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Schatten class composition operators on the Hardy space
of Dirichlet series and a comparison-type principle

Frédéric Bayart and Athanasios Kouroupis

Abstract. We give necessary and sufficient conditions for a composition operator
with Dirichlet series symbol to belong to the Schatten classes Sp of the Hardy
space H2 of Dirichlet series. For p � 2, these conditions lead to a characteriza-
tion for the subclass of symbols with bounded imaginary parts. Finally, we establish
a comparison-type principle for composition operators. Applying our techniques in
conjunction with classical geometric function theory methods, we prove the analogue
of the polygonal compactness theorem for H2 and we give examples of bounded
composition operators with Dirichlet series symbols on Hp , p > 0.

1. Introduction

The Hardy space H2 of Dirichlet series, which was first systematically studied in 1997 by
H. Hedenmalm, P. Lindqvist, and K. Seip [13], is defined as
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Gordon and Hedenmalm [12] determined the class G of symbols which generate
bounded composition operators on the Hardy space H2. The Gordon–Hedenmalm class G
consists of all functions  .s/ D c0 s C '.s/, where c0 is a nonnegative integer, called the
characteristic of  , and ' is a Dirichlet series such that

(i) if c0 D 0, then '.C0/ � C1=2,
(ii) if c0 � 1, then '.C0/ � C0 or ' � i� for some � 2R.

We denote by C� , � 2R, the half-plane ¹s W Re s > �º. We will also use the notation G0

and G�1 for the subclasses of symbols that satisfy (i) and (ii), respectively.
In this paper, we are mostly interested in the case  D ' 2G0: In that context, the

compact operators C' WH2 ! H2 were characterized only very recently in [9], in terms
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of the behavior of the mean counting function

M'.w/ D lim
�!0C

lim
T!1

�

T

X
s2'�1.¹wº/
j Im sj<T
�<Re s<1

Re s; w 2C1=2 n ¹'.C1/º:

It turns out that C' is compact if and only if

(1.1) lim
Rew!1=2C

M'.w/

Rew � 1=2
D 0:

The next step would be to characterize symbols ' 2G0 such that C' belongs to the
Schatten class Sp , p > 0. In the disk setting, D. H. Luecking and K. Zhu [17] proved that
a composition operator C� on the Hardy space H 2.D/ belongs to the Schatten class Sp ,
p > 0, if and only if

(1.2)
Z

D

.N�.z//
p=2

.1 � jzj2/p=2C2
dA.z/ < C1;

where for z D x C iy, dA.z/ D dxdy is the area measure, � is a holomorphic self-map
of the unit disk, and N� is the associated Nevanlinna counting function [24].

Our first main result is that the analogue characterization holds in the Dirichlet series
setting provided the symbol has bounded imaginary part.

Theorem 1.1. Suppose that the symbol ' 2G0 has bounded imaginary part and that
p� 1. Then, the composition operatorC' belongs to the class S2p if and only if ' satisfies
the condition

(1.3)
Z

C1=2

.M'.w//
p

.Rew � 1=2/pC2
dA.w/ < C1:

For p > 0, the above condition remains necessary, and if p � 2, then it is necessary for
all symbols in G0.

When p D 1, namely if we want to know if C' is Hilbert–Schmidt, things are easier,
and Hilbert–Schmidt composition operators with symbols ' in G0 have already been char-
acterized in [9]. This is equivalent to saying thatZ

C1=2

�00.2Re.w//M'.w/ dA.w/ < C1:

We generalize this characterization for C' 2S2m, m 2 N:

Theorem 1.2. Let ' 2G0 and m 2 N: Then C' belongs to S2m if and only if
(1.4)Z

C1=2

� � �

Z
C1=2

�00.w1Cw2/ � � � �
00.wm�1Cwm/ �

00.wmCw1/

mY
kD1

M'.wk/ dA.wk/ <1:

Our next result is a comparison-type principle. Using the Lindelöf principle for Green’s
functions, we will be able to establish geometric conditions on the symbols that imply
that the associated composition operator is compact or belongs to Sp . To our knowledge,
this is the first example of a technique that gives geometric conditions that apply to all sym-
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bols ' 2G0. To exemplify this, we focus on symbols whose range is contained in angu-
lar sectors.

Theorem 1.3. Let '2G0 and assume that '.C0/� ¹s 2C1=2 W jarg.s/� 1=2j<�=.2˛/º
for some ˛ > 1: Then C' is compact. If we further assume that ˛ � 2, then C' 2S2p for
any p > 1=.˛ � 1/.

We can strengthen the previous result proving that if the range of the symbol meets the
boundary inside a finite union of angular sectors, then the induced composition operator
is compact.

This geometric method also applies to continuity and compactness of composition
operators acting on the other Hardy spaces of Dirichlet series Hp , p ¤ 2: Recall that
for 0 < p <1, the Hardy space Hp of Dirichlet series is defined as the completion of
Dirichlet polynomials under the Besicovitch norm (or quasi-norm if 0 < p < 1)

kP kHp WD

�
lim
T!1

1

2T

Z T

�T

jP.it/jp dt
�1=p

:

The characterization of bounded composition operators with Dirichlet series symbols
on Hp , p … 2N, is an open and challenging question. The condition ' 2G0 is necessary
but not sufficient [21], and there is no known sufficient conditions which may be applied
to a large class of symbols whose range touches the boundary of C0: We provide such a
sufficient condition under the assumption that the range of the symbol is contained in an
angular sector.

Theorem 1.4. Let k 2 N and p 2 .0; 2k�. If the symbol ' 2G0 maps the right half-plane
into an angular sector of the form � D ¹s 2 C1=2 W j arg.s � 1=2/j < p�=.4k/º, then C'
is bounded on Hp . Furthermore, if max.1; p/ < q � 2k, then the composition operator
is compact on Hq .

In the last section, we briefly discuss the case of Bergman spaces of Dirichlet series as
well as some results on Carleson measures.

Notation. Throughout the article, we will be using the convention that C denotes a pos-
itive constant which may vary from line to line. We will write that C D C.x/ to indicate
that the constant depends on a parameter x. If f and g are two real functions defined
on the same set �, we will write f � g if there exists C > 0 such that for all x 2 �,
f .x/ � Cg.x/, and f � g if f�g and g�f .

2. Background material

2.1. Schatten classes

A compact operator T acting on a separable Hilbert space H can be written as

(2.1) T .x/ D
X
n�1

snhx; eni hn; x 2H;

where ¹snºn�1 is the sequence of singular values and ¹enºn�1 and ¹hnºn�1 are orthonor-
mal sequences. In case T is self-adjoint, then en D ˙hn for all n � 1.
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For p > 0, the Sp Schatten class of compact operators T on H is defined as

Sp D Sp.H/ D
°
T 2 K.H/ W kT k

p
Sp
WD

X
n�1

spn <1
±
:

Equivalently (see [14]), for p � 1, a bounded linear operator T 2 L.H/ belongs to Sp if
and only if there exists a positive constant C such thatX

n

jhTen; enij
p
� C

for every orthonormal basis ¹enº. Furthermore, if T is self-adjoint,

kT k
p
Sp
D sup

X
n

jhTen; enij
p

the supremum being taken over all orthonormal basis of H:
For a compact and positive operator T on H , we define the power T p , p > 0, as

T p.x/ D
X
n�1

spn hx; eni en; x 2H:

When p D n 2 N, the operator T n is the n-th iteration of T . We observe that T 2 Sp if
and only if T p 2 S1. If T is not assumed to be positive, we can still use that T 2 Sp if and
only if jT jp D .T �T /p=2 2 S1, if and only if T �T 2 Sp=2.

For a unit vector x2H and a positive operator T , applying Hölder’s inequality in (2.1)
we obtain the following inequality:

(2.2) hT p.x/; xi � .hT .x/; xi/p; p � 1:

For 0 < p � 1, the inequality is reversed.

2.2. The infinite polytorus and vertical limits

The infinite polytorus T1 is defined as the (countable) infinite Cartesian product of copies
of the unit circle T ,

T1 D ¹� D .�1; �2; : : : / W �j 2 T ; j � 1º:

It is a compact abelian group with respect to coordinatewise multiplication. We can iden-
tify the Haar measure m1 of the infinite polytorus with the countable infinite product
measure m �m � � � � , where m is the normalized Lebesgue measure of the unit circle.

The polytorus T1 is isomorphic to the group of characters of .QC; �/. Given a point
� D .�1; �2; : : : / 2 T1, the corresponding character �WQC ! T is the completely
multiplicative function on N such that �.pj / D �j , where ¹pj ºj�1 is the increasing se-
quence of primes, extended to QC through the relation �.n�1/ D �.n/.

Suppose f .s/ D
P
n�1 an=n

s is a Dirichlet series and � is a character. The vertical
limit function f� is defined as

f�.s/ D
X
n�1

an�.n/

ns
�
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By Kronecker’s theorem [6], for any " > 0, there exists a sequence of real numbers ¹tj ºj�1
such that f .s C i tj /! f�.s/ uniformly on C�u.f /C", where �u.f / denotes the abscissa
of uniform convergence of f:

If f 2 H2, then for almost every character � 2 T1, the vertical limit function f�
converges in the right half-plane and has boundary values f�.i t/ D lim�!0C f�.� C i t/

for almost every t 2R, see [2]. For  .s/ D c0 s C '.s/ 2 G , we set

 �.s/ D c0 s C '�.s/:

Then for every �2T1, we have that

(2.3) .C .f //� D f�c0 ı  �:

The symbol  has boundary values  �.i t/ D lim�!0C  �.� C i t/ for almost every
�2T1 and for almost every t 2R.

2.3. Composition operators on H 2

O. F. Brevig and K–M. Perfekt (see Theorem 1.3 in [9]) proved the following analogue of
Stanton’s formula for the Hardy spaces of Dirichlet series:

(2.4) kC'.f /k
2
H2 D jf .'.C1//j

2
C
2

�

Z
C1=2

jf 0.w/j2M'.w/ dA.w/;

where ' 2G0 and f 2 H2. By f .C1/ we denote the first coefficient a1 of the Dirichlet
series f .s/ D

P
n�1 an=n

s . We apply the polarization identity in (2.4) yielding to

(2.5) hC'.f /;C'.g/i D f .'.C1//g.'.C1//C
2

�

Z
C1=2

f 0.w/g0.w/M'.w/dA.w/:

We will make use of two properties of the counting functionM'.w/ proved in [9], the
submean value property and a Littlewood-type inequality. Those respectively are

(2.6) M'.w/ �
1

jD.w; r/j

Z
D.w;r/

M'.z/ dA.z/;

for every disk D.w; r/ � C1=2 that does not contain '.C1/, and

(2.7) M'.w/ � log
ˇ̌̌'.C1/C w � 1
'.C1/ � w

ˇ̌̌
; w 2 C1=2 n ¹'.C1/º:

In Subsection 4, we will prove a weaker version of the Littlewood inequality (2.7) but
sufficient for our purpose. The standard technique to prove such inequalities goes through
regularity results for conformal maps [9, 15]. We shall use the following consequence
of (2.7) (see Lemma 2.3 in [9]): for �1 > Re.'.C1//, there exists C > 0 such that, for
all w 2 C�1 ,

(2.8) M'.w/ � C
Re.w/ � 1=2
.1C j Im.w/j/2

�
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2.4. Carleson measures

Let H be a Hilbert space of holomorphic functions on a domain �. A Borel measure �
in � is called a Carleson measure for H if there exists a constant C > 0 such that, for all
f 2 H , Z

�

jf .w/j2 d�.w/ � Ckf k2H :

We will denote by C.�; H/, or simply by C.�/, the infimum of such constants. For
instance, Carleson measures on the Hardy space H 2.C1=2/, that consist of holomorphic
function f in C1=2 equipped with norm

kf k2
H2.C1=2/

WD sup
�>1=2

Z
R
jf .� C i t/j2 dt <1;

are characterized as follows.

Theorem 2.1 ([10]). A Borel measure � on C1=2 is a Carleson measure for H 2.C1=2/ if
and only if there exists a constant D > 0 such that for every square Q with one side I on
the line ¹Re s D 1=2º,

(2.9) �.Q/ � DjI j:

Moreover, there exist two absolute constants a; b > 0 such that, for all Borel measures �
on C1=2, denoting byD.�/ the infimum of the constantsD satisfying (2.9), then aD.�/�
C.�/ � bD.�/.

2.5. Weighted Hilbert spaces of Dirichlet series

Our main strategy (inspired by [17]) to obtain the membership of C' to S2p is to derive it
from the membership to Sp of an associated Toeplitz operator defined on another space of
Dirichlet series. We now introduce this class of spaces. For a � 1, we define the weighted
Hilbert space Da of Dirichlet series as

Da D

°
f .s/ D

X
n�1

an

ns
W kf k2a D ja1j

2
C

X
n�2

janj
2 .logn/a <1

±
:

The reproducing kernel kw;�a, a� 0, of .D�a/0 (space mod constants) at a pointw2C1=2
is given by

(2.10) kw;�a.s/ D
X
n>1

.logn/a

nsCw
D

�.1C a/

.w C s � 1/1Ca
CEa.s C w/; s2 C1=2;

where Ea.�/ is a holomorphic function on C0, see Lemma 5.1 in [15]. Observe that

(2.11) kkw;�ak
2
�a D kw;�a.w/ �Re.w/!1=2

1

.Re.w/ � 1=2/aC1
�

For a D �2, we have kw;�a.s/ D �00.s C w/ and �00.w/ �Re.w/!1=2 .Re.w/ � 1=2/�3:
Recall also that for any orthonormal basis ¹fnº of .D�a/0, for any w2 C1=2,

(2.12)
X
n

jfn.w/j
2
D kw;�a.w/:
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The local embedding theorem, [13], states that there exists an absolute constant C > 0

such that for every f 2 H2,

(2.13)
1

2T

Z T

�T

ˇ̌̌
f
�1
2
C i t

�ˇ̌̌2
dt � Ckf k2

H2 ; T > 0:

A direct application of (2.13) is that for every f .s/ D
P
n�2 an=n

s 2 .D�a/0, a > 0,
we have the following embedding:

1

2T

Z T

�T

Z 1
1=2

jf .�C i t/j2
�
��

1

2

�a�1
d�dt � C

X
n�2

janj
2

Z 1
1=2

n1�2�
�
��

1

2

�a�1
d�dt

� C
�.a/

2a

X
n�2

janj
2 .logn/�a � C

�.a/

2a
kf k2�a;(2.14)

where C is the constant appearing in (2.13). In particular, if B is a subset of C1=2 with
bounded imaginary part, then 1B.Re.�/ � 1=2/a�1dA is a Carleson measure for .D�a/0:
More generally, if �W Œ0;C1/ ! Œ0;C1/ is integrable, bounded and decreasing then
�.j Im.�/j/.Re.�/ � 1=2//a�1dA is a Carleson measure for .D�a/0:

The differentiation operator D.f / D f 0 is an isometry between H2
0 and .D�2/0.

By (2.5), the composition operator C' belongs to S2p.H2/, p > 0, if and only if the
operator .D ı C' ıD�1/�D ı C' ıD�1 exists in Sp..D�2/0/ if and only if the operator
T' W .D�2/0 ! .D�2/0 defined as

(2.15) hT'.f /; gi D

Z
C1=2

f .w/ g.w/M'.w/ dA.w/

belongs to Sp..D�2/0/.

3. Composition operators belonging to Schatten classes

3.1. Schatten class and Carleson measures

We shall divide the proof of Theorem 1.1 into several parts. We first handle the case
p � 1 in a more general context by giving a necessary and a sufficient condition for C' to
belong to S2p . Both conditions involve M' and Carleson measures. At this stage, we do
not assume anything on the imaginary part of ':

Theorem 3.1. Let p � 1 and ' 2G0.

(a) Assume that C' 2S2p and let � be a Carleson measure for .D�2/0: ThenZ
C1=2

.M'.w//
p �00.2Re.w//

.Re.w/ � 1=2/p
d�.w/ < C1:

(b) Assume that there exists � W'.C0/! .0;C1/ such that �dA is a Carleson measure
for .D�2/0 and that

(3.1)
Z
'.C0/

.M'.w//
p �00.2Re.w//

�.w/p�1
dA.w/ < C1:

Then C' 2S2p:
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Proof. We start by proving (a). Denote by I� the inclusion operator from .D�2/0 into
L2.C1=2; �/, which is bounded since � is Carleson. Moreover, assuming C' 2 S2p or,
equivalently, T' 2Sp , we get by the ideal property of Schatten classes that I� ı T

p=2
' 2 S2:

Let ¹fnº be any orthonormal sequence of .D�2/0: One can write

1 > kI� ı T
p=2
' k

2
S2
D

X
n�1

kT p=2' .fn/k
2
L2.�/

D

X
n�1

Z
C1=2

jhT p=2' .fn/; kw;�2ij
2 d�.w/

D

Z
C1=2

kT p=2' .kw;�2/k
2
.D�2/0

d�.w/ D

Z
C1=2

hT p' .kw;�2/; kw;�2i d�.w/

�

Z
C1=2

.hT'.Kw;�2/;Kw;�2i/
p
kkw;�2k

2 d�.w/

by (2.2), whereKw;�2 is the normalized reproducing kernel of .D�2/0 at w. Observe that
the exchange of integral and sum is justified by Tonelli’s theorem. Fix �1 > Re '.C1/.
By (2.15),

kI� ı T
p=2
' k

2
S2
�

Z
C1=2

� Z
C1=2

jKw;�2.z/j
2M'.z/ dA.z/

�p
kkw;�2k

2 d�.w/

�

Z
C1=2nC�1

� Z
D.w; 12 .Re.w/�1=2//

jKw;�2.z/j
2M'.z/ dA.z/

�p
kkw;�2k

2 d�.w/:

By (2.10), one can estimate the behaviour of Kw;�2.z/ in the disk D.w; 1
2
.Rew � 1=2//,

whenever Rew � �1, to obtainZ
D.w; 12 .Re.w/�1=2//

jKw;�2.z/j
2M'.z/ dA.z/

�

Z
D.w; 12 .Re.w/�1=2//

M'.z/

.Re.w/ � 1=2/3
dA.z/�

M'.w/

Re.w/ � 1=2
;

where the last inequality follows from the submean value property of the mean counting
function (2.6). Taking into account the value of kkw;�2k, we getZ

C1=2nC�1

.M'.w//
p �00.2Re.w//

.Re.w/ � 1=2/p
d�.w/ < C1:

Finally, (2.8) yieldsZ
C�1

.M'.w//
p �00.2Re.w//

.Re.w/ � 1=2/p
d�.w/�

Z
C�1

�00.2Re.w// d�.w/

�

Z
C�1

j2�w j2 d�.w/ < C1:

Conversely, assume that (3.1) holds and let q be the conjugate exponent of p. For p D 1,
the validity of (3.1) follows from the Hilbert–Schmidt characterization. Thus, we will also



Schatten class composition operators 9

assume that p > 1. Let ¹fnº be any orthonormal basis of .D�2/0: ThenX
n�1

hT'.fn/; fni
p
D

X
n�1

� Z
C1=2

jfn.w/j
2M'.w/ dA.w/

�p
D

X
n�1

� Z
'.C0/

jfn.w/j
2=pM'.w/

�.w/1=q
jfn.w/j

2=q�.w/1=q dA.w/
�p

�

X
n�1

� Z
'.C0/

jfn.w/j
2M'.w/

p

�.w/p=q
dA.w/

�� Z
'.C0/

jfn.w/j
2 �.w/ dA.w/

�p=q
:

Since �dA is a Carleson measure and since
P
n jfn.w/j

2D kw;�2.w/ for any orthonormal
basis of .D�2/0, we getX

n�1

hT'.fn/; fni
p
�

Z
'.C0/

.M'.w//
p kw;�2.w/

�.w/p�1
dA.w/

�

Z
'.C0/

.M'.w//
p �00.2Re.w//

�.w/p�1
dA.w/:

Hence, T' belongs to Sp .

In view of the above theorem, the ideal case would be to choose a function � W '.C0/!
.0;C1/ such that �dA is a Carleson measure for .D�2/0 and

1

�.w/p�1
D

�.w/

.Re.w/ � 1=2/p
; w 2 '.C0/:

This yields �.w/ D Re.w/� 1=2. Now if ' has bounded imaginary part, then the embed-
ding inequality implies that 1'.C0/.Re.w/ � 1=2/dA is a Carleson measure for .D�2/0:
This gives the way to the case p > 1 of Theorem 1.1.

Corollary 3.2. Let p � 1 and let ' 2G0 with bounded imaginary part. Then C' belongs
to S2p if and only if Z

C1=2

.M'.w//
p

.Rew � 1=2/pC2
dA.w/ < C1:

Proof. Our discussion actually shows that, under the assumptions of the corollary, we
have C' 2S2p if and only ifZ

C1=2

.M'.w/t/
p

.Rew � 1=2/p�1
�00.2Re.w// dA.w/ < C1:

It remains to show that this is equivalent to (1.3). Let �1 D 2 Re '.C1/: Then for
w 2C1=2 nC�1 ;

1

.Re.w/ � 1=2/3
� �00.2Re.w//�

1

.Re.w/ � 1=2/3
�
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We may conclude if we are able to prove that for any ' 2G0,Z
C�1

M'.w/
p

.Re.w/ � 1=2/p�1
�00.2Re.w// dA.w/ < C1;

and Z
C�1

M'.w/
p

.Re.w/ � 1=2/pC2
dA.w/ < C1:

Both of these properties follow from (2.8).

When ' does not have bounded imaginary part, there are still interesting Carleson
measures for .D�2/0, for instance .Re.w/� 1=2/=.1C j Im.w/j/adA for any a > 1: This
yields to the following result.

Corollary 3.3. Let p > 1, let ' 2G0 and let a > 1:

(a) If C' belongs to S2p , thenZ
C1=2

M'.w/
p

.Re.w/ � 1=2/pC2.1C j Im.w/j/a
dA.w/ < C1:

(b) Assume thatZ
C1=2

M'.w/
p

.Re.w/ � 1=2/pC2
.1C j Im.w/j/a.p�1/ dA.w/ < C1:

Then C' 2S2p:

Proof. This follows from Theorem 3.1 with �.w/ D .Re.w/� 1=2/=.1C jIm.w/j/a and
d� D �dA. Again we can replace everywhere �00.2 Re.w// by .Re.w/ � 1=2/�3 since
for (a), Z

C�1

M'.w/
p

.Re.w/ � 1=2/pC2 .1C j Im.w/j/a
dA.w/ < C1

and for (b), �00.2Re.w//� .Re.w/ � 1=2/�3 is valid throughout C1=2:

We now prove that (1.3) remains necessary for p � 2 without any assumption on ':

Theorem 3.4. Let p � 2 and ' 2G0: Assume that C' 2S2p: ThenZ
C1=2

.M'.w//
p

.Rew � 1=2/pC2
dA.w/ < C1:

Proof. For the positive operator T' belonging to Sp , denoting by ¹fnº an orthonormal
basis of eigenvectors of T' ,

1 > kT p' kS1 D
X
n�1

hT p' .fn/; fni D
X
n�1

Z
C1=2

T p�1' .fn/.w/ fn.w/M'.w/ dA.w/

D

X
n�1

Z
C1=2

hT p�1' .fn/; kw;�2ifn.w/M'.w/ dA.w/:
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The quantity under the integral sign is nonnegative since

hT p�1' .fn/; kw;�2ifn.w/ D s
p�1
n hfn; kw;�2ifn.w/ D s

p�1
n jfn.w/j

2:

An application of Tonelli’s theorem yields

1 > kT p' kS1 D

Z
C1=2

X
n�1

hfn; T
p�1
' .kw;�2/ifn.w/M'.w/ dA.w/

D

Z
C1=2

hT p�1' .kw;�2/; kw;�2iM'.w/ dA.w/

D

Z
C1=2

hT p�1' .Kw;�2/;Kw;�2i kkw;�2k
2M'.w/ dA.w/:

We now use (2.2):

1 > kT p' kS1 �

Z
C1=2

hT'.Kw;�2/;Kw;�2i
p�1
kkw;�2k

2M'.w/ dA.w/

�

Z
C1=2

� Z
C1=2

jKw;�2.z/j
2M'.z/ dA.z/

�p�1
kkw;�2k

2M'.w/ dA.w/:

We conclude as above using the submean value property of the counting function (2.6) to
deduce that (1.3) holds true.

We end up the proof of Theorem 1.1 by considering the case p 2 .0; 1/.

Theorem 3.5. Let p 2 .0; 1/ and ' 2G0: Assume that ' has bounded imaginary part and
that C' 2S2p . Then Z

C1=2

.M'.w//
p

.Rew � 1=2/pC2
dA.w/ < C1:

Proof. We still denote by ¹fnº an orthonormal basis of eigenvectors of T' : We now write

kT'k
p
Sp
D

X
n�1

�
hT'.fn/; fni

�p
D

X
n�1

� Z
C1=2

jfn.w/j
2M'.w/ dA.w/

�p
D

X
n�1

� Z
'.C0/

M'.w/

Re.w/ � 1=2
jfn.w/j

2 .Re.w/ � 1=2/ dA.w/
�p
:

Now by (2.14), the measures 1'.C0/jfn.�/j2.Re.�/ � 1=2/ dA are finite measures on C1=2
with uniformly bounded mass. It follows from Hölder’s inequality and (2.12) that

kT'kSp �

Z
C1=2

X
n�1

M'.w/
p

.Re.w/ � 1=2/p
jfn.w/j

2 .Re.w/ � 1=2/ dA.w/

�

Z
C1=2

M'.w/
p

.Re.w/ � 1=2/p�1
�00.2Re.w// dA.w/:
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3.2. The case of even integers

We now prove the 2m-Schatten class characterization (1.4).

Proof of Theorem 1.2. We first prove that (1.4) implies that C' is compact. If this were
not the case, then we could find ı > 0 and a sequence ¹w.k/º � C1=2 with real part going
to 1=2 such that for every " 2 .0; 1/, the rectangles

Rk D
�Rew.k/ � 1=2

2
;
3.Rew.k/ � 1=2/

2

�
�

�
Imw.k/ � "

�
Rew.k/ �

1

2

�
; Imw.k/C "

�
Rew.k/ �

1

2

��
are pairwise disjoint and for all k � 1,

M'.w.k//

Re.w.k// � 1=2
� ı:

Let Ak D
Qm
jD1 Rk . We recall that �00.s/ has a pole of order 3 at s D 1, thus we can

choose " > 0 close to zero such that

Re
�
�00.w1 C w2/ � � � �

00.wm�1 C wm/ �
00.wm C w1/

�
�

�
Rew.k/ �

1

2

��3m
;

for everywD .w1; : : : ;wm/2Ak . Using the mean-value property of the counting function
as well as the estimate above, we obtain thatZ

Ak

�00.w1 C w2/ � � � �
00.wm�1 C wm/ �

00.wm C w1/

mY
jD1

M'.wj / dA.wj /

�

mY
jD1

M'.wk/

Re.w.k// � 1=2
� ım:

Since the sets Ak are pairwise disjoint, this would contradict (1.4).
Hence, for both implications of Theorem 1.2, we may assume that C' hence T' is

compact. Let us consider the canonical decomposition of T' , T'.f /D
P
n�1 snhf;fnifn:

We know that C' 2S2m if and only if Tm' 2S1, if and only ifX
n�1

hTm' .fn/; fni <1:

We observe thatX
n�1

hTm' .fn/; fni D
X
n�1

Z
C1=2

hTm�1' .fn/; kw1;�2ifn.w1/M'.w1/ dA.w1/:

Arguing as in the proof of Theorem 3.4, we may use Tonelli’s theorem to getX
n�1

hTm' .fn/; fni D

Z
C1=2

hTm�1' .kw1;�2/; kw1;�2iM'.w1/ dA.w1/

D

Z
C1=2

Z
C1=2

hTm�2' .kw1;�2/; kw2;�2i�
00.w1 C w2/M'.w2/M'.w1/ dA.w2/dA.w1/:
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By induction one obtains

kTm' kS1 D

Z
C1=2

� � �

Z
C1=2

�00.w1 C w2/ � � � �
00.wm�1 C wm/ �

00.wm C w1/

�

mY
kD1

M'.wk/ dA.wk/:

We now intend to give a similar characterization involving the boundary values of
' 2G0: For every � 2T1, '� belongs to G0 and for almost every �, the generalized
boundary value '.�/ D lim�!0C '�.�/ does exist (see Section 2 in [8] or Corollary 3.3
in [9]). Of course, Re.'.�// � 1=2 for almost every �2T1: We first show that when C'
is compact, this inequality is strict for almost every �2T1:

Theorem 3.6. Let ' 2G0 be such that C' induces a compact operator on H2: Then
Re.'.�// > 1=2, for almost every �2T1:

Proof. The norm of the image of a function f 2 H2 under C' can be written as

kC'.f /k
2
H2 D

Z
T1
jf ı '.�/j2 dm1.�/ D

Z
C1=2

jf .w/j2 d�'.w/;

where �' is the push-forward measure of m1 by '.�/, see [8]. Since C' is compact and
the reproducing kernel �.� C xw/ of H2 at w satisfies

�.s C xw/ D
1

xw C s � 1
CO.1/;

we can argue like in the proof of Theorem 3 in [19] to deduce that

(3.2) �'.Q/ D o.jI j/; as jI j ! 0;

where Q is a (Carleson) square in C1=2 with one side I on the vertical line ¹Re s D 1=2º.
This means that �' is a vanishing Carleson measure for H 2.C1=2/ and this implies that
�' ¹Re sD1=2º is absolutely continuous with respect to the Lebesgue measure of R. Follow-
ing a standard argument, see for example [11], Chapter 3, we will prove that �' ¹Re sD1=2º
is equal to 0. By the Lebesgue–Radon–Nikodym theorem, there exists a positive function
f 2 L1.R/ such that

d�' j¹Re sD1=2º D f .t/ dt:

The set E D ¹� W Re'.�/ > 1=2º is of full measure if and only if f � 0. Let us assume
that there exists " > 0 such that jf �1..";1//j > 0: Let F � f �1..";C1// with positive
and finite measure, and let ı > 0 be such that

�'.Q/ �
"

4
jI j

for every Carleson square in C1=2 with length jI j � ı: We can cover F by a sequence of
intervals ¹Inº such that jInj � ı andX

n

jInj � 2jF j:
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Now,
"jF j � �' j¹Re sD1=2º.F / �

"

4

X
n

jInj �
"

2
jF j;

which is a contradiction with jF j > 0. Thus Re.'.�// > 1=2 for a.e. �2T1:

We are now ready to give an analogue of Theorem 1.2 involving the symbol directly.

Theorem 3.7. Suppose that the symbol '2G0 induces a compact operator and letm2N:
Then, C' belongs to S2m, if and only if

(3.3)

Z
T1
� � �

Z
T1
�.'.�1/C '.�2// � � � �.'.�m�1/C '.�m// �.'.�m/C '.�1//

�

mY
kD1

dm1.�k/ <1:

Proof. Let T D C �' ı C' , and let us consider its canonical decomposition

T .f / D
X
n�1

snhf; fnifn:

We know that C' 2S2m if and only if Tm 2 S1, and that

hT .f /; gi D

Z
T1

f .'.�// g.'.�// dm1.�/:

ThenX
n�1

hTm.fn/; fni D
X
n�1

hT .fn/; T
m�1.fn/i

D

X
n�1

Z
T1

fn.'.�1// hTm�1.fn/; �.� C '.�1//i dm1.�1/:

As in the proof of Theorem 1.2, the quantity inside the integral is nonnegative which
allows us to use Tonelli’s theorem. HenceX
n�1

hTm.fn/; fni D

Z
T1
hTm�1.k'.�1/;0/; k'.�1/;0i dm1.�1/

D

Z
T1

Z
T1
hTm�2.k'.�1/;0/; k'.�2/;0i �.'.�1/C '.�2// dm1.�1/ dm1.�2/:

By induction, one finally obtains

kTmkS1 D

Z
T1
� � �

Z
T1

�.'.�1/C'.�2// � � � �.'.�m�1/C'.�m// �.'.�m/C'.�1//

�

mY
kD1

dm1.�k/:
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4. A comparison-type principle

4.1. The Lindelöf principle and the Littlewood inequality

In this section, we will use the Lindelöf principle for Green’s functions to give a simple
proof of the non-contractive Littlewood inequality (2.7). Similar techniques have been
used in the disk setting, [5].

We recall (see for instance [22]) that a Green function for a domain��C is a function
g�W� � � ! .�1;C1� such that, for all w 2 �, g.�; w/ is harmonic in � n ¹wº,
g�.z;w/! 0 n.e as z ! @� and g�.�; w/C log j � �wj is harmonic in a neighbourhood
of w. If a domain admits a Green function then it is necessarily unique. For instance, the
Green function on the disk gDWD �D 7! .0;C1� has the form

gD.z; w/ D log
ˇ̌̌1 � zw
z � w

ˇ̌̌
:

By conformal invariance, we can easily define Green’s function on every simply connected
subdomain of the complex plane, for example,

gC0.z; w/ D log
ˇ̌̌z C w
z � w

ˇ̌̌
; z; w 2 C0:

The class of domains D possessing a Green function gD is much larger than the simply
connected domains, see Chapter 4 of [22]. The Lindelöf principle for Green’s functions
(see for instance [4]) states that if f is a holomorphic function mapping D1 to D2, where
both of those domains possess Green’s function, then for z0 2D1 and w 2D2 n ¹f .z0/º,

(4.1)
X

z2f �1.¹wº/

gD1.z; z0/ � gD2.w; f .z0//:

Let us first show how to deduce, up to a multiplicative constant, the Littlewood inequal-
ity (2.7) and also a corresponding inequality for a symbol in G�1 (such an inequality was
used in [3] to obtain a sufficient condition for composition operators with symbols in G�1
to be compact on H2). Recall that for  2 G�1, its restricted Nevanlinna counting func-
tion is defined by

N .w/ D
X

s2 �1� .¹wº/

j Im sj�1

Re s:

Theorem 4.1. The following statements hold.

(a) Let ' 2G0: Then for all w 2 C1=2 n ¹'.C1/º,

M'.w/ � � log
ˇ̌̌'.C1/C w � 1
'.C1/ � w

ˇ̌̌
:

(b) Let  2 G�1: There exists C > 0 such that, for all �2T1 and for all w 2 C0 with
Rew � c0,

N �.w/ � C
Rew

1C .Imw/2
�
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Proof. (a) Let ' 2G0 and w2 C1=2 n ¹'.C1/º: For T > 0 sufficiently large, w ¤ '.T /,
so that the Lindelöf principle impliesX

s2'�1.¹wº/

log
ˇ̌̌T C s
T � s

ˇ̌̌
� log

ˇ̌̌'.T /C w � 1
'.T / � w

ˇ̌̌
:

On the other hand, using the elementary inequality log.x/ � 1
2
.1� x�2/, valid for x > 0,X

s2'�1.¹wº/

log
ˇ̌̌T C s
T � s

ˇ̌̌
�

X
s2'�1.¹wº/

2T Re s
jT C sj2

�

Observe that ¹Re.s/ W s 2 '�1.¹wº/º is bounded. Therefore, for all " 2 .0; 1/, we can
choose T large enough so thatX

s2'�1.¹wº/

log
ˇ̌̌T C s
T � s

ˇ̌̌
�
.1 � "/

T

X
s2'�1.¹wº/
j Im sj�T

Re s:

We can conclude by letting T toC1 and " to 0.
Regarding (b), let �2T1 and w 2 C0 with Rew � c0: The Lindelöf principle says

that X
s2 �1� .¹wº/

log
ˇ̌̌s C 2
s � 2

ˇ̌̌
� log

ˇ̌̌w C  �.2/
w �  �.2/

ˇ̌̌
:

Now, when  �.s/ D w, then 0 < Re s D .Rew � Re'.s//=c0 � 1, since Rew � c0. We
apply again the inequality log.x/ � 1

2
.1 � x�2/, x > 0, yielding to

N �.w/ � C
X

s2 �1� .¹wº/

log
ˇ̌̌s C 2
s � 2

ˇ̌̌
:

Finally, it was shown in [3] that

log
ˇ̌̌w C  �.2/
w �  �.2/

ˇ̌̌
� C

Rew
1C .Imw/2

;

where C does not depend neither on �2T1 nor on w with Rew � c0:

4.2. A comparison-type principle and a polygonal compactness theorem

We shall now apply the idea of the previous subsection when ' 2G0 maps C0 into a
subdomain D of C1=2: The Lindelöf principle helps us to find better estimates on M' .
Indeed, provided D admits a Green function, the proof of Theorem 4.1 shows that

(4.2) M'.w/� gD.w; '.C1//; w2 C1=2 n ¹'.C1/º:

We deduce the following comparison principle. Under similar conditions, a norm-
comparison principle appeared in [8].
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Theorem 4.2. Let '2G0 be such that '.C0/�D�C1=2, whereD is a simply connected
domain. Let RD be the Riemann map from D onto D such that RD.0/ D '.C1/, and
let 'D D RD.2�s/: Assume that C'D is compact. Then C' is compact. Moreover, if D �
¹j Im.s/j � C º for some C > 0 and if C'D belongs to S2p , p � 1, then C' belongs to S2p .

Proof. Let p D 2�=log.2/: By the ip-periodicity of 'D , we have that for all T > 0,j2T
p

k X
s2'�1D .¹wº/
0� Im s<p
�<Re s<1

Re s �
X

s2'�1D .¹wº/

j Im sj<T
�<Re s<1

Re s �
�j2T

p

k
C 1

� X
s2'�1D .¹wº/
0� Im s<p
�<Re s<1

Re s;

where bxc is the integer part of the real number x, see Example 4.6 in [15]. Thus

M'D .w/ �
X

0� Im s<p
s2'�1D .¹wº/

Re s �
X
z2D

z2R�1D .¹wº/

log
� 1
jzj

�

since

log 2
X

s2'�1D .¹wº/

j Im sj<p
Re s>0

Re s D
X

z2R�1D .¹wº/

jzj<1

log
1

jzj
�

By the conformal invariance of the Green function,

M'D .w/ � gD.w; 'D.C1//:

Hence our assumption on C'D gives an estimate on M'D which transfers to M' thanks
to (4.2), which itself gives the corresponding result on C' . Observe that in both cases, we
use the characterization of compactness or membership to S2p .

Remark. In Theorem 4.2, we can only assume that D admits a Green function and use
for RD a universal covering map of D.

The most interesting case occurs when '.C0/ is mapped into an angular sector con-
tained in C1=2: This leads to Theorem 1.3 that we now prove.

Proof of Theorem 1.3. The Green function of the domain�D ¹s 2 C1=2 W j arg.s/� 1=2j
< �=.2˛/º is

g�.z; w/ D log
ˇ̌̌ .z � 1=2/˛ C .w � 1=2/˛
.z � 1=2/˛ � .w � 1=2/˛

ˇ̌̌
:

By (4.2) and by Lemma 2.3 in [9], for w2 '.C0/ � �,

M'.w/� log
ˇ̌̌ .w � 1=2/˛ C .'.C1/ � 1=2/˛
.w � 1=2/˛ � .'.C1/ � 1=2/˛

ˇ̌̌
� Re

�
w �

1

2

�˛
� .Re.w/ � 1=2/˛

provided jw � '.C1/j > ı for some fixed ı > 0: The proof of compactness follows from
the characterization (1.1); the proof of the Schatten class part follows from Corollary 3.3.
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Indeed, letting �1D 2Re'.C1/, let T > 0 be such that j Im.w/j � T for allw 2 '.C0/\
.C1=2 nC�1/: ThenZ

C1=2nC�1

.M'.w//
p

.Re.w/ � 1=2/pC2
.1C j Im.w/j/2.p�1/ dA.w/

�

Z �1

1=2

Z T

�T

.1C j Im.w/j/2.p�1/

.Re.w/ � 1=2/pC2�p˛
dt d� < C1; w D � C i t;

since p > 1=.˛ � 1/. Moreover,Z
C�1

.M'.w//
p

.Re.w/ � 1=2/pC2
.1C j Im.w/j/2.p�1/ dA.w/

�

Z
C�1

dA.w/

.1C j Im.w/j/2.Re.w/ � 1=2/2
< C1;

by (2.8).

Using properties of conformal maps, we can extend the compactness part of The-
orem 1.3 to slightly more general domains. This is the analogue of the polygonal com-
pactness theorem, [25], in our setting.

Theorem 4.3. Let ' 2G0 be such that for some ı > 0, the set '.C0/ \ ¹1=2 < Re s �
1=2C ıº is contained in a finite union of angular sectors

Sd
jD1¹j arg.z�1=2� i�j /j< j̨ º,

with �j 2R and j̨ 2 .0; �=2/. Then C' is compact on H2.

Proof. Let us consider the Riemann map f D RD , where

D D C1=2Cı
S d[

jD1

°ˇ̌̌
arg

�
z �

1

2
� i�j

�ˇ̌̌
< j̨

±
;

and let ¹wnºn�1 be an arbitrary sequence such that Rewn ! 1=2C. Since M'.wn/ D 0

if wn … D, we can assume that the sequence ¹wnº converges to a corner boundary point
f .ei�0/ ¤1. Then, by (4.2) and Koebe’s quarter theorem, see Corollary 1.4 in [20],

M'.wn/� gD.wn; f .0//� 1 � jf �1.wn/j
2
� dist.wn; @D/ jf 0.f �1.wn//j�1

�

�
Rewn �

1

2

�
jf 0.f �1.wn//j

�1:

It is sufficient to prove that jf 0.f �1.wn//j!1 as n!1. By the Kellogg–Warschawski
theorem (see Theorem 3.9 in [20]) and the Carathéodory extension theorem, see Chapter 2
of [20],

jf 0.f �1.wn//j � jf
�1.wn/ � e

i�0 j
˛�1
!1;

where ˛ D max¹aj W 1 � j � dº:

Remark. Our techniques apply also for symbols  D c0 s C ' 2G�1. Although, the
range of such a symbol cannot meet the imaginary axis in an angular sector, or more
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generally, inside a domain D where Imw is bounded for w 2 D
T
.C0 n C"/, " > 0. If

that were the case, then we would be able to find a point s."/ 2 C0 n C"=.4c0/ such that
Re '.s."// � "=4. The Dirichlet series ' converges uniformly in CRe s."/=2, see [7]. By
almost periodicity, we can find an increasing unbounded sequence of positive numbers
¹Tnºn�1 such that

Re'.s."/C iTn// �
"

2

so that Re .s."/C iTn/ � 3"=4. We observe that j Im .s."/C iTn/j ! C1. This con-
tradicts our assumption.

4.3. On the boundedness on H p

We conclude this section with the proof of Theorem 1.4. We will use Hilbertian methods
to prove that our assumption implies that C' is bounded as an operator from H to H2,
whereH is a Hilbert space of Dirichlet series containing Hp: To do this, we need another
class of Bergman spaces of Dirichlet series, the spaces Aa, ˛ � 1: They are defined as

A˛ D

°
f .s/ D

X
n�1

ann
�s
W kf k2A˛

D

X
n�1

janj
2

d˛.n/
<1

±
;

where by d˛.n/we denote the coefficients of the Dirichlet series .�.s//˛ , s2C1. In partic-
ular, d2.�/ is the divisor counting function. The space A˛ is a reproducing kernel Hilbert
space, the reproducing kernel at a point s0 2 C1=2 being the function .�.s0 C �//˛ . The
analogue of the embedding theorem for A˛ reads as follows.

Lemma 4.4 ([18]). For every f 2 A˛ and every interval I � R, there exists a constant
C D C.jI j/ such that

(4.3)
Z 1

1=2

Z
I

jf 0.� C i t/j2
�
� �

1

2

�˛
dt d� � Ckf k2A˛

:

Proof of Theorem 1.4. Let us set ˛ D 2k=p:Working in a similar manner to Theorem 1.3,
there exist " > 0 and C > 0 such that Rew 2 .1=2; 1=2C "/ implies

M'.w/ � C
�

Rew �
1

2

�˛
:

Let T > 0 be such that '.C0/ \ .C1=2 n C1=2C"/ � Œ1=2; 1=2C "� � Œ�T; T �. By (2.4),
for f 2 Hp � H2k ,

kC'.f /k
2k
H2k D kC'.f

k/k2
H2 D jf

k.'.C1//j2 C
2

�

Z
C1=2

j.f k/0.w/j2M'.w/ dA.w/

�

Z 1=2C"

1=2

Z T

�T

j.f k/0.� C i t/j2
�
� �

1

2

�˛
dt d�

C jf k.'.C1//j2 C
2

�

Z
C1=2C"

j.f k/0.w/j2M'.w/ dA.w/:
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Let us write f k D
P
j�1 aj j

�s . By the Cauchy–Schwarz inequality, for all w 2 C1=2C",ˇ̌
.f k/0.w/

ˇ̌
�

X
j�2

jaj j log j
j Rew �

�X
j�2

jaj j
2

d˛.j /

�1=2�X
j�2

d˛.j / log2 j
j 2Rew

�1=2
� C."/ j2�w j kf kkA˛

:

Note that

.�˛.s//00 D
X
j�2

d˛.j / log2 j
j s

converges absolutely for Re s > 1C ", " > 0.
By the local embedding theorem (4.3), the boundedness of pointwise evaluation at

'.C1/, and the continuity of C' on H2, applied to 2�s , we get

kC'.f /k
2k
H2k � kf

k
k
2
A˛
:

Now, the inclusion operator i WHp=k ! A˛ is contractive, [16]. Therefore,

kC'.f /kHp � kC'.f /kH2k � kf
k
k
1=k

A˛
� kf kk

1=k

Hp=k D kf kHp :

Let us turn to compactness. Let ¹fnºn�1 be a sequence of Hq converging weakly to 0.
We set gn D f kn and observe that ¹gnº converges pointwise to 0 on C1=2 and that the
Dirichlet coefficients ygn.j / converge to 0 for each j � 1:

We work as above, but we now set ˛ D 2k=q and consider ı 2 .0; "/: Then

kC'.fn/k
2k
Hq � kC'.fn/k

2k
H2k D kC'.gn/k

2
H2

� jgn.'.C1/j
2
C ı1=p�1=q

Z 1=2Cı

1=2

Z T

�T

jg0n.� C i t/j
2
�
� �

1

2

�˛
dt d�

C
2

�

Z
C1=2Cı

jg0n.w/j
2M'.w/ dA.w/:

The first term goes to zero as n tends to C1, and the second term is as small as we want
for every n if we adjust ı small enough. Therefore it remains to show that, for a fixed
ı > 0, the last terms tends to 0 as n tends toC1: Now, for all n � 1 and all w 2 C1=2Cı ,

jg0n.w/j �
X
j�2

j ygn.j /j log j
j Rew �

�X
j�2

d˛.j / log2 j
j 2Rew�ı=2

�1=2�X
j�2

j ygn.j /j
2

d˛.j /j ı=2

�1=2
� j2�w j

� NX
jD2

j ygn.j /j
2

d˛.j /j ı=2
C

1

N ı=2
kgnk

2
A˛

�1=2
:

Since the sequence ¹gnº is bounded in A˛ , for any � > 0, there exists n0 2 N such that
jg0n.w/j � � j2

�w j:We now argue as above to conclude that ¹C'.fn/º tends to 0 in Hq :

Remark. We choose to work with symbols with range into angular sectors for the sake
of simplicity. It will be interesting to know if our techniques can be applied to give other
examples of geometric conditions related to the behavior of composition operators on
Hardy spaces of Dirichlet series.
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5. Further discussion

5.1. Bergman spaces

We focused on the Hardy space H2, but we can extend our results to Bergman spaces
of Dirichlet series D�a, a � 0. The class G determines again the bounded composition
operators on D�a, a � 0. For Dirichlet series symbols ' 2G0, the compact composition
operators C' have been characterized, [15], in terms of the weighted counting function

M';1Ca.w/ D lim
�!0C

lim
T!1

�

T

X
s2'�1.¹wº/
j Im sj<T
�<Re s<1

.Re s/1Ca; w ¤ '.C1/;

and similarly with the Hardy space case, C' is compact on D�a, a � 0, if and only if

lim
Rew!1=2C

M';1Ca.w/

.Rew � 1=2/1Ca
D 0:

Theorem 5.1. Let ' 2G0 and let p � 4. A necessary condition for the composition oper-
ator C' to belong to the class Sp is the following:

(5.1)
Z

C1=2

.M';1Ca.w//
p=2

.Rew � 1=2/.aC1/p=2C2
dA.w/ < C1:

If we further assume that ' has bounded imaginary part, then C' belongs to the class Sp ,
p � 2, if and only if ' satisfies (5.1), and for p > 0, the condition remains necessary.

To prove Theorem 5.1, one can argue in a similar manner as with the Hardy space H2,
using the analogue key ingredients, namely, the change of variables formula (Theorem 1.2
in [15]), the Littlewood-type inequality (Proposition 5.4 in [15]), the weak submean value
property (Theorem 4.11 in [15]), and the behavior of reproducing kernels (2.10).

5.2. Carleson measures

E. Saksman and J.-F. Olsen [19] proved that if � is a Carleson measure for H2, then it
is a Carleson measure for H 2.C1=2/. The converse is also true with the extra assumption
that � has compact support.

A direct consequence of the local embedding theorem is that a sufficient condition for
a measure � in ¹1=2 < Re s < �1º to be Carleson for H2 is ¹C.�n;H 2.C1=2//ºn2Z 2 `

1,
where �n is the restriction of � on the half-strip ¹s 2 C1=2 W n � Im s < nC 1º: Indeed,Z

C1=2

jf .w/j2 d�.w/�
X
n2Z

Z
C1=2

ˇ̌̌ f .w/
w � in

ˇ̌̌2
d�n.w/

�

X
n2Z

C.�n/



 f .�/
� � in





H2.C1=2/

�

X
n2Z

C.�n/kf k
2
H2 � kf k

2
H2 :

An example of such a measure is the restriction of M'.w/

Rew�1=2 dA.w/ to ¹1=2 < Re s <
.1C Re'.C1//=2º. The above condition is not necessary, as we will exemplify now.
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We consider the sequence ¹snºn�1, where

sn D
1

2
C

�1
2

�n
C i

�
nC

1

2

�
:

As we will prove in a moment, the measure d�.w/ D
P
n�1.Re sn � 1=2/ ısn.w/ is a

Carleson measure for H2, where ısn.w/ is a Dirac mass at sn . The restriction �n, n � 1,
has the form

d�n.w/ D
�

Re sn �
1

2

�
ısn.w/:

Let Qn, n � 1, be the square with centre at the point sn and one side In on the line
¹Re s D 1=2º. Then,

�n.Qn/ D
jInj

2
;

and thus ¹C.�n/ºn2Z … `
1. It remains to prove that d�.w/D

P
n�1.Re sn � 1=2/ ısn.w/

is a Carleson measure for H2. Actually, this is true for every sequence ¹snºn�1 in C1=2
such that

(5.2) Re snC1 �
1

2
� a

�
Re sn �

1

2

�
; n 2 N;

for some a 2 .0;1/. We follow an argument of Section 4 in [23], see also [1]. It is sufficient
to prove that the matrix

A D
h �.si C sj /p

�.2Re si /
p
�.2Re sj /

i
i;j�1

defines a bounded operator on `2. We will prove that for every j 2 N,

(5.3)
X
i�1

j�.si C sj /jp
�.2Re si /

p
�.2Re sj /

� C;

and the result will then follow from Schur’s test, see [26], Section 3.3.
The Riemann zeta function has a simple pole at 1. Therefore, (5.2) yields the existence

of i0 � 1 and of b 2 .0; 1/ such that, for all i � i0,

�.2Re si /
�.2Re siC1/

� b;

where b 2 .0; 1/. We only need to prove (5.3) for j � i0: On the one hand,X
1�i�i0

j�.si C sj /jp
�.2Re si /

p
�.2Re sj /

� i0
j�.Re si0 C Re sj /jp
�.2Re s1/

p
�.2Re sj /

� C:

On the other hand,X
i�i0

j�.si C sj /jp
�.2Re si /

p
�.2Re sj /

�

X
i�i0

j�.1=2Cmax¹Re si ;Re sj º/jp
�.2Re si /

p
�.2Re sj /

�

X
i0�i�j

s
�.2Re si /
�.2Re sj /

C

X
i�j�i0

s
�.2Re sj /
�.2Re si /

�

X
i0�i�j

b.j�i/=2 C
X
i�j�i0

b.i�j /=2 � C:
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