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Nonarchimedean bivariant K -theory

Devarshi Mukherjee

Abstract. We introduce bivariant K-theory for nonarchimedean bornological algebras over a com-
plete discrete valuation ring V . This is the universal target for dagger homotopy invariant, matrically
stable, and excisive functors, similar to bivariantK-theory for locally convex topological C-algebras
and algebraic bivariant K-theory. As in the archimedean case, we use the universal property to con-
struct a bivariant Chern character into analytic and periodic cyclic homology. When the first variable
is the ground algebra V , we get a version of Weibel’s homotopy algebraic K-theory, which we call
stabilised overconvergent analyticK-theory. The resulting analyticK-theory satisfies dagger homo-
topy invariance, stability by completed matrix algebras, and excision.

1. Introduction

Throughout this article, let V be a complete discrete valuation ring with uniformiser � ,
fraction field F , and residue field F . We assume throughout that F has characteristic zero.

Bivariant K-theory was introduced by Kasparov [28, 29] as a unification of complex
topological K-theory and K-homology, with a view towards the Novikov conjecture. It
has since been used in the classification of C �-algebras, the Baum–Connes conjecture,
and in differential topology [30, 31]. There are several equivalent ways of defining bivari-
ant K-theory: in the form introduced by Kasparov, it is a category KK whose objects are
separable C �-algebras and whose morphismsKK.A;B/ are Hilbert B-modules with cer-
tain extra structure. The viewpoint that will be most relevant in this article is the approach
due to Cuntz, which exhibits the morphism space as a noncommutative analogue of the
stable homotopy category [15].

In analogy with the category of noncommutative motives (see [40]), bivariant K-
theory is the universal target for functors on the category of separable C �-algebras that
are homotopy invariant, stable by compact operators, and excisive for extensions with
completely positive sections. Typical examples of such functors are asymptotic, local,
and analytic cyclic homology due to Michael Puschnigg [39] and Ralf Meyer [35]. The
source category of bivariant K-theory has since been enlarged to treat more general topo-
logical algebras, such as the Frechet algebra of smooth functions on a manifold, and the
Weyl algebra with the fine topology (see [16, 18]). This is done using classifying maps of
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extensions of appropriate topological algebras with continuous linear sections. The most
general class of algebras in which bivariant K-theory has been studied is the category
of complete bornological C-algebras. Bivariant K-theory in this generality is discussed
in [17]. Away from the topological setting, a purely algebraic version of bivariant K-
theory is developed in [13]. Together with its equivariant (see [2, 8, 20, 21]), graded, and
Hermitian versions, these algebraic bivariant K-theories have led to important results in
the classification theory of Leavitt path algebras [8, 12].

The analytic K-theoretic invariants we propose use a combination of the tools devel-
oped in the operator algebraic bivariant K-theories and the purely algebraic version. This
is justified by the fact that the topological algebras that arise in nonarchimedean geometry
are completions or analytifications of ordinary V -algebras (see [3]), which necessitates us
to work in a general enough framework that allows for the passage between (homological)
algebra and functional analysis. As in the archimedean case, the right source category to
develop such theories is the category of complete, torsionfree bornological V -algebras.
Functional analysis in this context is developed in [9, 36].

This article follows a series of papers [11, 37, 38] that develop variants of periodic
cyclic homology that have reasonable formal properties for nonarchimedean topological
algebras. More concretely, the analytic cyclic homology complex is a functor

HAW ¹Complete, torsionfree bornological V -algebrasº !
 �����������
Der.Ind.BanF //

into the homotopy category of pro-ind-systems of complexes of Banach F -vector spaces.
It satisfies homotopy invariance with respect to the algebra V Œt �� of overconvergent power
series, stability with respect to suitably complete matrix algebras, and excision for semi-
split extensions of complete, torsionfree bornological V -algebras. One of the main motiv-
ations of this article is to find the universal functor

j W ¹Complete, torsionfree bornological V -algebrasº ! kkan

satisfying these properties. The existence and universality of such a functor means that
kkan-equivalences automatically yield HP .�˝ F / and HA-equivalences. This is import-
ant as although analytic cyclic homology only depends on its reduction mod � when
restricted to a suitable subcategory, we cannot merely work in the bivariant algebraic
kk-category relative to the residue field: kk-equivalences between F -algebras only yield
HA-equivalences, and we do not yet know in what generality analytic and periodic cyclic
homology agree. On the other hand, the more fundamental theory is of course periodic
cyclic homology, and we use its computation for smooth, affinoid dagger algebras to con-
struct Chern characters from homotopy algebraic K-theory to rigid cohomology. This is
the analogue of the Chern character taking values in de Rham cohomology for manifolds.

Finally, in future projects, we also aim to study the Davis–Lück assembly map [19] in
the nonarchimedean analytic setting. In the purely algebraic case, recent work [22] shows
that the left-hand side of the assembly map is a certain colimit of equivariant algebraic
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kk-groups. The assembly map is then a relationship between a variant of topological K-
theory of completed group algebras or crossed product algebras of discrete group actions
and equivariant bivariant analytic K-theory.

The article is organised as follows.
In Section 2, we recall relevant background material on bornological functional ana-

lysis and topological K-theory in the nonarchimedean setting. Section 3 introduces the
overconvergent rigid n-simplex, relative to which we define homotopies. This is defined
as the simplicial ring

Œn� 7! V h�ni� WD V Œx1; : : : ; xn�
�=
DX

xi � 1
E
;

where V Œx1; : : : ; xn�� is the Monsky–Washnitzer algebra. We then describe the matrix
algebras we seek stability results for. These include the �-adic completion Mcont of M1,
which is our main focus.

In Section 4, we define analytic kk-theory. The objects of this category are complete,
torsionfree bornological V -algebras, and its morphisms are

kkan.A;B/ D lim
�!
ŒJnA;Mcont

1 .B/�
n

�;

where J denotes the noncommutative loops coming from the universal tensor algebra
extension. The bounded algebra homomorphisms in the inductive limit are induced by the
classifying maps of the universal extension. As in the topological and algebraic setting, the
definition is constructed in a manner that we have homotopy invariance, Mcont-stability,
and excision for semi-split extensions of complete, torsionfree bornological algebras. Sec-
tion 5 shows that kkan is a triangulated category, where the distinguished triangles are
isomorphic to diagrams of the form

�.B/! Pf ! A! B;

where Pf is the path algebra relative to a bounded algebra homomorphism f WA! B and
�.B/ is the loop functor applied to B .

In Section 6, we study the relationship between our bivariant K-theory and various
constructions defined previously. These include the KV -theories studied by Calvo and
Hamida [5, 26] and the overconvergent version due to Tamme [41]. The definition of the
KV -spectrum is arrived at by topologising the algebraic KV -spectrum. More concretely,
for a Banach V -algebra (resp., affinoid dagger algebra) A, the topological (resp., analytic)
KV -theory spectrum is defined as

KVtop.A/ WD BGLC.Ah��i/ resp., KVan.A/ WD BGLC.Ah��i�/:

The topological and analytic K-theory spectra coincide with the spectrum KV.A=�A/
associated to the reduction mod � . We extend these definitions to nonconnective spectra
using the Banach algebraic suspension y† WD y�=Mcont. The resulting theory, which we call
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overconvergent stabilised analytic K-theory zKan;�.A/ D Kan;�.Mcont.A//, is the Mcont-
stablisation of a version of Weibel’s homotopy algebraic K-theory, which is the functor
on the right-hand side. The functor zKan;� defined on the category of complete, torsion-
free bornological V -algebras is dagger homotopy invariant, excisive and satisfies Mcont-
stability by construction. The universal property of kkan yields a natural map kkan

n .V;A/!
zK

an;�
n .A/, which we show as an isomorphism for each n 2 Z in Theorem 6.11. Since the

overconvergent analytic K-theory groups are an inductive limit of KV an-groups, they
depend only on the reduction mod � of the algebra. In particular, since Weibel’s homo-
topy algebraic K-theory satisfies M1-stability, we have

zKan;�.A�/ Š Kan;�.A�/ Š KH.A=�A/;

whenever A� � yA.
Finally, since bivariant analytic cyclic homology satisfies dagger homotopy invari-

ance, excision, and Mcont-stability, the universal property of kkan yields bivariant Chern
characters

kkan
n .A;B/! HAn.A;B/

for each n. These specialise when A D V to

zKan;�
n .B/

chn
��! HAn.B/

for each n 2 Z. Since periodic cyclic homology also satisfies these properties, we also get
bivariant Chern characters kkan

n .A; B/ ! HPn.A ˝ F; B ˝ F /, which specialise when
A D V to group homomorphisms

zKan;�
n .B/

chn
��! HPn.B ˝ F /

for n 2 Z. When B is the dagger completion of a smooth, finite-type V -algebra, then we
get Chern characters KHn.B=�B/! HPn.B ˝ F / Š

L
j2Z H

nC2j
rig .B=�B; F /. This

is analogous to the p-adic Chern character from the p-completed, rationalised algebraic
K-theory spectrum to the p-completed, rationalised periodic cyclic homology spectrum

K.A=�A;Qp/! HP.A;Qp/

constructed in [1, Definition 2.14].

2. Background

2.1. Preliminaries from bornological analysis

As in [9,11,36,37], we use the framework of bornologies to do nonarchimedean analysis.
A bornology on a set X is a collection of its subsets, which are called bounded subsets
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such that finite subsets are bounded and finite unions and subsets of bounded subsets
remain bounded.

A bornological V -module is a V -moduleM with a bornology such that every bounded
subset is contained in a bounded V -submodule. We call a V -module map f WM ! N

bounded if it maps bounded subsets of M to bounded subsets of N . A bornological
V -algebra is a bornological V -module with a bounded multiplication map. A complete
bornological V -module is a bornological V -module in which every bounded subset is con-
tained in a bounded, �-adically complete V -submodule. Every bornological V -moduleM
has a completion M (see [9, Proposition 2.14]).

Example 2.1. The most basic example of a bornology on a V -module is the fine bornolo-
gy, which consists of those subsets that are contained in a finitely generated V -submodule.
Any fine bornological V -module is complete. By default, we equip modules over the
residue field F with the fine bornology.

Definition 2.2 ([36, Definition 4.1]). We call a bornological V -module M (bornolo-
gically) torsionfree if multiplication by � is a bornological embedding; that is, M is
algebraically torsionfree and ��1 � S WD ¹x 2M W �x 2 Sº is bounded for every bounded
subset S � M . A V -module with the fine bornology is bornologically torsionfree if and
only if it is torsionfree in the purely algebraic sense. For the rest of this article, we briefly
write “torsionfree” instead of “bornologically torsionfree”.

Lemma 2.3. The category of complete, bornologically torsionfree V -modules is com-
plete.

Proof. It only needs to be checked that this category is closed under kernels and products.
Given a map f WM ! N of complete bornological V -modules, its kernel is a closed and
hence a complete bornological V -submodule of M by [36, Theorem 2.3]. For products,
consider a family .Mi /i2I of complete, bornological V -modules. Then, the product borno-
logy on

Q
i2I Mi turns it into a complete bornological V -module. The kernel of a map

between bornologically torsionfree V -modules is a submodule with the subspace borno-
logy and is hence bornologically torsionfree by [36, Lemma 4.2]. Finally, if .Mi /i2I is a
family of bornologically torsionfree V -modules, then there are bornological embeddings
Mi � Mi ˝ F for each i by [36, Proposition 4.3]. These are kernels in the category of
bornological V -modules, which therefore commute with products. So, there is a borno-
logical embedding

Q
i2I Mi �

Q
i2I Mi ˝ F , from which we conclude that

Q
i2I Mi is

bornologically torsionfree.

We will use the following lemma on several occasions in the paper.

Lemma 2.4. [37, Lemma 2.7] Let f WM ! N be a bornological embedding between
complete, bornologically torsionfree V -modules. Then, for an arbitrary complete, tor-
sionfree bornological V -module D, the induced map f ˝ 1D WM ˝D ! N ˝D is a
bornological embedding.
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Proof. Since D is complete and bornologically torsionfree, we may write it as an induct-
ive limit D Š lim

�!i
C0.Xi ; V / of unit balls of Banach F -vector spaces, with bounded,

injective structure maps. This is due to [11, Corollary 2.4.3]. For each i , the embedding f
induces a bornological embedding from C0.Xi ; V / y̋ M Š C0.Xi ;M/ to C0.Xi ; V / y̋
N Š C0.Xi ;N / by Lemma 2.4. The embedding property is preserved by taking inductive
limits. Since the structure maps of the inductive systems .C0.Xi ;M//i and .C0.Xi ; N //i
are injective, the inductive limit is already separated so that no separated quotient occurs.
Since the completed projective tensor product commutes with filtered colimits, we obtain
the desired bornological embedding from D ˝M Š lim

�!i
C0.Xi ;M/ into

lim
�!
i

C0.Xi ; N / Š D ˝N:

Definition 2.5 ([9, 36]). We call a bornological V -algebra D semi-dagger if, for every
bounded subset S � D, the V -submodule

P1
iD0 �

iS iC1 is bounded in D. A complete,
torsionfree, semi-dagger bornological V -algebra is called a dagger algebra.

Example 2.6. Any F -algebra A with the fine bornology is semi-dagger and complete.
The fact that it is semi-dagger follows from the fact that since A is viewed as a V -module
via the quotient map V ! F , for any finitely generated submodule S � A, we have

S˘ D

1X
nD0

�nSnC1 D S:

Example 2.7. Let B be a Banach F -algebra. We assume the norm of B to be submul-
tiplicative. Let D � B be the unit ball. Then, D �D � D, and D becomes a �-adically
complete, torsionfree V -algebra. Conversely, if such an algebra D is given, then D ,!

D ˝ F and there is a unique norm on D ˝ F with unit ball D.
Let D be the unit ball of a Banach F -algebra as above. Then, we call D with the

bornology where all subsets are bounded a Banach V -algebra. This bornology makes D
a dagger algebra.

Definition 2.8 ([9]). Any bornology on a V -algebra D is contained in a smallest semi-
dagger bornology, namely, the bornology generated by the V -submodules of the formP1
iD0 �

iS iC1, where S � D is bounded in the original bornology. This is called the
linear growth bornology. We denote D with the linear growth bornology by Dlg.

If D is torsionfree, then the completion D� WD Dlg is a dagger algebra (see [36, Pro-
position 3.8] or, in slightly different notation, [9, Lemma 3.1.12]).

Definition 2.9 ([37,38]). A bornological V -moduleM is called fine mod � if the quotient
bornology on M=�M is the fine one. Equivalently, any bounded subset is contained in
F C �M for a finitely generated V -submodule F �M .

Example 2.10. Any nuclear bornological V -algebra [38, Definition 3.1] is fine mod � .
Examples of such algebras include torsionfree V -algebras with the fine bornology and any
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torsionfree V -module with the bornology where a subset S is bounded if it is contained
in a bounded V -module T and there is a null sequence .tn/ 2 T such that

S D

´
s D

1X
nD0

cntn W .cn/ 2 l
1.N; V /; s converges in T

µ
:

2.2. Topological K -theories in the nonarchimedean context

In this subsection, we recall some already existing constructions of topological K-theory
in the context of nonarchimedean Banach algebras due to Calvo and Hamida [5,26]. These
are defined by modifying the interval objects of homotopy invariant versions of algebraic
K-theory, namely,KV [27] andKH -theory [43], taking into account the topology on the
algebra. For nonarchimedean Banach algebras, a natural choice of interval object is the
algebra of power series

V hx1; : : : ; xni D
° X
I�Nn

cIx
I
W lim
I
jcI j D 0

±
convergent on the unit polydisc. Equipped with the Gauss norm j

P
cIx

I j WD maxI jcI j,
this is a Banach V -algebra. One then defines a simplicial ring

V h��i WD Œn� 7! V hx0; : : : ; xni=

*
nX
iD0

xi � 1

+
;

where the 0-th term is just V . Now, for any Banach V -algebra, we can form the simplicial
ring Ah��i WD A˝ V h��i, where˝ denotes the completed, projective tensor product in
the category of Banach V -modules. Using this, they define the topological K-theory of a
unital Banach algebra A as the spectrum

Ktop.A/ WD K.Ah��i/;

and its homotopy groups K top
n .A/ for n � 1 as the topological K-theory groups of A. The

extension to non-unital algebras, as before, involves taking the homotopy fibre Ktop.A/ WD

fib.Ktop. zA/! Ktop.V // of the unitalisation zA D A˚ V with the product topology.
Hamida’s topological K-theory is homotopy invariant with respect to the closed unit

disc A1;an.1/ D Sp.V hxi/ with a fixed radius (say radius 1). The recent work of Kerz–
Saito–Tamme [32] develops a theory for Banach algebras over the fraction field F that is
homotopy invariant with respect to discs of all radii simultaneously. That is, their inter-
val object is A1;an D colimrA1;an.r/, where colimrA1;an.r/ D Sp.F hxir / for F hxir D
¹
P
n2N cnx

n W limjcnjrn D 0º. For each such radius r > 0, they define the simplicial
algebra Ah��ir D A˝ F h��ir , which form a projective system

r 7! Ah��ir
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of simplicial algebras upon varying the radius. Taking their connective algebraicK-theory
yields a pro-spectrum

kan.A/ WD lim
r

K.Ah��ir /;

which they call the connective analyticK-theory of an affinoid algebraA. The extension to
nonconnective pro-spectra involves a delooping construction, which the interested reader
can find in [32, Section 4.4]. Since our main motivation is to develop bivariant K-theory
for torsionfree V -algebras, we do not attempt to specialise our theory to that in [32] but
rather only construct an integral version of it.

3. Analytic homotopies, stability, and extensions

In what follows, let Algtf
V denote the category of complete, bornologically torsionfree V -

algebras. Its objects are complete, bornologically torsionfree V -algebras, and its morph-
isms are bounded V -algebra homomorphisms.

3.1. Analytic homotopies

Consider the overconvergent analytic n-simplex defined by

V h��i� WD Œn� 7! V h�ni�;

where V h�ni� D V Œt0; : : : ; tn��=h
Pn
iD0 ti � 1i. This is a simplicial object in the category

Algtf
V .

Lemma 3.1. The simplicial ring V h��i� is weakly contractible.

Proof. Denote by .di /i�0 the face maps of the simplicial group V h��i�. These are defined
as

di .f /.t0; : : : ; tn/ D f .t0; : : : ; ti�1; 0; ti ; : : : ; tn/

for f 2 V h�ni�. By the Yoneda lemma, a 1-simplex x0 2 V h�1i� corresponds to a
morphism of simplicial sets fx0 W�Œ1� ! V h��i� such that fx0.ı0/ D d1.x0/ D 1 and
fx0.ı1/ D d0.x0/ D 0 for ı0 and ı1 2 Hom�.Œ0�; Œ1�/. The required simplicial homotopy
is given by V h��i� ��Œ1�! V h��i�, .g; t/ 7! fx0.t/ � g. This shows that the identity
on V h��i� is null-homotopic, as required.

Using the overconvergent analytic simplex, we simplicially enrich our category. Let
A be a complete, bornologically torsionfree V -algebra. We define the simplicial ring
Ah��i�W Œn� 7! A˝ V h�ni�. The mapping space bifunctor HomAlgtf

V
W Algtf

V

op
� Algtf

V ! S
is defined in the obvious way

HomAlgtf
V
.A;B/W Œn� 7! HomAlgtf

V
.A;Bh�ni�/; (1)

wherein the composition rule for three algebras in Algtf
V is easy to define. With the follow-

ing lemma, we conclude that Algtf
V is a simplicial category.
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Lemma 3.2. For A 2 Algtf
V , the contravariant representable functor HomAlgtf

V
.�;A/ has a

left adjoint defined by the functor

A.�/WS! Algtf
V

op
; AX WD lim

�n!X
Ah�ni�

for a simplicial set X .

Proof. This is part of a general construction. Let C be a locally small category with
colimits and F W� ! C a covariant functor. Then, the functor RW C ! S defined by
R.c/Œn� WD HomC .F.Œn�/; c/ has a left adjoint, given by the Kan extension of F along
the Yoneda embedding yW�! S. The resulting object is a coend, which is a colimit and
hence exists by hypothesis. In our case, the category C is Algtf

V

op, and the functor F is the
contravariant functor �op ! Algtf

V , Œn� 7! Ah��i�. A coend in C is an end in Cop, which
exists in our case since Algtf

V has all limits by Lemma 2.3.

Lemma 3.3. For X 2 S and B 2 Algtf
V , we have BX Š HomS.X;Bh�

�i�/.

Proof. By the adjunction in Lemma 3.2, we have

HomAlgtf
V
.A;BX / Š HomS.X;HomAlgtf

V
.A;B//

forX 2 S andA, B 2 Algtf
V . Then, forAD tV Œt �with the fine bornology, bounded algebra

homomorphisms A! C to a complete, bornologically torsionfree algebra C are in bijec-
tion with bounded V -linear maps V ! C , which in turn are in bijection with C . This
applies to BX on the left-hand side and to each of the n-simplicies HomAlgtf

V
.A; Bh�ni�/

on the right-hand side to yield the desired result.

Now, let S� denote the category of pointed simplicial sets. Suppose .K; �/ 2 S�, we
define

A.K;�/ WD HomS�..K;�/; Ah�
�
i
�/

Š ker.HomS.K;A/! HomS.�; A//

Š ker.AK ! A/

for an algebra A 2 Algtf
V .

We will need the following lemma at several points in the paper.

Lemma 3.4. Let K be a finite simplicial set, � a base point of K, and A a complete,
bornologically torsionfree V -algebra. Then, there are natural isomorphisms

V K ˝ A Š AK ; V .K;�/ ˝ A Š A.K;�/:

Proof. We first consider the unpointed part. Here, we need to show that the canonical map

V K ˝ A D . lim
�n!K

V h�ni�/˝ A! lim
�n!K

.V h�ni� ˝ A/ D AK
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is an isomorphism. That is, tensoring withA preserves limits. SinceK is a finite simplicial
set, it suffices to show that A ˝ � commutes with finite limits, or finite products and
kernels. Since the category of complete bornological modules is additive, finite products
are finite direct sums, which the completed bornological tensor product preserves. The
fact that tensoring with A preserves kernels follows from Lemma 2.4. The pointed part
follows from the fact that the extension of complete bornological V -modules

V .K;�/� V K� V

splits by a bounded V -linear section so that V K Š V .K;�/˚ V . Now, tensor by A and use
the unpointed part to conclude that A˝ V .K;�/ Š ker.AK ! A/ Š A.K;�/.

Now, consider the simplicial subdivision functor sdW S ! S and its accompanying
natural transformation hW sd) 1 (see [25, Section III.4] for the construction). There is an
induced pro-system of simplicial sets

sd�.K/W sd0.K/
hK
 �� sd1.K/

hsd.K/
 ���� � � � :

The functor A.�/WSop! Algtf
V extends to one on inductive systems Ind.Algtf

V / of complete,
torsionfree bornological algebras by termwise application. Applied to sd�.K/, we get an
inductive systemAsd�.K/D ¹Asdn.K/ W n 2Nº of complete, torsionfree bornological algeb-
ras. FixingK, the functor .�/sd�.K/WAlgtf

V ! Ind.Algtf
V / admits an extension to the category

Ind.Algtf
V /. The following carries over from the algebraic setting mutatis mutandis.

Lemma 3.5. For A 2 Ind.Algtf
V /, the functor Asd�.�/W Sop ! Ind.Algtf

V / preserves finite
limits.

Proof. The simplicial subdivision functor sdW S ! S is a left adjoint functor, so it pre-
serves all colimits. Furthermore, for B 2 Algtf

V , the functor B.�/ is a right adjoint functor,
so it preserves all limits. So, it takes colimits in Sop to limits in Algtf

V . Now, if A D
.Ai /i2I 2 Ind.Algtf

V /, then

Asd�.colimlKl / D ¹lim
l
A

sdn.Kl /
i W .i; n/ 2 I �Nº

is a limit, since finite limits are computed termwise in Ind.Algtf
V /.

Now, let A and B be inductive systems of complete, bornologically torsionfree V -
algebras. We can define their mapping space

Hom�Ind.Algtf
V /
.A;B/ WD .Œn� 7! HomAlgtf

V
.A;Bh�ni�//

by extending the mapping space bifunctor defined in equation (1) to inductive systems of
algebras. We can also define

HOM�Ind.Algtf/
.A;B/ WD .Œn� 7! HomAlgtf

V
.A;Bsd�.��///;

and the two mapping spaces are related as follows.
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Proposition 3.6. Let A and B be inductive systems of complete, torsionfree bornological
algebras. Then,

HomS.K;HOM�Ind.Algtf
V /
.A;B// Š Hom�Ind.Algtf

V /
.A;Bsd�K /:

Furthermore, when A is a constant inductive system, then HOMInd.Algtf
V /
.A;B/ is a fibrant

simplicial set (or a Kan complex).

Proof. The proofs in [13, Proposition 3.2.2, Theorem 3.2.3] carry over mutatis mutandis.

We now introduce the notion of homotopy that is relevant for us. Recall that

Ah�1i� D A˝ V Œt ��;

where V Œt �� denotes the dagger completion of the polynomial ring in one variable. There
is a canonical inclusion homomorphism �W A ! Ah�1i splitting the evaluation homo-
morphisms evt WAh�1i� ! A at t D 0; 1. An elementary homotopy F WA1 ! A2h�

1i�

between two bounded V -algebra homomorphisms f1; f2W A0 � A1 is a bounded V -
algebra homomorphism satisfying evt ı F D ft . We say that two morphisms between
complete, torsionfree bornological algebras are homotopic if they can be connected by
a composition of elementary homotopies – that is, homotopy is the equivalence relation
generated by elementary homotopies. Denote by ŒA; B� the set of homotopy classes of
algebra homomorphisms A! B .

Now, let A 2 Algtf
V . We define

A�1
WD A.sd�.S1/;�/; A�nC1

WD .A�n/�
1

;

using which we can define the homotopy groups of the mapping space.

Theorem 3.7. There are natural isomorphisms

ŒA; B�1 � Š �1.HOM�Ind.Algtf
V /
.A;B//:

Proof. To see that the two group structures are isomorphic, we make obvious modifica-
tions to the argument of [13, Lemma 3.3.1].

Similarly, the Hilton–Eckmann argument implies that we can define higher homotopy
groups as ŒA; B�n � Š �n.Hom�

Ind.Algtf
V /
.A;B//, which are abelian for n � 2.

3.2. Stability

Let X and Y be torsionfree bornological V -modules, and let

h�; �iWY ˝X ! V
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be a surjective V -linear map. Such a map is automatically bounded. A pair .X; Y / of tor-
sionfree bornological V -modules with a choice of surjection as above is called a matricial
pair. Given a matricial pair, one can define M.X; Y / as the V -module X ˝ Y with the
product

.x1 ˝ y1/.x2 ˝ y2/ WD hy1; x2ix1 ˝ y2:

This is a bounded morphism and automatically turns M.X;Y / into a semi-dagger algebra.
Its completion M.X; Y /� DM.X; Y / is therefore a dagger algebra by [36, Theorem 5.3].

Remark 3.8. In the case of locally convex C-algebras, the above definition recovers sev-
eral reasonable notions of stability. For instance, if we take X D Y D Cn, then

M.X; Y / ŠMn.C/:

WhenX D Y D
L
n2N C, we get M.X; Y /ŠM1.C/. ForX D Y D l2.N/, M.X; Y /Š

L.l2.N// – algebra of trace class operators on the Hilbert space l2.N/. Here, M.X; Y /

refers to the completed, projective tensor product X ˝ Y , with the appropriate extension
of the bilinear form Y ˝X ! C.

Recall from [11, Section 6] that a homomorphism between two matricial pairs .X; Y /
and .W;Z/ is a pair f D .f1;f2/ of bounded linear maps f1WX!W and f2WY !Z such
that hf2.y/; f1.x/i D hy; xi for all x 2 X and y 2 Y . An elementary homotopy is a pair
H D .H1;H2/ of bounded linear maps H1WX ! W Œt� and H2WY ! Z or H1WX ! W

and H2WY ! ZŒt� such that

Y ˝X Z ˝W Œt�

V V Œt �

H2˝H1

h�;�i h�;�i˝id

�

commutes. Homomorphisms and homotopies of matricial pairs induce homomorphisms
and dagger homotopies of algebras. We are mainly interested in homomorphisms where
f1 D f2, and we call the corresponding algebra homomorphisms standard homomorph-
isms. Any pair .x; y/ 2 X � Y with hy; xi D 1 induces such a bounded algebra homo-
morphism

�WV !M.X; Y /�; 1 7! x ˝ y:

Now, suppose that A is a complete, torsionfree bornological V -algebra; there is a canon-
ical map

�AWA! A˝M.X; Y /�; �A D 1A ˝ �;

where the target algebra is bornologically torsionfree by [36, Proposition 4.12]. Similarly,
when A is an inductive system of complete, bornologically torsionfree algebras, we can
define such a canonical map by applying the map above termwise.

To simplify notation in the case where X D Y , we denote the corresponding matrix
algebra by M�

X . Our main cases of interest are the following matrix stabilisations.
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Example 3.9. Let X D Y D
L
n2ƒ V . This is the free V -module on an arbitrary set ƒ,

which we equip with the fine bornology. It has as basis characteristic functions ¹�n W n 2
ƒº, using which we can define the bilinear form h�n; �mi D ın;m. The corresponding
matrix algebra is Mƒ, the algebra of finitely supported ƒ �ƒ-matrices, which we equip
with the fine bornology. We will denote this matrix algebra by M

alg
ƒ .

Example 3.10. Again, letƒ be an arbitrary set. Now, takeX D Y D3L
n2ƒ V Š c0.ƒ;V /

– the Banach V -module of null sequences ƒ! V with the supremum norm. This is a
bornological module with the bornology where every subset is bounded. The bilinear form
above extends to one on c0.ƒ; V /˝ c0.ƒ; V /! V . The corresponding matrix algebra
M.c0.ƒ; V /; c0.ƒ; V // is isomorphic to c0.ƒ �ƒ;V / with the convolution product. We
will denote this matrix algebra by Mcont

ƒ .

Example 3.11. Let l Wƒ! N be a proper function; that is, for each n 2 N, the set of
x 2 ƒ with l.x/ � n is finite. Define V .ƒ/ as in Example 3.9 and give it the bornology
that is cofinally generated by the V -submodules

Sm WD
X
�2ƒ

�bl.�/=mc��

form2N�. The bilinear form in Example 3.9 remains bounded for this bornology on V .ƒ/.
So, M.V .ƒ/; V .ƒ// with the tensor product bornology from the above bornology is a
bornological algebra as well. It is torsion-free and semi-dagger. So, its dagger completion
is the same as its completion. We denote it by Ml

ƒ. It is isomorphic to the algebra of
infinite matrices .cx;y/x;y2ƒ for which there is m 2 N� such that cx;y 2 �b.l.x/Cl.y//=mc

for all x; y 2 ƒ; this is the same as asking for lim
ˇ̌
cx;y�

�b.l.x/Cl.y//=mc
ˇ̌
D 0 because l

is proper. It makes no difference to replace the exponent of � by bl.x/=mc C bl.y/=mc
or bmax¹l.x/; l.y/º=mc because we may vary m.

Example 3.12. Letƒ be a set with a filtration by a directed set I . That is, there are subsets
ƒS � ƒ for S 2 I with ƒS � ƒT for S � T and ƒ D

S
S2I ƒS . Let l Wƒ! N be a

function whose restriction to ƒS is proper for each S 2 I . For S 2 ƒ, form the matrix
algebra Ml

ƒS
as in Example 3.11. These algebras for S 2 I form an inductive system. Let

lim
�!

Ml
ƒS

be its bornological inductive limit. This bornological algebra is also associated

to a matricial pair, namely, the pair based on lim
�!

V .ƒS /, where each V .ƒS / carries the
bornology described in Example 3.11.

Lemma 3.13. Let F0; F1WM
�

X !M�

Y be two standard homomorphisms, and let

�
M

�

Y
WM�

Y !M2 ˝M�

Y

be the canonical inclusion. Then, �
M

�

Y
ı F0 and �

M
�

Y
ı F1 are dagger homotopic.

Proof. We first observe that M2 ˝M�

Y Š M�

Y˝V 2
. Picking an orthonormal basis ıe1

and ıe2 relative to the bilinear form in Example 3.9, we can define a linear homotopy
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x 7! .1 � t /F0.x/˝ ıe1 C tF1.x/˝ ıe2 between F0 ˝ ıe1 and F1 ˝ ıe2 . Similarly, we
can define a linear homotopy between F1 ˝ ıe1 and F1 ˝ ıe2 . Concatenating them, we
get a homotopy X ! Y ˝ V 2 between the homomorphisms F0 ˝ ıe1 and F1 ˝ ıe1 . This
induces the required dagger homotopy between the algebra homomorphisms �

M
�

Y
ı F0

and �
M

�

Y
ı F1.

Now, let Z be a torsionfree bornological V -module with a nondegenerate, symmetric
bilinear form h�; �iZ ! V and M�

Z its associated matrix algebra. Let �Z � EndV .M
�

Z/

be the multiplier algebra of M�

Z . Explicitly, this consists of pairs .l; r/ of right and left
module maps M�

Z !M�

Z such that x � l.y/D r.x/ � y for x, y 2M�

Z . We equip this with
the equibounded bornology induced by HomV .M

�

Z ;M
�

Z/. Now, suppose that f1 and f2
are homomorphisms of the matricial pair corresponding to Z and satisfy hf1.x/; yiZ D
hx; f2.y/iZ ; we then call the pair f D .f1; f2/ an adjoint pair. Such a pair yields a
multiplier via

f1 � .x ˝ y/ WD f1.x/˝ y; .x ˝ y/ � f2 WD x ˝ f2.y/:

When we additionally have f2f1 D 1Z , we call the pair an adjointable isometry. Such a
pair induces a bounded homomorphism

Adf WM
�

Z !M�

Z ; T 7! f1 � T � f2:

Note that since we assume the bilinear form h�; �iZ to be non-degenerate, the map f2 in an
adjoint pair is unique if it exists. The symmetry assumption on the bilinear form implies
that f �2 D f1.

Now, consider the inductive system

M�

1;Z WD .Mn/n2N ˝M�

Z

of complete bornological V -algebras, where we equip the algebras Mn with the fine
bornology. At each level n, we have Mn ˝M�

Z ŠM�

Z˝V n . Tensoring with the identity
on .Mn/n2N , we get an induced endomorphism 1.Mn/n ˝ Adf WM

�

1;Z !M�

1;Z .

Lemma 3.14. Let f D .f1; f2/ be an adjointable isometry on a torsionfree bornological
V -module Z. Then, �

M
�

Z
ı Adf is dagger homotopic to �

M
�

Z
, and 1.Mn/n2N

˝ Adf is

dagger homotopic to the identity on M�

1;Z .

Proof. The map Adf is the standard homomorphism corresponding to the pair .f1; f2/.
So, by Lemma 3.13, �

M
�

Z
ı Adf is dagger homotopic to �

M
�

Z
. Consequently, �

M
�

1;Z
ı

.1.Mn/n2N
˝Adf /WM

�

1;Z !M2 ˝M�

1;Z is ind-homotopic to �
M

�

Z
. Iteratively, for each

n, we obtain maps

�
M

�

1;Z
ı .1.Mn/n2N

˝ Adf /; �M�

1;Z
WM�

1;Z �M2n ˝M�

1;Z :
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So, it suffices to show that if f; gWA! .Mn/n2N ˝ B are homomorphisms of inductive
systems of complete, torsionfree bornological algebras such that � ı f � � ı g, then f � g.
This follows from the same argument as in [13, Lemma 4.1.1].

To see the relevance of Lemma 3.14, consider a torsionfree bornological V -module Z
with a bilinear form that satisfies Z ˚ Z Š Z and Z ˝ Z Š Z, and the isomorphisms
preserve the bilinear forms. This happens whenever the underlying setƒ in Examples 3.9,
3.10, and 3.12 is infinite for any choice of set-theoretic bijection ƒ � ƒ Š ƒ. In the
complex case, this happens for any separable Hilbert space. We refer to such bornological
V -modules Z as product stable bornological V -modules. We then define the direct sum
˚WM�

Z ˝M�

Z !M2.M
�

Z/ ŠM�

Z and the tensor product

M�

Z ˝M�

Z !M�

Z˝Z
ŠM�

Z

operations on the algebra M�

Z . These definitions extend to the ind-algebra M�

1;Z . By
Lemma 3.14, these operations are associative and commutative up to homotopy, and the
tensor product distributes over the direct sum. Consequently, we get a homotopy semi-ring
.M�

1;Z ;˚;˝/.
For two inductive systems of complete, bornologically torsionfree algebras A and B ,

we define
¹A;Bº WD ŒA;M�

1;Z ˝ B�;

where Z is a product stable bornological V -module (with a choice of bilinear map). To
shorten notation, we will often denote

M�

1;Z.B/ WDM�

1;Z ˝ B:

For each such choice of matrix stabilisation, we can define a category Algtf
M

�

1;Z

whose

objects are inductive systems of complete, torsionfree bornological algebras and whose
morphisms are

HomAlgtf
M
�
1;Z

.A;B/ WD ¹A;Bº:

The fact that this really is a category is shown in the following lemma.

Lemma 3.15. For three algebrasA,B ,C 2 Ind.Algtf
V /, we have a well-defined associative

composition rule ¹B;C º � ¹A;Bº ! ¹A;C º. The identity is given by the homotopy class
of the map �A above.

Proof. Consider representatives of homotopy classes of maps f W A ! M�

1;Z.B/ and
gWB !M�

1;Z.C / in ¹A;Bº and ¹B;C º. LetmWM�

1;Z ˝M�

1;Z !M�

1;Z be the tensor
product of matrices. Then, the composition

A
f
�!M�

1;Z.B/
1˝g
���!M�

1;Z ˝M�

1;Z.C /
m˝1
���!M�

1;Z ˝ C

represents the composition Œg� ? Œf � in ¹A;C º.
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We say that two algebras are matrix homotopy equivalent if they are isomorphic in
the category Algtf

M
�

1;Z

. An algebra A is matrically stable if it is isomorphic to M�

1;Z.A/.

There is a canonical map ŒA; B�! ¹A; Bº, which is an isomorphism if B is matrically
stable.

We end this section by showing that an M2-stable functor acts trivially on inner
endomorphisms, a well-known result in the archimedean setting (see [17, Section 3.1.2]).
Recall that a functor F W Algtf

V ! A into an abelian category is M2-stable if the canonical
map A!M2.A/ induces an isomorphism F.A/! F.M2.A//.

Proposition 3.16. Let F be an M2-stable functor, B 2 Algtf
V and A � B a bornological

subalgebra. Suppose that there are elements x, y 2 B such that

yA; xA � A; axyb D ab; ŒV; x� D ŒV; y� D 0

for a, b 2 A. Then, Ad.x; y/WA! A, a 7! yax is a bounded V -algebra homomorphism,
and F.Ad.x; y// D idF.A/.

Proof. Let �1 and �2WA!M2.A/ denote the two corner embeddings into the upper left
and lower right corners. Then, F.�1/ is an isomorphism by assumption. Furthermore,
conjugation by the matrix

�
0 1
�1 0

�
defines an inner automorphism � WM2.A/! M2.A/

such that � ı �2 D �1. Consequently, F.�2/ is invertible as well. Now, consider the map
Ad.x ˚ id; y ˚ id/WM2.A/!M2.A/; it satisfies Ad.x ˚ id; y ˚ id/ ı �1 D �1 ı Ad.x; y/
and Ad.x ˚ id; y ˚ id/ ı �2 D �2. Since F.�2/ is invertible, the second identity says that
F.Ad.x ˚ id; y ˚ id// D idF.M2.A//. Since F.�1/ is invertible, the first equality says that
F.Ad.x; y// is the identity on A.

3.3. Extensions of complete bornological algebras

Let K
f
� E

g
� Q be an extension of inductive systems of complete, bornologically

torsionfree V -algebras. This can be represented by a diagram .f˛WK˛ � E˛/˛ and
.g˛WE˛�Q˛/˛ of bounded V -algebra homomorphisms, where f˛ D ker.g˛/ and g˛ D
coker.f˛/. An extension as above is called semi-split if g has a bounded V -linear section.

We can now define several canonical extensions as in [13].

Example 3.17 (Path extension). Let

� WD V .S
1;�/
Š

°X
n2N

f 2 V Œt �� W f .0/ D f .1/ D 0
±
Š t .t � 1/V Œt ��:

By definition, this is part of an extension of complete bornological algebras

�� V Œt ��
.ev0;ev1/� V ˚ V:

By Lemma 3.4, we can tensor with a complete, bornologically torsionfree algebra A and

get an extension �.A/� Ah�1i�
.ev0;ev1/� A˚A, which we call the path extension of A.
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Here, �.A/ D �˝ A Š t .t � 1/Ah�1i�. This is split by the bounded V -linear section
defined by A˚ A! Ah�1i�, .a1; a2/ 7! .1 � t /a1 C ta2.

Next, we come to the universal extension. Let F WAlgtf
V ! CBorntf

V be the canonical for-
getful functor that forgets the algebra structure. This has a left adjoint given by the tensor

algebra of a complete, bornologically torsionfree V -module zT .M/ WD
L
n2N M˝n,

whose multiplication is given by concatenation of pure tensors. The tensor algebra is
complete and bornologically torsionfree because M is so; this uses [36, Theorem 4.6 and
Proposition 4.12] and that completions and torsionfreeness are hereditary for direct sums.
By termwise application, these functors extend to inductive systems of complete bornolo-
gically torsionfree V -algebras and modules. We still denote them by zT and F , and their
composition T D zT ı F W Ind.Algtf

V /! Ind.Algtf
V /. The free-forgetful adjuction applied to

the identity on an algebra A 2 Algtf
V yields a semi-split extension

J.A/� T.A/
�A� A

of complete, torsionfree bornological algebras, where J.A/ WD ker.�A/. The V -linear split-
ting is given by the obvious inclusion A! TA into the first tensor factor. This extension
is universal in the following sense.

Lemma 3.18. Let K� E� A be a semi-split extension of complete, bornologically
torsionfree V -algebras. Then, there is a morphism of extensions

J.A/ T.A/ A

K E A;


A 1A

where the map 
A is called the classifying map of the extension. Furthermore, the map 
A
is unique up to homotopy.

Proof. The proof of [13, Proposition 4.4.1] works mutatis mutandis.

In general, let K � E � B be any semi-split extension of complete, torsionfree
bornological algebras and f WA! B an algebra homomorphism. Then, composing with
a choice of section B ! E, we get a bounded V -linear map A! E. Using the universal
property of the tensor algebra, we get a bounded V -algebra homomorphism T.A/! E

extending f . This restricts to an algebra homomorphism 
AW J.A/! K. Furthermore, as
in Lemma 3.18, different choices of sections produce algebra homomorphisms J.A/!K

that are homotopic to 
A.
The following map clarifies the functoriality of the classifying map.

Proposition 3.19. Let
A B C

A0 B 0 C 0

f g
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be a morphism of semi-split extensions of complete, torsionfree bornological V -algebras;
then there is a homotopy commuting diagram

J.C / A

J.C 0/ A0:


C

J.g/ f


C 0

Proof. The proof of [13, Proposition 4.4.2] works mutatis mutandis.

Lemma 3.20. Let A be a complete, bornologically torsionfree V -algebra. Then, for any
complete, torsionfree bornological algebra R, we have a semi-split extension

R˝ J.A/� R˝ T.A/� R˝ A

of complete, bornologically torsionfree V -algebras.

Proof. By Lemma 3.4, tensoring by a complete bornologically torsionfree V -module
preserves bornological embeddings. Applying this to the universal semi-split extension
J.A/� T.A/� A, we get the required extension that splits by the map

1R ˝ �AWR˝ A! R˝ TA;

where �A is the section of T.A/� A.

Corollary 3.21. Let K be a finite pointed simplicial set. Then, there is a homotopy class
of maps J.AK/! J.A/K represented by the following extension:

J.A/K� T.A/K� AK :

These maps are natural in the sense that if K ! L is a morphism of simplicial sets, then
there is a homotopy commuting diagram

J.AK/ J.A/K

J.AL/ J.A/L:

Proof. Consider the universal tensor algebra extension J.A/� T.A/� A. Tensoring by
V K viewed as a complete bornological V -algebra with the fine bornology, we again get
an extension

J.A/˝ V K� T.A/˝ V K� A˝ V K

of complete, bornologically torsionfree V -algebras. The result now follows from Lemma
3.4.

Now, suppose that K ! L is a morphism of finite simplicial sets. Then, the functori-
ality of the assignment K 7! AK gives a morphism of complete bornological V -algebras
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V K ! V L. Tensoring by A, we get a map gWAK ! AL using Lemma 3.4. So, we have a
morphism of extensions

J.AK/ T.AK/ AK

J.AL/ T.AL/ AL:

f g

Now, use Proposition 3.19 and Lemma 3.20.

So far, we have constructed the J -functor on the homotopy category of complete,
bornologically torsionfree algebras. The following lemma shows that the assignment

JWA! JA

is compatible with matrix stabilisations, relative to any product stable bornological V -
module Z.

Lemma 3.22. The functor JW Algtf
V ! Algtf

V extends to a functor on the category Algtf
M

�

1;Z

.

Proof. Any morphism in Algtf
M

�

1;Z

can be represented by a bounded V -algebra homo-

morphism
f WA!M�

1;Z.B/:

This induces a map J.A/! J.M�

1;Z.B// (see Proposition 3.19). Now, apply Lemma 3.20
to the algebra R DM�

1;Z , which provides a map

J.M�

1;Z ˝ B/! J.B/˝M�

1;Z :

The composition of these two maps yields the required representative J.A/ ! J.B/ ˝
M�

1;Z of a homotopy class in ŒJA;M�

1;Z ˝ JB�.

We now define an extension that will be instrumental in defining the mapping space
for bivariant analytic kk-theory and proving several of its properties. Let A be a complete,
bornologically torsionfree V -algebra. Define P WD V .�

1;�/ and P WD V .sd�.�1/;�/, where
sd� is the simplicial subdivision functor discussed before Lemma 3.5. Then,

P Š ker.V Œt ��
ev0
��! V /;

and we have an extension of complete, bornologically torsionfree algebras

�� P
ev1� V;

which upon tensoring with A yields the semi-split extension

�.A/� P.A/� A;
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called the loop extension. Here, �.A/ D �˝ A and P.A/ D P ˝ A, and we have used
Lemma 3.4 to justify that tensoring by A is indeed exact. The V -linear splitting is the one
induced by A � A˚ A! Ah�1i�. Here, P.A/ WD P ˝ A. By the universal property of
the tensor algebra extension, there is a natural map

%AW J.A/! �.A/;

which is unique up to homotopy. In a similar manner, there is a semi-split extension

A�1 � P .A/
ev1� A;

which yields the classifying map J.A/! A�1 , obtained from the composition J.A/!
�.A/! A�1 .

Now, let f WA! B be a bounded V -algebra homomorphism. Then, taking the pull-
back

�.B/ P.B/ �B A A

�.B/ P.B/ B;

f

ev1

(2)

we get the mapping path extension of f .
Let us now consider the matrix algebra M

alg
N from Example 3.9. It is the matrix algebra

corresponding to the matricial pair X D Y D V .N/. These are the V -valued functions
N �N ! V with finite support. It is a dagger algebra with the fine bornology. Consider
the algebra �V of functions f WN �N! V such that the set ¹f .n;m/ W .n;m/ 2N �Nº
is finite, and that there is an N such that the support of the functions f .n;�/WN ! V

and f .�; n/WN! V are bounded by N . This is Karoubi’s cone ring over V . Equipping it
with the fine bornology, it becomes a complete, torsionfree bornological V -algebra, which
we denote simply by � . Furthermore, � contains M

alg
N as a (closed) ideal, whose quotient

† D �=M
alg
N is again a complete bornological V -algebra, called the suspension algebra.

Lemma 3.23. The suspension algebra † D �=Malg
N defined above is bornologically tor-

sionfree.

Proof. Let MZ and �Z denote the algebras of finitely supported functions N �N ! Z
and Karoubi’s cone ring over Z. They yield an extension

MZ
1� �Z � †Z

of Z-algebras as in [13, equation (31)]. This is also a split exact sequence of free Z-
modules. Tensoring with V produces an extension of V -modules

MV
1� �V � †V

that splits by a V -linear map. The fine bornology functor is exact, so applying it yields an
extension

Malg � �� †
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of complete, bornological V -algebras with a bounded V -linear splitting. The existence of
such a splitting implies that † is torsionfree, and since it has the fine bornology, it is also
bornologically torsionfree.

The extension Malg� ��† is called the algebraic cone extension of V . Tensoring
it by a complete, torsionfree bornological V -algebra A, we get an extension

Malg.A/� �.A/� †.A/;

which we call the algebraic cone extension of A.
Next we consider the matrix algebra M�

Z corresponding to Z D 3L
n2N V Š c0.N/,

denoted as before by Mcont. Recall from Example 3.10 that this is the Banach V -algebra
c0.N �N/ of functions N �N! V vanishing at infinity, with the supremum norm. Now,
since the quotient in the extension MV

1� �V � †V is torsionfree, �-adic completion
is exact. Consequently, we get a semi-split extension

bMV
1�

c�V �b†V

of �-adically complete V -algebras. This is also a bornological extension if we equip the
algebras with the bornology where all subsets are bounded, thereby yielding a semi-split
extension Mcont � y�� y† of complete, bornologically torsionfree V -algebras. Finally,
tensoring with a complete, bornologically torsionfree V -algebra A, we again have an
extension of complete, torsionfree bornological V -algebras

Mcont.A/� y�.A/� y†.A/;

which we call the continuous cone extension of A.

Remark 3.24. The �-adically completed suspension extension defined above can be
regarded as a nonarchimedean analogue of the Calkin extension

K.l2.N//� B.l2.N//� Q.l2.N//:

A possible alternative to this version of the Calkin extension, which resembles the C �-
algebraic version, uses the notion of bounded operators on a �-adic Hilbert space F.X/D
¹ WX ! F W j .x/j � 1 for all but finitely many x 2 Xº. This is studied in [6]. We how-
ever find the suspension algebra defined above more conducive to the type of stability
results we seek and have proved in [11]. It is quite plausible that the �-adic Hilbert spaces
and the corresponding operator algebras are special cases of matrix algebras arising from
matricial pairs as in the archimedean case.

Remark 3.25. The reader may have noticed that we have not defined a version of the cone
extension whose kernel is the matrix algebra from Example 3.12. This is because dagger
completion is not an exact functor, so starting with the algebraic cone extension does not
work.
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In light of Remark 3.25, from now on, we restrict our attention to stabilisations by the
Banach algebra Mcont.

We now move on to the Toeplitz extension. In the algebraic case, there is a semi-split
extension

MZ
1� T Z � ZŒt; t�1�

of Z-algebras. This induces an extension of V -algebras MV
1� T V � V Œt; t�1�. With

the fine bornology, this becomes an extension of complete, bornologically torsionfree V -
algebras. Finally, if A is a complete, bornologically torsionfree V -algebra, then there is an
induced semi-split extension

Malg.A/� T .A/� AŒt; t�1�

of complete bornologically torsionfree V -algebras. Here, T .A/D T ˝A and AŒt; t�1�D
A˝ V Œt; t�1�. The interesting extension is, of course, the �-adically completed Toeplitz
extension, which is obtained by taking the �-adic completion

Mcont.A/� yT ˝ A�3V Œt; t�1�˝ A

of the (algebraic) Toeplitz extension, equipping the algebras involved with the bornology
where all subsets are bounded, and then finally tensoring with A.

3.4. Free products and quasi-homomorphisms

We now discuss the free double construction. Let A be a complete, torsionfree borno-
logical V -algebra. Then, the free product Q.A/ WD A � A of A with itself is a complete,
bornological V -algebra. Note that this exists for algebras internal to any closed symmetric
monoidal category with direct sums that commute with ˝. That is, for any such category
C , it is defined by the universal property

Alg.A � B;D/ Š Alg.A;D/ � Alg.B;D/

for algebras A, B , D 2 Alg.C/. Back to our case, denoting by

q.A/ WD ker.Q.A/! A/;

we get a split extension of complete, bornologically torsionfree V -algebras

q.A/� Q.A/� A;

where the splitting is given by each of the two canonical inclusions �1; �2WA� Q.A/.
Being sections, these inclusions satisfy

�1.a/ � �2.a/ 2 q.A/

for all a 2 A. That is, the pair .�1; �2/ is a quasi-homomorphism in the following sense.
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Definition 3.26. Let A, B , and D be complete, bornologically torsionfree V -algebras,
and let B ED be an ideal. A pair of bounded V -algebra homomorphisms f;gWA�D is
called a quasi-homomorphism if f .a/� g.a/ 2 B for all a 2 A, and the linear map f � g
is bounded.

The quasi-homomorphism .�1; �2/ above is universal in the following sense.

Lemma 3.27. Suppose that .f; g/WA! D D B is a quasi-homomorphism; then there is
a unique bounded V -algebra homomorphism f � gWQ.A/! D such that the following
diagram commutes:

A Q.A/ q.A/

A D B:

�1

�2

D

D

f

g D

The induced map q.A/! B is called the classifying map of .f; g/.

Proof. The pair .f; g/ induces a unique bounded algebra homomorphism Q.A/! D by
the universal property of free products. To describe this map explicitly, we first observe
that a monomial a1 ˝ b1 ˝ � � � ˝ an ˝ bn is identified with �1.a1/�2.b1/ � � � �1.an/�2.bn/,
and the image of alternating sums of such monomials under the maps �1 and �2 gener-
ates A � A. The required map f � gWQ.A/! D is defined on each such monomial by
f � g.�1.a1/�2.b1/ � � � �1.an/�2.bn// WD f .a1/g.b1/ � � �f .an/g.bn/. It is bounded because
f and g are bounded. By construction, this map makes the diagram above commute. Fur-
thermore, since f � g and the multiplication map D � B ! B are bounded and the map
Q.A/˝A! q.A/, x ˝ a 7! x � .�1.a/� �2.a// has a bounded linear section, the restric-
tion q.A/! B is bounded.

4. Definition of bivariant analytic K -theory

We now define bivariant analytic K-theory. Let f WA! B be a morphism in Ind.Algtf
V /.

Consider the mapping path extension

B�1 � P.B/ �B A! A

from equation (2), obtained by pulling back the extension B�1 � P.B/� B along f .
As this is a semi-split extension, the universal property of the tensor algebra extension
J.A/� T.A/� A produces a classifying map J.A/! B�1 . Using the functoriality of
J and iterating, we get maps

Jn.A/! B�n
!M�

1;Z.B
�n/

for each n. Let Œ˛n� 2 ŒJn.A/;M
�

1;Z.B
�n/� be a homotopy class represented by a bounded

algebra homomorphism Jn.A/!M�

1;Z.B
�n/. Here,Z is a complete, torsionfree borno-

logical V -module with a bilinear form as in Section 3.2. Using the tensor algebra extension
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again

JnC1.A/ T.Jn.A// Jn.A/

M�

1;Z.B
�nC1/ P.M�

1;Z.B
�n// M1.B

�n/;

˛nC1 ˛n

we get a bounded algebra homomorphism ˛nC1 that represents a homotopy class in
ŒJnC1.A/;M1.B�n/�. The assignment Œ˛n� 7! Œ˛nC1� gives the structure maps of an
inductive system of abelian groups.

Definition 4.1. For a fixed complete, torsionfree bornological V -moduleZ with a bilinear
form, the bivariant analytic K-theory groups (relative to Z) are defined as the colimit

kkan
Z .A;B/ WD colimnŒJnA;M

�

1;Z.B
�n/�

of dagger homotopy classes of bounded V -algebra homomorphisms.

We now define a category whose morphisms are given by kkan
Z .A; B/ for induct-

ive systems of complete, torsionfree bornological V -algebras. Consider the endofunctors
J; .�/S1 W Ind.Algtf

V /� Ind.Algtf
V /. Recall that the loop extension

A�1 � P .A/
ev1� A

induces the classifying map %AW J.A/!A�1 . This defines a natural transformation between
the two endofunctors considered above. More concretely, if f WA! B is a morphism in
Ind.Algtf

V /, we have a homotopy commutative diagram

J.A/ A�1

J.B/ B�1 ;

%A

J.f / f �1

%B

where homotopy commutativity means that

f �1
ı %A D %B ı J.f / 2 ŒJ.A/; B�1 �: (3)

There is a canonical map Œ�;��! ¹�;�º, so the same equality holds under its image in
the latter group. Now, consider the classifying map 
AW J.A�1/! J.A/�

1
constructed in

Corollary 3.21. This induces a map


A ı J.%A/ D �%J.A/W J2.A/! J.A/�
1

2 ŒJ2.A/; J.A/�
1

�; (4)

where the equality of the two maps follows from the uniqueness of classifying maps up to
homotopy. To discuss the composition rule in kkan

Z , we fix some notation. For an algebra
A, define



1;n
A WD .
A/

�n�1
ı � � � ı 
�1

A�n�2
ı 


A�n�1 W J.A�n/! J.A/�
n
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and


m;n
A D 


1;n

Jm�1.A/ ı � � � ı Jm�2
1;nJA ı Jm�1
1;nA W J
m.A�n/! Jm.A/�

n

(5)

for m, n � 0.

Theorem 4.2. Let A, B , and C 2 Ind.Algtf
V /. There is an associative composition product

kkan
Z .B; C / � kkan

Z .A;B/! kkan
Z .A; C /

given by extending the composition of algebra homomorphisms.

Proof. Let Œf � 2 kkan
Z .A; B/ and Œg� 2 kkan

Z .B; C / be represented by the bounded V -
algebra homomorphisms f W Jn.A/!M�

1;Z.B
�n/ and gW Jm.B/!M�

1;Z.C
�m/. Their

composition Œg� ı Œf � is represented by

JnCm.A/
Jm.f /
����!M�

1;Z ˝ Jm.B�n/!M�

1;Z ˝ Jm.B/�
n

!M�

1;Z ˝M�

1;Z ˝ C
�nCm

!M�

1;Z.C
�nCm/:

Here, the morphism

M�

1;Z ˝ Jm.B�n/!M�

1;Z ˝ Jm.B/�
n

is induced by the map Jm.B�n/! Jm.B/�
n

from equation (5). Explicitly, the composition
is represented by the class Œg�n ı .�1/mn


m;n
B � ? ŒJm.f /�. The fact that the definition of

the composition does not depend on specific choices of representatives and is associative
follows equations (3) and (4) and the naturality of the transformation 
A discussed in
Corollary 3.21.

Definition 4.3. We define a category kkan
Z whose objects are complete, bornologically

torsionfree V -algebras and whose morphisms are kkan
Z .A;B/ for two such algebras.

There is a canonical functor j W Algtf
V ! kkan

Z which acts identically on objects and
associates to each morphism f WA! B its image under the canonical maps

HomAlgtf.A;B/! ŒA; B�! ¹A;Bº ! kkan
Z .A;B/:

A morphism f WA! B in Algtf is called a kkan
Z -equivalence if j.f / is invertible in the

category kkan
Z .

In this paper, we will mostly be interested in kkan
Z forZ as in Example 3.10. We denote

the resulting bivariant analytic K-theory simply by kkan for the rest of this paper.

4.1. Excision

In this subsection, we prove that kkan satisfies excision for semi-split extensions of com-
plete, torsionfree bornological V -algebras. The proof follows the same approach as [16,
Section 5] or [13, Section 6.3], so we have decided to be brief in its demonstration. We



D. Mukherjee 26

first fix some notation: let f WA! B be a bounded V -algebra homomorphism between
two such algebras. Consider the path algebra diagram

P.B/ �B A A

P.B/ Š tBhti� B

pf

f

ev1

from Example 3.17. To shorten notation, we denote the pullbackP.B/�B A byPf . When
we use the path algebra P .B/D Bsd�.�1/, we denote the resulting pullback by Pf . These
two path algebras are kkan-equivalent. Excision in the second variable can now be stated
as follows.

Theorem 4.4. Let D 2 Algtf
V , and let A

f
� B

g
� C be a semi-split extension in Algtf

V .
Then, there is a natural long exact sequence

kkan.D;�B/
j.�.g//�

������! kkan.D;�C/
ı
�! kkan.D;A/

j.f /�
����! kkan.D;B/

j.g/�
���! kkan.D;C /

of kkan-groups.

Proof. By adapting the proof of [16, Lemma 5.1], we see that the path extension of g

yields a diagram kkan.D;Pg/! kkan.D;B/
j.g/�
���! kkan.D;C / that is exact in the middle.

Since g is linearly split, there is a kkan-equivalence between A and Pg by [13, Lemma
6.3.2] so that we can identify this diagram with the diagram

kkan.D;Pg/ Š kkan.D;A/
j.f /�
����! kkan.D;B/

j.g/�
���! kkan.D;C /:

Applying the middle exactness of the path extension to the inclusion �g W�C � Pg , we
again get an extension

kk.D;P�g /! kkan.D;�C/! kkan.D;Pg/ Š kkan.D;A/

that continues the extension above. The map ı in the statement of the theorem is the
composition kkan.D; �C/ ! kkan.D; Pg/ Š kkan.D; A/. Now, apply the analogue of
[13, Corollary 6.3.5] to the map gW B � C to get the identification kkan.D; �B/ Š

kkan.D;P�g /, which completes the proof.

Dually, we have the following theorem.

Theorem 4.5. Let D 2 Algtf
V , and let A

f
� B

g
� C be a semi-split extension in Algtf

V .
Then, there is a natural long exact sequence

kkan.C;D/
j.g/�
���! kkan.B;D/

j.f /�
����! kkan.A;D/

ı
�! kkan.�C;D/

j�.g/�
�����! kkan.�B;D/

of kk-groups. Here, ı is the composition of kkan.A;D/ Š kkan.Pg ;D/! kkan.�C;D/.
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Proof. We adapt the proof of [13, Theorem 6.3.7] to our setting. Consider a semi-split
bornological quotient map

f WA! B:

Then, for an Œ˛� 2 kkan.A;D/ such that j.�f /.Œ˛�/D 0 in kkan.Pf ;D/, we can choose an
n such that ˛ ı Jn.�f / is null-homotopic for a representative ˛W JnA!Mcont

1 .D�n/. As
a consequence, there is a bounded V -algebra homomorphism

'W Jn.Pf /! P .Mcont
1 .D�n// ŠMcont

1 .P .D�n//

that is part of the following commuting diagram:

ker.Jn.�f // Jn.Pf / Jn.A/

Mcont
1 .D�nC1/ Mcont

1 .P .D�n// Mcont
1 .D�n/:

Jn.�f /

' ˛

Now, consider the composite map

ˇW JnC1.B/! Jn.�B/! ker.Jn.�f //!Mcont
1 .D�nC1/:

Then, J.f /Œˇ�D Œ˛� by the uniqueness of the classifying map. This shows that the diagram

kkan.B;D/
j.f /�
����! kkan.A;D/

j.pf /�
����! kkan.Pf ;D/

is exact in the middle. The conclusion now follows from [13, Corollary 6.3.3, Corollary
6.3.5], which carries over to our setting.

4.2. Looping and delooping

Recall the loop functor � defined on objects as�.A/ WD ker.P.A/
ev1� A/ and on morph-

isms f WA ! B using the functoriality of � and the canonical map Œ�.A/; �.B/� !
kkan.�.A/;�.B//. In this section, we promote � to a functor on kkan and show that there
is an equivalence of categories.

Proposition 4.6. The functor �W kkan
! kkan is fully faithful. That is,

�W kkan.A;B/! kkan.�.A/;�.B//

is an isomorphism of abelian groups.

Proof. The same proof as in [13, Lemma 6.3.8, Lemma 6.3.9] adapts to our setting. For
clarity, we highlight the map in the other direction, called the delooping map: associate to
a class Œˇ� 2 kkan.A�1 ; B�1/ represented by ˇW Jn.A�1/! B�nC1 the class in kkan.A;B/

represented by JnC1.A/! Jn.A�1/
ˇ
�! B�nC1 . In op. cit., this map is shown to be well

defined at the level of kk.
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The following is a consequence of excision.

Lemma 4.7. Let A 2 Algtf
V . Then, the natural map

%AW JA! �.A/

induces a kkan-equivalence.

Proof. Since the algebras TA and PA are contractible, Theorem 4.4 implies that the
boundary maps kkan.D;�A/! kkan.D; JA/ and kkan.D;�A/ are isomorphisms for all
D 2 Algtf

V . By the naturality of the exact sequences in Theorem 4.4, we get a commuting
diagram

kkan.D;�A/ kkan.D; JA/

kkan.D;�A/ kkan.D;�A/;

Š

id %�A

Š

which implies the result when we put D D JA.

The following description of kkan-classes will be used in the subsequent sections.

Lemma 4.8. Let f W Jn.A/! B�n denote a representative of a class in kkan.A; B/. The
map induced in kkan.�nA;�nB/ by applying �n is given by the following composition:

�n.A/
j.%nA/

�1

�����! Jn.A/
f
�! B�n

Š �nB:

We now show essential surjectivity. But before we get there, we recall infinite sum
rings used in the complex operator algebraic case by Cuntz and in the algebraic case by
Cortiñas–Thom.

Definition 4.9. Let A be a complete, torsionfree bornological V -algebra.

• A sum algebra is a complete, torsionfree bornological V -algebra A together with dis-
tinguished elements ˛1, ˛2, ˇ1, ˇ2 satisfying ˛1ˇ1 D ˛2ˇ2 D 1, ˇ1˛1 C ˇ2˛2 D 1,
and Œ˛i ; v� D Œˇi ; v� D 0 for all v 2 V , i D 1; 2. We denote by

a˚ b WD ˇ1a˛1 C ˇ2b˛2:

• Let B 2 Algtf
V , and let �; WB � A be a bounded algebra homomorphism into a sum

algebra. Let � ˚  be the bounded algebra homomorphism B ! A defined by

b 7!  .b/˚ �.b/:

• An infinite sum V -algebra is a sum algebra A with a bounded V -algebra homomorph-
ism �1WA! A satisfying �1 D idA ˚ �1.

Lemma 4.10. For a unital algebra A 2 Algtf
V , the algebras �.A/ and 1�.A/ are infinite

sum rings.
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Proof. The proof in [13, Lemma 4.8.2] shows that .�.V /; �1V / is an infinite sum V -
algebra. With the fine bornology, this is a complete, bornologically torsionfree algebra,
and the homomorphism �1 is bounded. The induced map

b�1V W1�.V /!1�.V /

is a bounded algebra homomorphism in the bornology where all subsets are bounded. It
satisfies b�1V D idb�.V /˚b�1V and 1�.V / is an infinite sum ring with distinguished elements
given by the class of the distinguished elements in the �-adic completion, which is additive
and hence preserves the relations defining such elements. Tensoring with A, we again get
a bounded V -algebra homomorphism �1A D

b�1V ˝ idAW y�.A/ ! y�.A/ which satisfies
�1.a/ D a˚ �1.a/.

Lemma 4.11. Let .A; �1/ be an infinite sum ring, and let B E A be an ideal such that
�1.B/ � B . Then, B is kkan-equivalent to 0.

Proof. The conditions of Proposition 3.16 are satisfied, and we have

j.idB ˚ �1jB / D j.idB/˚ j.�
1
jB /:

Now, since A is an infinite sum ring, we have j.idB ˚ �1jB / D j.�
1
jB
/, which shows that

j.idB/ D 0 in kkan as required.

Proposition 4.12. Let A 2 Algtf
V . Then, y† is a delooping of A. That is, we have equival-

ences �y†.A/ Š A in kkan.

Proof. Lemma 4.10 shows that, for the unitalisation AC D A˚ V , we have �.AC/ is an
infinite sum ring. Next, Lemma 4.11 shows that, for nonunital A, we have that y�.A/ is
kkan-contractible. Now, consider the extension

Mcont.A/� y�.A/� y†.A/:

By Theorem 4.5, we get that the map

ıD W kkan.A;D/ Š kkan.Mcont
1 .A/;D/! kkan.�y†.A/;D/

is an isomorphism for each D 2 Algtf
V . Setting D D A yields the desired result.

We can now define Z-graded kkan-groups as follows:

kkan
n .A;B/ D

8<: kkan.A;�n.B// for n � 0;

kkan.��n.A/; B/ D kkan.A; y†n.B// for n � 0:

These are called the higher analytic kkan-groups. They express kkan as a Z-graded
category.
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5. The universal property of kkan

In this section, we formulate the universal property of kkan. Let .T ;�T / be a triangulated
category.

Definition 5.1. We say that a functorX WAlgtf
V ! T is excisive if, for any semi-split exten-

sion A
p
� B

q
� C in Algtf

V , there is a map ıW�T X.C/! X.A/ satisfying the following.

• �T X.C/
ı
�! X.A/

X.p/
���! X.B/

X.q/
���! X.C/ is a distinguished triangle in T .

• For a morphism of extensions

A B C

A0 B 0 C 0

f g

the following diagram

�X.C/ X.A/

�X.C 0/ X.A0/

ı

�X.g/ X.f /

ı 0

commutes.

We call a functor X W Algtf
V ! T dagger homotopy invariant if it maps the canonical

bounded algebra homomorphismA!A˝V Œt �� to an isomorphism. It is called matrically
stable (relative to a choice of torsionfree V -module Z as in Section 3.2) if it maps the
canonical map A!M�

Z.A/ into an isomorphism. Recall that we are primarily interested

in the stabilisation relative to Z D 3L
n2N V , which yields the matrix algebra Mcont.

By Propositions 4.6 and 4.12, the loop functor �W kkan
! kkan is an autoequivalence.

As in the algebraic and complex topological case, we similarly have the following the-
orem.

Theorem 5.2. The category kkan is a triangulated category whose distinguished triangles
are diagrams isomorphic to those of the form

�.B/! Pf ! A
f
�! B

with auto-equivalence given by the loop functor �W kkan
! kkan.

Proof. The proof of [13, Section 6.5] carries over mutatis mutandis.

Example 5.3. By construction, the functor j W Algtf
V ! kkan is a dagger homotopy invari-

ant, Mcont-stable functor. For excision, let A� B � C be a semi-split extension, and
let 
 W JC ! A be the classifying map. Then, using the kkan-inverse of %C W JC ! �C

from Lemma 4.7, we get a collection 
 ı %�1C 2 kkan.�C; A/ as per the requirements of
Definition 5.1.
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Adapting the proof of [13, Theorem 6.6.2], we have the following theorem.

Theorem 5.4. LetX WAlgtf
V ! T be a dagger homotopy invariant, Mcont-stable, and excis-

ive functor into a triangulated category. Then, there is a unique triangulated functor
F W kkan

! T such that the following diagram

Algtf
V T

kkan

X

j
F

of functors commutes.

The following are some important applications.

Example 5.5 (Chern characters into periodic cyclic homology). We first start with the
Cuntz–Quillen pro-supercomplex

HP W Alg.CBorF /! Der.
 �������
Ind.BanF //

from the category of complete bornological F -algebras into the derived category of the
quasi-abelian category of pro-systems of inductive systems of Banach F -vector spaces.
The latter category is a triangulated category that arises as the homotopy category of a
model category; this model category structure is studied in [14]. This functor is dagger
homotopy invariant (by [11, Theorem 4.6.1]), Mcont-stable, and excisive (by [35, Theorem
4.34, Section 4.3]). Since tensoring a complete torsionfree bornological V -algebra with
F is an exact functor, the functor

Algtf
V 3 A 7! HP .A˝ F / 2 Der.

 �������
Ind.BanF //

still satisfies these properties. In fact, all these properties hold for bivariant periodic cyclic
homology

HPn.A;B/ WD Hom
Der.
 ������
Ind.BanF //

.HP .A/;HP .B/Œn�/

so that, by Theorem 5.4, we obtain a triangulated functor kkan
! Der.

 �������
Ind.BanF // and

group homomorphisms

chnW kkan
n .A;B/! HPn.A˝ F;B ˝ F /

for all n 2 Z. Setting A D V , we get chnW kkan
n .V; B/! HPn.B ˝ F /. By [9, equation

(14)], when B is the dagger completion of a smooth commutative V -algebra lifting of a
smooth commutative F -algebra, we get Chern characters

kkan
� .V; B/!

M
j2Z

H
�C2j
rig .B=�B;F /;

where the right-hand side is periodified rigid cohomology.
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Example 5.6 (Analytic Chern characters). Now, consider the homology theory defined
in [11]:

HAW Algtf
V ! Der.

 �������
Ind.BanF //;

which again satisfies dagger homotopy invariance, excision, and Mcont-stability. So, The-
orem 5.4 again produces a triangulated functor kkan

! Der.
 �������
Ind.BanF // and group homo-

morphisms
chnW kkan

n .A;B/! HAn.A;B/

for each n 2 Z. We call the group homomorphisms chn analytic Chern characters. Since
the left-hand side is an F -vector space, we get F -linear maps

chnW kkan
n .A;B/˝Z F ! HAn.A;B/

for each n. When A D V , we get group homomorphisms chnW kkan
n .V; B/ ! HAn.B/.

Now, suppose thatB is fine mod � as in Definition 2.9 – this happens when a bornological
algebra is nuclear in the sense of [38, Definition 3.1]. We then have

kkan
n .V; B/˝Z F ! HLn.B/ Š HAn.B/ Š HAn.B=�B/;

where the right-hand side is the analytic cyclic homology defined in [37]. In other words,
in interesting cases, the image of the analytic Chern character depends only on the reduc-
tion mod � of the original algebra. In the next section, we will compare kkan

n .V; B/ with
a version of analytic K-theory defined in [32] for complete, bornologically torsionfree
V -algebras.

Example 5.7 (Analytic exterior product). Let B be a fixed complete, torsionfree borno-
logical V -algebra. Then, the functor �˝BWAlgtf

V ! kkan is excisive, homotopy invariant,
and stable. By the universal property of j W Algtf

V ! kkan, there is a unique extension to a
triangle functor, namely, � ˝ BW kkan

! kkan. As a consequence, there is an associative
product

kkan.A1; B1/˝ kkan.A2; B2/! kkan.A1 ˝ A2; B1 ˝ B2/

for Ai , Bj , i; j D 1; 2 in Algtf
V .

5.1. Bivariant algebraic and analytic K -theories as stable 1-categories

It is by now a well-known folklore that several triangulated categories arise as homotopy
categories of stable1-category. In this subsection, we show that the bivariant algebraic
K-theory of [13] and the analytic version under consideration in this article also arise
this way. Our approach is along the lines of [34, Section 3], which shows that Kasparov’s
KK-theory arises as the homotopy category of the simplicial localisation of separable
C �-algebras at the KK-equivalences. To adapt their result, we first fix some set-theoretic
conventions. Let � be an inaccessible cardinal and U.�/ its associated Grothendieck uni-
verse. By definition, such a cardinal is larger than @k for every k. We say that a category C
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is �-small if its collection of objects and morphisms between any two objects belong
to U.�/.

Now, let Alg� and Algtf
V;� be algebras and complete, torsionfree bornological V-algebras

with generating sets of size at most �. These categories are �-small. Furthermore, for any
two �-small algebras (respectively, complete, torsionfree bornological algebras) A and B ,
the set ŒA; B� of polynomial (respectively, dagger) homotopy classes of algebra homo-
morphisms is �-small. Consequently, since the category of �-small sets has �-small (and
hence @0)-colimits, kkan.A; B/ is �-small. Denote by kk� and kkan

� the full subcategor-
ies of �-small algebras and complete, torsionfree bornological algebras, with morphisms
given by kk�.A; B/ D kk.A; B/ and kkan

� .A; B/ D kkan.A; B/. The same construction
as in [13] yields a functor Alg� ! kk� that is universal for the same properties as kk.
Let kk1;� and kkan

1;� denote the localisations of the1-categories NAlg� and NAlgtf
V;� of

�-small algebras (resp., complete, torsionfree bornological V -algebras) at the kk (resp.,
kkan)-equivalences between �-small algebras. Here, N denotes the nerve of a category.

Proposition 5.8. The1-categories kk1;� and kkan
1;� are �-small, stable1-categories.

Their homotopy categories are the full subcategories kk� and kkan
� .

Proof. We only provide the argument for the category Alg� ; the proof remains the same
for the category Algtf

V;� . Since the category of algebras Alg� is �-small, so is NAlg� , and
therefore so is the localisation kk1;� . To show that kk1;� is stable, we need to show
that it is pointed and has all finite limits, and the loop functor �W kk1;� ! kk1;� is an
equivalence.

Let W be the collection of homomorphisms f WA! B between �-small algebras such
that X.f / is an isomorphism for all homotopy invariant, matrically stable, and excisive
theories X W Alg� ! T with values in a triangulated category. Then, the category Alg� with
weak equivalences given by W and fibrations by Z-linearly split surjections is a fibration
category in the sense of [4]. By [23, Theorems 9.7 and 9.8], there is a universal functor
Alg� ! D to the derived category of the fibration category .Alg� ;W/ that is constructed
to be homotopy invariant, excisive, and matrically stable. In particular, W is non-empty.
Finally, by the universal property of kk� , there is an equivalence of triangulated categor-
ies between D and kk� . The proof of [34, Proposition 3.3] now goes through mutatis
mutandis.

6. Analytic K -theories for bornological V -algebras

In this section, we recall variousK-theoretic constructions in the nonarchimedean setting.
Here, there are several different choices, depending on the homotopy type and the kind
of matricial stability that is desired. For the benefit of the reader, we first list the two
K-theories that are most relevant from the perspective of this article.

Theorem. For each n, there are two additive, abelian group valued functors

zKan
n ;
zKan;�
n W Algtf

V ! Ab;
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called the stabilised and overconvergent stabilised analyticK-theory groups. The functors
zKan
n satisfy homotopy invariance for bV Œt �-homotopies, while zKan;�

n satisfy dagger homo-
topy invariance. Finally, both these functors satisfy stability for the matrix algebra Mcont

and excision for semi-split extensions of complete, torsionfree bornological algebras.

In order to prove the theorem above, we define two intermediary functors Kan
n and

K
an;�
n for each n. These functors are homotopy invariant for bV Œt � and dagger homotopies

but have no interesting stability properties in general. We study these to relate them to
analytic and overconvergent analogues of the Karoubi–Villamayor K-theory groups.

Let A be a unital, complete, torsionfree bornological V -algebra. Consider the con-
tinuous path extension y�.A/� yP .A/

ev1� A, where yP .A/ D ker.Ah�1i
ev0
��! A/. Here,

Ah�1i D A˝ V h�1i, where V h�ni D 5V Œt0; : : : ; tn�=h
Pn
iD0 ti � 1i, and we equip the

Tate algebra bV Œt � with the bornology where all subsets are bounded. This is a semi-
split extension by complete, torsionfree bornological V -algebras. The evaluation map
ev1W yP .A/ ! A induces a group homomorphism GLn. yP .A// ! GLn.A/ between the
groups of n � n- invertible matrices. Taking colimits along the usual corner inclusions of
matrices yields a group homomorphism pW GL. yP .A//! GL.A/, whose image we denote
by GL.A/0. Dividing out this subgroup, we get

KV an
1 .A/ WD GL.A/=GL.A/0

the first analytic KV -group of A. For non-unital algebras A, we use the unitalisation
zA D A˚ V , and define

KV an
1 .A/ WD ker.KV an

1 .
zA/! KV an

1 .V //:

The following properties of KVan
1 .A/ will be used in the remainder of the section.

Proposition 6.1. Consider KVan
1 as a functor Algtf

V ! ModZ.

(1) There is a natural surjection K1.R/� KV an
1 .R/.

(2) KV an
1 is split exact.

(3) Suppose that A� B� C is an extension in Algtf
V such that GL.B/0 ! GL.C /0

is surjective; then there is a long exact sequence

KV an
1 .A/ KV an

1 .B/ KV an
1 .C /

K0.C / K0.B/ K0.A/

(4) KV an
1 is additive, bV Œt �-homotopy invariant, and M

alg
N -stable.

Proof. First, let A be a complete, torsionfree bornological V -algebra. Then, for i ¤ j ,
1C taeij is a path from 1 to 1C aeij . Since elements of the form 1C aeij generate the
subgroupE.R/\ GL.A/, the latter subgroup is contained in GL.A/0. Consequently, we get
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a surjectionK1.A/D GL.A/=E.A/\ GL.A/� GL.A/=GL.A/0 and the latter isKV an
1 .A/

by definition. Now, suppose that A is non-unital. Then, the unital case, together with the
fact that KV an

1 .A/ D ker.KV an
1 .A˚ V /! KV an

1 .V //, implies part (1). To see (2), let
A� B� C be an extension of algebras. The hypothesis that GL.B/0! GL.C /0 is onto
implies that we get an exact sequenceKV an

1 .A/!KV an
1 .B/!KV an

1 .C /. Using the fact
that the functor GL and that tensoring with a complete bornological V -module preserve
kernels, we get a commuting diagram with exact rows and columns:

1 1 1

1 GL. y�.A// GL. y�.B// GL. y�.C//

1 GL. yP .A// GL. yP .B// GL. yP .C//

1 GL.A/ GL.B/ GL.C /:

Now, suppose that the extension A� B� C is split exact. Then, the rows in the dia-
gram above are split exact. Furthermore, it follows from the diagram above that GL.A/0 D
GL.B/0 \ GL.A/. Consequently, KV an

1 .A/! KV an
1 .B/ is injective, and the sequence

KV an
1 .A/! KV an

1 .B/! KV an
1 .C / (6)

is exact. Part (3) follows from part (1) and equation (6). For the homotopy invariance
claim in (4), we show that the split surjectionKV an

1 .Ah�
1i/! KV an

1 .A/ induced by the
evaluation homomorphism is an injection. By split exactness, the kernel of this map is
KV an

1 .PA/ D GL. yPA/=GL. yPA/0, so it only remains to show that GL. yPA/ � GL. yPA/0.
For this, take ˛.s/ 2 GL. yPA/. Then, ˇ.s; t/ WD ˛.st/ 2 GL. yP yPA/ is the required null-
homotopy. The proof of M

alg
N -stability is then similar to that of K1.

The higher analytic Karoubi–Villamayor groups can be defined as

KV an
nC1.A/ WD KV1.

y�n.A//; n � 1:

By Proposition 6.1, since y�.R/ is an infinite sum ring, by adapting the proof of
[7, Proposition 2.3.1] we have that K0.y�.A// D KVan

1 .
y�.A// D 0. Consequently, the

surjection K1.y†.A//� KVan
1 .
y†.A// factors through K0.y†.A//, inducing a surjection

K0.A/� KVan
1 .
y†A/. Now, applying part (3) of Proposition 6.1 to the loop extension

yields a map
KVan

1 .A/! K0. y�.A//: (7)

Substituting y†.A/ for A and composing with the mapK0.A/! KVan
1 .
y†.A//, we get

a morphismK0.A/! K0.y† y�.A//. Note that y† and y� commute. Iterating this construc-
tion, we get a nonconnective version of topological K-theory in our setting.
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Definition 6.2. The analytic K-theory of a complete, torsionfree bornological V -algebra
A is defined as the family of abelian groups

Kan
n .A/ WD lim

�!
m

K0.y†
m y�nCm.A//

for n 2 Z.

We can also express the groups Kan
n .A/ in terms of the analytic KV -groups. To see

this, we replace A by y†.A/ in equation (7) and compose with the map

K0.�/� KV1.y†.�//

to get

KV an
1 .
y†.A//! K0.y† y�.A//! KV an

1 .
y†2 y�.A// D KV an

2 .
y†2.A//:

Iterating, we get an isomorphic inductive system whose colimit is again

Kan
n .A/ Š lim

�!
m

KV an
1 .
y†mC1 y�nCm.A// D lim

�!
m

KV an
nCm.

y†m.A//

for n 2 Z.
As in the bornological C-algebra case, to obtain stability of nontrivial stabilisations,

we need to put this in by hand. Define the stabilised analytic K-theory functors by

zKan
n .A/ WD K

an
n .M

cont.A//

for n 2 Z. This is a functor on the category Algtf
V of complete, torsionfree bornological

V -algebras.

Theorem 6.3. The functors zKan
n on the category of complete, bornologically torsionfree

V -algebras satisfy the following properties:

(1) Additivity.

(2) bV Œt �-homotopy invariance.

(3) Mcont-stability.

(4) Excision for semi-split extensions of complete, torsionfree bornological V -alge-
bras.

The proof of Theorem 6.3 will use the same properties of a version of negative K-
theory whose domain is the category we are working in. But this causes no technical
difficulties as, just like with K0, we forget the topology on the algebra. Specifically, for
n � 0, we define the functors

Kstab
�n W Algtf

V ! ModZ; A 7! K0.y†
n.Mcont.A///;

which we call the stabilised negative K-theory groups of a bornological algebra.
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Lemma 6.4. Let A� B � C be an extension of complete, torsionfree bornological
V -algebras. Then, for n � 0, we have a long exact sequence

Kstab
n .A/ Kstab

n .B/ Kstab
n .C /

Kstab
n�1.C / Kstab

n�1.B/ Kstab
n�1.A/

ı

Proof. We first see that since for any algebra D 2 Algtf
V , y�. zD/ is an infinite sum ring, the

excision sequence for K0 and K1 applied to the cone extension Mcont.D/� y�.D/�
y†.D/ yields K1 y†. zD/ Š K0.Mcont. zD//. Now, consider the extension A� zB� zC in
Algtf

V . Then, by Lemma 2.4, tensoring by y† and Mcont yields an extension

y†.Mcont.A//� y†.Mcont. zB//� y†.Mcont. zC//

again. This yields a long exact sequence

K0.M
cont.A// K0.M

cont.B//˚K0.V / K0.M
cont.C //˚K0.V /

Kstab
�1 .C /˚K

stab
�1 .V / Kstab

�1 .B/˚K
stab
�1 .V / Kstab

�1 .A/;

ı

where we have used the fact thatK0.Mcont/ Š K0.V / since Mcont is �-adically complete
(see [44, Lemma II.2.2]) and the Mtriv-stability ofK0. Splitting off theK�.V / summands,
we get the result for n D 0. The general case follows by iteration.

Proof of Theorem 6.3. Additivity follows from the fact that y† commutes with finite prod-
ucts, which is a consequence of Lemma 2.4. By Proposition 6.1, KV an

1 is bV Œt �-homotopy
invariant. Since Kan

i .A/ D lim
�!n

KVan
iCn.
y†n.A//, the homotopy invariance of Kan

i follows

for each i . Stability follows by construction since Mcont ˝Mcont Š Mcont. To see the
excision claim, letA�B� C be a semi-split extension of complete, torsionfree borno-
logical V -algebras. Then, by Lemma 2.4, we see that repeated tensoring by y† and y� is
exact. The result now follows from the excision of stabilised non-positive K-theory in
Lemma 6.4.

We will now express the analytic KV and K-theory as homotopy groups of appropri-
ate spectra. For a unital algebra A 2 Algtf

V , denote by K.A/D BGL.A/ its connective algeb-
raic K-theory spectrum and by KVan.A/ WD K.Ah��i/ the analytic Karoubi–Villamayor
spectrum. The latter is defined as the spectrum corresponding to the simplicial set .Œn� 7!
K.Ah�ni//, where Ah��i WD A˝ V h��i is the base change with the standard rigid n-
simplex. This is extended as usual to non-unital algebras by taking the homotopy fibre of
the map

KVan. zA/! KVan.V /:
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Recall that the nonconnective algebraic K-theory spectrum K.A/ of a unital algebra
A. Its n-th space is defined as

K.A/n WD �jK.†nC1.A//j;

where � denotes the loop space of a topological space, and j � j is the geometric real-
isation of a simplicial set. The analytic K-theory spectrum Kan.A/ of a unital complete,
torsionfree bornological V -algebra A is defined as the spectrum whose n-th space is

Kan.A/n WD �K.y†nC1.Ah��i// D �K..y†nC1A/h��i/ D �KVan.y†nC1.A//:

As in the purely algebraic case, the homotopy groups of the above spectra and the
analytic KV and K-theory groups previous defined coincide.

Theorem 6.5. For a complete, torsionfree bornological V -algebras A, we have

�n.KVan.A// Š KV an
n .A/

for all n � 1, and �n.Kan.A// Š Kan
n .A/ for all n 2 Z.

Proof. The proofs of Proposition 10.2.1 and Proposition 10.3.2 [7] work mutatis mutandis
once we replace polynomial homotopies by bV Œt �-homotopies.

As in [41, Definition 7.4], we also define a version of analytic K-theory that is dagger
homotopy invariant, as this is the right notion of homotopy invariance for the analytic cyc-
lic theory. To this end, we again define KV an;�

1 .A/ WD GL.A/=GL.A/0 for unital algebras,
and by a completely analogous version of Proposition 6.1, we can use split exactness to
extend to unital algebras. For n � 1, we define KV an;�

nC1.A/ WD KV
an;�
1 .�n.A//. Here, we

have used the path extension �.A/� P.A/� A from Example 3.17. We call the func-
tors KV an;�

n W Algtf
V ! ModZ the overconvergent analytic K-theory. The same construction

as analytic K-theory applied to the overconvergent analytic KV -groups yields

Kan;�
n .A/ WD lim

�!
m

KV
an;�
nCmC1.

y†mC1.A//

for n 2 Z. Finally, we define the spectrum

KVan;�.A/ WD BGL.Ah��i�/;

where A is a unital, complete, torsionfree bornological V -algebra, and extend to nonunital
algebras by KVan;�.A/ D fib.KVan;�. zA/! KVan;�.V //. We call this the overconvergent ana-
lytic KV -spectrum. Its homotopy groups are denoted by KV an;�

n .A/ and are called the
overconvergent analytic KV -groups of A. Likewise, we define a nonconnective spectrum
with n-th space as follows.

Kan;�.A/n D �K.y†nC1.Ah��i�// D �KVan;�.y†nC1.A//

and extend to nonunital algebras by Kan;�.A/ WD fib.K. zA/ ! K.V //; we call this the
overconvergent analytic K-theory spectrum.
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Theorem 6.6. For every complete, torsionfree bornological V -algebra A, we have

�n.KVan;�.A// Š KV an;�
n .A/

for all n � 1 and �n.Kan;�.A// Š K
an;�
n .A/ for all n 2 Z.

Proof. It is similar to the proof of [7, Proposition 10.2.1] and [7, Proposition 10.3.2]. The
only modification is to replace polynomial homotopies by dagger homotopies.

In what follows, let zKan;�
n .R/ WD K

an;�
n .Mcont.R// for a complete, torsionfree borno-

logical V -algebra R. These are called the stabilised overconvergent analytic K-groups of
A.

Theorem 6.7. The stabilised overconvergent analyticK-groups zKan;�
n WAlgtf

V ! ModZ sat-
isfy the following.

(1) Dagger homotopy invariance, that is, Kan;�
n .R/ Š K

an;�
n .R˝ V Œt ��/ for each n 2

Z.

(2) Mcont-matricial stability, that is, Kan;�
n .R/ Š K

an;�
n .Mcont.R// for each n 2 Z.

(3) Excision for semi-split extensions of complete, torsionfree bornological algebras;
that is, for an extension I � E� Q of such algebras, we have a natural long
exact sequence

� � � ! K
an;�
nC1.I /! K

an;�
nC1.E/! K

an;�
nC1.Q/! Kan;�

n .I /

! Kan;�
n .E/! Kan;�

n .Q/! � � �

of overconvergent analytic K-theory groups.

Proof. The same proof as Theorem 6.3 works after making obvious modifications.

Finally, we relate the analytic and overconvergent K-theories with the KV , and KH -
theories of the reduction mod � .

Theorem 6.8. Let A be an F -algebra, and let R be a complete, torsionfree bornolo-
gical V -algebra lifting that reduces mod � to A. Suppose further that R� � yR. Then,
KV

an;�
n .R�/ Š KV an

n .
yR/ Š KVn.A/ for n � 1 and Kan;�

n .R�/ Š KHn.A/ Š K
an
n .
yR/ for

all n 2 Z.

Proof. The overconvergent rigid n-simplex V h��i� embeds into the rigid n-simplex
V h��i, which upon tensoring with the inclusion R�! yR yields an inclusion R�h��i�!
yRh��i. Therefore, we have maps of simplicial groups GL.R�h��i�/! GL. yRh��i/. Since
�n.GL.A�// Š lim

�!m
�n.GLm.A�// for a simplicial abelian group A�, it suffices to prove

that the induced map

�n.GLm.R�
h��i�//! �n.GLm. yRh��i//

is an isomorphism for n � 0 and any m � 1.
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For the isomorphism claim above, the same argument as in [41, Proposition 7.5] car-
ries over. To see the surjectivity of the map in question, take a class in �n.GLm. yRh��i//;
this is represented by a matrix g 2 GLm. yRh�ni/ such that di .g/ D 1 for i D 0; : : : ; n,
where di are the face maps. By [41, Lemma 7.7], there is a sequence of matrices .gN / 2
Mm. yRh�

ni/ that converge to g, satisfying di .gN / D 1 for i D 0; : : : ; n. Since

GLm. yRh�ni/ �Mm. yRh�
n
i/

is open, the sequence .gN / eventually lies in GLm. yRh�ni/. That is, for a sufficiently
large N , gN 2 GLm. yRh�ni/. By [41, Lemma 7.8], it actually lies in GLm.R�h�ni�/. By
Lemma 3.1, yRh��i and hence Mm. yRh�

�i/ and

Mm. yRh�
�
i/00 WD .Œn� 7! ¹g 2Mm. yRh�

n
i/ W kgk < 1º/

are contractible. Here, the norm of a matrix is defined as the maximum of the norm of the
entries. Now, choosing N sufficiently large, we have gNg�1 � 1 2Mm. yRh�

ni/00. The
contractibility of this simplicial set implies that there is an h 2 Mm. yRh�

nC1i/00 such
that d0.h/ D 1 and di .h/ D 0 for all i � 1. By the Neumann series, since khk < 1, we
have 1C h 2 GLm. yRh�nC1i/. Furthermore, ı0.1C h/D gNg�1 and ıi .1C h/D 1. This
implies that ŒgNg�1� D Œ1�, or that ŒgN � D Œg�, proving surjectivity.

To see injectivity, let g 2 GLm.R�h�ni�/ such that di .g/D 1 for i D 0; : : : ; n. Assume
that there exists h2 GLm. yRh�nC1i/ such that d0.h/D g and di .h/D 0 for i > 0. Since the
simplicial abelian group Mm.R

�h��i�/ is contractible, there is an Qh 2Mm.R
�h�nC1i�/

such that d0. Qh/ D g and di . Qh/ D 1 for i D 1; : : : ; nC 1. By the same argument as for
surjectivity applied to Qh � h, there is a sequence .hN / 2Mm.R

�h�nC1i�/ converging to
Qh� h such that ıi .hN /D 0 for i D 0; : : : ; nC 1 and allN . Then, hN C Qh converges to h 2
GLm. yRh�nC1i/. Since GLm. yRh�nC1i/ �Mm.Rh�

nC1i/ is open, applying [41, Lemma
7.8], we have hN C Qh 2 GLm.R�h�nC1i�/ for sufficiently large N . As ı0.hN C Qh/ D g
and ıi .hN C Qh/ D 1 for i D 1; : : : ; nC 1, we have Œg� D Œ1� as required.

What we have proved so far is that KV an;�
n .R/ Š KV an

n .
yR/ for n � 1. The right-hand

side is isomorphic to KVn.A/ for n � 1 by [5, Proposition 2.1] (see also [42, Remark
3.2 (ii)]). The proof uses the fact that we have an extension of simplicial abelian groups

1C �Mm. yRh�
�
i/� GLm. yRh��i/� GLm.AŒ���/

and that Mm. yRh�
�i/ is contractible. The exactness of the inductive limit functor now

yields that KV an
n .R/ Š KVn.A/ for all n � 1.

To see the claim about Kan
n , we replace R in the argument above by y†.R/. Of course,

we still have .y†˝R/� � y†˝ yR. Therefore,

Kan;�
n .R/ Š lim

�!
m

KV
an;�
nCm.

y†m.R�// Š lim
�!
m

KV an
nCm.

y†m. yR//

Š lim
�!
m

KVnCm.†
m.A// Š KHn.A/;

as required.
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The hypotheses of Theorem 6.8 are satisfied by any Banach V -algebra and any affin-
oid dagger algebra. For noncommutative dagger algebras that are not Banach algebras,
one has to check this condition by explicitly computing the dagger completion. This has
already been done for monoid algebras and crossed product algebras (see [36, Section 6,
Proposition 7.5]).

Corollary 6.9. With A and R as in Theorem 6.8, we have zKan;�
n .R�/ Š K

an;�
n .R�/ Š

KHn.A/. In particular, for these algebras, the stabilised and unstable overconvergent
analytic K-theories coincide.

Proof. We have

zKan;�
n .R�/ D Kan

n .M
cont
˝R�/ Š KHn.M1.A// Š KHn.A/;

where the second last isomorphism follows from Theorem 6.8, and the last isomorphism
follows from the M1-stability of homotopy algebraic K-theory.

We now have functors zKan;�
n WAlgtf

V !ModZ which satisfy homotopy invariance, Mcont-
stability, and excision for semi-split extensions of complete, torsionfree bornological V -
algebras. Recall that a functor F W Algtf

V ! A from the category of complete, torsionfree
bornological V -algebras to an abelian category is called half-exact (or homological) if it
maps a semi-split extensionA�B�C to an exact sequence F.A/�F.B/�F.C/.

Theorem 6.10. LetF WAlgtf
V !A be a half-exact, Mcont-stable, additive, homotopy invari-

ant functor. Then, there is a unique homological functor zF Wkkan
!A such that zF ı j DF .

Proof. Consider a semi-split extensionE WDA�B
f
�C in Algtf

V , and let �W�.C/!Pf
be the canonical inclusion. Then, F sends the canonical map A! Pf to an isomorphism,
and for ıFE D F.l/

�1F.�/, the following sequence is exact:

F.�B/! F.�C/
ıFE
��! F.A/! F.B/

F.f /
���! F.C/: (8)

The map ıF
l

corresponding to the loop extension �C � PC � C is the identity map
F.�C/! F.�C/. By the homotopy invariance of F , if B is contractible, then ıGE above
is an isomorphism. In particular, since TC is contractible for any C 2 Algtf

V , we get that
ıFu is an isomorphism for the universal extension of C . By (8), we see that F.%/ is an
isomorphism, where %W JC ! �C is the canonical map. Composing with the image of a
representative cE W JC ! A in kkan of the classifying map, we get that the connecting map
is ıFE D F.cE /F.%/

�1 for any semi-split extension E. Since the connecting maps in kkan

are ıE D cE ı %�1, we are forced to define zF .ıE / WD F.cE / ı F.%/�1.
Now, as the proof of Theorem 5.4 shows, given a class ˛ 2 kkan.A; B/, there is a

unique way to define zF .�n˛/. Let � W�y† ! y†� be the natural isomorphism, and let
ıc 2 ¹�y†.A/;Aº be the connecting map for the cone extension

Mcone.A/� y�.A/� y†.A/:
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Then, the hypotheses on F imply that ıFc is an isomorphism. Furthermore, the class of
ıc� in kkan.y†A;A/ is a natural isomorphism. Consequently, we must have

zF .˛/ D ıFc F.�/
zF .�n˛/F.��1/.ıFc /

�1;

which yields a functorial assignment.
It remains to check that zF W kkan

! A is a homological functor. The distinguished

triangles in kkan are those of the form �A
�f
��! �B ! Pf ! A for a bounded algebra

homomorphism f WA! B . So, it suffices to check that

F.�A/
F.f /
���! F.�B/! F.Pf /! F.A/! F.B/

is exact. This has already been checked everywhere, except at F.A/, which follows from
comparing the sequence above with the path sequence at y†�f .

By Theorem 6.7, zKan;�
0 satisfies the hypotheses of Theorem 6.10. Consequently, there

is a natural map
kkan
0 .V; A/! Hom.Kan;�

0 .V /; zK
an;�
0 .A//: (9)

Theorem 6.11. The map in equation (9) is an isomorphism for all complete, torsionfree
bornological V -algebras. Consequently, we have

kkan
n .V; A/ Š

zKan;�
n .A/

for each n 2 Z.

Proof. Let A be a unital complete, torsionfree bornological V -algebra. Then, any class
in K0.A/ comes from an idempotent e 2 Mtriv.A/ � Mcont.A/. This yields a bounded
V -algebra homomorphism V !Mcont.A/. Since kkan is in particular M2-stable, similar
idempotents yield the same map in kkan

0 .V; A/. Consequently, we obtain a well-defined
natural map

K0.A/! kkan
0 .V; A/

for a unital algebra A. To extend this natural map to non-unital algebras in Algtf
V , we

apply Theorem 4.4 to the extension A� zA! V . Replacing A by Mcont.A/, the map
K0.A/! kkan

0 .V; A/ induces a map

zK
an;�
0 .A/ D K

an;�
0 .Mcont.A// D lim

�!
n

K0.y†
n�n.Mcont.A///

! lim
�!
n

kkan
0 .V;

y†n�n.Mcont.A/// D kkan
0 .V;M

cont.A// Š kkan
0 .V; A/;

which we call ˛.
For the map in the other direction, let e 2 Kan;�

0 .V / Š K0.V / Š K0.F/ be the canon-
ical generator, where the isomorphism is a special case of Proposition 6.13 below. By the
universal property of kkan in Theorem 6.10, there is a natural map

ˇW kkan
0 .V; A/! Hom. zKan;�

0 .V /; zK
an;�
0 .A// Š zK

an;�
0 .A/;



Nonarchimedean bivariant K-theory 43

which maps the class of a bounded algebra homomorphism

� W Jn.V /!Mr ˝Mcont.AsdpSn/

to the image of e under the map

ı�nl ınc
zK

an;�
0 .y†n�/ı�nc ınuW

zK
an;�
0 .V /! zK

an;�
0 .A/:

The proof that the two maps ˛ and ˇ are inverse to each other goes through verbatim from
the purely algebraic case (see [13, Theorem 8.2.1]). Finally, the conclusion follows from
replacing A by �n.A/ for each n.

Corollary 6.12. Let A and R be as in Theorem 6.8. Then, kkan
n .V; R

�/ Š KHn.A/ for
each n 2 Z.

Proof. It follows from Theorem 6.11 and Corollary 6.9.

We end this section by comparing analytic K-theory with our version of negative K-
theory for n � 0 and the analytic Karoubi–Villamayor groups KV an

n for n � 0. Recall
that a ring A is called Kn-regular if the canonical map A! AŒx1; : : : ; xm� induces an
isomorphism

Kn.A/! Kn.AŒx1; : : : ; xn�/

in negative K-theory for all m � 1. Vorst’s theorem says that if a ring is K0-regular, it
is already Kn-regular for n � 0. Examples of Kn-regular rings are, of course, regular
rings. In characteristic zero, an excellent Noetherian k-algebra that is Kdim.A/C1-regular
is regular [10, 33]. In positive characteristic, recent results [24, 33] indicate similar partial
converses.

Proposition 6.13. Let R be a Banach V -algebra such that A D R=�R is Kn-regular for
n � 0. Then,

Kan;�
n .R/ D

´
KVn.R/ for n � 1;

K0.y†
n.R// for n � 0:

Proof. By Theorem 6.8, we have

Kan;�
n .R/ Š KHn.A/ Š

´
KVn.A/ for n � 1;

K0.†
n.A// for n � 0;

where the second isomorphism follows from the Kn-regularity hypothesis. Now, since

y†.R/ D y†˝R

is �-adically complete, by [44, Lemma II.2.2], we have

K0.y†.R// Š K0.†.A//:
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7. Chern characters by lifting to F -vector spaces

Our main result here is that the natural Chern character from the overconvergent, stabil-
ised analytic K-theory constructed in the previous section to analytic cyclic homology
coincides with the Chern character from Weibel’s homotopy algebraic K-theory to the
analytic cyclic homology of the reduction mod � .

7.1. The Chern character on bivariant algebraic K -theory

Recall that the algebraic bivariant K-theory constructed in [13] is the universal functor
j W Algl ! kk into a triangulated category satisfying polynomial homotopy invariance,
M1-stability, and excision. Here, l is a commutative, unital ring. In particular, it applies
to the case we are interested in, namely, the residue field l D F of the discrete valuation
ring V . The correct target for this is the analytic cyclic homology complex HAW AlgF !
 ������������
Kom.Ind.BanF //, which satisfies all the aforementioned properties. By the universal prop-
erty of kk, we get group homomorphisms

chnW kkn.A;B/! HAn.A;B/

for A, B 2 AlgF , n 2 Z. When A D F , the left-hand side is Weibel’s homotopy K-theory
KH�.B/ by [13, Theorem 8.2.1], while the right-hand side is the analytic cyclic homology
HA�.B/ by [37, Theorem 3.10]. So, we get group homomorphismsKHn.B/! HAn.B/
for each n 2 Z. Since the right-hand side consists of F -vector spaces, we summarily have
F -linear maps

KHn.B/˝Z F ! HAn.B/

for each n 2 Z.
As already mentioned in Example 5.6, by the universal property of kkan and the prop-

erties of the functor HAW Algtf
V !

 ������������
Kom.Ind.BanF //, we get group homomorphisms

chnW kkan
n .R; S/! HAn.R; S/

for each n 2 Z andR, S 2 Algtf
V . SettingRD V , Theorem 6.11 and [11, Section 3.1] yield

group homomorphisms
zKan;�
n .S/! HAn.S/

for each n 2 Z. Since the right-hand side is an F -vector space, we get F -linear maps

chn ˝ F W zKan;�
n .S/˝Z F ! HAn.S/

for each n 2 Z.

Remark 7.1. In the complex topological case, we get similar Chern characters

chtop
n WK

top
n .A/˝Z C ! HLn.A/
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from topological K-theory map to local cyclic homology. This map is an isomorphism
for separable C �-algebras in the C �-algebraic bootstrap class (see [35, Theorem 7.7]).
This is unlikely to be true in the nonarchimedean case because the left-hand side could
have nontrivial (and non-isomorphic) groups for each n2Z, while the right-hand side is 2-
periodic by construction. To address this, we take the product periodification zKan;�.S/ev DQ
n2Z
zK

an;�
2n .S/ (resp., zKan;�.S/oddD

Q
n2Z
zK

an;�
2nC1.S/) on the left-hand side and get maps

zKan;�.S/ev ! HA0.S/ and zKan;�.S/odd ! HA1.S/:

7.2. From analytic K -theory to its reduction mod �

The reduction mod � of a torsionfree bornological V -algebra Algtf
V

˝V F
���! AlgF induces

an obvious functor kkan
! kk. On the cyclic homology side, suppose that A is an F -

algebra and D is a dagger algebra that is fine mod � and satisfies D=�D Š A. When
A is smooth, commutative, then there always exists a smooth, commutative V -algebra
lifting R such that R=�R Š A. Taking the dagger completion and equipping it with the
compactoid bornology ensures that the quotient bornology onA is fine. Once we have such
a dagger algebra lifting that is fine mod � , we get a weak equivalence HA.D/ Š HA.A/
by [37, Theorem 5.5] for the model structure constructed in [14]. As a consequence, we
get HAn.R; S/ Š HAn.A;B/ for each n 2 Z, where R and S are dagger algebra liftings
that are fine mod � . Summarily, we have a diagram

kkan
n .R; S/ HAn.R; S/

kkn.A;B/ HAn.A;B/

chn

˝V F Š

chn

of abelian groups for each n 2 Z. Setting R D V and A D F , we get

zK
an;�
n .S/ HAn.S/

KHn.B/ HAn.B/

chn

Š

chn

(10)

for each n 2 Z. By Theorem 6.8, if S is contained in its �-adic completion, the vertical
map of (10) is an isomorphism.

Remark 7.2. Referring again to Remark 7.1, a natural question again arises when the
periodified Chern characterY

n2Z

KH2n.B/˝Z F ! HA0.B/ and
Y
n2Z

KH2nC1.B/˝Z F ! HA1.B/

is an isomorphism for F -algebras B . For F D Fp – the finite field with p-elements, since
algebraicK-theory of F has p-torsion for all higher algebraicK-theory groups, the above
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isomorphism holds. More generally, we expect the result to hold for all algebras in the
algebraic bootstrap class, which is defined as the triangulated subcategory of kk gener-
ated by F . Finally, if we consider algebras A in the algebraic bootstrap class that admit
dagger algebra liftings D that reduce mod � to A with the fine bornology, in light of the
diagram (10), we should get isomorphisms

Kan;�.D/ev Š
Y
n2Z

KH2n.A/! HA0.A/ Š HA0.D/;

Kan;�.D/odd Š
Y
n2Z

KH2nC1.A/! HA1.A/ Š HA1.D/

of F -vector spaces. The algebraic bootstrap class for algebras over arbitrary commutative
rings is presently being investigated by Guillermo Cortiñas.
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