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Orders of products of elements and nilpotency of terms
in the lower central series and the derived series

Juan Martínez (*)

Abstract – In this paper we prove that if G is a finite group, then the k-th term of the lower
central series is nilpotent if and only if for every k-values x; y 2 G with coprime orders,
either �.o.x/o.y// � �.o.xy// or o.x/o.y/ � o.xy/. We obtain an analogous version for
the derived series of finite solvable groups, but replacing k-values by ık-values. We will
also discuss the existence of normal Sylow subgroups in the derived subgroup in terms of the
order of the product of certain elements.
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1. Introduction

All groups considered in this paper will be finite. It is an interesting theme to obtain
results that relate the structure of a finite group with relationships among the order of
products of some elements of the group. In this article we have studied the nilpotency
and the existence of normal Hall �-subgroups in a term of the derived series or a term
of the lower central series.

B. Baumslag and J. Wiegold proved in [4] that a group G is nilpotent if and only if
o.x/o.y/ D o.xy/ for every pair of elements x; y 2 G with .o.x/; o.y// D 1. There
have been many papers that have generalized the Baumslag–Wiegold theorem.

On the one hand, in [5,10], A. Beltrán, A. Sáez, A. Moretó and the author proved more
general versions of this result. Those versions give necessary and sufficient conditions
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for the existence of normal Hall �-subgroups and nilpotent Hall �-subgroups in terms
of orders of products. More precisely, the hypothesis of these results have the form
�.o.x/o.y// � �.o.xy// or o.x/o.y/ � o.xy/, where x is a �-element and y a � 0-
element. (Recall that if n is a positive integer, �.n/ is the set of prime divisors of n.)
On other hand, in [2, 3, 6] R. Bastos, C. Monetta, J. da Silva and P. Shumyatsky proved
some theorems on the nilpotency of a term of the derived group and a term of the lower
central series, in terms of orders of products.

Our purpose in this paper is to get new versions of the aforementioned results, but
combining them with hypotheses of the type o.x/o.y/ � o.xy/, or �.o.x/o.y// �
�.o.xy//. To explain them we introduce two families of words. Given k � 1, the word
k D k.x1; : : : ; xk/ is defined inductively as

1 D x1 and k D Œk�1.x1; : : : ; xk�1/; xk� D Œx1; : : : ; xk�:

Any element of the form k.x1; : : : ; xk/ is called a k-value of G. The subgroup of G
generated by all of its k-values is the k-th term of the lower central series, which we
denote by k.G/. Analogously, the word ık D ık.x1; : : : ; x2k / is defined inductively
as

ı0 D x1 and ık D Œık�1.x1; : : : ; x2.k�1//; ık�1.x2.k�1/C1; : : : ; x2k /�:

As before, the elements of the form ık.x1; : : : ; x2k / are called ık-values. The subgroup
of G generated by all of its ık-values is the k-th term of the derived series, which we
denote by G.k/.

In the case of the k-values we have proved a new version of the main result of
[2], but replacing the hypothesis o.x/o.y/ D o.xy/ by either o.x/o.y/ � o.xy/ or
�.o.x/o.y// � �.o.xy// for each pair of elements.

Theorem A. Let G be a finite group. Then k.G/ is nilpotent if and only if for
every pair of k-values x; y 2 G with .o.x/; o.y// D 1, at least one of the following
holds.

(1) �.o.x/o.y// � �.o.xy//.

(2) o.x/o.y/ � o.xy/.

It is important to remark that in the converse assertion we admit the existence of pairs
of k-values of coprime orders such that �.o.x/o.y// � �.o.xy// but o.x/o.y/ >
o.xy/ or o.x/o.y/ � o.xy/ but �.o.x/o.y// 6� �.o.xy//.

In the case of the ık-values, Theorem B generalizes the main result of [6] in the
same way.
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Theorem B. Let G be a finite solvable group. Then G.k/ is nilpotent if and only if
for every pair of ık-values x;y 2 G with .o.x/; o.y//D 1, at least one of the following
holds.

(1) �.o.x/o.y// � �.o.xy//.

(2) o.x/o.y/ � o.xy/.

Our proofs of Theorems A and B are similar to the proofs in [2, 3, 6].
In the final section of the paper, we study the following conjecture.

Conjecture. The following are equivalent:

(1) G0 D H� �H� 0 , where H� 2 Hall�.G0/ and H� 0 2 Hallp0.G0/.

(2) For every pair of commutators of x; y 2 G such that x is a �-element and y is a
� 0-element, we have �.o.x/o.y// � �.o.xy//.

We recall that given a set of primes � and x 2 G we may define the �-part of
x as x� D xo.x/�0 . Analogously, we define the � 0-part of G as x� 0 D xo.x/� . It is
easy to see that x� is a �-element, x� 0 is a � 0-element and x D x�x� 0 . The following
definition is relevant for the study of the above conjecture.

Definition. Given a prime p, we say that a finite group G is p-exponential if the
p0-part of every commutator of G is a commutator.

As will be discussed, it seems that given a primep, “most groups” arep-exponential.
We characterize the existence of normal Sylowp-subgroups inp-solvablep-exponential
groups.

Theorem C. Let G be a p-solvable and p-exponential group. Then G0 has a
normal Sylow p-subgroup if and only if for every pair of commutators x; y 2 G such
that x is a p-element and y is a p0-element, we have �.o.y// � �.o.xy//.

From this theorem we can deduce that the conjecture holds for � D ¹pº, when the
group is p-exponential and p-solvable.

Corollary D. Let G be a p-solvable and p-exponential group. Then G0 has a
normal Sylow p-subgroup and a normal p-complement if and only if for every pair
of commutators x; y 2 G such that x is a p-element and y is a p0-element, we have
�.o.y/o.x// � �.o.xy//.
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2. Preliminary results

Most of the results of this section have the same structure. We have a subset of
k-values or ık-values of G, and a condition concerning the order of the products of
these elements. Our results assert that under such a condition, each of our elements
commutes with some subgroup that they normalize.

Proposition 2.1. Let G be a finite group and let � be a set of primes such that
for every pair of k-values x; y 2 G, with x a �-element and y a � 0-element, we
have either o.x/o.y/ � o.xy/ or �.o.x/o.y// � �.o.xy//. If x is a k-value and a
�-element, and N is a � 0-group which is normalized by x, then Œx; N � D 1.

Proof. Let y 2 N . Since x normalizes N , Œx; y� 2 N . Hence, x and Œx; y� are
k-values which are respectively a �-element and a � 0-element. Now, by our hypothesis
there are two possible cases. Suppose first that

o.x/o.Œx; y�/ � o.xŒx; y�/ D o.y�1xy/ D o.x/:

Then o.Œx; y�/ D 1, so Œx; y� D 1. Therefore, we may assume that

�.o.x/o.Œx; y�// � �.o.xŒx; y�// D �.o.y�1xy// D �.o.x//:

This implies Œx; y� D 1 again. So, in any of the two possible cases we have Œx; y� D 1,
for every y 2 N . Thus, Œx; N � D 1, as we claimed.

Corollary 2.2. LetG be a finite group such that for every pair of k-values x;y 2
G with .o.x/;o.y//D 1we have eithero.x/o.y/� o.xy/ or�.o.x/o.y//��.o.xy//.
If x is a k-value, and N is a subgroup normalized by x such that .o.x/; jN j/ D 1,
then Œx; N � D 1.

Proof. It suffices to apply the previous proposition to the set � D �.o.x//.

Proposition 2.3. Let G be a finite group and let � be a set of primes such that
for every pair of k-values x; y 2 G, with x a �-element and y a � 0-element, we
have �.o.y// � �.o.xy//. If x is a k-value and a �-element, and N is a � 0-group
normalized by x, then Œx; N � D 1.

Proof. Let y 2 N . As before, Œx; y� 2 N . So, we may apply our hypothesis to
x and Œx; y�. Thus, �.o.Œx; y�// � �.o.xŒx; y�// D �.o.y�1xy// D �.o.x//. This
implies that Œx; y� D 1. It follows that Œx; N � D 1, as desired.

Now we will prove analogous versions of the previous results for ık-values.
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Proposition 2.4. Let G be a finite group and let � be a set of primes such that
for every pair of ık-values x; y 2 G, with x is a �-element and y is a � 0-element, we
have either o.x/o.y/ � o.xy/ or �.o.x/o.y// � �.o.xy//. If x is a ık-value and a
�-element, and N is a � 0-group normalized by x, then Œx; N � D 1.

Proof. Lety 2N . Sincex normalizesN , we have that Œx;y�2N and so Œy;x;x�D
ŒŒy; x�; x� 2 N . Hence, x�1 and Œy; x; x� are ık-values which are respectively a �-
element and a � 0-element. Moreover,

Œy; x; x�x�1 D ŒŒy; x�; x�x�1 D ..x�1/Œy;x�x/x�1 D .x�1/Œy;x�;

which is a conjugate of x�1. Now, by our hypothesis there are two possible cases, and
reasoning as in Proposition 2.1 we have Œy; x; x�D 1 in both cases. Thus, ŒN; x; x�D 1.
Then, by [7, Theorem 5.3.6], we have ŒN; x� D 1, as desired.

Corollary 2.5. LetG be a finite group such that for every pair of k-values x;y 2
G with .o.x/;o.y//D 1we have eithero.x/o.y/� o.xy/ or�.o.x/o.y//��.o.xy//.
If x is a ık-value, and N is a subgroup normalized by x such that .o.x/; jN j/ D 1,
then Œx; N � D 1.

Proof. As in Corollary 2.2, it is enough to apply the previous proposition to the
set � D �.o.x//.

Proposition 2.6. Let G be a finite group and let � be a set of primes such that
for every pair of ık-values x; y 2 G, with x a �-element and y a � 0-element, we
have �.o.y// � �.o.xy//. If x is a ık-value and a �-element, and N is a � 0-group
normalized by x, then Œx; N � D 1.

Proof. As in Proposition 2.4, given y 2N we consider Œy; x; x� 2N . Hence, argu-
ing as before, we have that �.o.Œy;x;x�//� �.o.Œy;x;x�x�1//D �.o..x�1/Œy;x�//D
�.o.x//. Thus, ŒN;x;x�D 1. Applying [7, Theorem 5.3.6] again, we have that ŒN;x�D
1.

We observe that a similar argument could work for other families of words, for
example to the �

k
-values or the ı�

k
-values, introduced in [12]. Therefore, by a similar

argument as above, we could obtain analogous results as in [1], but using our hypotheses.
To prove the results on the derived subgroup we will need the focal subgroup

theorem [9, Theorem 5.21]. This theorem asserts that if H 2 Hall�.G/, then H \G0

is generated by the commutators lying in H . To prove the result in the derived series
we will need the next generalization of the focal subgroup theorem, which was proved
in [6] by P. Shumyatsky and J. da Silva.
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Lemma 2.7. Let G be a finite solvable group and let p 2 �.G/. Then for every
P 2 Sylp.G/ and every k � 1, the group P \G.k/ is generated by ık-values of order
a power of p.

3. Proof of Theorems A and B

Our purpose in this section is to prove Theorems A and B. We begin stating two
lemmas. The first one is [2, Lemma 3].

Lemma 3.1. Let G be a metanilpotent finite group and let p 2 �.G/. If x is a
p-element such that Œx;Op0.F.G//� D 1, then x 2 F.G/.

The second lemma is a property of coprime actions, which is a direct corollary of
[7, Theorem 5.3.6].

Lemma 3.2. Let G be a finite group, let p a prime and let P a p-subgroup of G.
Then, for every x p0-element normalizing P , it holds that

ŒP; x� D ŒP; k�1x�;

where ŒP; k�1x� stands for ŒP; x; : : : ; x„ ƒ‚ …
.k�1/-times

�.

It is also important to recall the concept of Turull tower, which was introduced in
[13]. Given a subgroupH ofG, we say thatH is a tower of height h ifH D P1 � � �Ph,
where the groups Pi are pi -groups (each pi is a prime number) and the following two
conditions hold:

(1) Pi normalizes Pj for all i < j .

(2) ŒPi ; Pi�1� D Pi for all i 2 ¹2; : : : ; hº.

It was shown in [13] that a solvable finite group G has Fitting height at least h if
and only if G admits a tower of height h. Now, we proceed to prove Theorem A in the
solvable case.

Theorem 3.3. Let G be a solvable group such that for every pair of k-values
x; y 2 G with .o.x/; o.y// D 1, we have either o.x/o.y/ � o.xy/ or �.o.x/o.y// �
�.o.xy//. Then k.G/ is nilpotent.

Proof. Let h be the Fitting height ofG. If hD 1, thenG is nilpotent and the result
follows trivially.
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Suppose first that h � 3. Let P1 � � �Ph be a tower of height h. Then,

P3 D ŒP3; ŒP2; P1��:

On the other hand, by Lemma 3.2, for every x 2 P1 we have ŒP2; x� D ŒP2; k�1x�.
Thus, P2 D ŒP2; P1� is generated by k-values that are p2-elements normalizing P3.
Then, applying Corollary 2.2, we get 1 D ŒP3; P2� D P3, which is a contradiction.

So, we may assume thathD 2. Hence,G is metanilpotent. IfG=F.G/ has nilpotency
class less or equal than k � 1, then k.G/ � F.G/, so it is nilpotent. Suppose now
that G=F.G/ has nilpotency class at least k. Then, there exists a Sylow subgroup of
G=F.G/ that has nilpotency class at least k. Therefore, there exists a Sylow subgroup
P of G and a k-value x of elements of P such that x 62 F.G/. On the other hand, by
Corollary 2.2, ŒOp0.F.G//;x�D 1, and by Lemma 3.1, x 2 F.G/. Such a contradiction
completes the proof.

Now, we will work to prove Theorem A in the general case. We will need two more
lemmas. The next result is [2, Lemma 4].

Lemma 3.4. Let G be a finite group with G D G0 and let p 2 �.G/. Then G is
generated by k-values whose order is a power of some prime different from p.

The following lemma is [11, Proposition 2.8]. Its proof relies on Thompson’s
classification of the minimal simple groups. We recall that a minimal simple group is a
nonabelian simple group such that every proper subgroup is solvable.

Lemma 3.5. Let G be a minimal simple group. Then G has a subgroup H such
that H D A Ì T , where A is an elementary abelian 2-group, T has odd order, and
A D ŒA; T �.

Finally, we are ready to complete the proof of Theorem A.

Proof of Theorem A. Suppose that G is a counterexample of minimal order. By
Theorem 3.3, G cannot be solvable. Moreover, by the minimality of G, every proper
subgroup of G is solvable. In particular, it follows that G D G0. First, we will show
that G is quasisimple.

Let R be the solvable radical. We know that G=R is nonabelian simple, so it is
enough to prove that Z.G/ D R. By Lemma 3.4, given p 2 �.G/, we have that G
is generated by k-values of order a power of q, with q ¤ p. Let P 2 Sylp.F.G//.
By Corollary 2.2, we have ŒP; x� D 1 for every k-value x which is a p0-element. It
follows that P � Z.G/ for every P 2 Sylp.F.G// and for every p 2 �.G/. Hence,
F.G/ � Z.G/. On the other hand, k.R/ is nilpotent, so that k.R/ � F.G/D Z.G/.
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Thus, Œx1; : : : ; xk; xkC1�D 1. Hence,R is nilpotent, and thereforeRD F.G/DZ.G/.
Thus G=Z.G/ is a nonabelian simple group.

Furthermore, all proper subgroups ofG=Z.G/ are solvable and henceG=Z.G/ is a
minimal simple group. By the previous lemma, G=Z.G/ has a subgroup H=Z.G/ D
A=Z.G/ Ì T=Z.G/, where A=Z.G/ is an elementary abelian 2-group, T=Z.G/ is
odd, and A=Z.G/ D ŒA=Z.G/; T=Z.G/�. By Lemma 3.2,

A=Z.G/ D ŒA=Z.G/; k�1T=Z.G/�:

Now, let P 2 Sylp.A/. Then, there exists some a 2 P such that x D Œa; k�1t � 2
A nZ.G/. Thus, x is a k-value, which is a 2-element and x2 2 Z.G/. Applying the
Baer–Suzuki theorem (see [7, Theorem 3.8.2]), there exists g 2 G such that Œx; g� has
odd order. Then

1 D Œx2; g� D Œx; g�xŒx; g�

or, equivalently, Œx; g�x D Œx; g��1. Finally, x is a k-value normalizing hŒx; g�i, and
.o.x/; jhŒx; g�ij/D 1. Thus, applying Corollary 2.2, x centralizes Œx; g�, so Œx; g��1 D
Œx; g�x D Œx; g�. This contradicts that Œx; g� has odd order.

Next, we prove Theorem B.

Proof of Theorem B. Suppose that G is a counterexample with G.k/ as small
as possible. Since G is solvable, jG.k/j > jG.kC1/j, and by the minimality of G we
conclude that G.kC1/ is nilpotent. Then, G.k/ is metanilpotent.

Let P be a Sylow p-subgroup of G.k/. By Lemma 2.7, P is generated by ık-
values that are p-elements. Each of these generators is a ık-value that normalizes
Op0.F.G

.k/// and has order coprime with jOp0.F.G.k///j. Then, applying Lemma 2.5,
ŒOp0.F.G

.k///; x� D 1, and since G.k/ is metanilpotent, applying Lemma 3.1 we have
that x 2 F.G/.

Then, P � F.G/, for every p-Sylow subgroup P of G.k/. Thus, G.k/ � F.G.k//,
and hence G.k/ is nilpotent, a contradiction.

4. Normal Hall �-subgroups of the derived subgroup

In this section, we prove Theorem C and Corollary D. The “if” part of both results is
trivial and hence we will only prove the “only if” part. We begin with a result that implies
that the conjecture stated in the introduction is true in the case when O�.G0/ D 1 and
G is �-separable.



Orders of products of elements 261

Theorem 4.1. Let � be a set of primes and G be a �-separable group with
O�.G

0/ D 1. Suppose that for every pair of commutators x; y 2 G, such that x is a
�-element and y is a � 0-element, we have �.o.y// � �.o.xy//. Then no prime in �
divides jG0j.

Proof. Let p 2 � and let P 2 Sylp.G0/. By the focal subgroup theorem, P is gen-
erated by ¹x1; : : : ; xnº, where the xi are commutators that are p-elements. Hence, every
xi is a commutator that normalizes O� 0.G0/ and .o.xi /; jO� 0.G0/j/ D 1. By Proposi-
tion 2.3, xi 2 CG0.O� 0.G0// for every xi . Hence, we have that P � CG0.O� 0.G0//.

On the other hand, O�.G0/ D 1 and G0 is �-separable, hence by [8, Lemma 1.2.3],
CG0.O� 0.G

0// � O� 0.G
0/. Consequently, P � O� 0.G0/ with p 2 � . Thus, P D 1 as

desired.

Now, we proceed to prove Theorem C.

Proof of Theorem C. LetN DOp.G0/ and let xN;yN be commutators ofG=N
such that xN is a p-element and yN is a p0-element. Then, x is a commutator of G
that is a p-element. On the other hand, y is also a commutator (but not necessarily
a p0-element) and since G is p-exponential we have that yp0 is a commutator and a
p0-element. In addition, we have that yN D yp0N . By our hypothesis, we have that

�.o.yN// D �.o.yp0N// D �.o.yp0// � �.o.x/o.yp0// � �.o.xyp0//:

Using that N is a p-subgroup and that xyp0N D xyN , we have that

�.o.yN// � �.o.xyp0N// D �.o.xyN//:

Thus, our hypothesis also holds in G=N .
Now we consider xG D G=N and use the bar convention. Notice that Op. xG0/ D 1,

xG is p-solvable and �.o.y// � �.o.xy// for every commutators x; y of xG, where x
is a p-element and y is a p0-element. By the previous theorem, p cannot divide j xG0j.
Thus, N is a normal Sylow p-subgroup of G0, as desired.

Using Theorem C and the Schur–Zassenhaus theorem, we can now prove Corol-
lary D.

Proof of Corollary D. We observe that all the hypotheses of Theorem C are
satisfied. Thus, G0 has a normal Sylow p-subgroup.

By the Schur–Zassenhaus theorem, G0 D PH , where P is a normal Sylow p-
subgroup and H is a p-complement. By the focal subgroup theorem, H is generated
by commutators that are p0-elements. Clearly, these generators normalize P and have
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orders coprime with jP j. We also have that �.o.x// � �.o.xy// for every x; y com-
mutators in G, where x is a p-element and y is a p0-element. By Proposition 2.6, each
of the generators of H centralizes P . Thus, H centralizes P and hence G0 D P �H ,
where P 2 Sylp.G0/ and H 2 Hallp0.G0/.

Finally, we remark that we have used GAP [14] to find non-p-exponential groups,
for the primes p 2 ¹2; 3; : : : ; 19º. All examples of non-p-exponential groups that we
have found are non-p-exponential for p D 2. Moreover, all of them have nontrivial
center and nonabelian Sylow 2-subgroups. The smallest non-p-exponential groups
have order 23 � 33.
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