/. The set of n-chains of that resolution is a finitely generated
projective �.G; K/s y̋ �.G; K/s;op-module. By construction, this projective resolution
contains a projective bimodule resolution of H .G; K/s, namely the set of elements that
live in powers of H .G;K/s y̋ H .G;K/s;op.

By tensoring with �.G; K/s over �.G; K/s y̋ �.G; K/s;op, we obtain a differential
complex .C�; d�/ that computes HHn.�.G;K/s/. Each term Cn is a direct summand of�

�.G;K/s y̋ �.G;K/s;op�r
˝�.G;K/s y̋�.G;K/s;op �.G;K/s Š

�
�.G;K/s

�r
;

for some r 2 N. By Theorem 2.2 and [17, Theorem 3.1 (b)], .�.G; K/s/r and its direct
summandCn are finitely generated FréchetZ.�.G;K/s/-modules. The set of n-cyclesZn
is closed in Cn (by the continuity of the boundary map) and hence closed in .�.G;K/s/r .

The intersection C 0n of Cn with .H .G; K/s/r is a finitely generated Z.H .G; K/s/-
module, by property (3.4). That yields a differential complex .C 0n; dn/ which computes
HHn.H .G;K/s/.

Choose a finite set Yn � .H .G; K/s/r that generates C 0n as Z.H .G; K/s/-module.
With Lemma 4.3 we see that Yn also generatesCn asZ.�.G;K/s/-module. As the bound-
ary map dn is Z.�.G;K/s/-linear, the set of n-boundaries Bn D dn.Cn�1/ is generated
as Z.�.G;K/s/-module by dn.Yn�1/. There are inclusions

Bn � Zn � Cn �
��
C1

�
Xunr.M/

�
˝ EndC

�
IGP .Vı/

K
��W.M;d/�r

: (4.9)

We want to show that Bn D Z.�.G;K/s/d.Yn�1/ is a closed subspace of the right-hand
side, just like Zn and Cn. The right-hand side of (4.9) embeds as C1.Xunr.M//W.M;d/-
module in

C1
�
Xunr.M/

�r 0
; where r 0 D r dim

�
IGP .Vı/

K
�2
:

Via this embedding the elements of d.Yn�1/ become analytic (in fact algebraic) functions
on Xunr.M/ � ¹1; : : : ; r 0º. By [36, Corollaire V.1.6], generalized to an W.M;d/-invariant
setting in [17, Theorem 1.2], the finite set d.Yn�1/ generates a closedC1.Xunr.M//W.M;d/-
submodule C1.Xunr.M//r

0

. Hence Bn is closed in any of the modules from (4.9). Now
(4.9) and HHn.�.G;K/s/ D Zn=Bn provide the required properties.

We use the same algebraic families F.Mi ; �i / in Rep.G/s as in Section 3.2. Recall
from Definition 2.1 that F.Mi ; �i / naturally contains a tempered algebraic family

Ft .Mi ; �i / D
®
IGPi .�i ˝ �i / W �i 2 Xunr.Mi /

¯
:

By Theorem 2.2, it gives rise to a homomorphism of Fréchet Z.�.G;K/s/-algebras

F t
Mi ;�i

W �.G;K/s ! C1
�
Xunr.Mi /

�
˝ EndC

�
IGPi .V�i /

K
�
: (4.10)

Here Z.�.G;K/s/ acts on the right-hand side via evaluations at the central characters of
the underlying G-representations �.Mi ; �i ; �i /. In terms of (4.7), the direct summands

Z
�
�.G;K/d

�
D C1

�
Xunr.M/

�W.M;d/
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of Z.�.G; K/s/ annihilate the range of (4.10) when i 6� d. When i � d, pick ��i ;ı so
that �i is a subquotient of IGP .ı˝ ��i ;ı/. Then C1.Xunr.M//W.M;d/ acts on the range of
(4.10) via the map

Xunr.Mi /! Xunr.M/ W � 7! ��i ;ı�:

We note that

F t
d WD

nsM
iD1;i�d

F t
Mi ;�i

annihilates all the �.G;K/d
0

with d0 2 �s
G n ¹dº. We write

F t
s D

M
d2�s

G

F t
d D

nsM
iD1

F t
Mi ;�i

:

These Fréchet algebra homomorphisms induce homomorphisms of FréchetZ.�.G;K/s/-
modules

HHn.F
t

d / W HHn
�
�.G;K/d

�
!

nsM
iD1; i�d

�nsm

�
Xunr.Mi /

�
;

HHn.F
t

s / D
M

d2�s
G

HHn.F
t

d / W HHn
�
�.G;K/s

�
!

nsM
iD1

�nsm

�
Xunr.Mi /

�
:

The algebra inclusion Z.H .G;K/s/! Z.�.G;K/s/ induces a surjection

pr W
G

dDŒM;ı�2�s
G

Xunr.M/=W.M;d/! Xnr.L/=W.L; s/:

Proposition 4.5. For � 2 Xunr.M/=W.M; d/, the following spaces are naturally iso-
morphic:

(i) the formal completion of HHn.�.G;K/d/ at �,

(ii) the formal completion of HHn.edH .G;K/s/ at pr.�/, and

(iii) the formal completion of HHn.H .G;K/s/d (as in Lemma 3.10) at pr.�/.

We remark that (ii) and (iii) need not be isomorphic for more general central characters
(e.g., the central character of �.M; ı; �/ with � 2 Xnr.M/ not unitary).

Proof. Let FPW.M;d/
�

Š FP
W.M;d/�
�

be the algebra of W.M; d/-invariant formal power
series on .M; ı;Xunr.M// centred at � . It is naturally isomorphic to the formal completion
of

O
�
Xnr.M/

�W.M;d/
Š Z

�
edH .G;K/s

�
(4.11)

at W.M;d/�. By [22, Theorem 2.5], the functor

FP
W.M;d/
�

˝Z.�.G;K/d/ D FP
W.M;d/�
�

˝C1.M/W.M;d/



Hochschild homology of reductive p-adic groups 45

is exact on a large class of Z.�.G;K/d/-modules. This class contains all modules which
as topological vector spaces are quotients of �.Z/, and all modules that we need here are
of that form. This exactness implies that

FP
W.M;d/
�

˝Z.�.G;K/d/ HHn
�
�.G;K/d

�
Š Hn

�
FP

W.M;d/
�

˝Z.�.G;K/d/ C�
�
�.G;K/d

�
; b�

�
: (4.12)

Let I1
W.M;d/�

�C1.Xunr.M//W.M;d/ be the ideal ofW.M;d/-invariant smooth functions
that are flat atW.M;d/�. By a theorem of Borel, see [36, Théorème IV.3.1 and Remarque
IV.3.5], the Taylor series map C1.M/! FPv is surjective. Taking W.M; d/-invariants
leads to an isomorphism

FP
W.M;d/
�

Š C1
�
Xunr.M/

�W.M;d/
=I1W.M;d/�:

In particular, the ideal I1
W.M;d/�

annihilates (4.12). With Lemma 4.3 (a) we find that (4.12)
is isomorphic with

Hn
�
C�
�
FP

W.M;d/
�

˝Z.�.G;K/d/ �.G;K/d
�
; b�

�
Š Hn

�
C�
�
FP

W.M;d/
�

˝Z.�.G;K/d/ Z
�
�.G;K/d

�
˝edZ.H.G;K/s/ edH .G;K/s

�
; b�

�
Š Hn

�
C�
�
FP

W.M;d/
�

˝edZ.H.G;K/s/ edH .G;K/s
�
; b�

�
Š HHn

�
FP

W.M;d/
�

˝edZ.H.G;K/s/ edH .G;K/s
�
: (4.13)

By (4.11) at the exactness of FPW.M;d/
�

˝O.Xnr.M//W.M;d/ , the last expression can be iden-
tified with the formal completion of HHn.edH .G; K/s/ at pr.�/. Hence (i) and (ii) are
naturally isomorphic.

Next we apply HHn.F t
d / to the last line of (4.13), with image in

FP
W.M;d/�
�

˝C1.M/W.M;d/

nsM
iD1; i�d

�nsm

�
Xunr.Mi /

�
:

As F t
d .ed/D 1, we may just as well set Fd.ed/D 1 and applyHHn.Fd/. Then the image

becomes

HHn.Fd/HHn
�5O�Xnr.M/

�W.M;d/
W.M;d/�

˝edZ.H.G;K/s/ edH .G;K/s
�

Š
5O�Xnr.M/

�W.M;d/
W.M;d/�

˝edZ.H.G;K/s/ HHn.Fd/HHn
�
H .G;K/s

�
D

4O�Xnr.L/
�W.L;s/

pr.�/ ˝Z.H.G;K/s/ HHn.Fd/HHn
�
H .G;K/s

�
:

To the last expression, we apply id˝HHn.Fs/
�1 (which exists by Lemma 3.7), and we

obtain the desired description of (4.13) and of (4.12).

The injectivity of HHn.F t
s / is more subtle for these topological algebras than it was

in the earlier purely algebraic settings (e.g., Lemma 3.7).
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Lemma 4.6.
(a) The continuous Z.�.G;K/s/-linear map

HHn.F
t

s / W HHn
�
�.G;K/s

�
!

nsM
iD1

�nsm

�
Xunr.Mi /

�
is injective.

(b) The natural map HHn.H .G;K/s/! HHn.�.G;K/
s/ is injective.

Proof. (a) The kernel ofHHn.F t
s/ is a closedZ.�.G;K/s/-submodule ofHHn.�.G;K/s/,

so by Proposition 4.4 it is a quotient of two closed submodules of a finitely generated
Fréchet Z.�.G;K/s/-module. Using the central idempotents ed, we can decompose

kerHHn.F t
s / D

M
d2�s

G

kerHHn.F t
d /:

Here each HHn.F t
d / is a quotient of two closed submodules of a finitely generated

Fréchet C1.Xunr.M//W.M;d/-module. Suppose that kerHHn.F t
d / is nonzero for one

specific ı. By [17, Lemma 1.1], at least one of its formal completions is nonzero, say at
� D W.M;d/.M; ı; �/. By Proposition 4.5, that formal completion of kerHHn.F t

d / can
be considered as a submodule of the formal completion of HHn.H .G;K/s/d at pr.�/.

From Theorem 3.8 and Lemma 3.10, we can infer that HHn.Fd/ is injective on
bHHn.H .G;K/s/dpr.�/. That holds for HHn.F t

d / as well, because F t
d D Fd on these

formal completions. Hence

HHn.Fd/
�

kerHHn.F t
s /
�

has a nonzero formal completion at �, which is clearly a contradiction.
(b) The algebra homomorphism F t

s extends

Fs W H .G;K/s !

nsM
iD1

�n
�
Xnr.Mi /

�
˝C EndC

�
IGPi .�i /

K
�
:

By Lemma 3.7, the mapHHn.Fs/, is injective, just asHHn.F t
s /. Hence the natural map

HHn
�
H .G;K/s

�
! HHn

�
�.G;K/s

�
equals the injection HHn.F t

s /
�1 ıHHn.Fs/.

4.2. Computation of Hochschild homology

For u 2 Xunr.L/ and g 2 W.L; s/u, the maps �g;i from [35, (2.12)] and ��1�i �
�
g;i from

(3.22) are well defined in this setting, only now as

��1�i �
�
g;i WC

1
�
Xunr.Mi /

�
˝EndC

�
IGPi .V�i /

K
�
!C1

�
Xunr.L/

g;ı
�
˝EndC

�
IGPi .V�i /

K
�
:
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This enables to define the smooth version of (3.32):

HHn.�
�
w;c/ D

nsX
iD1

HHn.�
�1
�i
��w;i / W

nsM
iD1;Uu-rel

�nsm

�
Xunr.Mi /

�
! �nsm

�
Xunr.L/

w
c

�
:

Like in Theorem 3.13, we define

HHn.z�
�
s / D

M
w2W.L;s/; c�0.Xnr.L/

w
c /

HHn.�
�
w;c/:

Lemma 4.7. The continuous map

HHn.z�
�
s / W

nsM
iD1

�nsm

�
Xunr.Mi /

�
!

M
w2W.L;s/; c2�0.Xnr.L/w /

�n
�
Xunr.L/

w
c

�
is injective.

Proof. This can be shown in the same way as Theorem 3.13 (a). Ultimately, the argument
relies on [35, Lemma 1.12] which holds just as well in a smooth setting, as explained in
[35, p. 21].

We fix d D ŒM; ı� and we represent the central character of ı by �ı tCı with �ı 2
Xunr.L/ and tC

ı
2 XCnr .L/. We let

Z
�
�.G;K/d

�
Š C1

�
Xunr.M/

�W.M;d/ act on
M

w2W.L;s/

�nsm

�
Xunr.L/

w
�

in the following way:

• if g.Xnr.L/
w
c / � �ıXnr.M/ for some g;w 2 W.L; s/, then it acts at .w; �/

with � 2 Xunr.L/
w
c via the character W.M;d/��1

ı
g�,

• if W.L; s/Xnr.L/
w
c 6� W.L; s/�ıXnr.M/, then Z.�.G;K/d/ acts as zero

on �nsm.Xunr.L/
w
c /.

Lemma 4.8. The following map is Z.�.G;K/d/-linear:

HHn.z�
�
s / ıHHn.F

t
d / W HHn

�
�.G;K/d

�
!

M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
:

Proof. From Lemma 3.10 (b) and Theorem 3.13 (c), we know how Z.H .G;K/s/ acts on

HHn.z�
�
s /HHn.Fı/HHn

�
H .G;K/s

�
�

M
w2W.L;s/

�n
�
Xnr.L/

w
�
:

That action is pointwise, in the sense that upon specialization at any point of Xnr.L/
w the

Z.H .G; K/s/-action goes via evaluation at a character (or is just zero). Via the natural
map

Z
�
H .G;K/s

�
! Z

�
�.G;K/d

�
W f 7! edf; (4.14)
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such an action naturally gives rise to an action of C1.Xunr.M//W.M;d/ onM
w2W.L;s/

�nsm

�
Xunr.L/

w
�
;

which is pointwise in the same sense. The map

Xunr.M/=W.M;d/! Xnr.L/=W.L; s/

induced by (4.14) sendsW.M;d/� toW.L;s/��ı tCı . When we compare this with Lemma
3.10 (b), we see that Z.�.G;K/s/ acts in the way described just before the lemma.

Next we prove the most technical step towards our description of HHn.�.G;K/s/.

Lemma 4.9. The Z.�.G;K/d/-module HHn.F t
d /HHn.�.G;K/

d/ contains

nsM
iD1;i�d

�nsm

�
Xunr.Mi /

�
\HHn.z�

�
s /
�1
� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
:

Proof. From Lemma 4.8, we know that HHn.��s / becomes Z.�.G; K/d/-linear if we
restrict its domain to the summands �n.Xunr.Mi // with i � d. We consider

HHn.z�
�
s /
� nsM
iD1; i�d

�n
�
Xnr.Mi /

��
\

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
: (4.15)

If we take the direct sum over d 2�s
G , then by Theorem 3.13 we obtain precisely the term

on the right-hand side. By continuous extension, we find that the direct sum over d 2 �s
G

of the spaces

HHn.z�
�
s /
� nsM
iD1; i�d

�nsm

�
Xunr.Mi /

��
\

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
(4.16)

equals (4.20). Lemma 4.8 tells us that (4.20) is a Z.�.G;K/d/-submodule ofM
w2W.L;s/

�nsm

�
Xunr.L/

w
�
; (4.17)

In fact, it is direct summand, namely the image of the idempotentˇ̌
W.L; s/

ˇ̌�1 X
w2W.L;s/

w:

Hence there exists a continuous idempotent C1.Xunr.M//W.M;d/-linear endomorphism
p of (4.17) with image (4.16). Although the Z.�.G; K/d/-action on (4.17) annihilates
some of the direct summands, that is not a problem because the action ofZ.�.G;K/d/ on
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the subspace (4.16) is induced by embeddings Xunr.L/
w ! Xunr.M/ as usual. We note

that
p
� M
w2W.L;s/

�n
�
Xnr.L/

w
��
D (4.15):

Now we are in the right position to apply Proposition 4.2, which yields an isomorphism
of Fréchet C1.Xunr.M//W.M;d/-modules

C1
�
Xunr.M/

�W.M;d/
˝O.Xnr.M//W.M;d/ (4.15) Š (4.16):

With the injectivity and the C1.Xunr.M//W.M;d/-linearity of HHn.z��s / we find that the
C1.Xunr.M//W.M;d/-module in the statement is generated by

nsM
iD1; i�d

�n
�
Xnr.Mi /

�
\HHn.z�

�
s /
�1
� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
: (4.18)

It was shown in Theorem 3.13 (b) that HHn.Fd/HHn.H .G; K/s/ contains (4.18), so
HHn.F

t
d /HHn.�.G; K/

s/ contains (4.18) as well. Hence the C1.Xunr.M//W.M;d/-
module HHn.F t

d /HHn.�.G;K/
s/ contains the module in the statement.

Everything is in place to establish a smooth version of Theorem 3.13.

Theorem 4.10. HHn.z��s / ıHHn.Fs/ gives an isomorphism of Fréchet spaces

HHn
�
�.G;K/s

�
!

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
:

Proof. Evaluation of

HH0.z�
�
s /HH0.Fs/HH0

�
H .G;K/s

�
(4.19)

at .w; �/ corresponds to the map on HH0 induced by the virtual representation �1w;� of
H .G;K/s from (3.38). If we evaluate at a family of �’s simultaneously, that interpretation
becomes valid and nontrivial in degrees n > 0 as well. The W.L; s/-invariance of (4.19)
(and its versions in degrees n > 0) in Theorem 3.13 (b) is a consequence of the following:

• the relations (3.40) between these virtual representations,

• the fact that the Hochschild homology does not distinguish equivalent virtual repre-
sentations [35, Lemma 1.7].

Our maps in the smooth setting are basically the same as the earlier maps in an algebraic
setting, only restricted to tempered representations and allowing for smooth functions.
Therefore,

HHn.z�
�
s /HHn.F

t
s /HHn

�
�.G;K/s

�
also consists of W.L; s/-invariant elements. More explicitly, it is contained in� M

w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
: (4.20)
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Comparing this with Lemma 4.9, we deduce that the inclusion in Lemma 4.9 is in fact an
equality. Now (4.16) entails that

HHn.z�
�
s /HHn.F

t
s /HHn

�
�.G;K/s

�
D

M
d2�s

G

HHn.z�
�
s /HHn.F

t
s /HHn

�
�.G;K/s

�
equals the right-hand side of (4.20). Thus HHn.z��s /HHn.F

t
s / is a continuous bijection

between the Fréchet spaces HHn.�.G;K/s/ and (4.20). By the open mapping theorem,
it is an isomorphism of Fréchet spaces.

Like in Proposition 3.9, there is an alternative description of HH0.�.G//. We note
that HH0.H .G// can also be described with tempered representations only [20], like in
the following proposition.

Proposition 4.11.
(a) For d D ŒM; ı� 2 �s

G , the map HH0.F t
d / is an isomorphism of

C1.Xunr.M//W.M;d/-modules from HH0.�.G; K/
d/ to the set of elements ofLns

iD1; i�dC
1.Xunr.Mi // that descend to linear functions on C˝ZR.�.G;K/

d/.

(b) Part (a) yields an isomorphism of Z.�.G;K/s/-modules

HH0
�
�.G;K/d

�
Š
�
C ˝Z R

t .G/d
��
1
:

Proof. (a) From Proposition 3.9 (a) and Theorem 3.13 (b), we see that the stated condition
on f 2

Lns

iD1; i�dC
1.Xunr.Mi //, only withR.H .G;K/s/, is equivalent to the condition

HHn.�
�
s /f 2

� M
w2W.L;s/

O
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
: (4.21)

The condition in the statement is local, so can be checked locally in terms of (4.21). If
one restricts to R.�.G;K/d/, only the parts of the condition of the subvarieties Xunr.L/

w

remain. Then we get exactly the description of HH0.�.G; K/s/ already established in
part (a).

(b) This is analogous to Proposition 3.9 (b).

To establish an analogue of Theorem 3.14 for �.G;K/s, we first study a smooth ver-
sion of [35, Theorem 1.2].

Proposition 4.12. Let W be a finite group acting by diffeomorphisms on a smooth real
manifold X . Let \ WW 2! C� be a 2-cocycle and let ¹Tw W w 2W º be the standard basis
of CŒW; \�. Define \w.w0/ D TwTw 0T �1w T �1w 0 2 C�Tww 0w�1w 0�1 .

There is an isomorphism of Fréchet C1.X/W -modules:

HHn
�
C1.X/ ÌCŒW; \�

�
Š

� M
w2W

�nsm.X
w/˝ \w

�W
:
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Proof. Our argument is a modification of [35, proof of Theorem 1.2]. Let

1! Z ! zW ! W ! 1

be a finite central extension of W , such that the inflation of \ to zW becomes trivial in
H 2. zW ;C�/. Then there exist a central idempotent p\ 2CŒZ� and an algebra isomorphism
p\CŒ zW �! CŒW; \�. It sends p\ Qw to c Qww, where w 2 W denotes the image of Qw 2 zW
and c Qw 2 C� is a suitable scalar. Then

HHn
�
C1.X/ ÌCŒW; \�

�
Š HHn

�
p\
�
C1.X/ ÌCŒ zW �

��
Š p\HHn

�
C1.X/ Ì zW

�
:

By [10, 11], there is an isomorphism

HHn
�
C1.X/ Ì zW

�
Š

� M
Qw2 zW

�nsm.X
Qw/
� zW
:

With this at hand, the same analysis as in the analogous algebraic setting [35, (1.5)–(1.14)]
proves the required isomorphism of C1.X/W -modules.

An easier version of Proposition 4.4 shows thatHHn.C1.X/ ÌCŒW; \�/ is a Fréchet
space. Clearly, M

w2W

�nsm.X
w/˝ \w

is a Fréchet space, so its closed subspace� M
w2W

�nsm.X
w/˝ \w

�W
is Fréchet as well. As described in [35, (1.15)], the isomorphism with HHn.C1.X/ Ì
CŒW; \�/ has two ingredients:

• the Connes–Hochschild–Kostant–Rosenberg theorem, which is a topological
isomorphism HHn.C

1.Xw// Š �nsm.X
w/ and

• some simple constructions in CŒ zW �.

This entails that our isomorphism ofC1.X/W -modules is a continuous bijection between
Fréchet spaces. Then the open mapping theorem guarantees that it is a homeomorph-
ism.

For an algebraic family of O.Xnr.L// Ì CŒW.L; s/; \s�-representations F.M; �/,
parametrized by Xnr.M/ and on a vector space VM;� , we define

F t
M;� W C

1
�
Xunr.L/

�
ÌC

�
W.L; s/; \s

�
! C1

�
Xunr.M/

�
˝ EndC.VM;�/

f 7!
�
� 7! F.M; �; �/.f /

�
:

Recall from Theorem 3.5 that �_ restricts to a bijection

�_t W R
t .G/s Š R

�
�.G;K/s

�
! R

�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
:
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Theorem 4.13. There exists a unique isomorphism of Fréchet spaces

HHn.�
_
t / W HHn

�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
! HHn

�
�.G;K/s

�
such that

HHn.F
t
M;�/ ıHHn.�

_
t / D HHn.F

t
M;�_.�//

for all algebraic families F.M; �/ in Mod.H .G;K/s/.

Proof. This is analogous to the proof of Theorem 3.14. For the construction ofHHn.�_t /,
we use Proposition 4.12 (with Xnr.L/; W.L; s/; \s) and Theorem 4.10 instead of [35,
Theorem 1.2], Theorem 3.13 (b), and Lemma 3.7. In all the involved algebraic families of
representations F.M; �/, temperedness of F.M; �; �/ is equivalent to � 2 Xunr.L/. The
uniqueness and further properties of the map HHn.�_t / can be shown in exactly the same
way as for HHn.�_/.

Theorems 3.14 and 4.13 relate the Hochschild homology of H .G/s and �.G/s to that
of the twisted crossed products

O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
and C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

�
:

These theorems can be considered as confirmations of the ABPS conjectures [2] on the
level of Hochschild homology.

Finally, we take a closer look at HHn.�.G;K/d/. From the Plancherel isomorphism
(4.4), we get

HHn
�
�.G;K/s

�
D

M
d2�s

G

HHn
�
�.G;K/d

�
:

By Lemma 4.6 (b), we can regard HHn.H .G;K/s/ as a subspace of HHn.�.G;K/s/.

Theorem 4.14.
(a) The maps HHn.F t

d / and HHn.��s / provide isomorphisms between the Fréchet
Z.�.G;K/d/-modules HHn.�.G;K/d/,

nsM
iD1; i�d

�nsm

�
Xunr.Mi /

�
\HHn.z�

�
s /
�1
� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
and

HHn.z�
�
s /
� nsM
iD1; i�d

�nsm

�
Xunr.Mi /

��
\

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
:

(b) HHn.�.G;K/
d/ is the closure of HHn.H .G;K/s/d in HHn.�.G;K/s/.

(c) There is a natural isomorphism of Fréchet Z.�.G;K/d/-modules

Z
�
�.G;K/d

�
˝Z.H.G;K/s/ HHn

�
H .G;K/s

�d
! HHn

�
�.G;K/d

�
:
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Proof. (a) The Z.�.G;K/d/-linearity comes from Lemma 4.8 and the isomorphisms fol-
low immediately from Theorem 4.10. The range of HHn.F t

d / is a Fréchet space because
by the continuity of HHn.z��s / it is closed in

Lns

iD1;i�d �
n
sm.Xunr.Mi //. The range of

HHn.z�
�
s /HHn.F

t
d / is Fréchet because as checked directly after (4.17) it is a direct sum-

mand of
L
w2W.L;s/�

n
sm.Xunr.L/

w/.
(b) Recall from Lemma 3.10 that

HHn
�
H .G;K/s

�d
D HHn.Fs/

�1HHn.Fd/HHn
�
H .G;K/s

�
: (4.22)

From part (a) and Theorem 3.13 (b), we see that the closure of

HHn.Fd/HHn
�
H .G;K/s

�
in

nsM
iD1; i�d

�nsm

�
Xunr.Mi /

�
equals HHn.F t

d /HHn.�.G; K/
d/. To this we apply HHn.F t

s /
�1, which exists and is

continuous by part (a). We find that the closure of (4.22) equals

HHn.F
t

s /
�1HHn.F

t
d /HHn

�
�.G;K/d

�
D HHn.F

t
s /
�1HHn.F

t
s /HHn

�
�.G;K/d

�
D HHn

�
�.G;K/d

�
:

(c) The map is induced by the algebra homomorphism

H .G;K/s ! �.G;K/d W h 7! edh

and the Z.�.G; K/d/-module structure of HHn.�.G; K/d/, so it is natural. Part (b)
implies that the Z.H .G;K/s/-action on HHn.H .G;K/s/d factors through

Z
�
H .G;K/s

�
! Z

�
�.G;K/d

�
W z 7! edz:

Hence we may just as well consider it as an action of

edZ
�
H .G;K/s

�
Š O

�
Xnr.M/

�W.M;d/
:

After (4.17), we constructed a continuous C1.Xunr.M//W.M;d/-linear idempotent endo-
morphism p of M

w2W.L;s/

�nsm

�
Xunr.L/

w
�
;

with image (3.35). By part (a), HHn.�.G;K/d/ is isomorphic as C1.Xunr.M//W.M;d/-
module to the image of p, via the mapHHn.��s /HHn.F

t
d /. Similarly, Theorem 3.13 tells

us that HHn.H .G;K/s/d is isomorphic as O.Xnr.M//W.M;d/-module to

p
� M
w2W.L;s/

�n
�
Xnr.L/

w
��
;
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via HHn.��s /HHn.Fd/. Thus we have translated the statement to: the natural map

C1
�
Xunr.M/

�W.M;d/
˝O.Xnr.M//W.M;d/ p

� M
w2W.L;s/

�n
�
Xnr.L/

w
��

! p
� M
w2W.L;s/

�nsm

�
Xunr.L/

w
��

is an isomorphism of Fréchet C1.Xunr.M//W.M;d/-modules. As the action comes from
an embedding Xunr.L/

w ! Xunr.M/ for each relevant w, that claim is an instance of
Proposition 4.2.

Let us record a consequence of Theorem 4.14:M
d2�s

G

Z
�
�.G;K/d

�
˝Z.H.G;K/s/ HHn

�
H .G;K/s

�d
Š HHn

�
�.G;K/s

�
(4.23)

as Fréchet Z.�.G;K/s/-modules. However, usually

Z
�
�.G;K/s

�
˝Z.H.G;K/s/ HHn

�
H .G;K/s

�
is not isomorphic to HHn.�.G; K/s/ as Z.�.G; K/s/-module. The reason is that the
terms

Z
�
�.G;K/d

0�
˝Z.H.G;K/s/ HHn

�
H .G;K/s

�d
with d0 ¤ d can be nonzero, but do not occur in (4.23).

5. Cyclic homology

Recall from [18, Section 2.1.7] that the cyclic homology of a unital algebra A can be
computed as the total homology of a bicomplex .B.A/; b; B/. Here

B.A/p;q D A
˝pC1�q if p � q � 0;

and B.A/p;q is zero otherwise. The vertical differential b is the same as in the bar-
resolution, so each column of B.A/ computes the Hochschild homology of A. The hor-
izontal differential B induces a map B W HHn.A/! HHnC1.A/. When A D O.V / for
a nonsingular complex affine variety or A D C1.V / for a smooth manifold V , B is the
usual exterior differential d W �n.V /! �nC1.V / [18, Section 2.3.6].

For A D H .G;K/s, we know from Theorem 3.13 that there is an isomorphism

HHn
�
H .G;K/s

�
!

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
; (5.1)

induced by the algebraic families of virtual representations®
�1w;� W � 2 Xnr.L/

w
c

¯
; w 2 W.L; s/; c 2 �0

�
Xnr.L/

w
�
:
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By (3.38), each of these families is a linear combination of algebraic families F0.Mi ; �i /

obtained from F.Mi ; �i / by composition with an algebraic map fromXnr.L/
w
c toXnr.Mi/.

In particular, (5.1) is a linear combination of maps

HHn.F
0
Mi ;�i

/ W HHn
�
H .G;K/s

�
! HHn

�
O
�
Xnr.L/

w
c

�
˝ EndC

�
IGPi .�i /

K
��
: (5.2)

By Morita invariance and the Hochschild–Kostant–Rosenberg theorem, the right-hand
side of (5.2) can be identified with

HHn
�
O
�
Xnr.L/

w
c

��
Š �n

�
Xnr.L/

w
c

�
: (5.3)

Via these maps, the natural differential B on HH�.H .G; K/s/ is transformed into the
exterior differential d on ��.Xnr.L/

w
c /. All the maps in (5.2) and (5.3) (and between

them) can be realized on the level of chain complexes. For HHn.F 0Mi ;�i
/ that is clear, the

Morita equivalence between

O
�
Xnr.L/

w
c

�
˝ EndC

�
IGPi .�i /

K
�

and O
�
Xnr.L/

w
c

�
is implemented by the generalized trace map [18, Section 1.2] and (5.3) comes from the
map �n in [18, Lemma 1.3.14]. Altogether these furnish a morphism of bicomplexes�

B
�
H .G;K/s

�
; b; B

�
!

M
w2W.L;s/; c2�0.Xnr.L/w /

�
B��

�
Xnr.L/

w
c

�
; 0; d

�
;

where B��.V / is the bicomplex with�p�q.V / in degree .p;q/, provided that p � q � 0.
From Theorem 3.13, we know that its image is actually smaller and we can restrict it to a
morphism of bicomplexes�

B
�
H .G;K/s

�
; b; B

�
!

�� M
w2W.L;s/

B��
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
; 0; d

�
: (5.4)

Analogous considerations for �.G;K/s, now using Theorem 4.10, lead to a morphism of
bicomplexes�

B
�
�.G;K/s

�
; b; B

�
!

�� M
w2W.L;s/

B��sm

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
; 0; d

�
: (5.5)

By Theorems 3.13 and 4.10, the maps (5.4) and (5.5) induce isomorphisms on the
Hochschild homology of the involved bicomplexes. It follows from Connes’ periodic-
ity exact sequence that (5.4) and (5.5) also induce isomorphisms on cyclic homology; see
[18, Section 2.5].

Theorem 5.1. There are isomorphisms of vector spaces,

HCn
�
H .G;K/s

�
Š

� M
w2W.L;s/

�n
�
Xnr.L/

w
�
=d�n�1

�
Xnr.L/

w
�
˝ \ws

�W.L;s/
˚

bn=2cM
mD1

� M
w2W.L;s/

Hn�2m
dR

�
Xnr.L/

w
�
˝ \ws

�W.L;s/
;
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HCn
�
�.G;K/s

�
Š

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
�
=d�n�1

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
˚

bn=2cM
mD1

� M
w2W.L;s/

Hn�2m
dR

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
:

Proof. As explained above, it remains to identify the cyclic homology of the right-hand
sides of (5.4) and (5.5). By design

HCn
�
B��.V /; 0; d

�
D �n.V /=d�n�1.V /˚

bn=2cM
mD1

Hn�2m
dR .V /I (5.6)

see [18, Section 2.3]. In our case, V D
F
w2W.L;s/Xnr.L/

w and the group W.L; s/ acts
on ��.V /, namely by the natural action on the underlying space tensored with the char-
acters \ws . Taking invariants for an action of a finite group commutes with homology, so
we may just take the W.L; s/-invariants in (5.6). That yields HCn.H .G;K/s/, and the
argument for HCn.�.G;K/s/ is completely analogous.

From Theorem 5.1, we see that HCn.H .G;K/s/ and HCn.�.G;K/s/ stabilize: for
n > dimC.Xnr.L// they depend only on the parity of n. By [18, Proposition 5.1.9], the
periodic cyclic homology is the limit term:

HPn
�
H .G;K/s

�
Š

M
m2Z

� M
w2W.L;s/

HnC2m
dR

�
Xnr.L/

w
�
˝ \ws

�W.L;s/
; (5.7)

HPn
�
�.G;K/s

�
Š

M
m2Z

� M
w2W.L;s/

HnC2m
dR

�
Xunr.L/

w
�
˝ \ws

�W.L;s/
: (5.8)

We point out that the right-hand sides of, respectively, (5.7) and (5.8) are naturally iso-
morphic with the periodic cyclic homology groups of, respectively,

O
�
Xnr.L/

�
ÌC

�
W.L; s/; \s

�
and C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

�
: (5.9)

That can be derived with similar arguments. Hence (5.7) and (5.8) are the versions of
Theorems 3.14 and 4.13 for periodic cyclic homology.

We note also that (5.8) relates to the conjectural description of the topological K-
theory of �.G; K/s in [2, Conjecture 5]. In [2, Section 4] things are formulated for the
C �-completion of �.G/s, which has the same topological K-theory as �.G;K/s by [28,
(3.2)]. Since the Chern character

K�
�
�.G;K/s

�
˝Z C ! HP�

�
�.G;K/s

�
is an isomorphism [28, Theorem 3.2], (5.8) provides a description ofK�.�.G;K/s/mod-
ulo torsion. With the comments around (5.9), we can formulate that as an isomorphism

K�
�
�.G;K/s

�
˝Z C Š HP�

�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
: (5.10)



Hochschild homology of reductive p-adic groups 57

Via the equivariant Chern character [3] for an action of a central extension of W.L; s/ on
Xunr.L/, the right-hand side of (5.10) is isomorphic with

K�
�
C1

�
Xunr.L/

�
ÌC

�
W.L; s/; \s

��
˝Z C D K�W.L;s/;\s

�
Xunr.L/

�
˝Z C;

where the latter is the notation from [2, Section 4.1]. We have proved [2, Conjecture 5]
modulo torsion.

Theorem 5.2. There is an isomorphism of vector spaces

K�
�
�.G;K/s

�
˝Z C Š K�W.L;s/;\s

�
Xunr.L/

�
˝Z C:

Since Xunr.L/ is a W.L; s/-equivariant deformation retract of Xnr.L/,

Hn
dR

�
Xnr.L/

w
�
D Hn

dR

�
Xunr.L/

w
�
:

Combining that with (5.7) and (5.8), we recover [28, Theorem 3.3].

Corollary 5.3. The inclusion H .G;K/s ! �.G;K/s induces an isomorphism on peri-
odic cyclic homology.

With elementary Lie theory, one sees that Xnr.L/
w is a finite union of cosets Xnr.L/

w
c

of the complex torus Xnr.L/
w;ı. Since Xnr.L/

w is a commutative Lie group. its tangent
spaces at any two points are canonically isomorphic.

Lemma 5.4. HPn.H .G;K/s/ can be represented by the elements ofM
m2Z

HHnC2m
�
H .G;K/s

�
that are locally constant (as differential forms). The same holds for �.G;K/s.

Proof. First we consider a simpler setting, namely the graded algebra of differential forms
��.T / on a complex algebraic torus T . Write T as a direct product of one-dimensional
algebraic subtori Ti , then

��.T / D
O
i

��.Ti /: (5.11)

For Ti everything is explicit:

H 0
dR.Ti / D C; H 1

dR.Ti / D Cdz;

and this equals the subspace of constant elements in

��.Ti / D CŒz; z�1�˚CŒz; z�1�dz:

By the Künneth formula
H�dR.T / D

O
i

H�dR.Ti /;

and in combination with (5.11) we find that this is precisely the space of constant differ-
ential forms in ��.T /.
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The above argument uses the structure of T as an algebraic variety, not as a group, so it
applies to all the varietiesXnr.L/

w
c . Further, the action ofZW.L;s/.w; c/ on��.Xnr.L/

w
c /

preserves the subspace of constant differential forms. Hence� M
w2W.L;s/

Hn
dR.Xnr.L/

w/˝ \ws

�W.L;s/
can be represented by the elements of� M

w2W.L;s/

�n
�
Xnr.L/

w
�
˝ \ws

�W.L;s/
that are locally constant (keeping the canonical identifications of different tangent spaces
in mind). Combining that with Theorem 3.13 and (5.7), we get the lemma for H .G;K/s.
The above arguments involving T also work for smooth differential forms on compact
real tori. With that, Theorem 4.10, and (5.8), we establish the lemma for �.G;K/s.

Assume now that the 2-cocycle \s is trivial, like in most examples. Then (5.7), (5.8),
and Corollary 5.3 simplify to

HPn
�
H .G;K/s

�
Š HPn

�
�.G;K/s

�
Š

M
m2Z

� M
w2W.L;s/

HnC2m
dR

�
Xnr.L/

w
��W.L;s/

: (5.12)

For any nonsingular complex affine variety V , there is a natural isomorphism

Hn
dR.V / Š H

n
sing.V /:

Here H�sing denotes singular cohomology with complex coefficients, and it is applied to
V with the analytic topology. If a finite group � acts algebraically on V and V 0 is a �-
equivariant deformation retract of V , then naturally

Hn
sing.V /

�
Š Hn

sing.V=�/ Š H
n
sing.V

0=�/:

Hence (5.12) can be expressed as

HPn
�
H .G;K/s

�
Š HPn

�
�.G;K/s

�
Š

M
m2Z

HnC2m
sing

� G
w2W.L;s/

Xunr.L/
w=W.L; s/

�
: (5.13)

6. Examples

The smallest nontrivial example is G D SL2.F /, where F is any non-Archimedean local
field. The Hochschild homology for this group is known entirely from [31], here we work
it out in our notations.
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For every supercuspidal G-representation V with V K ¤ 0, the corresponding di-
rect summand of H .G; K/ is Morita equivalent with C. This contributes a factor C to
HH�.H .G;K//, in degree 0. The same applies to HH�.�.G;K//.

Let T Š F � be the diagonal subgroup of G and write W D W.G; T / D ¹w; eº. Con-
sider a K \ T -invariant character �0 of the maximal compact subgroup o�F of T . Let
�1 W T ! C� be an extension of �0 and let Rep.G/s be the Bernstein block associated to
.T; �1/. There are three different cases:

• ord.�0/>2. HereW.T;s/ is trivial and H.G;K/s is Morita equivalent with O.Xnr.T //.
Hence

HHn
�
H .G;K/s

�
Š �n

�
Xnr.T /

�
Š O

�
Xnr.T /

�
Š CŒz; z�1� n D 0; 1;

and HHn.H .G;K/s/ D 0 for other n. Similarly, �.G;K/s is Morita equivalent with
C1.Xunr.T //. Hence

HHn
�
�.G;K/s

�
Š �nsm

�
Xunr.T /

�
Š C1

�
Xunr.T /

�
Š C1.S1/ n D 0; 1;

and 0 in other degrees n.

• ord.�0/ D 2. Now W.T; s/ equals W . If we pick a �1 of order 2 and regard it as
basepoint of

Irr.T /s D �1Xnr.T / Š C�;

then W acts on C� by inversion. The algebra H .G; K/s is Morita equivalent with
O.Xnr.T // ÌW . The representation IGB .�1�/ is irreducible unless �1� has order 2,
then it is a direct sum of two inequivalent irreducible representations. In this case, we
need three algebraic families of G-representations in Rep.G/s; namely

F.T; �1/ D
®
IGB .�1�/ W � 2 Xnr.T /

¯
;

one irreducible summand �1 of IGB .�1/ and one irreducible summand �2 of IGB .�2/,
where �2 is the other order 2 extension of �0. The families of virtual representations
differ slightly; namely

�1e;� D I
G
B .�1�/; � 2 Xnr.T /;

�1w;�1 D �1 � I
G
B .�1/=2;

�1w;�2 D �2 � I
G
B .�2/=2:

(This works, but for the best normalization we should make sure that �1 and �2 are
chosen so that W acts trivially on their K-invariant vectors.) We find that

HH0
�
H .G;K/s

�
Š O

�
Xnr.T /

�W
˚C ˚C;

HH1
�
H .G;K/s

�
Š �1

�
Xnr.T /

�W
Š O

�
Xnr.T /

�W
;

HHn
�
H .G;K/s

�
D 0 for n > 1:
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The centre O.Xnr.T //
W acts on one factor C via �1 and on the other via �2. Further,

�.G;K/s is Morita equivalent with C1.Xunr.T // ÌW , and one obtains

HH0
�
�.G;K/s

�
Š C1

�
Xunr.T /

�W
˚C ˚C;

HH1
�
�.G;K/s

�
Š �1sm

�
Xunr.T /

�W
Š C1

�
Xunr.T /

�W
;

HHn
�
�.G;K/s

�
D 0 for n > 1:

• ord.�0/D 1. Now �1 D 1 and H .G;K/s is Morita equivalent to an affine Hecke alge-
bra of typeA1 with equal parameters qF . The representation IGB .�/with �2Xnr.T / is
reducible if and only if the value of � at a uniformizer$F of G lies in ¹�1; qF ; q�1F º.
Like in the previous case, we need three algebraic families of representations:

F.T; �1/ D
®
IGB .�/ W � 2 Xnr.T /

¯
;

the Steinberg representation St and one irreducible summand �� of IGB .��/, where
�� is the unique unramified character of order 2. The algebraic families of virtual
representations are

�1e;� D I
G
B .�/; � 2 Xnr.T /;

�1w;1 D I
G
B .trivT /=2 � St;

�1w;�� D �� � I
G
B .��/=2:

(For the correct normalization, we should pick �� such that via Theorem 3.5 W
acts trivially on �_.��/.) The maps (2.11) provide isomorphisms of Z.H .G; K/s/-
modules

HH0
�
H .G;K/s

�
Š O

�
Xnr.T /

�W
˚C ˚C;

HH1
�
H .G;K/s

�
Š �1

�
Xnr.T /

�W
Š O

�
Xnr.T /

�W
;

HHn
�
H .G;K/s

�
D 0 for n > 1:

Here O.Xnr.T //
W acts on one factor C via ��, and on the other via unramified char-

acters with values ¹qF ; q�1F º at $F .
As before, these findings extend naturally to �.G;K/s:

HH0
�
�.G;K/s

�
Š C1

�
Xunr.T /

�W
˚C ˚C;

HH1
�
�.G;K/s

�
Š �1sm

�
Xunr.T /

�W
Š C1

�
Xunr.T /

�W
;

HHn
�
�.G;K/s

�
D 0 for n > 1:

Another well-studied example is the general linear group G D GLn.F /. For this G,
most aspects are simpler than for other reductive p-adic groups. Consider an arbitrary
inertial equivalence class s D ŒL; �� for G. By picking suitable representatives, we can
achieve that

L D
Ỳ
iD1

GLni .F /
ei ; � D �`iD1�

�ei
i ;
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where �i and �i 0 with i ¤ i 0 are not equivalent up to unramified twists. There are natural
isomorphisms

Xnr.L/ Š
Ỳ
iD1

.C�/ei ; W.L; s/ Š
Ỳ
iD1

Sei :

Let M be a Levi subgroup of G containing L and let ı 2 Irr.M/ be square-integrable
modulo centre, such that ı 2 Rep.M/s. Then d D ŒM; ı� can be represented by data

M D
Ỳ
iD1

`iY
jD1

GLnidj .F /
ei;j ; ı D �`iD1 �

`i
jD1 St.dj ; �i /�ei;j ;

where
`iX
jD1

dj ei;j D ei

and St.dj ; �i / is the generalized Steinberg representation associated to ��dji . Moreover,
we may assume that St.dj ; �i / and St.dj 0 ; �i / do not differ by an unramified twist if
j ¤ j 0. In this case, there are natural isomorphisms

Xnr.M/ Š
Ỳ
iD1

`iY
jD1

.C�/ei;j ; W.M;d/ Š
Ỳ
iD1

`iY
jD1

Sei;j :

It is known from [13, Théorème B.2.d] that IGP preserves irreducibility for tempered repre-
sentations. Hence the intertwining operators by which W.M;d/ acts on C1.Xunr.M//˝

EndC.I
G
P .ı// must be scalar at every point of Xunr.M/. In particular, W.L; s/ acts on

C1.Xunr.L//˝ EndC.I
G
P0L

.�/K/ as a group, not via a projective representation, so the
2-cocycle \s is trivial.

Choose K so that �.G/s is Morita equivalent to �.G; K/s. The Plancherel isomor-
phism (Theorem 2.2) provides an isomorphism of Fréchet algebras

�.G;K/d Š C1
�
Xunr.M/

�W.M;d/
˝ EndC

�
IGP .ı/

K
�
: (6.1)

In particular, �.G; K/d is Morita equivalent to C1.Xunr.M//W.M;d/, an algebra whose
irreducible representations are naturally parametrized byXunr.M/=W.M;d/. (An isomor-
phism like (6.1) is rather specific for GLn.F /, most other reductive p-adic groups have
Bernstein components in which that fails.) From the above Morita equivalences and the
decomposition (1.4) of �.G/s, we deduce that

Irrt .G/s Š Irr
�
�.G;K/s

�
Š

G
d2�s

G

Xunr.M/=W.M;d/: (6.2)

This space is naturally homeomorphic with� G
w2W.L;s/

Xunr.L/
w
�
=W.L; s/; (6.3)
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via [9, Theorem 1] or Theorem 3.5. That makes it clear how to choose our smooth families
of representations F.Mi ; �i /: we just take the F.M; ı/ with ŒM; ı� 2 �s

G . Theorem 4.10
provides a natural isomorphism of Fréchet spaces

HHn
�
�.G;K/s

�
!

� M
w2W.L;s/

�nsm

�
Xunr.L/

w
��W.L;s/

: (6.4)

By the homeomorphism between (6.2) and (6.3), this implies that the mapM
d2�s

G

HHn.F
t
M;ı/ W HHn

�
�.G;K/s

�
!

M
d2�s

G

�nsm

�
Xunr.M/

�W.M;d/ (6.5)

is bijective. In fact, (6.5) is an isomorphism of FréchetZ.�.G;K/s/-modules, with respect
to the module structure from Lemma 4.8. Then Theorem 4.14 shows that (6.5) restricts to
an isomorphism of Z.�.G;K/d/-modules

HHn.F
t
M;ı/ W HHn

�
�.G;K/d

�
! �nsm

�
Xunr.M/

�W.M;d/
; (6.6)

which was established before in [8, p. 676].
The space Irr.G/s cannot decompose like in (6.2) because it is connected, but still it

comes close. Namely, by [9, Theorem 1] the homeomorphism (6.2) extends naturally to a
continuous bijection G

d2�s
G

Xnr.M/=W.M;d/! Irr.G/s: (6.7)

Comparing Theorem 3.5 and [9, Theorem 1], we see that (6.7) can be obtained as .�_/�1

followed by taking Langlands quotients of standardG-representations. FromTheorem 3.13
and (6.4), we deduce that the algebraic families F.M; ı/ induce C-linear bijections

HHn
�
H .G;K/s

�
!

M
d2�s

G

�n
�
Xnr.M/

�W.M;d/
Š

� M
w2W.L;s/

�n
�
Xnr.L/

w
��W.L;s/

: (6.8)

By (6.6), (6.8) restricts to an isomorphism of Z.H .G;K/s/-modules

HHn.FM;ı/ W HHn
�
H .G;K/s

�d
! �n

�
Xnr.M/

�W.M;d/
:

Like in (5.12) and (5.13), the corresponding direct summand of HPn.H .G; K/s/ is
canonically isomorphic with

HPn
�
�.G;K/d

�
Š

M
m2Z

HnC2m
dR

�
Xunr.M/

�W.M;d/
Š

M
m2Z

HnC2m
sing

�
Xunr.M/=W.M;d/

�
:
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