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Schatten class composition operators on the Hardy space
of Dirichlet series and a comparison-type principle

Frédéric Bayart and Athanasios Kouroupis

Abstract. We give necessary and sufficient conditions for a composition operator
with Dirichlet series symbol to belong to the Schatten classes S, of the Hardy
space J¢2 of Dirichlet series. For p > 2, these conditions lead to a characteriza-
tion for the subclass of symbols with bounded imaginary parts. Finally, we establish
a comparison-type principle for composition operators. Applying our techniques in
conjunction with classical geometric function theory methods, we prove the analogue
of the polygonal compactness theorem for #2 and we give examples of bounded
composition operators with Dirichlet series symbols on 7, p > 0.

1. Introduction

The Hardy space #?2 of Dirichlet series, which was first systematically studied in 1997 by
H. Hedenmalm, P. Lindqvist, and K. Seip [13], is defined as

92 ={16) =32 1 f e = Y lanl? < o0.

n>1 n>1

Gordon and Hedenmalm [12] determined the class & of symbols which generate
bounded composition operators on the Hardy space #2. The Gordon-Hedenmalm class &
consists of all functions ¥ (s) = cos + ¢(s), where c¢ is a nonnegative integer, called the
characteristic of v, and ¢ is a Dirichlet series such that

(i) ifco =0, then p(Cy) C Cy3,

(ii) if cg > 1, then (Cy) C Cy or ¢ = it for some 7 € R.
We denote by Cy, 6 € R, the half-plane {s : Res > 6}. We will also use the notation &
and & for the subclasses of symbols that satisfy (i) and (ii), respectively.

In this paper, we are mostly interested in the case ¥ = ¢ € &. In that context, the
compact operators Cy: H 2 — J? were characterized only very recently in [9], in terms
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of the behavior of the mean counting function

My(w) = lim lim l Z Res, weCyp )\ {p(+00)}.

o—0+t T—o0
sep 1 ({w})

[Ims|<T
o<Res <oo

It turns out that C, is compact if and only if

(1.1) lim Mw—(w) =0.
Rew—1/2+ Rew — 1/2
The next step would be to characterize symbols ¢ € & such that C, belongs to the
Schatten class S, p > 0. In the disk setting, D. H. Luecking and K. Zhu [17] proved that
a composition operator Cy on the Hardy space H?(DD) belongs to the Schatten class S,
p > 0, if and only if

/
(12) f (1(N<”(Z))p ’ dA(z) < 400,

| |2)p/ 242
where for z = x + iy, dA(z) = dxdy is the area measure, ¢ is a holomorphic self-map
of the unit disk, and Ny is the associated Nevanlinna counting function [24].

Our first main result is that the analogue characterization holds in the Dirichlet series
setting provided the symbol has bounded imaginary part.

Theorem 1.1. Suppose that the symbol ¢ € &y has bounded imaginary part and that
p = 1. Then, the composition operator Cy, belongs to the class S, p if and only if ¢ satisfies
the condition

M, (w))?
(1.3) / L))sz(w) < +oco.
c,, Rew— 1/2)p+
For p > 0, the above condition remains necessary, and if p > 2, then it is necessary for
all symbols in &.

When p = 1, namely if we want to know if C, is Hilbert—Schmidt, things are easier,
and Hilbert-Schmidt composition operators with symbols ¢ in &y have already been char-
acterized in [9]. This is equivalent to saying that

[(C {"(2Re(w)) My(w) dA(w) < +o00.
1/2

We generalize this characterization for Cy, € S, m € N.

Theorem 1.2. Let ¢ € &y and m € N. Then Cy, belongs to Sy, if and only if
(1.4)

m
/ v | @ wa) ¢ @ w) ¢ (@ w1) [ | My (we) dA ) < oo
Ci)2 Cyi/2 k=1
Our next result is a comparison-type principle. Using the Lindelof principle for Green’s
functions, we will be able to establish geometric conditions on the symbols that imply
that the associated composition operator is compact or belongs to S,. To our knowledge,
this is the first example of a technique that gives geometric conditions that apply to all sym-
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bols ¢ € &j. To exemplify this, we focus on symbols whose range is contained in angu-
lar sectors.

Theorem 1.3. Let ¢ € & and assume that 9(Co) C {s € Cy/5: |arg(s) — 1/2| <x/(2a)}
for some oo > 1. Then C,, is compact. If we further assume that o < 2, then C, € S, for
any p > 1/(a —1).

We can strengthen the previous result proving that if the range of the symbol meets the
boundary inside a finite union of angular sectors, then the induced composition operator
is compact.

This geometric method also applies to continuity and compactness of composition
operators acting on the other Hardy spaces of Dirichlet series # 7, p # 2. Recall that
for 0 < p < oo, the Hardy space #? of Dirichlet series is defined as the completion of
Dirichlet polynomials under the Besicovitch norm (or quasi-norm if 0 < p < 1)

1Pl s= (tim o [ paniear)’”
ser =\ im o | IPED '

The characterization of bounded composition operators with Dirichlet series symbols
on X7, p ¢ 2N, is an open and challenging question. The condition ¢ € &y is necessary
but not sufficient [21], and there is no known sufficient conditions which may be applied
to a large class of symbols whose range touches the boundary of Cy. We provide such a
sufficient condition under the assumption that the range of the symbol is contained in an
angular sector.

Theorem 1.4. Let k € N and p € (0, 2k]. If the symbol ¢ € &y maps the right half-plane
into an angular sector of the form Q = {s € Cy, : |arg(s — 1/2)| < pm/(4k)}, then C,
is bounded on JP. Furthermore, if max(1, p) < q < 2k, then the composition operator
is compact on J9.

In the last section, we briefly discuss the case of Bergman spaces of Dirichlet series as
well as some results on Carleson measures.

Notation. Throughout the article, we will be using the convention that C denotes a pos-
itive constant which may vary from line to line. We will write that C = C(x) to indicate
that the constant depends on a parameter x. If f and g are two real functions defined
on the same set 2, we will write f < g if there exists C > 0 such that for all x € €,
f(x) <Cg(x),and f~gif f<gandg < f.

2. Background material

2.1. Schatten classes

A compact operator 7" acting on a separable Hilbert space H can be written as
@1 T(x) =) sulx.en)hn. x€H,
n>1

where {s, },>1 is the sequence of singular values and {e, },>1 and {h,},>1 are orthonor-
mal sequences. In case T is self-adjoint, then e, = +h, foralln > 1.
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For p > 0, the S, Schatten class of compact operators T on H is defined as

Sp = S,(H) = {Te R(H) < |TIG =Y 5P < oo}.
n>1

Equivalently (see [14]), for p > 1, a bounded linear operator 7" € £(H) belongs to S, if
and only if there exists a positive constant C such that

Y Tenen)l? <C
n

for every orthonormal basis {e, }. Furthermore, if T is self-adjoint,
P _ P
ITIIS, = sup D |{Ten. en)|
n

the supremum being taken over all orthonormal basis of H.
For a compact and positive operator 7 on H, we define the power 77, p > 0, as

T?(x) = Zs,’l’(x,en)en, xeH.
n>1
When p = n € N, the operator 7" is the n-th iteration of 7. We observe that 7' € S, if
and only if 7% € §;.If T is not assumed to be positive, we can still use that 7" € S, if and
only if |T|? = (T*T)?/? € Sy, if and only if T*T € Sp/2.
For a unit vector x € H and a positive operator T, applying Holder’s inequality in (2.1)
we obtain the following inequality:

2.2) (TP(x),x) = (T(x).x))?, p=1

For 0 < p < 1, the inequality is reversed.

2.2. The infinite polytorus and vertical limits

The infinite polytorus T * is defined as the (countable) infinite Cartesian product of copies
of the unit circle T,

T ={x=(x1.x2,---): €T, j > 1}

It is a compact abelian group with respect to coordinatewise multiplication. We can iden-
tify the Haar measure m, of the infinite polytorus with the countable infinite product
measure m X m X ---, where m is the normalized Lebesgue measure of the unit circle.

The polytorus T *° is isomorphic to the group of characters of (Q, -). Given a point
x = (X1, x2,...) € T, the corresponding character y: Q4 — T is the completely
multiplicative function on N such that x(p;) = y;, where {p;};>1 is the increasing se-
quence of primes, extended to Q 4 through the relation y(n~!) = m

Suppose f(s) = D _,., an/n® is a Dirichlet series and y is a character. The vertical
limit function £, is defined as

fols) = Y 42,

n
n>1
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By Kronecker’s theorem [6], for any & > 0, there exists a sequence of real numbers {#; }j>1
such that f(s +it;) — fy(s) uniformly on Cq, ( )+, Where o, (f) denotes the abscissa
of uniform convergence of f.

If f € J2, then for almost every character y € T, the vertical limit function fy
converges in the right half-plane and has boundary values f,(it) = limy_,o+ fy(0 + it)
for almost every ¢ € R, see [2]. For ¥ (s) = cos + ¢(s) € &, we set

PYy(s) =cos + %{(5)'

Then for every y € T, we have that

(2.3) (Cy(fNx = freooVPy.

The symbol v has boundary values V,(it) = lim,_,o+ ¥y(0 + it) for almost every
x € T and for almost every ¢ € R.

2.3. Composition operators on #?

O.F. Brevig and K-M. Perfekt (see Theorem 1.3 in [9]) proved the following analogue of
Stanton’s formula for the Hardy spaces of Dirichlet series:

@) 1Co ()% = | @0 + = f L w) 2 My (w) dA(w).
T JCipa

where ¢ € &g and f € #2. By f(+00) we denote the first coefficient a; of the Dirichlet
series f(s) = ), an/n*. We apply the polarization identity in (2.4) yielding to

23) (o). Cole)) = Fp(+00) oo + = [ /() 70) Mo(w) dA(w).
1/2

We will make use of two properties of the counting function M, (w) proved in [9], the
submean value property and a Littlewood-type inequality. Those respectively are

(2.6) M,(w) < M,(z) dA(z).

|ID(w, )| Jpaw,r
for every disk D(w, r) C Cy/, that does not contain ¢(+00), and

o(+o0) +w —1

2.7 M,(w) < log P p—

. w e G\ {p(+00)}.

In Subsection 4, we will prove a weaker version of the Littlewood inequality (2.7) but
sufficient for our purpose. The standard technique to prove such inequalities goes through
regularity results for conformal maps [9, 15]. We shall use the following consequence
of (2.7) (see Lemma 2.3 in [9]): for 0o, > Re(¢(400)), there exists C > 0 such that, for
allw € Cy,

Re(w) —1/2

(2.8) My(w) <C m
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2.4. Carleson measures

Let H be a Hilbert space of holomorphic functions on a domain 2. A Borel measure u
in Q is called a Carleson measure for H if there exists a constant C > 0 such that, for all
feH,

/Q @) duw) < CILf 1.

We will denote by C(u, H), or simply by C(u), the infimum of such constants. For
instance, Carleson measures on the Hardy space H?(Cj/,), that consist of holomorphic
function f in C;/, equipped with norm

||f||12qz(cl/2) = sup / | f(o +it)]?dt < oo,
o>1/2JR

are characterized as follows.

Theorem 2.1 ([10]). A Borel measure p on Cy /5 is a Carleson measure for HZ((Cl/z) if
and only if there exists a constant D > 0 such that for every square Q with one side I on
the line {Res = 1/2},

2.9 n(Q) = DII|.

Moreover, there exist two absolute constants a, b > 0 such that, for all Borel measures |
on Cy,, denoting by D () the infimum of the constants D satisfying (2.9), then aD () <

C(n) = bD ().

2.5. Weighted Hilbert spaces of Dirichlet series

Our main strategy (inspired by [17]) to obtain the membership of Cy, to S5, is to derive it
from the membership to S, of an associated Toeplitz operator defined on another space of
Dirichlet series. We now introduce this class of spaces. For a < 1, we define the weighted
Hilbert space D, of Dirichlet series as

a
Do ={/(6) = 3= If12 = lar? + Y lanl? (logm)* < oc}.
n>1 n>2
The reproducing kernel k4, a > 0, of (D_4)o (space mod constants) at a point w € Cy /5,
is given by
(logn)®  T'(1+a)
nstw - (w L5 — 1)1+a

2.10)  kw-a(s) =)

n>1

—i—Ea(S‘i‘w), AES CI/Z»

where E,(-) is a holomorphic function on Cy, see Lemma 5.1 in [15]. Observe that

1
(Re(w) — 1/2)a+1’

For a = —2, we have ky —4(s) = {"(s + W) and {"(w) ~Re(w)—>1/2 (Re(w) — 1/2)73.
Recall also that for any orthonormal basis { f, } of (D—q)o, for any we Cy/5,

2.12) D 1) =y, —a(w).

(2.11) ”kw,fa”Ea = kw,fa(w) ~Re(w)—>1/2
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The local embedding theorem, [13], states that there exists an absolute constant C > 0
such that for every f € #2,

LTy 0 N2 )
(2.13) o _T‘f(§+zt)’ At < C|f|3. T >0.

A direct application of (2.13) is that for every f(s) = }_,5, an/n® € (D-a)o,a > 0,
we have the following embedding:

1 T e} . > 1\a—1 ) o) 2o 1\a-1
ﬁ[T[/2|f(O+lt)| (O'—E) d()'dlfcr;|an| / n (O—§> dodt

1/2

(2.14) <C

I'(a) - @
2o O lanl? Gogm)™ = € —= |1 f 12,
n>2

where C is the constant appearing in (2.13). In particular, if B is a subset of C;;, with
bounded imaginary part, then 15 (Re(-) — 1/2)4" 1 dA is a Carleson measure for (D—,)o.
More generally, if «: [0, +00) — [0, +00) is integrable, bounded and decreasing then
k(| Im()|)(Re(-) — 1/2))?~1dA is a Carleson measure for (D_g)o.

The differentiation operator D(f) = f’ is an isometry between Jg and (D—z)o.
By (2.5), the composition operator C,, belongs to S, (H#?), p > 0, if and only if the
operator (D o C, 0 D™1)*D o C, 0 D! exists in S, ((D—2)o) if and only if the operator
Ty: (D-2)o — (D—-2)o defined as

(2.15) (To(f). 8) = . S (w) g(w) My (w) dA(w)
1/2
belongs to S, ((D—-2)o)-

3. Composition operators belonging to Schatten classes

3.1. Schatten class and Carleson measures

We shall divide the proof of Theorem 1.1 into several parts. We first handle the case
p > 1in a more general context by giving a necessary and a sufficient condition for C,, to
belong to S5 ,. Both conditions involve M, and Carleson measures. At this stage, we do
not assume anything on the imaginary part of ¢.
Theorem 3.1. Let p > 1 and ¢ € &.

(a) Assume that Cy, € Syp, and let | be a Carleson measure for (D_»)o. Then

/ (My(w))” §"(2Re(w))
Cp  (Re(w)— 1/2)7
(b) Assume that there exists p: ¢(Co) — (0, 400) such that pdA is a Carleson measure
for (D—3)¢ and that

/ (My(w))? ¢"(2Re(w))
(Co) p(w)?~!

du(w) < +oo.

(3.1 dA(w) < +oo.

Then Cy € Sp.
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Proof. We start by proving (a). Denote by /,, the inclusion operator from (D_3)¢ into
L%(C, /2, ), which is bounded since p is Carleson. Moreover, assuming C, € S, or,

equivalently, T, € S;,, we get by the ideal property of Schatten classes that 1, o T,},U /2 ¢ Ss.
Let { f,} be any orthonormal sequence of (D_3)¢. One can write

00 > I, o T3, = D ITLPUdliagy = D fc UTP2(fu). kw.—2) > dp(w)
1/2

n>1 n>1

- [C 1722wy )2, ditw) = / (T2 (kup —2). Ko —2) dje(w)
1/2

Cy/2

> [ (T (Kuw—2). Ko —2))? [k —2> dpt(w)
1/2

by (2.2), where K, _» is the normalized reproducing kernel of (_5)o at w. Observe that
the exchange of integral and sum is justified by Tonelli’s theorem. Fix 0 > Re ¢(+00).
By (2.15),

o213, = [

2 P 2
([ 1K2 @ M) da)” 21 dia(w)
Cipp 2JCyp

>

p
| / |Ku,2(2) My (2) dA()) o, 2P diaw).
C1/2\Cop * JD(w,} (Re(w)—1/2))

By (2.10), one can estimate the behaviour of Ky, —»(z) in the disk D(w, %(Re w—1/2)),
whenever Re w < 0, to obtain

/ |Ku—2(2) My (2) dA)
D(w,} (Re(w)—1/2))

My(2)
> / — 2 dA(z) >
Dw, 1 Re(w)—1/2)) (Re(w) —1/2)3 )

M(p(w)
Re(w) —1/2’

where the last inequality follows from the submean value property of the mean counting
function (2.6). Taking into account the value of ||k, —2||, we get

/ (My(w))? §"(2Re(w))
Ci2\Copo  (Re(w) —1/2)P

du(w) < +oo.

Finally, (2.8) yields

/ (My(w))? {"(2Re(w))
C (Re(w) — 1/2)?

du(w) < f ¢ (2Re(w)) dpt(w)

0oo Joo

<</ 127% 12 du(w) < +o0.

oo

Conversely, assume that (3.1) holds and let g be the conjugate exponent of p. For p =1,
the validity of (3.1) follows from the Hilbert—Schmidt characterization. Thus, we will also
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assume that p > 1. Let { f,,} be any orthonormal basis of (D_;)q. Then

Srt i = . . o) My () dA(w))”

n>1 n=1
|f"(w)|2/pM<p(w) 2/q 1/q p
n>1 /‘P(Co) p(w)l/q | fn ()79 p(w) dA(w))
|fn(w)|2M(p(w)P . e
d : 4 .
X, G ) [ o e s

Since pdA is a Carleson measure and since Y, | 5 (w)|?> = ky,—2(w) for any orthonormal
basis of (D_3)¢, we get

(My(w))? kuy,—2(w)

P
ST )" < [, e daw
(My(w))? §"(2Re(w))
d .
< [w(co) p(w)P~! At
Hence, T, belongs to S,. L

In view of the above theorem, the ideal case would be to choose a function p : (Cp) —
(0, +00) such that pdA is a Carleson measure for (D—5)¢ and
1 p(w)

()P~ Re(w) —1jp° WS¢0

This yields p(w) = Re(w) — 1/2. Now if ¢ has bounded imaginary part, then the embed-
ding inequality implies that 1,c,)(Re(w) — 1/2)dA is a Carleson measure for (D_»)o.
This gives the way to the case p > 1 of Theorem 1.1.

Corollary 3.2. Let p > 1 and let ¢ € &g with bounded imaginary part. Then Cy, belongs
to S»p if and only if

(M(p(w))P
/(;1/2 W dA(w) < +o00.

Proof. Our discussion actually shows that, under the assumptions of the corollary, we
have Cy, € S, if and only if

(Mp(w)t)?

It remains to show that this is equivalent to (1.3). Let 0o, = 2 Re ¢(+00). Then for
weCin\Coqy,

< "(2Re(w)) K

1 1
(Re(w) — 1/2)3 (Re(w) — 1/2)3
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We may conclude if we are able to prove that for any ¢ € &Y,

My (w)? /
2R dA
/Cam (Re(w) — 1/2)7~1 {7 (2Re(w)) dA(w) < +o0,
and oty
o(w
dA )
A‘jaw (Re(w) — 1/2)p+2 (w) < +o0
Both of these properties follow from (2.8). .

When ¢ does not have bounded imaginary part, there are still interesting Carleson
measures for (D_3 )¢, for instance (Re(w) — 1/2)/(1 + |Im(w)|)?dA for any a > 1. This
yields to the following result.

Corollary 3.3. Let p > 1, let p € &g and let a > 1.
(a) If C, belongs to S, p, then

My (w)?
/Cuz (Re(w) = 172)7+2(1 + [Im(uw))e “AW) = oo

(b) Assume that

My(w)? a(p—1)
/(;:1/2 (Re(w) — 1/2)p+2 (1 + [Tm(w))**?~" dA(w) < +o0.

Then Cy € S>p.

Proof. This follows from Theorem 3.1 with p(w) = (Re(w) — 1/2)/(1 + |Im(w)|)? and
di = pdA. Again we can replace everywhere {”(2Re(w)) by (Re(w) — 1/2)73 since
for (a),

M(p(w)p
e, (Re(w) — 1/27+2 (I ¢ [m(w)pe ¥4 = o
and for (b), {”(2Re(w)) < (Re(w) — 1/2)73 is valid throughout Cy . .

We now prove that (1.3) remains necessary for p > 2 without any assumption on ¢.
Theorem 3.4. Let p > 2 and ¢ € &y. Assume that Cy, € S p,. Then

(M(p(w))P
‘/;:1/2 W dA(w) < +o00.

Proof. For the positive operator T, belonging to S,, denoting by { f,,} an orthonormal
basis of eigenvectors of T,

00> |T2lls, = Y (T2(fu). fa) =D /C T2 (fu) (W) fu(w) My (w) dA(w)
1/2

n>1 n>1

=3 TP ) kw,—2) Fa(w) My (w) dA(w).

n=1"Ci2
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The quantity under the integral sign is nonnegative since

(T ) w.—2) Ja W) = s f K, —2) fu(w) = 771 fu(w)]”.

An application of Tonelli’s theorem yields

00> |25, = [C S U T2k —2)) Fo0) My () dA ()

1/2 p>1

— [ ) k) My () dAw)
Cy/2
= [ R K)o Mo () dAw)
Cy/2
We now use (2.2):
00> IT2sy = [ (Ty(Ku2). K)o 2 My () dAw)
1/2
2 p-1 2
> (]. 1Kun2@P Mp(2)dAE)) " w2 My (w) dA(w).
Cy) Cy)
We conclude as above using the submean value property of the counting function (2.6) to

deduce that (1.3) holds true. [

We end up the proof of Theorem 1.1 by considering the case p € (0, 1).

Theorem 3.5. Let p € (0,1) and ¢ € &. Assume that ¢ has bounded imaginary part and
that Cy € S»p. Then

/ MoW)” 14 w) < 400,
C

,» Rew —1/2)7+2

Proof. We still denote by { f,,} an orthonormal basis of eigenvectors of T;,. We now write

7ol = 3 (Tl )" = X ([ 1P Mgt d(w)”
Ci/2

n>1 n>1
- Z (/((C ) %@1/2 | fu(w)[* (Re(w) — 1/2) dA(w))p_
n>1 %o

Now by (2.14), the measures 1,(c,)| /2 (-)|*(Re(-) — 1/2) dA are finite measures on Cy/,
with uniformly bounded mass. It follows from Holder’s inequality and (2.12) that

ITyls, > [ 3 2ol )P (Re(w) — 1/2) da(w)
e, 2= Re(w) — 1727
1/2 p>1

Myw)?
” /«:l/z Re(w) — 1271 0 CRe)dAw). .
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3.2. The case of even integers
We now prove the 2m-Schatten class characterization (1.4).

Proof of Theorem 1.2. We first prove that (1.4) implies that Cy, is compact. If this were
not the case, then we could find § > 0 and a sequence {w(k)} C C,/, with real part going
to 1/2 such that for every ¢ € (0, 1), the rectangles

Ry = (Rew(kz) — 1/27 3(Rew(l;) — 1/2)>
X (Imw(k) — 8(Re w(k) — %),Im w(k) + S(Re w(k) — %))
are pairwise disjoint and for all k > 1,
My (w(k))
Re(w(k)) —1/2 —

Let A = ]_[;-":1 Ry.. We recall that {”(s) has a pole of order 3 at s = 1, thus we can
choose ¢ > 0 close to zero such that

Re (é.//(uTl + UJ2) . ;N(wm—l —+ wm) é’"(@ + wl)) > (Rew(k) N %)_Sm’

forevery w = (wq,.. ., Wy ) € Ag. Using the mean-value property of the counting function
as well as the estimate above, we obtain that

(W1 + wa) & (W1 + W) & (@ + w1) [ | My (wy) dA(w))

Ax =1

m

Mw(wk) m
> iy -2

Since the sets A are pairwise disjoint, this would contradict (1.4).

Hence, for both implications of Theorem 1.2, we may assume that C, hence T, is
compact. Let us consider the canonical decomposition of Ty, T, (f) =) o Su{ f, fu) fa-
We know that C, € S5, if and only if T(;" € S1, if and only if -

D AT (fa) Ju) < 0.
n>1
We observe that
ST ) = 3 [ 07 oy —2) Falwon) My () dA ).
n>1 n>1 C1/2
Arguing as in the proof of Theorem 3.4, we may use Tonelli’s theorem to get

ST fod = [ (12 g2 oy 2) M) ()
1/2

n>1

= /C [(C (T(;"_z(kwl,—z), ka’_2>§”(wl + w_z) Mq,(wz) M(p(wl) dA(wz)dA(wl)
1/2 1/2
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By induction one obtains

175" s, = / / ¢ (W1 + wz) - & (W1 + W) & (W + w1)
Cy/2 Ci/z

X H My, (wi) dA(wy). [
k=1

We now intend to give a similar characterization involving the boundary values of
¢ € &. For every y € T, ¢, belongs to &, and for almost every y, the generalized
boundary value ¢(y) = lim,_, o+ ¢,(0) does exist (see Section 2 in [8] or Corollary 3.3
in [9]). Of course, Re(¢(y)) = 1/2 for almost every y € T °°. We first show that when C,,
is compact, this inequality is strict for almost every y € T°.

Theorem 3.6. Let ¢ € &y be such that C, induces a compact operator on H?. Then
Re(p(x)) > 1/2, for almost every y € T°.

Proof. The norm of the image of a function f € J? under C,, can be written as

| f(w)I? dpg (w),

Ci/2

I1Co e = [ 17 o 0G0 dmacti = |

where [, is the push-forward measure of m« by ¢(yx), see [8]. Since C,, is compact and
the reproducing kernel £ (- 4 ) of #? at w satisfies

+ 0(1),

1
A

we can argue like in the proof of Theorem 3 in [19] to deduce that

(3.2) re(Q) = o(|I]). as|I| =0,

where Q is a (Carleson) square in C; /, with one side / on the vertical line {Res = 1/2}.
This means that y,, is a vanishing Carleson measure for H?(C; /2) and this implies that
Mo|{Res=1/2) is absolutely continuous with respect to the Lebesgue measure of R. Follow-
ing a standard argument, see for example [11], Chapter 3, we will prove that y|(res=1/2}
is equal to 0. By the Lebesgue—Radon—Nikodym theorem, there exists a positive function
f € LY(R) such that

divg|res=1/2y = f(t)dt.

The set E = {y : Reg(y) > 1/2} is of full measure if and only if f = 0. Let us assume
that there exists ¢ > 0 such that | f ~1((e, 00))| > 0. Let F C f~!((e, +00)) with positive
and finite measure, and let § > 0 be such that

Ho(0) = 5 11|

for every Carleson square in Cy/, with length |/| < §. We can cover F by a sequence of
intervals {I,} such that |I,| < § and

> | <2|F].
n
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Now,
& &
elF| < tglimes=1/2y(F) = 3 3 IIal < S 1F),
n

which is a contradiction with | F| > 0. Thus Re(¢(y)) > 1/2 fora.e. y € T. L]

We are now ready to give an analogue of Theorem 1.2 involving the symbol directly.

Theorem 3.7. Suppose that the symbol ¢ € &g induces a compact operator and letm € N.
Then, C, belongs to Sy, if and only if

|| @0 + G+ £ @l + i) £ + 012
(3.3)

X l_[ dmeo(yr) < 00.
k=1

Proof. LetT =C (;‘ o Cy, and let us consider its canonical decomposition

T(f) = salf. fu) fu.

n>1

We know that C,, € S5, if and only if 7™ € S, and that

(T(.8) = [ ) 500 dmosl)

Then
ST S fu) = Y AT ) T ()
n>1 n>1
= Z/Tw S (@GO (T 1(fn), §C¢ + @(x1)) dmeo()1).
n>1

As in the proof of Theorem 1.2, the quantity inside the integral is nonnegative which
allows us to use Tonelli’s theorem. Hence

ST i = [ (7 ) Konro) dsn)

n>1

= /Oo/w(T'”_z(kml),o)vk«)(n),o)é(w(xl)+<p(_xz)) dmeo(x1) dmeo(12).

By induction, one finally obtains

1770 = [ oo [ €00+ 00D+ £ + ) € +00)

X 1_[ dmeo(Xk)- |

k=1
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4. A comparison-type principle

4.1. The Lindelof principle and the Littlewood inequality

In this section, we will use the Lindelof principle for Green’s functions to give a simple
proof of the non-contractive Littlewood inequality (2.7). Similar techniques have been
used in the disk setting, [5].

We recall (see for instance [22]) that a Green function for a domain 2 C C is a function
ga: Q2 x Q — (—o0, +00] such that, for all w € 2, g(-, w) is harmonic in Q \ {w},
ga(z,w) > O0neasz — dQ2 and go(-, w) + log| - —w| is harmonic in a neighbourhood
of w. If a domain admits a Green function then it is necessarily unique. For instance, the
Green function on the disk gp: D x D +— (0, +00] has the form

1—zw
gp(z,w) = 10g‘ — )
By conformal invariance, we can easily define Green’s function on every simply connected
subdomain of the complex plane, for example,

gc,(z,w) = log)z +w ‘, z,w € Cyp.

zZ—w
The class of domains D possessing a Green function gp is much larger than the simply
connected domains, see Chapter 4 of [22]. The Lindelof principle for Green’s functions
(see for instance [4]) states that if f is a holomorphic function mapping D to D,, where
both of those domains possess Green’s function, then for zo € Dy and w € D, \ { f(z0)},

(4.1) Y gpi(z.20) < gp,(w, f(20)).
zef~1({w})

Let us first show how to deduce, up to a multiplicative constant, the Littlewood inequal-
ity (2.7) and also a corresponding inequality for a symbol in &> (such an inequality was
used in [3] to obtain a sufficient condition for composition operators with symbols in &>
to be compact on J#2). Recall that for € &1, its restricted Nevanlinna counting func-
tion is defined by
Ny (w) = Z Res.
seyy((w))
[Ims|<1

Theorem 4.1. The following statements hold.
(a) Let ¢ € &. Then forallw € Cy/3 \ {@(+00)},

@(+00) + W — 1

M,(w) < mlo
o(w) = mlog @(+00) —w

(b) Let y € &>q. There exists C > 0 such that, for all y € T and for all w € Cq with
Rew < ¢y,
Rew

N. <C —.
v (W) = 1 4+ (Imw)?
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Proof. (a) Let g € &g and we Cy 5 \ {¢(+00)}. For T > 0 sufficiently large, w # ¢(7T),
so that the Lindelof principle implies

T +5 o(T) +—1
2 log‘T—s‘Slog (T)—w ‘
sep-1({w}) 4

On the other hand, using the elementary inequality log(x) > %(1 — x7?), valid for x > 0,

S 2T Res
> ez ¥ g

seoT(tw)) T s ()

Observe that {Re(s) : s € ¢~ !'({w})} is bounded. Therefore, for all & € (0, 1), we can
choose T large enough so that

T+5 (I—¢)
Z log T—s‘z T Z Res.
sep~({w}) sep ({w})
|Ims|<T

We can conclude by letting 7" to +o00 and ¢ to 0.

Regarding (b), let y € T and w € Cy with Re w < ¢g. The Lindel6f principle says
that

) w 2
> log \—s +2‘ < log [ >V +:”;X((2)) :
S — w —
seyr! ((w)) X

Now, when ¥, (s) = w, then 0 < Res = (Rew —Re ¢(s))/co < 1, since Rew < co. We
apply again the inequality log(x) > %(1 —x72), x > 0, yielding to

Ny, (w) < C Z log)s+2)

seyy! ({w})

Finally, it was shown in [3] that

w + 1//X(2)‘ Rew
w—Y, (2~ 1+(Imw)2’

where C does not depend neither on y € T > nor on w with Rew < ¢y. |

4.2. A comparison-type principle and a polygonal compactness theorem

We shall now apply the idea of the previous subsection when ¢ € &y maps Cy into a
subdomain D of Cy/,. The Lindelof principle helps us to find better estimates on M.
Indeed, provided D admits a Green function, the proof of Theorem 4.1 shows that

4.2) M,(w) < gp(w,¢(+00)). we Cypz\{p(+00)}.

We deduce the following comparison principle. Under similar conditions, a norm-
comparison principle appeared in [8].
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Theorem 4.2. Let ¢ € & be such that 9(Co) C D C Cy 2, where D is a simply connected
domain. Let Rp be the Riemann map from D onto D such that Rp(0) = ¢(400), and
let op = Rp(27%). Assume that Cy,, is compact. Then Cy, is compact. Moreover, if D C
{|Im(s)| < C} for some C > 0 and if C,,, belongsto Szp, p > 1, then C, belongs to S .

Proof. Let p = 27 /log(2). By the ip-periodicity of ¢p, we have that for all T > 0,

Ty e ¥ res(T]e) o

seppt(w}) sepp! ((w)) sepp{w})
0<Ims<p [Ims|<T 0<Ims<p
o<Res <oo o<Res<oo o<Res <oo

where | x| is the integer part of the real number x, see Example 4.6 in [15]. Thus

1
My, (w) ~ Z Res ~ Z log (m)
0<Ims<p zeD

seop! ({w)) zeRp ({w})

since

log2 Z Res = Z log%~

s€pp! (w}) zeRp {w})
[Ims|<p lz|<1
Res >0

By the conformal invariance of the Green function,

My, (w) ~ gp(w, ¢p(+00)).

Hence our assumption on C,,, gives an estimate on M, which transfers to M, thanks
to (4.2), which itself gives the corresponding result on C,. Observe that in both cases, we
use the characterization of compactness or membership to S, . ]

Remark. In Theorem 4.2, we can only assume that D admits a Green function and use
for Rp a universal covering map of D.

The most interesting case occurs when ¢(Cyp) is mapped into an angular sector con-
tained in Cj/,. This leads to Theorem 1.3 that we now prove.

Proof of Theorem 1.3. The Green function of the domain Q = {s € Cy/, : |arg(s) — 1/2]
<nw/Qw)}is

—1/2)* + (w—1/2)*
—1/2)% — (w—1/2)*
By (4.2) and by Lemma 2.3 in [9], for w € ¢(Cy) C £2,

ga(z,w) = log ‘ (é

(w—1/2)* 4 (p(+00) — 1/2)*
(w —1/2)% — (p(+00) — 1/2)%

provided |w — ¢(400)| > & for some fixed § > 0. The proof of compactness follows from
the characterization (1.1); the proof of the Schatten class part follows from Corollary 3.3.

M,(w) < log < Re (w - %)a < (Re(w) —1/2)%
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Indeed, letting 000 = 2Re @ (400), let T > 0 be such that | Im(w)| < T for all w € (Cyp) N
((CI/Z \ (Co'oo)' Then

»
/c \C (Re((z,i‘fw—(ul}i)Q)pH (1 + |Im(w)*P~V dA(w)
1/2 000

[ T 2(p—1)
(1 + [Im(w)|)2® - .
< /1/2 /_T (Re(w) — 1/2)p+2-pa dtdo < +o00, w=o0 +it,

since p > 1/(a — 1). Moreover,

(My(w))? 2(p—1)
/CUOO (Re(w) — 1/2)P+2 (I + [Im(w)[)*'#~" dA(w)
dA(w)
< /com (T Im(w))2(Re(w) — 1/2)2 =

by (2.8). .

Using properties of conformal maps, we can extend the compactness part of The-
orem 1.3 to slightly more general domains. This is the analogue of the polygonal com-
pactness theorem, [25], in our setting.

Theorem 4.3. Let ¢ € & be such that for some § > 0, the set p(Cy) N {1/2 < Res <
1/2 4+ 8} is contained in a finite union of angular sectors U7:1{| arg(z—1/2—it;)| <a;},
with t; € R and a;j € (0, 77/2). Then C,, is compact on J¢>.

Proof. Let us consider the Riemann map f = Rp, where

D = Cunss U [ (s~ 1 =in)| <o)

j=1

and let {wy, }n>1 be an arbitrary sequence such that Re w, — 1/2%. Since M, (wy,) =0
if wy ¢ D, we can assume that the sequence {wj,} converges to a corner boundary point
f(e'%) £ o0o. Then, by (4.2) and Koebe’s quarter theorem, see Corollary 1.4 in [20],

My (wn) < gp(wn. £(0)) < 1= f 7 (wa)|* K dist(wn, D) | f'(f 7 (wn))| ™
1 _ _
< (Rew, = 3)1//(f ™ wa))| ™
It is sufficient to prove that | /( f ~!(wy))| — oo as n — co. By the Kellogg—Warschawski
theorem (see Theorem 3.9 in [20]) and the Carathéodory extension theorem, see Chapter 2

of [20], |
|f/(f_1(w,,))| > |f—1(wn) _ ezeola—1 = 00,

where ¢ = max{a; : 1 < j <d}. [

Remark. Our techniques apply also for symbols ¢ = cos + ¢ € &> . Although, the
range of such a symbol cannot meet the imaginary axis in an angular sector, or more
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generally, inside a domain D where Im w is bounded for w € D [|(Cy \ C¢), & > 0. If
that were the case, then we would be able to find a point s(¢) € Co \ C;/@c,) such that
Re ¢(s(¢)) < e/4. The Dirichlet series ¢ converges uniformly in Cgeg()/2. see [7]. By
almost periodicity, we can find an increasing unbounded sequence of positive numbers
{Tu}n>1 such that

Rep(s(e) +iTy)) < g

so that Re Y (s(e) +iT,) < 3¢/4. We observe that |Im vy (s(¢) 4+ i T,)| — +oc. This con-
tradicts our assumption.

4.3. On the boundedness on J?

We conclude this section with the proof of Theorem 1.4. We will use Hilbertian methods
to prove that our assumption implies that C, is bounded as an operator from H to 2,
where H is a Hilbert space of Dirichlet series containing J¢?. To do this, we need another
class of Bergman spaces of Dirichlet series, the spaces 4,4, @ > 1. They are defined as

A = {76 = Y= 11, = 3 142E )
o - n . AC{ _n>1 da(n) ’

n>1

where by dy (1) we denote the coefficients of the Dirichlet series (£ (s))%, s € Cy. In partic-
ular, d,(-) is the divisor counting function. The space #4, is a reproducing kernel Hilbert
space, the reproducing kernel at a point s € C/, being the function ({(5o + -))%. The
analogue of the embedding theorem for 4, reads as follows.

Lemma 4.4 ([18]). For every f € Ay and every interval I C R, there exists a constant
C = C(|1]) such that

1 1 o
(4.3) / /If’(a+it)|2 (a——) dido < C|\ [,
172 J1 2

Proof of Theorem 1.4, Letus set @ = 2k /p. Working in a similar manner to Theorem 1.3,
there exist ¢ > 0 and C > O such that Rew € (1/2,1/2 + ¢) implies

M,(w) < C(Rew — %)a

Let T > 0 be such that ¢(Co) N (Cy/2 \ Cijo4e) C[1/2,1/2 4] x [T, T]. By (2.4),
for fe HP C Je2k

ICo I3 = 1€ e = 75 ChooDP 4+ = [ (Y )P M) dA(w)

Cyi/2
1/24¢ ,pT 1\«
<</ / I(f*Y (o + it))? (0——) dtdo
1/2 -T 2

FL P+ = [ I P My () dAw).

Ci/2+e
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Let us write f¥ = > j>14jJ . By the Cauchy-Schwarz inequality, for all w € Cy/24,
oy Iajllogj |aj 1> \1/2 ( — da () log® j \1/2
(el =2 T = (2 q5) (E™5m)
j>2 j=2
< C(e) |27 ||fk||m-
Note that )
do(j)log” j
C(s)) =)
=

converges absolutely for Res > 1 + ¢, & > 0.

By the local embedding theorem (4.3), the boundedness of pointwise evaluation at
@(+00), and the continuity of C, on J2, applied to 275, we get

1Co (O3 < FFN1Z, -

Now, the inclusion operator i: #? Ik A 1s contractive, [16]. Therefore,

1Co(Pllser = ICo(N g < NSEILE < 1A 1w = 1f Nlser

Let us turn to compactness. Let { f,, }»>1 be a sequence of K¢ converging weakly to 0.
We set g, = fnk and observe that {g,} converges pointwise to 0 on C;/, and that the
Dirichlet coefficients g, (j) converge to 0 for each j > 1.

We work as above, but we now set « = 2k /g and consider § € (0, ). Then

ICo (S 150 < 1Co ()5 = 1Co(€n) 15

1/2+5 1
< |gn(p(+00) 2 + 81/7-1/a / / gho+inP (o= 1) drdo
1 T 2

L2 |25 (w)]> My, (w) dA(w).

€1)2+8

The first term goes to zero as n tends to +o00, and the second term is as small as we want
for every n if we adjust § small enough. Therefore it remains to show that, for a fixed
S > 0, the last terms tends to 0 as 7 tends to +o00. Now, foralln > 1 and all w € (C1/2+5,

1€ (j)|log j do(j)log? j\1/2 1§60 ()12 \1/2
|gn( w)| < Z_" _Rew' = (Z ;zRew—B/z ) (22 da(nj)j8/2>
Jj=

Jj=2 j=2

N |~
- g0 (/)7 1 2 \'/?
<27 ( Lo s lanld,)
,-; du(j)]2 T N2 1A
Since the sequence {g,} is bounded in #A,, for any n > 0, there exists ng € N such that
lg, (w)| <n|27*|. We now argue as above to conclude that {Cy, (f»)} tendsto O in #7. m

Remark. We choose to work with symbols with range into angular sectors for the sake
of simplicity. It will be interesting to know if our techniques can be applied to give other
examples of geometric conditions related to the behavior of composition operators on
Hardy spaces of Dirichlet series.
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5. Further discussion

5.1. Bergman spaces

We focused on the Hardy space #2, but we can extend our results to Bergman spaces
of Dirichlet series D_,, a > 0. The class & determines again the bounded composition
operators on D—_,, a > 0. For Dirichlet series symbols ¢ € &, the compact composition
operators C, have been characterized, [15], in terms of the weighted counting function

My14a(w) = lim lim% Y Res)'™ w # p(+00),

o—=0t T—>o0 1
s€ep ({w})

|Ims|<T
o<Res <oo

and similarly with the Hardy space case, Cy, is compact on D_,, a > 0, if and only if

lim M(p,l+a(w)
Rew—1/2+ (Rew — 1/2)1+4

Theorem 5.1. Let ¢ € &y and let p > 4. A necessary condition for the composition oper-
ator Cy, to belong to the class S is the following:

/ (My,1+a (w))p/2
Cy/2

CRY (Rew — 1/2)(a+1)p/2+2

dA(w) < +o0.

If we further assume that ¢ has bounded imaginary part, then C, belongs to the class Sp,
p = 2, if and only if ¢ satisfies (5.1), and for p > 0, the condition remains necessary.

To prove Theorem 5.1, one can argue in a similar manner as with the Hardy space #2,
using the analogue key ingredients, namely, the change of variables formula (Theorem 1.2
in [15]), the Littlewood-type inequality (Proposition 5.4 in [15]), the weak submean value
property (Theorem 4.11 in [15]), and the behavior of reproducing kernels (2.10).

5.2. Carleson measures

E. Saksman and J.-F. Olsen [19] proved that if u is a Carleson measure for #2, then it
is a Carleson measure for H?(C, /2)- The converse is also true with the extra assumption
that u has compact support.

A direct consequence of the local embedding theorem is that a sufficient condition for
ameasure i in {1/2 <Res < 0} to be Carleson for #2 is {C(un, H*(C1/2))}nez € L',
where (i, is the restriction of u on the half-strip {s € Cy/, : n <Ims < n + 1}. Indeed,

f(w) |2
[t <y | D dun(w)
Cy)2 nez YCip w—in
<Y | L] <3 COf 12 < 1/ o
nez T HZ(CI/Z) nez
An example of such a measure is the restriction of % dA(w) to {1/2 < Res <

(14 Re ¢(+400))/2}. The above condition is not necessary, as we will exemplify now.
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We consider the sequence {s, },>1, where

sn=%+(%)n+i(n+%).

As we will prove in a moment, the measure du(w) = >, (Res, — 1/2) &, (w) is a
Carleson measure for J¢Z, where 85, (w) is a Dirac mass at s, . The restriction j,, n > 1,
has the form

1
dun(w) = (Resy = 3 ) &, (w).
Let Q,, n > 1, be the square with centre at the point s, and one side /,, on the line
{Res = 1/2}. Then,
[ 1]
Mn(Qn) = 2n )
and thus {C (i) }nez ¢ £'. It remains to prove that du(w) = > ns1(Resy, —1/2) 85, (w)

is a Carleson measure for J¢2. Actually, this is true for every sequence {s,}n>1 in C1/2
such that

1 |
(5.2) Resni1 =5 Sa(Resn—z), neN,

for some a € (0, 1). We follow an argument of Section 4 in [23], see also [1]. It is sufficient
to prove that the matrix

§(si +55)
:[ Si + 8; ]j>1

\/§(2Resi)\/§(2Resj) L,jz
defines a bounded operator on £2. We will prove that for every j € N,
55 skl

v VC(2Res;)/T(2Res;) —

and the result will then follow from Schur’s test, see [26], Section 3.3.
The Riemann zeta function has a simple pole at 1. Therefore, (5.2) yields the existence
of ip > 1 and of b € (0, 1) such that, for all i > iy,

§(2Resit1) —

where b € (0, 1). We only need to prove (5.3) for j > iy. On the one hand,

3 1 (si + 57) < | (Re si, +Res;)|

52 V{(2Res;i)/T(2Res;)) \/C(2Res1)\/§'(2Res])
On the other hand,
s DL 5 K0/2+ max(Res Reyy))
5 V{Q2Res;)/C(2Res;) /5 y/{(2Res;) /T(2Res))
« 3 (B 3 (g« g 3w

i>j>ip i0<i<j i>j>ip

ip<i<j
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