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Abstract. We prove new upper bounds for the sup-norm of Hecke Maaß newforms on GL.2/ over
a number field. Our newforms are more general than those considered in a recent paper by Blomer,
Harcos, Maga, and Milićević: we do not require square-free level. Furthermore, we allow for non-
trivial central character. Over the rationals we recover the best bounds obtained by Saha.
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1. Introduction

In this paper we prove bounds for the L1-norm of automorphic forms on GL2 which
improve upon the local bounds. The problem of establishing such bounds is commonly
referred to as the sup-norm problem for GL2. Just recently in [4] this problem was solved
over number fields for square-free level and trivial central character. Previously, in [20],
this problem was solved over Q with arbitrary level and central character. In the present
paper we go beyond these ideas. Containing each of them as special cases, our results
recover the strongest bounds from both.

The true size of the sup-norm of automorphic forms is still quite mysterious. For con-
jectures and results concerning the sup-norm problem we refer to [4,20] and the references
therein. Let us just say that there are many results towards improved upper bounds for the
sup-norm in various settings. However, there are also some results giving lower bounds.
On non-compact surfaces these lower bounds can have two sources. First, they can come
from the transition region of Whittaker functions. In this case the peak appears far from
the so-called bulk of the manifold. Such lower bounds were considered for example in
[2, 8, 19]. Second, they can appear in the bulk of the manifold, which also appears in the
compact setting. In this case we refer to [7] for more details. The reason for mentioning
these two sources for lower bounds is that we will encounter them in some sense in our
arguments.

Roughly speaking, our proof will consist of two main parts which are delicate general-
izations of their counterparts from [4,20]. First, we will estimate the Whittaker expansion
to obtain suitable bounds outside the bulk. Instead of reducing this estimate to second
moments of Whittaker functions as in [20], we will use fourth moments. Second, we use
the amplification method to obtain good bounds in the bulk. To control the amplifier we
have to use a generalization of the Siegel–Walfisz theorem to number fields, obtained
in [14].

Next we are going to state and briefly discuss our main theorems. The notation used
is mostly standard and will be explained in detail in Section 1.2.

1.1. Statement of results

The theorems we will now state deal with cuspidal Hecke–Maaß newforms �ı on GL2
over a number field F . As explained below, for us these will be functions on GL2.A/
which naturally come from cuspidal automorphic representations. However, to understand
the statement of our theorems it suffices to think of them as eigenfunctions on a congru-
ence quotient of the symmetric space GL2.F1/=K1. Either way we have to introduce
some parameters in order to measure the complexity of these functions.

First of all, each archimedean place � of F will contribute a spectral parameter

�� D

´
1
4
C t2� if � is real,

1C 4t2� if � is complex.



On sup-norm bounds part I: Ramified Maaß newforms over number fields 3

These are the Laplace eigenvalues of �ı and we define the parameters T D .T�/� by

T� D max.1=2; jt� j/:

A more geometric invariant is given by the level n of �ı. Classically the absolute norm,
N .n/, of this level can roughly be thought of as the volume of the congruence quo-
tient on which �ı lives. We take n20 to be the largest square ideal dividing n and set
n2Dn=n20. Obviously n2 is squarefree and we have the decomposition nDn2n

2
0. Finally,

we allow �ı to transform with respect to some possibly non-trivial nebentypus ! of con-
ductor m and we set m1 D m=gcd.m;nn0/. We can now state the main theorems of this
article.

Theorem 1.1. Let �ı be a cuspidal Hecke–Maaß newform of level n and spectral param-
eter .t�/� . Then

k�ık1

k�ık2
�F;" .jT j1N .n//"

�
jT j5=121 N .n2/

1=3N .n20/
1=4N .m1/

1=2

C jT j
1=4
R jT j

1=2
C N .n/1=4N .m1/

1=2
�
:

Note that if we assume that n is square-free, then this bound reads

k�ık1

k�ık2
�F;" .jT j1N .n//"

�
jT j5=121 N .n/1=3 C jT j

1=4
R jT j

1=2
C N .n/1=4

�
:

Thus, if we further assume the nebentypus to be trivial (i.e. m D 1), then we recover
[4, Theorem 1]. On the other hand, if we take F D Q, n D .N / and m1 D .M1/, then
our bound reads

k�ık1

k�ık2
�F;" .jT j1N/

"
jT j5=121 N

1=3
2 N

1=2
0 M

1=2
1 ;

which agrees with [20, Theorem 3.2].
However, this theorem fails to meet our expectations for non-totally-real fields F .

Therefore, we will prove the following alternative result.

Theorem 1.2. Let F be a number field with maximal totally real subfield FR such that
ŒF W FR� D m � 2. Further let �ı be a cuspidal Hecke–Maaß newform of level n and
spectral parameter .t�/� . Then

k�ık1

k�ık2
�F;" .jT j1N .n//"jT j

1
2�

1
8m�4

1 N .n2/
1
2�

1
8m�4N .n20/

1=4N .m1/
1=2:

For n square-free and with trivial nebentypus this reduces precisely to [4, Theorem 2].
It has no analogue in [20], since it does not apply to F D Q.

In order to put these results into perspective let us recall that the local bound in our
setting reads

k�ık1

k�ık2
�F;" .jT j1N .n2n0m1//

1=2C": (1.1)
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Thus both our theorems are sublocal (or subconvex) in the parameters jT j1 and N .n2/.
In particular, Theorem 1.1 achieves very strong exponents in these two aspects when jT jC
is not to large. Even though we do not break the convexity barrier in the other aspects,
this paper is still the first to consider the sup-norm problem for automorphic forms over
number fields in this generality. This also means that to the best of our knowledge this is
the first place where the local bound as stated in (1.1) is rigorously established in such
generality (see Corollary 3.18 below).

While it seems undisputed that (1.1) is the local bound in the spectral and the square-
free level aspect, the story is not as simple for general level and arbitrary nebentypus.
An indication that also in general (1.1) is the correct notion of local bound is given
over Q by [17]. Furthermore, one recovers (1.1) by only using the Fourier/Whittaker
expansion together with a suitable generating domain (i.e. Corollary 2.7 together with
Proposition 3.17). This was already noted in [20] over Q.

In general only the contribution of m1 to our results as well as to (1.1) remains dis-
putable. Note that in the highly ramified situation when m D n20 D n we only get1

k�ık1

k�ık2
�F;";jT j1 N .n/1=2:

However, in this situation we also have the very strong lower bound

k�ık1

k�ık2
�F;";jT j1 N .n/1=4

derived in [21]. The recent work [10] over Q shows that this lower bound is essentially
sharp. This suggests that one should be able to remove the contribution of m1 from our
theorems as well as in (1.1). However, doing so in practice over arbitrary number fields
without assuming the full Ramanujan–Petersson conjecture and without compromising
the quality of the exponents in the other aspects seems to require some new ideas and
more hard analysis.

Remark 1.3. In [1], which is the second part of this manuscript, the author applies similar
ideas to solve the sup-norm problem for very general newform Eisenstein series over
number fields. Furthermore, a slight generalization of Theorem 1.1 can be found in the
Bristol PhD thesis of the author, where �ı is allowed to be a cuspidal Hecke–Hilbert–
Maaß newform. This allows for the possibility that �ı looks like a holomorphic modular
form of weight k� at several real places �.

1.2. Set-up and basic definitions

Let F be a number field of degree n D r1 C 2r2, where r1 is the number of real embed-
dings and 2r2 is the number of complex embeddings. We denote the norm on F=Q by N

1By direct extrapolation from the undisputed local bound for square-free levels one may think
of this as the trivial bound in general.
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and let OF be the ring of integers in F . We denote a typical ideal in OF by n and save
the letter p for prime ideals. Each prime ideal gives rise to a non-archimedean place of F
which we also denote by p. The corresponding (canonically normalized) valuation (used
for field elements and ideals interchangeably) will be called vp.�/ and gives rise to the
absolute value j � jp D q

�vp.�/
p , where qp D N .p/. In a similar spirit we use � for an

archimedean place and at the same time for the corresponding embedding �W F ! F� .
We put

j � j� D j � j
ŒF� WR�:

Here and in the following j � j always denotes the standard absolute value on R � C. If �
is a real place, then F� D R and we equip it with the standard Lebesgue measure giving
mass 1 to the interval Œ0; 1�. On the other hand, if � is complex, then F� D C and we use
the two-dimensional Lebesgue measure coming from R2 normalized by Vol.Œ0; 1�2/ D 1.

If Fp is the local non-archimedean field associated to p then we write op for its ring of
integers and $p for its uniformizer. These fields are equipped with two measures. First,
the Haar measure �p on .F;C/, which we normalize so that �p.op/ D 1. Further, we
have the Haar measure ��p on .F �; �/. This will be normalized to satisfy ��p .o

�
p / D 1.

We defineF1D
Q
� F� and equip it with the modulus j � j1D

Q
� j � j� . Sometimes we

use j � jR (respectively j � jC) to denote the part of j � j1 coming from the real (respectively
complex) embeddings only. Let Afin denote the finite adeles equipped with the absolute
value j � jfin being the product of all the local absolute values. Note that if q 2 F is diago-
nally embedded in Afin, then jqjfin D N ..q//. We will also write N .q/ D N ..q// in this
case. The usual adele ring is then given by

AF D F1 �Afin

and equipped with j � jA and� in the usual manner. We also define the set of totally positive
field elements FC to contain all x 2 F such that x� > 0 for all real �. Furthermore, put
F 0.AF / D ¹a 2 AF W jajAF D 1º and FC1 D RC � F1 diagonally. Finally, let F1;C
denote the set of elements x 2 F1 such that xv > 0 for all real �.

Further, let us choose ideal representatives �1; : : : ; �hF 2 OOF , where hF denotes the
class number of F . We write dF for the discriminant of F and d for the different ideal
of F . Then by [18, Theorem 2.9] we have N .d/ D jdF j. For any ideal m we use Œm�n D
m=.m;n1/ for the coprime-to-n part of m.

Given a character �WF � nA�F ! C we associate the corresponding analytically nor-
malized L-function

ƒ.s; �/ D
Y
�

L�.s; ��/„ ƒ‚ …
D
1.s;�/

Y
p

Lp.s; �p/„ ƒ‚ …
DL.s;�/

:

A complete description of the local factors can be found in [16] and reads

Lp.s; �p/ D

´
.1 � �p.$p/q

�s
p /�1 if �p is unramified,

1 if �p is ramified
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in the non-archimedean case and

L�.s; ��/ D

8̂̂<̂
:̂
��

sCt
2 �

�
sCt
2

�
if � is real and � D j � jt� ;

��
sCtC1
2 �

�
sCtC1
2

�
if � is real and � D sgn.�/j � jt� ;

2.2�/�.sCtCjlj=2/�.s C t C jl j=2/ if � is complex and � D arg.�/l j � jt�

in the archimedean case. If � is the trivial character, this leads to the Dedekind zeta func-
tion and we introduce the shorthand notation �p.s/ D Lp.1; s/ and �n.s/ D

Q
pjn �p.s/.

At the archimedean places we write L�.1; s/ D �R.s/ D ��s=2�.s=2/ if � is real and
L�.1; s/ D �C.s/ D 2.2�/

�s�.s/ otherwise.
Let R be a commutative ring with 1. Typically this will be one of the objects intro-

duced above. Then we set G.R/ D GL2.R/. We will also need the subgroups

Z.R/ D

²
z.r/ D

�
r 0

0 r

�
W r 2 R�

³
; A.R/ D

²
a.r/ D

�
r 0

0 1

�
W r 2 R�

³
;

N.R/ D

²
n.x/ D

�
1 x

0 1

�
W x 2 R

³
; B.R/ D Z.R/A.R/N.R/:

We use the following compact subgroups ofG.R/which depend on the underlying ringR:

G.F�/ � K� D

´
SU2.C/ if � is complex,

SO2.R/ if � is real,

G.Fp/ � Kp D GL2.op/;

K1 D
Y
�

K� :

At the non-archimedean places we additionally need the smaller groups

K0p.n/ D Kp \

�
op $n

p op

op op

�
; K0;p.n/ D Kp \

�
op op

$n
p op op

�
;

K1;p.n/ D Kp \

�
1C$n

p op op

$n
p op op

�
; K2;p.n/ D Kp \

�
op op

$n
p op 1C$n

p op

�
:

Globally, we put

K1.n/fin D
Y

p

K1;p.vp.n//; K1.n/ D K1 �K1.n/fin; K D K1
Y

p

Kp:

Further, let

w D

�
0 1

�1 0

�
be the long Weyl element.

Let us briefly describe the measures on the groups we use. Locally we will stick to the
measure convention from [19,20]: we use the identificationsN.R/Š .R;C/,A.R/ŠR�,
andZ.R/Š R� to transport the measures defined on the local fields to the corresponding
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groups. Further, we take �Kp to be the probability Haar measure on Kp. Globally, we
choose the product measure onK. The measures on the adeles and the ideles are given by

�AF D
2r2p
jdF j

Y
�

��
Y

p

�p and ��A�
F
D

Y
�

���

Y
p

��p :

This choice implies the volume normalization Vol.F nAF / D 1, as can be seen from
strong approximation together with [18, Chapter I, Proposition 5.2]. Here it is impor-
tant to be aware of the convention in [18, p. 211] when identifying the Minkowski space
with F1. As in the local situation, we use the identificationsN.AF /ŠAF andA.AF /Š
A�F to lift the measures defined above to the groups N.AF / and A.AF /. Finally, we
defineZ

Z.AF /nG.AF /
f .g/ d�.g/

D

Z
K

Z
A�
F

Z
N.AF /

f .na.y/k/ d�N.AF /.n/
d��

A�
F

.y/

jyjA
d�K.k/ (1.2)

as in [13].
As mentioned above, we are interested in bounding the sup-norm of Hecke–Maaß

newforms over F . In particular, the automorphic forms in question will be spherical at
infinity. More precisely, we will study functions

� 2 L20.G.F /nG.AF /; !/ � L
2.G.F /nG.AF /; !/

which are right K1.n/-invariant, and eigenfunctions of the Casimir element .C�/� 2
U.q1/ with eigenvalues .��/� . These are automorphic forms in the sense of [6, Sec-
tion 4.2]. Thus, it is standard procedure to associate a cuspidal automorphic represen-
tation2 �� to �. As explained in [6, Section 4.6], each cuspidal automorphic represen-
tation with central character ! can be (uniquely) realized as a closed invariant sub-
space of L20.G.F /nG.AF /; !/. In this way the problem of estimating the sup-norm
of the Maaß newform � is closely linked to the underlying cuspidal automorphic rep-
resentation �� . However, the sup-norm itself is only defined for smooth elements in
L20.G.F /nG.AF /; !/ and it does not make sense in different realizations of �� . There-
fore we will make the following convention.

Convention 1.4. Let .�;V�/ be a cuspidal automorphic representation with central char-
acter!� . Then there is an intertwiner � WV� ,!L20.G.F /nG.AF /;!/. Then the sup-norm
of a K-finite vector v 2 V� is defined to be

kvk1 D
k�.v/k1

k�.v/k2
:

2We use the definition of an automorphic representation given in [6, Section 4.6]. In particular,
irreducibility is included in the definition.
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Let us make some remarks concerning this convention.

� Note that this is indeed well defined. First, we observe that by multiplicity 1 for GL2
the intertwiner � is unique up to scaling. However, the scaling does not matter since
we L2-normalize the image. Secondly,K-finiteness ensures that the L1-norm of �.v/
is defined.

� This convention may seem unnecessary at first. But it gives us the flexibility to realize
� in arbitrary models without changing the fixed cusp form whose sup-norm we want
to bound.

� The restriction toK-finite vectors shows that we should actually work with theG.AF /-
module underlying � .

Let us now describe the structure of the cuspidal automorphic representation � ,
keeping in mind that we are mainly interested in spherical Hecke–Maaß newforms. We
write V� for the representation space of � . First note that since .�; V�/ is a cuspidal
automorphic representation it is in particular unitary and admissible. For convenience we
assume throughout the text that the central character !� of � satisfies !� jFC1 D 1. This
can be achieved without loss of generality by twisting by an unramified character.

By the tensor product theorem [12, Theorem 4] we may assume that

� D
O
�

�� ˝
O

p

�p;

where .�p; V�;p/ (resp. .�� ; V�;�/ ) is an irreducible representation of G.Fp/ (resp.
G.F�/) with central character !�;p (resp. !�;�). Note that this decomposition also pre-
serves the subspaces of K-finite vectors.

Since we are only interested in automorphic forms which are spherical eigenfunctions
of the Casimir operator, we can restrict ourselves to a very particular situation at the
archimedean places. Indeed, we will always assume that �� D �1 � �2 with

�j .y/ D jyj
it�;j
� sgn.y/m� if � is real,

�j .re
i� / D r i2t�;j eim�� else.

These are principal series representations and the representation space is denoted by

V� D B.�1; �2/:

We define the invariants

t� D .t�;1 � t�;2/=2 and s� D t�;1 C t�;2: (1.3)

In particular, !�;� jFC1 D
Q
� j � j

s�
� . Thus, the assumption !� jFC1 D 1 yields

P
� ŒF� WR�s�

D 0. Furthermore, v 2 V�;� is an eigenvector of the Casimir operator with eigenvalue

�� D

´
1
4
C t2� if � is real,

1C 4t2� else.
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This justifies calling t� the spectral parameter of � . Note that in absence of a proof of
the Ramanujan–Petersson Conjecture we cannot exclude the case of tv being imaginary.
However, based on ideas by Kim and Sarnak it has been shown in [3, Theorem 1] that

t� 2 R [
�
�
7
64
; 7
64

�
� i:

Note that a representation � featuring these types of representations at the
archimedean places is spherical. In other words, each representation .�� ; V�/ contains a
K�-invariant vector vı� which is unique up to scaling. At the non-archimedean places we
define np to be the log-conductor of �p. More precisely, np is the smallest non-negative
integer such that there exists a vector vıp 2 V�;p which isK1;p.np/-invariant. This vector is
unique up to scaling. Globally, we define the conductor of � to be the ideal n D

Q
p pnp .

This is the smallest ideal n such that � admits a non-zero K1.n/-invariant vector. Thus,
V� contains a unique (up to scaling) vector which is K1.n/-invariant. The vector

vı D
O
�

vı� ˝
O

p

vıp

does the job and we will call it the (global) new vector.
With this restrictions on � in place we observe that

�ı D
�.vı/

k�.vı/k2
(1.4)

is a cuspidal Hecke–Maaß newform over F of level n and nebentypus !� . In particular
it is K1.n/-invariant and has Casimir eigenvalue .��/� . Furthermore, by our convention
kvık1Dk�ık1. This is exactly the setting in which we will study the sup-norm problem.
It is the natural generalization of classical Maaß wave forms on the upper half-plane H.

Note that every �ı to which the statements of Theorems 1.1 and 1.2 apply is given
by �ı D �.vı/ where vı is the global new vector in some cuspidal automorphic repre-
sentation .�; V�/. This makes the formulation of the theorems precise and concludes this
section.

1.3. Guide to the rest of the paper

Let us now briefly overview the rest of the paper. In Section 2 we find a nice generating
domain for G.AF / which is tailor-made for the transformation behaviour of �ı. Our
argument combines the fundamental domain derived in [4] with the action of the Atkin–
Lehner operators from [20].

We then move on towards the study of Whittaker functions associated to newforms.
This will take up most of Section 3 and culminate in the first upper bounds which are
good near the cusps. The main difficulty is to separate the contribution of ramified p-adic
Whittaker functions from the one of the archimedean Whittaker functions. We achieve
this by applying a generalized Hölder inequality to the Whittaker expansion. This will
lead to fourth moments of Hecke eigenvalues. Finally, we can adapt the estimate from [4]
to our setting.
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The next step is to define an integral operator which will serve as an approximate
spectral projector. Locally, we will combine the test functions from [5] with those from
[20] to deal with highly ramified places. This operator will then lead to what is usually
called an amplified pre-trace formula. The geometric side of this pre-trace inequality can
then be estimated as in [4].

Finally, in Section 5, we will give complete proofs for the theorems stated above.

Convention. As is common in analytic number theory and related areas, we will use the
Vinogradov symbols� and�. Since we consider the number field F as fixed we will
allow all the implicit constant to depend on F without further notice. Similarly " will
be reserved for some small positive quantity that may change from line to line. All the
constants may also depend on ".

2. The reduction step

In this section we follow [20, Section 3B] to derive a generating domain for

Z.AF /G.F /nG.AF /=K1.n/:

We then continue to show that in order to solve the sup-norm problem for the automorphic
forms under consideration we only have to bound our functions (and possibly their twists)
on very special elements in G.AF /. The central result of this section is Corollary 2.7
below.

2.1. Local preliminaries

Several steps that are necessary to deal with powerful level rely on local methods. In this
section we briefly recall the ingredients needed from [20].

Let p be a finite place and let .�p; V�;p/ denote an admissible, irreducible represen-
tation of Fp. Define np D a.�p/ to be the log-conductor of �p. Let !�;p be the central
character of �p and letmpD a.!�;p/ be its log-conductor. Of course, we have npD vp.n/

andmp D vp.mp/ where n is the (global) conductor of � and m is the (global) conductor
of the central character !� .

Most local computations rely on the decomposition

G.Fp/ D
G
t2Z

G
0�l�np

G
u2o�p =.1C$

min.l;np�l/
p o�p /

Z.Fp/N.Fp/ a.$
t
p/wn.$

�l
p u/„ ƒ‚ …

Dgt;l;u

K1;p.n/:

(2.1)

This is [20, (3)] or originally [19, Lemma 2.13]. The decomposition suggests defining the
invariants tp.g/, lp.g/ and n0;p.g/ in the obvious way by writing

g 2 Z.Fp/N.Fp/gt.g/;l.g/;uK1;p.np/
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with u 2 o�=.1C$
n0;p.g/
p o�/. We further define

n0;p D bnp=2c;

n1;p D np � n0;p;

m1;p D max.0;mp � n1;p/;

n1;p.g/ D

´
n0;p if l.g/ � n0;p;

n1;p if l.g/ � n1;p;

m1;p.g/ D max.0; n0;p.g/ � np Cmp/:

Obviously we have the following relations to the ideals defined earlier:

n0;p D vp.n0/; n1;p D vp.n2n0/; m1;p D vp.m1/:

In Section 3 below we will also encounter the ideal m1.g/ D
Q
pjn pm1;p.gp/ such that

m1;p.gp/ D vp.m1.g//.
Let us collect some simple results capturing the behaviour of these invariants in crucial

situations.

Lemma 2.1. Let g 2 Kpa.$
n1;p
p /. If np is odd, then

n1;p.g/ D n0;p ” g 2 wK0p.1/a.$
n1;p
p /:

If np is even, then
n1;p.g/ D n0;p:

Proof. The first part is a consequence of [20, Lemma 2.2 (2)]. The second part holds since
for even np one has n0;p D n1;p.

Lemma 2.2 ([20, Lemma 2.3]). Let np be odd. Further take k 2 K0;p.1/ and

�p 2

²
1;

�
0 1

$p 0

�³
:

Then
k�pwa.$

n1;p
p / D wk0a.$

n1;p
p /�0pz

for k0 2 K0p.1/, z 2 Z.Fp/ and

�0p D

8̂̂<̂
:̂
1 if �p D 1;�
0 1

$
np
p 0

�
else.

2.2. The global generating domain

Our goal is to recreate the argument from [20, Section 3B] coupled with the results from
[4, Section 5] to deal with arbitrary number fields. As expect this general setting brings
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the class group and the unit group into the picture. We start with several definitions. For
any ideal L in OF we define

�L D

Y
pjL

�
0 1

$
np
p 0

�Y
p−L

1;

hL D

Y
pjL

a.$
n1;p
p /

Y
p−L

1;

KL D

Y
pjL

Kp

Y
p−L

¹1º � GL2.Afin/;

JL D KLhL;

JL D ¹g 2 JLW n1;p.gp/ D n0;p 8p jLº:

Let us make the following minor observation.

Lemma 2.3. For g 2 JL one has

g 2 JL ” gp 2 wK
0
p.1/a.$

n1;p
p / for all p jL with np odd.

Proof. Apply Lemma 2.1 for each p jL.

Corollary 2.4. For gp 2 Jp and v 2 o�p we have a.v/g 2 Jp.

Proof. Obviously a.v/gp 2 Jp. One then concludes using Lemma 2.3 and the fact that

a.v/w D w

�
1 0

0 v

�
:

In terms of the local invariants we write

n0 D
Y

p

pn0;p ; n1 D
Y

p

pn1;p ; n2 D
Y

p

pn1;p�n0;p :

Note that n2 is square-free and n D n20n2.
Now we want to use the generating domain from [4] for the square-free ideal n2.

Recall the group

K� D Z.F1/K1
Y

p−n2

Z.Fp/Kp

Y
pjn2

�
K0;p.1/;

�
0 1

$p 0

��
defined in [4, Section 2]. Let F .n2/ be the generating domain for G.F /nG.AF /=K�

defined in [4, p. 14]. An element in F .n2/ is of the form�
y x

0 1

�
„ ƒ‚ …
2B.F1/

�
�i 0

0 1

�
„ ƒ‚ …
Da.�i /

;
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where jyj1 is maximal and �i 2 OO�F is an ideal representative. We will call such matrices
special. Define

Fn2 D

²�
y x

0 1

�
W 9i 2 ¹1; : : : ; hº such that

�
y x

0 1

�
a.�i / 2 F .n2/

³
:

We can write down a generating domain in the spirit of [20, Proposition 3.6].

Proposition 2.5. For g 2 G.AF / we find L jn2 and 1 � i � hF such that

g 2 Z.A/G.F /
�
a.�i /Jn � Fn2

�
�LK1.n/:

Proof. The proof follows exactly the steps in [20] exploiting the fact that the fundamental
domain F .n2/ from [4] is already given adelically. Let wn be the diagonal embedding
of w in Kn. Then the determinant map

wnhnK1.n/finh
�1
n w�1n !

Y
p

o�p

is surjective. Thus we can apply strong approximation to the element gh�1n w�1n and find
g1 2 G.F1/ and i 2 ¹1; : : : ; hF º such that

g 2 G.F /g1a.�i /wnhnK1.n/:

Using the properties of F .n2/ we write g1a.�i / D 
f zk� with 
 2 G.F /, zk� 2 K�

and f 2 F .n2/. By construction of K� we can assume

k�p D

´
k�p 2 Kp if p − n2;

k0p�p 2 K0;p�p if p jn2;

k�� 2 K�

for �p 2
®
1;
�
0 1
$p 0

�¯
. Define

L D
Y

pW �p¤1

p

and note that L must divide n2 by construction. With this at hand we can write

g 2 Z.A/G.F /f
Y
p−n

k�p„ƒ‚…
2K1.n/

Y
pjn;p−n2

k�pwa.$
n1;p
p /

Y
pjn2;p−L

k0pwa.$
n1;p
p /

�

Y
pjL

k0p�pwa.$
n1;p
p /K1.n/:

Let us treat each product appearing above separately. First, we include the product over
p − n into K1.n/. Next, we notice that if p j n but p − n2 then np must be even. Since
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k�pw 2 Kp we apply Lemma 2.1 to absorb the second product into Jn. In the remaining
two cases, namely p jn2, np must be odd. First, for p − L we apply Lemma 2.2 to obtain

k0pwa.$
n1;p
p / D w Okp„ƒ‚…

2Kop.1/

a.$
n1;p
p /:

It follows from Lemma 2.3 that also the third product is in Jn. Finally, we use Lem-
mata 2.2 and 2.3 again to get

k0p�pwa.$
n1;p
p / D w

K0p.1/‚…„ƒ
Okp a.$

n1;p
p /„ ƒ‚ …

2Jn

1�0p.z/:

Thus,
g 2 Z.A/G.F /f Jn

Y
pjL

�0p„ƒ‚…
D�L

K1.n/:

One concludes the proof by writing f D pa.�i / for a special matrix p 2 Fn2 and some
i 2 ¹1; : : : ; hF º.

2.3. The action of �L

The next step is to understand how the matrix �L, for L j n2, acts on the automorphic
functions under consideration.

We start by constructing a certain unitary character !L
� D !

L
�;1

Q
p !

L
�;p of F �nA�F

with the properties

!L
�;pjo�p D

´
1 if p jL;

!�;pjo�p if p − L;

and !L
�;1jF1;C D 1. We claim that such a character exists. To see this we apply strong

approximation for the open compact subgroup bO�F D
Q

p o�p , which reads

F �nA�F D
hFG
iD1

F1;C�ibO�F :

But using our requirements together with say !L
� .�i / D 1 for all i allows us to define

such a character on the right hand side of the above equality. It is clear that the resulting
character is unitary.

Let us make some observations. Locally, one has

!�1�;p!
L
�;pjo�p D

´
!�1�;pjo�p if p jL;

1 if p − L:
(2.2)
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Let .�;V�/ be a cuspidal automorphic representation. We define the twisted represen-
tation .�L; V�/ by

�L.g/ D !�1� !L
� .det.g//�.g/:

This representation is sometimes denoted by �L D .!�1� !L
� /� . The central character of

�L is !�1� .!L
� /
2 and looks locally like

!�1�;p.!
L
�;p/

2
jo�p D

´
!�1�;pjo�p if p jL;

!�;pjo�p if p − L:
(2.3)

In particular, the log-conductor of the new central character coincides with the log-con-
ductor of !� , namely

m D
Y

p

pmp :

Further, we note that this twist does not change the spectral data at 1. Concerning the
conductor of �L we have the following statement, which corresponds to [20, Lemma 3.4].

Lemma 2.6. For L jn2 the log-conductor of �L is n and

vıL D �.�L/v
ı (2.4)

is a new vector in �L.

Proof. If p − L, then �L
p and �p differ only by some unramified twist. This does not

change conductor. However, at the places p jL the representation �L
p is equivalent to Q�p

up to some unramified twist. Here Q�p denotes the contragredient representation of �p.
Since a.�p/ D a. Q�p/ it suffices to show that the vector given in (2.4) has the correct
transformation behaviour under K1.n/.

We proceed place by place. For p − L and � there is nothing to do. For p j L we
calculate �

a b

c d

�
„ ƒ‚ …
Dkp2K1;p.np/

�
0 1

$
np
p 0

�
D

�
0 1

$
np
p 0

��
d c$

�np
p

$
np
p b a

�
„ ƒ‚ …
Dk0p2K0;p.np/

:

It is easy to verify that k0pz.det.kp//
�1 2 K1;p.np/. Therefore, using (2.2) and (2.3) we

have

�L
p .kp/v

ı
L;p D !

�1
�;p.det.kp//�p.kpŒ�L�p/v

ı
p

D !�1�;p.det.kp// �p.z.det.kp///„ ƒ‚ …
D!�;p.det.kp//

�p.Œ�L�p/
�
�p

�
z.det.kp/

�1/k0p„ ƒ‚ …
2K1;p.np/

�
vıp

„ ƒ‚ …
Dvıp

�

D �p.Œ�L�p/v
ı
p D v

ı
L;p:
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Observe that .�L; V�/ is also a cuspidal automorphic representation. Furthermore, an
intertwiner, �L, to L20.G.F /nG.AF /; !

�1
� .!L

� /
2/ is given by

Œ�L.v/�.g/ D !�1� !L
� .det.g//Œ�.v/�.g/:

This leads us to the definition of the twisted newform �L
ı D �L.vıL/. We immediately

observe that
�ı.g�L/ D !�.!

L
� /
�1.det.g//�L

ı .g/;

giving us exactly the ingredient we needed to understand the action of �L on �ı. We
derive the following corollary.

Corollary 2.7. If �ı is the newform associated to a cuspidal automorphic representation
.�; V�/ then

sup
g2GL2.A/

j�ı.g/j � sup
Ljn2

sup
1�i�hF

sup
g2Jn�Fn2

j�L
ı .a.�i /g/j: (2.5)

Thus, we have reduced the sup-norm problem for the newform �ı to bounding the
newforms �L

ı on very special matrices. In the following we will fix an arbitrary L j n2,
write � D �L

ı and bound � on a.�i /.Jn � Fn2/.

3. Bounds via Whittaker expansions

In this section we consider the Whittaker expansion of cusp forms. This will lead to a
first upper bound for the newform �ı, which is sufficient when the variable is sufficiently
close to the cusps. The main result is Proposition 3.17 below.

Throughout this section let .�;V�/ be a cuspidal automorphic representation with new
vector vı 2 V� and associated newform �ıD �.v

ı/. Recall that the (arithmetic) conductor
of � was denoted by n D n2n

2
0. Furthermore, the conductor of the central character was

given by m and had m1 Dm=gcd.m;n2n0/. In this section we will further encounter the
ideal

m1.g/ D
Y
pjn

pm1;p.gp/;

where m1;p.gp/ was defined in Section 2.1. Note that m1.g/ jm1 for all g. Without
loss of generality we assume that �ı is L2-normalized. Further, we fix g 2 Jn and
n.x/a.y/ 2 Fn2 .

3.1. The Whittaker expansion of cusp forms

Let  D
Q
�  �

Q
p p be the standard additive character of AF as defined in [19]. Recall

 �.x/ D

´
e.x/ if � is real;

e.x C x/ if � is complex,

with e.x/ D e2�ix . Further, note that the conductor of  is d�1.
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Having fixed the additive character we define the corresponding global Whittaker
function

W�ı.g/ D
2r2
p
dF

Z
F nAF

�ı.n.x/g/ .�x/ d�AF .x/:

We want to factor this global function into a product of local functions each of which
matches the ones studied in [20]. Therefore, we define the shifted local character  0p D

 p.$
�vp.d/
p �/. This local additive character has conductor op. Further, if !�;p.$p/ D

j$pj
iap
p , we define � 0p D j � j

�iap=2
p �p. The purpose of this twist is that the central char-

acter !0�p
of � 0p is trivial on the uniformizer. Now let Wp be the Whittaker new vec-

tor associated to the representation � 0p with respect to the character  0p, normalized by
Wp.1/ D 1. These are exactly the Whittaker functions studied in [19, 20]. At infinity we
take the local Whittaker function W� to be the Whittaker vector associated to vı� nor-
malized by hW� ; W�i D 1. This matches the situation in [4]. Having defined these local
functions we achieve the factorization

W�ı.g/ D c�ı

Y
�

W�.g�/„ ƒ‚ …
DW1.g1/

Y
p

jdet.gp/j
iap=2
p Wp.a.$

vp.d/
p /gp/:

The translation in the finite part comes from the shift in the local additive characters as
explained in [19, Remark 2.11]. The constant c�ı comes from our renormalization of the
local functions.

For 1 � i � hF and g 2 Jn we have the well known Whittaker expansion

�ı.a.�i /gn.x/a.y//

D c�ı

X
q2F �

Y
p

jq�i det.gp/j
iap=2
p Wp.a.$

vp.d/
p �iq/gp/W1.a.q/n.x/a.y//: (3.1)

For convenience we split the local terms into the archimedean partW1, the unramified
part

�ur.q/ D
Y
p−n

Wp.a.$
vp.d/
p �iq//;

and the ramified part
�n.q/ D

Y
pjn

Wp.a.$
vp.d/
p �iq/gp/:

We also collect all the unramified twists together and write

�.q/ D
Y

p

jq�i det.gp/j
iap=2
p :

Since j�.q/j D 1 this factor does not influence any of the upcoming estimates.
Let us continue by gathering some properties of �n and �ur. First, we recall the fol-

lowing standard result.
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Lemma 3.1. If p − n, then there are unramified characters �1;p and �2;p such that � 0p D
�1;p � �2;p. In this case

Wp.a.$
vp.d/
p �iq//

D

8̂̂̂̂
<̂
ˆ̂̂:
0 if vp.�iq/C vp.d/ < 0;

q
�.vp.�iq/Cvp.d//=2
p

�1;p.$p/
vp.�iq/Cvp.d/C1 � �2;p.$p/

vp.�iq/Cvp.d/C1

�1;p.$p/ � �2;p.$p/

if vp.�iq/C vp.d/ � 0:

Proof. This follows from [9, Theorems 4.6.4, 4.6.5].

We can extract the following fact about the support of unramified coefficients.

Corollary 3.2. If �ur.q/ ¤ 0, then vp.q/ � �vp.d/ � vp.�i / for all p − n.

In order to describe the unramified coefficients in terms of more or less well known
quantities we quickly introduce the Hecke operators. For p − n and k 2 N define

Xp;k D ¹m 2 Mat2.op/W vp.det.m// D kº:

The local new vector vıp is an eigenvector of the operator �p.1Xp;k
/ and we denote its

eigenvalue by �.pk/. For any ideal a coprime to n we define the global Hecke operator
by

T .a/ D
Y
pja

�p.1Xp;vp.a/
/:

It is clear that the global new vector vı, and therefore also the newform �ı, is an eigen-
vector of this operator with eigenvalue

�.a/ D
Y
pja

�.pvp.a//:

We can now make a connection between �ur and the Hecke eigenvalues �.�/. At this point
let us remark that we follow the normalization of [9, Section 4.6] which differs from the
one used in [4, 20].

Lemma 3.3. We have

�ur.q/ D
�
�
.q/�id
Œ.q/�id�n

�
N
�
.q/�id
Œ.q/�id�n

� :
Proof. The proof proceeds locally by showing

�.pk/ D qkpWp.a.$
k// for p − n:

This can be done by induction using [9, Propositions 4.6.4, 4.6.6] and Lemma 3.1.

Next let us inspect the support of �n.
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Lemma 3.4 ([20, Lemma 3.11]). If �n.q/ ¤ 0 and g 2 Jn, then

vp.q/ � �vp.�i / � vp.d/ � n0;p �m1;p.gp/ for all p jn.

Proof. Since g 2 Jn it follows that gp 2 Kpa.$
n1;p
p / and n1;p.gp/ D n0;p. But

Wp.a.$
vp.d/
p �iq/gp/ ¤ 0 so that [20, Proposition 2.11 (1)] implies3

vp.�iq/C vp.d/ � �n1;p.gp/ �m1;p.gp/:

Note that we have used Corollary 2.4 to include a.v0/ into gp for v0 2 o�p where �iq

D v0$
vp.�iq/
p .

Later on it will make sense to view �n as a locally constant function on the adeles in
an obvious way. It will then be crucial to determine sets on which this function is constant.

Lemma 3.5 ([20, Lemma 3.12]). Let p jn, g 2 Jn and u1; u2 2 o�p such that u1 � u2 2

$
n0;p.g/
p op. Then

jW�p.a.$
k
pu1/gp/j D jW�p.a.$

k
pu2/gp/j:

Proof. The proof of this minor lemma goes back to the decomposition (2.1) and the fact
that the absolute value of W�p on ZNgt;l;uK1;p.np/ is determined by gt;l;u.

First, by (2.1) we can write

gp D zngt;l;u
 for 
 2 K1;p.np/:

Then one observes that

a.$k
pu1/gp D zn

0gtCk;l;uu�1
1

 0:

By doing the same for u2 we observe that the claimed equality follows when

Œuu�1� D Œuu�12 � 2 o�p=.1C$
n0.gp/
p op/:

The last condition leads to u1 � u2 2 $
n0.gp/
p op.

Combining the support properties from Lemma 3.4 and Corollary 3.2 we derive

j�ı.a.�i /gn.x/a.y//j � jc�ı j
X
q2{�1

j�ur.q/�n.q/W1.a.qy//j (3.2)

from (3.1), where

{ D n0m1.g/d
Y

p

pvp.�i /; m1.g/ D
Y

p

pm1;p.gp/: (3.3)

It is easy to deal with the constant c�ı .

3Note that in the notation of [20] we have q.gp/ D n0;p Cm1;p.gp/.
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Lemma 3.6. We have
c�ı � .N .n/jT j1/

":

Proof. As in [19] we observe

c2�ı � L�1.1; �;Ad/�1
Y
�

hW� ; W�i
�1
D L.1; �;Ad/�1:

It is a well known fact (see [15] for the corresponding result over Q) that L.1; �;Ad/�
.N .n/jT j1/

". Thus,
c�ı � .N .n/jT j1/

":

Before continuing we fix a parameter R D .R�/� and define the box

B.R/ D
Y
�

¹�� 2 F� W j�� j � R�º:

This box will be used to truncate the Whittaker expansion. We will mostly use R� �
T�=y� except in Section 3.4 below, where we allow arbitrary R.

Applying the Hölder inequality to (3.2) together with 1 D jqjAF D jqjfinjqj1 D

N .q/�1jqj1 yields

j�ı.a.�i /gn.x/a.y//j � jc�ı j
� X
q2{�1\B.R/

jqj�21 jW1.a.qy//j
4
�1=4

„ ƒ‚ …
DS1.R/

�

� X
q2{�1\B.R/

N .q/2=3j�ur.q/�n.q/j
4=3
�3=4

„ ƒ‚ …
DS2.R/

Cjc�ı jE.R/; (3.4)

with

S1.R/ D
� X
q2{�1\B.R/

jqj�21 jW1.a.qy//j
4
�1=4

;

S2.R/ D
� X
q2{�1\B.R/

N .q/2=3j�ur.q/�n.q/j
4=3
�3=4

;

E.R/ D
X

q2{�1; q 62B.R/

j�ur.q/�n.q/W1.qy/j:

We will estimate each of these three quantities in the upcoming subsections.

3.2. Counting field elements in boxes

This subsection is concerned with estimating the number of field elements in differ-
ent adelic boxes. These estimates will be needed in order to estimate S1.R/, S2.R/,
and E.R/.
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We start by considering some archimedean boxes. The following argument is almost
completely taken from [4]. Take

R� D
T� C T

1=3C"
�

2�jy� j
�
T�

y�

and recall the ideal { from (3.3). Further, fix a 2 { such that

N .{/ � N ..a// � .2=�/r1
p
jdF jN .{/: (3.5)

This is possible by [18, Lemma 6.2]. In particular, a{�1 � OF .
Define

I�.k�/ D

´
¹�� 2 F

�
� W k� jajR� < j�� j � .k� C 1/jajR�º if k� � 1;®

�� 2 F
�
� W j�� j � jajR� ; �k� �

ˇ̌
j�� j �

jajT�
2�jy� j

ˇ̌
< �k� C 1

¯
else.

(3.6)
For k 2 Z]¹�º let I.k/ D

Q
� I�.k�/.

Let us start by establishing a simple but crucial property of these sets.

Lemma 3.7. If k� < �bjajR�c then I�.k�/ D ;.

Proof. Suppose k� < �bjajR�c. We consider two cases. First, let j�� j >
jajT�
2�jy� j

. Then the
two inequalities in the definition of I�.�/ yield

jajT�

2�jy� j
C bjajR�c < j�� j � jajR� :

But the set of such �� is empty. Secondly, we assume j�� j �
jajR�
2�

. This gives

j�� j <
jajT�

2�jy� j
� bjajR�c < 0;

which is also impossible.

We also need good estimates for ].I.k/ \ a{�1/. These are obtained by a standard
volume argument. Let us start with some prerequisites.

Choose a fundamental set P for the lattice a{�1 � F1. Without loss of generality we
can assume 0 2 P . Let D be the diameter of P . It is an elementary fact (see [18]) that

Vol.P / � N ..a//N .{�1/ � 1:

Further, we define

J�.k�/ D

´
¹�� 2 F� W k� jajR� �D < j�� j � .k� C 1/jajR� CDº if k� � 1;®
�� 2 F� W �k� �D �

ˇ̌
j�� j �

jajT�
2�jy� j

ˇ̌
< �k� C 1CD

¯
else,

and J.k/ D
Q
� J�.k�/.
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Lemma 3.8. The volume of J�.k�/ is given by

Vol.J�.k�// D

8̂̂̂̂
<̂
ˆ̂̂:
2jajR� C 4D if � is real and k� � 1,

4.1C 2D/ if � is real and k� � 0,

�.2k� C 1/jajR�.jajR� C 2D/ if � is complex and k� � 1,

2 jajT�
y�

.1C 2D/ if � is complex and k� � 0.

Proof. The proof is an elementary volume calculation.

As a consequence of Minkowski theory we can choose P such thatD�N .a{�1/1=n

�F 1. Therefore, it is clear that

Vol.J.k//�
Y
�

f�.k�/; f�.k�/ D

8̂̂̂̂
<̂
ˆ̂̂:
jajT�
y�
C 1 if � is real and k� � 1,

1 if � is real and k� � 0,

k�
�
jajT�
y�
C 1

�2 if � is complex and k� � 1,
jajT�
y�
C 1 if � is complex and k� � 0.

(3.7)
We are now ready to count points in our boxes.

Lemma 3.9. One has
].a{�1 \ I.k//�

Y
�

f�.k�/:

Proof. By the construction of P we have

].a{�1 \ I.k// D
Vol.

S
q2a{�1\I.k/.q CP //

Vol.P /
�

Vol.J.k//

Vol.P /
:

One concludes using the calculations above.

For the estimation of S2.R/ we need to count field elements with strong non-
archimedean restrictions. We will be able to reduce this problem to [4, Lemma 6].

We will now define certain subsets of the adeles depending on tuples

k 2 Z]¹pjnº and Œu� 2
Y
pjn

o�p=.1C$
n0;p.g/
p op/:

In our applications the tuples k will usually lie in

Zn
D

Y
pjn

¹kp 2 ZW kp � �vp.{/º:

For such k and Œu� we define the sets

A{fin D ¹a 2 AfinW vp.ap/ � �vp.{/º;

C {.k/ D ¹a 2 A{finW vp.ap/ D kp 8p jnº;

C {.k; Œu�/ D ¹a 2 C {.k/W ap D $
kp
p a0p with Œa0p� D Œup� 2 o�p=.1C$

n0;p
p op/ 8p jnº:

It will be useful to know the volumes of these sets.
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Lemma 3.10. For k 2 Zn and Œu�; Œu0� 2
Q

pjn o�p=.1C$
n0;p.gp/
p op/ we have

Vol.A{fin; d�fin/ D N .{/;

Vol.C {.k/; d�fin/ D
N .{/

N .Œ{�n/
�n.1/

Y
pjn

q
�kp
p ;

Vol.C {.k; Œu�/; d�fin/ D Vol.C {.k; Œu0�/; d�/;

Vol.C {.k; Œu�/; d�fin/ D
N .{/

N .Œ{�n/

Y
pjn

q
�kp�n0;p.g/
p :

(3.8)

Proof. This is a standard adelic volume computation done place by place. The key facts
we use are �p.o

�
p / D �p.1/

�1, �p.$
r
pop/ D q�rp , and that both �p and ��p are Haar

measures for o�p .

Finally, we are ready to prove the following counting result.

Lemma 3.11. For k 2 Zn we have

]..a{�1n¹0º/ \ B.R/C {.k; Œu�//� FR.k/ D 1C
jRj1N .{/

N .n0.g//N .Œ{�n/

Y
pjn

q
�kp
p

uniformly in Œu�2
Q

pjn o�p=.1C$
n0;p.g/
p op/. Moreover, for

Q
pjn q

kp
p > jRj1N .{�1Œ{�n/

there is no q 2 .F � \ B.R/C {.k//n¹0º.

Proof. Let us call the set we want to count S . If S is empty we have nothing to show.
Thus, take q0 2 S . Now define the shifted set S 0 D 1

q0
S � 1. Any x 2 S 0 satisfies

jxj� � 2

ˇ̌̌̌
R

q0

ˇ̌̌̌
�

for all �;

jxjp �

ˇ̌̌̌
$
�vp.{/
p

q0

ˇ̌̌̌
p

for all p − n;

jxjp � j$
n0;p.gp/
p jp for all p jn:

Define the idele s by s� D 21=ŒF� WR� Rq0 and

sp D

´
$
�vp.{/
p =q0 if p − n;

$
n0;p.gp/
p else.

After noting that 0 2 S 0 we conclude that

]S � 1C ]¹x 2 F �W jxj� � jsj� and jxjp � jsjpº:

To estimate the last set we use [4, Lemma 7]. This yields

]S � 1C jsjAF :
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We are left with calculating the adelic norm of s. This is done usingY
�

jq0j
�1
�

Y
p−n

jq0j
�1
p D

Y
pjn

jq0jp D
Y
pjn

q
�kp
p :

To prove the second part we suppose
Q

pjn q
kp
p > jRj1N .{�1Œ{�n/. Let us define the

ideal m D
Q

pjn pkp . Then in order to have q 2 C {.k/ one needs N ..q// � N .m/{Œ{��1n .
But for q 2 B.R/ we require jqj1 � jRj1. Now we conclude by obtaining

1 D jqjA D jqj1jqjfin D
jqj1

N ..q//
�
jRj1N .Œ{�n/

N .m{/
< 1:

Roughly the same reasoning applies to elements of {�1 \ B.R/.

Corollary 3.12. If jRj1 < N .{/�1, then {�1 \ B.R/ D ¹0º.

3.3. The sum S1.R/

In this section we will treat the sum S1. Due to the transition region of the archimedean
Whittaker function this argument requires

R� D
T� C T

1=3C"
�

2�jy� j
�
T�

y�
: (3.9)

Note that in view of Corollary 3.12 the sum S1 is empty if jRj1 < N .{/�1. Therefore,
we assume

jRj1 �

ˇ̌̌̌
T

y

ˇ̌̌̌
1

� N .n0m1.g//
�1

throughout this section. Let us fix a 2 { such that (3.5) holds.

Lemma 3.13. For R D .R�/� as in (3.9) we have

S1.R/� jyj
1=2
1 jT j

�1=2
1

Y
�

�
jT� j

1=6
� C jaj1=4�

ˇ̌̌̌
T�

y�

ˇ̌̌̌1=4
�

�1C"
:

The proof will be in the spirit of [4, Section 8]. We start by expressing the archimedean
Whittaker functions explicitly in terms of the K-Bessel function. We have

jW�.a.��//j D

8̂̂̂<̂
ˆ̂:

j�� j
1=2
� jKit� .2�j�� j/j

j�.1=2C i t�/�.1=2 � i t�/j1=2
if � is real,

j�� j
1=2
� jKi2t� .4�j�� j/j

j�.1C i2t�/�.1 � i2t�/j1=2
else.

This holds as in [4, p. 26]. One notes that the Gamma factors are due to the L2-normal-
ization in the archimedean Whittaker model.
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By Stirling’s approximation one finds j�.1=2C i t�/j � e��=2t� and j�.1C 2it/j �
T
1=2
� e��t� . Thus using [22, (3.1)] one derives

W�.a.qy//� jqyj
1=2
�

T
1=2
�

jT� j
1=2
�

min
�
T �1=3� ; .t� jy� j/

�1=4
ˇ̌
jqj � T�=2�jy� j

ˇ̌�1=4�
:

We define

h�.k�/ D min
�
T 1=6� ;

ˇ̌̌̌
aT�

y�k�

ˇ̌̌̌1=4�
and observe that for k� � 0 and q 2 I�.k�/ we have

W�.a.qa
�1y//� jqa�1yj1=2� jT� j

�1=2
� h�.k�/: (3.10)

But for q 2 B.R/ we also have jqa�1j� � jR� j� � jT�y� j� and hence jqa�1y� j� � jT� j� .
And thus

W�.a.qa
�1y�//� h�.k�/:

Finally, we are ready to estimate S1.R/.

Proof of Lemma 3.13. First, we shift the sum by a. This gives

S41 D jaj
2
1

X
q2a{�1\B.jajR/

jqj�21 jW1.a.qa
�1y//j4:

Then we partition B.jajR/ using the boxes defined in (3.6). In each box we exploit (3.10)
to get

S41 � jaj
2
1

X
k2Z]¹�º

�baR�c�k��0

].I.k/ \ a{�1/
Y
�

ja�1y� j
2
� jT� j

�2
� h�.k�/

4:

Inserting the result from Lemma 3.9 yields

S41 � jyj
2
1jT j

�2
1

Y
�

bjajR�cX
k�D0

h�.�k�/
4f�.�k�/:

To estimate the remaining sums we use ideas from [4, Section 8] and treating each
archimedean place � separately.

We start with � real and obtain

bjajR�cX
k�D0

h�.�k�/
4f�.�k�/ D T

2=3
� C

bjajR�cX
k�D1

jajT�

jy� jk�

�

�
jT� j

2=3
� C

jajT�

jy� j

�1C"
:
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Similarly one treats the complex places:

bjajR�cX
k�D0

h�.�k�/
4f�.�k�/ � T

2=3
�

�
jaj

T�

jy� j
C 1

�
C

bjajR�cX
k�D1

�
jaj

T�

jy� j
C 1

�
jajT�

jy� jk�

�

�
jaj

T�

jy� j
C 1

��
T 2=3� C jaj

T�

jy� j

�1C"
�

�
T 2=3� C jaj

T�

jy� j

�2C"
�

�
T 4=3� C jaj2

T 2�
y2�

�1C"
:

Putting everything together gives the desired estimate.

Corollary 3.14. If
jy� j� � ja

3T� j
log jyj1=log ja3T j1
� (3.11)

for all �, then

S1.R/� jyj
1=2
1 jT j

�1=2
1

�
jT j1=61 CN .n0m1.g//

1=4

ˇ̌̌̌
T

y

ˇ̌̌̌1=4
1

�1C"
:

Proof. We consider two cases. First, assume jyj1 � ja3T j
1=3
1 . Then the balancing

assumption implies jy� j� � jaj� jT� j
1=3
� for all �. Therefore, we haveˇ̌̌̌

aT�

y�

ˇ̌̌̌1=4
�

� jT� j
1=6
� :

Secondly, if jyj1 � ja3T j
1=3
1 , one argues analogously to obtainˇ̌̌̌

aT�

y�

ˇ̌̌̌1=4
�

� jT� j
1=6
� :

Recalling that jaj1 � N .n0m1.g// completes the proof.

3.4. The sum S2.R/

In this section we will estimate the sum S2.R/ by reducing it to well known averages of
Hecke eigenvalues and local Whittaker functions. In view of estimating the error E.R/ in
the next section it will be useful to allow general parameters R.

Lemma 3.15. For arbitrary R D .R�/� 2 .R>0/]¹�º we have

S2.R/� .jT j1N .n//"jRj1=4C"1

�
N .n0/

1=4

N .m1.g//1=4
C jRj1=21 N .n0m1.g//

1=4

�
:

Proof. We start by defining

I.a/ D ¹q 2 {�1W jqj� � jR� j� ; .q/ D aº:
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Using [4, Corollary 1] we observe that

]I.a/�" jRj
"
1N .a/�": (3.12)

In particular, if N .a/� jRj1, then I.a/ must be empty.
By Lemma 3.3 we have

S2.R/
4=3
D

X
a�{�1

N .a/�jRj1

N .a/2=3N .Œa{�n/
4=3

ˇ̌
�
�

a{
Œa{�n

�ˇ̌4=3
N .a{/4=3

X
q2I.a/

j�n.q/j
4=3

DN .{/�2=3
X

a1jn
1

N .a1/�N .{/jRj1

N .a1/
2=3

X
.a2;n/D1

N .a2/�
N .{/jRj1

N .a1/

j�.a2/j
4=3

N .a2/2=3

X
q2I.{�1a1a2/

j�n.q/j
4=3:

At this stage we apply Hölder to the a2-sum. This yields

S2.R/
4=3
D N .{/�2=3

X
a1jn

1

N .a1/�N .{/jRj1

N .a1/
2=3Sur

�
N .{/jRj1

N .a1/

�1=3

�

� X
.a2;n/D1

N .a2/�
N .{/jRj1

N .a1/

� X
q2I.{�1a1a2/

j�n.q/j
4=3
�3=2�2=3

:

Here

Sur.X/ D
X

.a;n/D1
N .a/�X

j�.a/j4

N .a/2
:

Before we continue, it is important to recall that our Hecke operators are differently nor-
malized than the ones in [4, 15, 20]. It is well known that

Sur.X/� .jT j1N .n//"X1C":

This was proved in [15] over Q.
We now use Jensen’s inequality exploiting the fact that the q-sum is short by (3.12).

This yields

S2.R/
4=3
� .jT j1jRj1N .n//"N .{/�1=3jRj1=31

�

X
a1jn

1

N .a1/�N .{/jRj1

N .a1/
1=3C"

� X
.a2;n/D1

N .a2/�
N .{/jRj1

N .a1/

X
q2I.{�1a1a2/

j�n.q/j
2

�2=3
: (3.13)

We will continue to analyze the a2-sum. For the sake of notation we define

Sram D
X

.a2;n/D1

N .a2/�
N .{/jRj1

N .a1/

X
q2I.{�1a1a2/

j�n.q/j
2: (3.14)
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In order to use the notation from Section 3.2 we set

k.a1{
�1/ D .vp.a1{

�1//pjn 2 Zn:

By the local definition of �n we can view it as a function on A{fin. Lemma 3.5 implies that
this function is constant on C {.k; Œu�/ for k2Zn and Œu� 2

Q
pjn o�p=.1C$

n0;p.g/
p op/.

Therefore, we have

Sram D
X

q2{�1\B.R/C {.k.a1{�1//

j�n.q/j
2

D

X
Œu�2

Q
pjn o�p =.1C$

n0;p.g/

p op/

X
q2{�1\B.R/C {.k.a1{�1/;Œu�/

j�n.q/j
2

D

X
Œu�2

Q
pjn o�p =.1C$

n0;p.g/

p op/

].{�1 \ B.R/C {.k.a1{
�1/; Œu�//

Vol.C {.k.a1{�1/; Œu�/; d�/

�

Z
C {.k.a1{�1/;Œu�/

j�n.q/j
2 d�fin.q/:

Using (3.8) and Lemma 3.11 reveals

Sram �
N .a1/N .n0.g//

N .{/
FR.k.a1{

�1//

Z
C {.k.a1{�1//

j�n.q/j
2 d�fin.q/: (3.15)

The integral appearing here can be estimated using the local result [20, Proposi-
tion 2.11 (2)], which in our set-up readsZ

o�p

jWp.a.$
vp.d/Cvp.�i /Ckp
p q/gp/j

2 d��p .q/� q
�.vp.d/Cvp.�i /CkpCn0;pCm1;p.gp//=2
p

for gp 2Kpa.$
n1;p
p / and n1;p.gp/D n0;p. Note that in the situation at hand the condition

on gp is satisfied since we are assuming g 2 Jn. With this at hand the estimate proceeds
as follows:Z

C {.k/

j�n.q/j
2 d�fin.q/

D

Y
p−n

Z
$
�vp.{/
p op

1 d�p

Y
pjn

Z
$
kp
p o�p

jWp.a.$
vp.d/
p �iq/gp/j

2 d�p.q/

D
N .{/

N .Œ{�n/
�n.1/

�1
Y
pjn

q
�kp
p

Z
o�p

jWp.a.$
vp.d/Cvp.�i /Ckp
p q/gp/j

2 d��p .q/

� N .n/"
N .{/

N .Œ{�n/
�n.1/

�1
Y
pjn

q
�.vp.d/Cvp.�i /Cn0;pCm1;p.gp/C3kp/=2
p

D N .n/"
N .{/

N .Œ{�n/3=2
�n.1/

�1
Y
pjn

q
�3kp=2
p :
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Inserting this estimate in our expression for Sram we get

Sram � �n.1/
�1N .n0.g//N .a1/

�1=2FR.k.a1{
�1//:

The result from Lemma 3.11 yields

Sram � �n.1/
�1

�
N .n0.g//

N .a1/1=2
C
jRj1N .{/

N .a1/3=2

�
:

From (3.13) we deduce

S2.R/� .jT j1jRj1N .n//"
jRj

1=4
1

N .{/1=4

�p
N .n0.g//C

p
jRj1N .{/

�
�

� X
a1jn

1

N .a1/�N .{/jRj1

N .a1/
"
�4=3

:

In the end we note that by the Rankin trick we haveX
a1jn

1

N .a1/�N .{/jRj1

N .a1/
"
� N .n/"jRj"1:

3.5. The error E

For R as in (3.9) we will roughly prove that the error is always absorbed in the main-
contribution. More precisely, we have the following lemma.

Lemma 3.16. Under the balancing assumption

jy� j� � ja
3T� j

log jyj1=log ja3T j1
� for all �

and with R as in (3.9) we have

E � .jT j1jRj1N .n//"

�
�
jT j1=61 N .n0/

1=2
C jT j1=61 jRj

1=4
1 N .n0m1.g//

1=4
C jRj1=21 N .n0m1.g//

1=2
�
:

Proof. For S � ¹�º and k 2 N]S we define

R0.k/ D

´
.k� C 1/R� if � 2 S;

R� else,

IS .k/ D
Y
�2S

I�.k�/;

BS .R/ D
Y
� 62S

¹�� 2 F
�
W j�� j � R�º:

For k� � 1 we define
h�.k�/ D e

��jy� jR�k� :
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By the exponential decay of the K-Bessel function we have the bound

ja�1qj�2� jW�.a.a
�1qy�//j

4
� k�2� R�2� h�.k�/

4 (3.16)

for q 2 I�.k�/ and k� � 1. We now decompose E as follows:

E �
X

;¤S�¹�º

X
k2N]S

� X
q2a{�1\IS .k/�BS .jajR/

ja�1qj�21 jW1.a
�1qy/j4

�1=4
S2.R

0.k//:

Again we included the shift by a only in the archimedean part. Note that by Corollary 3.12
below the sum S2.R

0.k// D 0 ifY
�2S

jk� C 1j� jRj1 < N .{/�1:

We can add the condition Y
�2S

jk� C 1j� � jRj
�1
1N .{/�1

to the sum over k.
First, note that Lemma 3.15 is general enough to deal with the non-archimedean part

of the sum. To deal with the archimedean part we use the same approach as in Section 3.3.
In particular, with (3.10) and (3.16) we haveX
q2a{�1\IS .k/�BS .jajR/

jqa�1j�21 jW1.a.qa
�1y//j4

D

X
kc

�bjajR�c�k��08� 62S

X
q2a{�1\I.k�kc/

jqa�1j�21 jW1.a.qa
�1y//j4

� jRj�21

Y
�2S

jk� j
�2
� h�.k�/

4f�.k�/
Y
� 62S

X
kc

�bjajR�c�k��08�3S

h�.k�/
4f�.k�/

� jRj�21

Y
�2S

jk� j
�2
� h�.k�/

4f�.k�/
Y
� 62S

.jT� j
2=3
� C jaR� j�/

1C":

We obtain

E �

�ˇ̌̌̌
T

y

ˇ̌̌̌
1

N .n/

�"
�

X
;¤S�¹�º

X
k2N]SQ

�2S jk�C1j��jRj
�1
1 N .{/�1

�
jRj
�1=4
1 N .n0/

1=4

N .m1.g//1=4
C jRj1=41 N .n0m1.g//

1=4

�

�

Y
� 62S

.jT� j
1=6
� C jaR� j

1=4
� /

Y
�2S

h�.k�/f�.k�/
1=4:
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Inserting the definition of f� from (3.7) and using the balancing assumption as in the
proof of Corollary 3.14 yields

E �
X

;¤S�¹�º

X
k2N]SQ

�2S jk�C1j��jRj
�1
1 N .{/�1

��
jRj
�1=4
1 N .n0/

1=4

N .m1.g//1=4

C jRj1=41 N .n0m1.g//
1=4

�1C"�
jT j1=61 C jRj

1=4
1 N .n0m1.g//

1=4
�Y
�2S

kŒF� WR��1� h�.k�/

�
� .jT j1jRj1N .n//"

�

X
;¤S�¹�º

X
k2N]SQ

�2S jk�C1j��jRj
�1
1 N .{/�1

��
jRj�1=41

jT j
1=6
1 N .n0/

1=4

N .m1.g//1=4
CN .n0/

1=2

C jT j1=61 jRj
1=4
1 N .n0m1.g//

1=4
C jRj1=21 N .n0m1.g//

1=2

�Y
�2S

kŒF� WR��1� h�.k�/

�
:

Finally, we use the condition in the k-sum to remove the factor jRj�1=4. We drop any
unnecessary condition on k and end up with

E � .jT j1jRj1N .n//"

�
�
jT j1=61 N .n0/

1=2
C jT j1=61 jRj

1=4
1 N .n0m1.g//

1=4
C jRj1=21 N .n0m1.g//

1=2
�

�

X
;¤S�¹�º

X
k2N]S

jk� j
ŒF� WR�=2�1=4h�.k�/:

Due to the exponential decay of h�.k�/ for positive k� it is no problem to estimate the
remaining sums by X

;¤S�¹�º

X
k2N]S

jk� j
ŒF� WR�=2�1=4h�.k�/� 1:

This completes the proof.

3.6. The final Whittaker bound

Now we have all the pieces together to prove an upper bound for �ı via its Whittaker
expansion.

Proposition 3.17. Let �ı D �.vı/ for some cuspidal automorphic representation .�;V�/
with new vector vı. For g 2 Jn and R as in (3.9) we have

j�ı.a.�i /gn.x/a.y//j

� .jT j1jyj
�1
1N .n//"

�
�
jT j1=61 N .n0/

1=2
C jT j1=61 jRj

1=4
1 N .n0m1.g//

1=4
C jRj1=21 N .n0m1.g//

1=2
�
:
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Proof. As in [4, (8.7)] we can assume that y is balanced in the sense of (3.11).
Next we note that if jRj1 < N .{/�1, it follows from Corollary 3.12 and (3.4) that

j .a.�i /gn.x/a.y//j � jc�ı jE:

In this case we get the desired bound from Lemmas 3.6 and 3.16.
Finally, for jRj1�N .{/�1 the main contribution will obviously come from S1S2.R/,

since the error is controlled by Lemma 3.16. As in [4, (8.7)], we can assume that y is
balanced in the sense of (3.11) so that we can use Corollary 3.14 and Lemma 3.15 to
show

S1S2.R/�

�ˇ̌̌̌
T

y

ˇ̌̌̌
1

N .n/

�"
jRj�1=41

�
jT j1=61 CN .n0m1.g//

1=4

ˇ̌̌̌
T

y

ˇ̌̌̌1=4
1

�1C"
�

�
N .n0/

1=4

N .m1.g//1=4
C jRj1=21 N .n0m1.g//

1=4

�
�

�ˇ̌̌̌
T

y

ˇ̌̌̌
1

N .n/

�"�
jRj�1=41

jT j
1=6
1 N .n0/

1=4

N .m1.g//1=4
CN .n0/

1=2

C jT j1=61 jRj
1=4
1 N .n0m1.g//

1=4
C jRj1=21 N .n0m1.g//

1=2

�
:

Using jRj�11 � N .{/�1 � N .n0m1.g//
�1 to get rid of the factor jRj�1=41 concludes the

proof.

Corollary 3.18. Let �ı D �.vı/ for some cuspidal automorphic representation .�; V�/
with new vector vı. Then

�ı.g/

k�ık2
� .jT j1n2n0m1/

1=2C" for all g 2 GL2.A/:

Proof. First we note that by Corollary 2.7 it is enough to consider �ı on elements of
the form a.�i /gn.x/a.y/ for g 2 Jn and n.x/a.y/ 2 Fn2 . The result now follows from
Proposition 3.17 upon noting that jRj1 � jT j1=jyj1 and jyj1 � N .n2/

�1.

4. Bounds in the bulk

After having obtained estimates for automorphic forms near the cusps we have to deter-
mine their size in the bulk. Note that the term bulk is used somewhat informally and stands
for a part of the generating domain

FhF
iD1 a.�i /Jn � Fn2 containing the region where the

Whittaker expansion fails to deliver the desired bounds. To make this somewhat more
precise, let us remark that later in the proof of Theorem 1.1 the bulk is understood to be

¹a.�i /g
0hnn.x/a.y/ 2 a.�i /Jn � Fn2 W i D 1; : : : ; hF and jyj1 � jT j1=31 N .n2/

�1=3
º:

Since Jn is compact and we can assume y is balanced, this can really be thought of as
some bounded piece of the generating domain justifying the term bulk.
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The strategy we will pursue in this section is based on the so called amplification
method. More precisely, we will define an integral operator which approximates a spectral
projector on a certain subspace of L2.G.F /nG.AF // related to the automorphic form
under consideration. A geometric estimation of the kernel will yield the desired estimate.

Let .�; V�/ be a cuspidal automorphic representation with new vector vı and asso-
ciated newform �ı D �.v

ı/. The (arithmetic) conductor of � is given by n D n2n
2
0. As

earlier, we write m for the conductor of the central character !� of � and set m1 D

m=gcd.m;n2n0/.
Throughout this section we fix a square-free ideal q such that all the units that are

quadratic residues modulo q are indeed contained in .O�F /
2. We will further assume that

.q;n/D 1. Later on we will see how to construct such an ideal with the additional impor-
tant property N .q/ � .logL/A for some positive constant A. This constant will only
depend on the field F and therefore we may allow all implicit constant in this section to
depend on A.

4.1. Amplification and the spectral expansion

Let � D �L
ı D �

L.vıL/. By Corollary 2.7 it is enough to consider �.g/ for

g D a.�i /g
0n.x/a.y/ for n.x/a.y/ 2 Fn2 ; g

0
D khn 2 Jn:

Therefore, we further define �0 D �.�hn/. This function isK 01.n/D hnK1.n/h
�1
n -invari-

ant and can be considered as an element of the Hilbert space

L2.X/ D L2.G.F /nG.AF /=K
0
1.n/; !�/ � L

2.G.F /nG.AF //:

Furthermore, we putwı D �L.hn/v
ı
L. Then �0 D �L.wı/. We will bound �0 on elements

g D a.�i /g
0n.x/a.y/ with g0 2 Knh

�1
n and n.x/a.y/ 2 Fn2 .

Next we define the kernel function which will be used to construct the approximate
spectral projector mentioned earlier. We do this place by place and immediately give some
basic properties.

Let � be an archimedean place. Here, since the vector wı� is spherical, it is enough
to consider functions f� that factor through the point pair invariant u� . If � is real, let
H2 � C be the usual upper half-plane and put i� D i . In this case u� W H2 �H2! R�0
is given by

u�.z1; z2/ D
jz1 � z2j

2=.z1/=.z2/
for z1; z2 2 H2:

For � complex we consider the upper half-space

H3
D ¹z C yj 2 HW z 2 C; y > 0º:

This space is viewed as a subspace of the Hamiltonian quaternions H equipped with the
standard norm k � k. We fix i� D j serving as central point. Now the point pair invariant
u� W H

3 �H3 ! R�0 is given by

u�.z1; z2/ D
kz1 � z2k

2=.z1/=.z2/
for z1; z2 2 H3:
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Finally, the archimedean test function at � is defined as

f�.g�/ D k�.u�.g� :i� ; i�//;

for k� as in [4, Lemma 10]. By uniqueness of the spherical vector we have

R.f�/w
ı
� D c�.��/w

ı
� :

The number c�.��/ is positive and depends only on the equivalence class of �� and is
given by the spherical transform of f� at �� . By a suitable parametrization of spherical
representations of G.F�/ one relates this to the classical Selberg/Harish-Chandra trans-
form of k� . Therefore, we have

c�.��/� 1 (4.1)

by [4, Lemma 10].
For p jn we would like to choose the new vector matrix coefficient

ˆ�p.gp/ D
hvıp; �p.gp/v

ı
pi

hvıp; v
ı
pi

of �p as test function. However, since this function fails to have nice support properties
in general, we must modify it by forcing its support to lie in a convenient compact set. To
be precise, we define

ˆ0
� 0p
.gp/1ZKıp.g/ˆ� 0p.a.$

�n1;p
p /gpa.$

n1;p
p //

as in [20, Section 2F]. Note that besides chopping off parts of the matrix coefficient we
conjugated the variable to facilitate the change from the new vector vıp to its translate wıp.
The test function is finally defined by

fp.gp/ D jdet.gp/j
iap=2ˆ0

� 0p
.gp/:

By construction (see [20, Proposition 2.13]) there is ı�p > 0 such that

Rp.fp/w
ı
p D

Z
Z.Fp/nG.Fp/

fp.g/�p.g/w
ı
p d�p.g/D ı� 0pw

ı
p and ı� 0p � q

�n1;p�m1;p
p ;

where n1;p D dvp.n/=2e and m1;p D max.0; vp.m/� n1;p/ as in Section 2.1. The action
of Rp.fp/ on elements of generic representations is described in [20, Corollary 2.16].
Furthermore, in Appendix A we compute this action on one non-generic one-dimensional
representation which may appear in the discrete spectrum. Let us remark that

jfp.g/j � 1 for all g 2 G.Fp/;

supp.fp/ D

´
Z.Fp/Kp if np is even,

Z.Fp/K
0
p.1/ else.
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For p jq define

QK0;p.1/ D

²�
a b

c d

�
2 K0;p.1/W a � d 2 $pop

³
:

Then we put

fp.gp/ D

´
Vol.Z.op/n QK0;p.1//

�1!�1�p
.z/ if gp D zk 2 Z.Fp/ QK0;p.1/;

0 else:

Note that because .n;q/ D 1, the central !�p is unramified for p jq. This makes fp well
defined. Since wıp is Kp-fixed, we see that

Rp.fp/w
ı
p D

Z
Z.Fp/nG.Fp/

fp.g/�p.g/w
ı
p d�p.g/

D Vol.Z.op/n QK0;p.1//
�1

Z
Z.op/n QK0;p.1/

!�p.z/
�1�p.zk/w

ı
p d�p.zk/ D w

ı
p:

We also have the estimate

jfpj � ŒKp W QK0;p.1/�� q2C"p :

We will treat the remaining places all at once. Set Sur D ¹pW .p;qn/ D 1º and define
the unramified Hecke algebra

Hur D

D°
�ur D

O
p2Sur

�pW �p 2 C1c .G.Fp/; !�p/; �p.KpgKp/ D �p.g/
±E

C
:

This is a commutative algebra by [9, Theorem 4.6.1]. To an integral ideal c we associate
the special element

�c D

O
p2Sur

�p;vp.c/ 2 Hur

where

�p;k.g/ D

´
!�p.z/

�1 for g D z 2 Z.Fp/Xp;k ;

0 else.

This is well defined since the central character is unramified at the places under consid-
eration. The function �p;k is constructed such that �.1Xp;k

/ D R.�p;k/. Therefore, for
wıur D

N
p2Sur

wıp we have
R.�c/w

ı
ur D �.c/w

ı
ur:

Fix a large parameter L such that N .q/� .logL/A for some constant A. We define
the sets

Pq D ¹aW a D .˛/ for ˛ 2 F �C \ .1C q/º;

J.q/ D ¹aW .a;q/ D 1º;

P .L/ D ¹˛ 2 OF W .˛/ 2 Pq is a prime ideal, N .˛/ 2 ŒL; 2L�; ..˛/;n/ D 1º=�:
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In the last definition we write ˛ � ˇ for the equivalence relation .˛/ D .ˇ/. We identify
P .L/ with a suitable fundamental domain for�. We can arrange that ˛� � LŒF WQ� for all
� and all ˛ 2 P .L/.

We need a lower bound for ]P .L/. Since we cannot assume that q is fixed (it might
depend on n), we need a stronger argument than in [4]. The following variation of the
generalized Siegel–Walfisz theorem does the job.

Lemma 4.1. If N .q/� .logL/A for some positive constant A, then

L

N .q/ logL
�F;A ]P .L/�F;A

L

logL
: (4.2)

This is a very lazy estimate but it uses some heavy machinery, so we will sketch the
proof.

Proof. Let ClqF D J.q/=Pq be the ray class group. The explicit formula [16, VI, Theo-
rem 1] for the cardinality of ClqF implies

]ClqF � N .q/:

For our purposes this is enough.
The statement follows immediately from [14, Korollar 1.3].

Remark 4.2. We could also work with the weaker assumption N .q/�" N .n/". In this
case we can still obtain a good lower bound for ]P .L/ using a version of Linnik’s theorem
over number fields.

To ˛ 2 OF we associate the numbers

x˛ D

´
�..˛//=j�..˛//j if �..˛// ¤ 0;

0 else.

Finally, we define the unramified test function to be

fur D

� X
˛2P .L/

x˛�˛p
N .˛/

�� X
˛2P .L/

x˛�˛p
N .˛/

��
C

� X
˛2P .L/

x˛2�˛2p
N .˛2/

�� X
˛2P .L/

x˛2�˛2p
N .˛2/

��
:

Here � indicates the adjoint operator. Note that it is essential to include the adjoint opera-
tor in order to guarantee that the operator associated to fur is positive. Indeed, the operator
R.fur/ is positive and satisfies

R.fur/w
ı
ur D

�� X
˛2P .L/

j�..˛//jp
N .˛/

�2
C

� X
˛2P .L/

j�..˛2//jp
N .˛2/

�2�
„ ƒ‚ …

Dcur>0

wıur D curw
ı
ur:
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Using [9, Propositions 4.6.4, 4.6.6] together with (4.2) and arguing as in [4, (9.17)] one
gets

cur �
L2

N .q/2.logL/2
: (4.3)

On the other hand, we can linearize fur to obtain

fur D
X
˛2OF

y˛
�˛p
N .˛/

: (4.4)

The coefficients y˛ are very similar in spirit to the coefficients wm in [4, (9.16)]. Indeed,

y˛ D

8̂̂̂̂
<̂
ˆ̂̂:

P
˛02P .L/.jx˛0 j

2!�1�.˛0/.$.˛0//C jx˛02 j
2!�1�.˛0/.$

2
.˛0/
// if ˛ D 1;

x˛1x˛2 C ı˛1D˛2!
�1
�.˛1/

.$.˛1//x˛2
1
x˛2
2

if ˛ D ˛1˛2 for ˛1; ˛2 2 P .L/;

x˛2
1
x˛2
2

if ˛ D ˛21˛
2
2 for ˛1; ˛2 2 P .L/

0 else:

Thus, most importantly we have

jy˛j �

8̂̂<̂
:̂
L if ˛ D 1;

1 if ˛ D ˛j1˛
j
2 for some j D 1; 2 and ˛1; ˛2 2 P .L/;

0 else:

One compares this to [19, p. 29] and [4, p. 27] and notes similarity.
Combining everything we define

f D
O
�

f� ˝
O
pjqn

fp ˝ fur:

Associated to this function is the integral operator

R.f /W L2.G.F /nG.AF /; !�/! L2.G.F /nG.AF /; !�/;

� 7!

�
x 7!

Z
Z.AF /nG.AF /

f .g/�.gx/ dg

�
:

In particular, we have

R.f /�0 D �L

�Z
Z.AF /nG.AF /

f .g/�L.g/wı dg

�
D cur

Y
�

c�.��/
Y
pjn

ı� 0p�
0:

The corresponding automorphic kernel is given by

Kf .g1; g2/ D
X


2Z.F /nG.F /

f .g�11 
g2/:

The spectral expansion of Kf will enable us to bound the sup-norm of �0 in terms of
the geometric definition of Kf . Let us work out the spectral expansion in detail.
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We decompose
Kf D Kcusp CKsp CKcont: (4.5)

First, we deal with the cuspidal part.

Lemma 4.3. For any g 2 G.AF / we have

0 �
L2�"

N .q/2N .n1/N .m1/
j�0.g/j2 � Kcusp.g; g/;

where m1 D
Q

pjn pm1;p .

Proof. We begin by fixing a basis Bcusp for L20.X/ containing �0 and consisting ofR.f /-
eigenfunctions. This is possible by a standard multiplicity argument. For ‰ 2 Bcusp let
c.‰/ be the associated R.f /-eigenvalue. Then we obtain

Kcusp.h; g/ D
X

‰2Bcusp

hKcusp.�; g/; ‰iL2.X/‰.h/ D
X

‰2Bcusp

c.‰/‰.g/‰.h/:

We can choose Bcusp in such a way that for each ‰ there is a cuspidal automorphic repre-
sentation .�‰; V‰/ and ‰ D �‰.v/ for some pure tensor v 2 V‰ . Then we have

c.‰/ D ı‰c‰;ur

Y
�

c�.�‰;�/:

By [20, Corollary 2.16] we have ı‰ 2 ¹0; ı�º. In particular, ı‰ � 0. At the archimedean
places positivity of c�.�‰;�/ is ensured by the definition of k� . Finally, also cur must obvi-
ously be positive sinceR.fur/ is a positive operator. Therefore, c.‰/� 0 for all‰ 2Bcusp.
An explicit lower bound for c.�0/ follows from (4.3), (4.1), and [20, Proposition 2.13].
We then conclude by dropping all unnecessary terms.

The argument for the continuous part is quite similar. We obtain the following result.

Lemma 4.4. For g 2 G.AF / one has

Kcont.g; g/ � 0:

Proof. Using the theory of Eisenstein series we have the expansion

Kcont.h; g/ D
1

4�

X
‰1;‰22B QH

Z 1
�1

hR.f /‰2.iy/; ‰1.iy/i QH.iy/E‰1.iy; h/E‰2.iy; g/ dy

(4.6)
(see [13, (5.21)]). Let us briefly recall the notation. We define the space

QH.s/ D
²
‰W G.AF /! CW ‰

��
˛au x

0 ˇav

�
g

�
D !�.a/

ˇ̌̌̌
u

v

ˇ̌̌̌sC1=2
1

‰.g/

for ˛; ˇ 2 F �; a 2 A�F ; u; v 2 F
C
1; andZ

K

Z
F �nF 0.AF /

j‰.a.y/k/j2 dy d�K.k/ <1

³
:
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This defines a representation .�s; QH.s// ofG.AF /whereG.AF / acts by right translation.
For s 2 iR an inner product is given by

h‰1; ‰2i QH.s/ D

Z
A�
F

Z
K

‰1.a.y/k/‰2.a.y/k/ d�
�

A�
F
.y/ d�K.k/:

We can also view QH.s/ as a trivial holomorphic fiber bundle over QH D QH.0/. For � 2 QH
we define ‰.s/ D ‰ �H.�/s 2 QH.s/, where

H

��
1 x

0 1

��
a 0

0 b

�
k

�
D

ˇ̌̌̌
a

b

ˇ̌̌̌
AF

for all k 2 K

is naturally defined via the Iwasawa decomposition of G.AF /. Further, to ‰ 2 QH we
associate the Eisenstein series by

E‰.s; g/ D
X


2B.F /nG.F /

Œ‰.s/�.
g/

for <.s/ > 1=2 and extended to s 2 C by analytic continuation. The sum in (4.6) is taken
over an orthonormal basis B QH for QH.

As earlier, it is no problem to choose this basis to consist of R.F /-eigenfunctions.
For ‰ 2B QH we denote the corresponding R.f /-eigenvalue by c‰.0/. Note that then also
‰.s/ is an R.f /-eigenfunction but the eigenvalue may depend on s. Thus by putting
h D g we obtain

Kcont.g; g/ D
1

4�

X
‰2B QH

Z 1
�1

c‰.iy/jE‰.iy; g/j
2 dy:

We can now argue as before using the construction of f to show that c‰.s/ � 0 for all ‰.
This concludes the proof.

Finally, we treat the residual part of the spectrum.

Lemma 4.5. As long as n0 ¤ OF we have

Ksp.h; g/ D 0

for any g; h 2 G.AF /. Otherwise, we still have Ksp.g; g/ � 0 and the only contribution
comes from characters �2D!� with a.�p/� 1 at p jqn1Œn1�

�1
n0

and a.�p/D 0 otherwise.

Proof. We start from the spectral expansion of Ksp. This reads

Ksp.h; g/ D
1

Vol.Z.AF /G.F /nG.AF //

�

X
�2D!�

�.det.h//�.det.g//
Z
Z.AF /nG.AF /

f .x/�.det.x/// dx:
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Since the character � factors and also f is almost a pure tensor, the last integral factors
into the product of the local integrals

Ip.�p/ D

Z
Z.Fp/nG.Fp/

fp.g/�p.det.g// dg if p jnq

and the unramified part Iur.�ur/. By Lemma A.1 it is clear that Iur.�ur/ � 0. The lemma
follows from the evaluation of the integral Ip.�p/ given in Lemmata A.2 and A.3.

By combining the last three lemmata with the definition of Kf one concludes

j�0j2 �" L
�2C"N .q/2N .n1m1/

X

2Z.F /nG.F /

jf .g�1
g/j: (4.7)

This gives an upper bound for �0 in terms of the geometry ofG.F / and the test function f .
We will estimate this further in the next section.

4.2. Estimating the geometric expansion

In this subsection we prove an upper bound for �0 which is good in the bulk. This will be
done by estimating the right hand side of (4.7).

Proposition 4.6. Assume that .q;n/ D 1 and N .q/� .log N .n//A for a constant A. If

g D a.�i /g
0n.x/a.y/ with g0 2 Knh

�1
n and n.x/a.y/ 2 Fn2 ;

then

j�0.g/j2 � .jT j1N .n//"N .q/4C"
�
jT j5=61 N .n1/

2=3N .n0/
1=3N .m1/

C jT j
1=2
R jT jCN .n1/

1=2N .n0/
1=2N .m1/

C jT j1=21 N .n1/N .m1/jyj1
�
: (4.8)

The only thing we will have to do is exploiting the support properties of f and
reducing the estimate to the counting problem solved in [4]. Comparing this result to
[4, Theorem 1] and [20, Theorem 3.2] shows that the exponents here are indeed as one
would expect.

Proof of Proposition 4.6. To save ink we put

k.u.
P; P // D
Y
�

k�.u�.
�P� ; P�// with P� D n.x�/a.y�/:i� :

Inserting the linearization of fur given in (4.4) into (4.7) yields

j�0.g/j2 � L�2C"N .n1m1/
X

0¤˛2OF

jy˛jp
N .˛/

�

X

2Z.F /nG.F /

ˇ̌̌
�˛
Y
pjqn

fp.g
0�1a.��1i /
a.�i /g

0/
ˇ̌̌
jk.u.
P; P //j:
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Let us analyze the support of fp and �.˛/ place by place. At this point we will also exploit
the special structure of g.

First, note that if p − n we have g0p D 1. This case consists of two subcases. Namely,

a.��1i /
a.�i / 2

´
Z.Fp/ QK0;p.1/ if p jq;

Z.Fp/Kpa.$
vp.˛/
p /Kp else.

If p jn, then we use Lemma 2.3 to see that g0p 2 !K
0
p.1/ if p jn2 and g0pKp otherwise.

Using the support property of fp we conclude that

a.��1i /
a.�i / 2

8̂̂<̂
:̂
Z.Fp/Kp if p − n2;

Z.Fp/ !K
0
p.1/!

�1„ ƒ‚ …
DK0;p.1/

if p jn2:

It is straightforward to choose a suitable representative for 
 2 Z.F /nGL2.F / such
that we arrive at the analogue of [4, (9.20)]. In our case this reads

j�0.g/j2 �" N .q/2C"L�2C"N .n1m1/
X

0¤˛2OF

jy˛jp
N .˛/

X

2�.i;˛/

jk.u.
P; P //j

with

�.i; ˛/

D

²�
a b

c d

�
2 GL2.F /W a; d 2 OF ; a � d 2 q; b 2 �iOF ; c 2 �

�1
i nq; ad � bc D ˛

³
:

Since our coefficients y˛ have the same properties as the corresponding wm in [4], we
can replicate the argument from [4, pp. 35–36]. One quickly sees that this argument does
not produce any new q-dependence. We arrive at

j�0.g/j2 �" N .q/2C"L"N .n1m1/

�

X
k2Z]¹�º

T�2� �ı�D2
k��4

jT j
1=2
1

jıj
1=4
1

�
M.L; 0; ı/

L
C
M.L; 1; ı/

L3
C
M.L; 2; ı/

L4

�
(4.9)

for

M.L; j; ı/ D
X

˛1;˛22P .L/

]¹
 2 �.i; ˛
j
1˛

j
2 /W u�.
�P� ; P�/ � ı� for all �º:

This is analogous to [4, (9.24)].
The last sum contains�" jT j

"
1 terms, so we can estimate it trivially. Further, we note

that jT� j�2� � jı� j� � 1. This allows us to use the bounds for M.L; j; ı/ as summarized
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in [4, p. 50] to estimate4

j�0.g/j2 � .LjT j1N .n//"N .q/2C"N .n1m1/

�

�
jT j1

L
C jT j1=21 jyj1 C

L2jT j1

N n2
C
jT j

1=2
R jT jC

.N n2/1=2

�
:

Choosing L D jT j1=61 .N n2/
1=3N .n/" and noting that n2n0 D n1 leads to (4.8). Note

that we include the factor N .n/" in the definition of L to ensure that N .q/�" .logL/A

follows from the assumption N .q/�" .log N .n//A.

As in [4], we can give another estimate for non-totally-real number fields.

Proposition 4.7. Let C � N .q/� .log N .n//A, where C is an explicitly computable
constant depending only on the field F . Further, let FR be the maximal totally real sub-
field of F and let m D ŒF W FR� � 2. Then

j�0.g/j2 � .jT j1N .n//"N .q/4C"N .n1m1/jT j1

�

�
jT j

�1
4m�4
1 C .jT j1N n2/

�1
4m�2 C

jyj1

jT j
1=2
1

�
:

Proof. One uses the second list in [4, p. 37] together with (4.9). This yields

j�0.g/j2 � .jT j1LN .n//"N .q/4C"N .n1m1/

�

�
jT j1

L
C jT j1=21

�
jyj1 C L

2m�3
C

L2m�2

N .n2/1=2

��
:

Using L D N .n/" min.2nC0jT j
1

4m�4
1 ; .N .n2/jT j1/

1=4m�2/ completes the proof.5

5. The endgame

In this section we put all the pieces together to prove the theorems stated at the beginning.

5.1. Constructing the ideal q

The section on amplification depends on the existence of a square-free ideal q which
eliminates certain technicalities coming from the unit group of F . Here we will show that
one can indeed construct q with the desired properties.

Lemma 5.1. There is an absolute constant A > 0 depending only on F such that for any
n there is an ideal q satisfying the following two properties.

4As mentioned in [4], the results counting the elements in M.L; j; ı/ totally ignore the condi-
tions depending on q. Therefore, using these bounds does not generate any new q-dependence.

5The constant 2nC0 ensures that L is not too small.
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� C � N .q/� .log N .n//A, where C is the absolute constant from Proposition 4.7.

� If x is a quadratic residue modulo q then x 2 .O�F /
2.

Proof. For u 2 O�F =.O
�
F /
2 non-trivial, we look at the quadratic extension F.

p
u/ W F .

Its Galois group is abelian and consists of two elements, say Gal.F.
p
u/jF / D ¹1; �uº.

Since we are dealing with a quadratic extension, we know that a prime p of F is inert in
F.
p
u/ if and only if the Artin symbol satisfies�

F.
p
u/ W F

p

�
D �u:

Thus the Chebotarev set

PF.
p
u/jF .�u/ D

²
p unramified in F.

p
u/W

�
F.
p
u/ W F

p

�
D �u

³
contains exactly all the primes of F that are inert in F.

p
u/. It is standard that u is not a

square modulo p for any p 2 PF.
p
u/jF .�u/. Therefore, we want to define

q D
Y

u2O�
F
=.O�

F
/2

Œu�¤Œ1�

pu

for suitably chosen pu 2 PF.
p
u/jF .�u/. The rest of the proof concerns the choice of pu.

To do so we make several definitions. First, we set

Œn�u D
Y
pjn

p2PF.
p
u/jF .�u/

p:

Further, we enumeratePF.pu/jF .�u/D¹pu;1;pu;2; : : :º so that N .pu;1/�N .pu;2/� � � �.
Consider two cases. First, if pu;1 − Œn�u then we take pu D pu;1. By a version of

Linnik’s theorem for Chebotarev sets [23] we have

N .pu/�F 1:

Second, we consider the worst case

Œn�u D pu;1 � : : : � pu;k�1:

Here we define puD pu;k . It is clear that we only need to show N .pu/� .logN .Œn�u//
A.

But this follows from elementary calculations using Chebotarev’s density theorem [18,
Theorem (13.4), Chapter VII].

It is obvious that we can assume C � N .q/.

5.2. Proof of the main theorems

In this subsection let �ı be an L2-normalized Maaß newform. In other words, it corre-
sponds to a new vector in some cuspidal automorphic representation .�; V�/.
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Proof of Theorem 1.1. By Corollary 2.7 it is enough to consider �.g/ D �L
ı .g/ for some

L jn. Further, we fix 1 � i � hF and restrict ourselves to g D a.�i /g0hnn.x/a.y/ with
n.x/a.y/ 2 Fn2 and g0hn 2 Jn.

If jy1j > jT j1=3N .n2/
�1=3, then Proposition 3.17 yields

j�.g/j2 �F;" .jT j1N .n//"
�
jT j1=31 N .n0/C jT j

2=3
1 N .n2/

1=3N .n0m1/
�
:

Finally, we deal with jyj1 � jT j
1=3
1 N .n2/

�1=3. Recall that by Lemma 5.1 there is
an ideal q which satisfies the conditions needed in order to apply Proposition 4.6. We
conclude that

j�.g/j2 � jT j"1N .n/"N .n0m1/
�
jT j5=61 N .n2/

2=3
C jT j

1=2
R jT jCN .n2/

1=2
�
:

Next we consider fields that are not totally real. Therefore, we can find a maximal,
totally real subfield FR. Put m D ŒF W FR� � 2.

Proof of Theorem 1.2. We start by choosing q suitably and using Corollary 2.7 to reduce
the problem as far as possible. Observe that for jyj1 > jT j

1=4
1 the estimate in Proposi-

tion 3.17 gives the upper bound N .n/"N .n0m1/
1=2jT j

3=8C"
1 . Therefore, by using Propo-

sition 4.7, we obtain the uniform bound

�.vı/.g/

k�.vı/k2
�F;" .N .n2/N .n0m1/jT j1/

1=2C"
�
jT j
� 1
8m�8
1 C .jT j1N .n2//

� 1
8m�4

�
:

If jT j
� 1
8m�8
1 � N .n2/

�1=4, we can use Theorem 1.1 to get a better bound. This leads to

�.vı/.g/

k�.vı/k2
�F;" .N .n2/N .n0m1/jT j1/

1=2C"

�
�
min.jT j

� 1
8m�8
1 ;N .n2/

�1=4/C .jT j1N .n2//
� 1
8m�4

�
:

One concludes by interpolation as in [4].

Appendix A. Evaluation of some integrals

In this appendix we will evaluate local integrals that appear in the residual part ot the
spectral expansion. More precisely, we will calculate the integral

Ip.�p/ D

Z
Z.Fp/nG.Fp/

fp.g/�p.det.g// dg (A.1)

for all fp defined in Section 4.1.
First, we consider

fp.g/ D �p;k.g/ D

´
!�.z/

�1 for g D z 2 Z.F /Xp;k ;

0 else,

for some k.
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Lemma A.1. For k � 0 we haveZ
Z.Fp/nG.Fp/

�p;k.g/�p.det.g// dg D

´
�p.$

k
p /Vol.Xp;k/ if �p is unramified,

0 else.

Proof. The calculation for unramified �p is straightforward, so assume that �p is ramified.
Write Xp;k D

F
i ˛iKp. Then we clearly haveZ

Z.Fp/nG.Fp/

�p;k.g/�p.det.g// dg

D

X
i

�p.det.˛i //
Z
Z.Fp/nG.Fp/

�p.det.g//1Kp.g/ dg:

We now use our choice of Haar measure and the fact that 1Kp.n.x/a.y/k/ D

1op.x/1o�p
.y/ to obtainZ

Z.Fp/nG.Fp/

�p;k.g/�p.det.g// dg

D

X
i

�p.det.˛i //
Z

op

Z
Kp

�p;k.k/

Z
o�p

�p.y/ d�
�.y/ d�Kp.k/ d�.x/ D 0:

This concludes the proof.

Second, we look at

fp.g/ D

´
Vol.Z.op/n QK0;p.1//

�1!�.z/
�1 if g D zk 2 Z.Fp/ QK0;p.1/;

0 else.

Lemma A.2. For a quadratic character �p and !� unramified we have

Ip.�p/ D

´
1 if a.�p/ � 1;

0 else.

Proof. We first observe that for each g 2 QK0;p.1/ we have det.g/ 2 .o�p /
2C$pop. Thus,

if a.�p/ � 1 then �p.g/ D 1 for all g 2 QK0;p.1/.
Let us now assume a.�p/ D b > 1. Since �p ı det is trivial on

K11;p.b/ D

�
1C$b

p op op

$b
p op 1C$b

popp

�
\Kp;

we will start by writing down explicit representatives for QK0;p.1/=K11;p.b/. We obtain

QK0;p.1/ D
G

a2o�p =.1C$pop/

b;a0;d 02op=$
b�1
p op

�
aC$a0 0

$b aC$d 0

�
K11;p.b/:
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Therefore,

Ip.�p/ D
X

a2o�p =.1C$pop/

b;a0;d 02op=$
b�1
p op

�p.aC$pa
0/�p.aC$pd

0/ D 0:

After this warm-up we come to the most interesting case. We consider the truncated
matrix coefficient which served as a test function for p j n. Recall that the new vector
matrix coefficient of a unitary, generic representation � 0p can be written as

ˆ� 0p.g/ D hW� 0p ; �
0
p.g/W� 0pi;

where W� 0p is the Whittaker new vector. The function we need to look at is then given by

fp.g/ D ˆ
0

� 0p
.g/ D

´
ˆ� 0p.a.$

�n1;p
p /ga.$

n1;p
p // if g 2 ZK0p ;

0 else,

with

K0p D

´
Kp if n is even,

K0p.1/ if n is odd:

We can compute the following.

Lemma A.3. If �2p D !�p , then
Ip.�p/ D 0;

unless a.�p/ D 1, in which case the integral may be non-zero but still Ip.�p/ � 0.

Using the finite Fourier coefficients ct;l .�/ for the Whittaker new vectorW� 0p , defined
in [2, (1.6)], we can prove the following nice formula.

Lemma A.4. We have

ˆ� 0p.n.x/gt;l;1/ D
X
m2Z

W� 0p.a.$
m
p //

X
�2Xl

ctCm;l .�/G.�$
m
p x; !� 0p�/:

Proof. First we use the definition of ˆ� . We arrive at

ˆ� 0p.n.x/gt;l;1/ D hW� 0p ; �
0
p.n.x/gt;l;1/W� 0pi

D

Z
F �p

W� 0p.a.y//W� 0p.a.y/n.x/gt;l;1/ d�
�.y/

D

X
m2Z

W� 0p.a.$
m
p //

Z
o�p

!� 0p.v/W� 0p.a.$
m
p v/n.x/gt;l;1/ d�

�.v/:

It is straightforward to check that

a.$m
p v/n.x/gt;l;1 D n.$

m
p vx/gtCm;l;v�1

�
1 0

0 v

�
„ ƒ‚ …
2K1;p.np/

:
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Inserting this together with [19, (11)] and the definition of the Gauß sum completes the
proof.

Proof of Lemma A.3. Put b D max.a.�p/; np/. Then �p ı det and ˆ�p are bi-K1;p.b/-
invariant. Further, we recall

ˆ0
� 0p
.g/ D 1ZKıp.g/ˆ� 0p.a.$

�n1;p
p /ga.$

n1;p
p //:

Thus a simple change of variables yields

Ip.�p/ D

Z
Z.Fp/nG.Fp/

�p.det.g//ˆ� 0p.g/1ZKıp.a.$
n1;p
p /ga.$

�n1;p
p // dg:

It is easy to check that 1ZKıp.a.$
n1;p
p / � a.$

�n1;p
p // is bi-K0;p.b/-invariant. Therefore

the whole integrand is bi-K0;p.b/-invariant, so that we can use [11, Lemma 3.2.4]. This
yields

Ip.�p/ D

bX
lD0

cl
X
t2Z

qtClp

Z
Fp

�p.$
t
p/ˆ� 0p.n.x/gt;l;1/

� 1ZKıp.a.$
n1;p
p /n.x/gt;l;1a.$

�n1;p
p // d�p.x/

for some positive constants cl . We remark that since !� 0p is trivial on the uniformizer,
so is �p. Next we will investigate which restrictions on x, l , and t are imposed by the
characteristic function (up to the centre). One checks that

a.$
n1;p
p /n.x/gt;l;1a.$

�n1;p
p / D z �

�
$k

p x $
n1;p�lCk
p x �$

tCn1;pCk
p

$
�n1;pCk
p $k�l

p

�
:

Here we use the centre to force all coefficients to be in op. This holds for

k � max.n1;p; l;�vp.x/;�vp.x/ � n1;p C l/

and suitable t . But we also need to make sure that the determinant is in o�p . This implies
t C 2k D 0.

We now consider np to be even. In this case Kıp D Kp and we get the conditions

k D n1;p; t D �2n1;p; l � n1;p; �vp.x/ � n1;p: (A.2)

After inserting the formula from Lemma A.4 for the matrix coefficient we obtain

Ip.�p/ D

n1;pX
lD0

clq
l�2n1;p
p

X
m2Z

W� 0p.a.$
m
p //

X
�2Xl

ctCm.�/

�

Z
$
�n1
p op

G.�$m
p x; !� 0p�/ d�.x/: (A.3)
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Inserting the evaluation of the Gauß sum given in [19] together with character orthogo-
nality shows that most of the integrals vanish. We are left with

Ip.�p/ D

n1;pX
lDa.!

�0p
/

clq
l�2n1

X
m2Z

W� 0p.a.$
m
p //cm�2n1;p;l .!

�1
� 0p
/
X
t�0

q
�tCn1;p
p

�

Z
o�p

G.�$mCt�n1
p x; 1/ d�.x/:

We have to consider different cases. First, we deal with representations that satisfy
L.s; �p/ D 1. In this case using [19, (6)–(7)] yields

Ip.�p/ D

n1;pX
lDa.!

�0p
/

clq
l�2n1;p
p c�2n1;l .!

�1
� 0p
/
X
t�0

q
n1;p�t
p

Z
o�p

G.$
t�n1;p
p v; 1/ d�.v/

D

n1;pX
lDa.!

�0p
/

clq
l�2n1;p
p c�2n1;l .!

�1
� 0p
/
h X
t�n1;p

qn1�tp �Fp.1/ � 1
i
D 0:

Second, we consider the case � 0p D �1 � �2 with a.�1/ > a.�2/D 0. In this case we have
a.!� 0p/D a.�1/D np >0. Recall that we are considering np even. Thus, a.!� 0p/ > n1;p �
1. We conclude that Ip.�p/ D 0 since the l-sum is empty. Let us remark that � 0p D �St
for � unramified has conductor 1 and therefore does not need to be considered yet.

We have checked that Ip.�p/ D 0 for np even by considering all necessary types
of � 0p. Now let us turn to np is odd. In this caseKıp D K

0
p.1/ and additionally to (A.2) the

characteristic function forces vp.$
2n1;p�l
p x � 1/ � 1. This implies

l D n1;p and x 2 $
�n1;p
p .1C$pop/:

Analogously to (A.3) we get

Ip.�p/ D cn1;pq
�n1;p
p

X
m2Z

W� 0p.a.$
m
p //

X
�2Xn1;p

c�2n1;pCm;n1;p.�/

�

Z
$
�n1;p
p .1C$pop/

G.�$m
p x; !� 0p�/ d�.x/

D cn1;p

X
m2Z

W�p.a.$
m
p //

X
�2Xn1

a.�!
�0p
/�1

c�2n1;pCm;n1;p.�/

�

Z
.1C$pop/

G.�$m�n1
p x; !� 0p�/ d�.x/

In the last step we have again used the Gauß sum evaluation [19, (6)] and orthogonality
of characters to remove all � with a.�!� 0p/ > 1.
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We have to consider different cases again. First, let us look at �p with L.s; �p/ D 1.
In this case np > 2, since we assume np is odd. By [19, (7)] we get

Ip.�p/ D cn1;p

X
�2Xn1

a.�!
�0p
/�1

c�2n1;p;n1;p.�/

Z
.1C$pop/

G.�$
�n1;p
p x; !� 0p�/„ ƒ‚ …
D0

d�.x/ D 0:

Second, let �pD�1 ��2 with a.�1/ > a.�2/D 0. If npD a.�1/ > 1, we immediately
have a.!� 0p�/>n1;p for all�2Xn1;p . Thus, in these cases Ip.�p/D 0. So we can assume
1 D np D n1;p D a.�1/. Using [19, (6)–(7)] we have the identity

Ip.�p/ D c1 Vol.1C$pop; �/

�

� X
�2X1
�¤!�1

�0p

c�2;1.�/�Fp.1/q
�1=2
p ".1=2; !�1

� 0p
��1/!� 0p.�1/�.�1/

C

X
m�1

�1.$
m
p /q

�m=2
p c�2Cm;1.!

�1
� 0p
/ � �Fp.1/q

�1
p c�2;1.!

�1
� 0p
/
�
:

Here ".1=2; !�1�p0
��1/ denotes the standard GL1 "-factor; see for example [19, p. 5] for

more details. Inserting the expressions for ct;1.�/ given in [2, Lemma 2.3] yields

Ip.�p/ D c1 Vol.1C$pop; d�/!� 0p.�1/

�

� X
�¤!�1

�0p

�Fp.1/
2q�1p C

X
m�1

q�mp C �Fp.1/
2q�2p

�
D c1 Vol.1C$pop; d�/!� 0p.�1/

�
�
�Fp.1/

2q�1p .qp � 2/C �Fp.1/q
�1
p C �Fp.1/

2q�2p

�
:

Observe !� 0p.�1/ D �p.�1/
2 D 1 and deduce that Ip.�p/ � 0.

This leaves us with the last case � 0p D �St for unramified �. Note that in this case
!� D �

2
p D 1 since we have assumed !� 0p.$/ D 1. Thus we are dealing with �p D St

and we have a.� 0p/ D np D n1;p D 1. We obtain

Ip.�p/ D c1
X
m�0

q�mp

X
�2X1

cm�2;1.�/

Z
1C$pop

G.�$m�1
p x; �/ d�.x/:

Evaluating the Gauß sum reveals

Ip.�p/ D c1 Vol.1C$pop/
� X
a.�/D1

�Fp.1/q
�1=2
p �.1=2; ��1/�.�1/c�2;1.�/

C

X
m�1

q�mp cm�2;1.1/ � �Fp.1/q
�1
p c�2;1.1/

�
:
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Using the evaluation of ct:l .�/ given in [2, Lemma 2.1] one obtains

Ip.�p/ D c1 Vol.1C$pop/
� X
a.�/D1

�Fp.1/
2q�1p C

X
m�1

q�2mp C �Fp.1/
2q�2p

�
D c1 Vol.1C$pop/

�
�Fp.1/

2q�1p .qp � 2/C q
�2
p �Fp.2/C �Fp.1/

2q�2p

�
> 0:

This was the last case to consider and the proof is complete.
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