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a division ring D, the singular kernel of f is the set of square matrices of all sizes over R,
which, on applying f', yield singular matrices over D. Paul M. Cohn characterized the sets
of square matrices that can arise as singular kernels and showed that, up to isomorphism,
the singular kernels characterize the different homomorphisms from R to division rings. In
this work, we show that this characterization can be implemented in the context of graded
rings. More precisely, given a ring R graded by a group I we adapt the theory of Cohn to
determine the different homomorphisms of graded rings from R to I'-graded division rings.
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Introduction

Let R be a commutative ring. It is well known that the prime ideals of R classify
the homomorphisms from R to division rings. Indeed, for any prime ideal P of R,
we obtain a homomorphism from R to a division ring via the natural homomorphism
R — Q(R/P), where Q(R/P) denotes the field of fractions of R/P. Conversely,
if ¢: R — D is a homomorphism from R to a division ring D, then P = ker¢ is a
prime ideal of R, ¢ factors through R — Q(R/P) and therefore the division subring
of D generated by the image of R is R-isomorphic to Q(R/P). Moreover, let P C P’
be prime ideals of R. The localization of R/ P at the prime ideal P’/ P yields a local
subring of Q(R/ P) with residue field isomorphic to Q(R/P’). This implies that any
fraction ab~! € Q(R) which is defined in Q(R/P’) is also defined in Q(R/P). Also,
looking at the determinants of matrices, one sees that any matrix with entries in R that
becomes invertible in Q (R/P’) also becomes invertible in Q(R/P).

If the ring R is not commutative, prime ideals no longer classify the homomorph-
isms to division rings. It may even be possible that R has infinitely many different
“fields of fractions”; see for example [12, Section 9].

Let R be any ring. An epic R-division ring is a ring homomorphism R — K, where
K is a division ring generated by the image of R using sum, product and inversion
of elements. Cohn [4] showed that the epic R-division rings are characterized up
to R-isomorphism by the collection of square matrices over R which are carried to
matrices singular over K. This set of matrices is called the singular kernel of R — K.
He also gave the precise conditions for a set of square matrices over R to be a singular
kernel, calling such a collection a prime matrix ideal of R. The name comes from the
fact that, if we endow the set of square matrices over R with a certain two operations of
sum and product (the sum being a partial operation), those sets have similar behaviour
to prime ideals. These operations are defined so that, when defined on square matrices
over a commutative ring, the determinantal sum holds and the determinant of a product
of matrices equals the product of the determinants. Also in [4], Cohn showed that if
P, P’ are prime matrix ideals of R and R — Kp», R — Kg/ are the corresponding
epic R-division rings, then &> C &’ if and only if there exists a local subring of K p
containing the image of R with residue class division ring R-isomorphic to Kgp.
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We say that there exists a specialization from Kgp to K »/. Furthermore, if a rational
expression built up from elements of R makes sense in Kgp/, then it can also be
evaluated in K ». Cohn also provided conditions on square matrices over R equivalent
to the existence of (injective) homomorphisms from R to division rings and to the
existence of a best epic R-division ring in the sense that a rational expression that
makes sense in some epic R-division ring, makes sense in it.

The theory of group graded rings has played an important role in ring theory (see
for example [8, 18]) and many results in classical ring theory have a mirrored version
for group graded rings. Furthermore, if R is a filtered ring, it has proved fruitful to
study the associated graded ring, which usually is a simpler object, in order to obtain
information about the original ring.

The main aim of this article is to develop Cohn’s theory on division rings in the
context of group graded rings. More precisely, let I" be a group and R = @yep R,
be a I'-graded ring. A I"-graded epic R-division ring is a homomorphism of I'-graded
rings R — K, where K is a I'-graded division ring generated by the image of R.
Matrices over R represent homomorphisms between finitely generated free R-modules.
Homomorphisms of I'-graded modules between I'-graded free R-modules are given
by (what we call) homogeneous matrices. These are m x n matrices A for which
there exist oy, ..., m, B1....,Bn € I such that each (i, j) entry of A belongs to
R o B We show that I'-graded epic R-division rings R — K are characterized, up to
R-isomorphism of I'-graded rings, by the collection of homogeneous matrices which
are carried to singular matrices over K. These sets are called the gr-singular kernel
of R — K. We give the precise conditions under which a collection of homogeneous
matrices over R is a gr-singular kernel and thus define the concept of a gr-prime
matrix ideal. If #, $’ are gr-prime matrix ideals of R and R — Kp», R — Kgp’ are
the corresponding I'-graded epic R-division rings, then $ C &’ if and only if there
exists a I'-graded local subring of K that contains the image of R with residue
class I'-graded division ring R-isomorphic to Kp- as I'-graded rings. Furthermore,
if a homogeneous rational expression obtained from elements of R makes sense in
K/ then it can also be evaluated in K». We then provide conditions on the set of
square homogeneous matrices over R that characterize when there exists an (injective)
homomorphism of I'-graded rings from R to a I'-graded division ring and when there
exists a best I'-graded epic R-division ring.

In the study of division rings, one of the pioneering works carrying the information
from the associated graded ring to the original filtered ring was [3]. Cohn showed
that if a ring R endowed with a valuation with values in Z is such that its associated
graded ring is a (graded) Ore domain, then R can be embedded in a division ring.
Other proofs of this result can be found in [1, 13, 14]. More recently, a generalization
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of the result by Cohn has been given by Valitskas [20]. We believe that our work could
be helpful in order to generalize the result by Cohn to a greater extent than has been
done by Valitskas.

An elementary application of our theory is as follows. Suppose that R is a ring
graded by a group I'. As an immediate consequence of [18, Proposition 1.2.2], one
obtains that if there exists an (injective) homomorphism from R to a division ring, then
there exists an (injective) homomorphism of I'-graded rings from R to a I'-graded
division ring. Thus, if one shows that there do not exist (injective) homomorphisms of
I'-graded rings from R to I'-graded division rings, then there do not exist (injective)
homomorphisms from R to division rings. See Section 8 for other similar results.

It is also interesting to remark that the existence of an (injective) homomorphism
from a I'-graded ring R to a division ring is not equivalent to the existence of a
homomorphism of I"-graded rings from R to a I'-graded division ring; see Proposi-
tion 2.4 (4).

In Section | we introduce some of the notation that will be used throughout the
paper and provide a short survey about the results on graded rings that will be used.

Let I' be a group. A I'-almost graded division ring is a (not necessarily graded)
homomorphic image of a I'-graded division ring. For example, let K be a field and
consider the group ring K[I']. It is a I"-graded division ring, and the augmentation
map K[['] — K, which is not a homomorphism of I'-graded rings, endows K with
a structure of I'-almost graded division ring. In the nongraded context, this concept
is not necessary because there are no nontrivial images of a division ring D other
than D itself. In Section 2 we show that if R is a I'-graded ring, ¢: R — D is a
homomorphism of I'-graded rings with D a I"-graded division ring and ¢: D — E is
aring homomorphism where E is a nonzero ring, then the homogeneous matrices over
R that become invertible via ¢ and via ¥ ¢ are the same. Thus (a posteriori) (D)
determines a I"-graded epic R-division ring.

The main results in Section 3 are as follows. Let ¢: R — D be a homomorphism
of I'-graded rings and let ¥ be a set of square homogeneous matrices with entries
in R. Suppose that the matrices of ¥ become invertible in D via ¢. Then, under
certain natural conditions on X, the entries of the inverses of the matrices in X are
the homogeneous elements of a I'-graded subring of R. Moreover, if D is a I'-graded
division ring generated by the image of ¢ and X the set of homogeneous matrices that
become invertible under ¢, then any homogeneous element of D is an entry of the
inverse of some matrix in .

Section 4 begins showing that the universal localization Ry of the I'-graded ring
R at a set of homogeneous matrices is again a I'-graded ring. Then it is shown that
a homomorphism of I'-graded rings ¢: R — D, where D is I'-graded division ring,
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is an epimorphism in the category of I'-graded rings if and only if D is generated by
the image of ¢. If this is the case, we say that (D, ¢) is a I'-graded epic R-division
ring and we prove that if 3 is the set of square homogeneous matrices that become
invertible in D via ¢, then Ry is a I'-graded local ring with I'-graded residue division
ring R-isomorphic to D. Then the concept of gr-specialization between I'-graded
epic R-division rings is defined. The section ends showing that the existence of a
gr-specialization from (D, ¢) to another I'-graded epic R-division ring (D’, ¢’) is
equivalent to saying that all the homogeneous rational expressions (from elements of
R) that make sense in (D’, ¢’) make sense in (D, ¢) too, and that it is also equivalent
to the fact that any homogeneous matrix over R that becomes invertible in (D’, ¢’)
becomes invertible in (D, ¢) too.

Section 5 is devoted to the proof of the graded version of the so-called Malcolmson
criterion [16] and an important consequence (see also [7] for a generalization of
[16]). This criterion determines the kernel of the natural homomorphism from R to
the universal localization Ry of R at certain sets X of homogeneous matrices. As a
corollary, one obtains a sufficient condition for the ring Ry not to be the zero ring.
The long and technical proof of Malcolmson’s criterion consists of an elementwise
construction of the ring Ry. This construction will also be used in the next section.

The concept of gr-prime matrix ideal is given in Section 6 and it is shown that the
different I"-graded epic R-division rings are determined by the gr-prime matrix ideals
up to R-isomorphism of I'-graded rings.

In Section 7 the concepts of a gr-matrix ideal and of the radical of a gr-matrix ideal
are defined and the gr-matrix ideal generated by a set of homogeneous square matrices
is characterized. Then it is proved that gr-prime matrix ideals behave like prime ideals
in a commutative ring. All these concepts are used to provide necessary and sufficient
conditions for the existence of homomorphisms (embeddings) of I'-graded rings to
I'-graded division rings.

In Section 8 we deal with a new situation that appears in the graded context. If T" is
a group and R is a ['-graded ring, then the ring R can be considered as a I'/ 2-graded
ring for any normal subgroup Q2 of I". Thus there are I'-graded and I'/ Q-graded
versions of the concepts studied before. In this section we try to relate them. Note that
when Q@ = I', a '/ Q-graded epic R-division ring is simply an R-division ring, and
thus one can relate the theory of I'-graded division rings and the theory of division
rings as developed by Cohn.

We would like to finish this introduction by pointing out that most of the techniques
used in this paper are adaptations of those from the works by Cohn and Malcolmson.
We just take credit for realizing that they can be applied in the more general setting of
group graded rings.
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1. Basic definitions and notation

Rings are supposed to be associative with 1. We recall that a domain is a nonzero
ring such that for elements x, y of the ring, the equality xy = 0 implies that either
x = 0or y = 0. A division ring is a nonzero ring such that every nonzero element is
invertible. For a ring R, we define M((R) to be the set of all square matrices of any
size. Also, for each i with 1 < i < n, let ¢; denote the column

0

0
in which the ith entry is 1 and the other entries are zero.

Let A € M, (R). We say that A is full if whenever A = PQ, with P € M,,«,(R)
and Q € M;x,(R), then r > n. If we think of A as an endomorphism of the free
(right) R-module R", it means that A does not factor through R" with r < n. We say
that A is hollow if it has an r x s block of zeros where r + s > n. It is well known
that a hollow matrix is not full.

Let S bearing and f: R — S be a ring homomorphism. For each matrix M with
entries in R, we denote by M/ the matrix whose entries are the images of the entries
of M by f, thatis, if a;; € R is the (i, j)-entry of M, then the (i, j)-entry of M7 is
f(a;j). Given a set of matrices X, we denote > ={M7:Me3X) We say that the
ring homomorphism f: R — § is T-inverting if the matrix M/ is invertible over S
foreach M € X.

We proceed to give some basics on group graded rings that can be found in [8, 18],
for example.

If T is a group, the identity element of I will be denoted by e.

Let I be a group. A ring R is called a I"-graded ring if R = @yer R, , where each
R, is an additive subgroup of R and R, Rs € R, s forall y,8 € I'. The support of R is
defined as the set supp R = {y € I' : R, # {0}}. The set h(R) = Uyer‘ R, is called
the set of homogeneous elements of R. It is well known that the identity element 1 € R
belongs to R,, that R, is a subring of R and that if x € R,, is invertible in R, then
x7le R, —1. A (two-sided) ideal I of R is called a graded ideal if I = @yer(l N Ry).
Thus 7 is a graded ideal if and only if, for any x € I, x = )_ x;, where x; € h(R),
implies that x; € I. Observe that if X C h(R), then the ideal of R generated by X is a
graded ideal. If 7 is a graded ideal, then the quotient ring R/ is a I'-graded ring with
R/1 = @,er(R/1)y. where (R/1), = (Ry + 1)/1.

A T'-graded domain is a nonzero I'-graded ring such that if x, y € h(R), the
equality xy = 0 implies that either x = 0 or y = 0. A I'-graded division ring is a
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nonzero I'-graded ring such that every nonzero homogeneous element is invertible.
A commutative ['-graded division ring is a ['-graded field. Clearly, any I'-graded
division ring is a I'-graded domain.

A nonzero I'-graded ring R is called a I'-graded local ring if the two-sided ideal
m generated by the noninvertible homogeneous elements is a proper ideal. In this case,
the I"-graded ring R /m is a I'-graded division ring and it will be called the residue
class T'-graded division ring of R.

For I'-graded rings R and S, a homomorphism of I'-graded rings f: R — S is a
ring homomorphism such that (R, ) € S, forall y € I". An isomorphism of T'-graded
rings is a homomorphism of I'-graded rings which is bijective. Notice that the inverse
is also an isomorphism of I'-graded rings.

Let 2 be a normal subgroup of I". Consider the I'-graded ring R = @yer R,. It
can be regarded as a I'/ 2-graded ring as

R= @ Ro. where Ry =P R,.

ael’/Q yEa

Let R be a I'-graded ring. A I'-graded (right) R-module M is defined to be a right
R-module with a direct sum decomposition M = P, cr My, where each M, is an
additive subgroup of M such that My R, € M, forall A,y € I". A submodule N
of M is called a graded submodule if N = P, cr (N N My). In this case, the factor
module M/N forms a I'-graded R-module with M/N = P, cr(M/N),, where
(M/N)y = (M, + N)/N.

For I'-graded R-modules M and N, a homomorphism of I'-graded R-modules
f:M — N is a homomorphism of R-modules such that f(M,) € N, forall y € I'.
In this case, ker f is a graded submodule of M and Im f is a graded submodule of N.

If Q is a normal subgroup of I', then a I'-graded R-module M = P, cr M, can
be regarded as a I'/ 2-graded over the I/ Q2-graded ring R as

M= P M, whereM,=PM,.
ael'/Q yEQ

Moreover, a homomorphism of I'-graded R-modules is also a homomorphism of
I'/ Q-graded R-modules.

Let {M; :i € I} be a set of I"-graded R-modules. Then ,.; M; has a natural
structure of I'-graded R-module given by (D;c; Mi)y = D;c; (Mi),.

Let M be a I'-graded R-module. For § € I', we define the §-shifted I'-graded
R-module M($) as

M) = P M), where M(8)y = Ms,.
yel
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A T'-graded R-module F is called a I'-graded free R-module if F is a free R-
module with a homogeneous basis. It is well known that the I'-graded free R-modules
are of the form

@ R(5;), where I is an indexing set and §; € T.
iel
If I ={1,...,n},then @,.; R(6;) = R(61) ® -+ ® R(S,), will also be denoted by
R”(g),whereg = (61,...,6,) € I'".
Let T be a group and R = @yer R, be a I'-graded ring. Following [8], for
a=(1,...,on)el™and B = (B1,...,Bn) € T", set

R R R

a1 Byt a1 B! a1 Byt
R _,-1 R, ;-1 R,
- a2 B a2 a2Bn
Mpn(R)GIB) = | 00 % ;
Ramﬁfl RamB{1 o R“mﬂ;?l

That is, Myxn (R)[@][B] consists of the matrices whose (i, j )-entry belongs to R,
Such a matrix A € My,xn(R)[@][B] gives a homomorphism of I'-graded R- modufes

X1 X1
R*B) > R™@). | :|—af:].

Xn Xn

and in this way My, (R)[@][B] can be identified with the set of all homomorphisms
of I'-graded R-modules R"(8) — R™(&).
By A € Myun(R), we mean that A € My (R)[@][B] of some @ € I'™ and B €
. It is important to note that, for a matrix 4 € Emmx,, (R), it is possible that A €
Mopsn (R)[@][B] N Mypsn (R)[o][B’] even if & # o’ or B # B’. The matrix A belongs
to that intersection if whenever the (i, j)-entry of A is not zero, then «; ;- V=alp J’ L
We set

Me(R) = |_J Mimxn(R).

We remark that if A € Myx,(R)[@][B] and B € Myx,(R)[B][E] then AB €
M, xp(R)[a][€]. We will say that A, B are compatible.
When m = n, we will write M,,(R)[&][B] and M, (R). The set of all such matrices
will be denoted by 9t (R), that is,

M(R) = [ Mu(R).
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If A € M,(R)[&][B] is an invertible matrix, then A~! € M, (R)[B][a].
If £ € M(R), we will write =, [@][B] to denote the set = N M, (R)[a][B].

A matrix A € N, (R) is gr-full if every time that A = P Q for some matrices P €
My (R)[@][A], Q € My (R)[A][B], then r > n. If we think of A as a homomorphism
of I'-graded modules between two I'-graded free R-modules, it means that for all
@, B € I'", such that A defines a graded homomorphism R"(8) — R™(&), then it
never factors by any graded homomorphism R” (,3) — R" (/_\) with r < n.

Suppose that A € M, (R)[&][B], E € M,(R) is a permutation matrix obtained per-
muting the rows of I,, according to the permutation o € S,,. Then E € M, (R)[o/][@],
where &’ = (¢g(1), - - - Ao(m))> and EA € M, (R)[’][B]. Similarly, the matrix E €
M, (R)[B][B'], where B’ = (Bs(1). -+ Bomn)), and AE € My (R)[a][B’]. Hence, for
permutation matrices £, F of appropriate size, a matrix A € M (R) is gr-full if, and
only if, EAF is gr-full.

A hollow matrix A € M(R) is not gr-full. Indeed, suppose that A € M, (R)[&][B]
has an r x s block of zeros with r 4+ s > n. There exist permutation matrices E, I
such that EAF = (1 0), that is, the block of r X s zeros is in the north-east corner.

)-GO

where T € Myx(ns) (RNEIBL. U € Min—ryx(uos)(R)BIIBL V € Mu_ryxs (R)BI[E)
for some sequences &, B, §, & of elements of I'. The result now follows because
(’g ?) € Mnx(Zn—r—s)(R)[O_‘ * 5][,3 * 8] and ((I] 8‘) € ]V[(Zn—r—s)xn(R)[/8 * 8][13 * é]
Let R be a I'-graded local ring with maximal graded ideal mn and let R — R/,
a — a be the natural projection. It is well known that A = (a;;) € M, (R)[@][B] is
invertible over R if and only if A = (a;;) € M,(R/ m)[@][B] is invertible over the
I'-graded division ring R /.
Let D be a I'-graded division ring and M be a I'-graded D-module. As in the
ungraded case, the following assertions hold true:
(1) Any I'-graded D-module is graded free.

(2) Any D-linearly independent subset of M consisting of homogeneous elements
can be extended to a homogeneous basis of M.

(3) Any two homogeneous bases of M over D have the same cardinality.
(4) If N is a I'-graded submodule of M, then dimp (N) + dimp (M /N) = dimp (M).

We remark that, over a I'-graded division ring, the concepts of gr-full matrix and of
invertible matrix coincide.
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2. Almost graded division rings

Throughout this section, let I be a group.

We say that aring R is a I"-almost graded ring if there is a family {R,, : y € I'} of
additive subgroups Ry of R suchthat1 € Re, R =) .r Ry and R, Ry’ C Ry, for
all y, y’ € T. The name of almost graded rings was chosen to be compatible with the
definition of almost strongly graded rings given in [18, p. 14]. We define supp R =
{y €' : R, #{0}}. Given two I"-almost graded rings R and S, a ring homomorphism
f:R — S is a homomorphism of T -almost graded rings if f(R,) C S, forally € T.
Clearly, any I'-graded ring R = @yer R, is a I'-almost graded ring in the natural
way. Given two I'-graded rings R, S, a homomorphism of I'-almost graded rings is in
fact a homomorphism of I"-graded rings.

The main examples of I'-almost graded rings that we will consider are the follow-
ing.

ExampLE 2.1. Let R be a I'-graded ring.

(1) Let S bering and f: R — § be a ring homomorphism. Then S can be regarded
as a I"-almost graded ring with S, = S forall y € T". Then f: R — § can also
be regarded as homomorphism of I"-almost graded rings.

(2) Again, let S bering and f: R — S be a ring homomorphism. Then Im f can be
regarded as a I'-almost graded ring with (Im f), = f(R,) forall y € I" and the
restriction f: R — Im f is a homomorphism of I"-almost graded rings.

(3) Let 2 be anormal subgroupof I'. If § = @aer‘/ﬂ S« is a I'/ Q-graded ring, then
S can be endowed with a structure of I"-almost graded ring defining S, = S, for
ally e, € I'/ Q. The I'-graded ring R can be considered as a I/ Q2-graded ring
defining Ry = P, ¢y Ry foreacha € T/ Q. If f: R — S is a homomorphism
of I'/ 2-graded rings, then it is a homomorphism of I'-almost graded rings.

From a I'-almost graded ring one can obtain a I'-graded ring, as we proceed to
describe; cf. [18, Proposition 1.2.2]. Let S = ) _ .- Sy be a I'-almost graded ring. The
lift of § is the I"-graded ring S = @yer Sy defined as follows. Set S, to be a disjoint
copy of S,. If a € S, denote by a € S the dlSJOlIlt copy of a € §,.. Consider the
I-graded additive group S = Dy er S Define S X S r— S,,y/ by (a, b) > ab, and
extend it by distributivity to S x § — S. This endows S with a structure of I"-graded
ring such that supp S = supp S. The lift S of S has the following properties.

PropoSITION2.2. Let S =) . Sy be a T'-almost graded ring and S= D,er S,
be the lift of S. Consider the map 7: S — 8, > yer dy > X, er dy. The following
statements hold true:
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(1) 7 is a homomorphism of T-almost graded rings.

(2) Let R = @yer R, be a T'-graded ring and f: R — S be a homomorphism of T'-
almost graded rings. Then there exists a unique homomorphism of I'-graded rings
f: R — S such thatnf = f. Such an f is determined by f(ry) = ]@;) € §y
forallr, € Ry, y €T.

Proor. (1) follows easily from the definition.

(2) Since the restriction of 7 to §y is bijective for each y € T", we obtain the
uniqueness of f. =

We say that the homomorphism of I'-graded rings f ‘R — Sin Proposition 2.2 (2)
is the /ift of the homomorphism of I"-almost graded rings f: R — S.

We say that a nonzero ring E is a I'-almost graded division ring if E is a I"-almost
graded ring such that every nonzero element x € E,, y € T', is invertible with inverse
x7le Ey—l .

The following easy result tells us that I"'-almost graded division rings are graded
division rings although not necessarily of type .

ProrosiTiON 2.3. Let E be a I'-almost graded division ring. The following asser-
tions hold true:
(1) If0 #b € E,, then bEy = Ey and E,vb = E,,, for y € T.
(2) E,-Ey =E,,forally,y eT.
(3) supp E is a subgroup of T'.

ProoF. If u € Ey,/, then b - b~ u = u, where b~'u € E,/. The other part is
analogous. Thus (1) is proved.

(2) is a consequence of (1).

Since 1 € E,, then (3) follows from (2). ]

Now we give some easy relations between the existence of homomorphisms from a
I'-graded ring to division rings, to I"'-almost graded division rings and to I'-graded
division rings.

ProposiTioN 2.4. Let R = D, cr Ry be a I'-graded ring and E = ), 1 E, be
a T-almost graded division ring. The following assertions hold true:

(1) The lift E = @;/er‘ E, of E is a I'-graded division ring.
(2) There exists a homomorphism of T'-almost graded rings from R to a T-almost

graded division ring if and only if there exists a homomorphism of I'-graded rings
from R to a I'-graded division ring.
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(3) Ifthere exists an (injective) homomorphism of rings from R to a division ring, then
there exists an (injective) homomorphism of I'-graded rings from R to a T'-graded
division ring.

(4) The converse of (3) is not true. That is, there exist groups I and T"-graded rings
Jor which there exist (injective) homomorphisms of I'-graded rings to I"-graded
division rings, but for which there do not exist homomorphisms to division rings.

Prookr. (1) follows from the fact thatif @ € E,, \ {0} forsome y € T, thena™! €

E,~1.Thusa € E, hasinversea' =a~' € E 1.

(2) Since every I'-graded ring is a I'-almost graded ring, we only have to prove one
implication. Suppose that f: R — E is a homomorphism of I"-almost graded rings.
Then the lift f R— Eisa homomorphism of I'-graded rings with Earl- graded
division ring by (1).

(3) Suppose ¢: R — D is a homomorphism of rings where D is a division ring.
Consider D as a I'-almost graded rings as in Example 2.1 (1). Then ¢ can be regarded
as a homomorphism of I'-almost graded rings. Then the lift of ¢, ¢: — D, gives a
homomorphism of I'-graded rings from R to the I'-graded division ring D.

(4) We produce an example of a graded ring for which there does not exist a
homomorphism to a division ring but it is embeddable in a graded division ring. Let
T be the ring obtained as a localization of Z at the prime ideal 3Z. Let R be the ring
T[i] € C. Let C, = (x) be the cyclic group of order two, and let o: C; — Aut(R)
be the homomorphism of groups which sends x to the automorphism induced by
complex conjugation. Now set S = R[C,; o]. That is, S is the skew group ring
of G over R induced by o. Hence S is a C,-graded ring, S = S, + Sy, where
Se = R and S, = Rx and the product is determined by xr = rx for all r € R.
Clearly S is embeddable in the C, graded division ring Q(i)[C>; o]. Suppose that
there exists a homomorphism of rings from S to a division ring K. Let ¢: S — K
be such a homomorphism. Since (1 — x)(1 + x) = 0, then either ¢(1 + x) = 0 or
p(1—=x)=0.If (1 +x) =0,then 0 = (1 + x) = 1 + ¢(x). Thus p(x) = —
But then (—1)¢(i) = ¢(xi) = ¢(—ix) = —@p(i)(—1) = @(i). Since ¢(i) # 0, then
K has characteristic 2. This is a contradiction because ¢ induces a homomorphism
from R = S, to K and 2 is invertible in R. In the same way, it can be shown that if
¢(1 — x) = 0, then ¢(x) = 1 and, again, it implies that the characteristic of K is 2, a
contradiction. |

Let R be a I'-graded ring, S be aring and f: R — S be a ring homomorphism.
For each y € T', define

(So)y = f(Ry).



On graded division rings 13

If n > 0, and (S, ), has been defined for each y € I, define

(Tws1)y = {y™" 1y € (Sn)y—1 and y is invertible in S},
(Sn+1)y = additive subgroup of S generated by
{x1x2xr :r € N, x; € (Sp)y; U (Tns1)y;s ViVa - ¥n =7}

Now set (DC(f))y = subgroup generated by (J,,5((Sn)y. Then the subring of §
defined by

DC( f) = additive subgroup generated by U (DC(f))y
yel

is the almost graded division closure of f: R — S. Note that DC(f') is a I"-almost
graded ring such that if x € (DC(f)), and x is invertible in S, then x~! € (DC(f)),-1-
It is the least subring of .S that contains Im f and is closed under inversion of almost
homogeneous elements.

If DC(f) = S and DC(f) is a I'-almost graded division ring, we say that .S is the
I"-almost graded division ring generated by Im f .

Notice also that if S is a division ring, then DC( f) is a I'-almost graded division
ring.

Note that if S is a ['-graded ring, and f: R — S is a homomorphism of I'-graded
rings, then (S,), € S, for each n > 0. Therefore (DC(f)), < S, and DC(f) is a
I'-graded subring of S. It is the least subring of S that contains Im f* and is closed
under inversion of homogeneous elements. Moreover, if S is a I'-graded division ring,
then DC( f) is a ["-graded division subring of S. In this case, if S = DC( f) we say
that S is the I"-graded division ring generated by Im f .

ProrosiTioN 2.5. Let I' be a group, D = @yer Dy, be a I'-graded division ring,
and let f: D — S be a ring homomorphism with S a nonzero ring. The following
assertions hold true:

(1) DC(f) is a T-almost graded division ring with
DC(f)y = (m f)y = {f(x) : x € Dy}

and D = I/)_C(\]_”/)
(2) The sets

T = {A € M(D) : A is invertible over D},
Y= {A € M(D) : A’ is invertible over S}

coincide.
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(3) If R is a T'-graded ring and ¢: R — D is a homomorphism of T'-graded rings
then the sets

Yy = {A € M(R) : A? is invertible over D},
To={4€MR): AV s invertible over S}
coincide.

Proor. (1) has already been proved.

(2) Clearly, if A € T, then A € X. Suppose now that A € M, (R)[&][B] such that
A ¢ Y. Then there exists a nonzero homogeneous column

X1
€ Myx1(R)[B][8]

Xn

of degree § as an element of R”(B) such that

X1
Al - | =0
Xn
Note that
f
X1
#0,
Xn

because D is a graded division ring and S is not the zero ring. Thus

f
X1

ATl =o,
Xn
which implies that A ¢ .

(3) follows from (2) because X, = {A € IN(R) : A’ e Z}and T, = {4 € M(R):
A? € Y} ]

3. Graded rational closure

Throughout this section, let I be a group.

We begin this section introducing some important notation that will be used
throughout.
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Letad = (ay,...,a,) €T,/ = (o}, ....0,) € I and § € I'; then we define

axa = (ag,...,an, ... a,) €™
a-8:=(a16,...,a,0) €T,

Let R be a I'-graded ring and S be a ring.

For each A € M, (R), the last column will be called Ay, and the matrix consisting
of the remaining n — 1 columns will be called A,. We will write A = (Ade Aoo)-

For each sequence @ = (1, ...,a,) € I'"?, the last element o, will be denoted ¢too,
and (aq, ..., 0,—1) will be denoted by ae. Thus & = e * .

For u € My,x1(S), the last entry of u will be denoted by u, and the (n — 1) x 1
column consisting of the remaining entries will be denoted by u,. Hence u = (,}‘O’O )
We remark that if n = 1, then A, ote, Ue are empty and thus 4 = A, @ = Qoo and
U= Uoo.

If A € Myxn+1)(R), we will denote by Ay its first column, by A its last column
and by A, the matrix consisting of the other n — 1 columns; that is, we will write
A= (Ay Ae Ax). We will call the matrix (A9 Ae) the numerator of A and the matrix
(Ao Aoo) the denominator of A. 1 A € Myyx(n+1)(R)[@][B], we suppose B is divided

as Bo * Be * Poo. If u € M 11)x1(S), we will write u = (uz(.) ) Again, we remark
that if n = 1, then A, B, e are empty and thus 4 = (A Aoo), B = (Bo. Poo) and
= (ug)-

Let R = @, cr Ry be a ['-graded ring and X € IMN(R).

We say that the subset X of 9(R) is gr-lower semimultiplicative if it satisfies the
following two conditions:
(1) (1) € X, i.e. the identity matrix of size 1 x 1 belongs to .
(i) If A € %,[@][B] and B € %,,[a’][B’]. then the matrix (é 9)e=forany C €

Mipxn (R)[o][B]. Notice that the matrix (& $) € Mqmy(R)[@ * o][B * p/].

A gr-upper semimultiplicative subset of M (R) is defined analogously.

A subset X of N (R) is gr-multiplicative if it satisfies the following two conditions:
(i) X is gr-lower semimultiplicative.

(i) If A € X, then EAF € X for any permutation matrices £, F' of appropriate size.

REmARrk 3.1. We remark that if ¥ is gr-multiplicative then it is also an upper
gr-semimultiplicative subset of M (R). Indeed, suppose that A € ,[&][B], B €
Smle’][B’] and C € Mysm(R)[@][B']. Then, since X is lower gr-semimultiplicative,
(89)e=. Butnow (4%) = E"(2 9)E € = for some permutation matrix E, as
desired.
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ProposiTiON 3.2. Let R be a I'-graded ring, S be a ring and f: R — S be a ring
homomorphism. Then the set

Y= {M e M(R) : M7 is invertible over S}
is gr-multiplicative.

Proor. Clearly the 1 x 1 matrix (1) € X.

Let A € 2, [a][B], B € Sn[a'][B'] and C € Myyxn[a’][B]. Then the matrix (4 9)”
belongs to X because it is invertible with inverse

)™ 0
—(BH\(C Tyl B

Notice that if E, F are permutation matrices, then E f , F J are also permutation
matrices. Hence, if A € X, then the matrix (EAF)/ is invertible with inverse
(F/)y=1 A"y~ E/)~\. "

Note that if S is a I'-graded ring, f: R — S is a graded homomorphism and A4 €
M, (R)[@][B], then A € M, (S)[&][B]. Moreover, if A is invertible, then (4/)~! €
M, (S)[B][@], and the (j,i)-entry of (A”)~" belongs to Rﬂjai—l. With this in mind,
we make the following definition.

Let R = P, cr Ry be a I'-graded ring and ¥ € IMM(R). Let S be a ring (not
necessarily graded) and f: R — S be a X-inverting ring homomorphism. For y €
', we define the homogeneous rational closure of degree y as the set (Qr(X)),
consisting of all x € § such that there exist &, 8 € I'" and A € %,[&][8] such that
y = (e;f7")~" = Bjo; " and x is the (j,i)-entry of (A7)~ (for some positive integer

nandi,j €{l,...,n}). The homogeneous rational closure is the set
0r(®) = J(©Qr(®),.
yel

The graded rational closure, denoted by Ry (X), is the additive subgroup of S gener-

ated by Qr(X).
When the set X is gr-lower semimultiplicative, the graded rational closure R (%)
is a subring of S as the following results show.

LemmA 3.3. Let R = P,
multiplicative subset of M(R). Let S be a ring and f: R — S be a X-inverting ring

R, be a I'-graded ring and ¥ be a gr-lower semi-

homomorphism. Fix y € T'. For x € S, the following conditions are equivalent:

(1) x € (Qr(X))y-
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(2) There exist @, € T™ and A € $,[a[B] such that «; = e, Bj =y and x is the
(j.i)-entry of (A7)~ 1.

(3) There exista,p € T", A € S,[a][B] and u € Myx:1(S) such that «; = e, Bi=v,
u; = x and A u = e;.

(4) There exista,p € T", A € $,[a][B], a € Muxi(R)[@][e] and u € Myx:1(S) such
that B; =y, uj = x and A"u = a”.

(5) There exista,p € T", A € $,4[allB], a € Muxi(R)[@][e] and u € Myx1(S) such
that Boo =y, Use = X and A u = a”.

(6) There exist&,p € I, A € Z,[a][Bl, b € Mixa(R)[y][B] and ¢ € Myx1(R)[@][e]
such that x = b7 (A7) ¢/,

(7) There exist@ € T", B € T"T1 | A € Myxuy1)(R)[&[B] and u € My 41)x1(S)
such that Bo = €, Boo = ¥, o = 1, oo = X, (Ae Aoso) € = and A u = 0.

Proor. (1) = (2) Let A € X,[a@][B] such that x is the (j,i)-entry of (A/)~!
and y = (o; ,Bj_l)_l = ,Bjal._l for some i, j. Then A can be regarded as a matrix in
A€ Z,[@-a;"[B - ;'] and thus (2) follows.

(2) = (3) Suppose that (2) holds. Let u be the ith column of (A/)~!. Then
Afu = e;, as desired.

(3) = (4) This is clear because ¢; € M,,x1(R)[¥][e] and eif =e.

(4) = (5) Let A € 2,1, j,a and u be as in (4). Suppose that A/ u = a/ with
u; = x. The matrix (_‘:; (1)) € Z,1[@ * B;1[B * B;]. Notice that it belongs to
because X is gr-lower semimultiplicative. The matrix (§) € M, +1)x1(R)[@ * B;][e].
Now (5) follows from the equality

AL 0\ (u _ a’ _|a !
—et 1 \x)] \o) \o) ~
(5) = (6) From (5) we obtain that u = (4/)"'a/. Hence
x = () u= () (4')a’.
Now (6) follows because €/, € M, (R)[y][B]-

(6) = (1) Let A, b and c as in (6). Then

€ Xm42)x(n+2)le x @ x y]le * B * yl.

SO =
Sl
- o O
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Moreover,
1o o\ | 0 0
¢ Ar o =|-AH1teS AnHt o
0 b1 br (ANt —bS(AT)1 1

Thus x = b/ (47)71c/ belongs to (Q7 (X)),

(5) ¢ (7) Suppose 4 € M, (R)[@][B] with Boo = ¥, a € Myx1(R)[&][e] and
U € Myx;(S) with s = x. Then the equality A/ u = a/ is equivalent to the equality

(—a’ A7) (;) =0.

Notice that (—a A) € Myx(nt1)(R)[&][e * BI. "

TueoreM 3.4. Let R = @, cr Ry be a I'-graded ring and X be a gr-lower
semimultiplicative subset of M(R). Let S be a ring and f: R — S a -inverting ring
homomorphism. Then

(1) foreachy € T', f(Ry) € (Qf(X))y;
() ify eTandx,y € (Qf(X))y, then x +y € (Qr(X))y;
(3) ify.6 eTandx € (Qr(X))y, y € (Qr(X))s, then xy € (Qr(X))ys.

Hence Ry (X) is a I'-almost graded ring (which is a subring of S) that contains Im( f').
Furthermore,

(4) the restriction f: R — Ry (X) is a ring epimorphism;

(5) if S isa'-graded ring and f: R — S is a homomorphism of T'-graded rings, then

(Qr(2))y € Sy foreachy € T and Ry (2) = D, cr(Qr(X))y is a [-graded
subring of S such thath(Ry (X)) = Qr(X).

Proor. (1) Let r € R,. Then f(1) f(r) = f(r), where 1 € M{(R)[y][y] and
r € Mi(R)[y][e]. Then Lemma 3.3 (5) implies that f(r) € (Qr(X)),.

(2) Letx,y € (Q7(X)),. By Lemma 3.3 (5), there exist @, B € T, A € %,[a][B],
a € Myx1(R)[&][e] and u € M, x1(S) such that Boo = ¥, Uso = X and

A = (A{' A{o) (”;) —af

There also exist B € S,/[a'][B'], b € Muxi(R)[e'][e] and v € M,»(S) such that
B =V, Voo =y and

B/ v = (B.f Bg;) (vy) b/
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Then the matrix

(A. Ao | 0O

T B)EEn+n’[&*(7][ﬁ_*E/],

the column (£) € M,+nyx1]@ * @’][¢] and we have the equality

Ue

A{Aofo‘o X _af_af
0 —BL|B' ve | \B7) \p)

xX+y

Hence x + y € (Qr(X))y.

(3) Let x € (Qf(X))y and y € (Qr(X))s. There exist A € @B, a €
M1 (R)[@][e] and u € M,»1(S) such that Boo = ¥, Uee = x and A u = a/ . There
also exist B € Sy [a][f'], b € Myx1(R)['][e] and v € My,x1(S) such that
B, =68, Voo =y and B/ v = b/ Now

(B. Bso | 0

T ) € Sl B,

with (8’ * BBL.) oo = V6, (8) € M4myx1(R)[e’ x @BL.][e] and we have the equality

Ve

!
Bl BL| o \[» | (v _(v
0 —af‘Af Uey 0 0] °

Xy

Hence xy € (Qr(X))ys.

From (1)—(3), it is easy to show that Ry (X) is a I"-almost graded ring and a subring
of S.

(4) Let g, h: Rf(X) — T be ring homomorphisms such that gf = hf.If x €
(Q7(X))y, then x is an entry of a square matrix B which is the inverse of AT for
some A € X. From A/ B = BA/ = I, it follows that A8/ B¢ = B8 A8/ =] and
A" Bh = Bh AR/ = | Thus B8 = B", and g(x) = h(x). Since Ry (X) is generated
by (Qf(X))y,y € I', then f: R — Ry(X) is aring epimorphism.

(5) Now suppose that S is a I'-graded ring and f: R — S is a homomorphism
of I'-graded rings. Let x € (Qf(X)),. There exist 4 € X, [@][B], a € Myuxi1(R)[@][e]
and u € Myx;(S) such that oo = ¥, Ueo = x and A/ u = a/. Notice that A/ €
M, (S)[@][B] is an invertible matrix and that a/ € M,x(S)[&@][e]. The matrix
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(A7)~ € M, (S)[B][a]. Now (47)~! and a/ are compatible and u = (47)1a’.
Then x = u € Sg,,, thatis, x € §,,.

By (1)—(3), it is easy to prove that Ry (X) is a graded subring of S whose set of
homogeneous elements equals Q7 (X). ]

Lemma 3.5 (Cramer’s rule). Let R = D, cr Ry be a I'-graded ring and ¥ be
a subset of NR(R). Let S be a ring and f: R — S be a X-inverting ring homo-
morphism.

Let y € I and x € (Qy(X))y. We suppose that a € I'", BeTlrtl Ae
Myxu+1)(R)[@][B] and u € My 4+1)x1(S) suchthat Bo = e, Boo =, o =1, Uoo = X,
(Ae Aoo) € T and AT u = 0. Then the following assertions hold true:

(1) x is invertible in S if, and only if, the matrix (Agy A.)f is invertible in M, (S).

(2) x is a regular element of S if, and only if, the matrix (Ag A.)f is a regular
element of M,,(S).

(3) If x = 0, then the matrix (Ag A.)f is not full over S. Furthermore, if S is a
I'-graded ring and f: R — S is a homomorphism of graded rings, then the matrix

(Ao As)) € My ($)[@][Bo * Ba] is not gr-full over S.

Proor. First note the equality

3.1) (A{ —A({) - (A{ Aofo) (é ’;)

Also notice that the homogeneous matrix (A{ Aofo) is invertible in M, (S) because f
is X-inverting.

(1) Suppose that x is invertible in S. Then

¢ )

is invertible in M, (S). Hence (Af —Ag ) is invertible, and therefore (A({ AL ) is
invertible in M, (S).

Conversely, suppose that (Aér A{ ) is invertible in M, (S). Hence the fact that
(4 —A]) is invertible and (3.1) imply that

¢
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is invertible in M, (S). Thus there exists (3 ¥ ) € M,(S) such that

()6 (o))

Thus xz =1, yI = 0 and yue + zx = 1. Therefore x is invertible in S.
(2) follows easily from (3.1).
(3) Suppose that x = 0. Then (3.1) can be expressed as

(ot —40)= (401
= (4 af) (é Lg)
= (4l A%) ((I)) (I u).

which implies that Al - A({ ) is not full and therefore (A({ A7) is not full.

If, moreover, f: R — S is a homomorphism of I'-graded rings, then we have
that (As —Ao)” € My(S)[@][Be * €], (Ae Ano)’ € Mu(S)@[Be * Bool. (1) €
Myx(n—1)(S)[Be * Bool[Be] and (I ue) € Mp—1)xn(S)[Be][Be * €]. It implies that
the matrix (A, —Ao)f is not gr-full, which in turn implies that (A4, A.)f is not
gr-full, as desired. |

Given A and x as in Lemma 3.5, we say that (4¢ A.) is the numerator of x and
(Ae Aoo) is the denominator of x. Thus x is invertible in S if and only if its numerator
is invertible in M, (S).

THEOREM 3.6. Let R = P, cr Ry be a I'-graded ring. Let S be a ring and
f: R — S be a ring homomorphism. Set

Y= {A € M(R) : A7 is invertible over S}.

If x € (Qf(X))y is invertible in S, then x™' € (Qf(X)),-1.

Moreover, if S is a I -almost graded division ring and f: R — S is a homomorph-
ism of I'-almost graded rings, then Ry (X) is a I'-almost graded division subring of S
that equals DC( f).

Proor. Letx € (Qr(X)),. By Lemma 3.3 (7), there exist A € Mnx(,,+1)(R)[&][,B_]
andu € M, 11)x1(S) suchthat Bo =e, Boo =¥, Up = 1, Uoo = X, (Ae Aoo) € X and
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Afu = (Af A Ag,;)(u.) = 0. Equivalently, Af + A ue + AL SoUoo = 0. Hence
Af 1y Al uex! + Af 0, or equivalently

1
(4L Al af)|uex|=o0.
1
Since x is invertible, Cramer’s rule implies that the matrix (A({ A.f ) is invertible
over S. Thus (Ai'r A({ ) is invertible over S, and therefore (4o Ag) € X. Moreover,
notice that (Aeo Ae Ao) € Myx(n+1)(R)[@][Boo * Be * Bo]. This can also be expressed
as A € Myxn+1)(R)[@B[BooBa * BeBa * PoBod]- By Lemma 3.3 (7), and ob-
serving the equality BooBa * BeBad * PoPog = € * PBofl * y~1in I"H1, we get
that x~1 e (Qr(2))y-1.

As noted in Propositions 2.4 and 2.2, the lift S of S is a I"-graded division ring
and the lift /: R — S of f is a homomorphism of I'-graded rings such that f =
b4 f where 77: S — S is the natural homomorphism. Note that the sets ¥ and {4 €
M(R) : A7 is invertible over § } coincide by Proposition 2.5 (3). By the foregoing
and Theorem 3.4.(5), R 7 (X) is a I'-graded division ring which equals DC( f ). Now

observe that (R 7(£)) = Ry (%) and p(DC(f)) = DC(f). .

CoroLLARY 3.7. Let R be a T'-graded ring, K be a I'-graded division ring and
f: R — K be a homomorphism of T'-graded rings. If

Y= {A € M(R) : A is invertible over K}

and K is generated as a I'-graded division ring by the image of f, then K = Ry (X).
[

We end this section with an interesting result, but one that will not be used in later
sections. We show that two elements (and by induction any finite number of elements)
can be brought to a common denominator.

LemmA 3.8. Let R = @yer R, be a I'-graded ring and ¥ be a gr-lower semi-
multiplicative subset of YNX(R). Let S be a ring and f: R — S a X-inverting ring
homomorphism.

Ifx € (Qf(X))y and y € (Qf(X))s for some y,§ € T, then they can be brought
to a common denominator.

Proor. Letx €(Q7 (%)), and y € (Qr())s. There exist A € Myx(n+1)(R)[@][B]
and u € M(;41)x1(S) such that Bg =€, Boo = ¥, Up = 1, U = X, (Ae Ax) € X
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and A/ u = (A({ 4l Ago)(zé.) = 0. There also exist B € My/x(n/+1)(R)[@’]['] and
v € M@ 41)x1(S) such that By = e, B, =68, v0 = 1, veo = ¥, (Be Bx) € X and
Bfv = (B({ BI Boj;)(v;-) = 0. Then

1
Ao|Ae A |0 0\ | ¥ o
00 —Bol|B. Boo ) |—| "
0
X
L
04 4w |0 0 N[ 0|,
Bo| 0 —Boo|Bs Beo -
Ve
y

Now,

Ao Ae Ao | 0 0
0|0 —Bo|Be Bso

) € Muinyx+n'+1)(R)[a * OT/ﬂéo_lﬁoo][B * €],

where & = ﬁ;ﬂéo_l 0o * Boo and

0|40 A |0 0
Bo| 0 —Boo|Bs Beo

) € M(n+n’)><(n+n’+1)(R)[&ﬂ;olﬁéo * C?][l_’],

where b = B * Befod Blo * Bio * Bi * Bl "

4. The category of graded R-division rings and gr-specializations

This section is an adaptation of [5, Section 7.2] to the graded situation.
Throughout this section, let T be a group.
Let R = P, cr Ry be a ['-graded ring.

A TI'-graded R-ring is a pair (K, ¢), where K is a I'-graded ring and ¢: R — K is
a homomorphism of graded rings. A graded R-subring of (K, ¢) is a graded subring
L of K such that ¢(R) C L.

A I'-graded R-division ring is a I'-graded R-ring (K, ¢) such that K is a I'-graded
division ring. If K = DC(p), that is, K is the I"-graded division ring generated by the
image of ¢, we say that (K, ¢) is a I'-graded epic R-field.
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A homomorphism of T'-graded R-rings between I'-graded R-rings (K, ¢) and
(K’, ¢') is a homomorphism of graded rings f: K — K’ such that ¢’ = f o ¢. If,
moreover, f: K — K’ is an isomorphism of I'-graded rings, we say that f is an
isomorphism of I'-graded R-rings.

Now let & € M (R). The universal localization of R at X is a pair (Rx, 1), where
Ry isaring and A: R — Ry is a ¥-inverting homomorphism such that for any other
Y-inverting ring homomorphism f: R — S there exists a unique ring homomorphism
F:Ry — S with f = FA.

Now we give some important properties of Ry.

ProrosiTioN 4.1. Let R = @yer Ry be a I'-graded ring and let ¥ C M(R).
Then the following statements hold true:

(1) There exists the universal localization (Rx, A) of R at X.

(2) A: R — Ry is a ring epimorphism.

(3) The ring Ry is a I'-graded ring, A: R — Ry is a homomorphism of T'-graded
rings, and (Rx, A) is unique up to isomorphism of I'-graded R-rings.

(4) Suppose that S = @yer Sy is a I'-graded ring, f: R — S is a X-inverting
homomorphism of T'-graded rings and F: Ry, — S is the unique homomorphism

of rings such that f = FA. Then F: Ry — S is a homomorphism of I'-graded
R-rings. Moreover, if ¥ is gr-lower semimultiplicative, then Im F = Rr(X).

(5) Suppose that S = Zyel" Sy is a I'-almost graded division ring, f: R — S isa
Y.-inverting homomorphism of T -almost graded rings and F: Ry — S is the
unique homomorphism of rings such that f = FA. Then F: Ry — S is a homo-
morphism of T'-graded R-rings.

Proor. First we construct a free ring Z(X ), where X is constructed as follows.
For each y € I" and r € R, consider a symbol x) . For each matrix A = (q; i) € X,
fix (@, B) such that A € M, (R)[&][B] and consider a matrix A* whose entries are
symbols A* = (a;;). Then let X be the disjoint union

X={xl:reRy,yeT}Ulaj

tajj is the (i, j)-entry of A € X}.

Now we turn Z{X) into a I'-graded ring by giving degrees to the elements of X . If
r € R,, we set x; to be of degree y. If A = (a;;) € X with fixed (&, B), then a;; €
R, g1, thus we set a}; to be of degree ,8,-041-_1. Notice that A* € M, (Z{X))[B][&].

1 ] p

Let I be the ideal of Z{X) generated by the homogeneous elements of any of the
forms

v Y _ Y .
* X,y s —Xr —Xg forr,s € Ry;
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o xX¥—xYx3forr € R,ands € Ry;

e xf—1;
. kaffjfk ag; —8i,j for A € X

° Zk alkxa,]f]ﬂ 5,',]' forA € X.

Set Ry = Z(X)/I and A: R — Ry be the homomorphism of I'-graded rings
determined by A(r) = x} foreachr € R, y € I'. Since I is a graded ideal of Z(X),
then Ry is a I"-graded ring and A is a homomorphism of graded rings.

Suppose that f: R — S is a X-inverting ring homomorphism. For each 4 = (a;;) €
>[@][B], suppose that (A7)~! = (b; 7). Then there exists a unique homomorphism of
rings F':Z(X) — S such that F'(x}) = f(r) foreachr € R,y € T, and Fl(af;) =
b; j. Note that / C ker F', and let F': Ry — § be the induced homomorphism. Hence
FA = f,as desired. To prove the uniqueness and the fact that A: R — Ry is aring
epimorphism, notice that from FA = f, we obtain that F(x}) = f(r), and now the
same argument as Theorem 3.4 (4) shows that F (fj ) = bij.

Now we proceed to show (4). Suppose that S is a '-graded ring and f: R — S
is a X-inverting homomorphism of graded rings. Notice that A’ e M, (S)[a][B] and
(A7)~ € M,(S)[B][@]. Then f(r) € S, foreachr e R,y € I', and bj; € Sﬂ oy
for each 4 = (a;;) € X, [@][B]. Hence F’ and F are homomorphisms of I'- graded
rings. Now, if X is gr-lower semimultiplicative, then Rs(X) is a subring of S generated
by Im f and the entries of the inverses of the matrices in >/, and that is exactly the
image of F.

(5) As noted in Propositions 2.4 and 2.2, the lift SofSisal- -graded division rmg
and there exists a homomorphism of I'-graded rings f: R — S such that f = 7 f,
where 7: § — S is the natural homomorphism of I"-almost graded rings. Note that
the sets ¥ and {4 € M(R) : A7 is invertible over § } coincide by Proposition 2.5 (3).
Thus X/ consists of invertible matrices over S and, by (4), there exists a unique
homomorphism of I'-graded rings I:j "Ry — S such that f = F . Observe that
F = 7 F because, if A € =, then ATF) = (4% is invertible. Now the result follows
because F and 7 are homomorphisms of I'-almost graded rings. ]

Now our aim is to show that if (K, ¢) is a I'-graded epic R-field, then p: R — K is
in fact an epimorphism of (I'-graded) rings. For the sake of completion, we preferred to
give the proof of the following lemma, but this could be shown as a direct consequence
of [5, Proposition 7.2.1] and the fact that if f: R — S is a homomorphism of I'-
graded rings that is an epimorphism in the category of I'-graded rings, then it is an
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epimorphism in the category of rings. The proof of this fact is as follows: If g1, g2: S —
T are homomorphisms of rings such that g, f = g, f, there exist homomorphisms
of I'-graded rings g1: S — Im gy f, g2: S — Im g, f and a homomorphism of rings
w:Imgy f — T such that g1 f = g2 f and g1 = 7w g1, g2 = 7 g>. Since f is an
epimorphism of I'-graded rings, then g1 = g3. Thus g1 = g».

Lemma 4.2. Let R=€D,cr Ry, S = D, cr Sy be I'-graded rings and f: R — S
be a homomorphism of T'-graded rings. The following statements are equivalent:

(1) f is an epimorphism of I'-graded rings.
(2) In the I'-graded S-bimodule S @r S, x ® 1 = 1@ x forall x € S.

(3) The naturalmap p:S Qr S — S determined by p(x ® y) = xy is an isomorphism
of graded S-bimodules.

Proor. (1) = (2) Consider the I'-graded additive group M = S & (S Qg S). It
can be endowed with a structure of I'-graded ring via the multiplication (x, u)(y,v) =
(xy, xv 4+ uy). Notice that if (x,u) € M, and (y,v) € M;, then x, u have degree y
and y, v have degree §. Hence xy and xv + uy have degree y4.

Consider the homomorphisms of I'-graded rings g, h: S — M defined by g(x) =
(x,0)and h(x) = (x,x ® 1 — 1 ® x). Since gf = hf and f is an epimorphism of
graded rings, then x ® 1 = 1 ® x.

(2) = (1) Letg,h: S — T be homomorphisms of I'-graded rings such that g f =
hf. Then there exists a well-defined map F: S Qg S —> T, x ® y — g(x)h(y). For
eachx € §,sincex ® 1 =1® x,weobtainthat g(x) = F(x ® 1) = F(1 ® x) = h(x).
Thus g = h, as desired.

(2) = (3) First note that p is a homomorphism of I'-graded S-bimodules. Clearly
p is surjective. Now, since p(D_; x; ® yi) = Y _; X; yi, injectivity follows from the fact
that} ;¢ @ yi =3, xi(1®yi) =2, xi(yi® D) =3 xiyi ® 1= xiyi)) ® L.

(3) = (2) Sinceforeachx € S, p(x ® 1) = x = p(1 ® x) and p is an isomorph-
ism, the result follows. [

ProrosiTION 4.3. Let R = D, cr Ry be a I'-graded ring, K = P, cr Ky be a
I'-graded division ring and f: R — K be a homomorphism of I'-graded rings. Then
f is an epimorphism of graded rings if, and only if, K = DC(f).

Proor. Suppose that f: R — K is an epimorphism of I'-graded rings. Consider
the graded division subring DC( f) of K. Let 8 be a set of homogeneous elements
of K that is a basis of K as a right DC( f)-module. Then we have the following



On graded division rings 27

isomorphisms of graded right K-modules:

K = K ®pe(s) K = (@bDC(f)) ®oc(n) K
besB

~ @(b DC(f) ®pc(r) K)

beB

= EBb ®pc(s) K = @K(Vb),

beB beB

for some y, € I'. Hence 8B must consist of just one element.
Conversely, suppose that DC(f) = K. Let

T={4cMR): A7 is invertible over K }.

By Corollary 3.7, K = DC(f) = Ry(X). By Theorem 3.4 (4), f: R — K is aring
epimorphism, and therefore an epimorphism of I"-graded rings. |

TueoreM 4.4. Let R = D, cr Ry be a I'-graded ring.

(1) If ¥ € M(R) is such that the universal localization Ry is a I'-graded local ring
with maximal graded ideal m, then Ry /w is a I'-graded epic R-division ring.

(2) Let K = Zyel" K, be a I'-almost graded division ring and f: R — K be a
homomorphism of I -almost graded rings such that DC(f) = K. Let
Y= {A e M(R) : A’ is invertible over K}.

The following assertions hold true:
(a) Ry isa'-graded local ring.

(b) If m is the maximal graded ideal of Rx, then Ry /wm is a I'-graded epic
R-division ring satisfying the following statements:

(1) There exists a surjective homomorphism of T'-almost graded rings
F: Rs/m — K such that the following diagram is commutative:

R—*% Ry — ™ Ry /m.

NpA

K

(i) If K is a I'-graded division ring, then F: Ry, /. — K is an isomorphism
of I'-graded epic R-division rings.
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Proor. (1) The homomorphism A: R — Ry is a ring epimorphism by Propos-
ition 4.1 (2). The natural homomorphism 7: Ry — Ry /m is surjective. Therefore
wA: R — Ry /wm is aring epimorphism, thus a I"-graded epic R-division ring.

(2) Let A: R — Ry be the canonical homomorphism. Hence, by Proposition 4.1 (5),
there exists a unique homomorphism of I'-almost graded R-rings F: Ry — K such
that FA = f. Set m = (ker F)g, in other words, m = @yer(ker FN(Rx)y) S
ker F. Let x € (Rg), \ m. Then F(x) # 0 and then F(x) € K, is invertible in
K. By Proposition 4.1 (4), Rs = R;(X). Thus there exist@ € ', e ['"*1 A €
Myxu+1)(R)[@][B] and u € M1 1)x1(S) such that Bo =€, foo =y, U0 = 1, Ueo = X,
(Ae Ax) € ¥ and

1
(4} A} AL)|u. | =0.
X

Applying F to the entries of the matrices involved we obtain

1
(A({ al aL)| uF | =o.
F(x)

Since F(x) is invertible, by Cramer’s rule (Lemma 3.5), (Ag A{ ) is invertible in K.
Therefore (49 Ae) € X and (Aé A}) is invertible over Rx. Again by Cramer’s rule, x
is invertible in Ry. Hence Ry is a ['-graded local ring, where m is the ideal generated
by the noninvertible homogeneous elements of Ry, and (a) is proved. The ring Ry /m
is a ['-graded division ring and, by (1), (b) follows.

(i) and (ii) follow because, respectively, m C ker F and m = ker F if K is a
I'-graded division ring. ]

We proceed to give a result that characterizes when a universal localization Ry is
a graded local ring. Its proof follows that given in the ungraded result in [5, Proposi-
tion 7.2.6]. But before that, we need the following result, which is well known and can
be found, for example, in [8, Proposition 1.1.31].

LeEmMmaA 4.5. Let R = @yer Ry be a I'-graded ring. Then R is a I'-graded local
ring if and only if R, is a local ring. ]

ProposiTioN 4.6. Let R =D, cr
subset of M(R) and A: R — Ry be the natural homomorphism of T'-graded rings.
Then Ry is a I'-graded local ring if and only if it satisfies the following two conditions:

(1) Rs #{0}.

R, be a I'-graded ring, ¥ be a gr-multiplicative
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(2) Foramatrix A € I,[a’ * e][,E’ x e|, if B, the (n,n)-minor of A, is such that B* is
not invertible over Ry, then (A — e, ,,))L is invertible over Rx,, where e,,,, denotes
the matrix with 1 in the (n, n)-entry and zeros everywhere else.

Proor. Consider the canonical homomorphism of I'-graded local rings A: R —
Ry.

Suppose that Ry is a I'-graded local ring with maximal graded ideal m and
canonical homomorphism 7: Ry, — Ry /m. Since Ry is graded local, by definition,
Ry # {0}. Recall that any matrix C € 9}(Ryx) is invertible if and only if C” is
invertible over Ry /m. Let A € X, [o’ * ][  e] such that its (n, n)-minor B is not
invertible over Ry. It is enough to show that (4 — e,)” is invertible. Some nontrivial
left linear combination (over the graded division ring R /m) with homogeneous coeffi-
cients of the rows of B” is zero. If we take the corresponding left linear combination
of the first n — 1 rows of A", we obtain (0,0, ...,0, c), where ¢ is homogeneous and
¢ # 0, because A” is invertible. From the last row of 4 we now subtract ¢~! times
this combination of the other rows and obtain the matrix A — e,,, which is therefore
invertible in Ry /m because it is the product of the matrix corresponding to those
elementary operations on A% times A”.

Conversely, suppose now that conditions (1) and (2) are satisfied. By Lemma 4.5, it
is enough to prove that (Ryx), is a local ring. Let x € (Rx),. By Lemma 3.3 (3), there
exist@, B €T, A € Z,[a][B] and u € My, (Rx) such thate; = e, B, = e, u; = x and
A*u = e;. Since T is gr-multiplicative, we may suppose that 4 € 3, [’ * e][B’ * e],
u, = x and A*u =e,,. Suppose x is not invertible in Ry. Equivalently, by Lemma 3.5,
the matrix (A2 efl‘) is not invertible in Ry. This implies that the (7, 7n)-minor of
(A} e,’}), which is the (12, n)-minor of A4, is not invertible in Rx. Hence (A — e,,,)* is
invertible over Rx. Then the matrix (4*)™1 (A — e,,)* = I — (A*)"'e,, is invertible
in Ry. Since this matrix is of the form

1 0 0 =x
0 1 -0
1 * '
0 -0 .- 01—x
we obtain that 1 — x is invertible in Ry, as desired. [

Now we proceed to define the category of graded epic R-division rings andgr-
specializations.

Let R = P, cr Ry be a I'-graded ring.
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Suppose that (K, ¢), (L, ) are I'-graded epic R-division rings and set
T = {4 € M(R) : AV is invertible over L}.

If there exists a homomorphism of I'-graded R-rings ®: Ry — K, we define the
core of L in K as Cp(K) = ®(Ryx). We remark that, if it exists, it is unique and
observe that, by Proposition 4.1 (4), € (K) = Ry (X). By Theorem 4.4 (2)(a), Rx is a
I'-graded local ring. Therefore €1 (K) is a I'-graded local subring of K that contains
R. Moreover, the natural homomorphism of I'-graded R-rings W: Ry — L factors
through €, (K) in a unique way, because L =~ Ry /m where m is the maximal graded
ideal of Ryx.

A gr-subhomomorphism is a homomorphism of I'-graded R-rings f: Ky — L
where K is a graded R-subring of K such that xle Ky for each x € h(Ky) \ ker f.
Note that K is a graded local subring of K because any homogeneous element not in
the graded ideal ker f is invertible. Hence K¢/ ker f is a I'-graded R-division ring
contained in L. This implies that f is a surjective homomorphism of I"-graded R-rings
and that K¢ /ker f = L is a I'-graded epic R-division ring. For each A € X, consider
A? which belongs to M(K). Since K¢ is a I'-graded local R-ring whose residue
graded division ring is L, we get that A% is invertible over Kr. Thus there exists a
unique homomorphism of graded R-rings ®: Ry — Ky C K and a commutative
diagram of homomorphisms of I'-graded R-rings

/ Kf
(4.1) Ry lf
o L.

Thus €1, (K) is contained in the domain of any subhomomorphism from K to L, it is
a ['-graded local R-subring of K, the restriction of any subhomomorphism to €, (K)
is a subhomomorphism and all such restrictions coincide in €1, (K), because of the
commutativity of (4.1).

Now we give another description of €7 (K). Let f: Ky — L be a gr-subhomo-
morphism between the I'-graded epic R-fields (K, ¢), (L, ). For each y € I" define
(c(f)o)y = ¢(Ry),andif n > 0, set

(¢(f)n+1)y = additive subgroup of K generated by
(X102 07 = Lx; € (€(fn)y; or xi = y;!
where yi € (c(f)n),-1 \Ker . y1--yr = y}.

Then define c(f)y = U,50(c(f)n)y, and CL(K) = @D, cr c(f)y. Note that Cr(K)
is a I'-graded local R-subring of Ky with maximal graded ideal Cr(K) Nker f
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and such that the restriction f:Cr(K) — L is a gr-subhomomorphism. If we take
Ky = €1 (K), then we obtain that Cz(K) € €, (K), but since € (K) is contained
in the domain of any gr-subhomomorphism, we get that Cr (K) = €7 (K). Roughly
speaking, this equality means that any rational homogeneous expression obtained from
the elements of (the image of) R in L makes sense in K and the elements obtained
with those rational expressions from the elements of (the image of) R in K form
Cr(K).

Since, if there exist gr-subhomomorphisms between the I'-graded epic R-division
rings (K, ¢) and (L, ¥), they all coincide in the core, we make the following definition.
A gr-specialization is the unique homomorphism of I'-graded R-rings f: €1 (K) — L.

Suppose that (K, ¢), (L, ) and (M, ¢) are I'-graded epic R-division rings. If
f:Ky — L and g: Lg — M are gr-subhomomorphisms, then the restriction g f: P =
fY(Lg) — M is a gr-subhomomorphism which will be called the composition
gr-subhomomorphism of f and g. Indeed, suppose that z € h(P) \ ker(gf). Since
g(f(z)) #0,then f(z)™' € Lg. As f(z) #0,and thus 27! € Ky, thenz™' € P. We
define the composition of the corresponding gr-specializations, as the gr-specialization
corresponding to the composition gr-subhomomorphism of f and g. In other words, it
is the unique homomorphism of I'-graded R-rings €y (K) — M. It follows that the
composition of gr-specializations is associative.

Note that the only subhomomorphism from the I'-graded epic R-division ring
(K, @) to (K, @) is the identity map on K. Therefore €k (K) = K and the correspond-
ing specialization is the identity map.

We define the category &g as the category whose objects are the I'-graded epic
R-division rings and whose morphisms are the gr-specializations. We remark that there
is at most one morphism between two objects in this category and that isomorphisms
correspond to isomorphisms of I'-graded R-rings. Indeed, if the composition of
two gr-specializations f and g is the identity gr-specialization, then they have to be
isomorphisms of I'-graded R-rings.

An initial object (K, ¢) in the category &g is a universal I'-graded epic R-division
ring. In other words, there exists a gr-specialization from (K, ¢) to any other I"-graded
epic R-division ring (L, ). If, moreover, ¢: R — K is injective, we say that this
initial object is a universal I'-graded epic R-division ring of fractions of R.

Now we give the following important result.

Tueorem 4.7. Let R = @, cr Ry be a I'-graded ring and let (K1, ¢1), (K2, ¢2)
be I'-graded epic R-division rings. Set

T = {4 € M(R) : A% is invertible over K;}, i =1,2.

The following statements are equivalent:



D. E. N. Kawai —J. Sdnchez 32

(1) There exists a gr-specialization from (K1, ¢1) to (K2, ¢2).
(2) X2 € X1
(3) There exists a homomorphism Rx, — Ry, of I'-graded R-rings.

Furthermore, if there exists a gr-specialization from (K1, ¢1) to (K2, ¢2) and another
gr-specialization from (K, ¢2) to (K1, ¢1), then Ky and K, are isomorphic I'-graded
R-rings.

Proor. (1) = (2) By definition, there exists a homomorphism of I'-graded R
rings Ck, (K1) — K. By definition of €k, (K1), any matrix in 3 is invertible over
GK2(K1) g K]. Thus 22 g 21.

(2) = (3) If X, € X, the universal property of Ry, implies the existence of a
homomorphism of I'-graded R-rings Ry, — Ryx,.

(3) = (1) Consider the unique homomorphisms of I"-graded R-rings ®;: Ry, —
K;,i =1,2.Leth: Ry, — Rx, be ahomomorphism of I'-graded R-rings. Then there
exists the homomorphism of graded R-rings ®;/4: Ry, — K;. Then, by what has been
explained above, ®, factors through €, (K1), and gives the desired specialization.

Now suppose that there exist gr-specializations f: €k, (K1) — K> and g: €k, (K>)
— K. Then the composition g f gives a gr-specialization from K in itself. Thus it
has to be the identity. Similarly, the composition fg gives a gr-specialization from K,
in itself. Hence f is an isomorphism in the category &g of I'-graded epic R-division
rings. Therefore, f is an isomorphism of graded R-rings. ]

CoroLLARY 4.8. Let R = EByer R, be a T'-graded ring. Suppose that there exists
Q C M(R) such that (Rg, A), where A: R — Rg is the canonical homomorphism,
is a I'-graded (epic) R-division ring. Then the only gr-specializations to (Rg, A) are
isomorphisms of I'-graded R-rings.

Proor. Suppose there exists a gr-specialization from the I'-graded epic R-division
ring (K, ¢) to (Rg, A). By Theorem 4.7 (3), then there exists a (unique) homomorph-
ism of I'-graded R-rings Rg — Ry — K, where

T = {4 € M(R) : A? is invertible over K }.

Now, since R and K are I'-graded epic R-division rings, the image of R must be
K and therefore they are isomorphic as I'-graded R-rings. ]

CoRrROLLARY 4.9. Let R = @yer Ry be a I'-graded ring with a universal I'-graded
epic R-division ring (U, p). Let ¥ € M (R) and consider the canonical homomorphism
A: R — Ryx. Suppose that there exists a homomorphism of T'-graded rings Ry, — L
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for some T'-graded division ring L. Then there exists a unique homomorphism of
I'-graded rings p: Ry, — U such that pA = p and (U, p) is a universal I"-graded epic
Ry -division ring.

Proor. Let f: Ry — L be a homomorphism of I'-graded rings with L a I'-
graded division ring. Then (DC(fA), fA) is a I"-graded epic R-division ring such
that the matrices in ¥ become invertible. Hence, by Theorem 4.7, X* consists of
invertible matrices in U. Thus there exists a unique homomorphism of I'-graded rings
0: Ry — U and (U, p) is a I'-graded epic Rx-division ring.

Consider a I'-graded epic Rx-division ring (K, ¢). The composition pA: R — K is
an epimorphism of I"-graded rings, because A and ¢ are. Hence (K, @A) is a I'-graded
epic R-division ring and therefore there exists a specialization from (U, p) to (K, pA)
that can be regarded as specialization from (U, p) to (K, ¢). ]

Adapting [5, p.426] to the graded context, we give some examples to illustrate the
concepts of universal graded division ring and graded division rings that are universal
localizations.

Let R = P, cr Ry be a commutative I'-graded domain. Then the localization of
R at the set h(R) \ {0} of nonzero homogeneous elements yields a I"-graded epic
R-field (F, ¢). We point out that F' = P, < Fy is a I'-graded field with

F, = {ab_1 |aeRs, beR,, §! = y}

for each y € I'. Furthermore, if (K, ¥) is a I'-graded epic R-division ring, then ker
is a graded prime ideal of R. That is, ker¢ # R and if x, y € h(R) with xy € ker ¢,
then x € kery or y € ker. Hence h(R) \ Ker ¢ is a multiplicative subset of R. Then
the localization of R at h(R) \ ker ¢ is a I'-graded local subring of F with I"-graded
residue division ring R-isomorphic to K. Therefore (F, ¢) is a I'-graded universal
R-division ring of fractions that is a universal localization.

Let S = E x F be the direct product of two I'-graded fields E = @yer E,
and F = P, cr Fy. Then S = P, o Sy is a ['-graded ring with S, = E, x F,.
Suppose (D, p) is a I'-graded epic S-division ring. Since (1, 1) = (1,0) + (0, 1)
and (1,0)(0, 1) = (0, 0), then either p(1,0) = 0 or p(0, 1) = 0. If p(1,0) = 0, then
p(E x {0}) = 0 and if p(0, 1) = 0, then p({0} x F) = 0. Hence S has only two epic
S'-division rings, which are £ and F'. Note that neither of them is a universal I'-graded
epic S-division ring. On the other hand, both are universal localizations. For example,
E is the universal localization of S at {(1,1)} U {(a,0) | @ € h(E) \ {0}}.

Now let £ = @yer E, be a I'-graded field. Then the polynomial ring E[x] =
D, r Elx]y is a I'-graded ring with

E[x]y = Eylx] = {ao + a1x + -+ anx" | a; € E;,, n € N}.
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The ideal (x?) is a graded ideal of E[x]. Hence T = E[x]/(x?) is a I'-graded local
ring with maximal graded ideal (x)/(x?). Then E is the unique I'-graded epic T-
division ring, and thus FE is a universal ["-graded epic T -division ring. Notice that F is
not a universal localization at matrices in 9(R) because the matrices which become
invertible in E are already invertible in 7" since E is the I'-graded residue division
ring of 7.

Thering U = T x F, with T as before and F' a I'-graded field, has £ and F as
I'-graded epic U -division rings, but only F is a universal localization.

5. Malcolmson’s construction of the universal localization

Throughout this section, let I" be a group.

This section is devoted to showing that the natural extension of the construction of
the ring Ry given by Malcolmson [16] works in the context of graded rings. Although
technical, this construction will be important for us in the next section. In Section 5.5
we give the graded version of the main results in [16], the so-called Malcolmson
criterion and a sufficient condition for the universal localization Ry, not to be the zero
ring.

Let R = D, cr Ry be a I'-graded ring and A: R — Ry, the universal localization
at a gr-lower semimultiplicative subset of JJ{(R). By Lemma 3.3 (6) and Propos-
ition 4.1 (4), every homogeneous element of (Rx), is of the form FAAM 1 x4,
where 4 € 2,[@][B], F € Mixn(R)[Y][B], X € Myx1[@][e]. Foreachy € T, (Rx), is
constructed as a set of equivalent classes of 5-tuples (F, A4, X, «, B). The equivalence
class [(F, A, X,a, B)] of (F, A, X, «, B) is interpreted as the element F’X(A’l)_lX)k
of Ry and addition and product are defined according to this interpretation. Thus, for
[F. A X" o/ Bl + [F. A, X, B] € (Rx)y,

[F', A, X', o, B+ [F, A X, a, B]
A0 X’
— I / /
_|:(F F),(O A)’(X)’(X *ao, B *,Bi|,
and for (F', A", X", o', B’) € (Rx),  and (F, A, X,a, B) € (Rx),,

[F/9A/7X/9a/7ﬁ/]'[F’A’X’a’ﬁ]

= |:(O F), (—;/F j/),()é),a*a’y,ﬂ*ﬂ’y}.

Also —[(F, A, X,o,B)] =[(—F, A, X, o, )l and A(r) = [(r. 1, 1,e,e)] forr € R,,.
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In this section, for ease of exposition, we use the following notation. By “A4 is a
homogeneous matrix”, we mean A € Mo (R). We will also use the terms homogeneous
row, homogeneous column to emphasize that the matrix in question is a row or a
column, respectively. If A € M,x,(R)[&][B], but we do not want to make reference
to the size of A, we will say “A is a homogeneous matrix of distribution («, 8)”. Also,

the sequence @y will be denoted by ay foreacha € ' andy € T.

5.1 — Equivalence relation

Let R = P, cr Ry be a I'-graded ring and X be a gr-lower semimultiplicative
subset of 9t(R).

For y e I, let (Tx), be the set of 5-tuples (F, A, X, «, B), where A € X is of distri-
bution (¢, 8), F' is a homogeneous row of distribution (y, 8), and X is a homogeneous
column of distribution («, e).

Let (F,A,X,a,B),(G.B,Y,8,¢) € (Tx),. We say that

(F,A,X,a,B) ~(G,B,Y.,é,¢)

if and only if there exist L, M, P, Q € X, homogeneous rows J, U and homogeneous
columns W, V such that

4 0 0 0]x
0 B 0 0|Y ,

(5.1) 0 0 L 0|\W =()(Qv),
0 0 0 M|oO v
F -G o0 J]o

where P, U, Q, V have distributions (77, ®), (y, ®), (@, 8), (@, ), respectively, and,
if we think of

T=m *my*m3*xmy and 6 = 01 % 05 % O3 % 04

thenm, = o, m, =6,00 =f,0, =e.
The right-hand side of (5.1) will also be denoted by

P11 Piz P13 Pus
V
P21 P22 P23 P24 Qll Q12 Q13 Q14 1

1 31 1 32 P33 P34 Q21 Q22 Q23 Q24 [/2

P, P, P P, Q31 Q32 Q33 Q34 V3
41 42 43 44

Q41 Q42 Q43 Q44 V4

Uy Uy Us Uy
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Lemma5.1. Let (F, A, X,a,B).(G,B.Y,8,¢) € (Tx), such that there is a factoriz-
ation as a product of homogeneous matrices of any of these forms with L, M, P, Q € &
and with the corresponding distributions

A 0 |X p
oo sl )= (Fcelv)

F -G|o
A4 0 0x
0 B oY | (P
@D o mlw|=|7])2V)
F -G 00
A 0 0fx
0 B oy | (P
(3) 0 o Llo _Y(Q‘V)
F -G J|0

then (F, A, X, &, ) ~ (G, B, Y, 8, ¢).

Proor. (1) Suppose P, U, Q, V have distributions (7, ®), (y, w), (w0, 0), (w0, e),
where 71 = «, 1, = §, 6 = B and 6, = &, and that we have the factorization

A 0 |X Pi1 P12
0o Bly |=| Py P» ( gll glz ;1 )
7 —G‘ 0 U 0 21 O | V2

Thus we have the factorization

4 0 00X P11P1200 Vv
0 B 00|Y Py; Py 00 O Q12 00/
0 0 10[1 =] 0 0 10 Q21 02 00|V,
0 0 010 0 0 01 0 0 10]1

0 0 01]0
F =G 0 1]0 U, U, 01

where the factors on the right-hand side have distributions

(xx8xexyxy w xwy*xexy),

(w1 *xwrxexy,Bxeckexyxe)
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(2) Suppose P, U, Q, V have distributions (7, w), (y, w), (w, 0), (w, e), where
m =, 1, =6,0; = B and 6, = ¢ and we have the factorization

A 0 0| X P11 P12 P13

0 B 0lY P21 P22 P23 Qll Q12 Q13 Vl
0 0 LW = P31 P32 P33 Q21 Q22 Q23 V2
F G 0]o0 m Q31 Q32 Q33 V3

Thus we have the equality

4 0 00X Py Pz P13 0
0 B 00 Pyt Py Pos 0 | [ €11 Q12 Q13 0|11
0 0 L O|W |=| Psi P, P33 0 021 Q2 023 0|12 ’
0 0 0 1]0 O 0 0 1 031 QO3 Q033 0|13

0 0 0O 10
F -G 0 1|0 U, U, U; 1

where the factors on the right-hand side have distributions

(xx8xm3 %y %y, w1 *xwy*w3*Y),

(w1 *wy *w3 %y, Brexl3xyxe).

(3) Suppose P, U, Q, V have distributions (7, w), (y, w), (w, ), (w, e), where
m =, mp =68, 0; = B and 6, = ¢ and that we have the factorization

A 0 0|X P11 Pia Pi3

0 B 0lY P21 P22 P23 Qll Q12 Q13 Vl
0 0 MI|o = P31 Pi, Pas 021 022 Q23| V2
F —¢ 710 U U, U 031 QO3 033|V3

Thus we have the factorization

4 0 0 01X P11 Piz P13z 0 olv
0 B 0 0|y Py Py Pyz 0 Ou Qi Qi3 Vl
0O 0 M 0|0 =] P31 P3» P33 0 021 02 023 0 Vz ’
00 0 M|O Py Py Pas M || €31 932 @33 0113

0 0 -1 1|0
F -G 0 J|O U, U, U J

where the factors on the right-hand side have distributions
(%8 %3 %3 %Y, w1 * Wy * w3 % 03), (W] xwy *w3 %03, B%x¢ex03%0;xe),

respectively. u
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LemMma 5.2. For each y € T, the relation ~ defined in (Ts), is an equivalence
relation.

Proor. Let (F,A,X,«,B),(G.B,Y.8,¢),(H.C,Z,{,n) € (Tx)y.

The relation ~ is reflexive. Indeed, we have the factorization

A4 0 |x I o
0 Alx|=|1 4 (AOX),
0_

—1 1|0
F —F|0

where the factors are homogeneous matrices that have distributions

(xxaxy,axf), (@xpB,Bx*xpxe),

respectively. This shows that (F, A, X,«, B) ~ (F, A, X, «, B).

The relation ~ is symmetric. Indeed, suppose that (F, A, X,«, B) ~ (G, B,Y,4,¢).
There exist L, M, P, Q € X, homogeneous rows J, U and homogeneous columns W,
V', such that

A 0 0 0 |X P11 P12 P13 P14 v
0 B 0 0 Y P21 P22 P23 P24 Qll Q12 Q13 Q14 1
(5.2) 0 0 L 0|W |=]| Py Py P33 Py 021 Q2 Q2 Q2|2 ,
031 Q32 033 Q34| V3
0O 0 0 M|O P41 Pyy Psz Pyy 0 0 0 0 v
R Er ‘ 0 U U, Us Us 41 Qa2 Q43 Qua|Vy

where P, U, Q, V have distributions (7, w), (y, ®), (w, ), (w, e), respectively, and
71 =, =6, 07 = B, 0, = e. Then we have the factorization

B 0 0 O0]Y Py Py Prz Py

0 A 0 0 X Pll P12 Pl3 Pl4 Q12 Qll Q13 Q14 Vl

0 0 L 0 w — P31 P32 P33 P34 Q22 Q21 Q23 Q24 V2 .
0 0 0O MI|oO P4l P42 P43 P44 Q32 Q31 Q33 Q34 VS

G _F 0 _J ‘ 0 UL U, —Us U, Oar Q41 Quz Qua |V

where the factors have distributions
(mayxmy * 3 *x T x4 *xy,w), (w,03%07%03%04%e),

respectively. Hence (G, B,Y,8,¢) ~ (F, A, X, «, B), and the symmetric property of
the relation ~ is proved.

Now we proceed to prove that ~ satisfies the transitive property. Suppose that
(F, A, X,a,B8) ~(G,B,Y,8,¢) and (G, B,Y,6,¢) ~ (H,C, Z, ¢, n). Hence there
exist L, M, P, Q € %, homogeneous rows J, U and homogeneous columns W, V,
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as in (5.2), and there exist L', M’, P/, Q' € X, homogeneous rows J’, U’ and homo-
geneous columns W', V' such that

B0 0 0¥\ (PP PLPLY
o C 0 0] 2Z P, pP._. p. p! 011 Q1 013 Q14| V]
21 122 I3 14 , , ; MY
o o L o |\W |=| P, P, P, P 051 0% 053 05|V
31 f32 133 L34 ; ; ; Sl |
0 0 0 M|O P P. P. P! 031 05 05 03|V
41 T4 Ta3 yq 0. 0. 0. 0. |V
G —H 0 J" 0 Ul U, U3’ Uj 41 42 Y43 Yaqa| Va4

where P’, U’, Q’, V' have distributions (7, »’), (y, @), (@', 8"), (o, €), respectively,
and ] = 6, ), = ¢, 0] = ¢, 65 = n. Then we have the factorization of the matrix

c 0 000 O O OO0 o0 o0,z
0O A4 00 O O O O O O 0|X
O 0 BO OO O OO O o0]Y
o o0 oL O O O OO o0 o|WwW
o 0 0O0MO O OO O oO0]0O
o 0 oo o0 L O OO O oW
o 0 00 O O B OO O oO0]0O
0O 0 00 O O O C 0 O0 0|0
0O 0 00 O O O O0L 0 o0]O0
0O 0 00 O O O O O M O0]0O
o 0 00 0O O O O 0O 0 M|oO
H-F 00 0 0 -G H -J" J|Oo
as a product of the matrices
1 0 0 0 0o 0 0 0 0 0 0
0 Py P Pis Pis 0 0 0 0 0 0 cC 0 o 0 o0 O 0 o0 0 0 0|Z
0 Py Pm Py Py 0 0 0O 0 0 0 0 011012013014 0 0 0 0 0 0N
0 Py Py Py Py 0 O 0 0O 0 0 0 021022023024 0 0 0 0 0 0V2
0 P41 P42 P43 1;)44 0 0 0 0 0 0 0 Q31 Q32 Q33 Q34 0 0 0 0 0 0 V3
0 0 0 0 0 I 0 0 0 0 0 0 Q4l Q42 Q43 Q44 0 0 0 0 0 0 V4
o 0 0o O O L 0 o0 0 0 ow
0 —Py; —Pyy —P3 =Py 0 P/, P/, P{; P/, O
1o o 0 o0 o rhph el oo || 0 00 0 000005040
Do 0 0 o ol om0 o 0 0 om0k om0 0k oy
b 0 0 0 0 o ollen o on 0 0 ook 0n o ono
0 —Pyy —Pap —Py3 —Pas 0 O 0 0 0 M Qz/tz 0 Qz,u 0 0 Qz/tz Qz/tl Qz/tz QA/B QZM 0 V4/
o o o0 o I O O o0 0 o010
0 U, —U, —Us ~Us 0 —Uj U3 —U, —U, 1

where the factors have distributions
(ETETEF FEF 7T AENEREE AP AP A
! / ’ / /
(% w1 % Wy % 03 % W4 * T3 % 0] * Wy * W3 * Wy * 04),
i / / A /
(C * w1 * w2 * W3 * W4 * T3 * W] * W) * W5 * Wy * Oy,

Nk Pxex03x0y%05%e%n%05x0,%04x%e),
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respectively. This factorization implies that (F, 4, X, «a, B) ~ (H,C, Z, ¢, n), as
desired. ]

5.2 — Operations

Lety eT.
If (F', A, X",0/,p'),(F, A, X, B) € (Tx)y, then we define

(F',A  X',o,B")+ (F.A X.a,B)

(e (58 (F) o wan).

Note that it belongs to (Tx),.
If (F',A,X",a/,p') € (Tx), and (F, A, X, o, B) € (Tx),, then we define

(F/’A/aX/’a/9ﬁ/)'(F’A’X’a’IB)

o 1) ()]

Note that this element belongs to (Tx),, because the homogeneous matrix (0 F”)
has distribution (y’y, B * 8’y) and the homogeneous matrix ()5 ) has distribution
(a xa'y,e).

If (F,A, X,a,B) € (Ts),, we define

—(F, A, X,a,p) = (—F, A, X,a,p) € (Tx),.
Finally, if r € R,,, we define
u(r)y=(11ee) e (Tx),.

Now we prove a series of lemmas that show the compatibility of the operations just
defined and the equivalence relation ~.

LemMma 5.3. The following assertions hold true:

(1) If (F', A, X, B). (F. A, X, B) € (Tg)y, then
(F', A, X,a,B) + (F. A, X,a, ) ~ (F' + F, A, X, a, B).
Q) If (F.A. X", a. ). (F. A, X, o, ) € (Tg)y, then

(F, A, X', a,B) + (F, A, X,a, B) ~ (F. A, X' + X, a, B).
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(3) Ifr € Ryrand (F, A, X,a,B) € (Tx),, then
ur) - (FLA X, a,B)~ (F, A X, a,B) € (Tx)yy.
@ If(F' A, X", B") e (Tx)y and r € Ry, then
(FL AL X o B) - pu(r) ~ (F', A X1 0y, By) € (Tx)yry.

Proor. (1) This follows from the factorization

A 0 0 X I 0 0 ) ¥
04 0 |x I A 0 1(1)0
00 A |X 10 4 -1 1001,
1 01]|0
F’F—F/—F‘O 0 F —F' —F

where the factors on the right-hand side have distributions

(axaxaxy,axBxp), (axBxB,BxpP=*pLxe),

respectively.

(2) This follows from the equality

40 0] x 10 0 ) »
04 0| x BEREK ZOX
00 Alx+x |11 4 0 0 :

7 -1 10
F F -F| 0 00 —F

where the factors on the right-hand side have distributions
(@xaxaxyaxaxp), (exa*xp,B*xpx*xpxe),

respectively.

(3) This follows from the factorization

40 0 |x 10 0
—F1 0o [o1 o A 001X
00 A4lx|=lr0 4 —F 1010,

71 01lo0
0O r —rF| 0 0 r —rF

where the factors on the right-hand side have distributions
(@axyxaxyyaxy*xB), (@xyxB,Bxyxpxe),

respectively.
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(4) This follows from the factorization

10 o0 |1 1 0 0 1 1
—X'r A0 |0 0 I 0 00
o o A |lxr || xr1 & —X'r A 0101,
A 2 0 —I 1|0
0 F —F| 0 0 0 _F

where the factors on the right-hand side have distributions
(exdyxdyxyyexdyxpBy), (exdyxByexpByxpyxe),

respectively. ]

LeMmMA 5.4. The relation ~ is compatible with the operations defined on the (Tx), .
More precisely, the following assertions hold true:

(1) Forx',x € (Tx)y, then x + x" ~ x" + x.
(2) Forx',x,y € (Tx)y suchthat x ~y, thenx' + x ~x'+ yandx + x' ~y + x".
(3) Forx,y € (Tx), and x" € (Tx), such that x ~ y, then x'x ~ x"y and xx" ~ yx’.

(4) Forx,y € (Tx)y such that x ~ y, then —x ~ —y.

Proor. (1) Let (F', A", X', o', B'), (F, A, X,a, B) € (Tx),. The equality

A0 0 0 |x 10 0 0 Yo o oly
04 0 o0 |x 07 0 0 : "
00 4 ol|x|=|or 4 o 0 1(1)0 ,
00 0 A |X 10 0 A 0 -1 1070

7 0 010
F' F —F —F'| 0 00 —F —F

where the factors on the right-hand side have distributions
(@ *xaxaxa sy xaxBxp) (@ *xaxB*xB . B *BxBxp xe),

respectively, shows (1).

(2) First note that, by (1), it is enough to prove that x’ + x ~ x’ + y. Now lety € T,
let (F/,A',X'",a',B') € (Ts), and let (F, A, X,a, B), (G, B,Y,8,¢) € (Ts), be such
that (F, A, X,a,B) ~ (G, B,Y,48,¢). Thus there exist L, M, P, Q € ¥, homogeneous
rows J, U, and homogeneous columns W, V, as in (5.1). The result follows because
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Ou Qa Q43 Qa1 Qa2 Q43 Qua|Va

the matrix

A 0 0 0O 00 O O O0|X

0 4 O 0 00 O O O0]X

0 0 A4/ 0 0O O 0 O0|X

0 0 0 B OO O O O0]|Y

0 0 O 0O LO 0O 0 0|W

0 0 O 0 04 0 O 010

0 0 O 0 00 B 0 010

0 0 O 0 00 O L 010

0 0 O 0O 00 0 0 M|O

F'' F -FF -G 0 F -G 0 J|O0

can be expressed as a product of the homogeneous matrices

I 0 0 0O 0 0 0 0 0 , )
07 0 0 0 0 0 0 0 40 0 0 0 0 0 0 O0]X
I 0 A 0 0 0 0 0 0 0 A 0 O 0 0 0 0 0| X
00 0 I 0 0 0 0 0 -1 01 0 0 0 0 0 010
00 0 0 I 0 0 0 0 000 B 0 0 0 0 O0]Y
0 -1 0 0 0 Py P Pz Py 000 0 L 0 0 0 0|W
00 O —I 0 Poi Py Pra P 0 O 0 Q12 Q13 91 Q12 Q13 Qua| N1

21 22 23 24
00 O O —J Pi Py Pia P 0 021 0 Q2 Q023 Q21 Q22 023 Qaa| V2

31 32 33 34
0 0 0 0 0 Pau Pax Paz Pas 8 O3 g 032 033 031 Q3 Q33 Q31| V3
0

that have distributions

(@ *axa *x8*xm3xa*8*m3 % Ty %Y,

o xax B *8x w3 kw1 * Wy * W3 * Wy),

(o *a* B *8*m3*w; *wy * w3 * Wy,

B xBxf kexOz%Pxexbzx04xe),

respectively.

(3) Let y,y" €T, let (F',A, X",a',B') € (Tg), and let (F, A, X, a, B),
(G,B,Y,é,¢) € (Tx)y be such that (F, A, X, a, B) ~ (G, B,Y, 8, ¢). Thus there
exist L, M, P, Q € ¥, homogeneous rows J, U, and homogeneous columns W, V,
asin (5.1).

We prove first that

(F', A, X", o, B)-(F, A, X,a,B) ~(F', A, X", a',B")- (G, B,Y,$§,¢).
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This follows because the homogeneous matrix

A 0 0 0 0 0 0 0 0 0]X

-X'F A 0 0 0 0 0 0 O o010

0 0 B 0 0 0 0 0 0 0]|Y

0 0 -X'G A 0 0 0O 0 0 O0]O0

0 0 0 0 L O o o o0 oW

0 0 0 0 0 A4 0O 0 O o010

0 0 0 0 0 0 B 0 O 010

0 0 0 0 0 0 0O L 0 010

0 0 0 0 0 0 0 0 M 010

0 0 0 0 0 —X'F XG 0 —XxJ 4]0

0O F 0 —-F 0 0 0 0 0 F'|O

has the factorization, as a product of homogeneous matrices,
I 0000 0 0 0 0 0
071 000 O 0 0 0 0 A 0 0 0 0 0 0 0 0 0lx
00 700 0 0 0 o oll-XF4a o 0o 0o 0o 0o 0 000
00 070 0 0 o 0o 0 00 B 0 0 0 0 0 0 0y
00007 0 0 0 0 0 0 0-XGA 0 0 0 0 000
10 000 Py P, Ps Pu 0 00 0 0 L 0 0 0 0 OW
0 0 —10 0 Py Py Py Py O Ou 0 Qi 0 Q13 Qn Q12 013 Qs 0|V
0 0 0 0—1 P3Pz Py Py O 021 0 Q2 0 Q023 Q21 Q22 Q23 024 0[V2
0 0 000 Py Py Pz Py O 031 0 Q3 0 Q033 031 032 033 034 0|13
0 =1 01 0 —X'Uy =X'Uy —=X'Us —X'Uy A’ 0s1 0 Qa 0 Q43 Q41 Qa2 Q43 Q44 0|Va
0 I 0 -1 0 0 0 0 0 I]0
00 000 0 0 0 0 F

where the factors have distributions
(@xdyx8xdyxmyxax8*xmyxmy*xa'yxy'y,
axdyx8xad'y xm3 x w1 % wy x w3 % wg x B'y),
(@xa'y *8xa'y *m3 *wy * Wy * w3 % wyg * By,
BxByxexfyx03xBxexOzx0sxpyxe),
respectively.

Now let y,y" € T, let (F, 4, X, a, B), € (Txg), and let (F', A, X', o', B"),
(G',B".Y',§,¢) e (Tx), besuchthat (F', A", X'.a', ') ~ (G',B'.Y', 8 ¢'). Thus
there exist L', M', P, Q € X, homogeneous rows J', U, and homogeneous columns
W',V such that

A0 0 0 |X P11 Pi» P13 Pia

o B 0 oy Pyy Py Prs Pay O Q12 Q13 Quua| N1

O O L/ 0 W/ — P31 P32 P33 P34 Q21 Q22 Q23 Q24 V2 ,
o 0o o0 Mo Pat Par Pas Pis 031 Q32 Q33 034 V3

V.
7 _¢ o 7o U, U, Us Us 041 Q42 Qa3 Qua| Vs
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where P, U, Q, V have distributions (7/, @), (y’, ®'), (@', 8"), (', e), respectively,
and ry =o', w5 =46', 0] = B/, 65 = ¢'. We show that

(F', A, X' .o,B))-(F, A, X,a, B) ~ (G, B".Y',8/,¢) - (F, A, X., §).

This follows because the homogeneous matrix

A 0 0 0 0 0 0 0 0 0 0]|X
—-X'F A 0 0 0 0 0 0 0O 0 010

0 0 A 0 0 0 0 0 0 0 0|X

0 0 -Y'F B 0 0 0 0 0 0 010

0 0 0 0 A 0 0 0 0 0 0]|X

0 0 0 0 -W'F L' 0 0 0 0 010

0 0 0 0 0 0 A 0 0 0 010

0 0 0 0 0 0 0 A 0 0 0]|X

0 0 0 0 0 0 0-XF A 0 0]O0

0 0 0 0 0 0 0 0 0 L 010

0 0 0 0 0 0 0 0 0 0 MO

0 F 0 =G 0 0 0 F -G 0 J|O

can be expressed as the product of homogeneous matrices

I 0 0 O 0 0 0 0o 0 0 O
071 0 0 0 0 0 0 0 0 0 A 0 0 0 0 000 O 0 0]|X
00 I 0 0 0 0 0 0 0 0 -X'F A 0 0 0 000 O 0 O0]0
00 07 o0 0 0 00 0 o0 0 0 4 0 0 000 0 0 0]X
007 0 A o0 0 0 0 0 o0 0 0 -YYFB 0 000 0 0 0]0
00 0 O 0 I 0 00 0 0 0 0o -1 0 1 000 O 0 010
1 0-70 0 0 A 0 0 0 0 0 0 0 0 -WFLO0O0 0 0 010
0-7 0 0 0 0 —X'F Py Pz P13 Py L 0 070 0 0 0)0
00 0 I 0 0 0 Py Py Py Pu 0 Qu-VF Qi 0 0130011 Q12 Q13 Q14|0
00 0 0 —W'F—I 0 P3 Ps P33 Py 0 Q21 =VaF Q22 0 Q230 Q21 Q22 Q23 0240
00 0 0 0 0 0 P4y Py Pas Pay g 031 *5311: 032 g 033 g 031 032 Q33 O34 g
0000 0 0 0 U U 0U U Qur —VaF Qa4 043 0 Qa1 Oz 043 Qua

where the factors have distributions
(@xa'yxax8yxaxayyxaxa'y 8y xayyxmyy*yy,
axa'yxa*x8yxfxmiy B xwyyxwyy xwyy xwyy),
(@xa'y xa*x8'yxB*myyxBxwly*xwyy xwyy x wyy,
Bx By xBxe'yxBxyyxpxpyxeyx0y«biyxe),

respectively.
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(4) Let (F, A, X,a,pB),(G.B.,Y,é,¢) € (Ts), be such that (F, A, X, o, f) ~
(G, B,Y,6,¢). Thus there exist L, M, P, Q € X, homogeneous rows J, U and
homogeneous columns W, V, as in (5.1). The result follows because we have the

factorization
A4 00 0]X Py Py P13 Py
0 B O 0]|Y Py, Py Py3 Pay O11 Q12 013 Qs ‘1;1
0 0L 0|W |=]| Pu P Piz Py 021 Q22 Q23 Q24 V2 ’
0 00 M|O Psy Pur Pis Pas gsl gsz gsa 834 v
—F G 0 -J|0 U, —U, —Us —U, 41 Quz Q43 Qua|Va

where the factors have distributions
(00 % 8 % 73 % T4 % Y, W] * W2 * @3 * Wy),
(w1 * Wy * w3 *x wyg, B *xe%x03%04xe),

respectively. u

5.3 — Graded ring structure

We define (Ryx), as the set of equivalence classes in (7)), under the equival-
ence relation ~. The equivalent class of (F, 4, X, «, B) € (Tx), will be denoted by
[F.A, X,«a, B].

In Section 5.2 we proved that the operation + is well defined in (Ryx), for each
yel.

LEMMA 5.5. Let y € I'. Then (Rx), is an abelian group with sum defined by

[FlvAlyxlva/aﬁ/]+[F7A’X’a’ﬂ]

- |:(F’ F),(I?)/ i)l),();),a/*a,ﬂ/*ﬁ]

Proor. The operation is well defined and commutative by Lemma 5.4 (2) and (1).
Now we show that the operation is associative. Let [F”, A”, X", «”, B”],
[F',A, X", o' B'],[F, A, X,a, B] € (Tx),. Then

[F//,A//,XN,O!N,IBN] + ([F/,A/, X/,CY/,,B/] + [F,A,X,O!,ﬁ])

A0 X’
_ " " 4 " 1 / / /!
=[F", A", X" ", ]+|:(F F),(O A)’(X)’a * o, B *,3:|
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B A" 0 0 X"
=|(F" F' ' F),| 0 A 0].|X |.&"*d xa,p"«xp xp
0 0 4 X

A// 0 X//
= (FN Fl)’(o A/)v(X/),a//*Ol/,ﬂN*,B/:|+[F,A,X,Ot,,3]

— ([FN, AN, XN,O(”,,BN] + [F,,A/,X,,Ol/,ﬁ,]) + [F,A,X,a,ﬂ],

as desired.
The element 1 (0) = [0, 1, 1, e, €] is the zero element. Indeed, let (F, A, X, a, B) €
(Ts)y. Then we have the factorization

A

n o o
S

ol~°o ~
o -~ O
~ o o
oS = X

SO = O

0 0 |x
1 0|1
0 A|X
0 —F|o0

S IE==)
~

by Lemma 5.3, where the factors have distributions
(@xexaxyaxexf), (@xexp,Bxexfxe),

respectively. Thus [F, A, X,«, B] + (0,1, 1,e,e] = [F, A, X, «, B].

Given (F, A, X, a, B) € (Tx)y, the element [-F, A, X, «, B] is well defined by
Lemma 5.4 (4). We claim that it is the additive inverse of [F, 4, X, «t, B] in R,,. Thus
consider the factorization

A 0 olx 1o ooy,
0 A4 0|X I 4 0 001X
o 0o 1/1 | ]lo o 1 || L1100}

0 0 1|1
F —F 0|0 0 —F 0

where the factors have distributions
(axaxexy,axBxe), (xxB*xe,Bxpfxexe),

respectively. It shows that [F, A, X,a, B8] + [-F, A, X,a, 8] =[0,1, 1, e, €], as
claimed. [

In Section 5.2 we showed that the product functions (Rx), X (Rx)y = (Rx),y
are well defined. Now we define Ry = @yer (Rx)y. By the foregoing lemma, it is
an additive group. We now prove that it is a I'-graded ring with the induced product.
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LeEmMaA 5.6. Ry is a I'-graded ring with the product determined by the rule
/ / / / / / A 0 X !/ /
[F', A, X, &', B']-[F, A, X,a, 8] = [(0 F),(_X,F A’)’(O) ,a*ay,ﬂ*ﬂyi|,

forany (F', A", X",a',B") € (Tx)y and (F, A, X, o, B) € (Tx),.

Proor. By Lemma 5.4 (3), the product is well defined.
By Lemma 5.3 (3) and (4), the identity element is [1, 1, 1, e, e].

Now we proceed to show that the product is associative. Let (F”, A”, X", a”, B") €
(Ts)yr. (F'. A" X", . B') € (Tx)y and (F, A, X, o, B) € (Tx),. Then

([F”, A”,X”,a”,ﬁ”] . [F/,A/,X/,Ol/,ﬂ/]) . [F, A, X,O!,ﬂ]

A’ 0 X'
= (0 F”)’(_X//F/ A,,)»(0)’0‘/*0//)/,ﬁ/*,3”yi|-[F,A,X,oz,,B]

A 0 0 X
— (0 0 F//) , _X/F A/ 0 , 0 o *Ol/)/ *Ol//)//)/,,B */8/)/ % ﬂ”)//)/
0 _X//F/ A// 0

[F”, A", X", a", B"] - [(0 F), (_ o j) , ()(f ) axa'y, B x ﬁ’y}

— [FN, A”,X”,Ol”,ﬂ”] . ([F’,A/, X/,O[/, ﬂ/] . [F,A,X,O[, ﬂ]),

which shows that the product is associative.
It remains to show that the distributive laws are satisfied. Let (F’, A", X', o/, '),
(G',B'.Y'",§,€) € (Tx), and (F, A, X, a, B) € (Tx),. First note that

(IF'. A, X" .o B1+[G B .Y 6§ &) [F.A X ap]

A 0 0 X
53) =100 F G),|-XF 4 0]|.|0]|,axay*x8y,fxpyxey

-Y'F 0 B’ 0

Second, observe that

[F',A, X", ,B-[F, A, X,a,B] +[G',B,Y' 8§ &-[F A, X" o, B
A 0 0 0
G4 =|orog) [XFA 00
B/

0 0 A axdyxax8y,BxpyxBxey|.

0 0 -Y'F

=R =
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The fact that (5.3) equals (5.4) follows because the homogeneous matrix

A 0 0 0 0 0 0 | X
—X'F A 0 0 0 0 0 |0
-Y'F 0 B 0 0 0 0 |0
0 0 0 A 0 0 0 | X
0 0 0 —X'F A 0 0 |0
0 0 0 0 0 A 0 | X
0 0 0 0 0 -Y'F B |0
o F G 0 —-F 0 -=-G|O0
factorizes as the product of homogeneous matrices
[000 0 0 0 A 0 0 00O0O0O|X
0 o9 0 0 0 —X'F A 0 0000 0\
001 0 0 0 0 —Y'F 0 B 00O0O0|O0
I 00 A4 0 0 0
071 0 -X'F A 0 0 -1 0 0 7 0O0O0|O0],
700 0 0 A 0 0 -1 0 071 000
00 I 0 0 _Y'F B -1 0 0 0017 O0]O0
0 0 -1 000T1]O0
000 0 —-F 0 =G

where the factors have distributions
(@xad'yx8ysaxdyxax8yxyyaxdyx8yxBxpyxpxcy),
(axdyx8yxBxByxBxeyBxByxeyxBxpy*xBxeyxe),

respectively.
Now let (F', A", X", o', B') € (Tx)y and (F, A, X, a, B),(G,B,Y.,6,¢) € (Tx),.
First note that

[F, A", X' .o, B (F, A X,a Bl +[G, B,Y,8,¢)

A 0 0 X
(5.5) =000 F),| © B 0. |Y|.ax8xay,BxexpBy
—X'F —-X'G A 0

Second, observe that

0
_ ! !
(5.6) =] F 0 F), XE A0 g caxayxSxaly,Bxplyxexpy|.
A

o~ o =
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The fact that (5.5) equals (5.6) follows because the homogeneous matrix

A 0 0 0 0 0 0 |X
—X'F A 0 0 0 0 0 |0
0 0 B 0 0 0 0 |Y
0 0 —X'G A 0 0 0 |0
0 0 0 0 A 0 0 | X
0 0 0 0 0 B 0 |Y
0 0 0 0 —X'F -X'G A |0
0 F’ 0 F’ 0 0 —F'0
factorizes as the product of homogeneous matrices
I 0 0O 0 0 0 4 ¥
0700 0 0o 0 X,F;)/ 0 0000
0070 O 0 0 - 0 0 000]0
000 J 0 0 0 0 0 B, O/ 000|Y
71000 A 0 0 OI 0 —-X'G A ? 0 0j0 |,
00710 0 B 0 -0 01 0 ? 010
0101 —X'F -X'G A 0 0 I 0 01700
0 —1 0 -1 00 [I]0
0000 0 0 —F'
where the factors have distributions
(@xdy*x8xdyxaxSxady*xy'yvaxdy*x§xa'y*xB*exfy),
(axdy*xSxad'yxBxexpy,BxBy*xexBfyxBxexfyxe),
respectively. -

5.4 — Universal localization property

ProposiTioN 5.7. Consider the map ju: R — Ry determined by u(r)=|[r,1,1,e,e]
forallr € Ry, y € I. Then the pair (Rx, ) is the universal localization of R at X.

Proor. By Lemma 5.3 (1) and (3), i is a homomorphism of I'-graded rings.

By E; we will denote the column matrix consisting of 1 as its i-entry and all the
other entries are zero, and by ElT its transpose, the row matrix consisting of 1 as its
i-entry and all other entries are zero.

Let A = (a;j) € X be an n x n homogeneous matrix of distribution (o, 8).

We claim that the n x n matrix B = ([EiT, A, Ej,owzj_l, ﬂaj_l]),-j is the inverse
of A",
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First observe that [ET A Ej aa; -1 ,30( e Rg o7 because ET has dlStI‘lbuthH
(Bic; 1B a_l) A has distribution (aa ,Ba ) and E has distribution (a(x ,e).
Thus B is homogeneous of distribution B, o).

Second, using Lemma 5.3 (3) and (1), we obtain that the product of the i th line of
AM with the jth column of B equals

Zu(ai,k)[E,I,A,Ej,aoqfl,ﬂa Z[azkEk,A Ej.aa;", fai ']
k k
[ZalkEk,A E],oux ﬁa_l]
k

= [EfA A Ej a0 Baj'] € Ry o1

L)

Third, we show that

[1,1,1,e,e] ifi =],

EJA A Ej a0, o] = n(8ij) = [8ij. 1. 1.e.e] =
[ / ] ) = By ] [0,1,1,e,e] ifi# j.

This follows from the factorization

A 0 |E; I 0 4

0 1|1 |=] 0 1 ( OEJ'),
0 1|1

ETA —8;| 0 ET —§;

where the factors have distributions

1 -1

(ocozj_1 ke koo o0 % e), (OlOlj_l * e,ﬂaj—l xexe),

J
respectively. Therefore B is the right inverse of A*.
Now we proceed to prove that B is the left inverse of A*. Using Lemma 5.3 (4)

and (2) and considering that ag; € R, KB we obtain that the product of the i th line
of B with the jth column of A* equals

S IE]. AL Exaoi, Boi ulax. )
k

-1 -1 -1 -1
=Y [E]. A Exar j.oe" - ou B Bt - ap B ']
k

= |:ElT A, Z Ekak,j,aﬂfl,ﬂﬂj_l}
k

= [E]. A AE;.of;' BB € Ry 1.
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As before, we show that [ElT, A, AE;, ozﬁ]._l , ,B,BJ_I] = 1 (8;;). This follows from

A 0 |AE; A 0
0 1] 1 =] 0o 1 ((1)(1)?)
ET &;| o E] —§;

where the factors have distributions
@B xex Bt BB xe), (BB xe BB xexe),

respectively.
Therefore, the claim is proved.
It remains to prove that u: R — Ry is universal.

Note that if (F, A, X, «, B) € (Tx)y, and we suppose that ' = (f1,..., f,) and

X = (x,l ) then
x;1

F“(A“)_IX“ = Zﬂ(fl)[ElT, A, Ej,ocaj_l,ﬁaj_l]u(xj)
i,j

=Y UAE] A Ejxj a0 - a;, foj " - o]

ij
— | T A A Y B
i J
(5.7) —[F. A X, B

Now let S be a I'-graded ring and ¢: R — S be a X-inverting homomorphism of
graded rings. We define ®: Ry — S as follows. Let (F, 4, X, o, B) € (Tx)y; then

O([F, A, X,a,B]) = F(4°) 'x% e S,.

Now we show that ® is well defined. Let (F, 4, X, «, B). (G, B.Y.8,¢) € (Tx), be such
that (F, A, X,«a,B) ~ (G, B,Y, 4, ¢). Then there exist L, M, P, Q € 3, homogeneous
rows J, U and homogeneous columns W, V', such that

A4 0 0 0]x

0O B 0 0|Y »

0 0 L 0|W =<)(QV),
0 0 0 M|O U

F -G o0 J]|o
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where P, U, Q, V have distributions (7, w), (y, ®), (v, 9), (w, e), respectively, and
T =a,m =36,0; =B, 60, =e. Then
0=U0°V?
= U Q¥ (0% (P?)T POV
= (VO (PO (PV)*

1

4 0 0 0\ [Xx¢
0 B 0 0 Y?
= Y _G? 4
(F# =G¥ 0 J%) 0 0 LY 0 we
0 0 0 M? 0
(49! 0 0 0 X¢
0 (B! 0 0 Y?
=(F¥ —G¥ 0 J¥
( ) 0 0 (L¥)! 0 we
0 0 0 (M9)! 0

= FY(A?)7'X? —GY(B?)7'Y? + O(LY)'W? + J?(M?)'0
— F“’(A‘p)_lX‘p _ GW(B‘p)_le,

which shows that ® is well defined.
Now let (F', A", X', o', B), (F, A. X, «, B) € (Tx),. Then

e\ 1 ¢
1 1 /A = ! ¢ 470 X
O(F A X o B+ [F.A X, ap])=(F F) ((0 A)) (X)

. (A/(P)—l 0 X/‘P
() ()
— F/‘P(A/(P)—IX/‘P 4 F(p(A(p)—lX(p
— q)([F/,A/, X/,Ol/,,B/])

+ ®([F, A, X, B]).

Thus @ is an additive map.
Let (F', A", X'.a',B') € (Tx)y and (F, A, X, o, B) € (Tx),. Then

S(F', A, X", a',B']-[F.A X,a,B])

“orr((2)) G)
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-1
A® 0 X
= (0 F/‘P) (_X/<PF(p A/(ﬂ) ( 0 )
_ / (49)7! 0 X
= (0 F <p) (_(Alw)—IX/KDFgo(A(p)—l (A/(D)—l) ( 0 )

— F/(ﬂ(A/W)—IX/WF(p(A(p)—IXw
=o(F A, X", o8- -®(F, A, X,a,B)).

Hence ® is a homomorphism of graded rings. Clearly ®u = ¢. The uniqueness of @
now follows from (5.7). [ ]

5.5 — Malcolmson’s criterion

Now we proceed to prove two results that determine the kernel of the natural
homomorphism R — Ry and an important case in which the ring Ry is not zero. The
following theorem is known as Malcolmson’s criterion.

THEOREM 5.8. Let R = @yer R, be a I'-graded ring and ¥ be a gr-lower semi-
multiplicative subset of M(R). Consider the canonical homomorphism of T'-graded
rings A: R — Rx. Fory € I', a homogeneous element r € R, belongs to ker A if and
only if there exist L, M, P, Q € X, homogeneous rows J, U and homogeneous columns

W, V, such that
L 0|W P
0 M|O :(U)(QV)’
0 J‘r

where P, U, Q, V have distributions (7, w), (y, »), (v, 0), (w, e), respectively.

Proor. By Proposition 5.7, u: R — Ry is the universal localization of R at X.
Thus A(r) = 0 if and only if pu(r) = 0.

Hence suppose that r € R, is such that p(r) = 0. It means that [r, 1,1, e, e] ~
[0,1,1, e, e]. Thus there exist L, M, P, Q € ¥, homogeneous lines J, U and homo-
geneous columns W, V, such that

100 01 Pii Pi» P13 Pua

010 O 1 Pyi Py Pys Poy Qll Q12 Q13 Q14 41
0O0L O0|W — P31 Psy P33 Pay Q21 Q22 Q23 Q24 Va )
00 0 M|O P41 P42 P43 P44 Q31 Q32 Q33 Q34 V3
00 7o U, U, Us Us 041 Qa2 Q43 Qua| V4
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where P has distribution (77, w), U has distribution (y, ), Q has distribution (w, 6)
and V has distribution (w, ). Now the equality

100 0 0 1 Pll Plz P13 P14 0
010 0 0f1 Pyi Py Pys Pay 0 Ou Q12 Q13 Qus O\ V)
00L 0 OW Py Py, Py Py 0 || 921 Q22 Qa3 Q24 012
000 M 000 |=| Pu P Pus Pu 0] €3 932 Q33 034 015
000 O 10 —Pyy —P1, —Pi13 —Pis 1 Q141 Q(;tz Q(;B Q(;m (1) 114
000 —J r|r U, —U, —Us —Us r

where the homogeneous matrices of the right-hand side have distributions

(6*6*71’3*7‘[4*6’)/,601*a)z*a)g*a)4*€),

(w1 %Wy *x w3 % wg ke,exexb3x04%exe),

respectively, shows the result.
Conversely, suppose there exist L, M, P, Q € ¥, homogeneous rows J, U and
homogeneous columns W, V', such that

L o|w »
0 M|0 =()(QV),
0 J|r v

where P, U, Q, V have distributions (7, ®), (y, ®), (w0, 0), (w, e), respectively. It
follows that [0, 1, 1,e,e] ~ [r, 1, 1, e, ] because

1 0 0 011 L0 o
01 0 011 01 0 10 0]1
0 0 L 0 |W |= 00 P 01 0]1
00 0M|O 5 U 00 Q|V
0 —r 0 J|0 -
where the factors on the right-hand side have distributions
(exexmxyexexw),
(exexw,exex0xe),
respectively. u

CoROLLARY 5.9. Let R = @yer‘ R, be a I'-graded ring and X be a gr-multipli-
cative subset of N (R) consisting of gr-full matrices. Then Ry is a nonzero I'-graded

ring.
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Proor. Itisenough to prove that 1 € R, is not in the kernel of the canonical homo-
morphism of graded rings A: R — Ryx. Suppose that 1 € ker A. Then, by Theorem 5.8,
there exist L, M, P, Q € ¥, homogeneous rows J, U and homogeneous columns W,

V', such that
L 0 |W P
0 M| 0 |= 7 (o|v).
0 J|1

where P, U, Q, V have distributions (7, w), (e, ®), (w, 0), (w, e), respectively.
Making elementary column operations, we obtain

L -wJ|w »
0 M |0 :(U)(Q/V),
0 0 |1

where P, U, Q', V have distributions (7, ®), (¢, w), (v, 8), (», e), respectively. Since
¥ is gr-multiplicative, it is also upper gr-semimultiplicative by Remark 3.1. Thus the

matrix
L —-wJ W
0 M 0]eX,
0 0 1
but it is not gr-full, a contradiction. Therefore, 1 ¢ ker A. [

6. A gr-prime matrix ideal yields a graded division ring, and vice versa

The first part of this section is the adaptation to the graded context of the first part
of [5, Section 7.3]. The proof of the main result Theorem 6.3 is the graded version of
[15] using the construction of Section 5. It could also have been proved without using
the results in Section 5 via a graded version of [15] that can be found in [11].

Throughout this section, let T' be a group.

Let R =P
ring, the set

yer Ry be a I'-graded ring. If (K, ¢) is a I'-graded epic R-division

{4 € M(R) : A? is not invertible over K }

will be called the singular kernel of (K, ¢). Now we show that gr-singular kernels
are gr-prime matrix ideals. The aim of this section is to show that gr-singular kernels
determine graded epic R-division rings similarly to the way that commutative R-fields
are determined by prime ideals of R.
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Given an n X n matrix A with entries in R, if we write A = (A7 A, ... A,) we
understand that A4, ..., A, are the columns of A, and if we write
Ay
A= :
An
we understand that Ay, ..., A, are the rows of A.

Given two matrices 4, B € M (R), we define the diagonal sum of A and B as

A 0
o= (19).

Notice that if A € M,,(R)[&][B] and B € M,,(R)[’][B], then A & B € My (R)[& *
1B+ B ]

Let A, B € M,(R)[&][B]. If they differ at most in the i th column, then we define
the determinantal sum of A and B with respect to the ith column as

AVB = (A ... Ai+B; ... A,).

Similarly, if they differ at most in the ith row we define the determinantal sum of A
and B with respect to the ith row as

Ay
AVB = A; + B;
An
The matrix AV B, when defined, has the same distribution as 4 and B.
Note that the operation & is associative. On the other hand, the operation V is not
always defined, and as a consequence it is not associative.
Notice that distributive laws are satisfied. More precisely, if C is another homo-
geneous matrix, then C @ (AVB) = (C & A)V(C & B)and (AVB)d C = (A&
C)V(B & C) whenever AV B is defined.

Also,_if B,C e M, (R)[_&][_B] differ in at most one column (row) and A €
My (R)['][a], D € M, (R)[B][B], then

A(BVC) = ABVAC, (BVC)D = BDVCD.
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On the other hand, if B, C € M, (R)[&][B] differ in at most one row (column), then it
may happen that

A(BVC) # ABVAC, (BVC)D # BDVCD,

because, for example, AB and AC (BD, BC) may differ in more than one row
(column) and thus the right-hand side does not make sense. But in some cases one
can apply the distributive law. Let X € M(R) and suppose that either X is a diagonal
matrix, or X is a permutation matrix; then

X(BVC) = XBVXC, (BVC)X = BXVCX.

Moreover, there exist o/, B/ € T such that X can be considered as an element
of M, (R)[o’][@] N M, (R)[B][B]. Thus X(BVC) € M, (R)[«’][] and (BVC)X €
My (R)[a][B].

Let R = D, cr Ry be a I'-graded ring. A subset & of IN(R) is a gr-prime matrix
ideal if the following conditions are satisfied:

(PM1) & contains all the homogeneous matrices that are not gr-full.

(PM2) If A, B € & and their determinantal sum (with respect to a row or column)
exists, then AVB € P.

(PM3) If A € P,then A ® B € P forall B € IN(R).
(PM4) For A, B € IN(R), A D B € P impliesthat A € P or B € P.
(PM5) 1 ¢ £.

(PM6) If A € # and E, F are permutation matrices of appropriate size, then
EAF € P.

We remark that when I' = {1}, that is, the ungraded case, (PMO6) is a consequence
of (PM1)—~(PM5) as shown in [5, (g) on p.431]. We have not been able to obtain (PM6)
from the others in the general graded case.

ProposITION 6.1. Let R = D, cr Ry be a I'-graded ring. Let K = _ .1 K,
be a T'-almost graded division ring and ¢: R — K be a homomorphism of T'-almost
graded rings. Then

P = {A € M(R) : A? is not invertible}

is a gr-prime matrix ideal. Therefore, the following assertions hold true:

(1) If (K, @) is a I'-graded epic R-division ring, then the gr-singular kernel of (K, ¢)
is a I'-gr-prime matrix ideal.
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(2) Let N be a normal subgroup of T and consider R as a I/ N -graded ring. Let
(K, @) be a /N -graded epic R-division ring. Then

P = {A € Mp(R) : A? is not invertible}
is a I'-gr-prime matrix ideal.

Proor. Let K be a I'-almost graded division ring and ¢: R — K be a homomorph-
ism of "-almost graded rings. As noted in Propositions 2.4 and 2.2, the lift K of K is
a I'-graded division ring and the lift #: R — S of f is a homomorphism of I'-graded
rings such that ¢ = 7@, where 7: K — K is the natural homomorphism of I'-almost
graded rings. Note that the sets 2 and {A € IM(R) : A? is not invertible over K } coin-
cide by Proposition 2.5 (3). Thus we may suppose that K is a I'-graded epic R-division
ring and ¢: R — K is a homomorphism of I'-graded rings. Let » = {4 € M(R) :
A? is not invertible over K }.

If A € M(R) is not gr-full, then A? is not gr-full. Since K is a I'-graded division
ring, A is not invertible over K. Thus (PM1) is satisfied.

Now let A, B € £,[@][B] such that AV B is defined. We may suppose that A, B
differ in the first column. Hence A = (4; C5 ... Cy)and B =(B; C, ... C,). Since
A% and B¥ are not invertible over K, the columns of A® and B¢ are right linearly
dependent over K. If the columns CY, ..., CY are right linearly dependent over K,
then the columns of (AV B)? are right linearly dependent over K and thus AVB € £.
Hence we can suppose that there exist homogeneous elements a1, ...,a,,b1,...,b, €
K, with ay, by # 0, such that

Afay + Clar + -+ Clan =0, BYby +Cyby+---+ CPby = 0.
But then
A + BY + Cf(azay' + babyih) + -+ + CP(anay" + byby") =0,

which shows that AVB € &. Thus (PM2) is proved.

Let A €  and B € M(R); then A? is not invertible over K, but then AY & B? =
(A & B)? is not invertible over K. This implies (PM3).

Now suppose that A, B € IN(R) are such that A & B € #. This means that the
homogeneous matrix A¥ @ B is not invertible over K. This implies that either A or
B? is not invertible. That is, A € P or B € P and (PM4) follows.

Clearly, (PM5) is satisfied.

Let A € # and E, F be permutation matrices with entries in R. Notice that E?,
F? are permutation matrices with entries in K. Thus, if (EAF)% = E? A? F¢ were
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invertible over K, then A? = (E¥¢)"'(EAF)%(F¢)~! would be invertible over K, a
contradiction. Thus EAF € £ and (PM6) is shown. [ ]

LEMMA 6.2. Let R = @yer Ry be a I'-graded ring and & be a gr-prime matrix
ideal. Let A, B € IN(R). The following assertions hold true:

(1) If A and B are such that C = AV B exists and B is not gr-full, then A € P if and
onlyif C € #.
(2) Let A € P. The result of adding a suitable right multiple of one column of A

to another column again lies in . More precisely, if A € M,(R)[&][B] and
ae Rﬁiﬂfl, then (Ay ... Aj—1 Aj+Aia Ajy1 ... Ay) belongsto P.

B)IfFA®Be P, thenB® A e P.
(4) Suppose that A € M,,(R)[@][B] and B € My, (R)[8][Z]. For C € Myxm(R)[S][B],

A 0 o . A0 o
(C B)GJ if and only if (0 B)EJ.

Similarly, for C € Mpxn(R)[B][E],

A C o ) A0 >
(O B)EJ if and only if (0 B)EJ.

(5) The set M(R) \ P is gr-multiplicative.
(6) No identity matrix belongs to P.

(7) Suppose that A € M, (R)[@][B] and B € M, (R)[B][S]. Then AB € P if, and only
i, A® B € .
(8) No invertible matrix in M(R) belongs to P.

(9) Suppose that A and B are such that C = AV B exists and B € P. Then A € P if,
and only if, C € P.

Proor. (1) By (PM1) and (PM2), if A € P, then C € L. Conversely, suppose
that C € &. Clearly A = CV B’, where B’ is obtained from B by changing the sign
of a row or column. Now A4 € &£ because B’ is not gr-full.

(2) Suppose that = B1 % B’ and ¢ € Rﬂzﬂl—l. If A= (A, A5 ... Ay), then

(A14+A4zc Az ... Ay) = (A1 Az ... Ap)V(Aac Ay ... Ay)
c 1 0
= AV(A4A; Az ... Ap)
00 1
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Thus the right-hand side is a determinantal sum of A and (A,c A, ... A,), which is
not gr-full. Indeed, it is the product of (A, A3 ... A,) € Mnx(n_l)(R)[&][,B_’] and

c 1 0

€ M(n—l)xn(R)[E/][B]v
00 1

respectively.
(3) This follows from (PMO6).

(4) We show the first statement; the other can be proved analogously. If we write
A= (A1 A)and C = (C; C’), then

AO_AIA/OVOA’O
c B)] \o C’' B C; C' B’

The second matrix on the right-hand side is a matrix with a submatrix that is a block
of zeros of size m x (n + 1). Since m + n + 1 > m + n, that matrix is hollow and
therefore not gr-full. By (1),

A0 o . Ar A0 >
(C B)EJ if and only if (O C' B €P.

Similarly, one can repeat the argument applied to columns of A’ and C’ and so on, to
obtain the desired result.

(5) Let ¥ =IM(R)\ P.By (PM5),1 €« £.By (PM4), A@ BecXifA,BeX.
Now (4) implies that X is lower gr-semimultiplicative. Finally, (PM6) shows that X is
gr-multiplicative.

(6) This follows from (PM4) and (PM5).

(7) First notice that, by (6) and (PM4), a matrix C € 9Jt(R) belongs to & if and
only if C @ [ € & for the identity matrix / of the same size as C.

We claim that C € P if and only if —C € . Indeed,

coy o (c -\ _ @ (o-c\_
(0 I)EJ@(O I)GJ <=>(1 I)GJ
Lo, (€0} p (€ 0)

11 0 I ’
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and the claim is proved. Then

A0 @ (a0) @ (4 -4B)
<0 B)EJ@(I B)EJ <=>(I O)GJ
v (~AB AY _, @ (~AB 0
— o 1 o 1)

and, by the claim, the result follows.

(8) If A € M, (R)[@][B] is invertible, then A~! € M, (R)[B][@]. Since AA~! =
I ¢ P, (7) implies that A @ A~! ¢ £. Now (PM3) shows that A ¢ P.

(9) By (PM2),if A € P, then C € L. Conversely, suppose that C € &. Clearly
A = CVB’, where B’ is obtained from B by changing the sign of a row or column.
More precisely, B’ is the product of B by a diagonal matrix D whose diagonal elements
are 1 or —1. Now B @ D € P because B € #. Thus B’ € P by (7). Therefore A € P
by (PM2). ]

The proof of Lemma 6.2 is very similar to that for the ungraded case; see for
example [5, pp. 430-431]. The main difference is that we were not able to show [5, (d)
p- 430], because not every multiple of a column can be added to another column so
that the matrix remains homogeneous. As a consequence, the proof of Lemma 6.2 (7)
is also different.

Let R = EByer R, be a graded ring and let & be a gr-prime matrix ideal. The
universal localization of R at the set ¥ = I(R) \ & will be denoted by Ry (instead
of Ry).

THEOREM 6.3. Let R = @yer Ry be a T'-graded ring. The following assertions
hold true:

(1) If P is any gr-prime matrix ideal of R, then the localization Rgp is a I'-graded
local ring. Moreover, its residue class T'-graded division ring is a I'-graded epic
R-division ring such that its gr-singular kernel equals 5.

(2) If (K, @) is a I'-graded epic R-division ring, with gr-singular kernel P, then P is
a gr-prime matrix ideal and the T'-graded local ring Rp has residue class graded
division ring R-isomorphic to K.

Proor. (2) By Proposition 6.1, & is a gr-prime matrix ideal.

By (1), Rp is a I'-graded local ring and its residue class graded division ring is a
graded epic R-division ring with singular kernel . Then, by Theorem 4.4 (b)(ii), K
and the residue class graded division ring of Rgp are isomorphic I'-graded R-rings.
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(1) Let X = M(R) \ L. We will use the identification of Ry with the ring Ry =
@D, er(Rx)y given in Sections 5.3 and 5.4. The elements of (Rx), are equivalence
classes [F, A, X, «, B] under the equivalence relation ~ defined in Section 5.1 of
5-tuples (F, A, X, o, B), where A € X is of distribution («, 8), F is a homogeneous
row of distribution (y, f) and X is a homogeneous column of distribution (e, e).

Foreach y € I, let B, be the subset of (Ryx), consisting of the elements [F, 4, X,
a, B] € (Rx)y such that (£ X) € P. Notice that this matrix is homogeneous of
distribution (& * y, B * e).

Step 1: Foreach y € I', B, is well defined, that is, if (F, 4, X,«,B) ~ (G, B,Y,d,¢)
and (£ &) e P, then (87) € .

Suppose (F, A, X,a, B) ~ (G, B,Y,6,¢). There exist L, M, P, Q € X, homogen-
eous rows J, U and homogeneous columns W, V, such that

A 0 00X

0 B 0 0

0 0 L 0|W |emRr)
0 0 0 M|O

F -G O J]|o

is not gr-full, by (5.1), and thus belongs to & by (PM1). Applying permutations of
rows and columns we obtain that

A 0 0 0 X A 0 0 X O
0 B 0 0 Y 0 B 0Y O
F -G 0 J 0]e?, F -G 0 0 J]e®
O 0 L o W 0O 0 L W O
0O 0 0 M O 0O 0 0 0 M
Since M ¢ P, then
A 0 0 X
0 B 0 Y
(24
F-Goo0l|
0 0 L W

by Lemma 6.2 (4) and (PM4). Again, applying column permutations, Lemma 6.2 (4),
(PM4) and the fact that L ¢ & we obtain

A

0
B e P.
-G

o~ =

0
F
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After permuting some rows and columns, we obtain

A X O A X O
0 Y B |e?, F 0 -G |e?.
F 0 -G 0 Y B

Now observe that

S Mo
o O =

0
-G | e®,
B

because [F, A, X, «, B] € B, and because of Lemma 6.2 (4) and (PM3). Hence the
equality

A0 O A X O A X O
F 0 -G|V|F 0 —-G|=|F 0 —G
0Y B 0 0 B 0 Y B
implies that
A0 0
F 0 -G|le®
0Y B

by Lemma 6.2 (9). Then, since 4 ¢ P, (
After permuting some rows and columns,

B ) € P by Lemma 6.2 (4) and (PM4).
_BG }(;) e P.Now

I 0 B Y BY o
©.1) (o —1) (—G 0) = (G 0) €
by (PM3) and Lemma 6.2 (7).

Step 2: For each y € I', P, is an additive subgroup of (Rx), .

The 2 x 2 matrix ((1) (1)) € & is hollow and therefore not gr-full. Thus it belongs to
P,and [0, 1,1, e, e] € B, . Thus the zero element of (Ryx), belongs to Ty.

If[F,A,X,a,B) € By, then —[F, A, X,a, 8] = [-F, A, X, a, B] € B, because if
(4 %) e P, then (4 ¥) e P by the same argument as (6.1).

Sonow let [F', A", X", o', B'], [F. A, X,«, B] € B,. Then

[F', A, X" B +[F.A X, ap) = |:(F’ F),(/é' 2) : (f{) ,a’*a,ﬁ’*ﬂ]
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To show that the previous sum belongs to 3,,, since

A0 0 A0 X' A0 X
0 A X]|V]O0O 4 0]=]0 4 X],
F' F 0 F' F 0 F' F 0

it is enough to show that both summands belong to J by (PM2). The homogeneous

matrix
A0 0
0 A X|e®P
F' F 0
by (PM3) and Lemma 6.2 (4), because ( 1“,1 )5 ) € &. By a similar argument,
A X0
F' 0 Fle?.
0 0 4

Permuting rows and columns, we obtain that
0
0 4
F
Step 3: If [F', A", X', &', '] € (Rx),,and [F, A, X, o, B] € B, then
[F', A, X', o' B')-[F, A, X,a,B] € Byy.
Similarly, if [F’, A", X', &', '] € B/, and [F, A, X, «, B] € (Rx)y. then
[F', A X" o', B]-[F. A X.a,B] € By,
We prove both cases at the same time. Observe that
[F',A, X,&',B']-[F, A, X,a, 8] = |:(O F/), (—;’F Z,) , (Jé) ,axa'y B« ,3’7/:| .

First note that the matrix

AX 0 0
Fo o0 1
00 4 x'|€7
00 F 0
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by Lemma 6.2 (4) and (PM3), and that it is of distribution (& * y * &’y * 'y, B * e *
B’y * y). Now the matrix

I 0 00O
0 1 00
0 -X" 10
0 0 01

is invertible, homogeneous and of distribution (a * y * o’y * y~1y "L a xy xa'y *
y’y). By Lemma 6.2 (7) and (PM3), we obtain

I 0 00\[/4 X 0 0 A X 00
o 1 oof[Foo 1| | F oo01]
o—x 10|loo a x| |-xF o a0
o 0o o1/\o 0o F o 0 0 F 0

Permuting rows and columns, we get

A 0 X
—X'F A 0
0 F 0
F 0 0

- O O O

Now Lemma 6.2 (4), (PM5) and (PM4) imply that

A 0 X
—X'F A 0]e®,
0 F' 0

as desired.

Step 4: Define L = @yel" B,. Then P is a graded ideal of Ry by Steps 1-3.
Moreover, 3 # Ry because [1, 1, 1, e, e], the identity element of Ry, does not belong
to P8 by Lemma 6.2 (8), since the 2 x 2 matrix (} }) is invertible.

Step 5: Ry is a I'-graded local ring with graded maximal ideal 3.

Let ¢: R — Ry be the universal localization at X. By (the proof of)) Proposition 5.7,
the isomorphism ®: Rz — Rgp sends [F, A, X, a, f] € (Rx), to F?(A?)"1X% €
(Rp)y-

Let[F, A, X, o, B] € (Rx)y \ By. Thus (4 X) ¢ P and (4 )g)rp is invertible in

Rgp. Also, the matrices (AO('J (1)) and (_ Fo ({4«,)_1 (1)) are invertible in R». Hence

42 0\ I o\ (4 x\" (1 (9 'x
0 1 —F%A9)71 1)J\F 0] \0 —F%4%)"1x¢



On graded division rings 67

is invertible in R». Thus the element F¢(A4%)~1 X% is invertible in R », and therefore
[F, A, X, a, B] is invertible in Ry.

Step 6: Set KX = Ry /P and let ¥: R — K be the composition of u: R — Ry with
the natural projection Ry — KX, [F, A, X,«a, B] — [F, A, X, a, B]. Then (K, V) is a
I'-graded epic R-division ring by Propositions 4.1 (2) and 4.3.

Step 7: For x € h(R), ¥(x) = 0if, and only if, the 1 x 1 matrix x € P.
Indeed,
—_— 11 11
YUx)=[x,1,l,e,e] =0<% [x,1,1,e,e] € P & . eP & e p.

By Lemma 6.2 (4) and (PM4) the last condition is equivalent to x € .

Step 8: Forr € Ry and [F, A, X,«, B] € (Rx)y, Y(r) = [F, A, X, a, B] if and only
if (4%) e

First notice that W(r) = [F, A, X, «, B] ifand only if [r, 1, 1,e,e] = [F, A, X, «, B].
Equivalently,

[F.A, X,a,B8]—[r,1,1,e,e] = |:(F —r),(g1 (1)) , ()1() ,axe, B *e:| €B,.

which means that

A 0
0 1 1]|e&
F —r 0

This matrix belongs to & if and only if
A 0 X

(6.2) 01 0)e?
F —r r

by Lemma 6.2 (2), since the last matrix is obtained after subtracting the second-last
column from the last one. After permuting rows and columns, we get that the matrix
(6.2) belongs to & if and only if

© Mo
S N X
=

By Lemma 6.2 (4), (PM3), (PM4) and (PM5) this is equivalent to (4 %) € .
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Step 9: The singular kernel of (K, W) is 7.

Since Ry is R-isomorphic to R, we get that any matrix in 9t(R) \ P is inverted
in Ry via u and therefore in K via W.

It remains to show that the matrices in # do not become invertible via W. Let
A € P be of size n x n. If all square submatrices (obtained by eliminating an equal
number of rows and columns) of A belong to J, then, in particular, all entries of A
belong to . By Step 7, AY is the zero matrix and therefore not invertible. Hence
suppose that A1, of size m x m with m > 1, is a submatrix of A of largest size that
does not belong to $. We will show that AY is singular in KX by expressing one
column of A¥ as a homogeneous linear combination of the others.

Since rearrangement of rows and columns does not affect the singularity of 4, we

LA A 4
-~ \A44 As A
where (ﬁi) is a column of 4 and A € M, (R)[a7 * &3][B1 * e * B]. First observe
that for every j € {1,...,n},

may suppose that

Aq Ay

Aq Ap € :(P,
ET ET

because if j < m, then it has a repeated row and if j > m then it is a submatrix of A
of greater size than A. By Step 8, this means that

v
As Ay .
ET = | ET Ap, A forj=1,...,n.
(’(As)) [l(m)’ 1 2,051,,31:| orj=1,....n

A
Hence, if we suppose that (Al) = (bxi),
4

\I} — —
A A
ET (Az E{ Al Ar, Az, an, B
v _ _
A A
A2\ _|EI°? _|lET(5'), 4,4
(AS) = 2 (AS = i 2 A4 ’ 1 Zval’ /31_
A _ _
T 2 A
En (As Eg Ai A1, Az, a1, By
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[ET. A1, Az, 01, B1]

[bll,l,l,e,e] e [blm’1117e’e]
i . [E;,Al’AZ’(Xl?,Bl]
[bnlvlvlaeae] e [bHM71717eae] :

[Em. A1, Az, 1. B1]

[EIT’ Al» Az,O{l, 131]

v
:(Al) | [E] Ar, Az, 00, B1] |

Ay

[Em. A1, Az, a1, B1]

where we have used Lemma 5.3 (3) in the second equality. The result follows noting
that (4}) € Muxm(R)[&1 * @][B1] and

1
4

[E]. A1, Az, 01, B1]

[E. A1, Az, 01, B1] | € M1 (K)[Bi]lel. =

[Em. A1, Az, a1, Bi1]
The following is Theorem 4.7, but expressed in terms of gr-prime matrix ideals.

COROLLARY 6.4. Let R = @yer Ry be aI'-graded ring, and let (K;,¢;), 1 = 1,2,
be I'-graded epic R-division rings with singular kernels P;, respectively. The following
statements are equivalent:

(1) There exists a gr-specialization from K, to K».
(2) P1 S P
(3) There exists a homomorphism Rp, — R, of I'-graded R-rings.

Furthermore, if there exists a gr-specialization from K1 to K, and another gr-special-
ization from K to K1, then Ky and K, are isomorphic graded R-rings. u

The following corollaries are the graded versions of the results in [5, p. 442].

CoroLLARY 6.5. Let R = P, cr Ry be a T-graded ring and (K = @, cr Ky, ¢)
be a graded epic R-division ring with singular kernel 5. Suppose that y € I'. Consider
the universal localization A: R — Rgp and let ®: Rp — K be the homomorphism of
I'-graded rings such that ¢ = ®A.
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(1) Let x € K. Then x = 0 if and only if its numerator belongs to P.

(2) Let x € (Rp)y. Then x € ker @ if and only if its numerator belongs to P.

Proor. Suppose that (49 As) is the numerator of x.

(1) By Lemma 3.5 (1), x is invertible if and only if (Ag A.)(p is invertible over K,
that is, if and only if (49 Ae) belongs to P.

(2) By Lemma 3.5 (1), x is invertible if and only if (A4, A.))L is invertible over
Rgp. Since Ry is a local ring with residue class graded division ring R-isomorphic to
K, x is invertible if and only if (A4, A.)CI)/l is invertible over K. That is, x € ker @ if
and only if (49 A.) belongs to L. ]

CoroLLARY 6.6. Let R = D, cr Ry and R' = @, R, be I'-graded rings
with gr-prime matrix ideals P and P’, respectively, with corresponding graded epic
R-division rings (K, ¢) and (K', ¢’) respectively. Let f: R — R’ be a homomorphism
of I'-graded rings. The following assertions hold true:

(1) f extends to a gr-specialization if, and only if, P/ C P’
(2) f extends to a homomorphism K — K’ if. and only if, P¥ € P' and 1 C ¥,

where X = IN(R)\ P and X' = M(R') \ 7.

Proor. (1) First note that the set 2" = {4 € M(R) : A/ € P’} is a gr-prime
matrix ideal whose corresponding graded epic R-division ring is ¢’ f: R — DC(¢’ f).

By Corollary 6.4, there exists a specialization from (K, ¢) to (DC(¢’ 1)) if, and
only if, # C £P".

) If P/ € P and T/ C ¥/, then P = P”, and therefore the gr-specialization
of (1) is in fact an isomorphism by Corollary 6.4. |

7. gr-matrix ideals

In this section, the concepts, arguments and proofs are an adaptation of those in
[5, Section 7.3] to the graded context.

Throughout this section, let " be a group.

Let R = @yer R, be a I'-graded ring. A subset .I of M (R) is a gr-matrix pre-
ideal if the following conditions are satisfied.

(I1) I contains all the homogeneous matrices that are not gr-full.

(I2) If A, B € I and their determinantal sum (with respect to a row or column) exists,
then AVB € I.
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(I3) f A € I,then A ® B € I forall B € M(R).
(I4) If A € I and E, F are permutation matrices of appropriate size, then EAF € I.

If, moreover, we have
(5) forA e M(R),if A1 eI ,thend eI,

we call I a gr-matrix ideal.
Clearly, M (R) is a gr-matrix ideal. A proper gr-matrix ideal is a gr-matrix ideal
different from 90t (R).

LemMAa 7.1. Let R be a T'-graded ring and I be a gr-matrix pre-ideal. Let A, B €
M (R). The following assertions hold true:

(1) If A and B are such that C = AV B exists and B is not gr-full, then A € I if and
onlyif C € I.

(2) Let A € I. The result of adding a suitable right multiple of one column of A
to another column again lies in I. More precisely, if A € M,(R)[&][B] and
ac R'Biﬁj—l, then (Ay ... Aj—1 Aj+Aia Aj4q ... Ay) belongs to I.

B)IfA@Bel, thnBd Ael.
(4) Suppose that A € My, (R)[@][B] and B € M,,(R)[8][&]. For C € Myxm(R)[S][B],

A0 . . A 0
(C B)GI if and only if (0 B)EI.

Similarly, for C € Myxn(R)[B][E],

A C . . A0
(0 B)EI if and only if (0 B)EI.

If, moreover, I is a gr-matrix ideal, then the following assertions hold true:
(5) Suppose that A € M,(R)[&][B], B € M, (R)[B][8). Then AB € I if and only if
A®Bel.

(6) If A and B are such that C = AV B exists and B € I, then A € I if and only if
Cel.

(7) If an identity matrix I,, n > 1, belongs to I, then I = IN(R)

Proor. Note that (I1), (I2), (I3), (I4) are the same as (PM 1), (PM2), (PM3), (PM6).
Hence (1)—(6) follow in exactly the same way as in Lemma 6.2.

To prove (7), note that if I, € I, for some n > 1, an application of (I5) shows that
the 1 x 1 matrix 1 € I. By (I3), any identity matrix /,,, m > 1, belongs to I. Again
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using (I3), I, ® A € I for any positive integer m and matrix A € IN(R). By (5), any
A € M(R) belongs to I, as desired. [

One could think of defining a gr-prime matrix ideal as a gr-matrix ideal I such that

the following two conditions are satisfied:

(I6) I is a proper gr-matrix ideal.

(I7) I satisfies (PM4).

We proceed to show that both definitions are equivalent. Let & be a gr-prime matrix
ideal, i.e. (PM1)—(PM6) preceding Proposition 6.1 are satisfied. Clearly, & satisfies
(I1)-14) and (I7). By (PM5), 1 ¢ &. Therefore, by (PM4),if A ® 1 € £, then A € P
for any A € M(R). Hence (I5) is satisfied. Again by (PM5), & is a proper gr-matrix
ideal. Conversely, suppose that I satisfies (I1)—(I17). Clearly (PM1)-(PM4), (PMO6) are
satisfied. By Lemma 7.1 (7) and (I6), (PM5) is satisfied, as desired.

It is easy to prove that any intersection of gr-matrix (pre-)ideals is again a gr-matrix
(pre-)ideal. Thus, given a subset § € IMM(R), we define the gr-matrix (pre-)ideal
generated by $ as the intersection of gr-matrix (pre-)ideals I that contain §. That is,
(\scz L. Note that this gr-matrix (pre)-ideal is contained in any gr-matrix (pre-)ideal
that contains §.

Now we fix some notation that will be used in what follows.

Let W C 9R(R). We say that a matrix C € I (R) is a determinantal sum of
elements of W if there exist A1,..., A, € W, m > 1, such that A;VA,V---VA4,,
exists for some choice of parenthesis and equals C.

We will write N to denote the subset of Mt (R) consisting of the matrices which
are not gr-full.

We will denote the set of all identity matrices by 3.

If X € M(R), we denote by D (X) the set of all matrices in Nt (R) which are of
the form E(X & A)F, where X € X, A € M(R) and E, F are permutation matrices
of appropriate sizes. We remark that we allow A to be the empty matrix O.

LEmMMAa 7.2. Let R = @yer‘ R, be a I'-graded ring and 4 be a gr-matrix pre-ideal.
Suppose that & C M(R) satisfies the following two conditions:

i 1eX.
() If P,Q € X, then P & Q € %.
Then the following assertions hold true:

(1) The set A/ X :={A € M(R): AD P € A for some P € X} is a gr-matrix ideal
containing A.
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(2) The gr-matrix ideal A/ X is proper if and only if A N X = @.
(3) The gr-matrix ideal A /3 is the gr-matrix ideal generated by A.

Proor. (1) Let A € A. By (I3), A® 1 € A. Since 1 € 3, A € A/X. Hence
A C 4/ X and, by (I1), all non-gr-full matrices belong to +. Therefore 4/ X satisfies
In).

Let A, B € A/ X be such that AV B is well defined. There exist P, Q € X such
that AG P, B Q€A By(I3),A® P H Q and B D Q & P belong to 4. By (14),
BOPPQecANw(AVB) PP QO =(ADPDQ)V(BBP B Q)< Aby
(I2). Hence AVB € A/ X and A/ X satisfies (I12).

Let A € A/ X and B € M(R). There exists P € ¥ such that A & P € #4. By (I3),
A® P ® B e A Now (I4) impliesthat A B D P € A.Hence A® B € A/ X, and
A/ X satisfies (13).

Let A € A/ X and E, F be permutation matrices of the same size as A. There exists
P e Ysuchthat A® P € A.Since E @ I and F & [ are also permutation matrices,
(14) implies that (E ® [)(A® P)(F @ 1) = EAF & P € A.Hence EAF € A/ X
and (I4) is satisfied.

Now let A € M(R) be such that A @ 1 € A/ X. Thus there exists P € X such that
ADP1 D P e A Sincel ® P € X, then A € A/ X and A/ T satisfies (I5).

(2) Supposethat ANX #£@.Let P e ANXZand M € M(R). Then P & M € A
by (I3). By (14), M & P € 4. Hence M € A/ X. Therefore, A/ X = I (R).

Conversely, suppose that A/ X = I (R). Thus 1 € A/ X and there exists P € X
such that 1 @ P € 4. Notice that 1 @ P € X, by (i) and (ii). Therefore A N X # 0.

(3) Clearly 3 satisfies conditions (i) and (ii). Thus /3 is a gr-matrix ideal that
contains # by (1). Now let 8 be a gr-matrix ideal such that A C B.If A € A/3J, then
there exists n > 1 such that A & I, € A C B. By applying (I5) repeatedly, we obtain
that A € B, as desired. [ ]

LEmMMA 7.3. Let R = @yer‘ Ry be a I'-graded ring and let X € M(R). Let
A(X) be the subset of I (R) consisting of all the matrices that can be expressed as a
determinantal sum of elements of N U D(X). The following assertions hold true:

(1) A(X) is the gr-matrix pre-ideal generated by X.

(2) A(X)/3 is the gr-matrix ideal generated by X.

(3) The gr-matrix ideal generated by X is proper if and only if A(X) NI = 0.
Proor. (1) X € A(X) because X = I(X & O)[ forall X € X. By definition

of A(X), every homogeneous matrix that is not gr-full belongs to A (X). By the same
reason, if A, B € A(X) and AV B is defined, then AVB € A(X).



D. E. N. Kawai —J. Sdnchez 74

Let A € A(X) and B € M(R). That A & B € A(X) follows from the follow-
ing three facts: First, for any U, V € M(R), when defined, (UVV)d M = (U &
M)V(V & M). Second, for X € X and U, M € IR(R) and permutation matrices E,
F of suitable size, E(X PU)F M =(E® ) (X ®U & M)(F & I). Third, if U
is not gr-full, then, for all M € M(R), U & M is not full for all M € R (R). Indeed,
ifU = U U, thenU &M = Uy & M)(Us, & 1).

If A € A(X) and E, F are permutation matrices of appropriate size, then EAF €
A(X). This follows from the following facts: First, if A, B € 9¥(R) and E, F are per-
mutation matrices such that E(AV B) F is defined, then E(AVB)F = EAFVEBF.
Second, for X € X, U € 9N (R) and permutation matrices E, F, P, Q of appropriate
sizes then P(E(X @ U)F)Q = (PE)(X & U)(FQ). Third, if U € IMM(R) is not
gr-full, and E, F are permutation matrices of appropriate size, then EUF is not
gr-full. Indeed, if U = U U, then EUF = (EU;)(Uy F).

Therefore, A(X) is a gr-matrix pre-ideal that contains X .

Now let B be a gr-matrix pre-ideal such that X € 8. By (I1), N € 8. By (I13)
and (I4), E(X @ A)F € B forall X € X, A € N (R) and permutation matrices F,
F of appropriate size. By (12), A(X) C B.

(2) Any gr-matrix ideal containing X;, must contain 4(X). By Lemma 7.2 (3), the
result follows.

(3) By (2), the gr-matrix ideal generated by X equals A(X)/3. By Lemma 7.2 (2),
A(X)/3 is proper if and only if A(X) NI = Q. [

CorOLLARY 7.4. Let R = @yer‘ R, be a T graded ring. The set A(N)/3 is the
least gr-matrix ideal. Hence R has proper gr-matrix ideals if and only if no matrix of
3 can be expressed as a determinantal sum of matrices of N.

Proor. The set N is contained in each gr-matrix ideal. By Lemma 7.3 (2),
A(N)/3 is the gr-matrix ideal generated by V. Thus all gr-matrix ideals contain the
gr-matrix ideal A(N)/3J.

Since any matrix in 9}(R) of the form E(X & A)F, where X € N, A € M(R)
and E, F are permutation matrices of appropriate sizes, again belongs to N, then
D(N) = N. Thus A(N) consists of the matrices in 91t (R) that can be expressed as a
determinantal sum of matrices from N .

Now R has proper gr-matrix ideals if and only if A(N)/3 is proper. By Lem-
ma 7.2 (3), this is equivalent to A(N) N I = @. In other words, no matrix of I can be
expressed as a determinantal sum of matrices of N . |
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LemmA 7.5. Let R = P, cr Ry be a I'-graded ring, I be a gr-matrix ideal and
ZCM(R). Thentheset Iz ={AcM(R):A® Z € I forall Z € Z} is a gr-matrix
ideal.

Proor. Let A € N (R) and suppose it is not gr-full. If A = BC,then A & Z =
B Z)CpI)forall Z € Z. Thus A € Iz and (I1) is satisfied.

Let A, B € Iz and suppose that AV B exists. Then (AVB) ® Z =(Ad Z)V(B b
Z)forall Z € Z.Since A® Z,B® Z € I,then (AVB)® Z € I forall Z € Z.
Hence AVB € Iz, and (12) is satisfied.

LetAc Izand B € M(R).Since A Z € I forall Z € Z and T is a gr-matrix
ideal, then A® Z @ Bec Iforal Z e Z. By(I4),AdBd Zc Iforal Z € Z.
Therefore A & B € Iz and (I3) is satisfied.

IfAe Iz, Z € ZandE, F are permutation matrices of appropriate size, then
EAF ®Z =(E®I1)(A® Z)(F & I). This shows that EAF € Iz and (I4) is
satisfied.

Suppose now that A € MM(R) andthat A D 1 € Iz. Hence AD 1 @ Z € I for
all Z e Z. By(I4),A® Z & 1e Iforall Z e Z. Now, by (I5), A ® Z € I for all
Z € Z, which shows that A € Ig. Therefore (I5) is satisfied. ]

Let 41, #A; be two gr-matrix ideals of a I'-graded ring R = @yer R, . The product
of A1 and A, denoted by #; A, is the gr-matrix ideal generated by the set

{A1 B Ay: Ay € AL, Az € Az}.
A helpful description of # 4, is given in the following lemma.
LEmMMA 7.6. Let R = D, cr Ry be T'-graded ring and X1, X2 € IM(R). Set
X ={X1®Xz: X1 € X1, Xz € Xz}.

Let Ay be the gr-matrix ideal generated by X1, A, be the gr-matrix ideal generated
by X5 and A be the gr-matrix ideal generated by X. Then A = A1 As.

As a consequence, for any A, B € M(R), (A)(B) = (A ® B), where (A) denotes
the gr-matrix ideal generated by {A}.

Proor. First, A C A4, because X1 @ X, € A1, forall X; € X1, Xa € X,

Now observe that X; & X, € X C 4 forall X; € X1, X, € X,. By (14), X, &
X1 € X C Aforall X; € X1, X € X,. Hence X5 is contained in the gr-matrix ideal
Ax,. Thus A € Ax,. It implies that A, @ X; € + forall 4, € A, and X; € X;.
Again by (I4), X1 @ A, € A forall A, € A, and X; € X ;. Therefore X is contained
in the gr-matrix ideal #4,. Thus #; C A 4,. This means that A; @ A, € A for all
A1 € A7 and A, € A,. Therefore A1 A2 C A. [ ]
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Now we show that gr-prime matrix ideals behave like graded prime ideals of graded
rings.

Prorosrition 7.7. Let R = @yer Ry be a I'-graded ring. For a proper gr-matrix
ideal P, the following are equivalent:
(1) &P is a gr-prime matrix ideal.
(2) For gr-matrix ideals A1, s, if A1y C P, then Ay C P or A,

C P.
(3) For gr-matrix ideals A, A that contain P, if AyAy, C P, then Ay = P or
Ay = P.

Proor. Suppose (1) holds true. Let 41, 4, be gr-matrix ideals such that A; € P
and A, € P. Hence there exist A; € 41 \ P and A € A, \ . Hence A1 ® A ¢ P
This implies that #A; A, € P. Therefore (2) holds true.

Clearly (2) implies (3).

Suppose (3) holds true and let Ay, A € M(R) be such that A; § A, € P. Let
A1, Ay be the gr-matrix ideals generated by P U {A;} and & U {A,}, respectively.
Notice that X1 @& X, € &P for X; € A1, X» € #4,. Hence A4, C L. By (3), either
A1 = P or A, = P.Hence A1 € & or A, € P, and (1) is satisfied. [ ]

Let 4 be a gr-matrix ideal. The radical of 4 is defined as the set
VA= {A € M(R) : ®" A € A for some positive integer r}.
We say that a proper gr-matrix ideal # is gr-semiprime if /A = A.
LemMA 7.8. Let R = D, cr Ry be a I'-graded ring and let A be a gr-matrix ideal.
The following assertions hold true:
(D) VAisa gr-matrix ideal that contains A.

(2) VA = VA
(3) If 4 is a gr-prime matrix ideal, then /4 = A.

Proor. (1) If A € A, then, for r = 1, we obtain that A = ' A € A. Hence
A C VA In particular, all homogeneous matrices which are not gr-full belong to
JA. Thus +/+ satisfies I1).

Let A, B € ~/# be such that AV B exists. There exist r,s > 1 such that &" A,
@®*B € A.Setn =r + s + 1. To prove that VA satisfies (12), it is enough to show
that &"(AV B) € 4. For that aim, using (AVB) ® P = (A ® P)V(B & P), one can
prove by induction on n that &" (AV B) is a determinantal sum of elements of the form

(7.1) CleC@--- @ Cy,
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where each C; equals A or B. By the choice of n, there are at least r C;’s equal to A
or at least s C;’s equal to B. In either case, there exist permutation matrices E, F of
appropriate size such that

E(@A)®C,, & &C)F,

CLOCD - &C, = , ;
E(@'B)®C.L,,® - ®C))F.

This implies that the elements in (7.1) belong to #4 by (I3). Now (I12) implies that
@"(AVB) € A, as desired.

Now let A € /4 and B € M(R). There exists r > 1 such that &" 4 € 4. The
equality & (A & B) = E((&" A) & (&" B)) F holds for some permutation matrices
E, F.Hence ® (A @® B) € A.Thus A @ B € +/A and /4 satisfies (I3).

Let A € /4 be such that @ A4 € . For permutation matrices E, F of appropriate
size,

@®"(EAF) = (@"E)(@®"A)(@"F) € A.

Therefore EAF € /A and +/A satisfies (I4).

If X € M(R) is such that X d 1 € /A, then there exists 7 > 1 such that
D'(X ®1) €A Butnow (' X)® I, = E(®"(X & 1))F € 4. Applying (I5), we
get that @' X € A, and therefore X € V. Hence +/+4 satisfies 5).

(2) By (1), VA C vV /A. Now let A € v +/A. This means that " A € /A for

some positive integer 7. Hence there exists a positive integer s such that &°(p” A) € A.
Thus &5 A = @°(®" A) € A. Therefore A € /s, as desired.

(3) Suppose s is a gr-prime matrix ideal and let A € /4. Hence @" 4 € 4. By
(PM4), A € A, as desired. n

ProrosiTioN 7.9. Let R = EByer Ry be a T'-graded ring. Suppose that the
nonempty subset ¥ of YN(R) and the gr-matrix ideal A satisfy the following two
conditions:

(i) A®@BeXforall A,B € X.
(i) ANX =40

Then the set W of gr-matrix ideals B such that A C B and B N X = @ has maximal
elements and each such maximal element is a gr-prime matrix ideal.

Proor. Let (€;);er be a nonempty chain in W. Set € = | J;; €;. It is not dif-
ficult to show that € is a gr-matrix ideal. Then clearly A C €; C €Cand € N X =
(Ujer €) N X = ;¢; (€ NXE) = 0. By Zorn’s lemma, W has maximal elements.
Suppose that & is a maximal element of W. Since N X = @, & is a proper gr-matrix
ideal. Let 4, 4, be gr-matrix ideals such that » C A, P S A,. Since & is maximal
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in W, there exist A; € A1 N X, Ay € Ay N X.Then A; @ A € Zand A1 D Ar ¢ P.
Therefore A1 A, # P. n

CoroLLARY 7.10. Let R = @yer Ry be a I'-graded ring. Let A be a proper
gr-matrix ideal. Then there exist maximal gr-matrix ideals P with A C P, and such
maximal gr-matrix ideals are gr-prime matrix ideals. In particular, if there are proper
gr-matrix ideals, then gr-prime matrix ideals exist.

Proor. By Lemma 7.1 (7), no identity matrix belongs to . Now apply Proposi-
tion79to Aand X = 3. ]

ProposiTiON 7.11. Let R be a I'-graded ring. For each proper gr-matrix ideal A,
the radical /A is the intersection of all gr-prime matrix ideals that contain A.

Proor. Let & be a prime matrix ideal such that A C P.If A € VA, then ®" A €
A C P for some positive integer 7. By (PM4), A € #. Thus v/ A C P.

Now let A € M(R) \ +/+. Notice that such an A exists because v/ A € P. If we
apply Proposition 7.9 to 4 and X = {@®" A : r positive integer}, we obtain a gr-prime
matrix ideal J# such that A € P, P N ¥ = @. Therefore A does not belong to the
intersection of the gr-prime matrix ideals that contain +. |

CoroLLARY 7.12. Let R be a I'-graded ring. A proper gr-matrix ideal is gr-
semiprime if and only if it is the intersection of gr-prime matrix ideals. |

Let R = P, r Ry be a I'-graded ring. By Corollary 7.4, A(N)/3 is the least
gr-matrix ideal. We define the gr-matrix nilradical of R as the gr-matrix ideal )t =

JAN)/3.

TueoreM 7.13. Let R = P
are equivalent:

yer Ry be a I'-graded ring. The following assertions

(1) There exists a I'-graded epic R-division ring (K = @yer K, ).

(2) There exists a homomorphism of T'-almost graded rings from R to a T-almost
graded division ring.

(3) The gr-matrix nilradical is a proper gr-matrix ideal.

(4) No identity matrix can be expressed as a determinantal sum of elements of N .

Proor. (1) is equivalent to (2) by Theorem 4.4 (2)(b). One could also argue as
follows. By Proposition 6.1, (2) implies the existence of gr-prime matrix ideals, and
therefore of I'-graded epic R-division rings by Theorem 6.3.
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If (1) holds, the gr-singular kernel of ¢ is a gr-prime matrix ideal by Theorem 6.3.
Thus (3) holds.

If (3) holds, then A(N)/3 is a proper gr-matrix ideal. By Corollary 7.4, (4) holds.

Suppose that (4) holds true. Again by Corollary 7.4, there exist proper gr-matrix
ideals. By Corollary 7.10, a gr-prime matrix ideal exists. Now Theorem 6.3
implies (1). ]

TueorEM 7.14. Let R = D, cr
I'-graded epic R-division ring if and only if the gr-matrix nilradical is a gr-prime

Ry be a I'-graded ring. There exists a universal

matrix ideal.

Proor. By Corollary 6.4, the existence of a universal I'-graded epic R-division
ring is equivalent to the existence of a least gr-prime matrix ideal . Hence the least
gr-matrix ideal A(N)/3 C & is proper. By Proposition 7.11, 9t is the intersection of
all gr-prime matrix ideals. Hence 9t = #.

Conversely, if N is a gr-prime matrix ideal, then A(N)/3 is proper and, by
Proposition 7.11, ¢ is the intersection of all gr-prime matrix ideals. Therefore 9t is
the least gr-prime matrix ideal. |

ProrosiTion 7.15. Let R = @yer Ry be a I'-graded ring and let P, Q € IN(R).
There exists a homomorphism of I'-graded rings ¢: R — K to a I'-graded division
ring K = @, er Ky such that P? is invertible over K and Q¥ is not invertible over

K if and only if no matrix of the form I & (@" P) can be expressed as a determinantal
sum of matrices of N U D({0}).

Proor. The existence of such a (K, ¢) is equivalent to the existence of gr-prime
matrix ideals & such that Q €  and P ¢ . The existence of such gr-prime matrix
ideals is equivalent to the condition P ¢ /(Q), where (Q) denotes the gr-matrix
ideal generated by Q. Hence it is equivalent to the condition that no matrix of the
form &" P € (Q). By Lemma 7.3 (2), (Q) is of the form A({Q})/3. Therefore, by
Lemmas 7.2 and 7.3, everything is equivalent to the condition that no matrix of the
form I & (6" P) can be expressed as a determinantal sum of matrices of N U D({Q}),
as desired. ]

CoroLLARY 7.16. Let R = D, cr Ry be a I'-graded ring and let P, Q € IM(R).
The following assertions hold true:

(1) There exists a I'-graded epic R-division ring (K, ¢) such that P? is invertible
over K if and only if no matrix of the form I & (®" P) can be expressed as a
determinantal sum of matrices of N.
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(2) There exists a I'-graded epic R-division ring (K, ¢) such that Q% is not invertible
over K if and only if no identity matrix can be expressed as a determinantal sum

of matrices of N U D({Q}).

Proor. (1) In Proposition 7.15,let Q = 0.
(2) In Proposition 7.15, let P = 1. ]

Let I be a nonempty set. A filter on [ is a set & of subsets of / which has the
following properties:

(F1) Every subset of [ that contains a set of §§ belongs to .
(F2) Every finite intersection of sets of & belongs to .
(F3) The empty set is not in .

For details on filters and ultrafilters we refer the reader to [2]. The set of filters on / is
partially ordered by inclusion. An ultrafilter on I is a maximal filter. By [2, Theorem 1,
p. 60], each filter is contained in an ultrafilter. An ultrafilter U on 7 has the following
property: if J, K are subsets of / such that J U K = [, then either / € Uor K € U.

Let / be a set and U be an ultrafilter on /. For each i € I, let R; = ;s Riy
be a I'-graded ring. Following [10], we define the graded ultraproduct of the family
{Ri}ier as follows. Consider the ring P = [[;<; R; and consider the following subset

S of P:
s=p (]_[ R,-y).
yell Miel

Note that S is a subring of P which is I'-graded with S, = [[;c; Riy.Foreachy € T,
if x = (xiy)ier € Sy,letz(x) ={i € I:x;, =0}. Theset Z, = {x € S,:z(x) € U}
is an additive subgroup of S,,. Moreover, if y € S5 and x € Z,, then yx € Zs, and
xy € Zys. Therefore Z = @yer Z, is a graded ideal of S. Then the I'-graded ring
U = S/Z is called the graded ultraproduct of the family of I'-graded rings {R; }iey.

A homogeneous element x € U, is the class of an element (x;);e; € Sy, where
each x; € R;,. We will write x = [(x;);jer]u. Observe that if x = [(x;);er]u and
v = [(7i)ier]u, then x = y if and only if the set {i € I:x; = y;} € U.

Let R be a I'-graded ring. Suppose that (R;, ¢;) is a ['-graded R-ring for each
i € I.Hence ¢;: R — R; is a homomorphism of I'-graded rings. Then there exists a
unique homomorphism of rings ¢’: R — [[;; R such that ;9" = ¢; foreachi € I.
Observe that Im ¢’ C S. Composing with the natural homomorphism S — S/Z = U,
we obtain a homomorphism of I'-graded rings ¢: R — U. Hence U is a I'-graded
R-ring in a natural way.
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LemMMA 7.17. Let I be a nonempty set and U be an ultrafilter on 1. If R; is a
I'-graded division ring for each i € I, then the ultraproduct U of the family {R; }ic1
is a I'-graded division ring.

Proor. Let x € U,. Then x = [(x;);er]u for some x; € R;,. If x is nonzero, then
J={iel:x; #0} € U.Foreachi € I, define

. [ Xt ified,
X =
0 ifi¢lJ.

Notice that x;" € R;,—1 for eachi € /. Then x" = [(x';)ies]u € Uy—1 and xx’ =
x'x = 1, as desired. n

Lemma 7.18. Let R be a I'-graded domain. Suppose that, for each a € h(R) \ {0},
there exists a homomorphism of I'-graded rings ¢,: R — K, where K, is a I'-graded
division ring such that ¢, (a) # 0. Then there exists a I"-graded epic R-division ring
of fractions.

Proor. Let I = h(R) \ {0}. Foreacha € I,let I, = {A € I:¢,(a) # 0}. Let
E ={ai,...,an} be afinite subset of 7. Then (/_,; 14, # @, because @, ...q,, (ai) # 0
foreachi = 1,...,n. Hence the set B = {I,:a € I} is a set of subsets of I such that
no finite subset of ‘B has empty intersection. By [2, Proposition 1, p. 58], there exists a
filter on / containing ®B. By [2, Theorem 1, p. 60], there exists an ultrafilter U on /
containing ‘8. By Lemma 7.17, the ultraproduct U of the family { K, },ey is a '-graded
division ring and there exists a homomorphism of I'-graded rings ¢: R — U, defined
by ¢(x) = [(¢a(x))aer]u. Since the set I, € U, then ¢(x) # 0 for each x € h(R) \ {0}.
Therefore ¢ is injective. |

THEOREM 7.19. Let R = P
are equivalent:

yer Ry be a I'-graded ring. The following assertions

(1) There exists a I'-graded epic R-division ring of fractions (K, ).

(2) There exists a homomorphism of T'-almost graded rings ¢: R — K with K a
I"-almost graded division ring such that ¢(x) # 0 for each x € h(R) \ {0}.

(3) R is a I'-graded domain and no matrix of the form al with a € h(R) \ {0} can be
expressed as a determinantal sum of matrices of N.

(4) No diagonal matrix with nonzero homogeneous elements on the main diagonal
can be expressed as a determinantal sum of matrices of N.
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Proor. (1) and (2) are equivalent by Theorem 4.4 (b).

Suppose that (1) holds true. Then, for each diagonal matrix A as in (4), A? is
invertible. Thus A ¢ P, the gr-prime matrix ideal given as the gr-singular kernel of ¢.
In particular, A cannot be expressed as the determinantal sum of matrices in N . Thus
(4) holds.

Suppose (4) holds. Clearly no matrix of the form a/ with @ € h(R) \ {0} can be
expressed as a determinantal sum of matrices of N. Thus, to prove (3), it remains
to show that R is a I"-graded domain. Thus let @, b € h(R) of degrees y,6 € T,
respectively. If ab = 0, then (& 0) € M>(R)[(y. e)][(e.§~")]. Then we can express

o) =(0)(2 )

as a determinantal sum of matrices in M>(R)[(y, e)][(e. §")]. Note that ( %, 9) is
hollow, and hence it is not gr-full. Furthermore,

(3)-C)en

where the factors belong to Max1(R)[(y,e)][e] and M;x2(R)[e][(e,8~1)], respectively.
Hence (g 2) can be expressed as a determinantal sum of matrices from V. By (4),
eithera = 0 or b = 0. Hence R is a I'-graded domain and (3) holds.

Suppose now that (3) holds. If there does not exist a I'-graded epic R-division
ring of fractions, then, by Lemma 7.18, there exists a nonzero a € h(R) such that
a? is not invertible for every homomorphism of I"-graded rings ¢: R — K with K
a I'-graded division ring. Hence the 1 x 1 homogeneous matrix (a) belongs to the
intersection of all gr-prime matrix ideals, i.e. (a) € Jt. Hence & (a) € A(N)/3. Thus
Is & (®"(a)) = I & al, can be written as a determinantal sum of matrices of M.
Then, since al; & I, € M(R) and it is diagonal, al,+s = (als & I,)(Is D al,)isa
determinantal sum of matrices of N, a contradiction. Therefore (1) holds. [ ]

8. gr-prime spectrum

Throughout this section, let T be a group and Q C Q' be normal subgroups of T.

Let R = @yer R, be a I'-graded ring. It can be considered as a I'/ Q2-graded
ring too. Now we introduce some notation in order to clarify which structure of a
graded object is being considered. We will denote by I (R) and by IMT/2(R) the
corresponding sets of homogeneous matrices. Notice that IMT (R) € MI/2(R). We
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denote by Specr(R) the set of all I'-gr-prime matrix ideals and by Specr/ g (R) the
set of all I'/ Q-gr-prime matrix ideals. If Q = I', we will write Spec(R) instead of
Specr, 1 (R). Note that Spec(R) is the usual set of prime matrix ideals.

It follows directly from the definition that if & is a I'/ Q-gr-prime matrix ideal,
then # N ML (R) is a [-gr-prime matrix ideal. Hence there exists a map

Specp/o(R) — Specp(R), P > P N M (R).

Considering R as a I'/ Q2-graded ring and Q’/ Q2 as a normal subgroup of I'/ €2,
we obtain maps Specr, o/ (R) — Specp,q(R). Hence if Specr/ o (R) is empty, then
Specr, o/ (R) is also empty. In other words, if there does not exist a I'/ 2-graded
epic R-division ring, then there does not exist a I'/ ’-graded epic R-division ring. In
particular, for Q" = I" we obtain maps Spec(R) — Specr/q(R), @ = QN MI/L(R),
for each normal subgroup €2 of I'. Therefore, if there exists a normal subgroup €2 of I"
such that there does not exist a I'/ Q-graded epic R-division ring, then there does not
exist an epic R-division ring.

Let @' € Specr/q/(R) andlet @ = Q' N IMMT/(R) be the corresponding element
in Specr/q(R). Let (Kg’, pg’) be the I/ '-graded epic R-division ring determined
by @', and let (Kg, ¢g) be the T'/ Q-graded epic R-division ring determined by @.
Let x be a homogeneous element of R considered as a I'/ 2-graded ring. Notice it is
also a homogeneous element of R considered as a I'/ Q'-graded ring. If x ¢ ker ¢q’,
then x € M/ (R)\ @’ Thus x € MI/L(R) \ @, and therefore x ¢ ker gg. Hence
if pg’ is injective, then g is also injective. In other words, if (Kq/, pg/) isa '/ Q'-
graded epic R-division ring of fractions, then (Kq, ¢o) is also a I'/ 2-graded epic
R-division ring of fractions. Therefore, if there exists a normal subgroup €2 of I" such
that there does not exist a I'/ Q2-graded epic R-division ring of fractions, then there
does not exist an epic R-division ring of fractions.

Let P’ € Specp o/ (R) and set P = £’ NMI/E(R) € Specp/ o (R). If P € @',
then & € @. Hence a specialization from (Kg/, ¢p/) to (Ka’, ¢o’) implies the
existence of a specialization from (K», @) to (Kg, ¢g) by Corollary 6.4. Notice that
it could happen that @ = &.

Also, if the map Specr; g/ (R) — Specr, o (R) is surjective and R has a universal
'/ Q'-graded epic R-division ring (of fractions), then R has a universal I'/ Q-graded
epic R-division ring (of fractions).

Suppose that for each I'-graded epic R-division ring D there exist ring homo-
morphisms to division rings. Then Specy, o (R) — Specr(R) is surjective for each
Q < T. Let (D, ) be a I'-graded epic R-division ring with I'-singular kernel &.
Let ¢: D — E be a ring homomorphism with £ a division ring. Consider the com-
position ¢ o p: R — E. It is a homomorphism of '/ Q2-almost graded rings with E
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a I'/ Q-almost graded division ring. By Theorem 4.4 (2)(b), there exist y: R — D’
a I'/ Q-graded epic R-division ring, and a homomorphism p: D’ — E such that
¢¢ = pyr. By Proposition 2.5,

{4 € MI(R) : A®9 is invertible over E}
= {4 e MF(R) : A? is invertible over D},
{4 € M(R) : Ais invertible over D'}
= {4 e M2 (R) : A®Y) is invertible over E}.
Now, since MT (R) € MI/L(R), we get that
{4 € MY (R) : A® inverts over D}
= {4 € M2 (R) : Ainverts over D'} N ML (R).

Hence, if £’ is the I'/ Q-singular kernel of (D', ¥), then # = £’ N I (R).
We gather together what we have just proved in the following result.

THEOREM 8.1. Let R = @yer Ry be a T'-graded ring. The following assertions
hold true:

(1) Ifthere does not exist a I' / Q-graded epic R-division ring (of fractions), then there
does not exist a I'/ Q'-graded epic R-division ring (of fractions). Therefore, if
there exists a normal subgroup Q of T such that there does not exist a I' / Q-graded
epic R-division ring (of fractions), then there does not exist an epic R-division
ring (of fractions).

(2) Let (Kpr, @), (Ka’,0q') be T/ Q'-epic R-division rings, such that there exists a
specialization from (K g/, pp1) to (K@, ¢@q’). Then there exists a gr-specialization
between the corresponding I/ Q-graded epic R-division rings.

(3) If the map Specr;q/(R) — Specr/q(R), @ — @' N IMMI/L(R), is surjective,
then the existence of a universal T'/Q'-graded epic R-division ring implies
the existence of a universal T'/ Q-graded epic R-division ring. Therefore, if
Spec(R) — Specr;q(R), @' — @' N IMMT/R(R), is surjective, the existence of a
universal R-division ring implies the existence of a universal I' | Q-graded epic
R-division ring.

(4) If for each T'-graded epic R-division ring there exist ring homomorphisms to
division rings, then Specr;q(R) — Specp(R), @ — @ N ML (R) is surjective.

]

Let R = @yer R, be a I'-graded ring. In the foregoing, we gave a correspond-
ence from the set of I'/Q-graded epic R-division rings to the set of I'-graded
epic R-division rings. We proceed to give a more down-to-earth description of
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such correspondence. Recall that R can be regarded as a I'/ Q2-graded ring making
R = @Dyer/q Ra> where Ry = D, ¢, Ry foreacha € I'/ Q.

Let E = P, er /o Ea bea I'/ Q-graded division ring. Consider the group ring
E['] = @, cr Ey. We construct a I'-graded division ring D = P, cr Dy which is
a ['-graded subring of E[I'] in the same way as in [18, Proposition 1.2.2]. For each
y € I, there exists a unique o« € I'/Q such that y € a. Set D, = E,y € Ey. Note
that

DyDy = EqyEyy = EqExyy' C Eqaryy’ = Dyy.

Hence D is a I'-graded ring. Since E is a I'/ Q-graded division ring, any nonzero
homogeneous element of D is invertible. Thus D is a I'-graded division ring.

Suppose that (E, ¢) isa '/ Q-graded epic R-divisionring. Lety € ' and o € T/ Q2
be such that y € a. Foreacha, € Ry, ¢(ay) € Ey. Then define ¥ (a,) = p(a, )y € D,.
In this way, we obtain a homomorphism of I'-graded rings ¥v: R — D.

Let A = (a;j) € M, (R)[8][&]. We claim that A? is invertible in E if and only
if AV is invertible in D. Indeed, let o;, B; € I'/Q be such that §; € o;, &; € B;.
Then AY = (b;;) with b;; € Eaiﬂj—l and (4%)7! = (c;;) with ¢;; € Eﬂiaj—l. Then
AV = (bijo; ;") is invertible in D with inverse (A¥)~! = (c;;pia; ). Conversely,
if AV is invertible with inverse (AY)™" = (dijpia; '), where d;; € Eﬂ,»a;“ then
(4%)~! = (d;j). Hence let P € Specr,q(R). If (E, ) is the F/Q—graded epic R-
division ring associated to &, then the I"-graded epic R-division ring associated to
P N IMT(R) is determined by the I'-graded division ring ¥: R — D, that is, the
I'-graded epic R-division ring ¥: R — D’, where D’ is the graded division ring
generated by Im .

Now we proceed to give an important family of examples of Theorem 8.1 (4).

Let (', <) be an ordered group. Let D = @yer D, be a I'-graded division ring.
Givenamap f:I' — D, letsupp f ={y € I' : f(y) # 0}. We will write f as a
series. Thus f = Zyel" a, means that f(y) = a, € D foreach y € I'. Consider the
set

D((T; <)) = {f = Zyel" ay:a, € Dyforall y € I, supp f is well ordered},

where D((I"; <)) is an abelian group under the natural sum. That is, for f = Zyel" ay,
= Zyel" a;,, then
[+ =) (ay+d).

yel
One can then define the product in D((T"; <)) as

177 = 3 (X anat)

yel' “de=y
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These operations endow D ((I"; <)) with a ring structure. We regard D as a subring
of D((T'"; <)) identifying D with the series of D((I"; <)) of finite support. Mal’cev
and Neumann independently showed that D((I"; <)) is in fact a division ring [17,
19]. Hence we have just seen that for every I'-graded division ring there exists a
homomorphism of rings to a division ring.

Now we proceed to show that every D((I'; <)) contains a I'/ Q2-graded division
ring and that it corresponds to D via Specr, o (R) — Specp(R). Let 2 be a normal
subgroup of I'. Consider D as a I'/ Q-graded ring. For each a € I'/ 2, define the
subset of D((T"; <)),

Eo ={f =) ,cray € D(T':<)) :supp [ C a}.

Note that E, is an additive subgroup of D((I'; <)). Let o, 8 € I'/ Q2. Suppose that
f= Zyel‘ay € Egand f' = Zyer‘ a;, € Eg. Then

ff = Z( > a,ga;) € Eqp.

yel' “fe=y

Hence Eq Eg € Eqp. Moreover, if « € I'/Q,

Eaﬂ( > Eﬂ) = {0},

Ber/Q
B#a
because I' is the disjoint union I' = {Jger/q B- Hence E(Q) = Dyer/q Eo is a
I'/ Q-graded ring. Furthermore, let /' = .ray € Eq, f # 0. Then f is invertible
in D((T"; <)) with inverse

f—l — (Z(_l)ngn)a;ol’

n>0

where Yo = minsupp f and g = ZyEF ayolay. Since suppy C «, Yo € @ and )/0_1 €
a~!, then supp g C E,, where e denotes the identity element in I'/ Q. Hence supp g" €
E, for each integer n > 0 and supp(}_,,-(—1)"g") € E,. Thus supp f~! C o~
Therefore E(R2) is a I'/ 2-graded division ring and the embedding ¢q: D — E(R2)
is a homomorphism of I'/ Q2-graded rings. Let D(2) be the I'/ Q2 graded division
subring of E(2) generated by D. Then (D(2), ¢po: D — D(R2)) is a I'/ Q-graded
epic D-division ring.

Let R = @, cr Ry be a I'-graded ring, where (I, <) is an ordered group. Let
P € Specr(R) with corresponding epic R-division ring (K, ¢). Consider K((I', <)).
Then, for each 2 <1 ', we get that Specr, o (R) — Spec (R) is surjective. Indeed, if
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@ € Specy;q(R) is the corresponding I'/ 2-graded prime matrix ideal to the T'/ Q-
graded epic R-division ring (K(2), ¢q¢), then @ — & by Proposition 2.5.

We would like to remark that D(T"), the division subring of D((I"; <)) generated
by D, does not depend on the order < of I" by [9] or [6]. Hence, since D(£2) is just
DC(¢g), then D(2) does not depend on the order < of I'.

We end this section with a concrete application of the results in this section. Let K
be a field, X be a nonempty set and K (X ) be the free K-algebra on X . It is well known
that K (X ) has a universal division ring of fractions [5, Section 7.5]. Now let I" be a
group and X — ', x > £, be amap. Then K(X) = P, cr K(X), is a I'-graded ring,
where K (X), is the K-vector space spanned by the monomials x;x; ... x, such that
X1Xp - X, = y. If (I, <) is an ordered group, then K{X) has a I'-graded universal
division ring of fractions by the foregoing example and Theorem 8.1 (3),(4).
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