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Abstract. We show that for any lattice Veech group in the mapping class group Mod.S/ of a
closed surface S , the associated �1S -extension group is a hierarchically hyperbolic group. As
a consequence, we prove that any such extension group is quasi-isometrically rigid.

1. Introduction

This paper studies geometric properties of surface group extensions and how these
relate to their defining subgroups of mapping class groups. Let S be a closed, con-
nected, oriented surface of genus at least 2. Recall that a �1S -extension of a group G
is a short exact sequence of the form

1! �1S ! � ! G ! 1:

Such extensions are in bijective correspondence with monodromy homomorphisms
from G to the extended mapping class group Mod˙.S/ Š Out.�1S/ of the surface.
Alternatively, these groups � are precisely the fundamental groups of S -bundles.

Many advances in the study of mapping class groups have been motivated by a
longstanding but incomplete analogy between hyperbolic space Hn and the Teich-
müller space T .S/ of a surface. In the theory of Kleinian groups, a discrete group
of isometries of Hn is convex cocompact if it acts cocompactly on an invariant, con-
vex subset. Farb and Mosher [24] adapted this notion to mapping class groups by
defining a subgroup G �Mod˙.S/ to be convex cocompact if it acts cocompactly on
a quasi-convex subset of T .S/. This has proven to be a fruitful concept with many
interesting connections to, for example, the intrinsic geometry of the mapping class
group [10,20], and its actions on the curve complex and the boundary of Teichmüller
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space [36]. Most importantly, the work of Farb–Mosher [24] and Hamenstädt [30]
remarkably shows that an extension � as above is word hyperbolic if and only if the
associated monodromyG!Mod˙.S/ has finite kernel and convex cocompact image
(see also [50]).

For Kleinian groups, convex cocompactness is a special case of a more prevalent
phenomenon called geometric finiteness, which roughly amounts to acting cocom-
pactly on a convex subset minus horoballs invariant by parabolic subgroups. In [52],
Mosher suggested this notion should have an analogous framework in mapping class
groups that would extend the geometric connection with surface bundles to a larger
class of examples. The prototypical candidates for geometric finiteness are the lattice
Veech subgroups; these are special punctured-surface subgroups of Mod.S/ that arise
naturally in the context of Teichmüller dynamics and whose corresponding S -bundles
are amenable to study via techniques from flat geometry.

Our prequel paper [16] initiated an analysis of the �1S -extensions associated to
lattice Veech subgroups, with the main result being that each such extension � admits
an action on a hyperbolic space yE that captures much of the geometry of � . Building
on that work, the first main result of this paper is the following, which provides a
concrete answer to [52, Problem 6.2] for lattice Veech groups.

Theorem 1.1. For any lattice Veech subgroup G < Mod.S/, the associated �1S -
extension group � of G is a hierarchically hyperbolic group.

Hierarchical hyperbolicity means that in fact all the geometry of � is robustly
encoded by hyperbolic spaces. This is exactly the sort of relaxed hyperbolicity for
�1S -extensions that one hopes should follow from a good definition of geometric
finiteness in Mod.S/. Thus Theorem 1.1 suggests a possible general theory of geo-
metric finiteness, which we expound upon in Section 1.4 below.

Hierarchical hyperbolicity has many strong consequences, some of which are
detailed in Section 1.1 below. It also enables, via tools from [9], the proof of our
second main result, which answers [52, Problem 5.4].

Theorem 1.2. For any lattice Veech group G < Mod.S/, the associated �1S -exten-
sion group � of G is quasi-isometrically rigid.

In [52], Mosher in fact suggests an alternate approach to proving quasi-isometric
rigidity that culminates in the formulation of Problem 5.4 of [52] as an equivalent
condition in this case. Both our proof and this alternate approach share a common key
step of showing that quasi-isometries are coarsely fiber-preserving; for this we use
tools from hierarchical hyperbolicity (see Proposition 5.4 below), whereas Mosher’s
approach uses ideas from coarse algebraic topology appealing to the fact thatG is vir-
tually free (see [23]). In Section 5.7 we give a rough sketch that carries out Mosher’s
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approach, drawing partly from his unpublished results in [51], and leading to an alter-
nate proof of Theorem 1.2.

It is our hope that the framework we develop for proving quasi-isometric rigidity
for extension groups via hierarchical hyperbolicity will be applicable to a wider class
of geometrically finite subgroups (Section 1.4), including those which may not be
virtually free.

The rest of this introduction gives a more in-depth treatment of these results while
elaborating on the concepts of, and connections between, hierarchical hyperbolicity,
extensions of Veech groups, quasi-isometric rigidity, and geometric finiteness.

1.1. Hierarchical hyperbolicity

The notion of hierarchical hyperbolicity was defined by Behrstock, Hagen, and Sisto
in [7] and was motivated by the seminal work of Masur and Minsky [45]. In short, it
provides a framework and toolkit for understanding the coarse geometry of a space/
group in terms of interrelated hyperbolic pieces. More precisely, a hierarchically
hyperbolic space (HHS) structure on a metric space X is a collection of hyperbolic
spaces ¹C.W /ºW2S, arranged in a hierarchical fashion, in which any pair are nested Ď,
orthogonal ?, or transverse t, along with Lipschitz projections to and between these
spaces that together capture the coarse geometry of X . A hierarchically hyperbolic
group (HHG) is then an HHS structure on a group that is equivariant with respect
to an appropriate action on the union of hyperbolic spaces C.W /. See Section 4 for
details or [7, 8, 59] for many examples and further discussion.

Showing that a space/group is a hierarchically hyperbolic gives access to several
results regarding, for example, a coarse median structure and quadratic isoperimet-
ric function [12, 13], asymptotic dimension [6], stable and quasi-convex subsets and
subgroups [2, 56], quasi-flats [9], bordifications and automorphisms [18], and quasi-
isometric embeddings of nilpotent groups [7]. In particular, the following is an imme-
diate consequence of Theorem 1.1.

Corollary 1.3. Let G < Mod.S/ be any lattice Veech group and � the associated
�1S -extension group. Then:

(1) � has quadratic Dehn function [12];

(2) � is acylindrically hyperbolic and, moreover, its action on the Ď-maximal
hyperbolic space in the hierarchy is a universal acylindrical action [2];

(3) � is semihyperbolic, and thus has solvable conjugacy problem [19, 28].

As discussed in Section 1.2 below, further information about � can be gleaned
from the specific HHG structure constructed in proving Theorem 1.1. We note that
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the Ď-maximal hyperbolic space of this structure, and thus the universal acylindrical
action indicated in Corollary 1.3 (2), is simply the space yE from [16].

1.2. The HHG structure on �

In order to describe the HHG structure more precisely and explain its connection to
quasi-isometric rigidity in Theorem 1.2, we must first recall some of the structure
of Veech groups and their extensions. Let G < Mod.S/ be a lattice Veech group
and � D �G the associated extension group. First note that (up to finite index) � is
naturally the fundamental group of an S -bundle xE=� over a compact surface with
boundary (see Section 2 for details and notation). Each boundary component of xE=�
is virtually the mapping torus of a multi-twist on S , and is thus a graph manifold: the
tori in the JSJ decomposition are suspensions of the multi-twist curves.

Graph manifolds admit HHS structures [8] where the maximal hyperbolic space
is the Bass–Serre tree dual to the JSJ decomposition, and all other hyperbolic spaces
are either quasi-lines or quasi-trees (obtained by coning off the boundaries of the
universal covers of the base orbifolds of the Seifert pieces). The stabilizers of the
vertices of the Bass–Serre trees are called vertex subgroups, and are precisely the
fundamental groups of the Seifert pieces of the JSJ decomposition. We let V denote
the disjoint union of the vertices of all Bass–Serre trees associated to the boundary
components of the universal cover xE of this S -bundle. Given v; w 2 V , we say that
these vertices are adjacent if they are connected by an edge in the same Bass–Serre
tree.

The HHG structure on the extension group � may now be described as follows:

Theorem 1.4. Suppose G < Mod.S/ is a lattice Veech group with extension group �
and let ‡1; : : : ; ‡k < � be representatives of the conjugacy classes of vertex sub-
groups. Then � admits an HHG structure with the following set of hyperbolic spaces
and relations among them (ignoring those of diameter � 2):

(1) The maximal hyperbolic space yE is quasi-isometric to the Cayley graph of �
coned off along the cosets of ‡1; : : : ; ‡k [16].

(2) There is a quasi-tree vqt and a quasi-line vql , for each v 2 V , and

(a) for all v 2 V , vqt ? vql ;

(b) for all v;w 2 V , if v and w are adjacent, then wql ? vql and wql Ď vqt ;

(c) all other pairs are transverse.

This description of the HHG structure readily leads to further consequences for � .
For example, the maximal number of infinite-diameter pairwise orthogonal hyperbolic
spaces is evidently 2. In view of [7, 9], we thus see that � is as “close to hyperbolic”
as possible in that its quasi-flats are at worst 2-dimensional.
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Corollary 1.5. Each top-dimensional quasi-flat in � has dimension 2 and is con-
tained in a finite-radius neighborhood of finitely many cosets of vertex subgroups.

We note that quasi-flats will be crucial for our proof of quasi-isometric rigidity,
and we remark that the analogous statement for graph manifolds is due to Kapovich–
Leeb [34].

Recall that an element of a group is a generalized loxodromic if it acts loxo-
dromically under some acylindrical action on a hyperbolic space, and that a universal
acylindrical action on a hyperbolic space is one in which every generalized loxo-
dromic acts loxodromically [2]. It is shown in [58] that a generalized loxodromic
element g of a finitely generated group is necessarily Morse, meaning that in any
finite-valence Cayley graph for the group, any .K; C /-quasi-geodesic with endpoints
in the cyclic subgroup hgi stays within controlled distance M D M.K; C/ of hgi.
While being Morse is, in general, strictly weaker than being generalized loxodromic,
these conditions are in fact equivalent in HHGs [2, Theorem B].

In the case of our extension group � , it follows from Corollary 1.3 (2) that the
generalized loxodromics and Morse elements are precisely those elements acting lox-
odromically on yE. In [16, Theorem 1.1] we characterized these elements in terms of
the vertex subgroups of � , thus yielding the following corollary.

Corollary 1.6. Let � be a lattice Veech group extension with vertex subgroups‡1; : : : ;
‡k as in Theorem 1.4. The following are equivalent for an infinite order element

 2 �:

• 
 is not conjugate into any of the vertex subgroups ‡i ;

• 
 is a generalized loxodromic element of �;

• 
 is a Morse element of � .

1.3. Quasi-isometric rigidity

To state our rigidity theorem, first recall that � is (up to finite index) the fundamen-
tal group of an S -bundle xE=� over a compact surface with boundary. Here xE is
a �-invariant truncation of the universal zS -bundle over the Teichmüller disk stabi-
lized by the Veech group G. In particular, xE is quasi-isometric to � . Let Isom. xE/
and QI. xE/ denote the isometry and quasi-isometry groups of xE, respectively, and let
Isomfib. xE/ � Isom. xE/ denote the subgroup of isometries that map fibers to fibers.

Theorem 1.7. There is an allowable truncation xE of E such that the natural homo-
morphisms

Isomfib. xE/! Isom. xE/! QI. xE/ Š QI.�/

are all isomorphisms, and � � Isom. xE/ Š QI.�/ has finite index.
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This is an analogue, and indeed was motivated by, Farb and Mosher’s [25] theorem
that in the case of a surface group extension �H associated to a Schottky subgroupH
of Mod.S/, the natural homomorphism �H ! QI.�H / is injective with finite coker-
nel. This rigidity also leads to the following strong algebraic consequence.

Corollary 1.8. If H is any finitely generated group quasi-isometric to � , then H
and � are weakly commensurable.

In the statement, recall that two groupsH1;H2 are weakly commensurable if there
are finite normal subgroupsNi CHi so that the quotientsHi=Ni have a pair of finite-
index subgroups that are isomorphic to each other.

1.4. Motivation and geometric finiteness

Before outlining the paper and providing some ideas about the proofs, we provide
some speculative discussion. For Kleinian groups – that is, discrete groups of isome-
tries of hyperbolic 3-space – the notion of geometric finiteness is important in the
deformation theory of hyperbolic 3-manifolds by the work of Ahlfors [3] and Green-
berg [27]. While the definition has many formulations (see [11, 42, 43, 61]), roughly
speaking a group is geometrically finite if it acts cocompactly on a convex subset
of hyperbolic 3-space minus a collection of horoballs that are invariant by parabolic
subgroups. When there are no parabolic subgroups, geometric finiteness reduces to
convex cocompactness: a cocompact action on a convex subset of hyperbolic 3-space.

While there is no deformation theory for subgroups of mapping class groups, Farb
and Mosher [24] introduced a notion of convex cocompactness for G < Mod.S/ in
terms of the action on Teichmüller space T .S/. Their definition requires that G acts
cocompactly on a quasi-convex subset for the Teichmüller metric, while Kent and
Leininger later proved a variety of equivalent formulations analogous to the Kleinian
setting [35–37]. Farb and Mosher proved that convex cocompactness is equivalent
to hyperbolicity of the associated extension group �G (with monodromy given by
inclusion) when G is virtually free. This equivalence was later proven in general by
Hamenstädt [30] (see also Mj–Sardar [50]), though at the moment the only known
examples are virtually free.

The coarse nature of Farb and Mosher’s formulation reflects the fact that the
Teichmüller metric is far less well behaved than that of hyperbolic 3-space. Quasi-
convexity in the definition is meant to help with the lack of nice local behavior of
the Teichmüller metric. It also helps with the global lack of Gromov hyperbolicity
(see Masur–Wolf [47]), as cocompactness of the action ensures that the quasi-convex
subset in the definition is Gromov hyperbolic (see Kent–Leininger [36], Minsky [49],
and Rafi [53]).
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The inclusion of reducible/parabolic mapping classes in a subgroup G < Mod.S/
brings the thin parts of T .S/ into consideration; these subspaces contain higher rank
quasi-flats and even exhibit aspects of positive curvature (see Minsky [48]). This is a
main reason why extending the notion of convex cocompactness to geometric finite-
ness is complicated. These complications are somewhat mitigated in the case of lattice
Veech groups. Such subgroups are stabilizers of isometrically and totally geodesically
embedded hyperbolic planes, called Teichmüller disks, that have finite area quotients.
Thus, the intrinsic hyperbolic geometry agrees with the extrinsic Teichmüller geom-
etry, and as a group of isometries of the hyperbolic plane, a lattice Veech group is
geometrically finite. This is why these subgroups serve as a test case for geometric
finiteness in the mapping class group. This is also why a subgroup of a Veech group
is convex cocompact in Mod.S/ if and only if it is convex cocompact as a group of
isometries of the hyperbolic plane (which also happens if and only if it is finitely
generated and contains no parabolic elements).

The action of Mod.S/ on the curve graph, which is Gromov hyperbolic by work
of Masur–Minsky [44], provides an additional model for these considerations. Specif-
ically, convex cocompactness is equivalent to the orbit map to the curve graph C.S/

being a quasi-isometric embedding with respect to the word metric from a finite
generating set (see Kent–Leininger [36] and Hamenstädt [30]). Viewing geometric
finiteness as a kind of “relative convex cocompactness” for Kleinian groups suggests
an interesting connection with the curve complex formulation. The connection is best
illustrated by the following theorem of Tang [60].

Theorem 1.9 (Tang). For any lattice Veech group G < Mod.S/ stabilizing a Teich-
müller disk D � T .S/, there is a G-equivariant quasi-isometric embedding Del !

C.S/, where Del is the path metric space obtained from D by coning off the G-
invariant family of horoballs in which D ventures into the thin parts of T .S/.

Farb [22] showed that non-cocompact lattices in the group of isometries of hyper-
bolic space are relatively hyperbolic relative to the parabolic subgroups. For Veech
groups, the space Del is quasi-isometric to the (hyperbolic) coned off Cayley graph,
illustrating (part of) the relative hyperbolicity of G. We thus propose a kind of “qual-
ified” notion of geometric finiteness with this in mind:

Definition 1.10 (Parabolic geometric finiteness). A finitely generated subgroup G <

Mod.S/ is parabolically geometrically finite if G is relatively hyperbolic, relative to
a (possibly trivial) collection of subgroups H D ¹H1; : : : ;Hkº, and

(1) Hi contains a finite index, abelian subgroup consisting entirely of multitwists,
for each 1 � i � k; and

(2) the coned off Cayley graph G-equivariantly and quasi-isometrically embeds
into C.S/.
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When H D ¹¹idºº, we note that the condition is equivalent to G being convex
cocompact. By Theorem 1.9, lattice Veech groups are parabolically geometrically
finite. In fact, Tang’s result is more general and implies that any finitely generated
Veech group satisfies this definition. These examples are all virtually free, but other
examples include the combination subgroups of Leininger–Reid [39], which are iso-
morphic to fundamental groups of closed surfaces of higher genus, and free products
of higher rank abelian groups constructed by Loa [40].

In view of Theorem 1.1, one might formulate the following.

Conjecture 1.11. Let G < Mod.S/ be parabolically geometrically finite. Then the
�1S -extension group � of G is a hierarchically hyperbolic group.

We view Definition 1.10 as only a qualified formulation because there are many
subgroups of Mod.S/ that are not relatively hyperbolic but are nevertheless candidates
for being geometrically finite in some sense. It is possible that there are different types
of geometric finiteness for subgroups of mapping class groups, with Definition 1.10
being among the most restrictive. Other notions might include an HHS structure on
the subgroup which is compatible with the ambient one on Mod.S/ (e.g., hierarchical
quasi-convexity [8]). From this perspective, some candidate subgroups that may be
considered geometrically finite include:

• the whole group Mod.S/;

• multi-curve stabilizers;

• the right-angled Artin subgroups of mapping class groups constructed in [14, 38,
54];

• free and amalgamated products of other examples.

Question 1.12. For each example group G �Mod.S/ above, is the associated exten-
sion �G a hierarchically hyperbolic group?

We note that the answer is ‘yes’ for the first example, since the extension group is
the mapping class group of the surface S with a puncture. Moreover, since our work
on this subject first appeared, Russell [55] addressed the second example by proving
extensions of multicurve stabilizers are hierarchically hyperbolic groups.

1.5. Outline and proofs

Let us briefly outline the paper and comment on the main structure of the proofs. In
Section 2 we review necessary background material and introduce the objects and
notation that will be used throughout the paper. In particular, we define the spaces E
and xE, the latter being a quasi-isometric model for the Veech group extension � , as
well as the hyperbolic collapsed space yE. All of these were constructed in [16].
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In Sections 3–4 we prove that the extension group � is hierarchically hyperbolic
by utilizing a combinatorial criterion from [5]. Besides hyperbolicity of yE, the other
hard part of the criterion is an analogue of Bowditch’s fineness condition from the con-
text of relative hyperbolicity. Its geometric interpretation is roughly that two cosets of
vertex subgroups as above have bounded coarse intersection, aside from the “obvious”
exception when the cosets correspond to vertices of the same Bass–Serre tree within
distance 2 of each other. To this end, in Section 3 we associate to each vertex v 2 V a
spine bundle‚v

� xE, which corresponds to a Seifert piece of the JSJ decomposition
of the peripheral graph manifold, along with a pair of hyperbolic spaces Kv and „v

that will figure into the HHS structure on � . The space Kv is obtained via a quasimor-
phism constructed using the Seifert fibered structure following ideas in forthcoming
work of the fourth author with Hagen, Russell, and Spriano [29], while„v is coarsely
obtained by coning off boundary components of the universal covers of the base 2-
orbifold of this Seifert fibered manifold. We then appeal to the flat geometry of the
fibers of E to construct and study certain projection maps

xE

‚vKv „v
…v

�v iv

ƒv �v

and prove that various pairs of subspaces of xE have bounded projection onto each
other (Proposition 3.19).

In Section 4, we begin assembling the combinatorial objects necessary to apply
the HHG criterion from [5], which involves both combinatorial and geometric aspects.
The first step involves the construction of a natural flag complex X containing the
union of the Bass–Serre trees, together with appropriate “subjoins” with the union of
all Kv , over v 2 V . Next, we use the geometry of xE to construct a certain graph W

whose vertices are maximal simplices of X and on which � acts metrically properly
and coboundedly. The remainder of this section is devoted to verifying the necessary
combinatorial conditions as well as translating the facts about Kv and „v and the
projections described above into proofs of the necessary geometric conditions. We
note that in the combinatorial HHG setup, the complex X comes with its own hierar-
chy projections between the induced hyperbolic spaces (Definitions 4.9–4.10), which
may be different than the projections to Kv and „v .

In Section 5 we prove our QI-rigidity result Theorem 1.7. The starting point is
the hierarchical hyperbolicity of � provided by Theorem 1.4, as it gives access to the
results and arguments in [9] about the preservation of quasi-isometrically embedded
flats. Every collection of pairwise orthogonal hyperbolic spaces in an HHG deter-
mines a natural product subspace, with the maximal standard quasi-isometrically
embedded flats (or orthants) arising inside such subspaces as products of quasi-lines
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in a maximal collection of pairwise orthogonal hyperbolic spaces of the HHG. The-
orem A of [9] states that a quasi-isometry of an HHS preserves the structure of its
quasi-flats and takes any maximal quasi-flat within bounded Hausdorff distance of
the union of standard maximal orthants. The maximal quasi-flats in the HHG struc-
ture on xE, namely the 2-dimensional flats indicated in Corollary 1.5, are encoded by
certain strip bundles that, roughly, correspond to flats in the peripheral graph mani-
folds. We use the preservation of the maximal quasi-flats to derive coarse preservation
of these strip bundles, which we then upgrade to coarse preservation of the fibers
(Section 5.1). By using tools of flat geometry from [4, 17], we then show any quasi-
isometry induces an affine homeomorphism of any fiber to itself (Sections 5.2–5.3)
and moreover that this assignment is injective (Section 5.4). Finally, we show this
association is an isomorphism by proving (Section 5.5) that every affine homeomor-
phism of a fiber induces an isometry and hence quasi-isometry of xE. Quasi-isometric
rigidity and its algebraic consequence Corollary 1.8 are then easily obtained in Sec-
tion 5.6.

2. Setup: The groups and spaces

Here we briefly recall the basic setup from [16] which we will use throughout the
remainder of the paper. We refer the reader to Sections 2 and 3 of that paper for
details and precise references.

2.1. Flat metrics and Veech groups

Fix a closed surface of genus at least 2, a complex structures X0 (viewed as a point
in the Teichmüller space T .S/), and a non-zero holomorphic quadratic differential q
on .S;X0/. Integrating a square root of q determines preferred coordinates on .S;X0/
for q which defines a translation structure (in the complement of the isolated zeros
of q). We also write q for the associated flat metric defined by the half-translation
structure (though the metric only determines the half-translation structure or quadratic
differential up to a complex scalar multiple). This metric is a non-positively curved
Euclidean cone metric, with cone singularities at the zeros of q. The orbit of .X0; q/
under the natural SL2.R/ action on quadratic differentials projects to a Teichmüller
disk, D D Dq � T .S/, which we equip with its Poincaré metric �. The circle at
infinity of D is naturally identified with the projective space of directions, P1.q/, in
the tangent space of any non-singular point of q. For ˛ 2 P1.q/, we write F .˛/ for
the singular foliation by geodesics in direction ˛.

We assume that the associated Veech group G D Gq is a lattice – recall that G
can be viewed as the stabilizer in the mapping class group of S of D as well as the
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affine group of q, and the lattice assumption is equivalent to requiring the quotient
orbifold D=G to have finite �-area. The parabolic fixed points in the circle at infinity
form a subset we denote P � P1.q/. This subset corresponds precisely to the com-
pletely periodic directions for the flat metric q; that is, the directions ˛ for which the
foliation F .˛/ decomposes S into cylinders foliated by q-geodesic core circles. The
boundaries of these cylinders are q-saddle connections (q-geodesic segments con-
necting pairs of cone points, with no cone points in their interior), and by the Veech
Dichotomy, every saddle connection is in a direction in P . We let ¹B˛º˛2P denote
any G-invariant, 1-separated set of horoballs in D and let

xD D D X
[
˛2P

int.B˛/

be the G-invariant subspace obtained by removing these horoballs. We write x� for the
induced path metric on xD. Finally, we let

pWD ! yD

be the G-equivariant quotient obtained by collapsing each horoball B˛ to a point,
for ˛ 2 P . There is a natural path metric y� on yD so that p is 1-Lipschitz and is a
local isometry at every point not in one of the horoballs. We will also make use of the
closest point projection to the horoball

c˛WD ! B˛

for each ˛ 2 P .

2.2. The bundles E and xE

For each point X 2 D, we let qX denote the associated flat metric or quadratic differ-
ential (defined up to scalar multiplication) on S . The space of interest E is a bundle
over D,

� WE ! D;

for which the fiber EX over X 2 D is naturally identified with the universal cover zS
of S , equipped with the pull-back complex structure X and quadratic differential/flat
metric qX . We write B˛ D �

�1.B˛/ for ˛ 2 P .
For any X; Y 2 D, the Teichmüller map between these complex structures has

initial and terminal quadratic differentials qX and qY (up to scalar multiple) and this
map lifts to a canonical affine map between the fibers fY;X WEX ! EY . These maps
satisfy

fZ;X D fZ;Y fY;X
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for all X; Y;Z 2 D, and for any X 2 D, assemble to a map fX WE ! EX defined by

fX .y/ D fX;�.y/.y/:

Moreover, for any X;Y 2 D, fY;X is e�.X;Y /-bi-Lipschitz. We use the maps fX;X0 to
identify P1.q/ Š P1.qX / for all X 2 D.

The fiber over X0 is denoted E0 D EX0 and the maps f0 D fX0 WE ! E0 and
� WE ! D are projections on the factors in a product structure

E Š D �E0 Š D � zS:

For x 2E, we writeDx D f �1�.x/.x/, which is just the sliceD � ¹f0.x/º in the product
structure. The affine maps fY;X sends the cone points†X ofEX to the cone points†Y
of EY . Consequently, the union of all singular points

† D
[
X2D

†X

is a locally finite union of disks Dx , one for each x 2 †0 D †X0 .
We give the space E a singular Riemannian metric d which is the flat metric on

each fiber EX and the Poincaré metric on each diskDx so that at each smooth point
of intersection, the tangent planes are orthogonal. The singular locus of this metric is
precisely †. Each disk Dx is isometrically embedded since � is a 1-Lipschitz map,
and hence restricts to an isometry �jDx WDx ! D. The metric on E X† is in fact a
locally homogeneous metric, modeled on a 4-dimensional, Thurston-type geometry;
see [16, §5].

The extension group � acts on E by bundle maps with the kernel �1S < � of the
projection toG acting trivially onD and by covering transformation on each fiberEX .
We set xE D ��1. xD/ � E, and write x� W xE ! xD. When convenient to do so, we put
“bars” over objects associated to xD or xE, e.g., xDx D Dx \ xE, xpW xD ! yD, etc. In
particular, we write xd for the induced path metric on xE � E, induced from the metric
on E described above.

For any ˛ 2P , the closest point projection c˛WD!B˛ has a useful “lift” f˛WE!
B˛ , defined by

f˛.x/ D fc˛.�.x//.x/;

for any x 2 xE. That is, f˛ maps each fiber EX via the map fY;X to EY , where
Y D c˛.X/ is the image of the closest point projection to B˛ of X in D.

2.3. The hyperbolic space yE

The quotient pWD ! yD is the descent of a quotient P W E ! yE which we now
describe. First, for each ˛ 2 P , the foliation F .˛/ lifts to a foliation on E0 in direc-
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tion ˛, and hence on any fiber EX by push-forward via the map fX;X0 , also in direc-
tion ˛ (via the identification P1.q/ Š P1.qX /). There is a natural transverse measure
coming from the flat metric on X . Given ˛ 2 P , we fix some X˛ 2 @B˛ and let T˛
be the dual simplicial R-tree to this measured foliation in direction ˛ on EX˛ , and we
let t˛WE ! T˛ be the composition of the leafspace projection EX˛ ! T˛ with the
map fX˛ WE ! EX˛ .

Now we define P WE ! yE to be the quotient space obtained by collapsing the
subset B˛ to T˛ via t˛jB˛ for each ˛ 2 P . We also write

xP D P j xE W
xE ! yE:

The maps P and xP descend to the maps p and xp, and the map � determines maps y�
and x� , which all fit into the following commutative diagram:

E

xE yE

D

xD yD:

P
�

x�

xP

y�
p

xp

A metric yd on yE is determined by xd on xE and the map xP . The main facts about this
metric are summarized in the following theorem; see [16, Theorem 1.1, Lemma 3.2].

Theorem 2.1. There is a Gromov hyperbolic path metric yd on yE so that xP W xE ! yE

is 1-Lipschitz and is a local isometry at every point x 2 xE � @ xE. Furthermore, for
every ˛ 2 P ,

• the induced path metric on P.@B˛/ D T˛ is the R-tree metric determined by the
transverse measure on the foliation of EX˛ in direction ˛;

• the subspace topology on T˛ � yE agrees with the R-tree topology on T˛ .

Remark 2.2. The underlying simplicial tree T˛ is precisely the Bass–Serre tree dual
to the splitting of �1S defined by the cores of the cylinders of F .˛/ on S .

For each x 2 E, we denote the image of Dx in yE by yDx , which is obtained by
collapsing B˛ \Dx to a point, for each ˛ 2 P . Consequently, y�j yDx W

yDx ! yD is a
bijection, and so each yDx , with its path metric, is isometric to yD and isometrically
embedded in yE. We call objects inE, xE, and yE vertical if they are contained in a fiber
of � , x� , or y� , respectively, and horizontal if they are contained inDx , xDx , or yDx , for
some x 2 E; xE.
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2.4. Vertices, spines, and spine bundles

We will write V � yE for the union over all ˛ 2 P of all vertices of T˛ . We will
simultaneously view V as both a subset of yE and abstractly as an indexing set that will
be used in Sections 3–4 to develop an HHS structure on xE. Since each vertex belongs
to a unique tree, and since the trees are indexed by ˛ 2P , we obtain a map ˛WV!P ,
so that v is a vertex of T˛.v/. For convenience, we also write Bv D B˛.v/, @Bv D
@B˛.v/, etc for each v 2 V , and write cv D c˛.v/ for the �-closest point projection
D ! Bv .

For v;w 2V , we write v kw if ˛.v/D˛.w/. Then define dtree.v;w/2Z�0[¹1º

to be the combinatorial (integer valued) distance in the simplicial tree T˛.v/ D T˛.w/
when v k w (as opposed to the distance from the R-tree metric) and to equal 1
when v ¬ w.

Given ˛ 2 P , X 2 D, and v 2 T˛ , the v-spine in EX is the subspace

�vX D .P ı fX˛ ;X /
�1.v/ D t�1˛ .v/ \EX :

The v-spine �vX is the union of the saddle connections on the fiber EX in direction ˛
that project to v by t˛ . When dtree.v; w/ D 1 (and hence v; w are adjacent in the
same tree T˛) there is a unique component of EX X .�vX [ �

w
X / whose closure is an

infinite strip, R � Œa; b�, that covers a maximal cylinder in the quotient EX=�1S D
.S;X; qX / in the direction ˛. We let‚v

X be the union of �vX and all such strips defined
by w 2 T˛ with dtree.v; w/ D 1. We call ‚v

X the thickened v-spine in EX . In the
special case X D X0, we write �v0 D �vX0 and ‚v

0 D ‚
v
X0

. Observe that the affine
map fY;X maps �vX and ‚v

X to �vY and ‚v
Y , respectively, for all X; Y 2 D. Finally,

we write
�v D

[
X2@Bv

�vX ; ‚v
D

[
X2@Bv

‚v
X :

These spaces are bundles over @Bv which we call, respectively, the v-spine bundle
and the thickened v-spine bundle.

2.5. Schematic of the space xE and its important pieces

Figure 1 is a cartoon of the bundle xE over the truncated Teichmüller disk xD. We have
tried to highlight some of the key features of xE which are relevant to this paper.

(a) The stabilizer of a horoball based at a point ˇ 2P is virtually cyclic, generated
by a multitwist �ˇ acting as a parabolic on D. The base point Xˇ on the horocycle
based at ˇ and its image are shown.

(b) The bundle over the boundary horocycle based at ˇ is shown. This is the
universal cover, @Bˇ , of a graph manifold which is the mapping torus of �ˇ . Two
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(a)

(b)

(c)

(d)

(e)

xD

˛

ˇ
X˛

Xˇ
�ˇ

�ˇ.Xˇ/

@Bˇ

EXˇ E�ˇ.Xˇ/

t˛

‚vX˛
�v
X˛

T˛

v

Figure 1. A schematic of xE and various key features of it.

fibers EXˇ and E�ˇ.Xˇ/ are shown with the effect on a part of a spine (in green) in
some other direction illustrating the sheering in strips after applying �ˇ .

(c) This is another horoball in some direction ˛, with the chosen basepoint X˛
and its horocycle @B˛ .

(d) The spine �vX˛ in direction ˛ is shown in red, corresponding to a vertex v 2 T˛ .
The thickened spine ‚v

X˛
is indicated in lavender. Spines for vertices of T˛ adjacent

to v meet‚v
X˛

along lines in @‚v
X˛

and are shown in various other colors.

(e) The restriction of t˛WE ! T˛ to EX˛ collapses each spine �wX˛ or strip in
direction ˛ to the corresponding vertexw or edge the Bass–Serre tree T˛ . The space yE
is formed by collapsing B˛ to T˛ via t˛ .

2.6. Some technical lemmas and coarse geometry

Here we briefly recall some basic facts about the setup above proved in [16] as
well as some useful coarse geometric facts. The first fact is the following; see [16,
Lemma 3.4].

Lemma 2.3. There exists a constant M > 0 such that for each v 2 V and X 2 @Bv ,
every saddle connection in �vX has length at most M and every strip in‚v

X has width
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at mostM . In particular, for pointsX 2 @B˛ , the saddle connections and strips ofEX
in direction ˛ 2 P have, respectively, uniformly bounded lengths and widths.

Every connected graph can be made into a geodesic metric space by locally iso-
metrically identifying each edge with a unit interval. We will need the following
well-known result (for a proof of this version, see [16, Proposition 2.1]).

Proposition 2.4. Let � be a path metric space and ‡ � � an R-dense subset for
some R > 0. For any R0 > 3R, consider a graph G with vertex set ‡ such that:

• all pairs of elements of ‡ within distance 3R are joined by an edge in G ;

• if an edge in G joins points w;w0 2 ‡ , then d�.w;w0/ � R0.

Then the inclusion of ‡ into � extends to a quasi-isometry G ! �.

The following criterion for a graph to be a quasi-tree is well known, and an easy
consequence of Manning’s bottleneck criterion [41]. We include a proof for complete-
ness.

Proposition 2.5. Let X be a graph, and suppose that there exists a constant B with
the following property: For each pair of vertices w; w0 there exists an edge path

.w; w0/ from w to w0 so that for any vertex v on 
.w; w0/, any path from w to w0

intersects the ball of radius B around v. Then X is quasi-isometric to a tree, with
quasi-isometry constants depending on B only.

Proof. We check that [41, Theorem 4.6] applies; that is, we check the following prop-
erty. For any two vertices w;w0 2 X , there is a midpointm.w;w0/ between w and w0

so that any path from w to w0 passes within distance B 0 D B 0.B/ of m.w;w0/. (The
uniformity in the quasi-isometry comes from the proof of Manning’s theorem; see [41,
p. 1170].)

Consider any geodesic ˛ from w to w0, and letmDm.w;w0/ be its midpoint. We
will show that m lies within distance 2B C 1 of a vertex of 
 D 
.w;w0/, so that we
can take B 0 D 3B C 1.

Indeed, suppose by contradiction that this is not the case. LetwDw0; : : : ;wnDw0

be the vertices of 
 (in the order in which they appear along 
 ), and let di D d.w;wi /,
so that jdiC1 � di j � 1. Each wi lies within distance B of some point pi on ˛ which
must satisfy

d.pi ; m/ � B C 1:

In particular, we have that every di satisfies either

di � d.w;w
0/=2 � 1 or di � d.w;w

0/=2C 1:

Since d0D 0 and dnD d.w;w0/, we cannot have jdiC1 � di j � 1 for all 0� i � n� 1,
a contradiction.
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We end with a few definitions from coarse geometry which may not be completely
standard, but will appear in the next two sections. Given two metrics d and d 0 on a
set X , we say that d is coarsely bounded by d 0 if there exists a monotone function
N W Œ0;1/! Œ0;1/, so that

d.x; y/ � N.d 0.x; y//

for all x; y 2 X . If d is coarsely bounded by d 0 and d 0 is coarsely bounded by d ,
we say that d and d 0 are coarsely equivalent. An isometric action of a group H on
a metric space Y is metrically proper if for any R > 0 and any point y 2 Y , there
are at most finitely many elements h 2 H for which h � B.y;R/ \ B.y;R/ ¤ ;. For
proper geodesic spaces, this is equivalent to acting properly discontinuously. If there
exists y; R so that H � B.y; R/ D Y , then we say that the action is cobounded, and
for proper geodesic metric spaces this is equivalent to acting cocompactly.

3. Projections and vertex spaces

An HHS structure on a metric space consists of certain additional data, most impor-
tantly a collection of hyperbolic spaces together with projection maps to each space.
For the HHS structure that we will build on (Cayley graphs of) � , the hyperbolic
spaces will (up to quasi-isometry) be the space yE from [16] (see Section 2.3) and the
spaces Kv and „v introduced in this section, where v varies over all vertices of the
trees T˛ . Morally, the projections will be given by the maps ƒv and �v that we study
below. However, to prove hierarchical hyperbolicity we will use a criterion from [5]
which does not require actually defining projections, but nevertheless provides them.
Still, the maps ƒv and �v will play a crucial role in proving this criterion applies.

We will establish properties of ƒv and �v that are reminiscent of subsurface
projections or of closest-point projections to peripheral sets in relatively hyperbolic
spaces/groups; these are summarized in Proposition 3.19. Essentially, these same
properties would be needed if we wanted to construct an HHS structure on � directly
without using [5].

From a technical point of view, we would like to draw attention to Lemma 3.13,
which is the crucial lemma that ensures that the projections behave as desired and that
various subspaces have bounded projections. Roughly, the lemma says that closest-
point projections to a spine do not vary much under affine deformations.

In what follows, we will write d‚v and d@B˛ for the path metrics on‚v and @B˛

induced from xd . Using the map f˛W xE ! @B˛ , it is straightforward to see that d@B˛
is uniformly coarsely equivalent to the subspace metric from xd : in fact,

xd � d@B˛ � e
xd xd:
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The same is true for d‚v , which follows from the fact that the inclusion of ‚v

into @B˛ is a quasi-isometric embedding with respect to the path metrics (see below).
Associated to each v 2 V we will be considering two types of projections. These

projections have a single projection …vW x†! ‚v as a common ingredient. It is con-
venient to analyze…v via an auxiliary map which serves as a kind of fiberwise closest
point projection that survives affine deformations, and which we call the window map.
We describe the two types of projections restricted to‚v , as well as the target spaces
of said projections, in Section 3.1 and Section 3.3, where we also explain some of
their basic features. Next we define the window map and prove what is needed from
it. Finally, we define …v and prove the key properties of the associated projections.

3.1. Quasimorphism distances

For each v 2 V , we will use ideas from work-in-progress of the fourth author with
Hagen, Russell, and Spriano [29] to define a map

�vW‚v
!Kv;

where Kv is a discrete set quasi-isometric to R. The key properties of this map are
given by the next proposition. We note that the proposition and Lemma 3.6 can be
used as black-boxes (in particular, the definitions of �v and Kv are never used after
we prove those results).

Proposition 3.1. There exists K1 > 0 such that, for each v 2 T .0/˛ � V , there exist a
space Kv that is .K1;K1/-quasi-isometric to R and a map �vW‚v

!Kv satisfying
the following properties:

(1) �v is K1-coarsely Lipschitz with respect to the path metric on‚v .

(2) For any x 2 @‚v , if `x;˛ D Dx \ @B˛ then �v.`x;˛/ is a set of diameter
bounded by K1.

(3) For any v;w 2 V with dtree.v; w/ D 1, �v � �w W‚v
\‚w

! Kv �Kw is
aK1-coarsely surjective .K1;K1/-quasi-isometry with respect to the induced
path metric on the domain.

(4) (Equivariance) For any g2� and v2T .0/˛ , there is an isometry gWKv!Kgv

and for all x 2 ‚v we have �gv.gx/ D g�v.x/.

The sets `x;˛ in item (2) are certain lines whose significance is explained below.

Remark 3.2. An earlier version of this paper used work of Kapovich and Leeb to
construct the spaces Kv and maps �v , resulting in a weaker version of this proposition
which did not include the last, equivariance condition. Consequently, � could only be
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shown to be an HHS, rather than an HHG. The ideas from [29] were crucial in this
extension.

To explain the proof of the proposition, it is useful to review some background on
graph manifolds, which we do now.

Graph manifolds and trees

Recall that a graph manifold is a 3-manifold that contains a canonical finite union of
tori (up to isotopy), so that cutting along the tori produces a disjoint union of Seifert
fibered 3-manifolds, called the Seifert pieces. Seifert fibered 3-manifolds are compact
3-manifolds foliated by circle leaves; see [32].

The universal cover of a graph manifold decomposes into a union of universal
covers of the Seifert pieces glued together along 2-planes (covering the tori). The
decomposition is dual to a tree, and the universal covers of the Seifert pieces are the
vertex spaces. For any Seifert fibered space, its universal cover is foliated by lines,
the lift of the foliation by circles, and we refer to the leaves simply as lines in the
universal cover.

Horocycles and bundles

Next we describe the specific graph manifolds that are relevant for our purposes.
Let G˛ < G denote the stabilizer of B˛ , for each ˛ 2 P . This has a finite index

cyclic subgroup G0˛ generated by a multitwist, h�˛i D G0˛ < G˛; see, e.g., [16, §2.9].
The preimage of G˛ in � is the �1S -extension group �˛ of G˛ , and we likewise
denote by �0˛ <�˛ the extension group ofG0˛ . The action of �˛ on @B˛ is cocompact,
and @B˛=�˛ has a finite sheeted (orbifold) covering by @B˛=�

0
˛ , which is the graph

manifold mentioned in the introduction.
Consider the surface S with the flat metric qX˛ , so that

.S;X˛; qX˛ / D EX˛=�1S:

The multitwist �˛ is an affine map that preserves the cylinders in direction ˛, acting
as a power of a Dehn twist in each cylinder and as the identity on their boundaries.
The union of the boundaries of the cylinders are spines (deformation retracts) for
the subsurfaces that are the complements of the twisting curves (core curves of the
cylinders). Consequently, �˛ is the identity on these spines. The homeomorphism �˛

induces a homeomorphism on the subsurface obtained by cutting open S along a
core curve of each cylinder. Each such induced homeomorphism is the identity on
the corresponding spine, and is thus isotopic to the identity relative to the spine; see
Figure 2. The mapping torus of each subsurface is a product of the subsurface times a
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Figure 2. The surface obtained by gluing sides of the “L-shaped” polygon in pairs by translation
according to the numbering has a decomposition into two cylinders (shaded blue and green) in
the horizontal direction, ˛; �˛ is a twist in the bottom cylinder and a square of a twist in top
cylinder. The boundaries of these cylinders (drawn in bold) form spines for the complement of
core curves (drawn as dotted lines).

circle, and embeds in the mapping torus @B˛=�
0
˛ of �˛ . These sub-mapping tori are

the Seifert pieces for the graph manifold structure on @B˛=�
0
˛ .

The lifted graph manifold decomposition of @B˛ corresponds to T˛ . That is, for
each v 2 T .0/˛ , there is a vertex space contained in ‚v and containing �v . In fact,
with respect to the covering group, ‚v is an invariant, bounded neighborhood of
the vertex space and �v is an equivariant deformation retraction of that space. We
let �v < �˛ denote the stabilizer of ‚v in �˛ and �v0 < �0˛ the stabilizer in �0˛ .
The suspension flow on the mapping torus @B˛=�

0
˛ restricted to each quotient of

the spine bundle, �v=�v0, defines circle leaves of the corresponding Seifert piece;
that is, flow lines through any point on the �v=�v0 are precisely the circle leaves. In
the universal covering @B˛ , the lifted flowline through a point x 2 @B˛ is a lifted
horocycle, `x;˛ D Dx \ @B˛ . Thus, for any vertex v and any x 2 �v , `x;˛ is a line
for the vertex space corresponding to v. We note that not only does �v0 preserve this
set of lines, but so does �v .

For any x 2 �v , the stabilizer in �v0 of `x;˛ is generated by a lift gv of �˛ .
Therefore, the quotient ‚v=�v0 is homeomorphic to a product, ‚v

X=�1S
v � S1,

where �1Sv is the stabilizer of v in �1S < � andX � @B˛ is any point. Indeed, there
is a deformation retraction to

�v=�v0 D �vX=�1S
v
� S1:

If we do not care about the particular point X over which we take the fiber, we simply
write Sv for the surface‚v

X=�1S
v , so that

‚v=�v0 Š Sv � S1:
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Since EX is a copy of the universal cover of S , we can consider Sv as a subsurface
of S (embedded on the interior) and �1Sv is its fundamental group inside �1S (up to
conjugacy).

The product structure Sv � S1 Š ‚v=�v0 can be chosen so that ‚v=�v0 !

‚v=� is an orbifold cover sending circles to circles making ‚v=�v into a Seifert
fibered orbifold (some of the Seifert fibers may be part of the orbifold locus) that also
(orbifold)-fibers over the circle (with finite order monodromy). Write ‚v=�v ! Ov

for the Seifert fibration to the quotient 2-orbifold. Further write

�vW�v ! �orb
1 .Ov/

for the induced homomorphism of the Seifert fibration and

�vW�v ! Z

for the induced homomorphism from the fibration over the circle. Because gv acts as
translation on the line `x;˛ for x 2 �v , it represents a loop that traverses a circle in
the Seifert fibration, which is thus also a suspension flowline for the fibration over the
circle. Thus, we have

�v.gv/ D 0 and �v.gv/ ¤ 0:

To complete the picture, we note that restricting Sv�S1Š‚v=�v0!‚v=�v!Ov

to Sv defines an orbifold covering Sv ! Ov .
Finally, note that for any w adjacent to v in T˛ , hgvi � hgwi Š Z2 has finite index

in �v \ �w . Viewing hgwi < �v , we note that �vjhgwi is an isomorphism onto an
infinite cyclic subgroup of �orb

1 Ov . In fact, the image �v.hgwi/ is (a conjugate of a
power of) the fundamental group of a boundary component of Ov .

Remark 3.3. One caveat about the lines for the vertex spaces: flowlines through
points not on a spine are not lines of any vertex space. In fact, they are not even
uniformly close to lines for any vertex space.

Constructing the map

Here we define Kv and �v and prove the main properties we will need about them. We
require a little more setup first. We choose representatives of the �-orbits of vertices,
V0 D ¹v1; : : : ; vkº � V . For each v 2 V0, choose a fundamental domain �v for
the action of �v on ‚v . We assume that �v has compact, connected closure, that
g�v \�v D ; for all g 2 �v X ¹1º, and that

S
g2�v g ��

v D ‚v . The set

¹g 2 �v j g x�v \ x�v ¤ ;º (1)
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is a finite generating set for �v . The �v-translates of�v define a tiling of‚v , and the
map sending every point of g�v to g 2 �v is a quasi-isometry by the Milnor–Schwarz
lemma. We denote this map as z�vW‚v

! �v .
We note that any word metric on �v defines a “word metric” on each coset g�v ,

for g 2 � (elements are distance 1 if they differ by right multiplication by an element
of the generating set). We can push the tiling forward by g to a �gv D g�vg�1-invar-
iant tiling of‚gv (if g 2 �v , this is precisely the given tiling of‚v). For any element
g0 2 g�v , the map that sends every point in g0�v to g0 defines a quasi-isometry

z�gvW‚gv
! g�v;

which is �gv-equivariant, with the same quasi-isometry constants. If g0 2 � and
x0 2 �v , then for all g 2 � ,

z�gg
0v.gg0x0/ D gg0 D gz�g

0v.g0x0/:

On the other hand, any w 2 � � v and x 2 ‚w have the form w D g0v and x D g0x0

for some g0 2 � and x0 2 �v . Thus, for any g 2 � , the equation above becomes

z�gw.gx/ D zg�w.x/: (2)

Having carried out the construction above for each v 2 V0 and each vertex in its
orbit, we have maps z�w from ‚w to a coset of a vertex stabilizer from V0 for every
w 2 V , so that equation (2) holds for every x 2 ‚w , and g 2 � .

Next, recall that a homogeneous quasimorphism (with deficiencyD) from a group
H to R is a map

 WH ! R

such that for all h; h1; h2 2 H and n 2 Z, we have  .hn/ D n .h/ and

j .h1h2/ �  .h1/ �  .h2/j � D:

Lemma 3.4. For any v 2 V , there is a homogeneous quasimorphism  vW �v ! R

such that  v.hgvi/ is unbounded, and  v.gw/ D 0 for any adjacent vertex w 2 V .

Proof. Letw1; : : : ;wr be �v-orbit representatives of the vertices adjacent to v. Here r
is the number of boundary components of Ov , so that �v.gw1/; : : : ; �

v.gwr / are
peripheral loops around the r distinct boundary components of Ov . Since �orb

1 Ov is
the fundamental group of a hyperbolic 2-orbifold with non-empty boundary, appeal-
ing to [31, Theorem 4.2], which applies to �orb

1 Ov and its subgroups h�v.gwi /i in view
of [15, Corollary 6.6, Theorem 6.8], one can find a homogeneous quasimorphism

�i W�
orb
1 Ov

! R
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for i D 1; : : : ; r , such that �i .�v.gwi // D 1 and �i .�v.gwj // D 0 for j ¤ i . (The
construction of Epstein–Fujiwara [21] should also be applicable to construct such
quasimorphisms). Set s0 D 1=�v.gv/, and for each i D 1; : : : ; r , set si D s0�v.gwi /,
and then define

 v D s0�
v
�

rX
iD1

si�i ı �
v:

As a linear combination of homogeneous quasimorphisms,  v is a homogeneous
quasimorphism. Since gv 2 ker.�v/, it follows that �i ı �v.gv/ D 0 for all i , hence

 v.gv/ D s0�
v.gv/ D �

v.gv/=�
v.gv/ D 1:

On the other hand, for any j D 1; : : : ; r , we have

 v.gwj / D s0�
v.gwj / �

rX
iD1

si�i .�
v.gj // D s0�

v.gwj / �

rX
iD1

s0�
v.gwi /ıij D 0;

proving the lemma.

According to [1, Lemma 4.15], there is an (infinite) generating set for �v so
that with respect to the resulting word metric, the quasimorphism  vW�v ! R from
Lemma 3.4 is a quasi-isometry. For v 2 V0, define Kv D �v with this choice of word
metric and let

�vW‚v
!Kv

simply be the map z�v (followed by the identification of �v with Kv). For any g 2 � ,
define Kgv to be the coset g�v with this generating set so that z�gv defines a map

�gvW‚gv
!Kgv:

Carrying this out for every v 2 V0, (2) implies

�gw.gx/ D g�w.x/ (3)

for all w 2 V and x 2 ‚w , and g 2 � .
Before we proceed to the proof of Proposition 3.1, observe that �gv D g�vg�1

acts isometrically on g�v with respect to any generating set, and thus we can use this
to define a generating set for the conjugate so that (any) orbit map is an isometry;
in fact, this will just be a conjugate of the generating set for �v . In particular, when
convenient we will identify Kgv isometrically with the conjugate g�vg�1 via such
an orbit map. Conjugating the quasimorphisms  v from the lemma, for v 2 V0, we
obtain uniform quasi-isometries

 w WKw
! R
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for all w 2 V , which for an appropriate choice of identification of Kw with a conju-
gate of some �v , v 2 V0, is a quasimorphism (with uniformly bounded deficiency).

Proof of Proposition 3.1. From the discussion above and equation (3), we immedi-
ately see that item (4) of the proposition holds.

Next, observe that by adding finitely many generators to the infinite generating
set of �v0 for any v0 2 V0, changes Kv0 by quasi-isometry. On the other hand, the
finite generating set described in equation (1) for v0 2V0 makes z�v0 a quasi-isometry.
Thus, adding these generators to the infinite generating set does not change the quasi-
isometry type of Kv0 , but clearly makes �v0 coarsely Lipschitz. Therefore, �v is
uniformly coarsely Lipschitz for all v 2 V , and hence item (1) holds for all v 2 V .

To prove item (2), let v 2 V and x 2 @‚v . Then x 2 �w , for some w 2 V adjacent
to v. As discussed above, we view Kv and Kw as conjugates �v and �w of groups
�v0 and �w0 , respectively, for v0; w0 2 V0, equipped with their conjugated infinite
generating sets. Let  vWKv!R and  w WKw !R be the associated uniform quasi-
isometric homogeneous quasimorphisms. The element gw 2 �v stabilizes `x;˛ acting
by translation on it, and by construction,

 v.gw/ D  
v.gnw/ D 0

for all n 2 Z. It follows that every orbit of hgwi acting on Kv is uniformly bounded.
Indeed, if D is the deficiency of  v , then for any g 2Kv , we have

j v.gnwg/ �  
v.g/j D j v.gnwg/ �  

v.g/ �  v.gnw/j � D;

and therefore gnwg and g are uniformly bounded distance apart in Kv (since  v is a
uniform quasi-isometry).

Now, since gnwv D v, by item (4) of the proposition, we have

�v.gnwx/ D �
gnwv.gnwx/ D g

n
w�

v.x/;

and since gnw�
v.x/ is uniformly close to �v.x/, it follows that �v sends the hgwi-orbit

of x to a uniformly bounded set. Since this orbit is R-dense in `x;˛ for some uniform
R > 0, and since �v is uniformly coarsely Lipschitz (by item (1)) we see that �v.`x;˛/
has uniformly bounded diameter. This proves item (2).

For item (3), we continue with the assumptions on v; w as above. Note that since
 v.gnv / D n, using again the fact that  v is a uniform quasi-isometric homogeneous
quasimorphism to R, it follows that for any x 2 ‚v , the map n 7! �v.gnvx/ is a
uniformly coarsely surjective, uniform quasi-isometry Z ! Kv . Since every orbit
of hgwi on Kv is uniformly bounded, it follows that for all n;m 2 Z, the two points

�v.gnvg
m
wx/ D g

m
w�

v.gnvx/ and �v.gnvx/
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are uniformly close to each other. Likewise, �w.gnvg
m
wx/ and �w.gmwx/ are also uni-

formly close to each other. But this means that

�v � �w.gnvg
m
wx/ and .�v.gnvx/; �

w.gmwx//

are uniformly close, and thus

.n;m/ 7! �v � �w.gnvg
m
wx/

is a uniformly coarsely surjective, uniform quasi-isometry Z2 !Kv �Kw .
On the other hand, the assignment .n; m/ 7! gnvg

m
wx defines a uniform quasi-

isometry Z2 ! ‚v
\‚w since hgwi � hgvi Š Z2 acts cocompactly on ‚v

\‚w

(with uniformity coming from the fact that there are only finitely many �-orbits of
pairs .v; w/ of adjacent vertices). Combining these two facts, together with the fact
that �v and �w are uniformly coarsely Lipschitz, it follows that

�v � �w W‚v
\‚w

!Kv
�Kw

is a uniformly coarsely surjective, uniform quasi-isometry. This proves item (3), and
completes the proof of the proposition.

3.2. A technical lemma

The goal of this subsection is to prove Lemma 3.6, whose relevance will only be clear
in Section 4. We prove it here since we have now established the setup for its proof.

We recall that for each v, since ‚v=�v is a Seifert fibered orbifold, we have a
�v-equivariant, uniformly biLipschitz homeomorphism

�v � �vW‚v
! zSv �R;

where zSv is the (simply connected) surface-with-boundary

‚v
X � EX

for someX 2 @B˛ (and ˛D ˛.v/) and the slices ¹xº �R (more precisely, the level sets
of .�v/�1.x/ � ‚v) are lines for ‚v . These lines project to circle fibers in ‚v=�v

and we may assume they contain all the lines `x;v for all x 2 �v .

Lemma 3.5. The map �v � �vW‚v
! zSv �Kv is a uniform, �v-equivariant quasi-

isometry with uniformly dense image. Moreover, the constantK1 from Proposition 3.1
can be chosen so that for any v 2 V and s 2Kv , the subspace

M.s/ D .�v/�1.NK1.s// � ‚
v;

has the property that �v � �v.M.s// has uniformly bounded Hausdorff distance to
the slice zSv � ¹sº, and furthermore M.s/ non-trivially intersects every line of‚v .
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We note that the intersection of M.s/ with each line of ‚v is necessarily a uni-
formly bounded diameter set by the uniform bounded Hausdorff distance condition.

Proof. All constants will be independent of the specific vertex v, so we drop it from
the notation. We write d for all path-metric distances in what follows (the location
of points will determine which metric is being used). Products are given the L1

metric for convenience. We further let K be the maximum of the coarse Lipschitz
constants of �; �; � and the biLipschitz constant of � � �, and assume, as we may,
that K � 2. From the proof of Proposition 3.1 (3), if x is any point of a line of ‚,
then n 7! �v.gnvx/ is a uniformly coarsely surjective, uniform quasi-isometry from Z

to K . Therefore, � D �v is a uniformly coarsely surjective, uniform quasi-isometry
from any line of‚ to K . We further assume that the coarse surjectivity constants and
quasi-isometry constants are also all taken to be K.

Let x; y 2‚ be any two points. Since � and � areK-coarsely Lipschitz, �� � is
.2K; 2K/-coarsely Lipschitz. To prove the required uniform lower bound on � � �-
distances, we note that since � � � is a K-biLipschitz homeomorphism, it suffices to
uniformly coarsely bound d.� � �.x/; � � �.y// from above by

d.� � �.x/; � � �.y//:

For reasons that will become clear shortly, we observe that

d.� � �.x/; � � �.y// D d.�.x/; �.y//C d.�.x/; �.y//

� 2max¹K4d.�.x/; �.y//; d.�.x/; �.y//º: (4)

If the maximum is realized by K4d.�.x/; �.y//, then note that

d.� � �.x/; � � �.y// � 2K4d.�.x/; �.y//

� 2K4d.�.x/; �.y//C 2K4d.�.x/; �.y//

D 2K4d.� � �.x/; � � �.y//;

as required.
We are then left to consider the case that the maximum in (4) is realized by

d.�.x/; �.y//, which thus satisfies

d.�.x/; �.y// � K4d.�.x/; �.y//:

Let z 2 ‚ be such that �.z/ D �.x/ and �.z/ D �.y/. Since �.z/ D �.y/, z and y
lie on a line, and since the restriction of � to this line is a .K;K/-quasi-isometry, we
have

d.�.z/; �.y// �
1

K
d.�.z/; �.y// �K

D
1

K
d.�.x/; �.y// �K:
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Since � is K-coarsely Lipschitz and � � � is K-biLipschitz, we have

d.�.x/; �.z// � Kd.x; z/CK

� K2.d.�.x/; �.z//C d.�.x/; �.z///CK

D K2d.�.x/; �.y//CK

� K2
� 1

K4
d.�.x/; �.y//

�
CK

D
1

K2
d.�.x/; �.y//CK:

Combining the previous two sets of inequalities and the triangle inequality, we have

d.�.x/; �.y// � d.�.z/; �.y// � d.�.z/; �.x//

�
1

K
d.�.x/; �.y// �K �

� 1

K2
d.�.x/; �.y//CK

�
�
K � 1

K2
d.�.x/; �.y// � 2K:

Combining this inequality with (4) where we have assumed the maximum is realized
by d.�.x/; �.y//, we obtain

d.� � �.x/; � � �.y// � 2d.�.x/; �.y//

�
2K2

K � 1
d.�.x/; �.y//C

4K3

K � 1

�
2K2

K � 1
d.� � �.x/; � � �.y//C

4K3

K � 1
;

which provides the required upper bound. This completes the proof of the first claim
of the lemma.

For the second claim of the lemma, we now increase K1 from Proposition 3.1 if
necessary, so that K1 � K. Observe that

.� � �/ ı .� � �/�1.x; t/ D .x; �..� � �/�1.x; t///: (5)

That is, .� � �/ ı .� � �/�1 sends the line ¹xº � R to ¹xº �K , for any x 2 zS .
As already noted at the start of the proof, restricting to this line, � is K-coarsely
Lipschitz and K-coarsely onto. Therefore, for any s 2K and x 2 zS , there exists t so
that �..� � �/�1.x; t// is within K1 � K of s. Thus, for any line of ‚, the �-image
non-trivially intersects NK1.s/, and hence this line non-trivially intersects M.s/. By
definition, � � � maps M.s/ into zSv � NK1.s/, and by the previous sentence, every
point of zS � ¹sº is within K1 of some point of � � �.M.s//. Thus, � � �.M.s// has
Hausdorff distance at most K1 from zS � ¹sº, as required.
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As mentioned above, the following technical lemma will be needed in Section 4.
In the statement M.s/ is as defined by Lemma 3.5.

Lemma 3.6. There is a function N D NK W Œ0;1/! Œ0;1/ with the following prop-
erty. Suppose that v; v1; v2 2 V are so that dtree.v; vi / D 1. Then for each s 2 Kv

and ti 2Kvi , we have

xd.M.s/ \M.t1/;M.s/ \M.t2// � N. xd.M.t1/;M.t2///:

Proof. It suffices to prove the lemma with xd replaced by the path metric d@B˛ on @B˛ ,
since they are uniformly coarsely equivalent. In fact, it will be convenient to consider
the path metric d0 on the union of the three vertex subspaces

� D ‚v [‚v1 [‚v2 ;

which is also uniformly coarsely equivalent since each vertex space uniformly quasi-
isometrically embeds in @B˛ . In this subspace, we will actually prove that the two
distances are uniformly comparable.

Now, for each i D 1; 2 the uniform quasi-isometry �vi � �vi W‚vi ! zSvi �Kvi

from Lemma 3.5 maps the space ‚v
\‚vi within bounded Hausdorff distance of a

subspace @v zSvi �Kvi , for a boundary component @v zSvi of zSvi . Let �W zSvi ! @v zSvi

be the closest point projection, and then set

.�vi � �vi /�1 ı .� � id/ ı .�vi � �vi /W‚vi ! ‚vi ;

where .�vi � �vi /�1 is a coarse inverse of �vi � �vi with

�vi ı .�vi � �vi /�1.x; s/ D x

(cf. equation (5)).
This map is a uniformly coarsely Lipschitz, coarse retraction of‚vi onto‚vi\‚v.

Moreover, this sends M.ti /, which is uniformly close to the .�vi � �vi /�1-image of
zSvi � ¹tiº, to a uniformly bounded neighborhood of M.ti / \‚v . Consequently,

d0.M.t1/;M.t2// � d0.M.t1/ \‚
v;M.t2/ \‚

v/ (6)

with uniform constants.
Next, observe that M.ti / \‚v

� ‚v
\‚vi � ‚v .

Claim 3.7. The quasi-isometry �v � �v maps M.ti / \‚v within a uniformly boun-
ded Hausdorff distance of the slice ¹ziº �Kv � zSv �Kv , for each i D 1; 2, where
.zi ; t

0
i / is a point in the �v � �v-image of M.s/ \M.ti /.
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Assuming the claim, we note then that

d0.M.t1/ \‚
v;M.t2/ \‚

v/ � d zSv�Kv .¹z1º �Kv; ¹z2º �Kv/

D d zSv .z1; z2/

� d0.M.s/ \M.t1/;M.s/ \M.t2//;

again with uniform constants. Combining this coarse equation with (6) we get the
required uniform estimate

d0.M.s/ \M.t1/;M.s/ \M.t2// � d0.M.t1/;M.t2//:

Fix i D 1 or 2 and we prove the claim. Since �v � �vi is K1-coarsely surjective
(Proposition 3.1 (3)), there exists some point yi 2 ‚v

\‚vi with .�v.yi /; �vi .yi //
within distance K1 of .s; ti / 2Kv �Kvi . Therefore, yi 2M.s/ \M.ti / and we set
�v � �v.yi / D .zi ; t

0
i /.

Next, we observe that �vi is uniformly coarsely constant on any line of ‚v

contained in ‚v
\‚vi by Proposition 3.1 (2) and uniformly coarsely Lipschitz by

Proposition 3.1 (1). Hence, the line

.�v/�1.zi / D .�
v
� �v/�1.¹ziº �R/

of ‚v maps under �v � �vi W‚v
\‚vi ! Kv �Kvi into a neighborhood of uni-

formly bounded radius of Kv � ¹tiº. Therefore, any point in the image of the line
in Kv �Kvi lies uniformly close to a point in �v � �vi .M.ti / \‚v/ by Proposi-
tion 3.1 (3) (which guarantees that any point in Kv � ¹tiº is K1-close to a point in
the image of the subspace‚v

\‚vi ). Therefore, any point in the line lies uniformly
close to some point in M.ti / \‚v since �v � �vi is a uniform quasi-isometry again
by Proposition 3.1 (3).

On the other hand, Lemma 3.5 implies �vi � �vi .M.ti // is uniformly bounded
Hausdorff distance from the slice zSvi � ¹tiº � zSvi �Kvi . Moreover, since M.ti /
meets every line of‚vi (Lemma 3.5 again), it follows that

�vi � �vi .M.ti / \‚
v/

is uniformly bounded Hausdorff distance to the quasi-line @v zSvi � ¹tiº (see the proof
of Lemma 3.5). In particular, M.ti / \‚v is itself a uniform quasi-line and conse-
quently lies within a uniformly bounded neighborhood of the line .�v/�1.zi /. Since
this line maps within a uniformly bounded Hausdorff distance of the slice ¹ziº �Kv

in zSv �Kv by �v � �v , we see that M.ti / \‚v does as well
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3.3. Coned-off surfaces

For v 2 V , we define „v to be the graph whose vertices are all w 2 V so that
dtree.v;w/D 1, and with edges connecting the pairs w;w0 whenever‚w

\‚w0
¤ ;.

As such, vertices w 2 V are in bijective correspondence with the boundary compo-
nents of‚v and there is an “inclusion” map

ivW @‚v
! „v

that sends any point x 2 @‚v to the vertex w for which x 2 ‚w . In light of the
following lemma, we note that we could alternately define the edges of „v in terms
of subspaces lying within bounded distance of each other, and produce a space quasi-
isometric to „v .

Lemma 3.8. There is a function

N D N„W Œ0;1/! Œ0;1/

so that whenever v; w1; w2 2 V satisfy xd.‚w1 \ ‚v;‚w2 \ ‚v/ � r , the sets
‚w1 \‚v and ‚v

\‚w2 may be connected via a concatenation of at most N.r/
paths, each of which is contained in a set of the form‚v

\‚w .

Proof. If xd.‚w1 \‚v;‚w2 \‚v/ � r , then there are cone points pi 2 ‚wi \ �v

within distance r C 3M , where M is the bound on the width of a strip and length
of a saddle connection from Lemma 2.3. Since the path metric d�v on �v is coarsely
equivalent to the subspace metric, d�v .p1; p2/ is bounded in terms of r . The path
metric on �v is biLipschitz equivalent to the `1-metric on the product �vXv �R. Since
each edge of �vXv has definite length, there is a path from p1 to p2 in �v obtained
by concatenating boundedly many (in terms of r) paths ˛i with fXv .˛i / a saddle
connection in �vXv . Since each ˛i is contained in some‚w , we are done.

Corollary 3.9. For any x;y 2 @‚v , we have d„v .i
v.x/; iv.y//�N.d‚v .x;y//C 1.

Proof. Let w D iv.x/ and w0 D iv.y/. Since d‚v and xd are path metrics, we have
xd.x; y/ � d‚v .x; y/. By Lemma 3.8, x and y may be joined by a concatenation
˛1 � � � ˛k of k � N.d‚v .x; y//C 2 paths j̨ each of which lies in some ‚v

\‚wj ,
and wherewDw1 andw0Dwk . For successive paths j̨ ; j̨C1, the verticeswj ;wjC1
are adjacent in „v by definition. Therefore,

d„v .w;w
0/ � k � 1 � N.d‚v .x; y//C 1:

Lemma 3.10. Each „v is uniformly quasi-isometric to a tree. In particular, there
exists ı > 0 so that each „v is ı-hyperbolic. Moreover, „v has at least two points at
infinity.
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Proof. We appeal to Proposition 2.5 and show that for any vertices w;w0 of„v there
exists a path 
.w;w0/ so that any path from w to w0 passes within distance 3 of each
vertex of 
.w;w0/.

First, note that „v is isomorphic to the intersection graph of the collection of
strips in ‚v

0. For each strip we have a vertex, and for each saddle connection of the
spine �v0 , there is an edge of„v that connects the vertices corresponding to the strips
that contain the saddle connection. For each cone point in the spine �v0 , there is also
a complete graph on the vertices corresponding to strips that contain this cone point.
This accounts for all edges (because intersections of strips either arise along saddle
connections or single cone points), and we note that the closure of each edge of the
first type separates „v into two components.

Suppose w;w0 2 „v are two vertices, and let x; x0 2 �v0 be points in the (bound-
aries of the) strips corresponding tow andw0, respectively, that are closest in‚v

0, and
consider the geodesic in �v0 connecting these points, which is a concatenation of sad-
dle connections �1�2 � � ��n. For each 1 � i � n, let w˙i be the vertices corresponding
to the two strips A˙i that intersect in the saddle connection �i . We can form an edge
path 
.w;w0/ in„v , containingw;w0, and thewCi as vertices, sinceACi \A

C

iC1 ¤ ;.
Observe that any path from x to x0 must pass through the union ACi [A

�
i , for each i ,

since x and x0 lie in the closures of distinct components of‚v
0 X .A

C

i [ A
�
i /.

Now let w D w0; w1; : : : ; wk D w0 be the vertices of an edge path connecting w
to w0 in„v . For any points in the strips corresponding to w and w0, respectively, it is
easy to construct a path in ‚v

0 between these points that decomposes as a concatena-
tion �1�2 � � � �k so that �j is contained entirely in the strip corresponding to wj . From
the previous paragraph, this path must pass through ACi [ A

�
i , for each i D 1; : : : ; n.

It follows that for each 1 � i � n, the edge path must meet the union of the stars
star.wCi / [ star.w�i /. Since these stars intersect, their union has diameter at most 3,
and we are done.

We now show that „v contains a quasi-geodesic line. Consider strips Ai of ‚v
0,

for i 2 Z, such that for all i , we have

• Ai and AiC1 share a saddle connection;

• Ai�1 and AiC2 lie on distinct components of the complement of the interior of
Ai [ AiC1 in‚v

0.

The Ai give a bi-infinite path in „v , and we now show that this path is a quasi-
geodesic. Fix integers m; n and consider a geodesic 
 in „v from Am to An (where
we think of the strips themselves as vertices of „v for convenience). Then for each
m < k < n � 1, we have that 
 needs to contain a vertex v.k/ which, regarded as a
strip, intersectsAk orAkC1. Indeed, the interior ofAk [AkC1 separatesAm fromAn,
and the sequence of vertices of 
 corresponds to a connected union of strips contain-
ingAm andAn. Moreover, there is no strip intersecting bothAk andAk0 if jk�k0j�3,
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and in particular we have v.k/ ¤ v.k0/ if jk � k0j � 4. These observations imply
that 
 contains at least b.n � m � 2/=4c vertices, so that geodesics connecting Am
to An have length comparable to n � m, and the Ai form a quasi-geodesic line, as
required.

3.4. Windows and bridges

Recall that†�E and x†� xE are the sets of all singular points in all fibers inE and xE,
respectively; see Section 2.2. For v 2 V , consider the set x†v of points in x† that are
inside some v-spine, as well as those points x†…v that are outside every v-spine:

x†v D
[
X2 xD

.�vX \†/ and x†62v D x† X x†v:

For each Y 2 xD, we now define a window map …v
Y W
x† ! P.@‚v

Y / from cone
points to the set of subsets of the boundary @‚v

Y � ‚
v
Y . There are two cases. Firstly,

for x 2 x†…v ,
…v
Y .x/ D ¹z 2 @‚

v
Y j ŒfY .x/; z� \‚

v
Y D ¹zºº:

In words, …v
Y .x/ is the union of entrance points in ‚v

Y of any flat geodesic in EY
from fY .x/ to ‚v

Y (basically the closest point projection in EY ), and we call it the
window for x in‚v

Y . Observe that for anyX;Y 2 xD we have fX;Y .…v
Y .x//D…

v
X .x/.

The second case, that of x†v , is handled slightly differently: for x 2 x†v ,

…v
Y .x/ D fY;X .…

v
X .x//; where X D cv.�.x// 2 @Bv , and

…v
X .x/ D ¹z 2 @‚

v
X j z is a closest cone point to fX .x/ 2 �vXº:

Thus, affine invariance …v
Z.x/ D fZ;Y .…

v
Y .x// is built directly into the definition.

Now, for any Y 2 xD and x; y 2 x†, we define

d vY .x; y/ D diam.…v
Y .x/ […

v
Y .y//;

where the distance is computed in the path metric on EY (or equivalently on ‚v
Y ).

Finally, we extend window maps to arbitrary subsets by declaring, for U � xE,

…v
Y .U / D …

v
Y .U \

x†/ D
[

x2x†\U

…v
Y .x/;

which has the same effect as defining …v
Y .x/ D ; � @‚

v
Y for x … x†.

Lemma 3.11. If x; y 2 x†62v satisfy f0.x/ D f0.y/, then …v
Y .x/ D …v

Y .y/ for all
Y 2 xD.

Recall that f0 D fX0 .
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Proof. This is immediate since f0.x/ D f0.y/ if and only if fY .x/ D fY .y/ for all
Y 2 xD, and …v

Y .x/ is defined just in terms of fY .x/ D fY .y/.

The following gives a counterpoint to Lemma 3.11 for points in x†v .

Lemma 3.12. There exists K2 > 0 such that, for any v 2 V , the following holds:
If x; y 2 x†v satisfy f0.x/ D f0.y/ and either

(1) x and y are connected by a horizontal geodesic of length � 1, or

(2) x and y are contained in @Bw for some w 2 V with ˛.w/ ¤ ˛.v/,

then d vX .x; y/ � K2, where X D cv.�.x//.

Proof. Set X D cv.�.x// and Y D cv.�.y//. Since cvWD ! @Bv is 1-Lipschitz
and diam.cv.@Bw// is uniformly bounded for all such w, either condition (1) or (2)
gives a uniform bound K > 0 on the distance between X and Y . Hence, fX;Y is
eK-biLipschitz. The distance between fY .y/ 2 �vY and its closest cone points…v

Y .y/

in @‚v
Y is also uniformly bounded by 2M , by Lemma 2.3. The same holds for the dis-

tance between fX .x/ and …v
X .x/. It follows that …v

X .y/ D fX;Y .…
v
Y .y// lies within

distance 2eKM of fX .x/ D fX;Y .fY .y//, and hence within distance 2eKM C 2M
of …v

X .x/.

The next lemma explains that the image of …v
Y is not so far from being a point.

Lemma 3.13 (Window lemma). For any v 2 V , Y 2 xD, and x 2 x†62v , the window
…v
Y .x/ � @‚

v
Y is either a cone point or a single saddle connection.

Proof. Recall that each cone point in the flat surface EY has total angle at least 3� ,
and thatEY is a unique geodesic space in which a concatenation of saddle connections
is geodesic if and only if successive saddle connections subtend an angle of at least �
on each side.

If fY .x/ 2 @‚v
Y then clearly …v

Y .x/ is the cone point fY .x/ itself. So suppose
fY .x/ … ‚

v
Y and let ` be the component of @‚v

Y separating fY .x/ from �vY in EY ,
so that …v

Y .x/ � `. Take any flat geodesic ŒfY .x/; z� in EY from fY .x/ to a cone
point z 2 `. The geodesic ŒfY .x/; z� is a concatenation of saddle connections and first
meets ` in some cone point p. Since the total cone angle at p is at least 3� and the
angle at p along the side of ` containing‚v is exactly � , the last saddle connection ı
in the geodesic ŒfY .x/; p� � ŒfY .x/; z� must make an angle of at least � with one of
the two halves of ` determined by p. It follows that concatenating ŒfY .x/;p�with that
half of ` gives an infinite geodesic ray in EY . Hence, by uniqueness of geodesics, the
geodesic from fY .x/ to any cone point on that side of p evidently passes through p.

If both angles between ı and ` at p are at least � , then any geodesic from fY .x/

to ` passes through p. Hence, p is the unique point in @‚v
Y closest to fY .x/ and

…v
Y .x/ D ¹pº is a cone point as required. Otherwise, consider the flat geodesic from
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Figure 3. The window (shown in red) for x in the thickened spine‚vY .

fY .x/ to the adjacent cone point p0 on the other side of p along `. The last saddle
connection of this geodesic must also make an angle with ` of at least � on one side.
This cannot be the side containing p, or else the geodesic from fY .x/ to p would
pass through p0 contradicting our choice of p. Hence any geodesic from fY .x/ to a
cone point on the opposite side of p0 must pass through p0. Therefore, …v

Y .x/ is the
saddle connection between p and p0, and we are done. See Figure 3.

The following lemma gives us partial control over the window for points in adja-
cent vertex spaces in the same Bass–Serre tree.

Lemma 3.14 (Bridge lemma). For any v; w 2 V with dtree.v; w/ D 1, any Y 2 xD,
and any component U � EY X �wY not containing �vY , there exists a (possibly degen-
erate) saddle connection ıU � @‚v

Y with the following property: Every x 2 x† with
fY .x/ 2 xU satisfies …v

Y .x/ � ıU .

We call ıU the bridge for U in EY . It is clear from the construction in the proof
below that fZ;Y .ıU / is the bridge for fZ;Y .U /, for any Z 2 xD.

Proof. Let U be as in the statement and W be the component of EY X �wY contain-
ing �vY . Let 
U D xU \ �wY and 
W D xW \ �wY � @‚

v
Y , which are both bi-infinite flat

geodesics in �wY .
If 
U \ 
W D ;, then there is a unique geodesic between them in �wY , and we

take ıU to be the endpoint of this geodesic which lies along 
W . On the other hand, if

U \ 
W ¤ ;, then their intersection is contained in the boundary of a strip along �vY
and another along �wY . Two distinct strips in the same direction that intersect do so in
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Figure 4. Examples of bridges (in red), and the proof of Lemma 3.14.

either a single point or a single saddle connection, and hence 
U \ 
W is a point or
single saddle connection, and we call ıU . See Figure 4.

Now consider any point x 2 x† with fY .x/ 2 xU . Observe that x 2 x†…v so that
…v
Y .x/ falls under the first case of the window definition. Further, any flat geodesic

from fY .x/ to‚v
Y must pass through both 
U and 
W , and hence must pass through

ıU � @‚
v
Y . It follows that …v

Y .x/ � ıU , as required.

The following is an easy consequence of the previous lemma.

Corollary 3.15. For any v; w 2 V with 2 � dtree.v; w/ < 1 and Y 2 xD, there
exists a (possibly degenerate) saddle connection ıvY .w/ � @‚

v
Y so that if x 2 x† has

fY .x/ 2 ‚
w
Y , then …v

Y .x/ � ı
v
Y .w/. In particular, …v

Y .‚
w/ � ıvY .w/.

Proof. There exists u 2 T .0/
˛.v/

between v and w with dtree.u; v/ D 1, and a compo-
nent U � EY X �uY whose closure contains ‚w

Y . Setting ıvY .w/ D ıU and applying
Lemma 3.14 completes the proof.

The next corollary is similar.

Corollary 3.16. If v;w 2 V satisfy dtree.v;w/ D1 and �w0 \ �
v
0 D ;, then for each

Y 2 xD there is a connected union ıvY .w/ � @‚
v
Y of at most two saddle connections

such that …v
Y .x/ � ı

v
Y .w/ for all x 2 x†w . In particular, …v

Y .�
w/ � ıvY .w/.

Proof. From the hypotheses, �wY is contained in some component W � EY X �vY .
Let u 2 V be such that dtree.v; u/ D 1 and �uY � W . Since ˛.u/ D ˛.v/ ¤ ˛.w/,
�uY and �wY can intersect in at most one point. If �uY \ �

w
Y D ;, then �wY is contained

in a component U of EY X �uY disjoint from �vY ; thus …v
Y .�

w
Y / is contained in the

bridge ıU forU by Lemma 3.14. Otherwise �uY \ �
w
Y ¤;, and we claim there is a cone

point p 2 �uY such that p 2 xU for every component U of EY X �uY that intersects �wY .
Indeed, if �uY \ �

w
Y is a cone point, we take p to be this intersection point, and if not

�uY \ �
w
Y is an interior point of a saddle connection of �uY and we may take p to be
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x1

W1

x2

W2

x3

W3

x4

W4

x5

W5

�w
Y

W0

‚vY

Figure 5. The proof of Lemma 3.17: The arcs shown in red are the segments ıi , which contain
…v
Y
.x/ for all x 2 �w with fY .x/ in the subgraph Wi of �w

Y
.

either of its endpoints. For each component U � EY X �uY that intersects �wY , we then
have…v

Y .p/� ıU , where ıU is the bridge for U . Since fY .x†w/� �wY is contained in
the union of the closures of such U , it follows that…v

Y .
x†w/ is contained in a union of

saddle connections along @‚v
Y , all of which contain…v

Y .p/, and hence is a connected
union of at most two saddle connections. This completes the proof.

The final case to consider is that of spines in different directions that intersect:

Lemma 3.17. There exists K3 > 0 such that if v; w 2 V with dtree.v; w/ D 1 and
�w0 \ �

v
0 ¤ ;, then diam.…v

Y .�
w// < K3 for all Y 2 cv.@Bw/.

Proof. Let x0 D �vY \ �
w
Y be the unique intersection point of the spines. Let W0 be

the smallest subgraph of �wY containing �wY \‚
v
Y and letW1; : : : ;Wk be the closures

of the components of �wY XW0, so that

�wY D W0 [ � � � [Wk :

See Figure 5. For 1 � i � k, let xi 2 Wi be the closest (cone) point to x0. Then
define pi to be the intersection of the geodesic Œx0; xi � � �wY with @‚v

Y and let
ıi � @‚

v
Y be the segment consisting of the (1 or 2) saddle connections along @‚v

Y

that contain pi . Define
ıvY .w/ D ı1 [ � � � [ ık;

and note that ıvX .w/ D fX;Y .ı
v
Y .w// and �wY \ @‚

v
Y � ı

v
Y .w/ by construction.
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For any x 2 x† with fY .x/ 2Wi , where i D 1; : : : ; k, the flat geodesic from fY .x/

to x0 first intersects ‚v
Y at pi ; therefore, pi 2 …v

Y .x/ by definition of the window.
By Lemma 3.13, it follows that …v

Y .x/ � ıi . The union [kiD1Wi contains every cone
point of �wY except possibly x0. Thus we have proven

…v
Y .�

w
\ x†…v/ D …v

Y .�
w
Y \
x†…v/ � ıvY .w/:

Let Z 2 D be the closest point on @Bv to @Bw , thus Z 2 @Bv lies on the unique
hyperbolic geodesic that intersects @Bv and @Bw orthogonally. In EZ the directions
˛.v/ and ˛.w/ are perpendicular. Therefore the cone points of @‚v

Z that are clos-
est to �vZ \ �

w
Z all lie in ıvZ.w/, since they must be endpoints of saddle connec-

tions along @‚v
Z that intersect �wZ . More generally, for any Y 2 cv.@Bw/, the direc-

tions ˛.v/ and ˛.w/ are nearly perpendicular, and thus we have

…v
Y .�

w
\ x†…v/ � ıvY .w/ � BK.�

v
Y \ �

w
Y /:

for some uniform constant K > 0 that depends only on the length of cv.@Bw/ and
the maximum over @Bv of the length/width of any saddle connection/strip in the ˛.v/
direction (Lemma 2.3). Now, for any x 2 �w \ x†v , the point X D cv.�.x// lies
in cv.@Bw/, and we have that

fX .x/ D �
v
X \ �

w
X :

The above equation shows there are cone points of @‚v
X within K of fX .x/; hence

…v
X .x/ D …v

X .fX .x// lies in BK.�vX \ �
w
X / by definition. Using the fact that the

length of cv.@Bw/ is uniformly bounded, we see that the map fY;X is uniformly bi-
Lipschitz, and therefore that …v

Y .x/ D fY;X .…
v
X .x// lies within bounded distance

of
�vY \ �

w
Y D fY;X .�

v
X \ �

w
X /:

Combining this with the above finding that …v
Y .�

w \ x†…v/ lies within bounded dis-
tance of �vY \ �

w
Y , we finally conclude that diam.…v

Y .�
w// is uniformly bounded.

3.5. Projections

Here we define projections ƒvW x†! P.Kv/ and �vW x†! P.„v/. In preparation, we
first define …vW x†! P.@‚v/ by

…v.x/ D
[

Y2@Bv

…v
Y .x/ for any v 2 V and x 2 x†:

In words, …v.x/ consists of the v-windows of x in all fibers over @Bv . As before, we
extend to arbitrary subsets U � xE by setting …v.U / D …v.U \ x†/.
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Now, for each v 2 V our projections are defined as the compositions

ƒv D �v ı…v and �v.x/ D iv ı…v:

A useful observation is that for any two vertices v; w 2 V with dtree.v; w/ D 1 and
X 2 xD, we have

�v.�wX / D �
v.�w/ D w 2 „v: (7)

Mirroring the notation d vY .x; y/ above, for x; y 2 x†, we define

dKv .x; y/ D diam.ƒv.x/ [ƒv.y// and d„v .x; y/ D diam.�v.x/ [ �v.y//:

Lemma 3.18. There is a functionN 0W Œ0;1/!Œ0;1/ such that for all v2V ,X 2@Bv ,
and x; y 2 x† the quantities dKv .x; y/ and d„v .x; y/ are at most N 0.d vX .x; y//.

Proof. For Y 2 @Bv , let us compare the images of some subset U � @‚v
Y and

Smear.U / D
[

Z2@Bv

fZ;Y .U / � @‚
v

under the maps �v; iv . Since the boundary components of ‚v are preserved by the
maps fZ;Y , the images iv.U / D iv.Smear.U // are exactly the same. Moreover, for
each x 2 @‚v

Y , we have

�v.Smear.¹xº// D �v.`x;˛.v//;

and so by Proposition 3.1 (2) this is a set with diameter at mostK1. Therefore, �v.U /
and �v.Smear.U // have Hausdorff distance at most 2K1.

Now, let x; y 2 x† and X 2 @Bv be as in the statement. Set U D…v
X .x/[…

v
X .y/

so that diam.U /D d vX .x;y/. Since…v.x/D Smear.…v
X .x// and similarly for…v.y/,

we see that

dKv .x; y/ D diam.�v.Smear.U /// and d„v .x; y/ D diam.iv.Smear.U ///:

Since �v is coarselyK1-Lipschitz by Proposition 3.1(1), the preceding paragraph and
the triangle inequality shows that

dKv .x; y/ D diam.�v.Smear.U ///

� diam.�v.U //C 2K1 � .K1d vX .x; y/CK1/C 2K1:

Similarly, by Corollary 3.9, we have that

diam„v .x; y/ D diam.iv.U // � N.d vX .x; y//C 1:

Setting N 0.t/ D max¹N.t/C 1;K1t C 3K1º completes the proof.
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Proposition 3.19. There exists K4 > 0, so that for any v 2 V :

(1) ƒv and �v are K4-coarsely Lipschitz;

(2) for any w 2 V , we have

(a) diam.ƒv.‚w// < K4, unless dtree.v; w/ � 1;

(b) diam.�v.‚w// < K4, unless w D v.

Proof. For part (1), we first observe that by [16, Lemma 3.5], there exists anR > 0 so
that any pair of points x;y 2 x†may be connected by a path of length at mostR xd.x;y/
that is a concatenation of at most R xd.x; y/ C 1 pieces, each of which is either a
saddle connection of length at most R in a vertical fiber, or a horizontal geodesic
segment in xE. By the triangle inequality, it thus suffices to assume that x and y are
the endpoints of either a horizontal geodesic or a vertical saddle connection of length
at most R. Appealing to Lemma 3.18, it further suffices to show that d vX .x; y/ is
linearly bounded by xd.x; y/ for some X 2 @Bv . Lemmas 3.11 and 3.12 (1) handle
the horizontal segment case, since we are free to subdivide such a path into d xd.x; y/e
segments of length at most 1.

For the vertical segment case we assume x and y lie in the same fiber EY and dif-
fer by a saddle connection ı of length at most R. Let �wY , where w 2 V , be the spine
containing ı. The fact that ı is bounded means that Y D �.x/ D �.y/ is bounded
distance from the horocycle @Bw . Let X D cw.Y / 2 @Bw and let ı0 D fX;Y .ı/ be
the saddle connection in �wX connecting x0 D fX;Y .x/ and y0 D fX;Y .y/. By the tri-
angle inequality and the first part above about bounded length horizontal segments,
it suffices to work with the points x0; y0 2 �w . There are three cases to consider:
Firstly, if v D w, then x0; y0 2 �vX so that …v

X .x
0/ and …v

X .y
0/ choose the closest

cone points in @‚v
X to x0 and y0, respectively. Since x0 and y0 are close, so are

…v
X .x

0/ and …v
X .y

0/. Secondly, if dtree.v; w/ > 1, then Corollaries 3.15 and 3.16,
and Lemma 3.17 give a uniform bound on d vZ.x

0; y0/ � diam.…v
Z.�

w// for any point
Z 2 cv.@Bw/. Finally, if dtree.v; w/ D 1, then �wX and �vX are adjacent non-crossing
spines in EX . Since �wX is totally geodesic, it follows that …v

X .x
0/ and …v

X .y
0/ are

either equal or connected by a single edge of @‚v
X . But this saddle connection has

uniformly bounded length, since X 2 @Bv , which completes the proof of (1).
For (2), first recall that strips/saddle connections in the ˛.w/ direction have uni-

formly bounded width/length over @Bw (Lemma 2.3). Therefore ‚w
\ x† is con-

tained in a bounded neighborhood of �w \ x†. By part (1) it thus suffices to bound
diam.ƒv.�w// and diam.�v.�w//. When dtree.v; w/ � 2, Corollaries 3.15 and 3.16,
and Lemma 3.17, imply that there existsX 2 @Bv so that…v

X .�
w/ has bounded diam-

eter in‚v
X . Appealing to Lemma 3.18 now bounds diam.ƒv.�w// and diam.�v.�w//

in these cases. For the remaining case dtree.v; w/ D 1 of (2b), we note that �v.�w/ is
a single point by (7), and thus (2b) follows.
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4. Hierarchical hyperbolicity of �

In this section we complete the proof that � is hierarchically hyperbolic. We will
use a criterion from [5], which we now briefly discuss. For further information and
heuristic discussion of this approach to hierarchical hyperbolicity, we refer the reader
to [5, §1.5, “User’s guide and a simple example”].

Consider a simplicial complex X and a graph W whose vertex set is the set of
maximal simplices of X. The pair .X;W/ is called a combinatorial HHS if it satisfies
the requirements listed in Definition 4.8 below, and [5, Theorem 1.18] guarantees
that in this case W is an HHS. The main requirement is along the lines of: X is
hyperbolic, and links of simplices of X are also hyperbolic. However, this is rarely
the case because co-dimension–1 faces of maximal simplices have discrete links. To
rectify this, additional edges (coming from W ) should be added to X and its links
as detailed in Definition 4.2. In our case, after adding these edges, X will be quasi-
isometric to yE, and each other link will be quasi-isometric to either a point or to one
of the spaces Kv or „v introduced in Section 3.

There are two natural situations where such pairs arise that the reader might want
to keep in mind. First, consider a group H acting on a simplicial complex X so that
there is one orbit of maximal simplices, and those have trivial stabilizers. In this case,
we take W to be (a graph isomorphic to) a Cayley graph ofH . (More generally, if the
action is cocompact with finite stabilizers of maximal simplices, then the appropri-
ate W is quasi-isometric to a Cayley graph.) For the second situation, X is the curve
graph of a surface; then maximal simplices are pants decompositions of the surface
and W can be taken to be the pants graph. We will use this as a working example
below, when we get into the details.

Most of the work carried out in Section 3 will be used (as a black-box) to prove
that, roughly, links are quasi-isometrically embedded in a space obtained by removing
all the “obvious” vertices that provide shortcuts between vertices of the link. This can
be seen as an analogue of Bowditch’s fineness condition in the context of relative
hyperbolicity.

This section is organized as follows. In Section 4.1 we list all the relevant defini-
tions and results from [5], and we illustrate them using pants graphs. In Section 4.2
we construct the relevant combinatorial HHS for our purposes. In Section 4.3 we ana-
lyze all the various links and related combinatorial objects; we note that most of the
work done in Section 3 is used here to prove Lemma 4.22. At that point, essentially
only one property of combinatorial HHSs will be left to be checked, and we do so in
Section 4.4.
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4.1. Basic definitions

We start by recalling some basic combinatorial definitions and constructions. Let X

be a flag simplicial complex.

Definition 4.1 (Join, link, star). Given disjoint simplices �; �0 of X, the join is
denoted � ? �0 and is the simplex spanned by �.0/ [ �0.0/, if it exists. More gen-
erally, if K; L are disjoint induced subcomplexes of X such that every vertex of K
is adjacent to every vertex of L, then the join K ? L is the induced subcomplex with
vertex set K.0/ [ L.0/.

For each simplex�, the link Lk.�/ is the union of all simplices�0 of X such that
�0 \� D ; and �0 ? � is a simplex of X. The star of � is star.�/ D Lk.�/ ? �,
i.e., the union of all simplices of X that contain �.

We emphasize that ; is a simplex of X, whose link is all of X and whose star is
all of X.

Definition 4.2 (X -graph,W -augmented dual complex). An X-graph is any graph W

whose vertex set is the set of maximal simplices of X (those not contained in any
larger simplex).

For a flag complex X and an X-graph W , the W -augmented dual graph XCW is
the graph defined as follows:

• the 0-skeleton of XCW is X.0/;

• if v;w 2 X.0/ are adjacent in X, then they are adjacent in XCW ;

• if two vertices in W are adjacent, then we consider �; �, the associated maximal
simplices of X, and in XCW we connect each vertex of � to each vertex of �.

We equip W with the usual path-metric, in which each edge has unit length, and do
the same for XCW . Observe that the 1-skeleton of X is a subgraph X.1/ � XCW .

We provide a running example to illustrate the various definitions in a familiar
situation. This example will not be used in the sequel.

Example 4.3. If X is the curve complex of the surface S , then an example of the
an X-graph, W , is the pants graph, since a maximal simplex is precisely a pants
decomposition. The W -augmented dual graph can be thought of as adding to the
curve graph, X.0/ an edge between any two curves that fill a one-holed torus or four-
holed sphere and intersect once or twice, respectively: indeed, these subsurfaces are
precisely those where an elementary move happens as in the definition of adjacency
in the pants graph.

Definition 4.4 (Equivalent simplices, saturation). For�;�0 simplices of X, we write
� � �0 to mean Lk.�/ D Lk.�0/. We denote by Œ�� the equivalence class of �. Let
Sat.�/ denote the set of vertices v 2X for which there exists a simplex�0 of X such
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that v 2 �0 and �0 � �, i.e.,

Sat.�/ D
� [
�02Œ��

�0
�.0/

:

We denote by S the set of �-classes of non-maximal simplices in X.

Definition 4.5 (Complement, link subgraph). Let W be an X-graph. For each sim-
plex � of X, let Y� be the subgraph of XCW induced by the set of vertices

.XCW /.0/ � Sat.�/:

Let C.�/ be the full subgraph of Y� spanned by Lk.�/.0/. Note that C.�/ D

C.�0/ whenever� � �0. (We emphasize that we are taking links in X, not in XCW ,
and then considering the subgraphs of Y� induced by those links.)

We now pause and continue with the illustrative example.

Example 4.6. Let X and W be as in Example 4.3. A simplex � is a multicurve
which determines two (open) subsurfaces U D U.�/; U 0 D U 0.�/ � S , where U
is the union of the complementary components of the multicurve that are not a pair
of pants, and U 0 D S � xU . Note that @U � � is a submulticurve and that � � @U
is a pants decomposition of U 0. A simplex �0 is equivalent to � if it defines the
same subsurfaces. Thus Sat.�/ consists of @U.�/ together with all essential curves
in U 0.�/, while C.�/ is the join of graphs quasi-isometric to curve graphs of the
components of U.�/. For components of U.�/ which are one-holed tori or four-
holed spheres, the corresponding subgraphs are isometric to their curve graphs (since
the extra edges in XCW precisely give edges for these curve graphs).

Definition 4.7 (Nesting). Let X be a simplicial complex. Let �;�0 be non-maximal
simplices of X. Then we write Œ��Ď Œ�0� if Lk.�/ � Lk.�0/.

We note that if �0 � �, then Œ��Ď Œ�0�. Also, for Examples 4.3 and 4.6, Œ��Ď

Œ�0� if and only if U.�/ � U.�0/.
Finally, we are ready for the main definition.

Definition 4.8 (Combinatorial HHS). A combinatorial HHS .X;W/ consists of a
flag simplicial complex X and an X-graph W satisfying the following conditions for
some n 2 N and ı � 1:

(1) any chain Œ�1�Ł Œ�2�Ł � � � has length at most n;

(2) for each non-maximal simplex �, the subgraph C.�/ is ı-hyperbolic and
.ı; ı/-quasi-isometrically embedded in Y�;
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(3) whenever � and �0 are non-maximal simplices for which there exists a non-
maximal simplex � such that Œ�� Ď Œ��, Œ�� Ď Œ�0�, and diam.C.�// � ı,
then there exists a simplex … in the link of �0 such that Œ�0 ? …�Ď Œ�� and
all Œ�� as above satisfy Œ��Ď Œ�0 ? …�;

(4) if v;w are distinct non-adjacent vertices of Lk.�/, for some simplex� of X,
contained in W -adjacent maximal simplices, then they are contained in W -
adjacent simplices of the form � ?�0.

We will see below that combinatorial HHSs give HHSs. The reader not interested
in the explicit description of the HHS structure can skip the following two definitions.

Definition 4.9 (Orthogonality, transversality). Let X be a simplicial complex. Let
�;�0 be non-maximal simplices of X. Then we write

Œ��? Œ�0�

if Lk.�0/ � Lk.Lk.�//. If Œ�� and Œ�0� are not ?-related or Ď-related, we write

Œ�� t Œ�0�:

Definition 4.10 (Projections). Let .X;W/ be a combinatorial HHS. Fix Œ�� 2 S and
define a map �Œ��WW ! P.C.Œ��// as follows. First let pW Y� ! P.C.Œ��// be the
coarse closest-point projection, i.e.,

p.x/ D ¹y 2 C.Œ��/ j dY�.x; y/ � dY�.x;C.Œ��//C 1º:

Suppose that w 2 W .0/, so w corresponds to a unique simplex �w of X. Define

�Œ��.w/ D p.�w \ Y�/:

We have thus defined �Œ��WW .0/ ! P.C.Œ��//. If v; w 2 W .0/ are joined by an
edge e of W , then �v; �w are joined by edges in XCW , and we let

�Œ��.e/ D �Œ��.v/ [ �Œ��.w/:

Now let Œ��; Œ�0� 2 S satisfy Œ�� t Œ�0� or Œ�0�Ł Œ��. Let

�
Œ�0�

Œ��
D p.Sat.�0/ \ Y�/:

Let Œ��Ł Œ�0�. Let �Œ�
0�

Œ��
WC.Œ�0�/!C.Œ��/ be the restriction of p to C.Œ�0�/\Y�,

and ; otherwise.

The next theorem from [5] provides the criteria we will use to prove that � is a
hierarchically hyperbolic group.
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v1

t1
t2

t3

v2

s1
s2

s3

v3 v4

v1

v2

v3 v4

v.si / D

v.ti / D

Z

Figure 6. The simplicial map Z restricted to a part of X (on the left) to a part of the union of
trees T˛ (on the right). Vertices in X are colored the same as their image vertices in T˛ .

Given a combinatorial HHS .X;W/, we denote S the set as in Definition 4.4,
endowed with nesting and orthogonality relations as in Definitions 4.7 and 4.9. Also,
we associated to S the hyperbolic spaces as in Definition 4.8, and define projections
as in Definition 4.10.

Theorem 4.11 ([5, Theorem 1.18, Remark 1.19]). Let .X;W/ be a combinatorial
HHS. Then .W ;S/ is a hierarchically hyperbolic space.

Moreover, if a group G acts by simplicial automorphisms on X with finitely many
orbits of links of simplices, and the resulting G-action on maximal simplices extends
to a metrically proper cobounded action on W , then G acts metrically properly and
coboundedly by HHS automorphisms on .W ;S/, and is therefore a hierarchically
hyperbolic group.

4.2. Combinatorial HHS structure

We now define a flag simplicial complex X. The vertex set is X.0/ D V tK , where

K D
G
v2V

Kv:

Given a vertex s 2 K , let v.s/ 2 V be the unique vertex with s 2 Kv . We also write
˛.s/ D ˛.v.s//.

There are 3 types of edges (see Figure 6):

(1) v;w 2 V are connected by an edge if and only if dtree.v; w/ D 1.

(2) s; t 2K are connected by an edge if and only if dtree.v.s/; v.t// D 1.

(3) s 2K and w 2 V are connected by an edge if and only if dtree.v.s/; w/ � 1.

We declare X to be the flag simplicial complex with the 1-skeleton defined above.
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The map K!V given by s 7! v.s/ and the identity V!V extends to a surjective
simplicial map

ZWX !
G
˛2P

T˛:

We note that we may view the union
F
T˛ on the right as a subgraph of X.1/, mak-

ing Z a retraction.
For any vertex v in any tree T˛ , Z�1.v/ is the join of ¹vº and the set Kv:

Z�1.v/ D ¹vº ?Kv: (8)

For any pair of adjacent vertices v; w 2 T˛ (so dtree.v; w/ D 1), the preimage of the
edge Œv; w� � T˛ is also a join:

Z�1.Œv; w�/ D Z�1.v/ ? Z�1.w/ D .¹vº ?Kv/ ? .¹wº ?Kw/: (9)

Lemma 4.12. The maximal simplices of X are exactly the 3-simplices with vertex set
¹s; v.s/; t; v.t/º, where s; t 2 K and dtree.v.s/; v.t// D 1. In this case, we say that
.s; t/ defines a maximal simplex, denoted �.s; t/.

Proof. Because the map Z is simplicial, any simplex of X is contained in Z�1.v/
or Z�1.Œv; w�/ for some vertex v in some T˛ or some edge Œv; w� in some T˛ . The
lemma thus follows from (8) and (9).

Given a vertex s 2K , recall from Lemma 3.5 that

M.s/ D .�v.s//�1.NK1.s// � ‚
v.s/

forK1 as in Proposition 3.1 (and Lemma 3.5). Given a pair of vertices .s; t/ in K that
define a maximal simplex �.s; t/, we will write M.s; t/ DM.s/ \M.t/.

Lemma 4.13. There exists R > 0 with the following properties:

(1) For any pair of adjacent vertices s; t 2 K (i.e., defining a maximal simplex
�.s; t/), M.s; t/ is a non-empty subset of diameter at most R.

(2) Given v 2 V , we have

‚v
D

[
v.s/Dv;

dtree.v.s/;v.t//D1

M.s; t/:

(3) Fixing s, we have

M.s/ D
[

dtree.v.s/;v.t//D1

M.s; t/:

(4) The collection of all M.s; t/ is R-dense in xE.
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Proof. Item (1) follows from Proposition 3.1 (3). More precisely, the fact thatM.s; t/
is non-empty follows fromK1-coarse-surjectivity of �v.s/ � �v.t/, while boundedness
follows from the fact that said map is a quasi-isometry.

In order to show item (2), notice that

‚v
D

[
dtree.v;w/D1

‚v
\‚w :

That is, every point of ‚v is also in ‚w for some w adjacent to v. In view of this,
we conclude by noticing that if x 2 ‚v

\‚w , then x 2M.�v.x/; �w.x//. Item (3)
follows similarly.

Finally, item (4) follows from item (2) and the fact that the collection of all‚v is
coarsely dense in xE.

Next we define a graph W whose vertex set is the set of maximal simplices of X.
We would like to just connect maximal simplices when the corresponding subsets
M.s; t/ are close in xE (first bullet below); however, in order to arrange item (4) of the
definition of combinatorial HHS (and only for that reason) we need different close-
ness constants for different situations. We fix R as in Lemma 4.13, and moreover we
require R > K21 CK1 for K1 as in Proposition 3.1 and Lemma 3.5.

Given maximal simplices �.s1; t1/ and �.s2; t2/, we declare them to be connected
by an edge in W if one of the following holds:

xd.M.s1; t1/;M.s2; t2// � 10R; or

s1 D s2 and xd.M.t1/;M.t2// � 10R:
(10)

Here the xd -distances are the infimal distances between the sets in xE (as opposed to
the diameter of the union). Note that since M.s; t/ D M.t; s/, the second case also
implicitly describes a “symmetric case” with si and ti interchanged.

The following is immediate from Lemma 3.6, settingR0Dmax¹10R;NK.10R/º.

Lemma 4.14. There exists R0 � 10R so then the following holds. If s; t1; t2 2K are
vertices with s connected to both ti in X and xd.M.t1/;M.t2// � 10R, then

xd.M.s; t1/;M.s; t2// � R
0:

In particular, whenever �.s1; t1/ and �.s2; t2/ are connected in W , we have

xd.M.s1; t1/;M.s2; t2// � R
0:

Lemma 4.15. The graph W is quasi-isometric to xE, by mapping each �.s; t/ to (any
point in) M.s; t/. Moreover, the extension group � acts by simplicial automorphisms
on X, induced by the existing action on V � X.0/ and the action on K � X.0/ as in
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Proposition 3.1 (4). The resulting action on maximal simplices extends to a metrically
proper cobounded action on W .

Proof. In view of Lemma 4.14, the first part follows by combining Lemma 4.13 (4)
and Proposition 2.4 (applied to any choice of a point in each M.s; t/).

It is immediate to check that the �-action defined on the 0-skeleton of X extends
to an action on X. That the resulting action on maximal simplices of X (that is, the
0-skeleton of W ) extends to an action on W follows from the equivariance property
in Proposition 3.1 (4) and the definitions of the sets M.s/ and M.s; t/.

Moreover, the quasi-isometry W! xE described in the statement is �-equivariant,
so that the action of � on W is metrically proper and cobounded since the action of �
on xE has these properties.

The goal for the remainder of this section is to prove the following.

Theorem 4.16. The pair .X;W/ is a combinatorial HHS. Moreover, there is an
action of � on X satisfying the properties stated in Theorem 4.11.

4.3. Simplices, links, and saturations

Before giving the proof of Theorem 4.16, we begin by describing explicitly the kinds
of simplices of X that there are, explain what their links and saturations are, and
observe some useful properties.

Lemma 4.17 (Empty simplex). For the empty simplex, C.;/ D XCW is quasi-iso-
metric to yE.

Proof. We define a map Z0WXCW ! yE that extends the (restricted) simplicial map
ZWX.1/ !

F
T˛ already constructed above. To do that, we must extend over each

edge eDŒx;y� of XCW coming from the edge of W connecting �.s1; t1/ and �.s2; t2/.
Since Z.x/;Z.y/ 2 V , and xd.M.s1; t1/;M.s2; t2// � R0 (for R0 as in Lemma 4.14),
we see that d yE .v; w/ � R

0. We can then define Z0 on e to be a constant speed
parametrization of a uniformly bounded length path from Z.x/ to Z.y/. It follows
that Z0 is Lipschitz.

The union of the trees
F
T˛ is R0-dense for some R0 > 0 by [16, Lemma 3.6], so

it suffices to find a one-sided inverse to Z0, from
F
T˛ to XCW , and show that with

respect to the subspace metric from yE, it is coarsely Lipschitz. As already noted, Z
restricts to a retraction of X.1/ onto

F
T˛ �X.1/ �XCW , which is thus the required

one-sided inverse. All that remains is to show that it is coarsely Lipschitz.
According to [16, Lemma 3.8], any v 2 T˛; w 2 Tˇ are connected by a com-

binatorial path of length comparable to yd.v; w/. Such a path is the concatenation
of horizontal jumps, each of which is the xP -image in yE of a geodesic in xDz , for
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v s v

s1
s2

s3

Sat.�/Lk.�/ D Lk„.v/

Figure 7. „-type simplex: Part of the link and saturation of a 1-simplex � with vertices s; v D
v.s/. Again, vertices of a common color correspond to the same element of V .

some z 2 x†, that connects two components of @ xDz and whose interior is disjoint
from @ xDz . From that same lemma, we may assume each horizontal jump has length
uniformly bounded above and below, and thus has total number of jumps bounded in
terms of yd.v; w/. Therefore, we can reduce to the case that v; w are joined by a sin-
gle horizontal jump of bounded length. Such a horizontal jump can also be regarded
as a path in xE connecting ‚v to ‚w . Hence, in view of Lemma 4.13 (2), there are
M.s1; t1/ � ‚

v and M.s2; t2/ � ‚w within uniformly bounded distance of each
other in xE. Lemma 4.15 implies that there exists a path in W of uniformly bounded
length from �.s1; t1/ to �.s2; t2/, which can be easily turned into a path of uniformly
bounded length from v to w in XCW , as required.

There is an important type of 1-dimensional simplex, which we call a „-type
simplex, due to the following lemma. See Figure 7. Given w 2 V , set

Lk„.w/ D
[

dtree.u;w/D1

Z�1.u/ D
[

dtree.u;w/D1

¹uº ?Ku: (11)

Lemma 4.18 („-type simplex). Let � be a 1-simplex of X with vertices s; v.s/,
for s 2K . Then

Lk.�/ D Lk„.v.s// and Sat.�/ D ¹v.s/º [Kv.s/:

Moreover, C.�/ is quasi-isometric to„v.s/, via a quasi-isometry which is the identity
on V \ C.�/ and maps t to v.t/ for t 2K \ C.�/.
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Proof. It is clear from the definitions that the link of � is as described. Also, any
simplex with vertex set of the form ¹v.s/; tº for some t 2 Kv.s/ has the same link
as �. Therefore, to prove that the saturation is as described we are left to show if
a simplex �0 has the same link as �, then its vertex set is contained in the set we
described. If w 2 V is a vertex of �0, then dtree.v; w/ D 1 for all neighbors v of v.s/
in T˛.v/. This implieswD v.s/. Similarly, if t 2K is a vertex of�0, then v.t/D v.s/,
and we are done.

Let us show that the map given in the statement is coarsely Lipschitz. To do so, it
suffices to considerw¤w0 with dtree.w;v.s//D dtree.w

0; v.s//D 1 and connected by
an edge in XCW , and show that they are connected by a bounded-length path in „v .
We argue below that

xd.‚w
\‚v.s/;‚w0

\‚v.s// � R0:

Once we do that, the existence of the required bounded-length path follows directly
from Lemma 3.8.

Let us now prove the desired inequality. Notice that w; w0 cannot be connected
by an edge of X since they are both distance 1 from v.s/ in the tree T˛.v/. Hence, w
andw0 are contained respectively in maximal simplices �.t;u/ and �.t 0;u0/ connected
by an edge in W . Say, up to swapping t with u and/or t 0 with u0, that v.t/ D w and
v.t 0/ D w0. In either case of the definition of the edges of W , we have

xd.M.t/;M.t 0// � 10R:

Since M.t; s/ � ‚w
\‚v.s/ and M.t 0; s/ � ‚w0

\‚v.s/, using Lemma 4.14 we
get

xd.‚w
\‚v.s/;‚w0

\‚v.s// � xd.M.t; s/;M.t 0; s// � R0;

as we wanted.
Conversely, if w; w0 as above are joined by an edge in „v.s/ we will now show

that they are also connected by an edge in C.�/. By definition of „v.s/, we have

‚w
\‚w0

¤ ;:

By Lemma 4.13 (2), There exists t; u; t 0; u0 with v.t/ D w and v.t 0/ D w0, so that

M.t; u/ \M.t 0; u0/ ¤ ;:

In particular, xd.M.t; u/; M.t 0; u0// � 10R. This says that �.t; u/ and �.t 0; u0/ are
connected in W , and hence that w and w0 are connected in XCW , as required.

There is also an important type of 2-dimensional simplex, which we call a K-type
simplex, due to the next lemma. See Figure 8.
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v s

w

Sat.�/Lk.�/ DKw

Figure 8. K-type simplex: Part of the link and saturation of a 2-simplex � with vertices s; v D
v.s/; w (colors correspond to elements of V ).

Lemma 4.19 (K-type simplex). Let � be a 2-simplex of X with vertices s; v.s/; w,
for s 2K and w 2 V with dtree.w; v.s// D 1. Then

Lk.�/ DKw and Sat.�/ D ¹wº [ Lk„.w/
.0/:

Moreover, C.�/ is quasi-isometric to Kw , the quasi-isometry being the identity at
the level of vertices.

Proof. It is clear from the definitions that the link of � is as described. Also, any
simplex with vertex set of the form ¹t; v.t/;wº for some t 2K with dtree.v.t/;w/D 1

has the same link as �. Therefore, to prove that the saturation is as described we are
left to show if a simplex �0 has the same link as �, then its vertex set is contained
in the set we described. Given any vertex u 2 V of �0, it has to be connected to all
t 2 K with v.t/ D w, implying that either u D w or dtree.u; w/ D 1, as required for
vertices in V . Similarly, any vertex u 2K of�0 has to be connected to all t 2K with
v.t/ D w, implying dtree.v.u/; w/ D 1, and we are done.

To prove that C.�/ is naturally quasi-isometric to Kw , it suffices to show that if
u; t 2 C.�/ are connected by an edge in XCW , then they are uniformly close in Kw

and that, vice versa, if dKw .u; t/ D 1, then u; t are connected by an edge in C.�/.
First, if u; t 2 C.�/ are connected by an edge in XCW , then there exist u0; t 0 so

that xd.M.u; t 0/;M.u0; t // � R0 (see Lemma 4.14). In particular,

xd.M.u/;M.t// � R0;
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which in turn gives a uniform bound on the distance in the path metric of‚w between
M.u/ and M.t/ because the metrics xd and the path metric on �w are coarsely equiv-
alent. By Proposition 3.1 (1), we must also have a uniform bound on dKw .u; t/.

Now suppose that dKw .u; t/ D 1. We can then deduce from Proposition 3.1 (3)
that

xd.M.s0; u/;M.s0; t // � K21 CK1 � 10R

for any fixed s0 2Kv.s/ (the proposition yields the analogous upper bound in the path
metric of‚w , which is a stronger statement). Therefore u; t are connected by an edge
in XCW , whence in C.�/, as required.

The remaining simplices are not particularly interesting as their links are joins (or
points), and hence have diameter at most 2, but we will still need to verify properties
for them. We define the type of a simplex in X to be the graph isomorphism type of its
link. We describe these simplices with finite diameter links in the next lemma. Recall
the definition of Lk„.w/ in (11).

Lemma 4.20. Table 1 shows a list of all types of non-empty, non-maximal, sim-
plices � of X that are not of „-type or K-type, together with their links. In each
case, the link is a non-trivial join (or a point), and C.�/ has diameter at most 2.

In the table the simplices � have vertices u; w 2 V with dtree.u; w/ D 1 and
s; t 2K with dtree.v.s/; v.t// D 1 and dtree.v.s/; u/ D 1.

Proof. This is straightforward given the definition of X and we leave its verification
to the reader. Referring to Figure 6, and comparing with Figures 7 and 8, may be
helpful.

� Lk.�/

¹uº Ku ? Lk„.u/

¹sº ¹v.s/º ? Lk„.v.s//

¹u;wº Ku ?Kw

¹s; tº ¹v.s/; v.t/º

¹s; uº ¹v.s/º ?Ku

¹s; t; v.s/º ¹v.t/º

Table 1. Types of non-empty simplices and their links.
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The next lemma collects a few additional properties we will need. There are 9
types of non-empty simplices: maximal, „-type, K-type, and the six types listed in
Lemma 4.20.

Lemma 4.21. The following hold in X:

(a) The link of a simplex with a given type cannot be strictly contained in the link
of a simplex with the same type.

(b) For all non-maximal simplices � and �0 so that there is a simplex � with
Lk.�/ � Lk.�0/ \ Lk.�/ and diam.C.�// > 3, there exists a simplex … in
the link of�0 with Lk.�0 �…/ � Lk.�/ so that, for any� as above, we have
Lk.�/ � Lk.�0 �…/.

Proof. Part (a) follows directly from the descriptions of the simplices given in Lem-
mas 4.18, 4.19, and 4.20, and we leave this to the reader.

Before we prove (b), we suppose

Lk.�0/ \ Lk.�/ ¤ ;;

and make a few observations. First, �0 and � must project by Z to the same tree:
Z.�0/;Z.�/� T˛ for some ˛ 2 P . Next, note thatZ.Lk.�0/\ Lk.�// is contained
in the intersection of the stars in T˛ ofZ.�0/ andZ.�/. Moreover, (as in any tree) the
intersection of these two stars is contained in a single edge, or else Z.�0/ D Z.�/ D
¹wº 2 T

.0/
˛ � V is a single point. In this latter case, by (8), we have

�;�0 � ¹wº ?Kw :

Next, note that for any K-type simplex � D ¹s; v.s/; wº,

Lk.�/ DKw

by Lemma 4.19, and if Lk.�/ � Lk.�0/\ Lk.�/, then w is in the intersection of the
stars of Z.�0/ and Z.�/. For a „-type simplex � D ¹s; v.s/º,

Lk.�/ D Lk„.v.s//

by Lemma 4.18, and together with Lemma 4.20 and the previous paragraph, we see
that

Lk.�/ � Lk.�0/ \ Lk.�/

if and only if Z.�0/ D Z.�/ D ¹v.s/º in T˛ .
With these observations in hand, we proceed to the proof of (b), which divides

into two cases.
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Case 1. There is a „-type simplex � D ¹s; v.s/º with Lk.�/ � Lk.�0/ \ Lk.�/.
In this situation, Z.�0/ D Z.�/ D ¹v.s/º, and thus

�;�0 � ¹v.s/º ?Kv.s/:

From Lemmas 4.18 and 4.20, we see that Lk.�0/ \ Lk.�/ must be equal to one of
Lk.�/, Lk.¹sº/, or Lk.¹v.s/º/. Inspection of these links shows that Lk.�/ is the only
link of a „-type simplex contained in it. First suppose that Lk.�0/ \ Lk.�/ has the
form Lk.�/ or Lk.¹sº/. In this situation, we easily find… � Lk.�0/ so that Lk.�/D
Lk.�0 ? …/. Furthermore, for any K-type simplex link Kw in the intersection, we
must have

Kw
� Lk.�/ D Lk.�0 ? …/:

Therefore, the link of any „-or K-type simplex contained in Lk.�0/ \ Lk.�/ must
be contained in Lk.�/ D Lk.�0 ? …/, as required. Now suppose instead that

Lk.�0/ \ Lk.�/ D Lk.¹v.s/º/:

By Lemma 4.20, we see that � D �0 D ¹v.s/º. In this case, setting … D ; trivially
completes the proof since then

Lk.�0/ \ Lk.�/ D Lk.�0/ D Lk.�0 ? …/:

Case 2. No link of a „-type simplex is contained in Lk.�0/ \ Lk.�/.
From the observations above, Z.�/ and Z.�0/ do not consist of the same single

point, and hence the stars of Z.�/ and Z.�0/ intersect in either a point or an edge
in T˛ . Since Z.Lk.�0/ \ Lk.�// is contained in the intersection of these stars, there
are at most two K-type simplices whose links are contained in Lk.�0/ \ Lk.�/. If
there are two K-type simplices �;�0 with Kw D Lk.�/ and Ku D Lk.�0/ con-
tained in Lk.�0/ \ Lk.�/, then observe that

Ku;Kw
� Lk.¹u;wº/ DKu ?Kw

� Lk.�0/ \ Lk.�/:

By inspection of the possible links in Lemmas 4.18, 4.19, and 4.20, it must be that�0

is either ¹uº, ¹wº, or ¹u; wº, and so setting … to be ¹wº, ¹uº, or ;, respectively, we
are done. On the other hand, if there is exactly one K-type simplex � with

Kw
D Lk.�/ � Lk.�0/ \ Lk.�/;

then again inspecting all possible situations, we can find … � Lk.�0/ with

Kw
D Lk.�/ D Lk.�0 ? …/;

and again we are done with this case. This completes the proof.
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Lemma 4.22. There exists L � 1 so that for every non-maximal simplex, there is
an .L; L/-coarsely Lipschitz retraction r�W Y� ! P.C.�//. In particular, C.�/ is
uniformly quasi-isometrically embedded in Y�.

Proof. By Lemma 4.20, we only have to consider simplices of „-and K-type.
Consider � D ¹s; vº with v D v.s/ of „-type first. Recall from Lemma 4.18

that „v naturally includes into C.�/ by a quasi-isometry. Here we will use make
use of the map �v , whose relevant properties for our current purpose are stated in
Proposition 3.19. For a vertex u 2 V X Sat.�/ (so, u ¤ v), we define

r�.u/ D �
v.‚u/:

For t 2K X Sat.�/, we define

r�.t/ D �
v.‚v.t//:

Notice that the sets r�.u/ are uniformly bounded by Proposition 3.19 (and Lem-
ma 4.18). Also, r� is coarsely the identity on the vertices of Lk.�/ in V by equa-
tion (7) and Proposition 3.19 (2b). To check that r� is coarsely Lipschitz it suffices to
consider XCW -adjacent vertices of V . Notice that verticesw;w0 2V that are adjacent
in XCW have corresponding ‚w ;‚w0 within 10R of each other in xE. Indeed, ‚v

and ‚w actually intersect if w;w0 are adjacent in X, and they contain subsets M.�/
within 10R of each other ifw;w0 are contained in W -adjacent maximal simplices (this
is true regardless of which case of the definition (10) for the edges of W applies). The
fact that r� is coarsely Lipschitz now follows from, Proposition 3.19 (1), which says
that �v is coarsely Lipschitz on xE.

Next, consider � D ¹s; v.s/; wº of K-type. For a vertex u 2 V X Sat.�/ (so,
dtree.u;w/ � 2), define

r�.u/ D ƒ
w.‚u/:

For a vertex t 2K X Sat.�/, define

r�.t/ D ƒ
w.M.t//:

Notice that, by definition of M.t/, if t 2 Kw , then r�.t/ lies within Hausdorff dis-
tance K1 of t . Also, since dtree.u; w/ � 2, Proposition 3.19 (2a) ensures that the
diameter of ƒw.‚u/ is bounded. Since M.t/ � ‚v.t/, we see that all the sets in the
image of r� are bounded, and also we see that in order to prove that r� is Lipschitz it
suffices to consider vertices of K . But vertices s; t 2K that are adjacent in XCW have
corresponding M.s/;M.t/ within 10R of each other in xE, so the conclusion follows
from Proposition 3.19 (1), which states that ƒw is coarsely Lipschitz on xE.
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4.4. Final proof

We now have all the tools necessary for the proof of Theorem 4.16.

Proof of Theorem 4.16. We must verify each of the conditions from Definition 4.8.
Item (1) (bound on length of Ď-chains) follows from Lemma 4.21 (a), which

implies that any chain Lk.�1/ ¨ � � � has length bounded by the number of possible
types, which is 9.

Let us now discuss item (2) of the definition. The descriptions of the C.�/ from
Lemmas 4.17, 4.18, 4.19, 4.20 yields that all C.�/ are hyperbolic, since each of
them is either bounded or uniformly quasi-isometric to one of yE (which is hyperbolic
by Theorem 2.1), some „v (which is hyperbolic by Lemma 3.10), or R. Moreover,
any C.�/ is (uniformly) quasi-isometrically embedded in Y� by Lemma 4.22.

Item (3) of the definition (common nesting) is precisely Lemma 4.21 (b).
Finally, we show item (4) of the definition (fullness of links), which we recall for

the convenience of the reader:

• If v;w are distinct non-adjacent vertices of Lk.�/, for some simplex� of X, con-
tained in W -adjacent maximal simplices, then they are contained in W -adjacent
simplices of the form � ?�0.

It suffices to consider simplices � of „-and K-type. Indeed, in all other cases
(see Lemma 4.20), the vertices v;w under consideration are contained in the link of a
simplex �0 containing � where �0 is of„-or K-type (as can be seen by enlarging �
until its link is no longer a join; v and w are not X-adjacent so they are contained in
the same “side” of any join structure). Hence, once we deal with those cases, we know
that there are suitable maximal simplices containing the larger simplex, whence �.

Consider first a simplex � of K-type with vertices s; v.s/; w. Consider dis-
tinct vertices t1; t2 (necessarily in K) of Lk.�/, and suppose that there are vertices
s1; s2 2K so that the maximal simplices �.s1; t1/ and �.s2; t2/ are connected in W .
There are two possibilities:

• xd.M.s1; t1/; M.s2; t2// � 10R. In this case, we have xd.M.t1/; M.t2// � 10R.
In particular, in view of the second bullet in the definition of the edges of W , we
have that t1; t2 are contained, respectively, in the W -connected maximal simplices
� � t1 D �.s; t1/ and � � t2 D �.s; t2/.

• s1 D s2 and xd.M.t1/;M.t2// � 10R (notice that t1 ¤ t2 so that the “symmetric”
case cannot occur). Again, we reach the same conclusion as above.

We can now consider a simplex � of „-type with vertices s; v.s/. Consider
vertices x1; x2 of Lk.�/ that are not X-adjacent but are contained in W -adjacent
maximal simplices. Furthermore, we can assume that x1; x2 are not in the link of a
simplex of K-type (the case we just dealt with) which contains �, since in that case
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we already know that there are suitable maximal simplices containing the larger sim-
plex, whence �. Then, using the structure of Lk.�/, we see that there are vertices
si ; ti 2K so that:

• xi 2 ¹ti ; v.ti /º,

• ti and v.ti / all belong to Lk.�/, and

• �.s1; t1/ and �.s2; t2/ are connected in W .

In turn, the last bullet splits into two cases:

• xd.M.s1; t1/; M.s2; t2// � 10R. In this case we have xd.M.t1/; M.t2// � 10R,
so that x1; x2 are contained, respectively, in the W -connected maximal simplices
� � ¹t1; v.t1/º D �.s; t1/ and � � ¹t2; v.t2/º D �.s; t2/, so this case is fine.

• s1 D s2 and xd.M.t1/;M.t2// � 10R. But again we reach the same conclusion as
before.

We now also have to check the existence of an action of � with the required
properties. The action is constructed in Lemma 4.15, where all properties are checked
except finiteness of the number of orbits of links of X. The finitely many possible
types of links are listed in Lemmas 4.17–4.20, and for each type of simplex there are
only finitely many orbits, so we are done.

5. Quasi-isometric rigidity

In this section, using the HHS structure, we prove a strong form of rigidity for the
group � and the model space xE. Recall that xE is defined via a particular truncation xD
of the Teichmüller disk D obtained by removing 1-separated horoballs. We say that
such a truncation xE is an allowable truncation of E if � acts by isometries on it with
cocompact quotient. Write Isom.�/ and QI.�/ for the isometry group and quasi-
isometry group, respectively, of a metric space �. For xE, we write Isomfib. xE/ �

Isom. xE/ for the subgroup of isometries that map fibers to fibers.

Theorem 1.7. There is an allowable truncation xE of E such that the natural homo-
morphisms Isomfib. xE/ ! Isom. xE/ ! QI. xE/ Š QI.�/ are all isomorphisms, and
� � Isom. xE/ Š QI.�/ has finite index.

The proof is divided up into several steps which we outline here before getting into
the details. The first step is to use the HHS structure to identify certain quasi-flats in xE,
and prove that they are coarsely preserved by a quasi-isometry. The maximal quasi-
flats are encoded by the strip bundles in xE, and using the preservation of quasi-flats,
we show that a quasi-isometry further preserves strip bundles, and even sends all strip
bundles for strips in any fixed direction to strip bundles in some other fixed direction.
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From there we deduce that a quasi-isometry sends fibers EX within a bounded dis-
tance of some other fibersEY , and in fact induces a quasi-isometry between the fibers.
Fixing attention onE0 and further appealing to the structure of strip bundles, we show
that a self quasi-isometry of xE induces a special type of quasi-isometry from E0 to
itself sending strips in a fixed direction within a uniformly bounded distance of strips
in some other fixed direction. This quasi-isometry is promoted to a piecewise affine
biLipschitz map from E0 to itself, which we then show is in fact affine. This produces
a homomorphism to the full affine group of E0, QI. xE/! Aff.E0/. Given an affine
homeomorphism of E0, we construct an explicit fiber preserving isometry associated
to it, which via the inclusions Isomfib. xE/ ! QI. xE/ serves as a one-sided inverse.
Finally, we prove that the homomorphism QI. xE/! Aff.E0/ is injective, hence the
homomorphisms Isomfib. xE/! Isom. xE/! QI. xE/! Aff.E0/ are all isomorphisms.
The fact that � has finite index in Isomfib. xE/, and hence in Isom. xE/, is straightfor-
ward using the cocompactness of the action of � and the singular structure.

5.1. HHS structure and quasi-flats

Denote by S0 the set V � ¹0; 1º. We denote the element .v; 0/ by vqt (for “quasi-
tree”) and .v; 1/ by vql (for “quasi-line”).

We denote by F the set of all strip bundles of xE, that is, subbundles with fiber
a strip and base the horocycle corresponding to the direction of the strip. (Roughly,
these are the flats of the peripheral graph manifolds.)

Proposition 5.1 (Properties of the HHS structure). The HHS structure . xE;S/ on xE
coming from Theorem 4.16 has the following properties, for some K � 1:

(1) the set of non-Ď-maximal Y 2S with diam.C.Y //� 3 is in bijection with S0.
Under said bijection:

(2) C.vqt / is .K; K/-quasi-isometric to a quasi-tree with at least two points at
infinity, and C.vql/ is .K;K/-quasi-isometric to a line;

(3) for all v 2 V , we have vqt ? vql ;

(4) for all adjacent v;w 2 V , we have wql ? vql and wql Ď vqt ;

(5) all pairs of elements of S0 that do not fall into the aforementioned cases are
transverse;

(6) for each adjacent v; w 2 V there is F 2 F so �vql .F / and �wql .F / are
K-coarsely dense, and �Y .F / has diameter at most K for all Y ¤ vql ; wql .

Proof. The second paragraph of the proof of Theorem 4.16 implies C.vqt / is quasi-
isometric to the quasi-tree „v (with at least two points at infinity by Lemma 3.10)
and C.vql/ is quasi-isometric to the quasi-line Kv , and that these are the only non-
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maximal elements of diameter at least 3. This proves (1) and (2). In view of the
combinatorial description of orthogonality and nesting from Definition 4.9, proper-
ties (3)–(5) boil down to combinatorial properties of X that are straightforward to
check. For example, regarding property (3) note that two (equivalence classes of)
simplices are orthogonal if their links form a join. The links of the simplices corre-
sponding to vqt and vql are Lk„.v/ and Kv (see Lemmas 4.18 and 4.19), which
indeed form a join.

Regarding property (6), first of all the projections in the HHS structure on xE are
obtained composing the quasi-isometry xE ! W from Lemma 4.15 and the projec-
tions defined in Definition 4.10 (roughly, those are closest-point projections in the
complement of saturations).

The required strip bundle is the intersection ‚v
\‚w , which under the quasi-

isometry of Lemma 4.15 corresponds to the set of all maximal simplices of W of
the form �.s; t/ for s 2 Kv , t 2 Kw . In view of the description of the �Y from
Definition 4.10, the coarse density claim follows since the union of the simplices
described above contains the links of the simplices corresponding to vql and wql ,
which are Kv and Kw .

Regarding the boundedness claim, it can be checked case-by-case that the set of
simplices described above gives a bounded set of Y� for Œ��¤ vql ;wql (for example,
note that said set is bounded if the saturation of � does not intersect Kv [Kw , or if
it does not contain v or w). This implies boundedness of the projections since the pro-
jections are coarsely Lipschitz; this follows from Theorem 4.16 since the projection
maps of an HHS are required to be coarsely Lipschitz.

From now on we identify S0 with the set of all Y 2 S with diam.C.Y // � 3 as
in Proposition 5.1. Notice that the maximal number of pairwise orthogonal elements
of S0 is 2. Therefore, a complete support set as in [9, Definition 5.1] is just a pair of
orthogonal elements of S0.

Let H be the set of pairs .Y; p/, where Y 2 S and p 2 @C.Y / with Y D vql

for some v 2 V . We say that two such pairs .Y; p/ and .W; q/ are orthogonal if Y
and W are. Any element � D .Y; p/ 2 H comes with a quasi-geodesic ray h� in xE,
as in [9, Definition 5.3], so that �Y ı h� is a quasi-geodesic in C.Y / and �W .h� / is
bounded for all W ¤ Y .

We recall that given subsetsA andB of a metric spaceX , we say that the subset C
ofX is the coarse intersection ofA andB if for every sufficiently largeR we have that
NR.A/\NR.B/ lies within finite Hausdorff distance of C . If the coarse intersection
of two subsets exists, then it is well defined up to finite Hausdorff distance.

Lemma 5.2. Let �W xE! xE be a quasi-isometry. Then there is a bijection �H WH!H

preserving orthogonality, and so that dHaus.�.h� /; h�H .�// <1.
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Proof. Let H 0 be the set of pairs .Y; p/ where Y 2 S and p 2 @C.Y /, without the
restriction on Y .

The lemma with H 0 replacing H would follow directly from [9, Theorem 5.7],
except that the HHS structure on xE does not satisfy one of the 3 required assump-
tions, namely Assumption 2 (while it does satisfy Assumption 1 by parts (1) and (2)
of Proposition 5.1, and it also satisfies Assumption 3 since there are no 3 pairwise
orthogonal elements of S0, by parts (3)–(5) of Proposition 5.1).

Inspecting the proof of [9, Theorem 5.7], we see that Assumption 2 is used in two
places.

The first one is to define the map �H on a certain pair � D .Y; p/ 2 H 0. The
argument applies verbatim if Y satisfies Assumption 2, that is, if and only if Y is the
intersection of two complete support sets. This is the case if Y D vql for some v 2H ,
that is, if � 2H . Therefore, one can use that argument to define a map �H WH !H 0.
What is more, the image of �H needs to be contained in H . This can be seen from
the fact that h�H .�/ for � 2 H arises as a coarse intersection of standard orthants,
which are, essentially, products of rays h� , see [9, Definition 4.1] for the precise
definition. Notice that [9, Lemma 4.11] says, roughly, that coarse intersections of
standard orthants are the expected sub-products. Hence, the failure of Assumption 2
for Y D vqt implies that h.Y;p/ cannot be a coarse intersection of standard orthants,
and therefore �H .�/ for � 2 H also needs to lie in H .

The second place where Assumption 2 is mentioned in [9, Theorem 5.7] is the
proof that �H preserves orthogonality. There the assumption is used to say that cer-
tain quasi-geodesic rays are of the form h� . Such quasi-geodesic rays arise as coarse
intersections of standard orthants, so, as mentioned above, they need to be of the
form h� for � 2 H , hence Assumption 2 is not actually needed there.

Thus, the arguments in the proof of [9, Theorem 5.7] give the lemma.

Lemma 5.3. For every K there exists C so that the following holds. Let �W xE ! xE

be a .K;K/-quasi-isometry. Then there is a bijection �F WF ! F , so that

dHaus.�.F /; �F .F // � C

for all F 2 F .

Proof. Let p˙ be the two points at infinity of C.vql/ for some v 2 V . We claim that
there exists w 2 V so that, for q˙ the points at infinity of C.wql/, we have

�H ..v
ql ; p˙// D .wql ; q˙/;

up to relabeling. We use that �H preserves orthogonality to show this. Let u1; u2 2 V

be distinct and adjacent to v, and let r˙1 ; r
˙
2 be the points at infinity of C.u

ql
1 /, C.u

ql
2 /.

Then .vql ; p˙/ are the only elements of H that are orthogonal to all the .uqli ; r
˙
i /.
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Since �H preserves orthogonality, we see that �H ..v
ql ; p˙// are both orthogonal to

the same 4 distinct elements of H with the property that no pair of them is orthogonal.
This is easily seen to imply that �H ..v

ql ; p˙// must be of the form .wql ; q˙/, since
the said 4 elements need to be associated to at least 2 distinct vertices of V . This
shows the claim.

In view of the claim, we see that [9, Lemma 5.9] applies. (We note that Assump-
tion 2 in the said lemma is only needed to have the map from [9, Theorem 5.7], but
our map from Lemma 5.2 has the same defining properties, just with a smaller domain
and range.)

The standard flats in [9, Lemma 5.9] coarsely coincide with the elements of F in
view of Proposition 5.1 (6) (compare with [9, Definition 4.1]) so the lemma follows.

Denote by � the collection of all strips in E0, and for A 2 � denote by ˛.A/ 2 P

the direction of A. Similarly, for F 2 F we denote ˛.F / 2 P the direction of the
strip defining F .

Proposition 5.4. Given K � 1, there exists C � 0 so that if �W xE ! xE is a .K;K/-
quasi-isometry, then for all X 2 xD, there exists Y 2 xD so that the Hausdorff distance
between �.EX / andEY is at mostC . In particular, dHaus.E0;�.E0// <1. Moreover,
there are bijections �P WP ! P and �� W � ! � so that

(1) dHaus.�.@B˛/; @B�P .˛// � C for each ˛ 2 P ;

(2) ˛.�� .A// D �P .˛.A// and dHaus.�.A/; �� .A// <1 for all A 2 � ,

Proof. First, note that fibers are quantitatively coarse intersections of the sets @B˛ , in
the sense that exists a function f WR! R and t0 � 0 such that

• for any X 2 xD and any t � t0 there are two distinct @B˛ whose t -neighborhoods
intersect in a set within Hausdorff distance f .t/ of EX ;

• for t � t0, if the t -neighborhoods of two distinct @B˛ intersect, then this intersec-
tion lies within Hausdorff distance f .t/ of a fiber.

This follows via the bundle-map � W xE ! xD and the corresponding relationship bet-
ween neighborhoods of distinct horocycles @B˛ in xD.

We next make three preliminary observations. Firstly, for each ˛ 2 P the set @B˛

is the union of all F 2 F with ˛.F / D ˛. Secondly, if F1; F2 2 F are such that
˛.F1/ ¤ ˛.F2/, then the coarse intersection of F1 and F2 is bounded. Indeed, Fi is
contained in @B˛.Fi /, and the coarse intersection of these @B˛.Fi / is some (or really,
any) fiberEX . Since the coarse intersection of Fi withEX is a strip in the correspond-
ing direction, and strips in different directions have bounded coarse intersection, the
claim follows. Thirdly, observe that F1; F2 2 F have ˛.F1/ D ˛.F2/ if and only if
there is a chain of elements in F from F1 to F2 so that consecutive elements have
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unbounded coarse intersection. The “if” part follows from the previous observation,
while the “only if” follows from the fact that elements of F corresponding to adjacent
edges of some T˛ have unbounded coarse intersection.

In view of all this and Lemma 5.3, we see that for each ˛ there exists a (necessarily
unique) �P .˛/ 2 P so that �.@B˛/ and @B�P .˛/ have finite Hausdorff distance. In
fact, the distance is uniformly bounded by the constant C , depending only on K,
coming from Lemma 5.3. This is how we define �P .

Now, for anyX 2 xD, we may choose ˛1;˛2 2P so that the fiberEX has Hausdorff
distance at most f .t0/ from the intersection of the t0-neighborhoods of @B˛i . There-
fore, there is some uniform t 00 � t0, again depending only on K, such that �.EX /
has Hausdorff distance at most t 00 from the intersection of the t 00-neighborhoods of
@B�P .˛i /; furthermore, as mentioned above, this intersection of t 00-neighborhoods has
Hausdorff distance at most f .t 00/ to some fiber EY , as claimed.

Finally, we define �� via the bijection F $ � between strip bundles and strips
in E0. That is, if A 2 � corresponds to F 2 F , then �� .A/ is the strip corresponding
to �F .F /. Since A is the coarse intersection of F with E0, the desired properties
for �� then follow from the facts that ˛�F .F /D �P .˛.F // and that �F .F / lies within
finite Hausdorff distance of �.F /.

5.2. From QI. xE/ to QI.E0/

The next step is to construct a homomorphism QI. xE/ ! QI.E0/ by associating a
quasi-isometry ofE0 to each quasi-isometry of xE (see Lemma 5.7). This step requires
some preliminaries which we now explain.

To distinguish between two relevant notions of properness, we will call a map
f WX ! Y between metric spaces topologically proper if it is continuous and preim-
ages of compact sets are compact, and metrically proper if there exist diverging func-
tions ��; �C W R�0! R�0 (which we will call properness functions) such that for all
x; y 2 X , we have

��.dX .x; y// � dY .f .x/; f .y// � �C.dX .x; y//:

(Both types of maps are just referred to as “proper” in the appropriate contexts, but
neither notion implies the other.)

For R > 0 and X 2 xD, we endow NR.EX / with the restriction of the metric
of xE, while EX is endowed with its path metric. Then the restriction of fX W xE ! EX

to NR.EX / is metrically proper. Indeed, fX is topologically proper and equivariant
with respect to a group acting cocompactly. Note that the properness functions here
can be taken independently of the fiber X (once we fix R) because there is also a
cocompact action on xD. We also note the following lemma.
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Lemma 5.5. A metrically proper coarsely surjective map between geodesic metric
spaces is a quasi-isometry. Moreover, the quasi-isometry constants depend only on
the properness functions and the coarse surjectivity constant.

This follows from standard arguments. First, a metrically proper map from a
geodesic metric space is coarsely Lipschitz (the proof involves subdividing geodesics
into segments of length at most 1, each of which has bounded image). Also, coarse
surjectivity allows one to construct a quasi-inverse of the map, which is furthermore
metrically proper. As above, the quasi-inverse is coarsely Lipschitz, and we conclude
since a coarsely Lipschitz map with a coarsely Lipschitz quasi-inverse is a quasi-
isometry.

Given any quasi-isometry �W xE ! xE and X 2 xD, define �X� WEX ! EX to be

�X� D fX ı �jEX . In the case of the base fiber X D X0 we denote this �� D �
X0
� .

When � is understood, we also write �X D �X� and � D �� .

Lemma 5.6. For any .K;K/-quasi-isometry �W xE ! xE and X 2 xD, the map

�X� WEX ! EX

is a .K 0; K 0/-quasi-isometry, where K 0 depends only on K and dHaus.EX ; �.EX //.
Furthermore, for any A 2 � ,

dHaus.�
X
� .A/; �� .A// <1:

Proof. First note that the restriction of � to EX is metrically proper, since the path
metric on EX and the restricted metric from xE are coarsely equivalent (that is, the
identity on EX is a metrically proper map between these metric spaces). Next let
RD dHaus.EX ;�.EX //, which is finite by Proposition 5.4, and note that the restriction

fX jNR.EX /WNR.EX /! EX

is also metrically proper. Therefore, the composition

�X� D .fX jNR.EX // ı .�jEX /

is metrically proper and, moreover, the properness functions depend only onK;R and
not on the fiber EX .

By [33, Theorem 3.8] and the fact that EX is uniformly quasi-isometric to H2,
any metrically proper map of EX to itself is coarsely surjective and, moreover, the
coarse surjectivity constant depends only on the properness functions. Therefore �X�
is coarsely surjective and a uniform quasi-isometry by Lemma 5.5.

Regarding the claim about A, this follows from Proposition 5.4 (2) and the fact
that fX moves each point of �.A/ � NR.EX / at most R away.
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Lemma 5.7. The assignment � 7! �� , for any quasi-isometry �W xE ! xE, gives a
well-defined homomorphism A0WQI. xE/! QI.E0/.

Proof. Given any quasi-isometry �W xE ! xE and x 2 E0, we have

d.�.x/; ��.x// D d.�.x/; f0.�.x// � dHaus.�.E0/; E0/

The right-hand side is finite by Proposition 5.4, so the left-hand side is bounded,
independent of x. From this, the triangle inequality, and the uniform metric properness
of the inclusion of E0 into xE, it easily follows that if � and �0 are bounded distance,
then so are �� and ��0 . Therefore the assignment � 7! �� descends to a well-defined
function A0WQI. xE/! QI.E0/.

To see that A0 is a homomorphism, suppose �; �0 are .K; K/-quasi-isometries
of xE. Then from the inequality above, for all x 2 E0, we have

d.�0 ı �.x/; �0 ı ��.x// � Kd.�.x/; ��.x//CK � KdHaus.�.E0/; E0/CK:

The left-hand side is thus uniformly bounded, independent of x. From this, the triangle
inequality, and Proposition 5.4, it follows that

dHaus.�
0
ı �.E0/; E0/ and dHaus.�

0
ı ��.E0/; E0/

are bounded by some constant r > 0. Then for all x 2 E0,

d.��0ı�.x/; ��0 ı ��.x// D d.f0.�
0
ı �.x//; f0.�

0
ı ��.x///

� erd.�0 ı �.x/; �0 ı ��.x//:

Combining this with the previous inequality, we see that the quantity on the right, and
hence the left, is uniformly bounded above, independent of x. Therefore, ��0ı� and
��0 ı �� are bounded distance apart and A0 is a homomorphism.

5.3. From quasi-isometries to affine homeomorphisms

The flat metric q on E0 determines an associated affine group Aff.E0/, and we
observe that if � 2 � is an element of the extension group (which is an isometry
of xE, and so also a quasi-isometry), we have �� 2 Aff.E0/. The next step in the proof
of rigidity is the following.

Proposition 5.8. For any quasi-isometry �W xE ! xE, the quasi-isometry �� is uni-
formly close to a unique element �a� 2 Aff.E0/.

The proof of the proposition will take place over the remainder of this subsection.
Before getting to the proof, however, we note a useful corollary. Two quasi-isometries
�1; �2 that are a bounded distance apart have ��1 and ��2 a bounded distance apart,
and so by the uniqueness �a�1 D �

a
�2

. Thus we have the following.
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Figure 9. The surface from Figure 2 with a triangulation t on the left. The edges of t consist of
all saddle connections in the horizontal direction (blue) together with some saddle connections
(green), each contained in horizontal cylinder. A piece of the lifted triangulation zt in the univer-
sal cover.

Corollary 5.9. The map Œ�� 7! �a� defines a homomorphism AWQI. xE/! Aff.E0/.
Moreover, the homomorphism A0WQI. xE/! QI.E0/ from Lemma 5.7 factors as the
composition of A with the natural inclusion Aff.E0/! QI.E0/.

Fix a triangulation t of X0 so that the vertex set is the set of cone points and all
triangles are Euclidean triangles (that is, they are images of triangles by maps that are
locally isometric and injective on the interior; see, e.g., [16, Lemma 3.4]). Moreover,
we assume that all saddle connections in some direction ˛0 appear as edges of the
triangulation; see Figure 9. Lift t to a triangulation zt of E0. By assumption, all saddle
connections in E0 in direction ˛0 are edges of zt, and the complement of the union of
this subset is a union of all (interiors of) strips in direction ˛0.

Lemma 5.10. Given a quasi-isometry �, there is a biLipschitz homeomorphism

�a� WE0 ! E0

a bounded distance from �� so that �a� restricts to an affine map on each triangle of zt.
Moreover, if an edge ı of zt has direction ˛ 2 P , then �a�.ı/ has direction �P .˛/.

We will later prove that �a� is in fact globally affine, justifying the notation.

Proof. Given � D �� WE0! E0, let @�WS11! S11 be the restriction of the extension
to the Gromov boundary S11 of E0. (Recall that, since the flat metric .X0; q/ on S
is biLipschitz to a hyperbolic metric, its universal cover E0 is quasi-isometric to the
standard hyperbolic plane and is, in particular, Gromov hyperbolic.) The space G of
(unordered) pairs of distinct points in S11 is precisely the space of endpoint-pairs at
infinity of unoriented biinfinite geodesics (up to the equivalence relation of having
finite Hausdorff distance). The map @� induces a map @��WG ! G .
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Let G � � G be the closure of the set of endpoint-pairs at infinity of non-singular
geodesics (i.e., geodesics that miss every cone point). Observe that all geodesics in
a given strip have the same pair of endpoints, and any geodesic with that pair of
endpoints is contained in the strip. Given a strip, we are therefore justified in referring
to the pair of endpoints of the strip.

It follows from the description of geodesics with endpoints in G � (see [4, Proposi-
tion 2.4]) together with the Veech Dichotomy (see, e.g., [46]), that for any ¹�; �º2G �,
either ¹�; �º are the endpoints of a strip, or endpoints of a geodesic meeting at most
one cone point.

According to Proposition 5.4, for any strip A 2 � , the strip �� .A/ has finite
Hausdorff distance to �.A/, and hence it also has finite Hausdorff distance to �.A/.
Since �� is a bijection, this means that the homeomorphism @�� sends the dense
subset of G � consisting of endpoint of strips onto itself, hence ��.G �/ D G �. From
this and [4, Proposition 4.1] (see also [17, Proposition 11]), it follows that there is a
bijection

�†0 W†0 ! †0

from the set of cone points †0 of E0 to itself with the following property. If 
 � E0
is a geodesic or strip containing x 2 †0 with endpoints ¹�; �º 2 G �, then @��.¹�; �º/
are the endpoints of a geodesic containing �†0.x/. Given x 2 †0 consider any two
geodesics 
1 and 
2 with endpoints in G � (not necessarily contained in strips) passing
through x making an angle at least �=2with each other. We note that �.x/ is contained
in �.
1/ and �.
2/, and is thus some uniform distance r > 0 to both of their geodesic
representatives. Since 
1 and 
2 meet at angle at least �=2, the r-neighborhoods of the
geodesic representatives of �.
1/ and �.
2/ intersect in a uniformly bounded diam-
eter set, which contains �†0.x/. Therefore, �†0.x/ is uniformly close to �.x/, for
all x 2 †0.

From the properties of �†0 described above, we see that if x 2 †0 is contained
in a strip A, then �†0.x/ is contained in the strip �� .A/. For any saddle connection ı
in some direction ˛ 2 P between a pair of points x; y 2 †0, there is a unique pair of
strips A;A0, also in direction ˛, that contain ı; see Figure 10. Since �†0.x/; �†0.y/
are contained in �� .A/ and �� .A0/, it follows that there is a unique saddle connection
with endpoints �†0.x/; �†0.y/. For any strip A the saddle connections whose union
makes up one of its boundary components is determined by a collection of strips meet-
ingA in the given saddle connections. These saddle connections are ordered along this
side and thus so are the corresponding strips : : : ; A�1; A0; A1; : : : The endpoints of
the strip A and strips An appear in a particular order; see Figure 10. Considering the
cyclic ordering of the endpoints of these strips (and those of A) on S11, and the fact
that @� is a homeomorphism, it follows that �†0 maps the ordered set of cone points
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A0

A

A�1 A1ı

x y

Figure 10. StripsA andA0 determine the saddle connection ı connecting points x;y in the uni-
versal cover. The ordered set of saddle connections along one side of the strip A are determined
by an ordered set of strips : : : ; A�1; A0; A1; : : : ; and the endpoints of all of these strips have a
cyclic ordering around S11 as indicated.

along each boundary component of the strip A by an order preserving (or reversing)
bijection to the ordered set of cone points along the boundary components of �� .A/.

We can now extend the map �†0 to a map �a� WE0 ! E0 using zt as follows. First,
recall that any edge of zt is a saddle connection ı connecting two points x; y 2 †0. By
the previous paragraph, there is a saddle connection ı0 connecting �†0.x/ and �†0.y/,
and we define �a� on ı so that it maps ı by an affine map to ı0 extending �†0 on the
endpoints. This defines �a� on the 1-skeleton, zt1, and since �†0 is a bounded distance
from �j†0 , it follows that �a� jzt1 is a bounded distance from �jzt1 .

By our assumptions on zt, there is a subset of the edges of zt whose union is pre-
cisely the union of boundaries of all strips in direction ˛0. The order preserving (or
reversing) property described above for the cone points along the boundary of a strip,
together with Proposition 5.4, implies that for any boundary component of any stripA
in direction ˛0, �a� restricted to its boundary components is a homeomorphism onto
the boundary components of �� .A/. Furthermore, since the sides of any triangle of zt
are contained in such a strip A, the �a�-image of the sides are contained in �� .A/. We
can now extend �a� over the triangles by the unique affine map extending the map on
their sides.

Since disjoint strips map to disjoint strips, the map �a� is a homeomorphism. By
construction, any edge in direction ˛ is sent to an edge in direction �P .˛/. Since zt
projects to t, there are only finitely many directions that the sides of a triangle can
lie in and so finitely many isometry types of triangles. Each of these finitely many
isometry types maps by an affine map to only finitely many types of triangles in
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the image (because the direction of the images of sides are determined by �P ), and
therefore these affine maps are uniformly biLipschitz. Therefore, �a� is biLipschitz,
completing the proof.

To show that �a� is affine, we analyze the effect of using it to conjugate the action
of �1S on E0.

Lemma 5.11. The action of �1S on E0 obtained by conjugating the isometric action
by �a� is again an isometric action.

Before proving the lemma, we use it to prove the proposition.

Proof of Proposition 5.8. By Lemma 5.11, ƒ D �a��1S.�
a
�/
�1 acts by isometries,

and �a� descends to a homeomorphism �a� WS !E0=ƒ and is biLipschitz with respect
to descent to S and E0=ƒ of q. Since �a� and � are a bounded distance, they have the
same boundary maps. Since @.�a�/� D @�� maps G � to G �, the Current Support The-
orem of [17] (and its proof) implies that the descent of �a� W .S; q/! .E0=ƒ; q/ is
affine. Therefore, �a� is an affine map which is a bounded distance from � D �� , as
required.

Uniqueness follows from the fact that no two distinct affine maps are a bounded
distance apart.

Proof of Lemma 5.11. We need to show that for all g 2 �1S , the map

�a� ı g ı .�
a
�/
�1
WE0 ! E0

is an isometry. For this, fix a triangle � of zt and consider the restriction to �a�.�/. Let
˛1; ˛2; ˛3 2 P be the directions of the sides. Setting ˛0i D �P .˛i /, for i D 1; 2; 3,
Lemma 5.10 implies that the directions of the sides of �a�.�/ are ˛01; ˛

0
2; ˛
0
3. The action

of �1S on E0 is by isometries, but it also preserves parallelism (i.e., each element
induces the identity on P1.q/). Therefore, for any g 2 �1S , the directions of the
sides of g.�/ are also ˛1; ˛2; ˛3, and by Lemma 5.10 again, it follows that the sides
of �a�.g.�// are ˛01; ˛

0
2; ˛
0
3.

For any g 2 �1S , since �a� is affine on � , the composition �a� ı g ı .�
a
�/
�1 is

also affine on �a�.�/. On the other hand, it also preserves the directions of the sides,
˛01; ˛

0
2; ˛
0
3. Therefore, the restriction of �a� ı g ı .�

a
�/
�1 is a Euclidean similarity.

Triangles of �a�.zt/ that share a side are scaled by the same factor by the similarity
�a� ı g ı .�

a
�/
�1 in each triangle (since this is the scaling factor on the shared side).

Therefore, the similarities agree along edges, and hence �a� ı g ı .h
a
�/
�1 defines a

global similarity of E0.
So, the action of �1S onE0 obtained by conjugating by �a� is an action by similar-

ities. To see that the action is by isometries, suppose that for some element g 2 �1S ,
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the similarity g0 D �a� ı g ı .�
a
�/
�1 scales the metric some number �¤ 1. Taking the

inverse if necessary, we can assume � < 1. Fix any x 2 E0 and observe that

dq.g0.x/; g
2
0.x// D �dq.x; g0.x//;

where dq is the distance function on E0 determined by q. Iterating this, it follows that

dq.x; g
n
0 .x// �

nX
kD1

dq.g
k�1
0 .x/; gk0 .x//

D

nX
kD1

�k�1dq.x; g0.x// � dq.x; g0.x//

1X
kD1

�k�1:

Since the right-hand side is a convergent geometric series, it follows that ¹gn0 .x/º
1
nD1

is a Cauchy sequence. On the other hand, this sequence exits every compact set
(since g0 is an infinite order element of �1S ), and since q is a complete metric on E0,
thus we obtain a contradiction. Therefore, the conjugation action of �1S is by isome-
tries.

5.4. Injectivity of A

Our next goal is to prove that AWQI. xE/! Aff.E0/, the homomorphism from Corol-
lary 5.9, is injective.

In preparation, it will be useful to have the following general fact about quasi-
isometries of hyperbolic spaces, whose proof we sketch for convenience of the reader.

Lemma 5.12. For each K; C; ı there exists R so that the following holds. Suppose
that Z is ı-hyperbolic and that each z 2 Z lies within ı of all three sides of a non-
degenerate ideal geodesic triangle. Let f WZ ! Z be a .K; C /-quasi-isometry that
lies within finite distance of the identity. Then f lies within distance R of the identity.

Proof. Since f is within bounded distance of the identity, its extension @f W@Z! @Z

is the identity. Hence if z 2 Z and � is an ideal geodesic triangle as in the statement,
then f .�/ is a .K;C /-quasi-geodesic ideal triangle with the same endpoints as�. By
the Morse lemma, there is a constant � D �.K;C; ı/ > 0 such that f .z/ lies within �
of the three quasi-geodesic sides of f .�/, and these sides in turn lie within � of the
sides of �. Thus z and f .z/ both lie within 2� C ı of all three sides of �. Since the
set of points within 2� C ı of all three sides of a non-degenerate geodesic triangle in a
ı-hyperbolic space has diameter bounded in terms of � and ı, we see that dZ.z; f .z//
is bounded solely in terms of ı;K;C , as required.

With this fact in hand, we can now prove the following proposition.
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Proposition 5.13. Let �W xE ! xE be a quasi-isometry with �a� D idE0 . There is a
constant C 0 D C 0.�/ > 0 such that for all x 2 xE, d.x; �.x// � C 0. Consequently,
AWQI. xE/! Aff.E0/ is injective.

Proof. We first claim that for any X 2 xD, �.EX / lies within the C 00-neighborhood
of EX , where C 00 D C 00.�/ > 0. To see this, observe that since �a� is the identity and
is bounded distance from �� , it follows that �jE0 is within bounded distance of the
inclusion of E0 in xE. Proposition 5.4 then implies that

dHaus.A; �S .A// < C1

for each strip A 2 � . Since strips that lie within finite Hausdorff distance coincide, we
have �S .A/ D A. Combining this fact with Proposition 5.4 it follows that

�P .˛.A// D ˛.�� .A// D ˛.A/:

Hence for each ˛, we have that �.@B˛/ lies within Hausdorff distance C of @B˛ D

@B�P .˛/, for C as in Proposition 5.4.
Now let X 2 xD be any point and choose distinct ˛; ˛0 2 P so that X is con-

tained in the coarse intersection of @B˛ and @B˛0 , implying that EX lies in the coarse
intersection of @B˛ and @B˛0 . By the coarse preservation of the @B˛ in the previous
paragraph, the coarse intersection of �.@B˛/ and �.@B˛0/ is within Hausdorff dis-
tance C of the coarse intersection of @B˛ and @B˛0 , and hence EX and �.EX / are
within uniform Hausdorff distance. This proves the claim.

Since fX W xE ! EX is eC
00

-bi-Lipschitz when restricted to fibers in the C 00-neigh-
borhood of EX , the claim implies that

�X� D fX ı �WEX ! EX

is a quasi-isometry with constants depending only on � and not X . Moreover, since
each EX lies within finite (but not necessarily bounded) Hausdorff distance of E0,
the fact that �jE0 lies within finite distance of the inclusion E0 ,! xE implies that �X�
lies within finite distance of the identity EX ! EX . Since each EX is uniformly
quasi-isometric to H2, it follows that �X� W EX ! EX satisfies the assumptions of
Lemma 5.12. We conclude that �X� is within uniformly bounded distance of the iden-
tity for each X 2 xD. Since

d.�X� .x/; �.x// � C
00;

it follows that d.x; �.x// is uniformly bounded, independent of x. This proves the
first statement of the proposition.

If A.�/ is the identity for some � 2QI. xE/, then by the first part of the proposition,
� is a bounded distance from the identity. Therefore, � and the identity represent the
same class, and A is injective. This completes the proof.
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5.5. From affine homeomorphisms to isometries

Next we will choose a particular allowable truncation and construct a homomorphism
Aff.E0/! Isomfib. xE/, that we will eventually show is an isomorphism. We first con-
struct such a homomorphism to the fiber-preserving isometry group of the space E,
which avoids the issue of choosing the truncation.

Lemma 5.14. For any � 2 Aff.E0/, there exists an isometry � D �� 2 Isomfib.E/

such that f0 ı �� jE0 D �. Moreover, this assignment � 7! �� defines an injective
homomorphism Aff.E0/! Isomfib.E/.

Proof. Recall from Section 2.1 that the projective tangent space at any non-cone
point of E0 is denoted P1.q/ and is canonically identified with @D. The derivative
of �WE0! E0 (which may reverse orientations) is a well-defined projective transfor-
mation d� 2 PGL.P1.q// which, using the preferred coordinates on q D q0 with dis-
tinguished vertical and horizontal directions, we canonically identify with PGL2.R/.
The Teichmüller diskD is the orbit of q under the SL2.R/ action and is identified with
H2 D SL2.R/= SO.2/ (see, e.g., [16, §2.8]). As PGL2.R/ acts isometrically on H2,
we thus obtain an isometry

ˆ D d�WD ! D

whose induced map @ˆ of the circle at infinity @D agrees with the derivative d�
under the canonical identification @D Š P1.q/. In particular, setting X D ˆ.X0/, the
geodesic ray in D emanating from X0 and asymptotic to � 2 P1.q/ is sent to the
geodesic ray emanating from X asymptotic to d�.�/.

We claim the map
�0 D fX;X0 ı �WE0 ! EX

is an isometry of fibers. Indeed, any pair �; �? 2 P1.q/ of orthogonal directions onE0
are the endpoints of a geodesic � in D containing X0. Since ˆ is an isometry with
@ˆD d�, we have that X D ˆ.X0/ lies on the geodesicˆ.�/ from d�.�?/ to d�.�/;
that is, d�.�/; d�.�?/ are orthogonal on X . But since P1.q/ and P1.qX / are canoni-
cally identified by the Teichmüller map fX;X0 (see, e.g., [16, §2.8]), this means �0 is
an affine map whose derivative d�0 D d� preserves orthogonality of lines; hence �0
is an isometry as claimed.

Now we define � D �� WE ! E by the formula

�.x/ D fˆ.�.x//;X0 ı � ı f0.x/:

In words, this maps the fiber over a point Y to the fiber over ˆ.Y /, and the horizontal
disk Dx , for x 2 E0, to D�.x/. The restriction �jDx WDx ! D�.x/ is an isometry
since it covers ˆ. To prove that � is an isometry, it therefore suffices to show that
�jEY WEY ! Eˆ.Y / is an isometry for any Y 2 D.
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Fix any Y 2 D. For Y D X0, we have already seen that �jE0 is the isometry
�0WE0 ! EX . If Y ¤ X , there exist unique orthogonal directions ˛; ˛? 2 P .q/ and
t > 0, so that X0 and Y both lie on the geodesic from ˛? to ˛ in D and Y lies
distance t from X0 in the direction of ˛. This means that fY;X0 WE0 ! EY contracts
in direction ˛ by e�t and stretches in direction ˛? by et . The image ˆ.Y / lies along
the geodesic from d�0.˛

?/ to d�0.˛/ at distance t from ˆ.X0/ D X ; therefore,
fˆ.Y /;X WEX ! Eˆ.Y / contracts by e�t in direction d�0.˛/ and stretches by et in
direction d�0.˛?/. The restriction �jY WY ! ˆ.Y / is given by

fˆ.Y /;X ı �0 ı fE0;Y :

Since �0 sends ˛ 7!d�0.˛/ and ˛? 7!d�0.˛?/, the description above shows that �jY
is an isometry. Therefore, � is an isometry, as required.

To see that � 7! �� is a homomorphism, note that by constructionˆ� is the unique
isometry of D for which @ˆ� D d�. Thus, the chain rule implies ˆ�ıg D ˆ� ı ˆg
is the unique isometry whose action on @D agrees with d.� ı g/ D d� ı dg. For any
x 2 E, we have �.�g.x// D ˆg.�.x//, and hence by construction

�� ı �g.x/ D fˆ�.�.�g.x///;X0 ı � ı f0
�
fˆg.x/;X0 ı g ı f0.x/

�
D fˆ�.ˆg.�.x///;X0 ı � ı fX0;ˆg.x/ ı fˆg.x/;X0 ı g ı f0.x/

D fˆ�ıg.�.x//;X0 ı .� ı g/ ı f0.x/ D ��ıg.x/;

as needed. Finally, if �� D idE , then clearly X D ˆ.X0/D X0. Since �0 D �� jE0 by
construction, we conclude that

idE0 D �� jE0 D �0 D fX0;X0 ı � D �:

Hence, � is the identity affine map, showing that � 7! �� is injective.

Lemma 5.15. The subgroup � < Isomfib.E/ has finite index.

Proof. By [16, Proposition 5.5], Isomfib.E/ acts properly discontinuously onE. Thus
E= Isomfib.E/ is a topological orbifold with well-defined, positive Riemannian vol-
ume. The index of � in Isomfib.E/ is the degree of the orbifold cover E=� !
E= Isomfib.E/ and equals the ratio of the respective volumes. As E=� has finite
volume, since the quotientD=G has finite area and the fibers EX=�1S all have equal,
finite area, we conclude that � indeed has finite index.

Lemma 5.16. There is an allowable truncation xE that is Isomfib.E/-invariant and
for which restricting to xE induces an injection Isomfib.E/! Isomfib. xE/.

Remark 5.17. Every fiber-preserving isometry of xE uniquely extends to one of E
(e.g., by following the proof of Lemma 5.14) and thus Isomfib.E/! Isomfib. xE/ is in
fact an isomorphism.
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Proof. There is a natural map Isomfib.E/! Isom.D/ that sends � ontoG. Hence, by
the previous lemma, the imageG� of Isomfib.E/ under this map containsG with finite
index. Therefore G� acts properly discontinuously on D and we may choose a col-
lection ¹B˛º˛2P of 1-separated horoballs as in Section 2.1 that is G�-invariant. If xE
denotes the corresponding truncation ofE, it follows that every element of Isomfib.E/

preserves xE. The map Isomfib.E/! Isomfib. xE/ given by restricting � 7! �j xE is injec-
tive by [16, Corollary 5.6] since if �j xE is the identity, then � must be the identity on
each Teichmüller disk Dx and fiber EX � xE.

Choosing such an allowable truncation xE, Lemmas 5.14 and 5.16 now give an
injective homomorphism ‰WAff.E0/! Isomfib. xE/ given by ‰.�/ D �� j xE .

Lemma 5.18. For any � 2 Aff.E0/, A.‰.�// D �, where we have identified ‰.�/
with its image in QI. xE/ from the homomorphism Isomfib. xE/! QI. xE/.

Proof. The construction of A in Corollary 5.9 sends the (quasi-)isometry ‰.�/ D
�� j xE W

xE ! xE to the unique affine homeomorphism of E0 that is uniformly close to
the map

f0 ı �� jE0 WE0 ! E0:

But by the construction of �� in Lemma 5.14, f0 ı �� jE0 is affine itself and equal
to �. Thus evidently A.‰.�// D �, as claimed.

Lemma 5.19. For any � 2 Isomfib. xE/D Isomfib.E/, we have ‰.A.�//D �. In par-
ticular, the natural maps Isomfib. xE/! Isom. xE/! QI. xE/ are both injective.

Proof. By construction �D �a� DA.�/ is the unique affine homeomorphism bounded
distance from f0 ı �jE0 . As this map is itself affine, we have � D f0 ı �jE0 . The
isometry ˆWD ! D in the construction of ‰.�/ is then just the descent of � to D.
Further, for any X; Y 2 D, we have

�jX ı fX;Y D fˆ.X/;ˆ.Y / ı �jEY ;

since if X lies at distance t > 0 from Y along the geodesic from ˛? to ˛, then both
maps send .˛?;˛/ 7! .@ˆ.˛?/;@ˆ.˛//while contracting the first by e�t and expand-
ing the second by et , hence they are the same affine mapEY !Eˆ.X/. It follows that
the restriction ‰.�/jEY WEY ! Eˆ.Y / is then the composition

‰.�/jEY D fˆ.Y /;X0 ı .f0 ı �jE0/ ı f0jEY

D fˆ.Y /;ˆ.X0/ ı �jE0 ı fX0;Y

D fˆ.Y /;ˆ.X0/ ı fˆ.X0/;ˆ.Y / ı �jEY D �jEY :

Since this holds for each Y , we conclude ‰.�/ D �, as claimed.
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It follows that Isomfib. xE/!QI. xE/ is injective, since if Œ�� is the identity in QI. xE/,
meaning � is finite distance from the identity, then A.�/DA.Œ��/, and consequently
� D ‰.A.�// are both the identity. Finally, Isom. xE/! QI. xE/ is injective since we
have Isomfib. xE/ D Isom. xE/ by [16, Corollary 5.4].

5.6. Rigidity

We are now ready to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. By Lemma 5.18, the composition

Aff.E0/
‰
! Isomfib. xE/! Isom. xE/! QI. xE/ Š QI.�/

A
! Aff.E0/

is the identity. Hence the first map‰ is injective, and the remaining maps are injective
by Lemma 5.19 and Proposition 5.13 . It follows that each map above is an isomor-
phism, as claimed. The fact that � has finite index in Isom. xE/ Š QI.�/ thus follows
from Lemma 5.15.

Standard techniques (see, e.g., [57, §10.4]) now imply the following result.

Corollary 5.20. If H is any finitely generated group quasi-isometric to � , then H
and � are weakly commensurable, meaning H has a finite normal subgroup N so
that H=N and � contain finite index subgroups that are isomorphic.

This proof requires one more lemma.

Lemma 5.21. For every K there exists R0 such that if �W xE ! xE is a .K;K/-quasi-
isometry that lies within finite distance of the identity, then � lies within distance R0

of the identity, meaning d.x; �.x// � R0 for all x 2 xE.

Proof. First define a map x�W xD ! xD by setting x�.X/ D Y , where Y is the point
provided by Proposition 5.4 such that

dHaus.�.EX /; EY / � C:

Since d xD.X; Y / D d xE .EX ; EY / for all X; Y in xD, we see that x� is a quasi-isometry
with constants depending only on K. It also lies within finite distance of the identity,
as it inherits this property from �; thus applying Lemma 5.12 toZ D xD implies that x�
lies within uniformly finite distance of the identity. That is, there exists R depending
only on K so that

dHaus.EX ; ˆ.EX // � R

for all X 2 xD. Hence, Lemma 5.6 implies that for each map �X� D fX ı �jEX is a
.K 0; K 0/-quasi-isometry for some K 0 depending only on K. Again by Lemma 5.12,
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this time with Z D EX , we see that each �X� moves points uniformly bounded dis-
tance, and therefore �jEX lies within uniform distance of the inclusion of EX in xE.
Since this holds for all X , we have that � lies within uniform distance of the identity,
as required.

Proof of Corollary 5.20. If H is quasi-isometric to � , there is a quasi-isometry

�WH ! xE

with a quasi-inverse
��1W xE ! H:

Left multiplication by h 2 H gives an isometry LhWH ! H . In this way, for each
h 2 H , we obtain a quasi-isometry

B.h/ D � ı Lh ı �
�1

of xE with uniformly bounded constants. Let us also set

B 0.h/ D ‰.A.B.h/// 2 Isomfib. xE/ D Isom. xE/;

which is the unique isometry of xE at finite distance from B.h/. Since the quasi-
isometry constants of B.h/ are uniform, depending only on �, it follows from Lem-
ma 5.21 that there is a constant R0 so that

d.B.h/.x/;B 0.h/.x// � R0

for all x 2 xE and h 2 H .
We now claim the homomorphism B 0WH ! Isom. xE/ has finite kernel and cok-

ernel. Indeed, if B 0.h/ D Id xE the above implies B.h/ moves �.e/ (and in fact all
points) distance at most R0. But this means Lh moves the identity e 2 H uniformly
bounded distance, and there are only finitely many such elements of H . To prove B 0

has finite cokernel it suffices, as in Lemma 5.15, to show xE=B 0.H/ has finite vol-
ume or, better yet, finite diameter. For this, given x; y 2 xE, we must find h so that
d.B 0.h/.x/; y/ is uniformly bounded. This is equivalent to bounding

d.B.h/.x/; y/ D d.�.h � ��1.x//; y/;

which is coarsely dH .h � ��1.x/; ��1.y//. Since H acts transitively on itself, this is
clearly possible.

We now see that H= ker.B 0/ and � are both realized as finite index subgroups of
Isom. xE/ and hence that their intersection has finite index in both.
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5.7. An alternative proof of quasi-isometric rigidity

Here we sketch another proof of Theorem 1.2, following an approach described by
Mosher in [52]; we refer the reader to that paper for a more detailed discussion.

First, we require some additional definitions. Consider the maximal orbifold quo-
tient S !O so thatG descends to a groupGO <Mod.O/ in the mapping class group
of the orbifold O; that is, G consists of lifts of elements of GO . Let C < Mod.O/
be the relative commensurator of GO in Mod.O/, which consists of the elements
g 2 Mod.O/ so that gGOg

�1 \ GO has finite index in both gGOg
�1 and GO . (In

fact, we must allow for orientation reversing mapping classes, but continue to denote
this group Mod for simplicity.). Finally, we let �C denote the �orb

1 O-extension of C.
Since S ! O is a finite sheeted cover, �GO

contains � with finite index, and so is
quasi-isometric to it, and thus QI.�GO

/ Š QI.�/. It is also not hard to see that there
is a natural injection from �C ! QI.�GO

/ Š QI.�/.
We can now state Mosher’s key reduction of quasi-isometric rigidity from [52].

Theorem 5.22 (Mosher). The homomorphism �C ! QI.�/ is an isomorphism.

Very briefly, the proof of this theorem divides into two key steps. First, �C nat-
urally maps not just to QI.�GO

/, but to the subgroup of coarsely fiber preserving
quasi-isometries,

QIfib.�GO
/ < QI.�GO

/:

In [51], Mosher proves that this is in fact an isomorphism, �C Š QIfib.�GO
/, when-

ever G contains a pseudo-Anosov. Second, a general result of Farb and Mosher [23,
Theorem 7.7(2)], proved using coarse algebraic-topology, ensures that QIfib.�GO

/ has
finite index in QI.�GO

/ when G is further assumed to be virtually free.
With Theorem 5.22 in hand, we see that proving quasi-isometric rigidity of �

reduces to proving that �GO
in �C has finite index (which is precisely what [52,

Problem 5.4] asks). Equivalently, this reduces to the following.

Lemma 5.23. The subgroup GO < C has finite index.

Proof. Observe that the defining quadratic differential q forG descends to a quadratic
differential qO on O (with at worst simple poles at the orbifold points). To see this,
note that any pseudo-Anosov element f 2 G descends to a pseudo-Anosov element
f0 2 O (i.e., f is a lift of f0). The stable/unstable foliations for this pseudo-Anosov
element f are vertical/horizontal for (an affine deformation of) q, and these descend
to stable/unstable foliations for f0 which are thus vertical/horizontal for qO; thus, q
is the pull-back of qO . Since the fixed points of pseudo-Anosov elements of GO are
dense in P .qO/, it follows that C is contained in the stabilizer of P .qO/. By [26],
for example, P .qO/ determines the associated Teichmüller disk HqO

and thus the
stabilizer of P .qO/ is the stabilizer of HqO

, and is therefore the maximal Veech group



S. Dowdall, M. G. Durham, C. J. Leininger, and A. Sisto 224

defined by qO . Since G is a lattice Veech group, so is GO . Therefore, the inclusion
of GO into this maximal Veech group of qO must have finite index. Since C is a
subgroup of this Veech group, GO < C is finite index as well.

Remark 5.24. Our proof here is similar to the proof for Kleinian groups that the
relative commensurator of a (non-lattice, Zariski dense) geometrically finite Kleinian
group is equal to the stabilizer of its limit set. In fact, from [35, Theorem 2.1], the
limit set of GO in PML.O/ is precisely P .qO/.
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