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A local construction of zip period maps of Shimura varieties
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Abstract – Let S be the special fibre of a Shimura variety of Hodge type of good reduction at
a fixed place above p. We give a local approach to the construction of the zip period map for
S , which is used to define the Ekedahl–Oort strata of S . The method employed is p-adic and
group theoretic in nature.
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1. Introduction

1.1 – History of zip period maps

Zip period maps made their debut as background artists during the development
of Ekedahl–Oort (henceforth referred to as EO for brevity) stratification theory for
Shimura varieties. Initially, the EO stratification was defined by Ekedahl and Oort [29]
for the moduli space of principally polarized abelian varietiesAg ˝ Fp of dimension g
in characteristic p > 0 (can be viewed as the Siegel-type Shimura variety) by declaring
that two points .A; �/ and .A0; �0/ over xFp lie in the same stratum if their p-kernels
are isomorphic.
Later on, this stratification was extended to PEL-type Shimura varieties in a series

of papers [14,26–28,35], and to Hodge-type Shimura varieties [34,40]. The underlying
idea is the same as in the Siegel case, i.e., using the isomorphism classes of p-kernels
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of abelian varieties with additional structures. The way of defining and studying these
strata evolves over time. Let S be the special fibre of a PEL-type Shimura variety of
good reduction at p; it is defined over a finite field � (say). In order to describe the
dimension of the EO strata of S , Wedhorn [36] constructed a sequence of morphisms
of stacks over � (later viewed as a period map in characteristic p),

(1.1) S �! BT1 �! DS1;

where BT1 is the stack of BT 1’s (i.e., p-kernels of p-divisible groups) with PEL struc-
tures and DS1 is the stack of Dieudonné spaces with PEL structures (i.e., Dieudonné
modules associated with BT 1’s with extra structure). He also showed that the map
S!BT1 is smooth and the natural map BT1!DS1 given by the crystalline Dieudonné
functor is a homeomorphism.
Soon, Moonen and Wedhorn [28] established the theory of F -zips with the under-

lying idea that an F -zip structure on a vector bundle in characteristic p is like a Hodge
structure in characteristic 0. Moreover, they constructed a morphism of �-stacks

(1.2) S �! ŒGnX��;

where X� is the moduli of trivialized F -zips with PEL structures (of certain type
� determined by S). Here, the map is given by taking the F -zip associated with
the universal BT 1 over S , which is by definition the relative de Rham cohomology
H1dR.A=S/ of the universal abelian scheme A equipped with its F -zip structure. In
fact, an F -zip associated with a BT 1 is equivalent to the corresponding Dieudonné
space defined in [36] and we get that the map (1.2) is essentially the same as (1.1).
Thanks to the analogy of F -zip structures with Hodge structures, they are considered
as period maps in characteristic p.
Based on the theory of F -zips, Pink, Wedhorn and Ziegler [30, 31] defined the

notions ofG-zips (F -zips endowed with aG-structure) and the stack of G-zips of type
� denoted by G-Zip�. They also showed that the stack G-Zip� can be realized as the
quotient stack of G� by some zip group E�. In other words, we have an isomorphism
of �-stacks (see Section 4.1 for the precise definitions and more details)

(1.3) G-Zip� Š ŒG�=E��:

Suppose now that S is of Hodge type and p � 3. In order to extend EO stratification
to Shimura varieties of Hodge type, Zhang [40] (see also [37]) constructed a map of
algebraic stacks (see Section 4.2 for a review of construction),

�WS �! G-Zip�;
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and showed that � is smooth. The EO strata of S are defined as geometric fibres of �.
The strata thus defined are automatically smooth and many properties on these strata
are obtained by translating the information of the target stack into that of S via �.
We call � the zip period map for S . There are also other related maps in the

literature that can be viewed as variants of � , e.g., the perfectly smooth map Sh� !
Shtloc.2;1/� in [38, Remark 7.2.5] (see also [33] for its generalization) and the map
�WS ! D1=K

˘ in [39, Theorem 8.5.2]. Our aim in the present paper is to give an
alternative construction of � while avoiding the language of G-zips, which provides a
different perspective on the zip period map. To be more precise, the composition of �
with the isomorphism (1.3) is reconstructed here.

1.2 –Main results and the strategy of proof

Let .G;X/ be a Shimura datum of Hodge type and denote by �K the Kisin–Vasiu
integral model of the associated Shimura variety ShK.G;X/ of level K, which is hyper-
special at p. This hyperspecial condition on K implies that GQp admits a reductive
Zp-model G , whose special fibre we denote by G. Recall that the integral model �K is
a quasi-projective and smooth scheme over O, the localization at some place above
p of the ring of integers of the reflex field of .G;X/. Write � for the residue field of
O and S WD �K ˝O �. Let �WGm;� ! G� be a representative for the reduction over
� of the G.C/-conjugacy class Œ��C containing the inverses of Hodge cocharacters
Gm;C ! GC determined by .G;X/.
Denote by P˙ � G� the opposite parabolic subgroups of G� defined by �, by

U˙ � P˙ the corresponding unipotent radicals, and by U �� the base change of U�
along the p-power Frobenius � W � ! �. The zip group appearing in (1.3) is a smooth
algebraic group over � given by E� D PC Ë U �� (see Section 4.1 for the group
action). The following nearly trivial observation turns out to be important to this work:
since U �� , as a normal subgroup of E�, acts freely on G� by right multiplication, by
passing to the quotient we obtain a canonical isomorphism of algebraic stacks over �
(Section 5.6):

Œ.G�=U
�
� /=PC� Š ŒG�=E��;

where G�=U �� is represented by a smooth �-scheme. Hence, giving the zip period
map � above is equivalent to giving a PC-torsor, say T , over S and a PC-equivariant
map of �-schemes T ! G�=U

�
� . The natural candidate for T is the scheme IC of

trivializations of the Hodge filtration H1dR.A=S/ � !A=S , respecting certain tensors
that we do not specify in this introduction. We want to emphasize that the parabolic
bundle IC, which is part of the data for the universal G-zip which defines �, is crucial
for our main results.
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Theorem 1.1. There exists an (explicitly constructed) morphism of �-schemes
(Theorem 5.7)


 W IC ! G�=U
�
� :

The map 
 is PC-equivariant, and hence induces a morphism of algebraic �-stacks
(Theorem 5.9)

�WS �! Œ.G�=U
�
� /=PC� Š ŒG�=E�� Š G-Zip�:

Theorem 1.2. We have a natural 2-isomorphism � Š �. Consequently, we give an
alternative construction of the zip period map for S .

The reader is referred to Theorem 6.1 for more details on this. We next describe the
construction of 
 on geometric points. Set k D xFp , an algebraic closure of Fp . From
now on we fix a cocharacter Q�WGm;W.�/ ! GW.�/ of GW.�/ which lifts �. A point
Nx[ D . Nx; ˇ Nx/ 2 IC.k/ consists of a point Nx 2 S.k/ and a trivialization

ˇ Nx W Œƒ
�
k � ƒ

�;1
k
� Š ŒH1dR.Ax=k/ � !A Nx=k� Š Œ

xM � xM1�;

respecting tensors on both sides, where xM and xM1 denote the reduction modulo p of
the contravariant Dieudonné moduleM of the p-divisible groupA NxŒp

1� over k and
respectively its Hodge filtrationM1 (Section 2.3). Here, ƒ�;1k is the weight 1 subspace
ofƒ�

k
induced by �k WGm;k!Gk . Let IC be the integral model over � of IC. The first

step of the construction of 
 on k-points is to choose a lift x[ D .x; ˇx/ 2 IC.W.k//

of Nx[ which provides a lift of ˇ Nx ,

ˇx W Œƒ
�
W.k/ � ƒ

�;1
W.k/

� Š ŒH1dR.Ax=W.k// � !Ax=W.k/�;

and hence a trivialization ofM via the canonical isomorphism H1dR.Ax=W.k// ŠM ,
and then show that via the trivialization ˇx the Frobenius of M admits a uniform
decomposition

sx[ Q�
� .p/ with sx[ 2 G .W.k//;

where Q�� WGm;W.k/ ! G �
W.k/

Š GW.k/ is the base change along � WW.k/! W.k/ of
Q�W.k/. The key point here is that the element sx[ is integral and hence we can take
its reduction modulo p, denoted by sx[ 2 G.k/. Then one proceeds by showing that
the image of sx[ in G�=U �� .k/ is independent of lifts x[ (Lemma 5.5); we denote it
by 
 Nx[ . To summarize, the map 
 on k-points is given by performing the following
operations (Section 5):

Nx[ 2 IC.k/ choose x
[

sx[ 2 G .W.k//
mod p

sx[ 2 G.k/

projection

 Nx[ 2 G�=U

�
� .k/:(1.4)
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The technical heart of the construction of 
 in Theorem 1.1 is to justify the operations
in (1.4) and to show that these operations can be performed in a relative sense: for
every smooth �-algebra NR which (automatically) admits a simple frame (equivalently,
a crystalline prism if one prefers) and every point Nx[ 2 IC. NR/, we can construct a
point 
 Nx[ 2 G�=U �� . NR/ whose specialization at geometric points coincides with (1.4);
see Proposition 5.4. This relative construction relies on relative classifications of p-
divisible groups as in [10] and is more complicated in the sense that in the relative
setting we need to compare not only different lifts x[ as aforementioned, but also
different choices of simple frames for NR. The independence of these two different types
of choices are proved via matrices calculations; see Section 5.4. Finally, the global
map 
 W IC ! G�=U

�
� is obtained by first constructing it on Zariski opens of IC and

then gluing the local maps together.
Let us now compare � with �. Zhang’s construction [40] of the map � uses the

global geometry in positive characteristic, namely the language of G-zips, but follows
the original definition of EO stratification forAg in spirit. This is because the stack
G-Zip� can be viewed as the moduli space of BT 1’s, while the universal G-zip for
� corresponds to the universal BT 1, namelyAŒp� over S . In particular, the map � is
determined byAŒp�. We remark that in the biased opinion of the current author, the
language ofG-zips is somewhat complicated. To witness, aG-zip involves three torsors
plus some delicate zip relations. In contrast, we work locally (because of the need
for Frobenius lifts) during our construction of � and the process makes use of more
group-theoretic arguments. Our endeavor employs properties of the parabolic bundle
IC and its integral model IC to the fullest extent needed. From our construction, the
reader may hopefully be able to better see the role that the zip group E� D PC Ë U ��
plays in the business of zip period maps.On the other hand, our approach does not start
withAŒp� which obscures the dependence of 
 (and, hence of �) onAŒp� in the end.
Our proof of Theorem 1.2 is not formal, partly because the canonical isomorphism
ŒG�=E��

can
Š G-Zip� is not.

This work has some overlap with my Ph.D. thesis [39]. The relationship between
these two works will be made transparent in a paper to be written in the near future.

1.3 – Convention and notation

Throughout the paper we fix a prime number p � 3. The Dieudonné crystals (resp.
modules) used in this paper are contravariant. Let R be a ring andM an R-module.
If � WR ! R is a ring endomorphism we write M � D ��M for the base change
M ˝R;� R. If M is finite locally free, we denote by M � its dual R-module. Then
we have the canonical identificationM˝

can
ŠM �;˝ of R-modules, whereM˝ is the

direct sum of all R-modules obtained fromM by applying the operations of taking
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duals, tensor products, symmetric powers, and exterior powers. Here, as a general
convention, the notation “

can
Š” means canonical isomorphism between mathematical

objects. For any R-automorphism f WM Š M , we have an induced isomorphism
.f �1/�WM � !M �, a 7! f �1 ı a, and hence a canonical isomorphism of R-group
schemes . � /_WGL.M/

can
Š GL.M �/, g 7! g_ WD .g�1/�. We also use the letterM to

denote a Levi subgroup (of some algebraic group), but it will be always clear from the
context whetherM is a module or an algebraic group. We will use the notation Nx to
indicate that Nx itself is in the characteristic p world or is the reduction modulo p of x,
assuming that such statements make sense.
For an Fp-algebra NR, we use � W NR! NR for the absolute (i.e., p-power) Frobenius

of NR. If X is a scheme over NR, we write X� for its pull-back along � and � WX ! X�

for the relative Frobenius over NR. In particular, when X is defined over Fp , sometimes
we also write � WX ! X for the composition of the relative Frobenius of X with the
canonical isomorphism � WX�

can
Š X . Similarly, if f WX ! Y is a map between objects

over NR, we write f � for its base change along � W NR! NR. Now let k be a perfect field
and G a group scheme over W.k/, which is defined over Zp. For a W.k/-algebra R
with a Frobenius lift � D �RWR! R over W.k/, we often denote by

(1.5) � WG .R/! G .R/

the homomorphism induced by � WR! R. Note that � is only a Zp-endomorphism,
and not a W.k/-endomorphism in general. We abuse language and also call (1.5) the
“Frobenius” of G . In the case that G is defined over Fp , this Frobenius coincides with
the relative Frobenius mentioned above.
In this paper, we systematically use right actions instead of left or mixed actions

for quotient stacks. As an example, the stack ŒG�=E�� in this paper corresponds to
ŒE�nG� � found in the literature.

2. Classification of p-divisible groups (recollection)

Throughout this section we let k be a perfect field of characteristic p and denote by
� WW.k/! W.k/ its unique ring automorphism inducing the absolute Frobenius of k.

2.1 – Existence of simple frames

Lemma 2.1. Let NR be a k algebra which Zariski locally admits a finite p-basis
([10, Definition 1.1.1] or [4, Definition 1.1.1]). The following hold:

(1) There exists a p-complete flatW.k/-algebra R lifting NR (i.e., R=pR Š NR), which
is formally smooth over W.k/ with respect to the p-adic topology. Such an R is
unique up to (nonunique) isomorphisms and we call it a lift of NR.
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(2) There is a ring endomorphism � D �RWR! R lifting the absolute Frobenius of
NR, which is compatible with � WW.k/! W.k/. We call it a Frobenius lift of R

over W.k/.

(3) Let NR, R be as above and NA an étale NR algebra. Then there exists a formally étale
R-algebra A (for the p-adic topology), unique up to unique isomorphism, such
that A lifts NA and the structure ring homomorphism R ! A lifts the structure
homomorphism NR ! NA. Moreover, every Frobenius lift �RWR ! R of R over
W.k/ extends uniquely to a Frobenius lift �AWA! A of A over W.k/.

(4) Let .R; �/ be as above. If m is a maximal idea of R, then � extends uniquely to
a Frobenius lift of the m-adic completion yRm of R, which is a lift of the m-adic
completion of NR.

Proof. Items (1) and (2) are special cases of [17, Lemma 2.1] (take I D .p/)
and (3) is a special case of the first part of [17, Lemma 2.5]. For (4), note first
that �.m/ � m. This follows from the fact that m contains p, and the fact that the
morphism Spec NR! Spec NR, induced by the absolute Frobenius of NR, is the identity
on topological spaces. Hence we can define � yRm

W yRm ! yRm by sending an element
.ri /i 2 lim

 �i
R=mi D yRm to .�.ri //i 2 yRm.

Example 2.2 ([4, §1.1.2]). The main examples of NR in our later applications are
the following:

• NR is a perfect k-algebra (the empty p-basis case). In this case, the unique simple
frame of NR (up to unique isomorphism) is given by .W. NR/; �/.

• NR is a smooth k-algebra of finite type. Here, Zariski locally NR indeed admits a finite
p-basis: Zariski locally NR is étale over some polynomial algebra NAD kŒx1; : : : ; xn�,
which has the standard p-basis ¹x1; : : : ; xnº; then the image of this p-basis in NR
forms a p-basis of NR, as the relative Frobenius map NA˝�; NA NR! NR, a˝ r 7! arp

is an isomorphism (hence the Frobenius � W NR ! NR can be identified with the
canonical ring map NR! NA˝�; NA

NR, r 7! 1˝ r).

Definition 2.3. Let NR be as in Lemma 2.1. A simple frame of NR, relative toW.k/,
is a pair R D .R; �/, where R is a lift of NR and � WR! R is a Frobenius lift of R.

Remark 2.4. A simple frame .R; �/ over W.k/ of NR is the same thing as a
crystalline prism over the base prism .W.k/; �/ in the sense of Bhatt and Scholze [6].
To say the same in fancier language, simple frames of NR should perhaps be termed
(crystalline) prismatic charts of NR.
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2.2 – Classification of p-divisible groups over NR

Let NR be as in Lemma 2.1 and R a simple frame of NR. Till the end of this section,
we assume further that

NR is as in Example 2.2:

As preparation for later sections, in this subsection we review results on the classi-
fication of p-divisible groups over NR (and over R in Section 2.3), in terms of linear
algebra data over the simple frame .R; �/.
We denote by y�R the module of p-adically continuous differentials of R, i.e.,

y�R WD lim
 �
n

�1.R=pnR/=W.k/:

It is a finite projective R-module due to the existence of a finite p-basis of NR. We
denote the category of Dieudonné modules with connections by DM.R;r/. Here, a
Dieudonné module with connection (or simply a Dieudonné module) over R (or simply
over R when � is chosen) is a tuple .M; F;V;rM /, whereM is a finite locally free
R-module and FWM � !M , VWM !M � are maps between R-modules such that

(2.1) F ı V D p � idM� ; V ı F D p � idM ;

and where rM WM !M ˝R y�R is an integrable topologically quasi-nilpotent con-
nection over the p-adically continuous derivation dRWR! y�R of R, with respect to
which F is horizontal, i.e., rM ı F D .F˝ idy�R/ ı �

�.rM /.
For a p-divisible group xH over NR, we denote by D�. xH/ the Dieudonné crystal1 of
xH as in [3], which coincides with the construction in [22] up to duality: to be precise,
our D�. xH/ here corresponds to the Dieudonné crystal D. xH�/ in [22], with xH� the
dual p-divisible group of xH . Following the usual convention, we write D�. xH/.R/ for
the evaluation of D�. xH/ at the canonical PD-thickening R� NR. By functoriality of
the formation of Dieudonné crystals, we have D�;� . xH/ D D�. xH � /, where D�;� . xH/

is the pull-back along � W NR ! NR of D�. xH/. Consequently, we have a canonical
isomorphism D�;� . xH/.R/ Š D�. xH/� of R-modules. The Frobenius xH ! xH � and
Verschiebung xH ! xH � induce morphism of crystals,

FWD�. xH � /! D�. xH/; VWD�. xH/! D�. xH � /;

(1) The superscript � in D�. xH/ is used to indicate that our Dieudonné crystal here is
contravariant.
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such that F ı V D p � idD�. xH/ and V ı F D p � idD�. xH� /. Evaluating at the thickening
R� NR we obtainR-linear maps F, V forD�. xH/.R/, just like an object inDM.R;r/
satisfying (2.1). Denote by .BT= NR/ the category of p-divisible groups over NR. The
following classification result is known.

Remark 2.5. IfH D NAŒp1� for some abelian scheme NA over NR (the case we are
mostly concerned with in later applications), we have the canonical isomorphism of
Dieudonné crystals ([3, Proposition 3.3.7, Théorème 2.5.6])

D�. xH/ Š D�. NA/ Š R1�CRIS;�OcrisNA ;

where � W NA! Spec NR is the structure morphism. It follows then that we have the
following canonical isomorphism of R-modules, which is Frobenius equivariant:

H1cris. NA=R/ Š D�. xH/.R/:

Theorem 2.6. For any p-divisible group xH over NR, there exists a natural connec-
tion rM WM !M ˝R y�R for M D D�. xH/.R/ such that the tuple

M D .M;F;V;rM /

is an object in DM.R;r/. Moreover, such an assignment gives an equivalence of
categories between .BT= NR/ and DM.R;r/.

Proof. If NR is a perfect k-algebra, this is an unpublished result of Gabber relying
on a result of Berthelot [2], where the case of a perfect discrete valuation ring is dealt
with; see also [20, 32] for different proofs. In this case, the connection can even be
suppressed in the definition of a Dieudonné module. If NR is a smooth k-algebra of finite
type, this follows from [10, Theorem 4.1.1, Definition 2.3.4, Proposition 2.4.8]: indeed,
since NR satisfies [10, §1.3.1.1] by [10, Example (1.3.2.1)], we have that X D Spec NR
satisfies the hypothesis of [10, Theorem 4.1.1] by [10, Example (2.4.7.2)].

2.3 – Classification of p-divisible groups over R

The setting is the same as in the previous Section 2.2. Now we start with a p-
divisible group H over R and write xH D H ˝R NR. For the dual p-divisible group
H�, in [22, Corollary IV.1.14] a universal extension 0! !H ! E.H�/! H� ! 0

is constructed; taking Lie (following the notation in [22, IV.1.14]), we get an exact
sequence of locally free R-modules

0! !H ! Lie.E.H�//! Lie.H�/! 0;
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where !H is the sheaf of invariant differentials of H . Moreover, it follows from
the construction of D�. xH/ that we have a canonical isomorphism Lie.E.H�// Š
D�. xH/.R/ of R-modules ([22, §IV.2.5.4], see also [3, Corollaire 3.3.5]) and thus we
can identify them. Similarly we have an exact sequence for xH ,

0! ! xH ! D�. xH/. NR/! Lie. xH�/! 0:

Here we stress that the submodule !H � D�. xH/.R/ is a locally direct summand
of D�. xH/.R/ which lifts the locally direct summand ! xH � D�. xH/. NR/. Let M 2
.BT= NR/ be the Dieudonné module corresponding to xH . Write xFW xM � ! xM for the
reduction modulo p of F. Set xM 1 WD ! xH , called the Hodge filtration of xM . Then we
have the relation

(2.2) xM 1;�
D Ker.xF/ � xM � :

Denote by .BT=R/ the common category of p-divisible groups over SpecR and
over Spf R (justified by [10, Lemma 2.4.4]) and the category of tuples .M;M 1; F;
V; rM / by AFDM.R; r/, where .M; F; V; rM / is an object in DM.R; r/ and
M 1 �M is a locally direct summand, lifting the locally direct summand xM 1 � xM .
Morphisms are obvious ones. We call objects in AFDM.R;r/ admissibly filtered
Dieudonné modules over R (or simply, over R when � is chosen); cf. [22, Definition
V.1.4].

Remark 2.7. For the purpose of future reference, we recall the following well-
known comparison results, which underline the crystalline Dieudonné theory. IfA is
an abelian scheme overR, with NA its pull-back to NR, we have a canonical isomorphism
of R-modules ([1, Corollaire V.2.3.7], also cf. [5, Summary 7.26.3])

H1dR.A=R/
can
Š H1cris. NA=R/:

Moreover, we have the following canonical isomorphism of filtered R-modules

.D�. xH/.R/ � !H /
can
Š .H1dR.A=R/ � !A/:

Theorem 2.8. The assignmentG 7! .D�. xH/.R/;!H ;F;V;rM / gives a category
equivalence between .BT=R/ and AFDM.R;r/.

Proof. To lift a p-divisible group xH over NR to R is the same thing as lifting
its dual xH� to R; the assertion follows from the combination of Theorem 2.6 and
Grothendieck–Messing deformation theory ([22, Theorem V.1.6]), which in our setting
says that lifting xH� to R is equivalent to lifting the locally direct summand ! xH �
D�. xH/. NR/ to a locally direct summand of D�. xH/.R/.
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2.4 – Base change along simple frames

Let NR0 be as in Example 2.2 and R0 D .R0; � 0/ be a simple frame of NR0 over
W.k/. Let f WR ! R0 be a morphism of simple frames over W.k/ (i.e., a map
f WR ! R0 of W.k/-algebras compatible with Frobenius lifts). Then we have the
following commutative diagrams induced by base change along f in the obvious
sense:

(2.3)

.BT= NR/ Š //

��

DM.R;r/

��

.BT= NR0/ Š // DM.R0;r/;

.BT=R/ Š //

��

AFDM.R;r/

��

.BT=R0/ Š // AFDM.R0;r/:

2.5 – Partially divided Frobenius

The setting is the same as in the previous two Sections 2.2 and 2.3. Let .M;M 1;F;
V;rM / be an object in AFDM.R;r/. Assume now that the submoduleM 1 �M is
a (not just locally) direct summand ofM . LetM DM 1 ˚M 0 be a decomposition of
M into R-submodules; such a decomposition is called a normal decomposition ofM
(or simply ofM ). Define the maps

(2.4) � WD
1

p
� FjM1;� ˚ FjM0;� ; f WD p � idM1;� ˚ idM0;� ;

so that we have F D � ı f. We will call � the partially divided Frobenius ofM with
respect to the normal decompositionM DM 1 ˚M 0. The next lemma describes the
most important property of � , with the point being that a normal decomposition of
M enables us to decompose F as the composition of an integral part � with a rational
part f. Such a decomposition is important for later applications.

Lemma 2.9. The map � defined in (2.4) is an isomorphism of R-modules.

Proof. Let us first note that � is surjective: indeed, from (2.2) we obtain the
equality displayed below, which implies Im .�/ DM :

F�1.pM/ D ��1. xM 1;� / DM 1;�
C pM �

DM 1;�
˚ pM 0;� ;

where � WM � ! xM � is the canonical reduction modulo p map.
It is enough to show that for every maximal idealm of R, the pull-back to yRm of

� is an isomorphism. To ease notation, write A D yRm and let .A; �/ be the unique
simple frame of the m-adic completion of NR, induced by .R; �/ as in Lemma 2.1.
By functoriality as discussed above (2.3), the base change along .R; �/! .A; �/
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ofM is equal to the admissibly filtered Dieudonné module of H ˝R A if H is the
p-divisible group over R corresponding toM . So we are reduced to showing the �
map over .A; �/ corresponding toH ˝R A and the decompositionMA DM 1

A ˚M
0
A

is an isomorphism. But as A is local, the source and target of �WM � !M are free
A-modules of the same rank; by Nakayama’s lemma the assertion follows from the
surjectivity of � .

We remark that in later sections we will not use the full power of the classification
results Theorems 2.6 and 2.8. We only need the fact that given a p-divisible group
over NR (over R), one can associate an object in DM.R;r/ (in AFDM.R;r/) with it
and such an association is compatible with base change of simple frames.

3. Good reduction of Shimura varieties of Hodge type

3.1 – Shimura varieties of Hodge type

Let G be a (connected) reductive group overQ and X a G.R/ conjugacy class of
homomorphisms

hWS WD ResC=R Gm ! GR

of algebraic groups over R, such that .G;X/ is a Shimura datum in the sense that they
satisfy axioms (2.1.1.1)–(2.1.1.3) of [12, §2.1.1]. Suppose that V is a finite-dimensional
Q-vector space with a perfect alternating pairing  and write GSp D GSp.V;  / for
the corresponding group of symplectic similitudes. Then we get the most important
example of a Shimura datum .GSp; S˙/, with S˙ the Siegel double space, which is
defined to be the set of homomorphisms S! GSpR such that

(1) the C� action on VR gives rise to a Hodge structure of type .�1; 0/ and .0;�1/;

(2) .x; y/ 7!  .x; h.i/y/ is (positive or negative) definite on VR.

In this paper, we consider a Shimura datum .G;X/ of Hodge type, i.e., there exists
an embedding of Shimura data .G;X/ ,! .GSp; S˙/ for some .GSp; S˙/. Let K D
KpKp �G.Af / be an open compact subgroup such that Kp �G.Qp/ is a hyperspecial
subgroup and that Kp � G.Ap

f
/ is sufficiently small (hence is neat). The condition

that Kp is hyperspecial means that there is a reductive group G over Z.p/, which we
fix from now on, such that Kp D G .Zp/. The condition that Kp is sufficiently small
guarantees that the double quotient

ShK.G;X/C WD G.Q/nX �G.Af /=K

has the structure of a smooth quasi-projective complex variety by a theorem of Baily–
Borel. Results of Shimura, Deligne, Milne, and others imply that, up to an isomorphism,
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ShK.G;X/C has a unique quasi-projective smooth model ShK.G;X/ over the reflex
field E of .G;X/. The reflex field E only depends on the Shimura datum .G;X/. For
.GSp;S˙/, the reflex field isQ.

3.2 – Integral canonical models

As explained in [18, Lemma 2.3.1, §2.3.2], for a given Shimura datum .G;X/ with
embedding .G;X/ ,! .GSp; S˙/, using Zarhin’s trick we may modify .V;  / so that
there exists a Z.p/-lattice ƒ of V with the following properties: (1) the pairing  
induces a perfect Z.p/-pairing on ƒ, still denoted by  ; (2) the embedding G! GSp
is induced by an embedding G ,! GSp.ƒ; / of reductive group schemes over Z.p/.
From now on, we fix such an embedding and accordingly the modified embedding of
Shimura data .G;X/ ,! .GSp; S˙/. Set zKp D GSp.Zp/. By [18, Lemma 2.1.2] there
exists an open compact subgroup zKp � GSp.Af / containing Kp such that � induces
an embedding of Shimura varieties over E,

ShK ,! ShzK ˝Q E:

Moreover, if zKp is sufficiently small, ShzK has a quasi-projective smooth model over
Z.p/, denoted by Q� D Q�K, which has an explicit moduli interpretation as described
in [19, §1.3.4]. In what follows we always assume that Kp and zKp are sufficiently
small, and we will also fix a Z-lattice ƒZ of the Z.p/-module ƒ such that ƒZ ˝ yZ is
zK-stable. The choice of such a Z-lattice allows one to describe the scheme Q� as the
moduli space of polarized abelian varieties (not just up to prime to p-isogeny). In
particular, it comes with a universal abelian scheme, denoted byA.
Fix a place v of E above p. Denote by OE;.v/ the localization at v of the ring of

integers OE of E. Denote by � D �K.G;X/ the normalization of the schematic closure
of ShK in Q� ˝Z.p/ OE;.v/. Recall that we have the assumption p � 3. The following
theorem is now well known and is independently due to Vasiu and Kisin.

Theorem 3.1. The scheme � is smooth over OE;.v/ and is the integral canonical
model over OE;.v/ of ShK.

Strictly speaking, integral canonical model refers to a tower of models ¹�KºKp over
OE;.v/ for the tower ¹ShKºKp , with K D KpKp and Kp varying; see [23, §2] for its
precise meaning. Here we abuse language since from this very moment we fix K, till
the end of this paper.
In particular, we obtain a finite morphism "W�! Q� of schemes overOE;.v/. We call

the pull-back to � ofA the universal abelian scheme of � , still denoted byA. Write
� for the residue field of OE;.v/ and S D SK for the special fibre of � . In particular,
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S is a quasi-projective smooth scheme over �, coming with a universal abelian scheme
A D A� .
In fact, the existence of the hyperspecial subgroup Kp implies that E is unramified

at p ([24, Corollary 4.7]), and hence we have OE;v D W.�/, where OE;v is the
completion ofOE;.v/ with respect to its maximal ideal. In what follows, we will mainly
work over W.�/ or over �. We will use the same notation for the base change to W.�/
of those objects defined over OE;.v/ (e.g., the integral model �).

3.3 – Reduction of Hodge cocharacters and their Frobenius twists

As shown in [18, Proposition 1.3.2], the Z.p/-reductive group scheme G can be
realized as the schematic stabilizer of a finite set of tensors .s˛/˛ � ƒ˝ D .ƒ�/˝;
i.e., for any Z.p/-algebra R,

G .R/ D
®
g 2 GL.ƒ�R/ j g.s˛;R/ D s˛;R 8˛

¯
;

where s˛;R 2 .ƒ�R/
˝ denotes the tensor induced by s˛. Here, for the functoriality

consideration later, we view G as a reductive Z.p/-subgroup scheme of GL.ƒ�/ via
the dual representation GL.ƒ/

can
Š GL.ƒ�/,

(3.1) �WG ,! GSp.ƒ; / ,! GL.ƒ/
can
Š GL.ƒ�/:

Write G for the special fibre of G . It is a (connected) reductive group over Fp .
For any h 2 X, there is an associated Hodge cocharacter �hWGm;C ! GC which

can be described as follows. For any C-algebra R, we have R ˝R C D R � c�.R/,
where c denotes complex conjugation. Then, on R-points, �h is given by

R� ,! R� � c�.R/� D .R˝R C/� D S.R/
h
�! GC.R/;

where the first inclusion is given by x 2 R� 7! .x; 1/. The unique G.C/-conjugacy
class in HomC.Gm;C;GC/which contains the inverses of all the �h is denoted by Œ��C .
Let Z D HomZ.p/.Gm;Z.p/ ;G / be the fppf sheaf of cocharacters, and Ch D GnZ the
fpqc quotient sheaf of Z by the adjoint action of G . By [13, Chapter XI, Corollary 4.2],
the sheaf Z is represented by a smooth separated scheme over Z.p/, and it is shown
in [40, Proposition 3.2.1] that Ch is represented by a disjoint union of connected
finite étale schemes over Z.p/. Moreover, it is shown in [40] that the C-point of Ch
corresponding to the conjugacy class Œ��C descends to a W.�/-point Ch. We call the
resulting �-point of Ch the reduction over � of Œ��C and denote it by Œ��� . In fact, the
conjugacy class Œ��� admits a representative

(3.2) �WGm;� ! G� :
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We choose such a representative � but note that it is the G.�/-conjugacy class Œ���
that is canonically determined by the Shimura datum .G;X/. We define a Frobenius
twist of �,

�.�/WGm;�
can
Š G�

m;�

��

��! G��
can
Š G� ;

where, following our notational convention, �� WG�
m;� ! G�� is the base change ���

of � along the absolute Frobenius � W � ! � of �. In what follows, we will mostly
identify �� and �.�/.
Every element h 2 X defines a Hodge decomposition VC D V

.�1;0/ ˚ V .0;�1/

via the embedding X ,! S˙. By definition of S˙, �h.z/ acts on V .�1;0/ through
multiplication by z and on V .0;�1/ as the identity. In particular, �h is of weight 1 and 0,
and hence �WGm;� ! G� is of weight �1 and 0. Since the scheme Z is smooth, there
exists a GW.�/-valued cocharacter Q�WGm;W.�/ ! GW.�/, which lifts �WGm;� ! G� .
From now on we fix such a lift Q�, and also define a Frobenius twist of Q�,

�. Q�/WGm;W.�/
can
Š G�

m;W.�/

Q��

��! G �W.�/
can
Š GW.�/;

where Q�� WG�
m;W.�/

! G �
W.�/

is the base change �� Q� of Q� along the Frobenius
� WW.�/ ! W.�/. Again, in what follows, we will mostly identify �. Q�/ and Q�� .
Clearly �� D �.�/ is the reduction modulo p of Q�� D �. Q�/. The cocharacter Q�
induces the weight decomposition of ƒW.�/ and ƒ�W.�/,

(3.3) ƒW.�/ D ƒ
0
W.�/ ˚ƒ

�1
W.�/; ƒ�W.�/ D ƒ

�;0
W.�/
˚ƒ

�;1
W.�/

:

3.4 – Some group-theoretic preliminaries

To begin with, we introduce some subgroup schemes of GW.�/ that are induced by Q�.
Denote byPC D P� � GW.�/ the scheme-theoretic stabilizer of the filtrationƒW.�/ �
ƒ�1
W.�/

(equivalently, of the filtration ƒ�
W.�/
� ƒ

�;1
W.�/

via dual representations). It is a
parabolic subgroup scheme of GW.�/. Similarly, we denote byP�DP��1 � GW.�/ the
opposite subgroup scheme of PC. WriteU˙ D U˙.�/ � P˙ for the corresponding
unipotent radicals, andM D PC \P� for the common Levi subgroup scheme of P�

and PC. Note thatM is also the centralizer in GW.�/ of Q�.
The next lemma will become useful in later sections; it can also be seen easily

using the embedding GW.�/ ,! GL2g;W.�/ to be discussed right after this lemma.

Lemma 3.2. Let A be a flat W.�/-algebra such that NA WD A=pA ¤ 0. Then we
have

Q�.p/PC.A/ Q�.p/
�1
� G .A/; Q�.p/UC.A/ Q�.p/

�1
� K1.G /.A/;
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with K1.G /.A/ WD ¹g 2 G .A/ j Ng D 1 2 G. NA/º, where Ng denotes the image of g in
G. NA/ under the canonical reduction map G .A/! G. NA/.

Proof. Recall the dynamic descriptions ofPC andUC (see for example [9, §2.1]):

PC.A/ D
®
g 2 G .A/ j limt!0 Q�.t/g Q�.t/�1 exists

¯
;

UC.A/ D
®
g 2 PC.A/ j limt!0 Q�.t/g Q�.t/�1 D 1

¯
;

where the condition limt!0 Q�.t/g Q�.t/�1 exists means that the homomorphism of
A-group schemes

f Q�;g WGm;A ! GA; t 7! Q�.t/g Q�.t/�1;

extends to a morphism of A-schemes F Q�;g W Ga;A ! GA, while the condition
limt!0 Q�.t/g Q�.t/�1 D 1 requires further that F Q�;g.0/ D 1 2 G .A/. Now let g 2
PC.A/. Since p 2 Gm.AŒ

1
p
�/ \Ga.A/ (A is p-torsion-free), one finds that

Q�.p/g Q�.p/�1 D fg; Q�.p/ D F Q�;g.p/ 2 G.A/:

If, moreover, g 2UC.A/; the functoriality of F Q�;g for the canonical projectionA! NA,
viewed as a map between W.�/-algebras, implies

Q�.p/g Q�.p/�1 D F Q�;g.p/ D 1:

For later applications, we fix an embedding of GW.�/ into GL2g;W.�/ as follows:
choose a W.�/-basis

v1; : : : ; vg; vgC1; : : : ; v2g 2 ƒ
�
W.�/

such that the first g elements above lie in ƒ�;1
W.�/

and the remaining ones lie in ƒ�;0
W.�/
.

Then, by sending an element h 2 GL.ƒ�
W.�/

/ to the matrix Xh 2 GL2g;W.�/ such that

h.v1; : : : ; v2g/ D .v1; : : : ; v2g/Xh;

we obtain an isomorphism of W.�/-group schemes between GL.ƒ�
W.�/

/ and
GL2g;W.�/. Hence, from (3.1) we obtain an embedding of GW.�/ into GL2g;W.�/, as
W.�/-reductive group schemes,

(3.4) �WGW.�/ ,! GSp.ƒ; /W.�/ ,! GL.ƒ�W.�// Š GL2g;W.�/;

and accordingly a cocharacter Q�0 WD � ı Q� of GL2g;W.�/. In particular, for every W.�/-
algebra R such that p 2 Gm.R/ D R

�, we have

Q�0.p/ D

 
pIg

Ig

!
2 GL2g.R/:
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We denote by P 0
˙
, U0
˙
, M0 the counterparts of P˙, U˙, M respectively for the

cocharacter Q�0 of GL2g;W.�/. Clearly, these subgroups can be described explicitly in
term of matrices; for exampleU0� � G 0

W.�/
consists of matrices of the form 

Ig
� Ig

!
;

where � denotes a g � g matrix. It is a general fact that we have (see [8, Proposition
4.1.10] for example)

(3.5) P˙ D P 0˙ \ G ; U˙ D U0˙ \ G ; M DM0 \ G :

We will see that the embedding � in (3.4) will enable us to reduce some group-
theoretic arguments in later sections to much easier problems like multiplying 2 � 2
block matrices.

3.5 – Tensors on H1dR.A=�/

For all i � 0, write HidR.A=�/ WD Ri��.��A=� / for the i th relative de Rham coho-
mology of A over � , where � WA! � is the structure morphism. As is shown in
[3, Proposition 2.5.2] (generalizing the well-known case where the base is a field to
the case where the base is an arbitrary scheme), for all i � 0 (resp. all r; s � 0), the
O� -module HidR.A=�/ (resp.Rs��.�rA=� /) is locally free and its formation commutes
with arbitrary base change. Moreover, the Hodge–de Rham spectral sequence

HEr;s D Rs��.�rA=� / H) HrCsdR .A=�/

degenerates at the E1-page. In particular, we have an exact sequence of locally free
O� -modules

0! !A=� ! H1dR.A=�/! R1��O� ! 0;

where the Hodge filtration !A=� D ���
1
A=�
is of rank g and H1dR.A=�/ is of rank 2g.

For typographical reasons, in this and the next subsections we write VdR for
H1dR.A=�/. Below we explain the so-called (integral) de Rham tensors on VdR. We
will need these tensors to define interesting torsors over � in Section 3.7.
TheQ-representation V of G coming from the embedding G ,! GSp.V;  / gives

rise to aQ-local system VB;Q D R1�an� Q on ShanK;C . Below we first explain how the
tensors .s˛/˛ � V ˝ that cut out G inside GL.V �/ induce global sections on V˝B ; cf.
[18, §2.2] and [7, §2.3]. We write

eShK D X �G.Ap
f
/=K; eShK0 D S˙ � GSp.Ap

f
/=K0:
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Then the canonical projection eShK ! ShanK;C (resp. eShK0 ! ShK0;C;an) makes eShK

a G.Q/-torsor over ShanK;C (resp. eShK0 a GSp.Q/-torsor over ShanK0;C). To make dis-
tinctions, we write A0 for the universal (analytic) abelian variety over ShanK0;C with
� 0WA0 ! ShanK0;C the structure map. Then we know that the isogeny class of A0 cor-
responds to the dual of theQ-local system R1� 0�Q (viewed as a variation of Hodge
structure over ShanK0;C), which in turn corresponds to the constant Q-local system V
over the cover eShK0 , together with the structure morphism GSp.Q/! GL.V /. Clearly
we have the commutative diagram

eShK

��

// eShK0

��

ShanK;C // ShanK0;C;

where the top horizontal map is equivariant with respect to the group homomorphism
G.Q/! GSp.Q/. Hence, the variation of Hodge structure VB;Q over ShanK;C , which
corresponds to the isogeny class of A, also corresponds to the constant Q-local
system V � over the covereShK, together with the representation G.Q/ ,! GSp.Q/ ,!
GL.V /

can
Š GL.V �/. Now it is clear that the set of tensors .s˛/˛ � V ˝ gives rise to a

set of global sections (call them Betti tensors),

(3.6) .s˛;B/˛ � �.ShanK;C;V
˝

B;Q/:

By the Riemann–Hilbert correspondence [11], we have the equivalences of tensor
categories

LocC.ShanK;C/
.�/˝OShanK;C
�������!

Š
VBIC.ShanK;C/

.�/an

 ���
Š
VBIC.ShK;C/

reg;

where LocC.ShanK;C/ denotes the tensor category of C-local systems over ShanK ,
VBIC.ShanK;C/ (resp. VBIC.ShK;C/

reg) denotes the tensor category of holomorphic
(resp. algebraic) vector bundles with integrable connections (resp. with integrable
connections, with regular singularities at infinity). Under these category equiva-
lences, the C-local system VB;C WD VB;Q ˝ C corresponds to the vector bundle
VdR;C D H1dR.A=ShK;C/ over ShK;C and we have a parallel isomorphism of analytic
vector bundles over ShanK ,

�WVB;C ˝OShanK;C Š V andR;C;

where the left-hand side is equipped with trivial connections. Hence, by transport of
structure, we obtain from the Betti tensors (3.6) our desired horizontal global sections
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(call them de Rham tensors),

(3.7) .s˛;dR/˛ � �.ShK;C;V
˝

dR;C/;

such that �.s˛;B/ D san˛;dR; with s
an
˛;dR 2 �.Sh

an
K;C; .V

an
dR;C/

˝/ understood. Here, note
that although V˝B;C does not live inside LocC.Sh

an
K;C/, each Betti tensor s˛;B lies in

some direct summand of V˝B;C which does live inside LocC.Sh
an
K;C/.

Proposition 3.3 ([18, Lemma 2.2.1, Corollary 2.3.9]). Each of the de Rham ten-
sors s˛;dR in (3.7) descends to OE;.v/; i.e., there exist (necessarily unique) horizontal
global sections

.s˛;dR/˛ � �.� ;V
˝
dR/;

whose restriction on ShK;C are the tensors in (3.7).

We call the global sections s˛;dR obtained here (integral) de Rham tensors.

3.6 – Crystalline nature of integral de Rham tensors

In this subsection we remark on a consequence of Proposition 3.3 concerning the
property of integral tensors s˛;dR being horizontal, since it will be needed later.
Let R be a p-complete flat W.�/-algebra and x; yW SpecR ! � morphisms of

W.�/-schemes which are congruent modulo p. Write VdR;x , s˛;dR;x for the pull-backs
to R along x of VdR, s˛;dR respectively, and similarly for VdR;y , s˛;dR;y . It is a well-
known fact that the vector bundle VdR on � has an F -crystal structure in the sense
of [15] and the Gauss–Manin connection on VdR provides a canonical isomorphism
of R-modules (see for example [15, §(1.2)]), ".x; y/WVdR;x Š VdR;y . Since s˛;dR is
horizontal, we have

".x; y/.s˛;dR;x/ D s˛;dR;y :

3.7 – Torsors over Shimura varieties

For simplicity, from now on we write s instead of .s˛/˛; similarly we simply write
sdR instead of .s˛;dR/˛ . For aW.�/-morphism xWSpecR! � , we also write sdR;R for
sdR;x (i.e., the pull-back of sdR along x) if the structure morphism x is understood.
However, in order to keep notation suggestive, we still write H1dR.A=�/ instead of VdR.
Now we are ready to define two �-schemes below, which will play important roles
later:

I WD IsomO�
.Œƒ�W.�/; sW.�/�˝O� ; ŒH1dR.A=�/; sdR�/;

IC WD IsomO�
.Œƒ�W.�/ � ƒ

�;1
W.�/

; sW.�/�˝O� ; ŒH1dR.A=�/ � !A=� ; sdR�/:
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Unwinding the definition, for every W.�/-algebra R, a point x[ 2 IC.R/ consists
of a pair .x; ˇx/, where x 2 �.R/ corresponds to a morphism xW SpecR ! � of
W.�/-schemes, and

ˇx W .ƒ
�
R � ƒ

�;1
R / Š .H1dR.Ax=R/ � !x/

is an isomorphism of R-modules, which maps sR to sdR;R termwise. Here, following
our notational convention, we denote by Ax , !x , sdR;R the pull-back to R along x
of A, !A=� , sdR respectively. We have similar descriptions for points x 2 I.R/ by
omitting filtrations in ˇx .
Clearly, G (resp. PC) naturally acts on I (resp. IC) on the right, freely and tran-

sitively. To be precise, the action of a section h 2 G .R/ (resp. h 2 PC.R/) on I.R/

(resp. on IC.R/) is given by

x[ � h D .x; ˇx/ � h D .x; ˇxh/:

Lemma 3.4. The scheme IC (resp. I) is a PC-torsor (resp. G -torsor) over � .

Proof. We only show here the assertion for IC as the assertion for I can be shown
in the same way; or maybe better, it follows from the fact that I is the push-forward of
IC along the homomorphism PC ,! G .
Since IC is an �-scheme of finite presentation and the action of PC on IC is free

and transitive, it suffices to show that IC is faithfully flat over � . In other words, we
need to show that for each closed point s of � , the pull-back of IC to Spec yO�;s along
the natural map Spec yO�;s ! IC, denoted by IC;Os , is a PC-torsor over Spec yO�;s . As
we already know that IC is a PC-torsor over ShK when restricted to the generic fibre
ShK of � (as it is so after a further base change to ShK;C), we may assume that s is a
closed point in the special fibre of � . But in that case, it has been adequately dealt with
in [40, Lemma 2.3.2].

4. The zip period map � for S

In this section, we review the zip period map �WS ! G-Zip� constructed by Zhang
[40], following [37, 40].

4.1 – The stack of G-zips

Let �WGm;� ! G� be as in (3.2), and M , U˙ � P˙ the special fibres of the
algebraic groupsM;U˙�P˙ defined in Section 3.4. Recall our notational convention
in Section 1.3: for a subgroupH � G� , we writeH � � G��

can
Š G� for its base change

along � W � ! �.
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Definition 4.1 ([31, Definition 3.1]). Let T be a scheme over �. A G-zip of type
� over T is a quadruple I D .I; IC; I�; �/ consisting of a right G-torsor I over T , a
PC-torsor IC � I and P �� -torsor I� � I , and an isomorphism ofM � -torsors:

�W I �C=U
�
C Š I�=U

�
� :

A morphism I ! I 0 D .I 0; I 0C; I
0
�; �
0/ of G-zips of type � over T consists of a

G-equivariant morphism I ! I 0 which sends IC to I 0C and I� to I
0
�, and which is

compatible with the isomorphisms � and �0. The category of G-zips over all �-schemes
form an algebraic stack over �.
For the cocharacter � there is an associated group scheme E� � PC � P �� , called

the zip group of �, which is given on points of a �-scheme T by

E�.T / D
®
.uCm;u��.m// j m 2M.T /; uC 2 UC.T /; u� 2 U

�
� .T /

¯
:

Here we use the decomposition of �-groups PC D UC ÌM , P� D U� ÌM . Clearly,
we have an isomorphism of �-group schemes

UC ÌM Ë U� Š E�; .uC; m; u�/ 7! uCmu�;

where we omit describing the group law of the left-hand side. In particular, E� is a
smooth connected linear algebraic group over �. Consider its right action on G� by

(4.1) g � .pC; p�/ D p
�1
C gp� D m

�1u�1C gu��.m/:

With respect to this action one can form the quotient stack ŒG�=E�� over �. Here we
use the right action, while in [30, 31, 40] the left action is used, but apparently the
resulting stacks ŒE�nG� � and ŒG�=E�� are canonically isomorphic.

Theorem 4.2 ([31, Proposition 3.11, Corollary 3.12]). The stacks G-Zip� and
ŒG�=E�� are naturally isomorphic. They are smooth algebraic stacks of dimension 0
over �.

4.2 – The universal G-zip over S

In this subsection we give definitions of those torsors appearing in the universal
G-zip constructed in [40] and refer to [40] for more details.
For the relative de Rham cohomology H1dR.A=S/, apart from the well-known

Hodge filtration !A=S � H1dR.A=S/, there is another filtration

x!A=S WD R1��H0.��A=S /;
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called the conjugate filtration of H1dR.A=S/, fitting into the short exact sequence

0! x!A=S ! H1dR.A=S/! ��H
1.��A=S /! 0;

of locally free OS -modules. This short exact sequence is a particular consequence of
the degeneration at E2-page of the conjugate spectral sequence 2

conjEr;s2 WD Rr��H s.��A=S / H) HrCsdR .A=S/:

As discussed in [28, §7.1–§7.5], Cartier isomorphisms ([28, equation (7.4)]) induce
the following direct-summand-wise isomorphism of OS -modules:

(4.2) ıW!�A=� ˚ .H
1
dR.A=S/=!A=� /

�
Š .H1dR.A=S/=x!A=S /˚ x!A=S :

We call the direct-summand-wise isomorphism ı the zip isomorphism associated with
the universal abelian schemeA over S . The tuple .H1dR.A=S/; !A=� ; x!A=S ; ı/ is an
“F -zip” in the terminology of [28]. We call it the universal F -zip over S . The universal
G-zip over S , to be defined below, should be viewed as the universal F -zip over S
with a G-structure.

Remark 4.3. The zip isomorphism ı above can also be constructed using crys-
talline Dieudonné theory, without explicit reference to Cartier isomorphisms, as is
done in [40]. Indeed, there are canonical isomorphism of OS -modules H1dR.A=S/ Š
D�.AŒp1�/S Š D�.A/S , where D�.A/S is the restriction on SZar (namely, the
Zariski site of S) of the Dieudonné crystal D�.A/ associated to A ([3, Définition
2.5.7]). Under this canonical isomorphism, the Hodge filtrations on each side coincide
([3, Proposition 2.5.8]) and the conjugate filtration x!A=S is equal to Ker.V WD�.A/S!
D�.A/�S /. Then one can proceed to construct ı in the same way as described in Sec-
tion 6.1 below.

Writeƒ�� Dƒ�0 ˚ƒ
�
�1 for the weight decomposition ofƒ

�
� induced by the inverse

of �� . Due to the canonical isomorphism ƒ��
can
Š ƒ

�;�
� , such a decomposition can be

described in a different way: if ƒ�� D ƒ�;0 ˚ƒ�;1 is the weight decomposition of ƒ��
induced by � as in (3.3), we have

(4.3) ƒ�0 D can
�1.ƒ�;0;� /; ƒ��1 D can

�1.ƒ�;1;� /:

(2) The degeneration of the conjugate spectral sequence at E2-page follows from that of the
Hodge–de Rham spectral sequence at E1-page; see for example [16, Proposition 2.3.2].
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Here,ƒ�;0;� WD .ƒ�;0/� , and similarly forƒ�;1;� . Then P �� is the schematic stabilizer
in G� of the filtration ƒ�0 � ƒ

�
� . Now we come to the definitions of the following

�-schemes:

I WD IsomOS .Œƒ
�
� ; s� �˝OS ; ŒH1dR.A=S/; sdR�/;

IC WD IsomOS .Œƒ
�
� � ƒ

�;1; s� �˝OS ; ŒH1dR.A=S/ � !A=S ; sdR�/;

I� WD IsomOS .Œƒ
�
0 � ƒ

�
� ; s� �˝OS ; Œx!A=S � H1dR.A=S/; sdR�/:

It is clear that I and IC are respectively the special fibres of I and IC here (for more,
see Section 3.7). The group G� (resp. PC, resp. P �� ) acts on I (resp. IC, resp. I�) on
the right as in (4.1).

Theorem 4.4 ([40, Theorems 3.4.1, 4.1.2]). The following hold true:

(1) The scheme I (resp. IC, resp. I�) is a G�-torsor (resp. PC-torsor, resp. P �� -torsor)
over S .

(2) The direct-summand-wise isomorphism ı in (4.2) induces an isomorphism

�W I�C=U
�
C Š I�=U

�
� :

Hence, the tuple I WD .I; IC; I�; �/ is aG-zip of type� over S , inducing a morphism
of algebraic stacks over �,

�WS �! G-Zip� Š ŒG�=E��:

(3) The map � is a smooth map of �-stacks.

We will call the tuple I D .I; IC; I�; �/ the universal G-zip over S and � the zip
period map for S .
The ultimate goal of [40] was to define and study EO strata of S via the zip period

map �. Our interest, however, is in the map � itself. That being said, for the reader’s
curiosity, we end this section by giving the definition of EO strata for SxFp and some
quick remarks. See [40] for more properties of these EO strata.

Definition 4.5 ([40, Definition 4.1.1]). Set kD xFp , an algebraic closure of Fp . For
a geometric point wWSpeck!G-Zip�, the EO stratum of Sk associated to w, denoted
by Sw

k
, is defined to be the fibre of w under the zip period map �k WSk ! G-Zip�k .

Merely by definition of �, being a morphism of algebraic stacks, and the property
of ŒG�=E�� being a zero-dimensional stack, one learns that each Swk is a locally closed
subscheme of Sk . Moreover, the smoothness of � implies that each Swk is automatically
a smooth �-scheme.
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5. Construction of 
W IC ! G�=U
�
�

The main goal of this section is to construct a morphism of �-schemes 
 W IC !
G�=U

�
� and to deduce from it a morphism of �-stacks, �WS ! ŒG�=E��. The com-

parison of � with � will be given in Section 6. Here, G�=U �� is the quotient fpqc sheaf
of G� by the U �� -action via right multiplication. It is represented by a scheme, smooth
separated of finite type over �, and the canonical projection G� ! G�=U

�
� is smooth;

see for example [25, Propositions 7.15, 7.17].

5.1 – Trivialized Frobenius

For the purpose of constructing our map 
 , in this section we will consider �-
algebras NR as in Example 2.2 (letting k equal � there), i.e., we require that

(5.1) NR is either perfect or smooth of finite type over �:

Let Nx[ D . Nx; ˇ Nx/ 2 IC. NR/ be an NR-point of IC (cf. Section 3.7). Let R D .R; �/ be a
simple frame of NR (which exists by Lemma 2.1) and x[ D .x; ˇx/ 2 IC.R/ a lift of
Nx[. Here, the existence of x[ follows from the smoothness of IC over W.�/.
By Theorem 2.8, the p-divisible group AxŒp

1� corresponds to an object in
AFDM.R;r/, namely an admissibly filtered Dieudonné module over R D .R; �/,

M D .M;F;V;rM ;M 1
x /; withM D D�.AxŒp

1�/.R/;

where, with the simple frame R fixed, the Dieudonné module .M;F;V;rM / is deter-
mined byA NxŒp

1�, and hence by Nx, while the admissible filtrationM 1
x �M depends

on the lift x of Nx. We use the following notation:

F D Fx D F Nx WM �
!M:

By Remark 2.7, we have the canonical isomorphism of filtered R-modules

.M �M 1
x /

can
Š .H1dR.Ax=R/ � !x/:

For this reason we identify them and this identification equipsM with a set of tensors
sdR;R 2 M

˝. With this identification we view ˇx as a trivialization of the filtered
module .M �M 1

x /,
ˇx W .ƒ

�
R � ƒ

�;1
R / Š .M �M 1

x /:

Note that sinceƒ� is a freeZ.p/-module, we have canonical isomorphisms "W .ƒ�R; sR/
can
Š .��ƒ�R; �

�sR/. By transport of structure, we obtain the trivialized Frobenius

Fx[ D ˇ
�1
x F�.ˇx/Wƒ

�
R ! ƒ�R;
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where we set �.ˇx/Wƒ�R !M � to be ˇ�x ". For an element h 2 PC.R/, we have

(5.2) Fx[�h D h
�1Fx[�.h/;

by definition of the action of PC.R/ on IC.R/ (Section 3.7). Here, �.h/ is defined as

�.h/ WD "�1h�"I

this coincides with our notational convention (1.5). Sometimes, we simply identify
�.h/ and h� by suppressing the canonical isomorphism " above. Clearly, for an element
x[ 2 I.R/, we can define Fx[ in the same way.

5.2 – Frobenius invariance of tensors

The setting in this subsection is the same as in the previous subsection.

Lemma 5.1. For an element x[ D .x;ˇx/ 2 I.R/, the Frobenius Fx[ defined above
preserves tensors sR termwise. In particular, we have

Fx[ 2 G
�
R
h 1
p

i�
:

Proof. This follows from the next lemma and the definition of Fx[ .

Lemma 5.2. The Frobenius FWM � !M , after inverting p, sends ��RsdR;R to sdR;R
termwise.

Proof. For any maximal ideam of R, by Lemma 2.1 the Frobenius lift � WR! R

induces a simple frame . yRm; �/ and a homomorphism of simple frames .R; �/!
. yRm; �/. Note that yRm is necessarily p-complete (since m contains p). Hence, it
suffices to show the lemma after base change to yRm for allm. In particular, we may
assume that R is a local ring.
Let s0 2 � be the image of the closed point of SpecR, which necessarily lies in the

special fibre S � � . Let s 2 S be a closed point which is a specialization of s0. Then
the morphism xWSpecR! � factors through the canonical embedding sWSpecA! � ,
where A WD yO�;s is the complete local ring of � at s. Choose a W.k/-isomorphism
A Š W.k/ŒŒX1; : : : ; Xr �� and consider the Frobenius lift �AWA! A of A given by
sending each Xi to its pth power. Write N WD .N; FN ;VN ;rN / for the Dieudonné
module over .A; �A/ of AsŒp

1�. Then the induced de Rham tensor sdR;A 2 N˝ is
horizontal.
We claim that sdR;A is also Frobenius invariant. Prior to showing the claim, let us

note that the claim implies our lemma. Indeed, if we let f WA! R denote the structure
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morphism, thenM is canonically isomorphic to the pull-back f �N D N ˝A;f R. If
we identify this canonical isomorphism, then the Frobenius FM is equal to

M � can
Š ��Rf

�N
�
Š f ���AN

f �FN
����! f �N

can
ŠM;

where the isomorphism ��Rf
�N

�
Š f ���AN is provided by the integrable connection

rN (note that �R ı f and f ı �A become the same after modulo p); in fact, due
to our choice of free coordinates Xi , it is possible to give an explicit formula for �
as in [18, §1.5]. Then, since sdR;A is horizontal, one sees that � sends ��Rf

�sdR;A to
f ���AsdR;A (this can also be seen from the explicit expression of �). Therefore, it only
remains for us to show the claim.
We proceed following [18, Proposition 2.3.5]. Write B for the adapted deformation

ring RGW in [18, Proposition 2.3.5] of the p-divisible group ANsŒp
1� over k WD

k.s/, where we use NsW Spec k ! S to denote the special fibre of s. Again, the W.�/-
algebra B is isomorphic to some power series ring over W.k/ and we equip it with
a Frobenius lift �B WB ! B by sending free coordinates to their pth powers. Write
L WD .L; FL;VL;rL/ for the Dieudonné module over .B; �B/ that corresponds to the
universal p-divisible group over B; the construction of L is explained in [18, §1.5.4].
By construction, the Dieudonné module L comes with Frobenius-invariant tensors,
which we denote by scris. We know from the proof of [18, §1.5.4] (see also [21,
Theorem 3.3.12] for more details) that there exists a W.�/-algebra homomorphism (in
fact an isomorphism) gWB ! A such that the tuple .N ; sdR;A/ is obtained as the pull-
back along g of the tuple .L; scris/, except that one has to use the integrable connection
rL, as we did for rN , to deal with the possible incompatibility of Frobenius lifts
between �A and �B . Again using the fact that scris is horizontal, we conclude that sdR;A
is also Frobenius invariant.

5.3 – Trivialized partially divided Frobenius

Let NR, R, Nx[, and x[ be as in Section 5.1. For the next lemma, which plays an
important role for our construction of 
 W IC ! G�=U

�
� below, one may recall the

characters Q� and Q�� D �. Q�/ in Section 3.3 and the embedding �WGW.�/ ,! GL.ƒ�/
there.

Lemma 5.3. For every x[ 2 IC.R/ we have Fx[ 2 G .R/ Q�� .p/ � G .RŒ 1
p
�/; i.e.,

we have
Fx[ D sx[ Q�

� .p/

for some (necessarily unique) element sx[ 2 G .R/.
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Proof. The weight decomposition ƒ�R D ƒ
�;1
R ˚ ƒ

�;0
R given by Q� (see (3.3)),

induces via ˇx a normal decompositionM DM 1 ˚M 0 ofM . Then, by Section 2.5,
we have the decomposition

Fx D �x[ ı fx[ ;

with �x[ and fx[ defined as in (2.4). Note that by Lemma 2.9, the partially divided
Frobenius �x[ is an isomorphism of R-modules. Now we have

(5.3) Fx[ D ˇ
�1
x F Nx�.ˇx/ D ˇ

�1
x .�x[fx[/�.ˇx/ D sx[.�.ˇx/

�1fx[�.ˇx//;

where sx[ is defined as
sx[ WD ˇ

�1
x �x[�.ˇx/:

Clearly, we have sx[ 2 GL.ƒ�R/. Unwinding the definition of Q�
� in Section 3.3 we see

that
�.ˇx/

�1fx[�.ˇx/ D Q�
� .p/:

Now, equality (5.3) becomes Fx[ D sx[ Q�� .p/, and hence by Lemma 5.1 we have

sx[ 2 G
�
R
h 1
p

i�
\ GL.ƒ�R/ D G .R/:

We will call sx[ 2 G .R/ the trivialized partially divided Frobenius attached to x[,
with respect to the simple frame R D .R; �/.

5.4 – Local version of 


We continue our discussion in the setting of the previous subsection. With the
simple frameR fixed, for an element x[ 2 IC.R/, as usual we write sx[ 2G. NR/ for the
reduction modulo p of the trivialized partially divided Frobenius sx[ . Denote by 
 Nx[ 2
G�=U

�
� .
NR/ the image of sx[ along the canonical projectionG. NR/!G�=U

�
� .
NR/. The

notation 
 Nx[ is justified by the following proposition.

Proposition 5.4. The element 
 Nx[ 2 G�=U �� . NR/ is determined by Nx[, i.e., it is
independent of the choice of lifts x[ and the choice of simple frames R of NR. In
particular, it induces a morphism of �-schemes,


 Nx[ WSpec NR! G�=U
�
� :

Proof. Let R0 D .R0; � 0/ be another simple frame of NR and y[ D .y; ˇy/ 2

IC.R0/ another lift of Nx[. Denote by sy[;� 0 2 G .R0/ be the trivialized partially divided
Frobenius attached to y[, with respect to R0. We will compare below the two elements
sx[ ; sy[;� 0 2 G.

NR/.
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Note first that we may assume R D R0. Indeed, by Lemma 2.1 we can choose an
isomorphism of W.�/-algebras "WR0 Š R whose reduction modulo p is id NR. This
isomorphism induces another frame structure,

.R; � 0/ WD "�.R0; � 0/

on R. Denote by s"�.y[/;� 0 the trivialized partially divided Frobenius of "�.y[/ 2
IC.R/, with respect to simple frames .R; � 0/. Then clearly we have sy[;� 0 D s"�.y[/;� 0 .
From now on, we assumeRDR0 and denote by sy[ 2 G .R/ the trivialized partially

divided Frobenius attached to y[, with respect to R. Now the proposition follows from
the combination of Lemma 5.5 below which compares sx[ and sy[ , and Lemma 5.6
below which compares sy[ and sy[;� 0 .

Lemma 5.5. With the simple frame R fixed, if y[ D .y; ˇy/ 2 IC.R/ is another
lift of Nx[, then there exists u� 2 U�. NR/, such that following holds in G. NR/:

sx[ D sy[ � �.u�/:

Proof. Recall that by Section 3.6 we have the canonical parallel isomorphism

".x; y/WH1dR.Ax=R/
can
Š D�.A Nx/.R/

can
Š H1dR.Ay=R/;

which carries sdR;x to sdR;y . Hence, for our purpose, we may assume x D y; note
however that this does not mean3 that ˇx D ˇy . Denote by Ix the trivial G -torsor over
SpecR, obtained as the pull-back to SpecR of I along xWSpecR! � and view ˇx ,
ˇy as elements in Ix.R/. Write h WD ˇ�1y ı ˇx 2 G .R/. By (5.2) we have

sx[ D h
�1
sy[ ��. Q�.p/h Q�.p/

�1/:

Hence, it suffices to show that

Q�.p/h Q�.p/�1 2 G .R/; Q�.p/h Q�.p/�1 2 U�. NR/:

To show these we use the embedding �WGW.�/ ,! GL2g;W.�/ introduced in Section 3.4.
Since we have Q�.p/h Q�.p/�1 2 G .RŒ 1

p
�/, in order to show that it lies in G .R/, it

suffices to show that it lies in GL2g;W.�/.R/. Moreover, by (3.5), in order to show
Q�.p/h Q�.p/�1 2 U�. NR/, we may replace Q� by the induced cocharacter Q�0 D � ı Q�

(3) One may instead write ˇ0x for ˇy in the discussion below, but for typographical reasons
we choose not to do so.
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of GL2g;W.�/. Inside GL2g.RŒ 1p �/, Q�
0.p/ and h (note that Nh D 1) are represented by

matrices of the respective forms

(5.4)

 
pIg

Ig

!
and

 
Ig C pA pB

pC Ig C pD

!
;

where A, B , C , D are g � g matrices with entries in R. Now our problems become
trivial due to the discussion at the end of Section 3.4: 

pIg
Ig

! 
Ig C pA pB

pC Ig C pD

! 
pIg

Ig

!�1
D

 
Ig C pA p2B

C Ig C pD

!
:(5.5)

Lemma 5.6. Fix a lift x[ 2 IC.R/ of Nx[ and let R0 D .R; � 0/ be another simple
frame of NR. Then there exists an element u� 2 U �� . NR/, such that

sx[ D sx[;� 0 � u�:

Proof. As in the proof of Lemma 5.2, the connection rM provides a canonical
parallel isomorphism �W ��M ! � 0�M such that F D F0 ı � given the fact that � and
� 0 become the same after modulo p. One can see by direct computation that

sx[ D sx[;� 0. Q�
� .p/h Q�� .p/�1/;

where h WD � 0.ˇx/�1��.ˇx/ 2 G .R/, and the superscript “�” in Q�� certainly refers
to the Frobenius lift � WW.�/ ! W.�/. Again we use the embedding �W GW.�/ ,!
GL2g;W.�/ in Section 3.4, but in a twisted manner. To be precise, the pull-back of �
along � WW.�/! W.�/ induces another embedding

�.�/WG
can
Š G �

��

�! GL�2g;W.�/
can
Š GL2g;W.�/:

Exactly as in the proof of Lemma 5.5, it suffices to show Q�� .p/h Q�� .p/�1 2 U 0;�� . NR/,
with U 0;�� � GL2g;� the counterpart of U �� � G� for the cocharacter

Gm;�
can
Š G�

m;�

�0;�

���! GL�2g;�
can
Š GL2g;� :

Via the embedding �.�/, Q�� .p/ and h are represented inside GL2g.RŒ 1p �/ by matrices
of the same forms as in (5.4) respectively, and U 0;�� . NR/ consists of matrices of the
form  

Ig
� Ig

!
:

At the end, we have to perform the same calculation as in (5.5).
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5.5 – The global map 
 W IC ! G�=U
�
� via gluing

In this subsection we apply Proposition 5.4 to construct the global map 
 W IC !
G�=U

�
� . For this we take a Zariski affine open covering ¹ Nx[i W Spec NRi ,! ICº of IC.

Since each NRi is smooth over �, we can apply Proposition 5.4 and obtain morphisms
of �-schemes,

(5.6) 
i D 
 Nx[
i
WSpec NRi ! G�=U

�
� :

Theorem 5.7. The maps 
i defined in (5.6) glue to a map of �-schemes,


 W IC �! G�=U
�
� :

Proof. Since IC is quasi-projective (hence separated), the intersection of Spec NRi
and Spec NRj is again affine. Denote it by Spec NRij . We need to show 
i and 
j restrict
to the same map on Spec NRij for all i , j . But since NRij is again a smooth �-algebra,
this follows from the next lemma, Lemma 5.8.

Lemma 5.8. Given two �-algebras NR, NR0 satisfying (5.1), and a morphism of �-
schemes Nx[WSpec NR! IC, then for any morphism of �-schemes �WSpec NR0 ! Spec NR,
we have


 Nx[ı� D 
 Nx[ ı �:

Proof. This is immediate from our construction in Proposition 5.4 if there exists
a homomorphism of simple frames f W .R; �/! .R0; �/ which lifts the structure map
NR ! NR0. In general we do not know whether such an f always exists; below we
proceed by reducing the general case to cases where f does exist.
Note first that for each Fp-algebra NA which Zariski locally admits a p-basis, the

absolute Frobenius map � W NA! NA is faithfully flat (the local existence of a p-basis
implies that NA as an NA-module via � , is locally free). Consequently, the canonical ring
homomorphism

NA! NAperf WD lim
�!

� W NA! NA

NA

is faithfully flat. In particular, horizontal arrows in the commutative diagram

G�=U
�
� .
NR/

��

// G�=U
�
� .
NRperf/

��

G�=U
�
� .
NR0/ // G�=U

�
� .
NR0perf/

are injective. As the formation of W.�/ is functorial, we are now reduced to showing
that 
 Nx[ı� D 
 Nx[ ı � with � W Spec NRperf ! Spec NR being the canonical morphism.
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This is clear as soon as we realize that there is a homomorphism of simple frames over
W.�/ given by

.R; �/! .R; �/perf WD .bRperf; �/ Š .W. NRperf/; �/;

which lifts the structure map NR ! NRperf (also, see [39, Lemma 6.12] for another
construction). Here, Rperf is defined as the colimit perfection,

Rperf WD lim
�!

� WR!R

R

and bRperf is the p-completion of Rperf . We clearly have Rperf=pRperf D NRperf . The
Frobenius lift �RWR! R induces a Frobenius lift � on Rperf (and, hence on bRperf too)
and we have our homomorphism .R; �/! .R; �/perf of simple frames written above.
In fact, Rperf is p-torsion-free and the simple frame (Rperf; � ), viewed as a crystalline
prism (recall Remark 2.4), is nothing but the perfection of the prism .R; �/ in the
sense of Bhatt and Scholze [6, Corollary 2.31 and Lemma 3.9]. The isomorphism of
simple frames .R; �/perf Š .W. NRperf/; �/ has, thereby, been justified.

5.6 – The zip period map �

The natural embedding U �� ,! E� realizes U �� as a normal subgroup of E�. Via
this embedding U �� acts on G� by right multiplication. Passing to the quotient, we
obtain an action of PC D E�=U �� on G�=U �� given on local sections by g � pC D
p�1C g�.m/, where pCD uCm, with uC 2UC andm 2M . Denote by Œ.G�=U

�
� /=PC�

the resulting quotient algebraic stack over �. Since the action of U �� on G� is free, the
canonical projection G� ! G�=U

�
� induces a canonical isomorphism of algebraic

stacks over �,
ŒG�=E�� Š Œ.G�=U

�
� /=PC�:

Theorem 5.9. The map 
 is equivariant with respect to the actions of PC on IC
and on G�=U �� , and hence induces a morphism of algebraic stacks over �,

�WS Š IC=PC ! Œ.G�=U
�
� /=PC� Š ŒG�=E�� Š G-Zip�:

Proof. We need to show the commutativity of the following diagram of �-
schemes:

IC �� PC

�idPC

//

��

.G�=U
�
� / �� PC

��

IC



// G�=U
�
� ;
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where vertical arrows are given by PC-actions. Since IC �� PC is geometrically
reduced, it suffices to check the commutativity on k-points for an algebraically closed
field extension k of �. Note first that for any Nx[ 2 IC.k/, by Lemma 5.8, we have

. Nx[/ D 
 Nx[ : For any k-point . Nx[; NpC/ of IC �� PC, take a W.�/-point (x[; pC)
of IC �W.�/ PC, which lifts . Nx[; NpC/. Then x[ � pC is a lift of Nx[ � NpC. Applying
the construction in Section 5.4, we obtain an element sx[�pC 2 G .W.�//. A direct
calculation using the relation (5.2) gives

sx[�pC
D p�1C sx[. Q�

� .p/�.pC/ Q�
� .p/�1/ D p�1C sx[ �. Q�.p/uC Q�.p/

�1/�.m/;

where pC D uCm, with uC 2 UC.W.k// and m 2 M.W.k//, and where for the
second “D” one uses the fact that m commutes with Q�.p/ and the trivial fact that
Q�� .p/ D �. Q�.p//. But by Lemma 3.2, the element Q�.p/uC Q�.p/�1 2 G .W.k/Œ 1

p
�/

actually lies in G .W.k// and we have Q�.p/uC Q�.p/�1 D 1 2 G. NR/.

6. Comparison of � with �

In this section we show that the map �WS ! G-Zip� constructed in Theorem 5.9
coincides with the map �W S ! G-Zip� in [40], in the sense that they are naturally
2-isomorphic. The strategy is to show that there is a natural isomorphism between
their corresponding objects in the groupoid ŒG�=E��.S/.

6.1 – Zip isomorphisms associated with Dieudonné modules

As preparation for the next subsection, we let NR be as in Section 5.1 andRD .R;�/
a simple frame of it. Take a point Nx 2 S. NR/ and denote by M D .M; F;V;r/ the
Dieudonné module overR that is associated with the p-divisible groupA NxŒp

1�. Write
xFW xM � ! xM , xVW xM ! xM � for the reduction modulo p of F, V respectively; note
however that xM , xF, xV are independent of the choice of R, as they can be obtained
by taking evaluation at the trivial PD thickening NR id

�! NR of the Dieudonné crystal
D�.A Nx/Œp1�; see Section 2.2. Then the relations F ıVDp � idM and V ı FDp � idM�

give rise to an exact sequence of NR-modules

xM �
xF
�! xM

xV
�! xM �

xF
�! xM:

And hence canonical isomorphisms xFW xM �=Ker.xF/ Š�! Ker.xV/, ŒxV�W xM=Ker.xV/ Š�!
Ker.xF/; combining them, we obtain a canonical direct-summand-wise isomorphism of
NR-modules

(6.1) ıWKer.xF/˚ xM �=Ker.xF/
ŒxV��1˚xF
�����! xM=Ker.xV/˚ Ker.xV/:
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We call ı above the zip isomorphism associated with the Dieudonné module xM .
Now we make a connection to the zip isomorphism we defined in (4.2) (cf. Remark 4.3).
Let xMI � xM be the Hodge filtration of xM as introduced in Section 2.3. As recalled
in (2.2), we have xM 1;� D Ker.xF/ � xM � . We identify the following canonical isomor-
phism:

. xM � xM 1/
can
Š .H1dR.A Nx= NR/ � ! Nx/:

Write xM0 WD Ker.xV/ D Im.xF/ � xM . Under the canonical isomorphism xM
can
Š

H1dR.A Nx= NR/, xM0 corresponds to the conjugate filtration x! Nx of H1dR.A Nx= NR/. We also
identify the canonical isomorphism

. xM0 � xM/
can
Š .x! Nx � H1dR.A Nx= NR//:

With these identifications, the zip isomorphism (6.1) is nothing but the pull-back to NR
along Nx of the zip isomorphism (4.2). In what follows we write ı in the form

(6.2) ıW xM 1;�
˚ xM �= xM 1;� ŒxV��1˚xF

�����! xM= xM0 ˚ xM0:

6.2 – A canonical 2-isomorphism between � and �

Under the isomorphism G-Zip� Š ŒG�=E��, the universal G-zip in Section 4.2, I ,
corresponds to an E�-torsor Z D Z� over S , together with an E�-equivariant map
Q�WZ! G� . The E�-torsor Z is given by the pull-back of the canonical projection
I� ! I�=U �� of S -morphism along the S -morphism

IC
�
�! I�C ! I

�
C=U

�
C

�
�! I�=U �� :

The map Q�WZ! G� is given by sending a local section . Nx[; [ Nx/ of Z � IC �S I� to

Q�. Nx[; [ Nx/ WD ˇ�1Nx ı � Nx;

which is a local section of G� � GL.ƒ��/. Here, [ Nx D . Nx; � Nx/ is a local section of
I�, with the same underlying point Nx as that of Nx[. On the other hand, under the
isomorphism Œ.G�=U �� /=PC� Š ŒG�=E��, the PC-equivariant map corresponds to an
E�-torsor Z� over S , given by the pull-back of 
 W IC ! G�=U

�
� along the canonical

projection G� ! G�=U
�
� , together with an E�-equivariant map Q�WZ� ! G� given

by the canonical projection from Z� to G� . The right E�-action on Z� is given by

. Nx[; g/ � .pC; p�/ D . Nx
[
� pC; p

�1
C gp�/:

Theorem 6.1. There is a natural isomorphism Z Š Z� of E�-torsors over S . In
other words, the two morphisms of �-algebraic stacks � and � are 2-isomorphic.
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Proof. Note that it is enough to show the commutativity of the following diagram:

Z
Q�
//

pr
��

G�

��

IC


// G�=U

�
� :

This is because, once it is shown, one sees readily that the induced morphism Z! Z�

of S -schemes, given on local sections by

. Nx[; [ Nx/ 7�! . Nx[; ˇ�1Nx ı � Nx/;

is E�-equivariant, and hence is a morphism of E�-torsors over S , and hence is
automatically an isomorphism.
Clearly the problem is local on Z. Let Nz D . Nx[; [ Nx/W Spec NR ,! Z be an affine

open of Z. Since in the discussion below, the underlying point Nx 2 S. NR/ is fixed, to
ease notation we may write ˇ Nx 2 IC. NR/ instead of . Nx; ˇ Nx/ 2 IC. NR/, and similarly for
points in I�. NR/. We need to show that the image of Q�.ˇ Nx; � Nx/ D ˇ�1Nx ı � Nx 2 G. NR/ in
G�=U

�
� .
NR/ coincides with 
.ˇ Nx/. Again since Z is a smooth �-scheme, it satisfies

condition (5.1). Choose a simple frame .R; �/ for NR and a lift x[ 2 IC.R/ for Nx[.
It follows from Lemma 5.8 and Proposition 5.4 that 
.ˇ Nx/ is equal to the image in
G�=U

�
� .
NR/ of

sx[ D ˇ
�1
x �x[�.ˇx/ 2 G .R/:

Set

� 0x WD �x[�.ˇx/W .ƒ
�
R; sR/! .M; sdR;R/;

� 0Nx WD �
0
x D �x[�.ˇ Nx/:

Lemma 6.2. We have .ˇ Nx; � 0Nx/ 2 Z. NR/.

Before showing Lemma 6.2, let us note the following: it implies Theorem 6.1.
Indeed, if Lemma 6.2 is shown, then by definition of a G-zip, � 0

Nx and � Nx have the
same image in I�=U �� . NR/, as they both correspond to the image of ˇ Nx under the
isomorphism �W I�C=U

�
C.
NR/ Š I�=U �� . NR/. Hence we have � 0Nx D � Nx � u� for some

u� 2 U
�
� .
NR/, and hence the following equality holds:

sx[ D
Q�.ˇ Nx; �

0
Nx/ D

Q�.ˇ Nx; � Nx/u� 2 G. NR/;

which implies that the image of Q�.ˇ Nx; � Nx/ in G�=U �� . NR/ is equal to 
.ˇ Nx/, as desired.
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Proof of Lemma 6.2. We first show � 0
Nx 2 I�. NR/. Note that by our discussion in Sec-

tion 6.1, the subset I�. NR/ � I. NR/ consists of elements � Nx 2 I. NR/, which carries the
direct summand ƒ�

0; NR
of ƒ�

NR
isomorphically onto the conjugate filtration xM0 of xM .

Using the notation in Lemma 5.3, the normal decomposition M D M 1 ˚M 0

induces a decomposition xM D xM 1 ˚M 0 of xM , and hence a decomposition xM � D

xM 1;� ˚ ��.M 0/ of xM � . With this decomposition, we have xM0 D xF.��.M 0//. From
this equality we see that the direct summand ofM ,

M0 WD �
0
x.ƒ

�;0/ D �x[.M
0;� / D F.M 0;� /;

is a lift of the conjugate filtration xM0 of xM and we have � 0
Nx.ƒ
�

0; NR
/ D F.��.M 0//. In

other words, � 0
Nx 2 I�. NR/.

To finish the proof, we still need to show that the image of ˇ Nx in I�C=U
�
C.
NR/

coincides with the image of � 0
Nx in I�=U

�
� .
NR/, via the isomorphism �W I�C=U

�
C.
NR/ Š

I�=U �� . NR/. Denote by �0W Gm;�

�
�! G� ,! GL.ƒ��/ the cocharacter of GL.ƒ��/

induced by �, as in Section 3.4. Then we can form the �-stack GL.ƒ��/-Zip�
0 . By for-

getting tensors everywhere in I , we obtain a GL.ƒ��/-zip I0 D .I0; I0C; I0�; �0/. Then, by
functoriality of the formation of G-zips, we have the following commutative diagram:

I�C=U
�
C.
NR/

��

� // I�=U �� . NR/

��

I0;�C=U
0;�
C .
NR/

�0 // I0�=U 0;�� . NR/;

where the vertical arrows are injective: this can be seen by working fppf locally and
using the fact (see (3.5))

CentGL.ƒ��/.�
0/ \G� D CentG� .�/:

Hence, it remains to show that the images of ˇ Nx and � 0Nx match via �
0; that is, we are

reduced to the case G� D GL.ƒ��/.
Let us now unwind the definition of � forG� D GL.ƒ��/. In this special case, the set

I�C=U
�
C.
NR/ can be realized as the set of equivalence classes in IC. NR/ with equivalence

relations given by declaring ˇ1; ˇ2 2 I�C. NR/ equivalent if

gr.ˇ1/ D gr.ˇ2/W .ƒ�NR=ƒ
�;1
NR
/� ˚ƒ

�;1;�
NR
Š . xM= xM 1/� ˚ xM 1;� :

The set I�=U �� . NR/ may similarly be realized as the set of equivalence classes in I�. NR/
using the relation which declares �1; �2 2 I�. NR/ to be equivalent if

gr.�1/ D gr.�2/Wƒ�0; NR ˚ƒ
�
NR
=ƒ�

0; NR
Š xM0 ˚ xM= xM0:
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Our map � is given by sending the equivalence class of ˇ 2 I�C. NR/ to the unique
equivalence class containing � 2 I�. NR/ with gr.�/ equal to the composition of

ƒ�
0; NR
˚ƒ�NR=ƒ

�

0; NR
Š ƒ�NR=ƒ

�

�1; NR
˚ƒ�

�1; NR
can
Š .ƒ�NR=ƒ

�;1
NR
/� ˚ƒ

�;1;�
NR

ˇ�

��! . xM= xM 1/� ˚ xM 1;�

with the zip isomorphism . xM= xM 1/� ˚ xM 1;� ı
�! xM0˚ xM= xM0 defined in (6.2). Here,

the isomorphism
can
Š is being induced by (4.3). Up to all these kinds of identifications

described above, the map � is actually given by

gr.�/ 7! ı ı gr.�.�//:

It now remains for us to verify that ı D gr.�x[/ which, in turn, is the same as check-
ing the commutativity of the diagram below (with vertical arrows being canonical
projections)

(6.3) M 1;� ˚M 0;�

��

�
x[ // M�1 ˚M0

��

xM 1;� ˚ . xM= xM 1/�
ı // xM= xM0 ˚ xM0;

whereM�1 is defined to be �x[.M 1;� /. Insofar as the commutativity of (6.3) is con-
cerned, we only need to check that for every element m 2M 1;� , we have ŒxV��1. xm/ D
�x[.m/. Note that the image ŒxV��1. xm/ is the unique element Nn 2 xM= xM0 such that
xV. Nn/ D xm. We also have xV.�x[.m// D .V ı �x[/.m/ D xm. This finishes the proof of
Lemma 6.2 and of Theorem 6.1 as well.
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