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Trace field degrees of Abelian differentials

Erwan Lanneau and Livio Liechti

Abstract. We prove that every even number 2�2d�2g is realised as the degree of a Thurston–
Veech pseudo-Anosov stretch factor in every connected component of every stratum of the
moduli space of Abelian differentials.

1. Introduction

Pseudo-Anosov mapping classes first appeared in Thurston’s work in connection to
classification of surface homeomorphisms. Nowadays, their study is a theory by itself
combining Teichmüller theory, dynamics, flat geometry and number theory. A map-
ping class f is pseudo-Anosov if and only if it asymptotically stretches every iso-
topy class of essential simple closed curves by a fixed factor �.f /, with respect to
any Riemannian metric. Examples arising from Anosov torus covers are abundant,
and there are many other constructions, for instance using train-tracks [13], Rauzy
induction [15,20], veering triangulations [1], Penner’s construction [14] or Thurston–
Veech’s construction [18] and [21, §9].

Algebraic degrees of stretch factors

An important aspect of the theory of pseudo-Anosov mapping classes emerged with
Fried’s work and concerns the study of the stretch factor �.f /. This is a bi-Perron
algebraic integer of degree bounded above by the dimension of the Teichmüller space
for the underlying surface. The question of realising any bi-Perron algebraic integer
as a stretch factor is a major challenge in the theory. Despite recent advances [11,12],
Fried’s question remains widely open. Observe that we cannot hope for a positive
answer if we fix the topology of the underlying surface: there are cubic bi-Perron
number that are not realised as the stretch factor of any mapping class on a genus
three surface, see the work by Thurston [19, p. 6], and more recently [22].
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Thurston–Veech’s construction

Given two multicurves ˛ D ˛1 [ � � � [ ˛n and ˇ D ˇ1 [ � � � [ ˇm with n and m
components, respectively, that fill a surface † and intersect minimally, we let X be
their geometric intersection matrix. In his 1988 seminal bulletin paper [18], Thurston
proved that all nontrivial products of multitwists in hT˛; Tˇ i except powers of con-
jugates of T˛ or Tˇ are pseudo-Anosov if the Perron–Frobenius eigenvalue of XX>

is strictly greater than four. In the same article, Thurston provides the upper bound on
the algebraic degree of a pseudo-Anosov stretch factor �.f / by the dimension of the
Teichmüller space in general, and by 2g in the special case of orientable invariant foli-
ations. He also claimed, without proof, that “the examples of [18, Theorem 7] show
that this bound is sharp.” The referenced examples are exactly the examples nowadays
known as Thurston’s construction, described above.1 More recently, Strenner [16]
answered the question of which degrees appear for a pseudo-Anosov on a genus g
surface, including all nonorientable surfaces, by using Penner’s construction [14].

Main results

In this paper, we justify Thurston’s remark for pseudo-Anosov mapping classes with
orientable invariant foliations. In fact, we obtain a stronger result justifying Thurston’s
remark in every connected component of every strata of Abelian differentials, not just
for a given genus.

Theorem 1. Every even integer 2 � 2d � 2g is realised as the degree of a stretch
factor of a product of two affine multitwists on a surface in every connected component
of every stratum of Abelian differentials on Riemann surfaces of genus g.

The terminology “connected component” can be skipped on a first reading of this
paper, and we refer to Section 4.1 and [8] for more details. A stratum is the set of
Abelian differentials having prescribed singularity multiplicities .k1; : : : ; kn/, where

nX
iD1

ki D 2g � 2:

The extension fieldK DQ.�C ��1/ is important in Teichmüller dynamics and is
called the trace field. It is an invariant of Abelian differentials and has degree at most g
over Q (see [6, 7]).We will deduce Theorem 1 from the following result asserting
that choosing a connected component of a stratum of Abelian differentials poses no
restriction on the degree of trace fields.

1In the literature, this construction is often called Thurston’s construction. We choose the
name to include Veech since in its full generality, the construction first appeared, independently,
in the two cited articles by Thurston and Veech.
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Theorem 2. Every integer 1 � d � g is realised as the degree of the trace field of a
product of two affine multitwists on a surface in every connected component of every
stratum of Abelian differentials on Riemann surfaces of genus g.

Theorem 2 completely answers the question about trace field degrees, per com-
ponents of strata of Abelian differentials. However Theorem 1 is not quite complete
since mapping classes with odd degree stretch factors can arise as product of two
affine multitwists. We leave open the following question:

Question 3. For a given connected component C of a stratum of Abelian differentials
on Riemann surfaces of genus g, which odd integer 3 � d � g can arise as the degree
of a stretch factor of a product of two affine multitwists on a surface belonging to C?

Stretch factor degrees and trace field degrees are closely related. Since � is a root
of the polynomial t2 � .�C ��1/t C 1, the degree of � over K is either one or two.
The degree one case corresponds to pseudo-Anosov homeomorphisms with vanishing
SAF invariant by a result of Calta and Schmidt [4], see also Strenner’s article [17]
and [3] for the first known example. As a key step in proving Theorem 1 we present
a novel nonsplitting criterion stating that the degree of the field extension Q.�/ W

Q.�C ��1/ equals two under certain conditions in Thurston–Veech’s construction;
see Theorem 6 in Section 2.

Another variation of Thurston’s remark concerns subgroups of the mapping class
group. The following question was asked to us by Dan Margalit. Instead of fixing
a stratum, one may fix a subgroup: which algebraic degrees are attained in various
infinite index subgroups of the mapping class group, such as the Torelli group or other
normal subgroups? For an integer p, the level p congruence subgroup Modg.p/ is
the subgroup of the mapping class group consisting of mapping classes that act trivi-
ally on H1.†IZ=p/. Since an affine multitwist is acting as a product of commuting
transvection matrices on the homology, by taking a suitable power, we deduce the
following corollary.

Corollary 4. For every p > 1, every integer 1 � d � g is realised as the degree of
the trace field of a pseudo-Anosov mapping class in the level p congruence subgroup
Modg.p/.

Proof of Corollary 4. Fix an integer 1 � d � g and let ˛ D ˛1 [ � � � [ ˛n and ˇ D
ˇ1 [ � � � [ ˇm be two multicurves, with n and m components respectively, given by
Theorem 2. On the homology level, the action of the Dehn twist T˛i

along the curve ˛i
is given by

Œ
� 7! Œ
�C i.
; ˛i /Œ˛i �;

where i.� ; �/ is the algebraic intersection form onH1.†IZ/. In particular, one sees that
T
p
˛i
2Modg.p/. Since ˛i are pairwise disjoint, T˛i

are pairwise commuting mapping
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classes, and
T p˛ D .T˛1

� � �T˛n
/p D T p˛1

� � �T p˛n
2 Modg.p/:

Therefore, the group hT p˛ ; T
p

ˇ
i is fully contained in Modg.p/. Since all pseudo-

Anosov mapping classes in hT˛; Tˇ i have the same trace field, this leads to the result.

Square-tiled surfaces

The case when ŒQ.� C ��1/ W Q� D 1 plays a special role in Teichmüller theory,
and our theorems are well known in this context. The translation surfaces admitting
such pseudo-Anosov maps are also called arithmetic surfaces, or square-tiled surfaces,
since they are torus coverings [6]. In particular, this implies that the field extension
Q.�/ W Q.�C ��1/ has degree two.

Outline of the proof of the main results

Let H .k1; k2; : : : ; km/ be a given stratum of Abelian differentials in genus g. Fix
some 2 � d � g. This is the degree of a trace field we want to construct. In Thurston–
Veech’s construction, the stretch factor � of T˛ ı Tˇ is related to the geometric inter-
section matrix of ˛ and ˇ as follows: the number � C ��1 C 2 equals the Perron–
Frobenius eigenvalue ofXX>. In order to control the degree of �C ��1, we therefore
need to control the degree of the Perron–Frobenius eigenvalue of XX>. Roughly, our
strategy consists of the following four steps.

Step 1: Construct examples. For positive integers y, yi , i D 1; : : : ; g � 1, we start by
constructing a square-tiled surface .X; !/ 2 H .k1; k2; : : : ; km/ depending on y, yi .
We think of the numbers y, yi as variables that we specify in the following. Applying
Thurston–Veech’s construction using the core curves of the horizontal and vertical
annuli of .X; !/ gives us a g � g matrix XX>.

Step 2: Specify the yi . The characteristic polynomial pg.t; y/ 2 ZŒt; y� of the mat-
rix XX> satisfies pg.t; y/ D .t � 2/g�dpd .t; y/ if we set g � d C 1 of the g � 1
parameters yi equal to 2. Furthermore, if all the other yi are pairwise different, then
pd .t; y/ is shown to be irreducible in ZŒt; y� in Section 3.2.

Step 3: Specify y. Hilbert’s irreducibility theorem [9] furnishes infinitely many inte-
ger specifications of y such that pd .t; y/ 2 ZŒt � is irreducible. By our construction,
all these choices of parameters correspond to surfaces in H .k1; k2; : : : ; km/. Further-
more, the trace field is generated by the Perron–Frobenius eigenvalue of XX>, which
has degree d as desired.



Trace field degrees of Abelian differentials 85

Step 4: Apply the nonsplitting criterion. Finally, we apply Theorem 6 to deduce that
the stretch factor � of T˛ ı Tˇ is of degree 2d for all the specifications of yi and y as
above.

This description of the strategy does not yet take into account the connected com-
ponents we want to reach, but basically the same idea can be applied in order to deal
with all connected components. However, we need to take variations of the families
of examples we consider in order to find surfaces belonging to all of them. This is
dealt with in Section 4.

2. A nonsplitting criterion

The goal of this section is to present an algebraic criterion that allows us to deduce that
the degree of the field extension Q.�/ W Q.�C ��1/ equals two for certain products
of multitwists. Let ˛ D ˛1 [ � � � [ ˛n and ˇ D ˇ1 [ � � � [ ˇm be two multicurves
with n and m components, respectively, that fill a surface † and intersect minimally.
Let X be their geometric intersection matrix, that is, the n � m matrix whose ij -
th coefficient equals the geometric intersection number of ˛i and ǰ . We assume
that the Perron–Frobenius eigenvalue �2 of XX> is of degree d . Furthermore, we
let�D

�
0 X
X> 0

�
. For a symmetric matrix A, we denote by �.A/ its signature, i.e., the

number of positive eigenvalues minus the number of negative eigenvalues. We will
also denote by null.A/ its nullity, i.e., the dimension of its kernel.

Lemma 5. The following properties hold:

(1) The number �.� C 2I / C null.� C 2I / equals the number of eigenvalues
of � in the interval Œ�2; 2�.

(2) The eigenvalues �i of M D
�
I X
0 I

��
I 0
�X> I

�
are related to the eigenvalues �i

of � by the equation �2i D 2 � �i � �
�1
i .

Proof. The first property is exactly [10, Lemma 3.7]. The second property is [10, Pro-
position 3.3 (b)]; as the proof in [10] does not explicitly deal with the case where M
is not diagonalisable, we present a complete argument here. We first calculate

M D

 
I X

0 I

! 
I 0

�X> I

!
D

 
I �XX> X

�X> I

!
and note that its inverse is given by

M�1 D

 
I �X

X> I �X>X

!
:
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One directly verifies the equation �2 D 2I �M �M�1. In order to obtain the same
equation for all the eigenvalues (counting multiplicity), we change basis such that M
is in Jordan normal form. Note that in the new basis, also the matrix M�1 becomes
a block diagonal matrix, where all the blocks are of upper triangular form and cor-
respond to the Jordan blocks of M . In particular, also the matrix �2 becomes upper
triangular in the new basis, and the equation for the eigenvalues, �2i D 2 � �i C �

�1
i

(counting multiplicity), can be read off from the diagonal entries of the matrix equa-
tion.

Our criterion for the construction of pseudo-Anosov maps with stretch factors of
controlled degree is the following.

Theorem 6. Let ˛ and ˇ be two multicurves with n and m components, respectively,
that fill a surface † and intersect minimally. Let X be their geometric intersection
matrix and assume that the Perron–Frobenius eigenvalue �2 of XX> is of degree d .
Furthermore, set � D

�
0 X
X> 0

�
. If we have

nCm > �.�C 2I /C null.�C 2I / > mC n � 2d;

then the mapping class T˛ ı Tˇ is pseudo-Anosov with stretch factor � of degree 2d .

Remark 7. This criterion is particularly strong in case n D m D d , that is, when ˛
and ˇ have the same number of components and if the characteristic polynomial of
the matrix XX> is irreducible. In this case,

2n > �.�C 2I /C null.�C 2I / > 0

is sufficient to ensure that the mapping class T˛ ı Tˇ is pseudo-Anosov with stretch
factor � of degree 2d .

Proof. We first ensure that the mapping class T˛ ı Tˇ is pseudo-Anosov. If

nCm > �.�C 2I /C null.�C 2I /;

then� has an eigenvalue outside the interval Œ�2; 2� by (1) of Lemma 5. In particular,
the dominating eigenvalue� of� is larger than 2 and the matrix product

�
1 �
0 1

��
1 0
�� 1

�
is hyperbolic, as its trace 2 � �2 is larger than 2 in modulus. Hence, the mapping
class T˛ ı Tˇ is pseudo-Anosov by Thurston–Veech’s construction [18, 21].

Now, let � be the stretch factor of the mapping class T˛ ı Tˇ . By Thurston–
Veech’s construction, we have �C ��1 D �2 � 2. In particular, we directly observe

Q.�C ��1/ D Q.�2/:

Furthermore, the degree of the field extension Q.�/ W Q.�C ��1/ is either 1 or 2. It
equals 2, which is what we want to show, exactly if � and ��1 are Galois conjugates.
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We now finish the proof by arguing that � and ��1 are indeed Galois conjugates.
By (2) of Lemma 5, the dilatation � is also the leading eigenvalue of �M , where M
is the matrix product given in (2) of Lemma 5. In particular, the Galois conjugates
of � are among the eigenvalues ��i of the matrix �M . These eigenvalues are in turn
related to the eigenvalues �i of � by the equation �2i D 2 C �i C �

�1
i , again by

Lemma 5. Since we have

�.�C 2I /C null.�C 2I / > nCm � 2d;

the matrix � has at most 2d � 1 eigenvalues outside the interval Œ�2; 2�. Via the
correspondence in Lemma 5, the matrix �M hat at most 2d � 1 eigenvalues that do
not lie on the unit circle. In particular, one of the 2d Galois conjugates of � or ��1

(including � and ��1 themselves) must be on the unit circle by the pigeonhole prin-
ciple. Thus the minimal polynomial of � or ��1 (and hence of both) is reciprocal and
it follows that � and ��1 are Galois conjugates.

3. Strata of Abelian differentials

In this section, we present a proof of our main results, Theorem 2 and Theorem 1, for
each stratum. We postpone the more intricate analysis of the connected components
to Section 4.

Let H .k1; k2; : : : ; km/ be a stratum of Abelian differentials. Recall that the num-
ber of odd ki must itself be even, say 2l . Furthermore, if g is the genus of the
underlying topological surface, we have the equality

2g � 2 D

mX
iD1

ki :

3.1. Constructing a surface

We start by constructing a square-tiled surface. First, we ensure that we land in the
stratum H .k1; k2; : : : ; km/. We start out with a long horizontal square-tiled surface
with some large number y2 � g C 1 of squares and opposite side identifications, see
Figure 1. The surface obtained by identifying the sides is a torus, and there are no
singularities of the flat structure. We can add an angle of 4� to some marked point by
inserting a vertical strip of yi C 1 square tiles, as in Figure 2.

We treat the yi � 1 as variables that we will need to specify later on. This operation
can be repeated in order to add an integer multiple of 4� to the angle around any cone
point or marked point. For example, Figure 3 indicates how to insert another vertical
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: : :

Figure 1. A horizontal square-tiled surface.

:::

!

Figure 2. Inserting a vertical strip of squares creates a cone point with angle 6� out of a marked
point.

:::

!

:::

:::

Figure 3. A vertical strip of squares can be inserted in order to add another 4� to the angle
around a cone point.

!

: : :

a

a b

b

Figure 4. Inserting an L-shaped square-tiled surface creates two cone angles of 4� out of one
marked point.
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strip of square tiles in order to add 4� to the cone angle around a cone point with
angle 6� . Iterating this procedure, we can reach all strata with even multiplicities.

In order to create odd multiplicities, we insert an L-shaped square-tiled surface
with yi C 1 tiles, yi � 2, as shown in Figure 4. This creates two cone points of
angle 4� , which is multiplicity one. Recall that there must be an even number 2l
of odd multiplicities ki , so we can repeat this step l times to have the right number
of odd multiplicities, and then successively add two to the multiplicities by inserting
vertical strips as above, until we reach the stratum H .k1; k2; : : : ; km/. Following this
procedure, we need to add a total of l L-shapes and g � l � 1 vertical strips.

3.2. Calculating the polynomial

The square-tiled surface we construct in Section 3.1 naturally decomposes into hori-
zontal and vertical annuli that are one square wide. Let X be the intersection matrix
for the core curves ˛i of the horizontal annuli and the core curves ǰ of the vertical
annuli. We index the rows by horizontal curves and the columns by vertical curves.
We now describe the matrix XX>. Since the curves ˛i and ǰ pairwise intersect in
a tree-like fashion, we use the following way of looking at the computation. The i -th
diagonal coefficient equals the number of vertical curves intersecting the i -th hori-
zontal curve ˛i . Furthermore, an off-diagonal ij -th coefficient is equal to 1 if there
exists a vertical curve intersecting both horizontal curves ˛i and j̨ . Otherwise, it
equals 0.

In order to write down the matrix XX>, we quickly recall our construction. We
have one horizontal curve that we start with. It intersects y2 vertical curves. We further
have one horizontal curve for each L-shaped surface we inserted, of which there are l
in total. These curves respectively intersect yi vertical curves, for i D 1; : : : ; l , and
are linked to the starting horizontal curve via an intersecting vertical curve.

For example, if we insert two L-shaped surfaces with y1 C 1 and y2 C 1 tiles,
respectively, we obtain the matrix

XX> D

0B@y2 1 1

1 y1 0

1 0 y2

1CA
with characteristic polynomial obtained by developing the first column of the mat-
rix tI �XX>:

.t � y2/.t � y1/.t � y2/ � .t � y2/ � .t � y1/

D �y2
2Y
iD1

.t � yi /C t

2Y
iD1

.t � yi / �

2X
iD1

Y
j¤i

.t � yi /:
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It is straightforward to generalise the last form of the characteristic polynomial to an
arbitrary number l of inserted L-shaped surfaces.

Conveniently, the form of the characteristic polynomial turns out to be basically
the same even if we insert vertical strips, but this needs a more careful calculation.
We first describe the coefficients of the matrix XX> we get from inserting vertical
strips: for each vertical surface we insert, we get another yi horizontal curves, all
intersecting a single vertical curve that also intersects the starting horizontal curve.
Here, i runs from l C 1 to g � 1. We present the matrix using parameters b; bi 2 R.
These parameters are helpful in the proof of Lemma 10, and later in Section 4.3. For
the purpose of the calculation of XX> in this section, we simply have b D bi D 1

for all i . We write bn�m for the n � m matrix with all entries equal to b 2 R. In
case n D m, we simplify and write bn.

Definition 8. For parameters b; bi 2 R, i D 1; : : : ; l , we consider the matrix

XX> D

0BBBBBBBBBBBBBBBB@

y2 b1 � � � bl b1�ylC1
11�ylC2

� � � 11�yg�1

b1 y1
:::

: : :

bl yl

bylC1�1 1ylC1

1ylC2�1 1ylC2

:::
: : :

1yg�1�1 1yg�1

1CCCCCCCCCCCCCCCCA
:

For the characteristic polynomial of the matrix XXT , we have the following res-
ult.

Lemma 9. The characteristic polynomial of XX> equals

p.t; y; y/ D ta
�
�y2

g�1Y
iD1

.t � yi /C t

g�1Y
iD1

.t � yi / �

g�1X
iD1

ci
Y
j¤i

.t � yj /

�
;

where

a D

g�1X
iDlC1

.yi � 1/;

clC1 D ylC1b
2; ci D yi for i � l C 2, and ci D b2i otherwise.
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Proof. This calculation is slightly tedious, but obtained in a fairly straightforward
manner by developing the first column of .tI � XX>/. We begin by observing that
the determinants of the yi � yi matrices

tIyi
� 1yi

D

0BBBB@
t � 1 �1 � � � �1

�1 t � 1
:::

: : :

�1 t � 1

1CCCCA ;

Myi
.t/ D

0BBBB@
�1 �1 � � � �1

�1 t � 1
:::

: : :

�1 t � 1

1CCCCA
are respectively given by the polynomials tyi�1.t � yi / and �tyi�1. The former cal-
culation follows by inspecting the eigenvalues of the matrix 1yi

, and the latter is
derived by solving the equation

det.tIyi
� 1yi

/ D t det.tIyi�1 � 1yi�1/C det.Myi
.t//:

We note that changing the diagonal coefficient .�1/ of the matrix Myi
.t/ with some

other diagonal coefficient .t � 1/ does not change the determinant. This will be used
later on in the calculation.

Now, by developing the first column of .tI �XX>/, we get that the characteristic
polynomial of XX> has the following summands. The first summand (obtained by
deleting the first row and the first column when developing) equals

.t � y2/

lY
iD1

.t � yi /

g�1Y
iDlC1

det.tIyi
� 1yi

/ D ta.t � y2/

g�1Y
iD1

.t � yi /;

where

a D

g�1X
iDlC1

.yi � 1/:

The rest of the summands are obtained as follows. Assume that in the development we
delete the first column and the k-th row, where k � 2. We have to take the determinant



E. Lanneau and L. Liechti 92

of the matrix obtained by deleting the k-th row of the matrix0BBBBBBBBBBBBBBBB@

�b1 � � � �bl �b1�ylC1
�11�ylC2

� � � �11�yg�1

t � y1
: : :

t � yl

tIylC1
� 1ylC1

tIylC2
� 1ylC2

: : :

tIyg�1
� 1yg�1

1CCCCCCCCCCCCCCCCA
:

After switching adjacent rows (a total of k � 2 times) to move the first row to be the
.k � 1/-st one, the matrix obtained is almost of block diagonal form and we can read
off the determinant. For the rows k D 2; : : : ; l C 1, we obtain the summand

.�bk�1/.�1/
1Ck.�1/k�2

� Y
j¤k�1;
1�j�l

.t � yj /

g�1Y
iDlC1

det.tIyi
� 1yi

/

�
.�bk�1/

D �b2k�1t
a
Y

j¤k�1

.t � yj /:

For the rows k > l C ylC1, we obtain summands of the form

.�1/.�1/1Ck.�1/k�2
� lY
jD1

.t � yj /
Y
j¤i;

lC1�j�g�1

det.tIyj
� 1yj

/

�
det.Myi

.t//

D �ta
Y
j¤i

.t � yj /:

Here, we assume for the calculation that the k-th row intersects the diagonal block
tIyi
� 1yi

, where i � l C 2. There are a total of yi summands of this type. If the k-th
row intersects the block tIylC1

� 1ylC1
, the corresponding constant vectors of the first

row and the first column have coefficients b 2 R. In this case, we obtain ylC1 times
the summand

�b2ta
Y

j¤lC1

.t � yj /:

Adding all summands, we finally obtain the polynomial

ta
�
.t � y2/

g�1Y
iD1

.t � yi / �

g�1X
iD1

ci
Y
j¤i

.t � yj /

�
;
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where

a D

g�1X
iDlC1

.yi � 1/;

clC1 D ylC1b
2; ci D yi for i � l C 2, and ci D b2i otherwise:

Lemma 10. Let k � 1, and let yi ; ci 2Z for i D 1; : : : ; k such that all yi are pairwise
distinct and all ci are positive. Then the polynomial

p.t; y/ D �y2
kY
iD1

.t � yi /C t

kY
iD1

.t � yi / �

kX
iD1

ci
Y
j¤i

.t � yj /

is irreducible in ZŒt; y�.

Proof. We regard the polynomial p.t; y/ 2 ZŒt; y� Š .ZŒt �/Œy� as a polynomial of
degree two in the variable y, with coefficients in ZŒt �. We note that the coefficient
of y2 and the constant coefficient p.t; 0/ are relatively prime in ZŒt �. This follows
from the observation that the roots of the coefficient of y2 are exactly the yi , while
none of those numbers is a root of the constant coefficient. Indeed, we have

p.yi ; 0/ D �ci
Y
j¤i

.yi � yj / ¤ 0:

This implies that the only possibility to factor p.t; y/ is by writing it as a product of
two factors linear in the variable y. To rule this out, we apply Eisenstein’s criterion
as follows. The constant coefficient p.t; 0/ has a simple root: the Perron–Frobenius
eigenvalue of a matrix of the form XX> as in Definition 8, where we set

l D g � 1 D k; bi D
p
ci ; y D 0:

Let q.t/2ZŒt � be the irreducible factor of p.t;0/2ZŒt � containing this root. Then q.t/
divides the constant coefficient p.t; 0/ but q.t/2 does not. Furthermore, q.t/ does not
divide the coefficient of y2 since otherwise it would have a root in common with the
constant coefficient p.t; 0/. Eisenstein’s criterion now implies that p.t; y/ cannot be
factored into a product of two factors with positive degree in the variable y.

3.3. Main results for strata

We are now ready to prove the analogues of Theorem 2 and Theorem 1 for strata of
Abelian differentials.

Theorem 11. Every number 1 � d � g is realised as the degree of the trace field of a
product of two affine multitwists on a surface in every stratum of Abelian differentials
on Riemann surfaces of genus g.
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Proof. Let H .k1;k2; : : : ;km/ be a stratum of Abelian differentials. We use the surface
constructed in Section 3.1. By Thurston–Veech’s construction [18, 21], there exists a
flat structure on it, obtained by changing the side lengths of the rectangles, such that
the multitwists T˛ and Tˇ have affine representatives, and such that the degree of the
trace field is given by the degree of the Perron–Frobenius eigenvalue �2 of XX>.

Let 2� d � g be the degree of a trace field we want to construct. Set g � d C 1 of
the g � 1 parameters yi equal to 2 and all others> 2 and pairwise distinct. In this way,
the characteristic polynomial ofXX> can be factored as .t � 2/g�dp.t; y/, where the
polynomial p.t; y/ is of degree d in the variable t and with pairwise distinct yi . In
particular, Lemma 10 implies that p.t; y/ is irreducible as a polynomial in ZŒt; y�.
Now, by Hilbert’s irreducibility theorem [9], there are infinitely many integer spe-
cifications of y such that the resulting polynomial is irreducible in ZŒt �. For jyj large
enough, all these specifications can be realised geometrically as in Section 3.1, since
we start with y2 � g C 1 squares in the construction. In particular, for every such y,
we obtain an Abelian differential with trace field of degree d .

Theorem 12. Every even number 2 � 2d � 2g is realised as the degree of a product
of two affine multitwists on a surface in every stratum of Abelian differentials on
Riemann surfaces of genus g.

Proof. In the proof of Theorem 11, we have constructed examples with Perron–
Frobenius eigenvalue �2 ofXX> having degree d by letting g � d C 1 parameters yi
equal to 2. For these examples, we now bound �.2I C�/ in order to apply Theorem 6
to T˛ ı Tˇ . Let �0 be the matrix obtained from � by deleting all the rows and all the
columns corresponding to y or the g � 1 � .g � d C 1/ D d � 2 parameters yi that
are not set equal to 2. We have

�.�C 2I / � �.�0 C 2I / � .d � 1/:

By construction,�0 is the adjacency matrix of a forest consisting of path graphs (some
of which might be of length zero). In particular, one directly verifies that 2I C�0 is
positive definite. We get

�.�C 2I / � �.�0 C 2I / � .d � 1/ D nCm � 2d C 2 > nCm � 2d:

Furthermore, one directly checks that the matrix�C 2I has a negative eigenvalue as
soon as y > 4, which we are allowed to assume. This implies

nCm > �.�C 2I /C null.�C 2I /:

Theorem 6 applies and the mapping class T˛ ı Tˇ is pseudo-Anosov with stretch
factor � of degree 2d .
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Remark 13. The mapping classes we construct above are positive arborescent and
so can all obtained by capping off monodromies of certain fibred links called positive
arborescent Hopf plumbings. This relation is discussed for example in the background
chapter of the second author’s thesis [10]. The pseudo-Anosov stretch factors there-
fore appear as the dominating roots of the Alexander polynomials of these links. It
is conceivable that our argument, or at least a portion thereof, could be replaced by
a careful analysis of these Alexander polynomials using the skein relation. However,
the calculations we present here can readily be applied to our examples in Section 4,
which are not necessarily obtained from arborescent Hopf plumbings anymore.

4. Connected components of strata

In this section, we study the connected components of strata of Abelian differentials.
After recalling the classification of the connected components, we first analyse to
which connected components our examples from Section 3 belong. We then construct
examples covering all remaining connected components, finally proving Theorem 2
and Theorem 1 in full generality.

4.1. Classification of connected components of strata

The connected components of the strata of the moduli space of Abelian differentials
are classified by [8]. There are at most three connected components, and the classific-
ation uses two topological invariants that we describe now.

(1) Hyperellipticity. For g � 2, the strata H .2g � 2/ and H .g � 1; g � 1/ have
a component that consists entirely of hyperelliptic Riemann surfaces, where
the hyperelliptic involution permutes the two zeros (when there are two).

(2) Parity of the spin structure. If the degrees of the singularities of a stratum
are all even, then one can define a spin structure, or equivalently a quadratic
form q on the first homology group. The parity of this spin structure (or the
Arf invariant of the form) is a topological invariant.

Remark 14. If a translation surface belongs to a hyperelliptic component H hyp.2g�2/

or H hyp.g� 1;g� 1/ and admits a cylinder decomposition, then all cylinders are fixed
by the hyperelliptic involution, and each of them contains exactly two fixed points in
its interior. Since the total number of fixed points is 2g C 2, this observation can be
used to show that a translation surface does not belong to a hyperelliptic component.

We will use the topological definition of the spin structure (see [8, §3.1] for
details) to have an effective way to compute its parity in terms of the Arf invariant of q.
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Since the flat metric .X; !/ has trivial holonomy, outside of finite number of singu-
larities, we have a well-defined horizontal direction. Consider a smooth simple closed
oriented curve ˛ on X which does not contain any singularities. The total change of
the angle between the tangent vector to ˛ and the tangent vector to the horizontal is
equal to 2� � ind.˛/, where ind.˛/ 2 Z. Choose any symplectic basis .ai ; bi /iD1;:::;g
of H1.X IZ=2/. Then the parity of the spin structure is [8, equation (4)]:

ˆ.!/ D

gX
iD1

q.ai /q.bi / mod 2; (1)

where q.˛/ D ind.˛/C 1 for an oriented smooth path ˛. Together with the formula

q.˛ C ˇ/ D q.˛/C q.ˇ/C i.˛; ˇ/

for any ˛;ˇ 2H1.X IZ=2/, it is easy to calculate the parity of the spin structure given
in any (nonsymplectic) basis of the first homology.

Next we explain concretely how to computeˆ.!/, where .X;!/ is obtained from
the construction in Section 3. Observe that .X;!/ belongs to a nonhyperelliptic com-
ponent if g > 2. To see this, when .X; !/ 2 H hyp.2g � 2/, note that the number of
cylinders we have inserted is g � 1. By Remark 14 they contribute to 2g � 2 fixed
points of the hyperelliptic involution (located on the 2g � 2 horizontal core curves),
say p1; p01; : : : ; pg�1; p

0
g�1. There are two more fixed points q; q0 on the horizontal

core curve of the long cylinder C we start with, and one fixed point on its boundary,
say q00, that is on the same vertical closed curve as q0. The last fixed point is the sin-
gularity. On the other hand, each inserted cylinder should have two fixed points on its
vertical core curve: one is pi , the other one is p00i 2 C . Thus necessarily p00i D q for all
i D 1; : : : ; g � 1. This is possible only if g � 1D 1. For .X;!/ 2H hyp.g � 1; g � 1/

the situation is similar.

4.2. Nonhyperelliptic components, spin 1

Consider .X;!/ obtained from the construction in Section 3 when all ki are even. As
a basis of the first homologyH1.X;Z=2/, we take horizontal curves 
0; : : : ; 
g�1 (
0
is the horizontal curve that we start with, and 
i is in the i -th vertical cylinder), and
vertical curves �0; : : : ; �g�1 (�0 crosses 
0 only once, and �i is the core curve of the
i -th vertical cylinder for i > 0). By construction, for every i; j ,

i.
0; �j / D 1; i.
i ; �j / D ıij for i > 0, and

i.
i ; 
j / D i.�i ; �j / D 0:
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We can thus form a symplectic basis as follows:´
a1 D 
0; b1 D �0;

ai D 
i�1; bi D �i�1 � �0 for i ¤ 0:

Clearly ind.
i / D ind.�i / D 0. Substituting in equation (1), we conclude:

ˆ.!/ D 1C

gX
iD2

q.
i�1/q.�i�1 � �0/

D 1C

gX
iD2

.q.�i�1/C q.�0/C i.�0; �i�1// � 1 mod 2:

4.3. Nonhyperelliptic components H .2k1; : : : ; 2km/, spin 0, m > 1

We now use a slightly different model defined as follows. Start with the surface depic-
ted in Figure 5, with a long horizontal cylinder made of y2 � gC 1 squares. It belongs
to H hyp.2; 2/. Its spin structure is 0 as we can check directly, or by using the formulae
in [8, Corollary 5].

We can insert g � 3� 1 vertical strips of yi C 1 square tiles (for i D 3; : : : ; g � 1)
as in Section 3 in order to add zeros of even multiplicities and to reach the stratum
H .2k1; : : : ; 2km/, where X

2ki D 2g � 2:

This construction does not change the spin structure as we can see on the computation
below. We let 
0 the horizontal core curve in the long cylinder, and 
1; : : : ; 
g�1
the other horizontal core curves contained in the i -th cylinder. Similarly, we let �i
for i D 0; : : : ; g � 1 the vertical core curves: �0 is the core curve of the vertical
cylinder with label A0 and �i is the core curve of the i -th vertical cylinder for i > 0.
We have for every i; j ,

i.
0; �i / D 1 for i ¤ 1 and i.
0; �1/ D 2;

i.
i ; �i / D ıij for i > 0;

i.
i ; 
j / D i.�i ; �j / D 0:

We can thus form a symplectic basis of H1.S IZ2/ as follows:8̂̂<̂
:̂
a1 D 
0; b1 D �0;

a2 D 
1; b2 D �1;

ai D 
i�1; bi D �i�1 � �0 for i > 2:
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:::
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Figure 5. A surface in H hyp.2; 2/ (with even spin structure).

By using equation (1) this leads to

ˆ.!/ D 1C 1C

gX
iD3

q.
i�1/q.�i�1 � �0/

D 1C 1C

gX
iD3

.q.�i�1/C q.�0/C i.�0; �i�1// � 0 mod 2:

We now compute the degree of the trace field. In order to write down the matrixXX>,
we apply the strategy described in Section 3.2. Observe that the horizontal curve that
we start with crosses y2 � g C 1C g � 3 D y2 � 2 squares. More precisely it inter-
sects y2 � 4 vertical curves once and one vertical curve twice. We obtain the following
matrix, where bn�m stands for the n �m matrix with all entries equal to b 2 Z:

XX> D

0BBBBBBBB@

y2 21�y1
11�y2

� � � 11�yg�1

2y1�1 1y1�y1

1y2�1 1y2�y2

:::
: : :

1yg�1�1 1yg�1�yg�1

1CCCCCCCCA
:

From Lemma 9 with lD0, we see that the characteristic polynomial of XX> equals
ta � p.t; y; y/, where

p.t; y; y/ D �y2
g�1Y
iD1

.t � yi /C t

g�1Y
iD1

.t � yi / �

g�1X
iD1

ci
Y
j¤i

.t � yj /;
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for

a D

g�1X
iD1

.yi � 1/; c1 D 4y1 and ci D yi if i � 2:

From Lemma 10, we deduce that p.t; y; y/ is irreducible in ZŒt; y� given that all
yi 2 N are pairwise distinct (here our parameter b in Definition 8 equals 2). As
before, we can factor out .t � 2/g�d and obtain an irreducible polynomial of degree d
by setting g � d C 1 of the g � 1 parameters yi equal to 2. We can then apply the
same strategy than the proof of Theorem 11 to get the result.

Corollary 15. Every number 1 � d � g is realised as the degree of the trace field of
a product of two affine multitwists on a surface in every nonhyperelliptic connected
component with spin 0 of a stratum, except H .2g � 2/, of Abelian differentials on
Riemann surfaces of genus g.

We further apply the same strategy to realise all even degrees as stretch factors.
One can copy the proof of Theorem 12 word for word and obtain the following result.

Corollary 16. Every even number 2 � 2d � 2g is realised as the degree of a product
of two affine multitwists on a surface in every nonhyperelliptic connected compon-
ent with spin 0 of a stratum, except H .2g � 2/, of Abelian differentials on Riemann
surfaces of genus g.

4.4. Reaching the nonhyperelliptic component of H .2g � 2/, spin 0

4.4.1. Degree d D 2. We start with the model presented in Figure 5, and insert g � 3
vertical cylinders (g > 3) with parameters y1 D 2 and yi D 1 for i > 1 (see also
Figure 6). The number of squares in grey colour is y2 � 2� 3� .g� 3/D y2 � g� 2.
The surface belongs to H .2; 2g � 4/. Since it can be continuously deformed to the
surface in Figure 5 with spin 0, it also has spin 0. Now we collapse all the grey squares.
The resulting surface belongs to the stratum H nonhyp.2g � 2/. Again this continuous
deformation does not change the parity of the spin structure.

Following the computation in the previous subsection, we now obtain the .gC1/�
.g C 1/ intersection matrix (recall y2 � g � 2 D 0)

XX> D

0BBBBBBBBBB@

g C 2 2 2 1 � � � 1

2 1 1

2 1 1

1 1

:::
: : :

1 1

1CCCCCCCCCCA
:
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Figure 6. A surface in H nonhyp.2; 2g � 4/ for g > 3. If we collapse the handle (in grey colour)
we obtain a surface in H nonhyp.2g � 2/.

By Lemma 9, the characteristic polynomial of XX> equals

ta
�
�.g C 2/

g�1Y
iD1

.t � yi /C t

g�1Y
iD1

.t � yi / �

g�1X
iD1

ci
Y
j¤i

.t � yj /

�
;

where a D 1, c1 D 4y1 and ci D yi for i � 2. Thus, the polynomial is

t .t � 1/g�3.�.g C 2/.t � 2/.t � 1/C t .t � 2/.t � 1/ � 8.t � 1/ � .g � 2/.t � 2//

D t2.t � 1/g�3.t2 � t � .g C 5/C 2g C 2/:

In particular, the degree of the trace field is either one or two. The discriminant of
t2 � t � .g C 5/C 2g C 2 is

D D .g C 5/2 � 8 � .g C 1/ D g2 C 2g C 17:

We see that .g C 1/2 < D < .g C 5/2. If the degree of the trace field is one then D
is a square, and one of the following three cases holds:

(1) D D .g C 2/2. Then g2 C 2g C 17 D g2 C 4g C 4. Solving in g we find
2g D 13, which is a contradiction.

(2) D D .g C 3/2. Then g2 C 2g C 17 D g2 C 6g C 9. Solving in g we find
6g D 1, which is a contradiction.

(3) D D .g C 4/2. Then g2 C 2g C 17 D g2 C 4g C 4. Solving in g we find
g D 2, which is again a contradiction with g > 3.

This implies that D is not a square and hence the degree of the trace field must be
two.

4.4.2. Degree 2 < d � g. We consider the modified version of our construction as
depicted in Figure 7. When g > 3 the surface is not hyperelliptic.
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Figure 7. A surface in the even spin nonhyperelliptic connected component of H .2g � 2/ for
g > 3.

For the computation of the spin structure, we consider the “obvious” core curves 
i
and �i (for i D 0; : : : ; g � 1) of the horizontal and vertical cylinders. It forms a (non-
symplectic) basis of the homology:

i.
0; �i / D 1 for i ¤ g � 1 and i.
0; �g�1/ D 0;

i.
i ; �i / D ıij for i D 0; : : : ; g � 1;

i.
i ; 
j / D i.�i ; �j / D 0:

We can thus form a symplectic basis of H1.S IZ2/ as follows:8̂̂<̂
:̂
a1 D 
0; b1 D �0;

ai D 
i�1; bi D �i�1 � �0 for i D 2; : : : ; g � 1;

ag D 
g�1; bg D �g�1 � bg�1 D �g�1 � �g�2 C �0:

Equation (1) reads

ˆ.!/ D q.
0/q.�0/C

g�1X
iD2

q.
i�1/q.�i�1 � �0/C q.
g�1/q.�g�1 � �g�2 C �0/:

Since q.�i�1 � �0/ D q.�i�1/C q.�0/C i.�i�1; �0/ D 1C 1C 0 D 0 mod 2, the
sum with the g � 2 terms vanishes. For the last term, a direct computation leads to

q.�g�1 � �g�2 C �0/

D q.�g�1/C q.�g�2/C q.�0/C i.�g�1; �g�2/C i.�g�1; �0/C i.�g�2 C �0/

D 1C 1C 1C 0C 0C 0 D 1 mod 2:
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Finally, we get
ˆ.!/ D 1C 0C 1 D 0 mod 2:

The intersection matrix (with the parameters yg�2 D yg�1 D 1) is

XX> D

0BBBBBBBBBB@

y2 11�y1
� � � 11�yg�3

1 0

1y1�1 1y1
0 0

:::
: : :

:::
:::

1yg�3�1 1yg�3
0 0

1 0 � � � 0 2 1

0 0 � � � 0 1 1

1CCCCCCCCCCA
:

By developing along the last column, its characteristic polynomial equals

.t � 1/

�
.t � 2/p.t; y; y/ � ta

g�3Y
iD1

.t � yi /

�
� p.t; y; y/

D p.t; y; y/.t2 � 3t C 1/ � ta.t � 1/
g�3Y
iD1

.t � yi /

D ta
�
�y2.t2 � 3t C 1/

g�3Y
iD1

.t � yi /C .t
3
� 3t2 C 1/

g�3Y
iD1

.t � yi /

� .t2 � 3t C 1/

g�3X
iD1

ci
Y
j¤i

.t � yj /

�
;

where p.t; y; y/ is the degree g � 2 polynomial in Lemma 9, with the parameters

a D

g�3X
iD1

.yi � 1/ and ci D yi for all 1 � i � g � 3:

Following the same line of proof we used for Lemma 10, we show

Lemma 17. The polynomial

�y2.t2 � 3t C 1/

g�3Y
iD1

.t � yi /C .t
3
� 3t2 C 1/

g�3Y
iD1

.t � yi /

� .t2 � 3t C 1/

g�3X
iD1

yi
Y
j¤i

.t � yj /

is irreducible in ZŒt; y� given that all yi 2 N are distinct.
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Figure 8. The surface Xn;k;y 2 H .g � 1; g � 1/ made of 2nC 2k C y C 2 squares, and the
surface Yn;k;y 2 H .2g � 2/ obtained from Xn;k;y by collapsing the grey square.

Proof. We follow the proof of Lemma 10. We note that the polynomial has degree two
in the variable y with no nontrivial common factor between the coefficient of y2 and
the constant coefficient. By the Perron–Frobenius theorem, there is a simple irredu-
cible factor of the constant coefficient. Thus, Eisenstein’s criterion applies in .ZŒt �/Œy�.

Again, the proofs of Theorems 11 and 12 carry over and provide the results of
Corollary 15 and 16 also for the stratum H .2g � 2/.

4.5. Reaching the hyperelliptic components of strata H .2g � 2/ and
H .g � 1; g � 1/

We start by constructing a square-tiled surface. Pick a long horizontal square-tiled
cylinder made of 2nC 1 squares with identifications A0, A1; : : : ; An and A01; : : : ; A

0
n

as depicted in Figure 8. We then add a stair case template, made of k steps, using a
total of 2k squares. Finally, we insert a long vertical square-tiled cylinder with some
large number y of squares and identifications C1; : : : ; Cy as in Figure 8. We treat y
as a variable that we will need to specify later on. This creates a surface Xn;k;y .
Similarly, one can construct a surface Yn;k;y be collapsing one square corresponding
to the label A0.
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Lemma 18. The genus of Xn;k;y and Yn;k;y is g D n C k C 2. Moreover, Xn;k;y
belongs to the hyperelliptic connected component of H .g � 1; g � 1/ while Yn;k;y
belongs to the hyperelliptic connected component of H .2g � 2/.

Proof of Lemma 18. Clearly the two square-tiled surfaces are hyperelliptic: the involu-
tion fixes the kC 2 horizontal cylinders. By inspecting the gluing, one sees thatXn;k;y
has two zeros, each of order g � 1. The cone angle at each zero is g � 2� . Since the
total number of squares contributing to the cone angle is 2nC 2k C 2C 2, we get

.2nC 2k C 4/ � 2� D g � 2� C g � 2�:

Hence, g D nC k C 2.
Similarly, Yn;k;y has one zero, of order 2g � 2 and cone angle .2g � 1/ � 2� . Now

the total number of squares contributing to the cone angle is one less: 2nC2kC2C1.
Thus, .2nC 2k C 3/ � 2� D .2g � 1/ � 2� .

A quick inspection of the intersections of horizontal curves with vertical curves
yields that XX> is the following .k C 2/ � .k C 2/ Jacobi matrix:

XX> D

0BBBBBBBBBBB@

˛ 1

1 2 1

1
: : :

: : :

: : :
: : : 1

1 2 y

y y2

1CCCCCCCCCCCA
;

where ˛ D 2C 4n if one considers Xn;k;y , and ˛ D 1C 4n otherwise.

Lemma 19. If ˛ ¤ 1, then the characteristic polynomial of XX>, when regarded as
a polynomial in the variables y and t , is irreducible in ZŒt; y�.

Proof of Lemma 19. Let pk be the characteristic polynomial of XX>. We will use
the characteristic polynomial qk.t/ of the .kC 1/� .kC 1/matrix Bk obtained from
2IkC1 CAd.AkC1/ by adding ˛ � 2 to the first diagonal entry, where Adj.Ak/ is the
adjacency matrix of the path graph with k vertices. We obtain directly by developing
the determinant of t IdkC2 �XX> along the last column that

pk.t; y/ D �y
2.qk.t/C qk�1.t//C tqk.t/:

We now claim that the roots of qk and qk�1 are pairwise distinct and simple.
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Proof of the claim. We note that Bk�1 is obtained from Bk by deleting the last row
and the last column. Interlacing results for real symmetric matrices tell us that the
eigenvalues of Bk and Bk�1 interlace. This means that if �1 � � � � � �kC1 are the
eigenvalues of Bk and if �1 � � � � � �k are the eigenvalues Bk�1, then we have

�i � �i � �iC1

for all 1� i � k. The crucial point is that in our case these inequalities are strict, which
can be proved as follows. We first note that the matrix Bk is clearly symmetric and
positive definite (for ˛ � 1). This implies that all its leading principal minors are pos-
itive. Now, [5, Theorem 7] states that a tridiagonal matrix with positive coefficients
on the main diagonal and the adjacent diagonals is oscillatory if and only if all the
leading principal minors are positive, implying that Bk is oscillatory. In turn, [2, The-
orem 6.5] states that for oscillatory matrices, all the interlacing inequalities are strict.
That is, if �1 � � � � � �kC1 are the eigenvalues of Bk and if �1 � � � � � �k are the
eigenvalues Bk�1, then we have

�i < �i < �iC1

for all 1 � i � k. In particular, the eigenvalues of Bk and the eigenvalues of Bk�1 are
pairwise distinct and simple.

We now finish the proof the lemma. Let F ¤ t be an irreducible factor of qk . Since
the roots of qk are simple, F 2 is not a factor of tqk . If F is a factor of qk C qk�1,
then qk and qk�1 share a common root, which is not possible by the claim. Hence,
by Eisenstein’s criterion, pk.t; y/ is irreducible when regarded as a polynomial in the
variable y and so can not be factored in the form .ay C b/.cy C d/. So, if there is
a factorisation of pk.t; y/, then one of the factors must have degree zero in the vari-
able y. But such a factorisation cannot exist, since qk.t/ C qk�1.t/ and tqk.t/ are
relatively prime in ZŒt �. Indeed, since the roots of qk.t/ and qk�1.t/ are distinct, the
only possible common factor of tqk and qk C qk�1 is t . But pk.0; y/ is the determ-
inant of XX> and equals y2 � .˛ � 1/ ¤ 0. This proves the lemma.

Theorem 20. For any hyperelliptic connected component C of H .2g � 2/, every
number 1 � d � g � 1 is realised as the degree of the trace field of a product of two
affine multitwists on a surface in C .

Proof of Theorem 20. Since the case d D 1 is clear by considering square-tiled sur-
faces, let us assume d � 2 and set k D d � 2 � 0. We construct a surface Xn;k;y or
Yn;k;y , where n D g � d D g � k � 2 � 0 (see Lemma 18). If d < g, then n ¤ 0
and ˛ ¤ 1. If d D g, that is, n D 0, then by assumption we consider only Yn;k;y 2
H .g� 1;g� 1/ so that ˛D 4nC 2D 2¤ 1. Thus, Lemma 19 applies and the charac-
teristic polynomial ofXX>, viewed as a polynomial in ZŒy; t � is irreducible. Then by
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Hilbert’s irreducibility theorem, there are infinitely many specifications of y so that
the resulting polynomial is irreducible as a polynomial in the variable t . Note that all
specifications can be realised geometrically. Indeed, one can choose y > 0 by sym-
metry. In particular, applying Thurston–Veech’s construction, there exists a product
of two multitwists on the surface of genus g D nC d in the desired connected com-
ponent.

We also prove the analogous theorem for degrees of stretch factors.

Theorem 21. For any hyperelliptic connected component C of H .g� 1;g� 1/, every
even number 2 � 2d � 2g is realised as the degree of the stretch factor of a product
of two affine multitwists on a surface in C .

For any hyperelliptic connected component C of H .2g � 2/, every even number
2 � 2d � 2g � 2 is realised as the degree of the stretch factor of a product of two
affine multitwists on a surface in C .

Proof. We use the same examples as in the proof of Theorem 20. We first deal with
the case d D 2 by taking the specific example y D 1. In this case, we have k D 0 and
we get XX> D

�
˛ 1
1 1

�
. We obtain

�2 D
˛ C 1C

p
˛2 � 2˛ C 5

2
;

which is an algebraic number of degree two over Q. Indeed, we have

˛2 > ˛2 � 2˛ C 5 > .˛ � 1/2

in case ˛ ¤ 1; 2, so this number is not a square and �2 is not rational. Neither is it in
case ˛ D 2, by direct calculation, and the case ˛ D 1 is not needed.

We are now ready to apply Theorem 6. Let �0 be the matrix obtained from � by
deleting the row and the column corresponding to the cylinder with 2nC 1 or 2nC 2
squares. We have

�.�C 2I / � �.�0 C 2I / � 1:

By construction, �0 is the adjacency matrix of a forest consisting of path graphs, so
that 2I C�0 is positive definite. We get

�.�C 2I / � dim.�/ � 2 > dim.�/ � 4:

The criterion applies and the mapping class T˛ ı Tˇ is pseudo-Anosov with stretch
factor � of degree 2d D 4.

For the case d � 3, we take the examples as in the proof of Theorem 20, without
specialising y. Let �0 be the matrix obtained from � by deleting the rows and the



Trace field degrees of Abelian differentials 107

B1

B1

B2

B2

B3

Bg�2

Bg�1

Bg�1

: :
:

� � �

Figure 9. A stair case template in the hyperelliptic component of H .2g � 2/.

columns corresponding to the horizontal cylinder with 2nC 1 or 2nC 2 squares, and
to the vertical cylinder with y C 1 squares. We have

�.�C 2I / � �.�0 C 2I / � 2:

By construction, �0 is the adjacency matrix of a forest consisting of path graphs, so
that 2I C�0 is positive definite. We get

�.�C 2I / � dim.�/ � 4 > dim.�/ � 2d:

The criterion applies and the mapping class T˛ ı Tˇ is pseudo-Anosov with stretch
factor � of degree 2d .

4.6. Reaching hyperelliptic component of H .2g � 2/ with degree g

Take the stair case model with a “long” stair made of y2 squares (see Figure 9). The
g � g matrix is

XX> D

0BBBBBBBBBBB@

y2 1

1 2 1

1
: : :

: : :

: : :
: : : 1

1 2 1

1 1

1CCCCCCCCCCCA
:
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Let pg.t; y/ be the characteristic polynomial of XX>. We will use the characteristic
polynomial qg.t/ of the g � g matrix Bg obtained from 2Ig CAd.Ag/ by adding �1
to the last diagonal entry, where Adj.Ag/ is the adjacency matrix of the path graph
with g vertices.

By developing the determinant of t Idg �XX> along the first column we get

pg.t; y/ D �y
2qg�1.t/C tqg�1.t/ � qg�2.t/:

We now claim that the polynomials qg�1.t/ and tqg�1.t/ � qg�2.t/ are relatively
prime. Using the same argument as in Lemma 19, we get that the matrix Bg is oscil-
latory, and hence the roots of pg�1 and pg�2 are all simple and pairwise distinct.
Since the minimal polynomial of the Perron–Frobenius eigenvalue of Bg is a simple
irreducible factor F of tqg�1.t/ � qg�2.t/ that is not also a factor of qg�1.t/, Eis-
enstein’s criterion applies and pg.t; y/ is irreducible. Thus there are infinitely many
specifications of y > 0 such that pg.t; y/ 2 ZŒt � is irreducible. This yields the degree
d D g for the hyperelliptic component of H .2g � 2/ for any g > 1.

Using this model, it is now straightforward to adapt the proofs of Theorem 20 and
Theorem 21 to construct examples where the trace field is of degree g and the stretch
factor is of degree 2g.
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