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Rigidity and flexibility of isometric extensions

Wentao Cao and Dominik Inauen

Abstract. In this paper we consider the rigidity and flexibility of C 1;� isometric extensions.
We show that the Hölder exponent �0 D 1

2
is critical in the following sense: if u 2 C 1;� is an

isometric extension of a smooth isometric embedding of a codimension one submanifold† and
� > 1

2
, then the tangential connection agrees with the Levi-Civita connection along †. On the

other hand, for any � < 1
2

we can construct C 1;� isometric extensions via convex integration
which violate such property. As a byproduct we get moreover an existence theorem for C 1;�

isometric embeddings, � < 1
2

, of compact Riemannian manifolds with C 1 metrics and sharper
amount of codimension.

1. Introduction

Let .M; g/ be an n-dimensional compact smooth Riemannian manifold and m > n.
Recall that an isometric embedding of .M; g/ into .Rm; e/ is an injective C 1 map
uWM ,! Rm such that u]e D g. Here, e is the Euclidean metric and u]e denotes
the pullback metric on M. In local coordinates this amounts to the system of partial
differential equations

mX
kD1

@uk

@xi
@uk

@xj
D gij (1.1)

for 1 � i; j � n, where g D gijdxidxj using summation over repeated indices.
Classical results in differential geometry indicate that sufficiently regular global

isometric embeddings into Euclidean space with low co-dimension (i.e., m � n is
small) are often rigid (i.e., unique up to rigid motions). Most prominent is the rigidity
of the Weyl problem: given a metric g on the sphere S2 with positive Gaussian cur-
vature, isometric embeddings uW .S2; g/ ,! R3 are rigid in the class C 2 (cf. [12,22]).
On the other hand, the celebrated Nash–Kuiper theorem (cf. [29, 31]) implies that
such spheres can be isometrically embedded into arbitrarily small balls of R3 if one
only requires the embedding to be C 1. A natural question is whether there exists a
threshold regularity which distinguishes these two drastically different behaviors.
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As shown in [1–5,7,32] (see also [14] for a short, modern proof), isometric embed-
dings u 2 C 1;� of positively curved closed surfaces into R3 are rigid for � > 2

3
. On

the other hand, the flexibility of isometric embeddings granted by the Nash–Kuiper
theorem also holds for isometric embeddings uW .M; g/ ,! RnC1 of compact n-
dimensional manifolds whenever u 2C 1;� with � < 1

1CnCn2
for n� 3 (cf. [6,11,14]),

and with � < 1
5

for n D 2 (cf. [11,16]). The threshold exponent has been conjectured
to be � D 1

2
(see [18]).

The situation looks different when the co-dimension of the ambient space is suf-
ficiently large. A result by A. Källén (cf. [27]) shows that, in this case, flexibility of
isometric embeddings extends to the regularity C 1;� for any � < 1, and thus there is
no rigidity below C 2.

On the other hand, in [15] the authors find that a weaker form of rigidity is
present above the conjectured threshold regularity C 1;

1
2 no matter the codimension:

they show that when u 2 C 1;� .M;Rm/ is an isometric embedding with � > 1
2

, a
weak notion of tangential connection can be defined on the (irregular) embedded
submanifold (see also [1–4] for a similar weak notion of tangential connection) and
that it agrees with the Levi-Civita connection. In the case of isometric embeddings
u 2 C 1;� .. xD1; g/;Rm/ of the closed unit disc taking fixed (smooth) boundary val-
ues it is then shown that this compatibility of the weak tangential connection with
the intrinsic metric leads to an angle constraint of the tangent space at points of the
embedded boundary curve. In contrast, for every � < 1

2
, the authors construct isomet-

ric embeddings u 2C 1;� violating this constraint by extending the (smooth) boundary
datum to a C 1;� isometric embedding of the disc by means of a convex integration
process. Thus, for this particular example, the result in [15] gives a geometric illus-
tration of the criticality of the Hölder exponent � D 1

2
, at least in the presence of a

“boundary condition”.
In this paper we study the rigidity and flexibility properties of general isomet-

ric extensions. A first observation shows that the angle constraint of [15] is simply a
consequence of the compatibility of the weak tangential connection with the intrinsic
metric and of the embedding agreeing with a smooth one along a lower-dimensional
submanifold. It is therefore also present for general isometric extensions of C 2 isome-
tries which are C 1;� for � > 1

2
. On the flexibility side, we want to construct isometric

extensions u 2 C 1;� , � < 1
2

, violating this constraint.
The problem of extending an isometric map f W† ! Rm, where † � M is a

co-dimension one submanifold, was first considered by Jacobowitz in [26] in the
high-regularity and high co-dimension setting. He gave a necessary condition on the
second fundamental forms of �W† ,!M and f W†! Rm for the existence of a C 2

extension uWM ,! Rm. He also found a sufficient condition (which turns out to be
almost necessary) for such an extension, which can be stated as that the image f .†/
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shall be “more curved” than †. Besides, as discussed in [10, 26], isometric exten-
sion can also be viewed as a Cauchy problem for isometric embeddings and certain
non-degeneracy conditions on the curvature are important to prove the existence of
a sufficiently smooth solution (for local extensions from a point resp. a curve on 2-
dimensional manifolds, see [19,30] resp. [9,17,20,28]). The existence of isometricC 1

extensions in low co-dimension was then investigated in [24]. The authors showed that
Jacobowitz’ obstruction for C 2 extensions is also an obstruction for C 1 extensions
and found a sufficient condition (similar to the one in [26]) for one-sided extensions
(see [24] or below for a similar definition). Under such a condition they proved an
existence theorem for isometric C 1 extensions analogous to the Nash–Kuiper theo-
rem. This was then improved to the C 1;� category for � < 1

1CnCn2
in [10], although

the one-sided extensions are only defined locally around a point.
In this paper we show that, under the same sufficient condition, we can find

one-sided isometric extensions (defined on a full one-sided neighborhood of the sub-
manifold†) with regularity C 1;� for � < 1

2
, for which the tangential connection does

not agree with the Levi-Civita connection along the submanifold †.
To precisely state our results we introduce our setting. We consider a smooth, com-

pact, orientable n-dimensional manifold M equipped with a C 1 Riemannian metric g
and an orientable submanifold†�M of co-dimension one. Suppose that f W†!Rm

is a smooth isometric embedding for some m > n and denote by

LWT† � T†! C1.†/

the (scalar) second fundamental form of the embedding �W† ,!M, and by

xLWT† � T†! f �Nf .†/

the second fundamental form of the embedding f . In [24] Hungerbühler–Wasem
showed that a sufficient condition for the existence of a C 1 one-sided isometric exten-
sion (cf. [24] for the definition) of f W†! Rm is that there exists a smooth vector
field �W†! Rm satisfying for every p 2 †,

(i) �.p/ 2 Nf .p/f .†/;

(ii) j�.p/j D 1;

(iii) h�.p/; xL.�; �/i � L.�; �/ is positive definite on Tp†:

(1.2)

Here, h�; �i denotes the Euclidean scalar product. Under this assumption we will be
able to extend the isometric embedding f to some neighborhood of † which is best
described by the exponential map. Let � 2 �.N†/ be the unique unit normal vector
field respecting the orientation of † in M. Since † is compact, there exists �0 > 0

such that F W† � � � �0; �0Œ!M given by

F.p; t/ D expp.t�.p// (1.3)
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is a diffeomorphism. For � � �0, we then call†C� WD F.†� Œ0; �Œ / a one-sided neigh-
borhood of † in M. Lastly, we let

	�m.†
C
� /D ¹v 2 C

1;�
j vW .†C� ; g/ ,!Rm is an isometric embedding with vj† D f º:

Now we are in a position to state our results. One of our main results concerns the
rigidity and flexibility of C 1;� isometric extensions.

Theorem 1.1. Let† be a codimension one oriented submanifold of the compact Rie-
mannian manifold .M; g/, where g 2 C 1, and let � be the unique unit normal vector
field respecting the orientation. Suppose moreover that f W†! Rm is an isometric
embedding satisfying (1.2) and let X 2 �.T†/ be any vector field tangent to†. Then
the following hold:

(1) if � > 1
2

, m � nC 1, and u 2 	�m.†
C
� /, then

hdu.�/; xL.X;X/i D L.X;X/I

(2) for any � < 1
2

, m � nC 2n�, there is � > 0 and u 2 	�m.†
C
� / such that

hdu.�/; xL.X;X/i > L.X;X/

at all points where X does not vanish.

Here, n� D
n.nC1/
2

is the number of equations in (1.1). As mentioned above, the
proof of part (1) is a simple observation given the result in [15, Proposition 2.2] (see
Section 2). The isometries in (2) are constructed via a convex integration process simi-
lar to [15]. Roughly speaking, the technical difference of (2) to the corresponding part
in [15] is that it is of global instead of local nature. Therefore we adapt the “gluing”
method introduced in [11] for the construction of global C 1;� isometric embeddings
to our needs. In particular, to get the regularity C 1;� , � < 1

2
, we need a more sub-

tle decomposition lemma (see Lemma 3.4) than in [11], it is similar to the one used
in [15,27]. This however leads to technical difficulties due to the different type of cut-
off functions used in [11] as compared to [15]; they are resolved in Proposition 4.1.

The iteration technique used in the proof of part (2) has its origin in Nash’s original
construction [31]. The latter inspired the more general framework of convex integra-
tion, which remarkably also found application in the question of non-uniqueness of
fluid mechanic equations and led for example to the resolution of Onsager’s conjec-
ture (see [8, 13, 25]), a striking analogue to the dichotomy of rigidity vs flexibility of
isometric embeddings.

One of the main building blocks of the proof of Theorem 1.1 (2) is the iteration
Proposition 4.2. With it we can prove our second result, the existence of global iso-
metric embeddings of compact manifolds with C 1 metric.
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Theorem 1.2. Let .M; g/ be an n-dimensional compact manifold, n � 2, with C 1

metric g. For any � < 1
2

, there exist infinitely many C 1;� isometric embeddings

uW .M; g/ ,! RnC2n� :

Such an existence result is not new: it is already contained in [27]. The novelty of
Theorem 1.2 is that the target dimension nC 2n� D n.nC 2/, is much smaller than
the dimension 2nC 3.nC 1/.n2 C nC 2/ in [27] for the case where the metric is of
class C 1, i.e., ˇ D 1 in [27].

The remaining part of the paper is organized as follows. We prove Theorem 1.1 (1)
in Section 2. The main part of the paper is then devoted to proving Theorem 1.1 (2).
We first introduce some notations and useful lemmas in Section 3. We then prove the
most important building block, an iteration proposition, in Section 4. With it we are
able to show Theorem 1.1 (2) and Theorem 1.2 in Section 5 and Section 6, respec-
tively.

2. The proof of Theorem 1.1 (1): Rigidity part

Recall that for a smooth isometric embedding uWM ,! Rm, a curve 
 W Œ0; 1�!M

and a vector field X 2 �.TM/ it holds by Gauss’ formula�
d

dt

ˇ̌̌̌
tDt0

du.X/.
/

�|

D du
�
r

M
P
.t0/

X
�

for t0 2 Œ0; 1�. Here, | denotes the orthogonal projection onto T u.M/ � Rm.
Thus, in particular, if � 2 �.TM/, then�

d

dt
du.X/.
/; du.�/.
/

�
D
˝
du
�
r

M
P
.t/X

�
; du.�/.
/

˛
(2.1)

holds on Œ0; 1�. In [15, Proposition 2.2], the authors show that the left-hand side of the
latter equation is well defined as a distribution whenever u 2 C 1;� for � > 1=2, and
that (2.1) still holds.

From this, part (1) of Theorem 1.1 follows easily. Let X 2 �.T†/, p 2 † and

 W Œ0; 1�! † with 
.0/ D p, P
.0/ D Xp . Let, moreover, � 2 �.TM/ be the unique
unit normal to † respecting the orientation. Since u D f on † and f is smooth, the
function du.X/.
/W Œ0; 1�!Rm is smooth, so that (2.1) holds as a pointwise equality
of continuous functions even if u is only C 1;� with � > 1

2
.
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With the help of the Gauss formula for the smooth embeddings f W†! Rm and
�W† ,!M, we then find

hdup.�/; xLp.X;X/i D

�
dup.�/;

d

dt

ˇ̌̌̌
tD0

du.X/.
/

�
D
˝
dup.�/; du

�
r

M
P
.0/X

�˛
D g

�
�p;r

M
Xp
X
�
D Lp.X;X/

since u is an isometry.

3. Preliminaries

In this section we introduce some notations, function spaces and basic lemmas which
are needed for the proof of the flexibility part of Theorem 1.1.

3.1. Hölder Norms and interpolation

Let � � Rn be an open set. In the following, the maps f can be real valued, vector
valued, or tensor valued. In every case, the target is equipped with the Euclidean norm,
denoted by jf .x/j. The Hölder norms are then defined as follows:

kf k0 D sup
�

jf j; kf km D

mX
jD0

max
jˇ jDj

k@ˇf k0;

where ˇ denotes a multi-index, and

Œf �� D sup
x¤y

jf .x/ � f .y/j

jx � yj�
;

Œf �mC� D max
jˇ jDm

sup
x¤y

j@ˇf .x/ � @ˇf .y/j

jx � yj�
; 0 < � � 1:

Then the Hölder norms are given as

kf kmC� D kf km C Œf �mC� :

We recall the standard interpolation inequality

Œf �r � Ckf k
1� rs
0 Œf �

r
s
s

for s > r � 0 and the Leibniz rule

kfgkr � C.r/
�
kf krkgk0 C kf k0kgkr

�
: (3.1)

We also collect two classical estimates on Hölder norms of compositions in [27].
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Lemma 3.1. Let‰W†1!R be a function and u; vWRn!†1. Then for any r; s � 0,
it holds

k‰ ı ukr � C.r/
�
k‰.�/krkuk

r
1 C k‰.�/k1kukr C k‰.�/k0

�
; r � 1;

k‰ ı ukr � min
�
k‰.�/krkuk

r
1; k‰.�/k1kukr

�
C k‰.�/k0; 0 � r � 1:

Other properties of the Hölder norm can be found in references such as [14, 16].

3.2. Mollification estimates

We will frequently regularize maps by convolution with a standard mollifier, i.e., a
radially symmetric '` 2 C1c .B`.0// with

R
'` D 1, where ` > 0 denotes the length-

scale. Such a regularization of Hölder functions enjoys the following estimates (for a
proof, see [14, 16]).

Lemma 3.2. For any r; s � 0 and 0 < � � 1, we have

Œf � '`�rCs � C`
�sŒf �r ;

kf � f � '`kr � C`
1�r Œf �1; if 0 � r � 1;

k.fg/ � '` � .f � '`/.g � '`/kr � C`
2��r
kf k�kgk� ;

with constant C depending only on s; r; �; '.

In the course of the proof of Theorem 1.1, we will regularize maps f 2C k.x�;Rm/
defined on x�. The resulting regularized maps will then have a smaller domain of
definition. To counteract this, we first extend f to a map xf 2 C k.Rn;Rm/ such that

kf kCk.Rm/ � Ckf kCk.x�/;

where the constant C > 0 depends only on k; n and �. Such a procedure is given by
Whitney’s extension theorem; see [34]. We then mollify the resulting extensions at
some length-scale ` > 0 to obtain zf D xf � '` 2 C1.x�;Rm/. We will not further
specify this.

3.3. Hölder norms and mollification on manifolds

Using a partition of unity, Hölder spaces and mollification can be defined on the com-
pact manifold M as follows. We fix a finite atlas of M with charts .�i ;�i /, we let ¹�iº
be a partition of unity subordinate to ¹�iº and set

kf kk D
X
i

k.�if / ı �
�1
i kk;
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and
f � '` D

X
i

�
.�if / ı �

�1
i � '`

�
ı �i :

One can check that the estimates (3.1) as well as Lemma 3.1 and 3.2 still hold (with
constants which may depend on the fixed charts).

3.4. Matrix decomposition

A key step in the construction of isometric embedding, as pioneered by Nash [31] and
used in all the subsequent variants of the iteration process, is a suitable decomposition
of the metric error. We recall the version used in [14, 16].

Lemma 3.3. Let n � 2 and let xP 2 Rn�n be a positive definite matrix. There exists a
constant r0 > 0, vectors �1; : : : ; �n� 2 Sn�1 and smooth functions ak such that

P D

n�X
kD1

a2k.P /�k ˝ �k;

for any positive definite matrix P 2 Rn�n with

jP � xP j < r0:

For our purposes we need to perturb Lemma 3.3 in two ways: First of all we want
to vary the “reference” matrix xP slightly and allow a matrix field P0 with suitably
small oscillation; this simply follows from a compactness argument. Secondly, we can
perturb the coefficients ak to obtain a slightly subtler decomposition. This is similar
to the decomposition used in [27] and can proved with the standard implicit function
theorem (compare [15, Proposition 5.4]).

Lemma 3.4. Let n � 2 and 
 � 1. There exists a constant �0.
/ > 0 and vectors
�1; : : : ; �n� 2 Sn�1 with the following property. If P0W x�! Rn�n is a matrix field
with


�1Id � P0 � 
 Id and osc�P0 < �0;

and if P W x�! Rn�nsym , and ¹ƒiº
n�
iD1; ¹‚ij º

n�
i;jD1 � C

1.x�;Rn�nsym / are such that

kP � P0k0 C

n�X
iD1

kƒik0 C

n�X
i;jD1

k‚ij k0 < �0;

then there exist C 1 functions a1; : : : ; an� W x�! R with

P D

n�X
iD1

a2i �i ˝ �i C

n�X
iD1

aiƒi C

n�X
i;jD1

aiaj‚ij : (3.2)
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Moreover, ai are given as

ai .x/ D ˆi
�
P.x/; ¹ƒk.x/º; ¹‚kl.x/º

�
(3.3)

for C 1 functions ˆi , and consequently, we have the estimates

kaikk � Ck

�
kP kk C

n�X
jD1

kƒj kk C

n�X
j;lD1

k‚jlkk

�
for k D 0; 1 and 1 � i � n�. Here, the constants Ck � 1 depend only on k; �0.

3.5. Existence of normal vector fields

Another key ingredient in the iteration process is the use of suitable normal vector
fields to the embedding. The following lemma concerns their existence. It is similar
to [15, Proposition 5.3], except that no C 1-closeness to a reference embedding is
required. A proof is contained in the appendix.

Lemma 3.5. Let N 2 N and � � Rn be open and simply connected. Assume v 2
CNC1.x�;Rm/ is such that


�1Id � rvTrv � 
 Id (3.4)

for some 
 > 1. There exists a family of vector fields ¹�1; : : : ; �m�nº � CN .x�;Rm/
such that

h�i ; �j i D ıij ; rv � �i D 0;

Œ�i �l � C.l; 
/
�
1C Œv�lC1

�
;

(3.5)

for all 0 � l � N . Here ıij D 1 when i D j , and vanishes else.

4. Iteration proposition

The isometric embedding u 2 	�m.†
C
� / in Theorem 1.1 (2) will be constructed by

an iteration procedure producing a sequence of embeddings uq converging to u. The
practice, as pioneered by Nash in [31], of decomposing the metric error g � u]qe and
adding a Nash-twist for each term in the decomposition was improved by A. Källen
in [27]. In the latter paper, the author gains extra regularity (at the expense of increased
codimension compared to Nash’s result) by absorbing the leading error terms into
the decomposition. We use a similar decomposition (see (3.2)). However, since we
employ the framework of [11] we need to be able to “add’ metric pieces which have
the form �2.g C h/ for compactly supported functions � and suitably small .0; 2/-
tensors h. The missing lower bound on � seems however not to be compatible with
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the decomposition lemma; a technical difficulty which is overcome by introducing an
extra cut-off scale (see (4.14) and (4.15)).

In this proposition G is assumed to be the coordinate expression of a given C 1

metric in some chart which is identified with an open bounded subset� � Rn. More-
over, the constant �0 is given by Lemma 3.4.

Proposition 4.1. Fix 
 � 1 and parameters 0 < ı < 1 and � > 1. Assume G is a C 1

metric on x� � Rn with


�1Id � G � 
 Id; kGk1 � 
; and osc�G < �0;

and u 2 C 2.x�;RnC2n�/, � 2 C 1.x�/, H 2 C 1.x�IRn�nsym / are such that


�1Id � ruTru � 
 Id in �;

kuk2 � ı
1=2�;

(4.1)

and

0 � � � ı1=2; k�k1 � ı
1=2�; (4.2)

kHk0 �
�0

2
; kHk1 � �: (4.3)

Then for every � > 1, there exists a constant �0.�; 
; �0/ � 1 such that if

� � �0; (4.4)

then there exists an embedding v 2 C 2.x�IRnC2n�/ and E 2 C 1.x�IRn�nsym / such that

rvTrv D ruTruC �2.G CH/C E in �;

v D u on � n .supp �C B�1�2� .0//
(4.5)

with estimates

kv � uk0 � Cı
1=2��� ; (4.6)

kv � uk1 � Cı
1=2; (4.7)

kvk2 � Cı
1=2�� ; (4.8)

and
kEk0 � Cı�

2�2� ; kEk1 � Cı�: (4.9)

Here, C � 1 is a constant depending only on 
; �0.

Remark 4.1 (Constants). As usual, the value of the constants C appearing in the
following proof can change from line to line. In addition, all the constants are allowed
to depend on 
 and �0. For the sake of readability, we will suppress this dependence
in the notation.
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Proof. Fix � > 1. Regularize u at length scale ��� to get zu 2 C1.x�/. Then the
smooth embedding zu satisfies

ku � zuk1 � Cı
1=2�1�� ; kzuk2 � Cı

1=2�; kzuk3 � Cı
1=2��C1:

Note that

rzuTrzu D ruTru � .ru � rzu/Trzu � ruT .ru � rzu/;

which then implies
.2
/�1Id � rzuTrzu � .2
/Id

provided �1�� � C.
/�1 for some constant C.
/, which follows from (4.4) for �0
large enough. Then zuW x� ,!RnC2n

�

is an embedding of x�. Thus by Lemma 3.5, there
exist 2n� unit normal vectors ¹�k;�k;kD 1; : : : ;n�º to the surface zu.x�/ satisfying the
estimates (3.5). Fix moreover the vectors �1; : : : ; �n� 2 Sn�1 provided by Lemma 3.4
for our fixed 
 � 1. Similarly to [15], we then define

Ak D cos.���k � x/�k ˝ �k � sin.���k � x/�k ˝ �k;

Bk D sin.���k � x/r�k C cos.���k � x/r�k;

Dk D sin.���k � x/�k C cos.���k � x/�k :

By (3.1), it is not hard to derive

kAkk0 C kDkk0 � C
�
1C krzuk0

�
� C;

kAkk1 C kDkk1 � C
�
��krzuk0 C kr

2
zuk0

�
� C.�� C ı1=2�/ � C�� ;

kBkk0 � Ckr
2
zuk0 � Cı

1=2�;

kBkk1 � C
�
kr

2
zuk0�

�
C kzuk3

�
� Cı1=2�1C� :

(4.10)

Note that rzuTAk D 0. Thus, we have

kruTAkk0 D k.ru � rzu/
TAkk0 � Cı

1=2�1�� ;

kruTAkk1 � C
�
krzuk1kAkk0 C kru � rzuk0kAkk1

�
� C.ı1=2�C ı1=2�1���� / � Cı1=2�:

(4.11)

Clearly, we have the same estimates for ruTDk:

kruTDkk0 � Cı
1=2�1�� ; kruTDkk1 � Cı

1=2�: (4.12)

We now set

ƒk D 2sym.ruTAk/C 2��� sym.ruTBk/;

‚ij D 2�
�� sym.ATi Bj /C 2�

�2� sym.BTi Bj /:
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With the help of (4.10)–(4.12), we then deduce

kƒkk0 � C
�
kruTAkk0 C �

��
kruk0kBkk0

�
� Cı1=2�1�� ;

kƒkk1 � C
�
kruTAkk1 C �

��
�
kruk1kBkk0 C kruk0kBkk1

��
� Cı1=2�;

k‚ij k0 � C�
��
�
kAik0kBj k0 C �

��
kBik0kBj k0

�
� C.
/ı1=2�1�� ;

k‚ij k1 � C�
��
�
kAik1kBj k0 C kAik0kBj k1C�

��
�
kBik1kBj k0 C kBik0kBj k1

��
� C.ı1=2�C ı�2�� / � Cı1=2�: (4.13)

Fix now a parameter � > 0 defined by

�1=2 D C0.
; �0/ı
1=2�1�� ; (4.14)

where C0.
; �0/ � 1 is a constant to be chosen later. Observe that upon choosing
�0.
;�0; �/ large enough we can achieve �1=2 < ı1=2. Next, fix a monotone decreasing
function  2 C1.Œ0;1Œ/ such that

 .�/ D

´
1
�

if � � 2�1=2;

��1=2 if � � �1=2:
(4.15)

Clearly,
k .�.�//k0 � C�

�1=2; k .�.�//k1 � C�
�1ı1=2�;

due to the assumption (4.2). It therefore follows that

k .�/ƒkk0 � C�
�1=2ı1=2�1�� ;

k .�/ƒkk1 � C.�
�1=2ı1=2�C ��1ı�2�� / � C��1=2ı1=2�;

since C0 � 1. Thus, if C0 in (4.14) is chosen large enough (and afterward, �0 in (4.4)
is large enough to guarantee � < ı), we have the following bound

kHk0 C

n�X
kD1

k .�/ƒkk0 C

n�X
i;jD1

k‚ij k0 �
�0

2
C C��1=2ı1=2�1�� < �0:

A direct application of Lemma 3.4 (with P0 D G, P D G CH ) then enables us to
get n� functions ¹akº � C 1.x�/ such that

G CH D

n�X
kD1

a2k�k ˝ �k C

n�X
kD1

ak .�/ƒk C

n�X
i;jD1

aiaj‚ij ;
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i.e.,

�2.G CH/ D

n�X
kD1

.�ak/
2�k ˝ �k C

n�X
kD1

�2 .�/akƒk

C

n�X
i;jD1

.�ai /.�aj /‚ij : (4.16)

Notice that �2 .�/ D � if � � 2�1=2, so that, at least in this region, we get a decom-
position of the form (3.2) for the degenerate metric piece �2.G C H/ with coeffi-
cients �ak . By Lemma 3.4, for k D 1; : : : ; n�, we have

0 � ak � C

�
kGk0 C kHk0 C

n�X
kD1

k .�/ƒkk0 C

n�X
i;jD1

k‚ij k0

�
� C;

kakk1 � C

�
kGk1 C kHk1 C

n�X
kD1

k .�/ƒkk1 C

n�X
i;jD1

k‚ij k1

�
� C��1=2ı1=2�:

However, it follows from the description (3.3) and the estimates (4.13) that the fol-
lowing improved estimate holds

k�rakk0 � Ck�r. .�/ƒk/k0 � C
�
k� 0.�/ƒkr�k0 C k� .�/rƒkk0

�
� C.��1=2ı�2�� C ı1=2�/ � Cı1=2�;

since j� 0.�/j � C��1=2 and j� .�/j � C . We can then infer that by (3.1),

k�akk1 � C
�
kakr�k0 C k�rakk0

�
� Cı1=2�: (4.17)

Now we set bk WD �ak and mollify bk at length scale �1�2� to get zbk . By (4.2), (4.17)
and Lemma 3.2, for any j 2 N, we have

kzbkk0 � Cı
1=2;

kzbkkjC1 � Cj ı
1=2�.2��1/jC1;

kzbk � bkk0 � Cj ı
1=2�2�2� :

(4.18)

Finally, we define our desired embedding as

v D uC
1

��

n�X
kD1

zbkDk :
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From the definition it is clear that v D u on � n .supp �C B�1�2� /, i.e., (4.5) holds.
Besides, a straightforward calculation shows

rv D ruC

n�X
kD1

zbkAk C
1

��

n�X
kD1

zbkBk C
1

��

n�X
kD1

Dkrzbk :

Since AT
k
Dk D 0 for k D 1; 2; : : : ; n�, the induced metric will be

rvTrv D ruTruC

n�X
kD1

zb2k�k ˝ �k C 2

n�X
kD1

zbksym
�
ruTAk C

1

��
ruTBk

�
C

2

��

n�X
kD1

sym.ruTDkrzbk/C
2

��

n�X
i;jD1

zbi zbj sym.ATi Bj /

C
2

�2�

n�X
i;jD1

zbi zbj sym.BTi Bj /C
2

�2�

n�X
i;jD1

zbi sym.BTi Djrzbj /

C
z�2

�2�

n�X
kD1

rzbTk r
zbk :

Hence by (4.16), we calculate the metric error

rvTrv � .ruTruC �2.G CH// D E1 C E2;

with

E1 D

n�X
kD1

.zb2k � b
2
k/�k ˝ �k C

n�X
kD1

.zbk � � .�/bk/ƒk C

n�X
i;jD1

.zbi zbj � bibj /‚ij ;

E2 D
2

��

n�X
kD1

sym.ruTDkrzbk/

C
2

�2�

n�X
i;jD1

zbi sym.BTi Djrzbj /C
1

�2�

n�X
kD1

rzbTk r
zbk :

In the following, we shall bound the above two errors in order to get (4.9). We start
with

kzb2k � b
2
kk0 � k

zbk C bkk0kzbk � bkk0 � Cı�
2�2� ;

where we used (4.18). Similarly, with (3.1) one can then estimate

kzb2k � b
2
kk1 � Cı�:

Completely analogously one can estimate the term

k.zbi zbj � bibj /‚ij k0 � Cı
3=2�3�3� � Cı�2�2�
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and
k.zbi zbj � bibj /‚ij k1 � Cı�:

For the second term in E1, we write

zbk � � .�/bk D zbk � bk C bk.1 � � .�//

and observe that by definition 1� � .�/ D 0 for � � 2�1=2. Thus, remembering that
bk D �ak , we have that jbkj � C�1=2 on spt.1 � � .�//. Hence,

k.zbk � � .�/bk/ƒkk0 � Cı
1=2�1��

�
kzbk � bkk0 C kbk.1 � � .�//k0

�
� Cı1=2�1�� .ı1=2�2�2� C �1=2/ � Cı�2�2�

by the definition of � in (4.14). Similarly,

k.zbk � � .�/bk/ƒkk1

� Cı3=2�3�2� C Cı1=2�1��
�
ı1=2�C �1=2kr.1 � � .�//k0

�
� Cı�2�� � Cı�;

since jr.� .�//j � C��1=2ı1=2�C C j .�/r�j � C��1=2ı1=2�.
Combining the previous estimates, we get

kE1k0 � Cı�
2�2� ; kE1k1 � Cı�:

The estimation of E2 is lengthy but straightforwardly obtained by (3.1), (4.10), (4.12),
(4.18) and yields

kE2k0 � Cı�
2�2� ; kE2k1 � Cı�:

This in turn implies (4.9), since

krvTrv � .ruTruC �2.G CH//k0 � kE1k0 C kE2k0 � Cı�
2�2� ;

krvTrv � .ruTruC �2.G CH//k1 � kE1k1 C kE2k1 � Cı�:

It remains to show the estimates (4.6)–(4.8). Clearly, by the formulae for v and its
derivative and the estimates (4.10), (4.18), we have

kv � uk0 � �
��

n�X
kD1

kzbkk0kDkk0 � Cı
1=2��� ;

and

kv � uk1 �

n�X
kD1

kzbkk0kAkk0 C �
��

n�X
kD1

�
kzbkk0kBkk0 C kDkk0krzbkk0

�
� C.ı1=2 C ı1=2�1�� / � Cı1=2:
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Thus, we achieve (4.6)–(4.7). For the second derivatives, we also apply (4.10), (4.18)
and (3.1) to obtain

kv � uk2

� C

n�X
kD1

�
kzbkk0kAk C �

��Bkk1 C kzbkk1kAk C �
��Bkk0 C �

��
kDkrzbkk1

�
� C.ı1=2�� C ı1=2�C ı1=2�� / � Cı1=2�� :

With (4.1) and the fact � > 1, we arrive at (4.8) and finish the proof.

With Proposition 4.1, we can modify the inductive result [11, Proposition 4.1] to
fit our setting, which will help us to construct adapted short embeddings iteratively.
We recall the definition of adapted short embeddings from [10, 11].

Definition 4.1. Given a closed subset†�M and �2�0;1Œ , an embedding uWM!Rm

is called adapted short embedding with respect to † with exponent � if

(1) u 2 C 1;� .M/;

(2) there exists a non-negative function � 2 C.M/ with † D ¹� D 0º and a sym-
metric .0; 2/-tensor h 2 C.M/ with �1

2
g � h � 1

2
g such that

g � u]e D �2.g C h/I

(3) u 2 C 2.M n †/, �; h 2 C 1.M n †/ and there exists a constant A � 1 such
that in any chart �k

jr
2u.x/j � A�.x/1�

1
� ;

jr�.x/j � A�.x/1�
1
� ;

jrh.x/j � A�.x/�
1
� ;

for any x 2 �k n†.

Let u be an adapted short embedding with respect to some compact set † �M

with exponent � (cf. Definition 4.1). In particular,

g � u]e D �2.g C h/;

with † D ¹� D 0º. Furthermore, let S � † be another compact subset. Our next goal
is to show that, under certain conditions, we can perturb u using Proposition 4.1 to
construct another adapted short embedding with respect to the larger compact set S
with some exponent � 0 < � . In particular, we will be able to successively perturb u
to make it isometric along the skeleta of a suitable triangulation, eventually ending
up with an isometry of a neighborhood of † for the flexibility part of Theorem 1.1,
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respectively, an isometry of M in Theorem 1.2. We recall from [11] the geometric
condition which the two compact sets † � S have to satisfy.

Condition 4.1. There exists a geometric constant xr > 0 such that for any ı > 0 the
set ®

x 2M W dist.x;†/ � ı and dist.x; S/ � xrı
¯

is contained in a pairwise disjoint union of open sets, each contained in a single
chart �k .

Recall that in Proposition 4.1 we impose a smallness-condition on the oscillation
of our metric g. We now fix an atlas for M respecting this condition as follows. Fix
an arbitrary atlas of finitely many charts�k . By compactness there exists 
0 � 1 such
that


�10 Id � G � 
0Id; kGkC1.�k/ � 
0

on any �k , where, as above, G is the coordinate expression of g. If necessary, we
then subdivide �k to achieve osc�kG < �0.
0/. The charts in Definition 4.1 and
Condition 4.1 are assumed to satisfy these assumptions.

With Proposition 4.1 we are now ready to state and prove our inductive propo-
sition, analogous to the iteration in [11, Proposition 4.1]. The main difference in the
proof when compared to the one of [11] is the choice of � (when applying our Propo-
sition 4.1) and corresponding estimates on h.

Proposition 4.2. Let 0 < � < 1
2

, b > 1, � < �0
4

. There exists a constant

A0 D A0.�; �; b/ � 1;

such that the following holds.
Let † � S be compact subsets of M satisfying Condition 4.1. Let u 2 C 1;� .M/

be an adapted short embedding with respect to† such that g � u]e D �2.gC h/ with
� � 1=4 in M, † D ¹� D 0º, and in any chart �k ,

jr
2uj � A�1�

1
� ; jr�j � A�1�

1
� ;

jhj � �; jrhj � A��
1
� ;

(4.19)

for some A � A0. Then there exists an adapted short embedding xu 2 C 1;�
0

.M/ with
respect to S such that

g � xu]e D x�2.g C xh/; x� � �; kxu � uk0 � A
�1=2;

and xu D u, d xu D du on †.1

1The equality duD d xu on† is intended as an equality of sections of the bundle T �M!†.
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Moreover, in any chart �k ,

jr
2
xuj � A0x�1�

1
�0 ; jr x�j � A0x�1�

1
�0 ;

jxhj � � 0; jrxhj � A0x��
1
�0 ;

(4.20)

with

A0 D Ab
2

; � 0 D
�

b2
; � 0 D 4�:

Proof. As in [11], the proof is also divided into three steps.

Step 1. Parameters, cut-off functions and error size sequence. This step is the same
as in [11]. First, recall that on any chart it holds that


0
�1Id � G � 
0Id; kGkC1.�k/ � 
0; osc�kG < �0.
0/;

and let 
 WD 4
0. By � < 1
4

and the assumption that u is an adapted embedding, it is
easy to get


�1Id � ruTru � 
 Id:

Next, set
ı1 WD max

x2M
�2;

and for q � 1,

�q D Aı
� 1
2�

q ; �qC1 D �
b
q:

When A is sufficiently large (depending on �; �), we have

ıqC1 �
1

4
ıq; �qC1 � 2�q: (4.21)

We also decompose M with respect to † and S . Let

rq D A
�1ı

1
2�

qC1 D �
�1
qC1;

and define for q D 0; 1; 2; : : : ;

Sq D ¹x W dist.x; S/ < r�rqº; zSq D ¹x W dist.x; S/ < zr�rqº;

†q D ¹x W dist.x;†/ < r��rqº;

where r� < zr� and r�� are geometric constants to be chosen in the following order:

(1) Choose r�� > 0 so that2

�.x/ >
3

2
ı
1=2
qC2 implies x … †qC1: (4.22)

2Such a choice is possible, since (4.19) implies that � is Hölder continuous with exponent � .
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(2) Set zr� D xrr��, where xr > 0 is the geometric constant in Condition 4.1, which
for any q 2 N implies that

zSq n†q is contained in a pairwise disjoint union of open sets,
each contained in a single chart �k .

(4.23)

(3) Choose r� < zr� so that 1
2
zr� < r� < zr�. Then by (4.21), we have

zSqC1 � Sq � zSq for all q:

Next, we fix cut-off functions �; z�; ; z 2C1.0;1/with �; z� monotonic increas-
ing,  ; z monotonic decreasing such that

�.s/; z�.s/ D

´
1 s � 2;

0 s � 3
2
;

 .s/; z .s/ D

´
1 s � r�;

0 s � zr�;

and in addition,

z�.s/ D 1 on supp�; z .s/ D 1 on supp :

As in [11], set

�q.x/ D �

�
�.x/

ı
1=2
qC2

�
 

�
dist.x; S/
rqC1

�
; z�q.x/ D z�

�
�.x/

ı
1=2
qC2

�
z 

�
dist.x; S/
rqC1

�
:

Using (4.19) and the choice of rq , r�, zr� and the cut-off functions, we easily deduce

jr�qj; jr z�qj � CAı
� 1
2�

qC2 D C�qC2; (4.24)

dist.supp�q; @ supp z�q/ � C�1A�1ı
1
2�

qC2 D C
�1��1qC2: (4.25)

for some constant C depending on r�; zr�, and moreover

¹x 2 SqC1j�.x/ > 2ı
1=2
qC2º � ¹x 2M W �q.x/ D 1º;

supp�q � ¹x 2M W z�q.x/ D 1º;

supp z�q �
°
x 2 zSqC1 W �.x/ >

3

2
ı
1=2
qC2

±
:

(4.26)

From (4.22) and (4.23), we then deduce that supp z�q is contained in a pairwise disjoint
union of open sets, each contained in a single chart �k .

Finally, we define the sequence of error size ¹�qº. Set �0 D � and define �q for
q D 1; 2; : : : inductively as

�2qC1 D �
2
q.1 � �

2
q/C ıqC2�

2
q: (4.27)

One can prove by induction (cf. [11, Lemma 4.1]) that the thus defined maps �q have
the following properties.
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Lemma 4.1. Let ¹�qº be defined in (4.27). Then for any q D 0; 1; : : : ;

(i) on supp z�q it holds that

3

2
ı
1=2
qC2 � �q � 2ı

1=2
qC1I

(ii) for every x, we have �qC1.x/ � �q.x/;

(iii) if �q.x/ � ı
1=2
qC1, then x 62

Sq�1
jD0 supp z�j and consequently �q.x/ D �.x/;

(iv) if �q.x/ � ı
1=2
qC1, then either �q.x/ D 1 or x … SqC1.

Now we are ready to inductively construct a sequence of adapted short embed-
dings.

Step 2. Inductive construction. This step is similar to that of [11, Proposition 4.1],
but we need to pay more attention to the choice of � and the estimate of h. We will
construct a sequence of smooth adapted short embeddings .uq; �q; hq/ such that the
following hold:

(1)q for all M, we have
g � u]qe D �

2
q.g C hq/I

(2)q if x…
Sq�1
jD0 supp z�j , then .uq; �q; hq/D.u0; �0; h0/ and duqDdu0 along†;

(3)q the following estimates hold in M:

jr
2uqj � A

b2�
1� b

2

�
q ; jr�qj � A

b2�
1� b

2

�
q ; (4.28)

jhqj � 4�; jrhqj � A
b2�
� b

2

�
q I (4.29)

(4)q on ¹x W �0.x/ > ı
1=2
qC1º \ Sq , we have the sharper estimates

jr
2uqj � A

b�
1� b

�
q ; jr�qj � A

b�
1� b

�
q ; (4.30)

jhqj � �; jrhqj � A
b�
� b
�

q I (4.31)

(5)q we have the global estimate for q � 1:

kuq � uq�1k0 � xCı
1=2
q ��1q ; (4.32)

kuq � uq�1k1 � xCı
1=2
q ; (4.33)

where xC is the constant in the conclusions of Proposition 4.1 in (4.6)–(4.7).

Initial step q D 0. Set .u0; �0; h0/ D .u; �; h/. Since b > 1, it is easy to check
(1)0–(2)0 and (4)0 from (4.19).
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Inductive step q 7! qC 1. Suppose .uq; �q; hq/ is an adapted short embedding on M

satisfying (1)q–(5)q . We then construct .uqC1; �qC1; hqC1/. In fact, �qC1 has already
been defined in (4.27). We shall estimate .uq; �q; hq/ on supp z�q . As derived in [11],
on supp z�q , we have

3

2
ı
1=2
qC2 � �q � 2ı

1=2
qC1;

jr�qj � ı
1=2
qC1�qC2; jr

2uqj � ı
1=2
qC1�qC2;

ˇ̌̌
r�q

�q

ˇ̌̌
� �qC2;

jhqj � �; jrhqj � �qC2:

(4.34)

We then want to apply Proposition 4.1 to construct .uqC1; hqC1/. To this end define

z�q D �q

q
�2q � ıqC2;

zhq D
z�q�

2
q

�2q � ıqC2
hq:

From (4.34), on supp z�q , one has

5

4
ıqC2 � �

2
q � ıqC2 � 4ıqC1;

hence z�q and zhq are well defined. Note that with these definitions, we then have

z�2q.g C
zhq/ D �

2
q

�
.�2q � ıqC2/g C �

2
qhq

�
D �2q.g � u

]
qe � ıqC2g/

using that z�q D 1 on the support of �q and the inductive assumption (1)q . Thus, by
adding the tensor z�2q.g C zhq/, we will be able to get a map uqC1, which, up to an
error of size ıqC2, is isometric on the support of �q .

We therefore want to estimate z�q and zhq and choose ı;� in Proposition 4.1 accord-
ingly. We thus set � D supp z�q , and observe

jr

q
�2q � ıqC2j � C jr�qj;

�2q

�2q � ıqC2
D 1C

ıqC2

�2q � ıqC2
� 2;ˇ̌̌̌

r
�2q

�2q � ıqC2

ˇ̌̌̌
D

ˇ̌̌̌
r

ıqC2

�2q � ıqC2

ˇ̌̌̌
� C

ˇ̌̌̌
r�q

�q

ˇ̌̌̌
;

where C are geometric constants. Therefore, using (4.24) and (4.34), we can infer

0 � z�q � �q � 2ı
1=2
qC1; j

zhqj � 2� �
�0

2
;

jr z�qj � C
�
jr�qj�q C jr�qj

�
� Cı

1=2
qC1�qC2;

jr zhqj � C

�
jr z�qjjhqj C

ˇ̌̌̌
r�q

�q

ˇ̌̌̌
jhqj C jrhqj

�
� C�qC2:
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Therefore, .uq; z�q; zhq/ satisfies all the assumptions in Proposition 4.1 on supp z�q
with ı; � given by 4ıqC1; C�qC2, respectively. Setting

� D 1C
1 � �

b
.b � 1/ > 1;

we only need to make sure that C�qC2 � �0.
; �0; �/ in (4.4). This however follows
by choosing A � A0.�; �; b/ large enough.

Thus, recalling (4.23) that supp z�q is contained in a pairwise disjoint union of open
sets, each contained in a single chart, we may apply Proposition 4.1 in each open set
separately in local coordinates to add the term z�2q.g C zhq/. Overall we obtain uqC1
and E such that

g � u
]
qC1e D .g � u

]
qe/.1 � �

2
q/C ıqC2g�

2
q C E:

with uqC1 satisfying

jr
2uqC1j � Cı

1=2
qC1�

�
qC2 D Cı

1=2
qC1�

bC.1��/.b�1/
qC1 ; (4.35)

and E satisfying

jEj � CıqC1�
2�2�
qC2 D CıqC2�

�2.1�2�/.b�1/
qC1 ; (4.36)

jrEj � CıqC1�qC2 D CıqC2�
bC2�.b�1/
qC1 ; (4.37)

which are implied by ıqC1 D �
2�.b�1/
qC1 ıqC2 and (4.8)–(4.9). From (4.5), one gets

supp.uqC1 � uq/; supp E � supp�q C B�q .0/;

with
�q D .C�qC2/

1�2�
� �

�2.1��/.b�1/
qC1 ��1qC2 � C

�1��1qC2;

where C is the constant in (4.25) and the last inequality holds provided A is suffi-
ciently large. Consequently, uqC1 D uq , duqC1 D duq and E D 0 outside supp z�q .

Moreover, (4.32) and (4.33) for the case q C 1 follow immediately from (4.6)–
(4.7), hence (5)qC1 is verified. We also define

hqC1 D .1 � �
2
q/

�2q

�2qC1
hq C

E

�2qC1
;

so that
g � u

]
qC1e D �

2
qC1.g C hqC1/;

verifying (1)qC1. Note that on supp z�q using (4.34) one has

�2qC1 � 4ıqC1.1 � �
2
q/C ıqC2�

2
q � 4ıqC1;

�2qC1 �
9

4
ıqC2.1 � �

2
q/C ıqC2�

2
q � ıqC2:

(4.38)
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Thus, hqC1 is well defined. Besides we can also derive that .�qC1; hqC1/ agrees with
.�q; hq/ outside supp z�q . It remains to verify (2)qC1–(4)qC1 on supp z�q .

Verification of (2)qC1. If x 62
Sq
jD0 supp z�j , then z�q.x/ D 0 and therefore

.uqC1; �qC1; hqC1/ D .uq; �q; hq/ D .u0; �0; h0/:

Verification of (3)qC1. On supp z�q , we first calculate

jr�qC1j D
jr�2qC1j

2�qC1
�

C

�qC1

�
j�qr�qj C jr�qj.�

2
q C ıqC2/

�
� C

ıqC1�qC2

ı
1=2
qC2

D CAbC.b�1/�ı
1� b2 .1C

1
�
/

qC1

� Ab
2

.2ı
1=2
qC1/

1� b
2

� � Ab
2

�
1� b

2

�

qC1 ; (4.39)

where we have used (4.24), (4.34) and (4.38). For the inequality in the last line we
have used that

1 �
b

2

�
1C

1

�

�
�
1

2

�
1 �

b2

�

�
; 2.b � 1/� C b � b2

(from b > 1 and 2� < 1) and A sufficiently large to absorb geometric constants.
Similarly, using (4.34), (4.35)–(4.36) and (4.38), we obtain

jhqC1j � jhqj C
jEj

�2qC1
� 2� C C�

�2.1�2�/.b�1/
qC1 � 3�;

jr
2uqC1j � Cı

1=2
qC1�

bC.1��/.b�1/
qC1 � Cı

1=2
qC1�

b2��.b�1/
qC1

� CAb
2��.b�1/ı

1
2 .1�

b2

�
/

qC1 � Ab
2

�
1� b

2

�

qC1 ;

where we have used

.1 � �/.b � 1/C �.b � 1/ � b2 � b

(by b > 1) and again assumed A sufficiently large to absorb the constants C .
For jrhqC1j, we calculate as follows:

jrhqC1j � jrhqj C
1

�2qC1

�
jrEj C ıqC2jr.hq�

2
q/j
�
C
2jr�qC1j

�3qC1

�
ıqC2jhqj C jEj

�
� C�qC2 C C�

bC2�.b�1/
qC1 C C

ıqC1�qC2

ıqC2

�
� C �

�2.1��/.b�1/
qC1

�
� C�qC2 C C�

bC2�.b�1/
qC1 C C

ıqC1

ıqC2
�qC2

� C�
bC2�.b�1/
qC1 ; (4.40)
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where we have used (4.24), (4.34), (4.36), (4.37) and (4.39). Using again the inequal-
ity b C 2�.b � 1/ < b2 � .1 � 2�/.b � 1/, we further estimate

jrhqC1j � C�
b2�.1�2�/.b�1/
qC1

� CAb
2�.1�2�/.b�1/ı

� b
2

2�

qC1 � A
b2�
� b

2

�

qC1 ; (4.41)

where we have again used that A is sufficiently large. Thus we have shown (4.28) for
q C 1, i.e., (3)qC1 is verified.

Verification of (4)qC1. Observe that by (4.26),®
x 2 SqC1 W �0.x/ > ı

1=2
qC2

¯
D ¹�q.x/ D 1º

[
®
x 2 SqC1 W ı

1=2
qC2 � �0.x/ � 2ı

1=2
qC2

¯
:

If x 2 ¹�q D 1º, then

�qC1 D ı
1=2
qC2; hqC1 D

E

ıqC2
:

Using (4.35),

jr
2uqC1j � Cı

1=2
qC1�

bC.1��/.b�1/
qC1

D Cı
1=2
qC1�

2b��.b�1/�1
qC1 � CA2�

1
b
�bAbı

1
2 .1�

b
�
/

qC2 : (4.42)

where we have used 2� 1
b
< b. By takingA sufficiently large we absorb the geometric

constant C and deduce (4.30).
In order to verify (4.31), we calculate using (4.36)–(4.37):

jhqC1j � C�
�2.1�2�/.b�1/
qC2 � �;

jrhqC1j � C�
bC2�.b�1/
qC1 � �bqC2 D A

bı
� b
2�

qC2 :

using bC 2�.b � 1/ < b2. By choosingA sufficiently large, we can then absorb again
the geometric constants and conclude (4.31). Hence, (4)qC1 is obtained for this case.

On the other hand, if

x 2
®
x 2 †qC1 W ı

1=2
qC2 � �0.x/ � 2ı

1=2
qC2

¯
;

then
.uq; �q; hq/ D .u0; �0; h0/

by (2)q and �0 � 2ı
1=2
qC2. Thus,

�2qC1 � ıqC2.1 � �
2
q/C ıqC2�

2
q � ıqC2;

�2qC1 � 4ıqC2.1 � �
2
q/C ıqC2�

2
q � 4ıqC2:

(4.43)
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Therefore, choosing again A sufficiently large to absorb geometric constants,

jhqC1j � jh0j C

ˇ̌̌̌
E

�2qC1

ˇ̌̌̌
� � C C�

�2.1�2�/.b�1/
qC1 � 2�:

Moreover, calculating as in (4.39), but this time using (4.43),

jr�qC1j D
jr�2qj

2�qC1
�

C

�qC1

�
j�qr�qj C jr�qj.�

2
q C ıqC2/

�
� Cı

1=2
qC2�qC2 D CAı

1
2 .1�

1
�
/

qC2 � Abı
1
2 .1�

b
�
/

qC2 � Ab�
1� b

�

qC1 :

Similarly, proceeding as in (4.40)–(4.41), we have

jrhqC1j � C�
1C2�.1� 1

b
/

qC2 D CA1C2�.1�
1
b
/ı
� 1
2�
�.1� 1

b
/

qC2 � Ab�
� b
�

qC1:

Finally, the estimate for r2uqC1 has already been obtained in (4.42). Therefore,
(4)qC1 is verified also in this case.

Overall, we have shown that .uqC1; �qC1; hqC1/ satisfies (1)qC1–(5)qC1.

Step 3. Conclusion. We are now in a position to take the limit as q ! 1. Recall-
ing (4.21), we see that

ı1=2q � 2�q�1 and ı1=2q ��1q � A
�12�q�1:

In particular, from (5)q we see that ¹uqº is a Cauchy sequence in C 1.M/.
From the formula (4.27) and Lemma 4.1, we deduce

0 � �q � �qC1 � 2ı
1=2
qC1;

so that ¹�qº is a Cauchy sequence in C 0.M/. From (1)q–(3)q , we can also deduce
that ¹hqº is a Cauchy sequence in C 0.M/; indeed, this follows from the formula (1)q ,
the fact that u]qe and �2q are Cauchy sequences, and (4.29).

Furthermore, since supp z�q � Sq and
T
q Sq D S , using (2)q we see that for any

x 2M n S there exists q0 D q0.x/ such that

.uq; �q; hq/ D .uq0 ; �q0 ; hq0/

for all q � q0.x/. Similarly, since

supp z�q �
®
� > ı

1=2
qC1

¯
;
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.uq; �q; hq/ agrees with .u; �; h/ on †. Thus, there exist

xu 2 C 1.M/ \ C 2.M n S/;

x� 2 C 0.M/ \ C 1.M n S/;

xh 2 C 0.M;R2�2/ \ C 1.M n S;R2�2/;

such that

uq ! xu; u]qe ! xu
]e; �q ! x�; hq ! xh uniformly on M:

The limit .xu; x�; xh/ satisfies

g � xu]e D x�2.g C xh/ on M

using (1)q . By (2)q , xu D u and d xu D du on †. Moreover, we have

kxu � uk0 �

1X
qD1

kuq � uq�1k0 � xCA
�1

1X
qD1

2�q�1 D
1

2
xCA�1 � A�1=2

using (5)q and ensuring A is large enough to absorb the constant xC , and, using (3)q ,

jr
2
xuj � Ab

2

x�1�
b2

� ; jr x�j � Ab
2

x�1�
b2

� ;

jxhj � 4�; jrxhj � Ab
2

x��
b2

� :

Finally, from Lemma 4.1 and (4.26), we see that

�q � 2ı
1=2
qC1 on S:

Combined with the observation above that for any x … S � †, we have

x�.x/ D �q.x/ > 0

for some q; we deduce ¹x� D 0º D †. This proves that .xu; x�; xh/ is an adapted short
embedding with respect to S � † with exponent � 0 D �

b2
, and satisfying (4.20) as

required. The proof of Proposition 4.2 is completed.

5. Proof of Theorem 1.1 (2): Flexibility part

The goal of this section is to show the flexibility part of Theorem 1.1. The proof is
divided into three steps.
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Step 1. Short extension. In the first step we want to construct an embedding which is
isometric on † and strictly short on †C� n† for a one-sided neighborhood †C� �M .
The construction is analogous to the one in [10] (see also [24]) except that we want to
define u not only locally around a point p 2 †.

Recall that the one-sided neighborhood is defined as †C� D F.† � Œ0; �Œ / for
F W† � � � �0; �0Œ!M given by F.p; t/ D expp.t�.p//. We then define our short
extension uW†C� ! Rm by

u.F.p; t// D f .p/C t�.p/ � t2�.p/:

We claim that u is isometric on † and strictly short on †C� n† if � is small enough.
Indeed, fix a finite atlas ¹.Vi ; i /ºNiD1 for the manifold† and extend it to†� using F .
More precisely, set Ui D F.Vi ; � � �0; �0Œ / and define 'i WUi ! Rn by

'i .F.p; t// D . i .p/; t/:

Clearly in these coordinates it holds that † D ¹t D 0º, and one can check that the
metric in each Ui is of the form

g D

n�1X
i;jD1

gijdx
idxj C .dt/2:

Moreover, the scalar second fundamental form of the inclusion �W† ,!M is given by

Lij .x/ D �
1

2
@tgij .x; 0/:

By expanding gij around t D 0, we then get

gij .x; t/ D gij .x; 0/ � 2tLij .x/CO.t
2/:

On the other hand, we compute

h@iu; @jui D h@if; @jf i C t
�
h@if; @j�i C h@jf; @i�i

�
CO.t2/;

and
h@iu; @tui D 0; h@tu; @tui D .1 � 2t/

2

thanks to the properties of �. Since f is an isometry and

h@if; @j�i D h@jf; @i�i D �hxLij ; �i;

we therefore get

g � ruTru D 2t

 
hxLij ; �i � Lij 0

0 2

!
CO.t2/: (5.1)
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Clearly, u]e D g on †. Moreover, if � > 0 is small enough, assumption (1.2) implies
that there exists C � 1 such that

.g � ruTru/j.x;t/ � C
�1t Id

on †C� , showing the strict shortness of u on †C� n†.
Lastly, we observe that for p 2 † it holds that

dup.�/ D @tu.F.p; 0// D �.p/;

and consequently, for any X 2 Tp† n ¹0º,

hdu.�/; xL.X;X/i D h�; xL.X;X/i > L.X;X/: (5.2)

Step 2. Adapted short extension. Given the short extension u from Step 1, we want to
construct an adapted short embedding v with u D v and du D dv on †. The step is
similar to corresponding construction in [10], the main differences being the choice of
frequency parameter below to make our extension of class C 1;�0 for any �0 < 1

2
and

the global nature of the present construction. We use one stage of adding primitive
metric errors to construct an adapted short embedding. Choose 
;M > 1 such that the
short extension uW†C� ! Rm constructed in Step 1 satisfies u 2 C 2.†C� / with


�1Id � ruTru � 
 Id; kukC2.Ui / �M

in every chart Ui . We then define

�2.x; t/ D
1

n
tr.g � ruTru/:

Observe that this is a well-defined function on †C� since the trace is invariant under
coordinate transformations. By (5.1), we can seek a constant C � 1 so that, for all
.x; t/ 2 †C� ,

C�1t1=2 � �.x; t/� Ct1=2; jr�.x; t/j � Ct�1=2; jr2�.x; t/j � Ct�3=2: (5.3)

Furthermore, there exists ˛ > 0 such that

g � ruTru � C�1�2Id � 2˛�2g

in every chart. We assume without loss of generality that ˛�2 � 1
16

on†C� and ˛ < 1.
In particular, using [31, Lemma 1] (see also [33, Lemma 1.9]), we obtain the decom-
position

g � ruTru

�2
� ˛g D

zNX
kD1

xb2k;i$k;i ˝$k;i
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in Ui , where $k;i 2 Sn�1, xbk;i 2 C1.Ui / and zN 2 N, with estimates of the form

kxbk;ikCj .Ui / � C

for j D 0; 1; 2. Setting bk D xbk� we derive

g � ruTru � ˛�2g D

zNX
kD1

b2k;i$k;i ˝$k;i

in Ui , with estimates, for j D 0; 1; 2 and k D 1; : : : ; zN ,

jr
j bk;i .x; t/j � Ct

1=2�j for .x; t/ 2 Ui : (5.4)

Now we define a Whitney-decomposition of †C� n † as follows: Set dq D 2�q� for
q D 1; 2; : : : and define

†iq D F
�
Vi ; �dqC1; dq�1Œ

�
D Ui \

�
†C
dq�1
n†C

dqC1

�
:

We then let ¹�iqºq;i be a partition of unity on†C� n† subordinate to the decomposition

†C� n† D

1[
qD1

N[
iD1

†iq

with the following standard properties:

(a) supp�iq � †
i
q , in particular supp�iq \ supp�iqC2 D ;;

(b)
PN
iD1

P1
qD0.�

i
q/
2 D 1 in †C� n†;

(c) for any q; i and j D 0; 1; 2 we have k�iqkCj .†iq/ � Cd
�j
q .

Consequently, we can write

g � u]e � ˛�2g D

NX
iD1

zNX
kD1

X
q odd

.�iqbk;i /
2$k;i ˝$k;i

C

NX
iD1

zNX
kD1

X
q even

.�iqbk;i /
2$k;i ˝$k;i :

We now add similar perturbations to the map u as in Proposition 4.1 in order to remove
most of the metric error. This can be done as in [10, Proposition 3.1], which we can
directly apply since from property (c) and (5.4), we deduce

k�iqbk;ikCj .†iq/
� Cd1=2�jq :
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Thus the assumptions of [10, Proposition 3.1] hold in each †iq with parameters

ı D dq; " D dq; � D d�1q ; z� D d�1q :

Observe that, using property (a), we may “add” each primitive metric

.�iqbk;i /
2$k;i ˝$k;i

with q odd in parallel, and serially3 in i and k. We then repeat the same process
for q even. Then [10, Proposition 3.1] yields, for any K � C.M; 
/, an embedding
v 2 C 2.†C� ;R

m/ such that, for all q 2 N and i D 1; : : : ; N ,

kv � ukC0.†iq/
� C.M; 
/d3=2q K�1; (5.5)

kv � ukC1.†iq/
� C.M; 
/d1=2q ; (5.6)

kvkC2.†iq/
� C.M; 
/d�1=2q K2N

zN : (5.7)

Since the perturbations in each step are compactly supported away from †, we have
u D v and du D dv along †. Moreover,

v]e D u]e C

NX
iD1

zNX
kD1

1X
qD1

.�iqbk;i /
2$k;i ˝$k;i C E

with

kEkC0.†iq/ � C.M; 
/dqK
�1;

kEkC1.†iq/ � C.M; 
/K
2N zN�1;

for every i D 1; : : : ;N . Now we are in a position to show that v is our desired adapted
short embedding. First of all, observe that for any �0 < 1

2
and any i D 1; : : : ; N , by

(5.6)–(5.7),

kv � ukC1;�0 .†iq/
� kv � uk

1��0

C1.†iq/
kv � uk

�0

C2.†iq/
� C.M; 
/d .1�2�0/=2q

is bounded independently of q and i . Consequently, v 2 C 1;�0.x†C� /. Besides, for
.x; t/ 2 †iq , we have t � dq � �2.x; t/. Therefore, from (5.3) and (5.7), we get

jr�.x; t/j � C.M; 
/�.x; t/�1 � C.M; 
/�.x; t/
1� 1

�0 ;

jr
2v.x; t/j � C.M; 
/�.x; t/�1 � C.M; 
/�.x; t/

1� 1
�0 ;

3In fact, one could also exploit the fact that the codimension m � n � 2n� to perform the
steps in k simultaneously as well. This would lead to an improved bound in (5.7), but this is not
needed for our purpose.
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Similarly,

jE.x; t/j � C.M; 
/K�1�2.x; t/;

jrE.x; t/j � C.M; 
/K2N
zN�1:

Let

h D �
E

˛�2
;

so that
g � v]e D ˛�2g � E D ˛�2.g C h/;

and then

jh.x; t/j � C.M; 
/.˛K/�1 <
�0

4nC1
;

jrh.x; t/j � C.M;K; 
/.˛1=2�.x; t//�2 C C.M; 
/.˛K/�1�.x; t/
� 1
�0

� C.M;K; 
/.˛1=2�.x; t//
� 1
�0 ;

provided K is taken large enough depending on M;
; ˛; �0.

Step 3. Isometric extension. By the construction of v, we therefore have

g � v]e D ˛�2.g C h/

on†C� , v is isometric on†, and additionally vD u, dvD du on†. Thus in particular,

dv.�/ D du.�/ D �

along †, and therefore (5.2) holds with v replacing u. Besides, we have ˛1=2� � 1
4

and

jr.˛1=2�/j � A.˛1=2�/
1� 1

�0 ; jr2vj � A.˛1=2�/
1� 1

�0 ;

jhj �
�0

4nC1
; jrhj � A.˛1=2�/

� 1
�0 :

Now fix a triangulation of † by .n � 1/-simplices, such that every simplex is con-
tained in a single chart Vi . Given any .n � 1/-simplex �n�1, we can subdivide the
product �n�1 � Œ0; �� in a standard way (see, for example, [21]) into a number of
n-simplices. We then use the map F from (1.3) to obtain a triangulation T of x†C� .

Now set S D †[V , where V is the vertex set of the triangulation. Then† and S
satisfy Condition 4.1, and therefore we can apply Proposition 4.2 to obtain a new
adapted short embedding with respect to S . Iterating the construction, i.e., setting

S0 D S; Sk D † [ Tk;
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where Tk is the union of the k-faces of the triangulation, and

†k D Sk�1

for k D 1; : : : ; n, we finally end up with a adapted short embedding with respect to
Sn D x†

C
� , i.e., xuW x†C� ! Rm is an isometric embedding. It holds xu 2 C 1;�

0

.x†C� ;R
m/

for
� 0 D �0b

�2n;

where b > 1 is arbitrary. Since �0 < 1
2

is arbitrary as well, it follows that we can
achieve any regularity C 1;� for � < 1

2
.

Finally, xu D v D f on †, so xu extends f . Moreover, d xu D dv on †, so that also

hd xu.�/; xL.X;X/i D hdv.�/; xL.X;X/i > L.X;X/

for any tangent vector X to †, finishing the proof.

6. Proof of Theorem 1.2

We will concentrate on the case of immersions. The extension to embeddings is
straightforward and follows well-established strategies (see [16, 31, 33]).

With Proposition 4.2 at our disposal, the strategy for proving Theorem 1.2 for
immersions is clear: we perform an induction on dimension on the skeleta of a given
regular triangulation of M.

As in Section 4, we fix a finite atlas of charts ¹�kº on M such that on every chart


�1Id � G � 
 Id and osc�kG � �0.
/=2

for some 
 > 1, where �0.
/ is the constant given in Proposition 4.1. In addition, fix
a triangulation T on M whose skeleta consist of a finite union of C 1 submanifolds,
such that each triangle T 2 T is contained in a single chart.

We first take any C1 embedding of M in RnC2n� . Then we change a scale of
such embedding such that the resulting immersion, which we denote by u, is short.
By compactness of M we may also make u strictly short, i.e.,

g � u]e > 0

on M in the sense of quadratic forms. Next, we will start our inductive construction
as in [11]. In the first step, we recall the construction of an adapted short immersion zu
of M with respect to † D ;.



Rigidity and flexibility of isometric extensions 71

Proposition 6.1. Let u 2 C 2.MIRnC2n�/ be a strictly short immersion. There exists
0 < ı� � 1=8 and A� � 1, depending on u and g, such that for any A � A�, there
exists a strictly short immersion zu and associated zh with

g � zu]e D ı�.g C zh/

with
1

2
g � zu]e � g;

and such that the following estimates hold:

kzu � uk0 � ı
�A�˛

�

; kzuk2 � A; (6.1)

kzhk0 � A
�˛� ; kzhk1 � A: (6.2)

The exponent ˛� only depends on M.

Next, fix �0 < 1=2 and � > 0. Set u0 D zu, h0 D zh as obtained from Proposition 6.1
withADA0 sufficiently large (to be determined below), and also z�2D ı�. From (6.1),
we deduce

ku � u0k0 �
"

4
(6.3)

by assuming A0 is sufficiently large. From (6.1)–(6.2), we further have

kr
2u0k0 � A0 � A0.ı

�/
1
2�

1
2�0 ;

kh0k0 � A
�˛�

0 �
�0

4nC1
;

krh0k0 � A
1�˛�

0 � A0.ı
�/
˛0
2 �

1
2�0 ;

where �0 is in Proposition 4.1. Therefore we deduce that u0 is an adapted short immer-
sion with respect to the empty set †0 D ; with exponent �0, and furthermore the
estimates (4.19) are satisfied by .u0; �0; h0/ with .A; �/ replaced by .A0; �0/.

For any b > 1, we can apply Proposition 4.2 to obtain a C 1;�1 adapted short
immersion .u1; �1; h1/ with respect to †1 D V , where V is the vertex set of the
triangulation T and such that (4.19) and (4.20) hold with

A1 D A
b2

0 ; �1 D
�0

b2
:

We then continue this process along the skeleta †1 � †2 � � � � � †nC1 D M and
obtain adapted short immersions .uj ; �j ; hj / with respect to †j , j D 1; 2; : : : ; nC 1,
with

AjC1 D A
b2

j ; �jC1 D
�j

b2
:
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After nC 1 steps, we finally obtain a global C �nC1 isometric immersion v WD unC1
of M with

�nC1 D b
�2n�2�0:

Note that for any fixed �0, taking b ! 1, we will have �nC1 ! �0. Thus, for any
� 0 < �0, there exists a choice of b > 1 so that � 0 < �nC1 < �0. In this way we can
achieve any exponent � < 1

2
. Finally, observe that (recalling (6.3))

ku � vk0 � ku � u0k0 C

nX
jD0

kujC1 � uj k0

� "=4C

nX
jD0

A
�1=2
j � "=4C .nC 1/A

�1=2
0 � "

by choosing A0 sufficiently large. This completes the proof of Theorem 1.2.

A. Proof of Lemma 3.5

Step 1. Without loss of generality we assume � D B1.0/. In a first step we construct
a family of vector fields �1; : : : ; �m�n which satisfies (3.5) on a small neighborhood
of the origin. To do this, pick orthonormal vectors �1; : : : ; �m�n 2 Rm n dv0.T0 xB1/.
We then set

�i D �i �

nX
jD1

rij @j v;

where rij are chosen to guarantee h�i ; @kvi D 0 for every i and k. This is possible
sincervTrv� 
�1Id . Indeed, denote bik Dh�i ;@kvi and observe that h�i ;@kviD 0
for all i; k is equivalent to

R � rv|
rv D B;

where R and B are the .m � n/ � n matrices with entries Rij D rij and Bij D bij .
We can then simply set

R D B � .rv|
rv/�1:

We claim that in a neighborhood of the origin the family ¹�iºm�niD1 is linearly inde-
pendent and therefore constitutes a frame for the normal bundle. A Gram–Schmidt
process will then produce the desired vector fields.

To show the claim, we write

.rv|
rv/�1ij D .detrv|

rv/�1Pij .rv/;
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where Pij .rv/ is a polynomial in the arguments @kvl . Observe that assumption (3.4)
implies Œv�1 � C.
/. Hence, with Lemma 3.1 and assumption (3.4) we find

krij k0 � C.
/Œv�2";

where we used that

jbikj D jh�i ; @kv.x/ij D jh�i ; @kv.x/ � @kv.0/ij � Œv�2"

for x 2 xB". With this estimate we find

kh�i ; �j i � ıij kC0. xB"/ D kh�i ; �j i � h�i ; �j ikC0. xB"/ � C.n; 
/Œv�2":

Therefore, if " � ".n; 
; Œv�2/ > 0 is small enough, the vector fields �1; : : : ; �m�n are
linearly independent. Before continuing with the Gram–Schmidt process, observe the
following estimates for 0 < l � N :

Œrij �l � Cl
�
C.
/Œv�lC1 C C.
/Œbij �l

�
� Cl.
/Œv�lC1;

thanks to the Leibniz rule. Therefore, we have the same estimates for the vector fields

Œ�i �l � Cl.
/Œv�lC1: (A.1)

Now we set
�1 D

�1

j�1j
;

and observe that for small enough " > 0, we have j�1j� 12 so that, thanks to Lemma 3.1
and (A.1), �1 2 CN . xB"/ with

Œ�1�C l . xB"/ � Cl Œ�1�C l . xB"/ � Cl.
/Œv�C l . xB"/

for all 0 � l � N . Moreover, on xB" we have

j�1 � �1j �
2j�1 � �1j

j�1j
� C.
/Œv�2":

Now we assume �1; : : : ; �k�1 are already constructed with

h�i ; �j i D ıij ;

rv � �i D 0;

Œ�i �l;ˇ � Cl.
/Œv�lC1 for all 0 � l � N;

on xB", and in addition
j�i � �i j � C.
/Œv�2": (A.2)
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We then set

�k D �k �

k�1X
jD1

h�k; �j i�j ; �k D
�k

j�kj
:

It remains to show that �k satisfies (3.5) and (A.2). Observe that

h�k; �j i D h�k � �k; �j i C h�k; �j � �j i;

so that jh�k; �j ij � C.
/Œv�2" on xB" and by the Leibniz rule also

Œh�k; �j i�C l . xB"/ � Cl.
/Œv�C lC1. xB"/:

In particular, j�kj � 1
4

for " small enough, and hence, with Lemma 3.1,

Œ�k�C l . xB"/ � Cl.
/Œv�C lC1. xB"/:

Therefore, �k satisfies (3.5). Since moreover

j�k � �kj �
2j�k � �kj

j�kj
� C

�
j�k � �kj C j�k � �kj

�
� C.
/Œv�2";

the first step is completed.

Step 2. In this step we show that one can continue the vector fields to maps on xB1
satisfying the same constraints. Consider the set

R D
®
� 2 Œ0; 1� W there exist �1; : : : ; �m�n 2 CN;˛. xB�/ satisfying (3.5) on xB�

¯
:

As we saw in Step 1, R is non-empty. Set x� D supR. We claim that x� 2 R. To see
this, let �q " x� and fix the corresponding families of vector fields �qi . Now assume that
there exists ıD ı.
;v/ > 0 such that each �qi can be extended to a map z�qi 2C

N . xB�q /

with
Œ z�
q
i �C l . xB�q /

� C.
/
�
1C Œv�lC1

�
; (A.3)

where �q D min¹1; �q C ıº. We will prove this fact at the end of this proof in Step 3.
With it, we can repeat the procedure of Step 1: We set

�
q
i D
z�
q
i �

nX
jD1

r
q
ij @j v;

where, again, rqij are chosen such that every �qi is orthogonal to v. We need to show
that, for ı small enough, �qi are linearly independent to perform the Gram–Schmidt
process. Set bq

ik
D hz�

q
i ; @kvi and observe that, for �q < jxj � �q ,

b
q

ik
.x/ D

D
z�
q
i .x/ � �

q
i

�
�q
x

jxj

�
; @kv.x/

E
C

D
�
q
i

�
�q
x

jxj

�
; @kv.x/ � @kv

�
�k

x

jxj

�E
:
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Thus,
jb
q

ik
j � C.
/Œ z�

q
i �C1. xB�q /

ı C Œv�2ı � C
�

; Œv�2

�
ı

thanks to (A.3). Thus, as before it follows

jr
q
ij j � C

�

; Œv�2

�
ı:

Now we write
h�
q
i ; �

q
j i D h

z�
q
i ;
z�
q
j i CE;

where E is an error term with jEj � C.
; Œv�2/ı thanks to the estimate on rqij . We
expand

hz�
q
i ;
z�
q
j i D

D
z�
q
i � �

q
i

�
�q
x

jxj

�
; z�
q
j

E
C

D
z�
q
i

�
�q
x

jxj

�
; z�
q
j � �

q
j

�
�q
x

jxj

�E
C

D
�
q
i

�
�q
x

jxj

�
; �
q
j

�
�q
x

jxj

�E
D ıij C zE;

where again j zEj � C.
; Œv�2/ı. Hence, for ı.
; v/ small enough, �qi are linearly inde-
pendent. The estimates (A.1) can be derived in the same way. As in Step 1, we can
then apply the Gram–Schmidt process to generate the vector fields x�qi satisfying (3.5)
on xB�q . Consequently, �q 2 R. By definition, x� � �q for all q. Letting q !1, we
find � �min¹1; �C ıº, which shows �q D 1 for q large enough. Hence, 1 2 R, which
completes Step 2.

Step 3. In this step we show that there exists a ı � ı.
; v/ > 0 such that any map
� 2 CN . xB�/ with

Œ��C l . xB�/ � Cl.
/
�
1C Œv�C lC1. xB1/

�
(A.4)

can be extended to a map z� 2 CN .Rn/ such that

Œz��C l . xB� / � Cl.
/
�
1C Œv�C lC1. xB1/

�
; (A.5)

where � D min¹1; �C ıº and Cl.
/ might differ from the constant in (A.4).
The existence of such an extension is a classical fact, originally due to Whit-

ney [34]. However, we could not find a reference stating the estimates (A.5), which is
why we redo the argument in the following.

For k 2 N, y 2 xB� and x 2 Rn, we denote by T ky �.x/ the k-th order Taylor
polynomial of � around y at x, i.e.,

T ky �.x/ D
X
jˇ j�k

@ˇ �.y/

ˇŠ
.x � y/ˇ ;
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with the usual conventions concerning the multi-indices ˇ. Let �j be a partition of
unity subordinate to decomposition of Rn n xB� such that no point is in the support of
more than M.n/ functions �j , the diameter of the support of �j is at most twice its
distance to xB�, and

j@ˇ�j .x/j � Cˇd.x/
�jˇ j

for x 2Rn n xB�, where d.x/D dist.x; xB�/. For a proof we refer to [23, Lemma 2.3.7].
We then set z�.x/ D �.x/ for x 2 xB�, and

z�.x/ D
X
j

�j .x/T
N
yj
�.x/

otherwise, where yj 2 @ xB� minimizes the distance to the support of �j . In [23, Theo-
rem 2.3.6] it is shown that z� 2 CN with @ˇ z� D @ˇ � on xB� for every jˇj � k. We want
to show that z� also satisfies (A.5).

Observe first that if x 2 supp�j then

jx � yj j � diam.supp�j /C dist.supp�j ; xB�/ � 3d.x/:

Hence, for such x, we have

j@ˇT Nyj �.x/j D

ˇ̌̌̌ X
j�j�N�jˇ j

@ˇC��.yj /

�Š
.x � yj /

�

ˇ̌̌̌

� Œ��jˇ j C

N�jˇ jX
iD1

d.x/i Œ��jˇ jCi

� Œ��jˇ j C CN .
/d.x/
�
1C kvkNC1

�
;

for any multi-index ˇ with 0 � jˇj � N . Consequently, if � < jxj � �C ı we find

j@ˇT Nyj �.x/j � Œ��jˇ j C 1; (A.6)

if ı is chosen small enough depending on 
 and v. In particular, this shows the esti-
mate (A.5) for l D 0 in view of (A.4). Now fix 1 � l � N and multi-indices ˛;ˇ with
j˛j C jˇj D l . We want to show the estimateˇ̌̌̌X

j

@˛�j @
ˇT Nyj �

ˇ̌̌̌
� Cl.
/

�
1C Œv�lC1

�
:

If ˛ D 0 this follows from the estimate (A.6) together with the assumption (A.4).
Therefore, we can assume j˛j � 1. We writeX

j

@˛�j .x/@
ˇT Nyj �.x/ D

X
j

@˛�j .x/
X

j�j�N�jˇ j

@ˇC��.yj /

�Š
.x � yj /

�
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D

X
j

@˛�j .x/
X
j�j<j˛j

@ˇC��.yj /

�Š
.x � yj /

�

C

X
j

@˛�j .x/
X

j˛j�j�j�N�jˇ j

@ˇC��.yj /

�Š
.x � yj /

�

DW I.x/C II.x/

Recall that j@˛�j .x/j � Cd.x/�j˛j. Since j˛j D l � jˇj, we can estimate the second
sum by

jII.x/j � Cd.x/�j˛j
�
Œ��ld.x/

j˛j
C

N�jˇ jX
iD1

d.x/j˛jCi Œ��lCi

�
� C Œ��l C CN .
/d.x/

�
1C kvkNC1

�
� Cl.
/

�
1C Œv�lC1

�
if � < jxj � �C ı and ı small enough, i.e., d.x/� ı, thanks to (A.4). To estimate I.x/
we set x� D � x

jxj
and observe that, by Taylor’s theorem,

@ˇC��.yj / � T
j˛j�j�j�1
x� @ˇC��.yj / D

X
jz�jDj˛j�j�j

@z�CˇC��.�/

z�Š
.yj � x

�/z�;

for some � 2 Œx�; yj �. Now jx� � yj j � d.x/C jx � yj j � 4d.x/, so thatˇ̌
@ˇC��.yj / � T

j˛j�j�j�1
x� @ˇC��.yj /

ˇ̌
� C Œ��j˛jCjˇ jd.x/

j˛j�j�j
D C Œ��ld.x/

j˛j�j�j:

since by assumption j˛j C jˇj D l . Therefore, it holds thatˇ̌̌̌X
j

@˛�j .x/
X
j�j<j˛j

.x � yj /
�

�Š

�
@ˇC��.yj / � T

j˛j�j�j�1
x� @ˇC��.yj /

�ˇ̌̌̌
� C Œ��l :

(A.7)
To conclude it suffices to observeX

j�j�j˛j�1

.x � yj /
�

�Š
T
j˛j�j�j�1
x� @ˇC��.yj /

D

X
j�j�j˛j�1

� X
jz�j�j˛j�j�j�1

@z�CˇC��.x�/

z�Š�Š
.x � yj /

�.yj � x
�/z�

�
D

X
j�j�j˛j�1

@ˇC��.x�/

�Š

�X
z���

�Š

z�Š.� � z�/Š
.x � yj /

�.yj � x
�/��z�

�
D

X
j�j�j˛j�1

@ˇC��.x�/

�Š
.x � x�/� D T

j˛j�1
x� @ˇ �.x/: (A.8)
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Since
P
j @

˛�j .x/ D 0, we can simply subtract T j˛j�1x� @ˇ �.x/ to find

jI.x/j D
ˇ̌̌̌X
j

@˛�j .x/

� X
j�j�j˛j�1

@ˇC��.yj /

�Š
.x � yj /

�
� T

j˛j�1
x� @ˇ �.x/

�ˇ̌̌̌
� C Œ��l

in view of (A.8) and (A.7), which, thanks to (A.4), finishes the proof.
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