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Galois equivariant functions on Galois orbits in large
p-adic fields
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Abstract – Given a prime number p let Cp be the topological completion of the algebraic
closure of the field of p-adic numbers. Let O.T / be the Galois orbit of a transcendental
element T of Cp with respect to the absolute Galois group. Our aim is to study the class of
Galois equivariant functions defined onO.T / with values in Cp . We show that each function
from this class is continuous and we characterize the class of Lipschitz functions, respectively
the class of differentiable functions, with respect to a new orthonormal basis. Then we discuss
some aspects related to analytic continuation for the functions of this class.
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1. Introduction

Let p be a prime number, Qp the field of p-adic numbers, Qp a fixed algebraic
closure of Qp, and Cp the completion of Qp with respect to the p-adic absolute
value j � j. Let O.T / denote the Galois orbit of an element T 2 Cp with respect to the
Galois group G D Galcont.Cp=Qp/. The class of Galois equivariant functions plays an
important role in the study of generating elements for some classes of closed subfields
of Cp, see [5], and in the study of p-adic measures on the orbits of elements of Cp,
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see [2]. The problem of characterization of Lipschitz functions in the case of local
fields by using various bases has been studied by Amice and Fresnel [6], Barsky [8],
Helsmoortel [10], and de Shalit [9]. A study of the Cp-Banach algebra of Lipschitz
functions on arbitrary compact subsets of Cp has been presented by one of the authors
in [14]. In this paper, we complement their results for the class of Galois equivariant
functions defined on Galois equivariant compacts of the Tate fields. We are interested
in studying the class of Galois equivariant functions defined on the Galois orbit of
a transcendental element of Cp and to characterize the class of Lipschitz functions,
respectively of differentiable functions, with respect to the orthonormal basis that has
been introduced in [3, 12]. Also, the problem of analytic continuation for the functions
of this class is considered.

The paper consists of three sections. After this introduction, Section 2 contains
notation and some preliminary results. In Section 3, we present the main results of
the paper. Precisely, Theorem 3.3 says that a Galois equivariant function f defined
on the Galois orbit of a transcendental element of Cp with values in Cp is continuous
and has a representation as a series with respect to the orthonormal basis mentioned
above with coefficients in the field of p-adic numbers. We give sufficient conditions
for such a function to be Lipschitz or differentiable. The conditions depend only on
the coefficients of the development of f in the orthonormal basis and on a sequence
of invariants associated with T . Analogous problems are studied in Theorem 3.5 for
GK-equivariant functions defined on the Galois orbit of T with values in Cp , whereK
is a finite normal extension of Qp and GK D Galcont.Cp=K/. In the case when T is a
normal element, that is, AQpŒT � is a normal extension of Qp , any continuous function
defined on the Galois orbit of T with values in Cp is a uniform limit of a sequence of
functions, which are representable as series in the same orthonormal basis but with
coefficients in some finite and normal extensions of Qp . In the final part of the paper,
we study the problem of analytic continuation for the functions from the class of Galois
equivariant functions defined on Galois orbits with values in Cp , see Theorem 3.6.

2. Notation and preliminary results

Let p be a prime number and let Qp be the field of p-adic numbers. Let Qp be a
fixed algebraic closure of Qp and let Cp be the completion of Qp with respect to the
p-adic valuation v, see [3,4,7,11,13]. Denote by j � j the p-adic module on Cp , where
jxj D . 1

p
/v.x/, for any x 2 Cp . LetG be the Galois group Gal.Qp=Qp/ endowed with

the Krull topology. We know that G is canonically isomorphic to Galcont.Cp=Qp/,
which is the group of all continuous automorphisms of Cp over Qp . In the following,
we shall identify these two groups.
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For any closed subgroup H of G, we denote

Fix.H/ D
®
T 2 Cp W �.T / D T for all � 2 H

¯
:

Then Fix.H/ is a closed subfield of Cp . If T 2 Cp , denote

H.T / D
®
� 2 G W �.T / D T

¯
:

Then H.T / is a subgroup of G, and Fix.H.T // D AQpŒT � (see [3, 4]), which is the
closure of the polynomial ring QpŒT � in Cp. We say that T is a topological generic
element of AQpŒT �. Any closed subfieldK of Cp has a topological generic element, i.e.,
there exists T 2 K such that K D AQpŒT �, see [3, Theorem 1.2] and [11, Theorem 2].

Let T be a transcendental element of Cp and let O.T / D ¹�.T / W � 2 Gº be
the Galois orbit of T . The map �  �.T / from G to O.T / is continuous and it
defines a homeomorphism from G=H.T / to O.T /. Then O.T / is a compact and
totally disconnected subspace of Cp and the group G acts continuously on O.T /: if
� 2 G and �.T / 2 O.T /, then � � �.T / D .��/.T /.

In what follows, we recall the notions of distinguished pair and distinguished
sequence that were introduced by the first author, Popescu and Zaharescu [3]. For any
˛ 2 Qp we denote by dim˛ D ŒQp.˛/ W Qp� the dimension of ˛. We say that a pair
.˛; ˇ/ 2 Q

2

p is a distinguished pair if:

(a) dim˛ < dimˇ;

(b) if 
 2 Qp and dim 
 < dimˇ, then jˇ � ˛j � jˇ � 
 j;

(c) if 
 2 Qp and dim 
 < dim˛, then jˇ � ˛j < jˇ � 
 j.

Now, if .˛; ˇ/ 2 Q
2

p is a distinguished pair, then dim ˛ is a divisor of dim ˇ, see
[3, Corollary 1.5] and [12, Remark 3.3].

A sequence ¹˛nºn�0 of algebraic elements of Qp is called a distinguished sequence
if:

(a) ˛0 2 Qp;

(b) the pair .˛n�1; ˛n/ is distinguished for any n � 1;

(c) j˛n � ˛n�1j D ın�1 ! 0, when n !1.

It is known that the limit of a distinguished sequence is a transcendental element of Cp
and any transcendental element T of Cp is a limit of a distinguished sequence. The
sequence ¹ınºn�0 defined above is strictly decreasing to 0 and it is an invariant of T ,
that is, it does not depend on the distinguished sequence that converges to T , which
means that it depends only on T , see [3, Remark 2.4].

Let fn be the monic minimal polynomial of ˛n over Qp, where ¹˛nºn�0 is a
distinguished sequence that converges to a transcendental element T of Cp. Denote
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Dn D dim˛n D degfn, for any n� 0. Also, the sequence ¹Dnºn�0 is an invariant of T .
Let A be the subset of N.N/ which consists of elements s D .s0; s1; : : : ; sn; 0; : : : /
such that si <

DiC1

Di
, for any i � 0. On the set N.N/ we have the anti-lexicographic

order. More precisely, for any s D .s0; s1; : : : ; sn; : : : / and s0 D .s00; s
0
1; : : : ; s

0
n; : : : /

in N.N/, we have s < s0 if and only if there exists a natural number k such that si D s0i
for any i > k and sk < s0

k
. With this order, N.N/ becomes a well-ordered set. We

consider A as a well-ordered set with the induced ordering of N.N/. To any element
s D .s0; s1; : : : ; sn; 0; : : : / 2 A we associate the polynomialHs D f s00 f

s1
1 � � �f

sn
n � � �.

Denote
Ms DMs.T / D

Hs.T /

pqs
;

where qs D Œv.Hs.T //� and Œx� stands for the integral part of x.

Claim. Let s D .s0; s1; : : : ; sn; 0; : : : / 2 A. Then

degMs D s0D0 C s1D1 C � � � C snDn < DnC1; for any n � 0:

Since si <
DiC1

Di
, we have siDi < DiC1, for any i � 0. Because Di is a divisor of

DiC1, it follows that DiC1 � siDi � Di , so DiC1 � Di .si C 1/, for any i � 0.
Now, we will prove the claim by induction on n. It is clear that D0 D 1 and

s0D0 D s0 < D1. Let us suppose that s0D0 C s1D1 C � � � C sn�1Dn�1 < Dn. Then

s0D0 C s1D1 C � � � C sn�1Dn�1 C snDn < Dn C snDn � DnC1;

which proves our claim.
Let s; s0 2 A be such that s < s0 with respect to the anti-lexicographic order

on A. From the definition of the anti-lexicographic order on A and the claim we
deduce that degMs < degMs0 . We put the elements Ms , s 2 A, in a sequence
.M0;M1; : : : ;Mn; : : : / according to the order of A and, by [3], we have the following
result.

Proposition 2.1. Let T be a transcendental element of Cp. Then, there exists a
family ¹Mnºn�0 of polynomials in QpŒT �, such that:

(i) degMn D n for all n � 0;

(ii) 1
p
< jMn.T /j � 1;

(iii) any element f of the field AQpŒT � can be written uniquely as a series in the form
f D

P
n�0 anMn, where ¹anºn�0 is a sequence of elements of Qp such that

limn!1 an D 0. Moreover, we have jf j D supn�0 janMn.T /j.

(iv) IfKT D AQpŒT �\Qp , then eKT D AQpŒT � and Gal.Qp=KT / is canonically isomor-
phic to H.T /.
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A subset D � Cp is G-equivariant or Galois equivariant provided that �.x/ 2 D
for any � 2 G and any x 2 D. An example is the Galois orbit O.T /, where T 2 Cp .
Another example is

BŒO.T /; jpj1C"� D
®
z 2 Cp W dist.z;O.T // � jpj1C"

¯
; for any " > 0:

A function f W D ! Cp, where D is a Galois equivariant subset of Cp, is called
G-equivariant or Galois equivariant if f .�x/D �f .x/, for any � 2 G and x 2D, see
[1,4,5,14]. Finally, letK be a complete subfield of Cp . Denote byGK DGalcont.Cp=K/

the Galois group of continuous automorphisms of Cp over K. If instead of G we
consider GK , then we define in a similar way the notions of GK-equivariant subset
of Cp , respectively of GK-equivariant function.

3. Main results

Proposition 3.1. Let T be a transcendental element of Cp and let F 2 QpŒX� be
a polynomial of degree n � 1. Then F is a Lipschitz function on the Galois orbitO.T /
of T and its Lipschitz constant CF is bounded by jF 0.T /j � CF � jF.T /jjT�˛j

, where the
root ˛ 2 Qp of F is the closest to T .

Proof. It is clear that F is Lipschitz on O.T /. Now, for the sake of simplicity, we
suppose that F is monic and F.X/ D

Qn
iD1.X � ˛i /, where ˛1; ˛2; : : : ; ˛n 2 Qp are

all the roots of the polynomial F . Also, we can suppose that

(1) jT � ˛1j � jT � ˛2j � � � � � jT � ˛nj:

Denote Fl.X/D
Qn
iDlC1.X � ˛i /, for any 0 � l < n. For any � 2 G nH.T /we have

F.T / � F.�T /

T � �T
D
.T � ˛1/F1.T / � .�T � ˛1/F1.T /

T � �T

C
.�T � ˛1/F1.T / � .�T � ˛1/F1.�T /

T � �T

D F1.T /C .�T � ˛1/
F1.T / � F1.�T /

T � �T
:

It follows

(2)
ˇ̌̌̌
F.T / � F.�T /

T � �T

ˇ̌̌̌
� max

²
jF1.T /j; jT � �

�1˛1j �

ˇ̌̌̌
F1.T / � F1.�T /

T � �T

ˇ̌̌̌³
:

We consider F1 instead of F in the left-hand side of (2), so we have

(3)
ˇ̌̌̌
F1.T / � F1.�T /

T � �T

ˇ̌̌̌
� max

²
jF2.T /j; jT � �

�1˛2j �

ˇ̌̌̌
F2.T / � F2.�T /

T � �T

ˇ̌̌̌³
:
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By (2) and (3), we deduceˇ̌̌̌
F.T / � F.�T /

T � �T

ˇ̌̌̌
� max

²
jF1.T /j; jF2.T /j � jT � �

�1˛1j;(4)

jT � ��1˛1j � jT � �
�1˛2j �

ˇ̌̌̌
F2.T / � F2.�T /

T � �T

ˇ̌̌̌³
:

By using an iteration process, as in (2)–(4), we see thatˇ̌̌̌
F.T / � F.�T /

T � �T

ˇ̌̌̌
� max

®
jF1.T /j; jF2.T /j � jT � �

�1˛1j; : : : ;(5)

jT � ��1˛1j � jT � �
�1˛2j � : : : � jT � �

�1˛n�1j
¯
:

From inequalities (1) and (5), it is clear that

1

jF.T /j
�

ˇ̌̌̌
F.T / � F.�T /

T � �T

ˇ̌̌̌
�

1

jT � ˛1j
;

thereforeCF � jF.T /jjT�˛1j
. When�T tends toT in jF.T /�F.�T /

T��T
j �CF , we have jF 0.T /j �

CF , and this completes the proof of the proposition.

Remark 3.2. Let T be a transcendental element of Cp , which is Lipschitz (that is,
lim"!0

"
jN.T;"/j

D 0, where N.T; "/ is the number of open balls of radius " that cover
the Galois orbit of T ), and let ¹˛nºn�0 be a distinguished sequence that converges to T .
Let fn D IrrQp

.˛n/ be the minimal polynomial of ˛n over Qp . We know that

lim
n!1

jf 0n.T /j

jfn.T /j
D 1

(see [1, 4]). So, by Proposition 3.1, we have

lim
n!1

Cfn

jfn.T /j
D 1;

which means that Cfn
is growing faster to infinity than jfn.T /j.

Theorem 3.3. Let T be a transcendental element of Cp . We have:

(i) The set of Galois equivariant Cp-valued functions defined on O.T / coincides
with the set CG.O.T /;Cp/ of continuous Galois equivariant Cp-valued functions
defined on O.T /, and is isomorphic with AQpŒT � as Qp-algebra.

(ii) Let f W O.T /! Cp be a Galois equivariant function and let f D
P
n�0 anMn be

its representation as in Proposition 2.1, where ¹anºn�0 is a sequence of elements of
Qp such that limn!1 an D 0. If the sequence

®
janj

jT�
nj

¯
n�0

is uniformly bounded,
where 
n is a root of Mn, which is the closest to T , then f is Lipschitz. Moreover,
if limn!1

janj

jT�
nj
D 0, then f is differentiable on O.T /.
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Proof. (i) Let f be a Cp-valued function defined onO.T / that is Galois equivari-
ant. We have f .�T / D �f .T / D f .T / for any � 2 H.T / D ¹� 2 G W �.T / D T º.
It follows that f .T / 2 Fix.H.T // D AQpŒT �. The function f is clearly continuous if
f .T / 2 QpŒT � and every other f 2 AQpŒT � is a uniform limit of such functions. In
fact, f .T / D

P
n�0 anMn.T / by Proposition 2.1 and then f .x/ D

P
n�0 anMn.x/,

for any x 2 O.T /. The isomorphism of Qp-algebras is given by the map f  f .T /.
(ii) Let C > 0 be a positive constant such that janj

jT�
nj
� C , for any n � 0. We have

(6)
f .T / � f .�T /

T � �T
D

X
n�0

an �
Mn.T / �Mn.�T /

T � �T
; for any � 2 G nH.T /:

By Propositions 2.1 and 3.1 we find that

jMn.T / �Mn.�T /j

jT � �T j
�

1

jT � 
nj
:

Therefore, by the hypothesis and (6),

jf .T / � f .�T /j

jT � �T j
� sup
n�0

janj

jT � 
nj
� C;

which means that f is Lipschitz and its Lipschitz constant is � C .
Again, by Propositions 2.1 and 3.1, we have

jM 0n.T /j �
jMn.T /j

jT � 
nj
�

1

jT � 
nj
:

Then, by the hypothesis, we know that the series
P
n�0 anM

0
n.T / is convergent and,

by a classical argument of analysis, we infer that f is differentiable and f 0.x/ DP
n�0 anM

0
n.x/, for any x 2 O.T /. This completes the proof of the theorem.

Remark 3.4. Let f W O.T /! Cp be a Galois equivariant function and let f DP
n�0 anMn be its representation as in Theorem 3.3. For anyn� 0 there exists s.n/2A

such that
Mn.T / DMs.n/.T / D

Hs.n/.T /

pqs.n/
;

where qs.n/ D Œv.Hs.n/.T //�. By preliminary results, the map n! s.n/ from N to A

is bĳective and strictly increasing with respect to the order defined on A. We have
f D

P
n�0 as.n/Ms.n/, where as.n/ D an. Let us suppose that

s.n/ D .s0.n/; s1.n/; : : : ; skn
.n/; 0; : : : /:

We deduce that the roots of Mn are the same with the roots of

Hs.n/ D f
s0.n/
0 f

s1.n/
1 � � � f

skn .n/

kn
:
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So, by preliminary results, the closest root to T of Mn is 
n D ˛kn
and thus we have

jT � 
nj D jT � ˛kn
j D ıkn

. Moreover, the following properties hold:

(i) The sufficient conditions for a Galois equivariant function on the orbit of T to be
Lipschitz (respectively differentiable), see Theorem 3.3 (ii), depend only on the
coefficients of the development of f in the orthonormal basis ¹Mnºn�0 and on the
sequence of invariants ¹ınºn�0 of T . More precisely, if the sequence

®
janj

ıkn

¯
n�0

is
uniformly bounded, then f is Lipschitz on O.T / and, if limn!1

janj

ıkn
D 0 then f

is differentiable on O.T /.

(ii) If T is an integral transcendental element of Cp and the sequence ¹janjpqs.n/ºn�0

is upper bounded, then f has a unique Galois equivariant analytic continuation to
BŒO.T /; jpj1C"�, for any " > 0, see [5, Theorem 3.1].

LetK � Cp be a field that is a finite and normal extension of Qp of degree s. Let us
suppose that K D Qp.˛/, where ˛ 2 Qp is an algebraic element of degree s over Qp .
We recall thatGK D Galcont.Cp=K/ is the Galois group of continuous automorphisms
of Cp that fix the field K, which is canonically isomorphic to Gal.K=K/, where K is
an algebraic closure ofK. We have thatG D

Ss
iD1GK�i , where ¹�iº1�i�s is a system

of representatives for G=GK . For any transcendental element T of Cp we consider
O.T / D

Ss
iD1Oi .T /, the decomposition of O.T / into homeomorphic domains of

transitivity with respect to the action of GK , where Oi .T / D ¹��i .T / W � 2 GKº. Let
us consider the set

HK.T / D
®
f WO.T /! Cp W f is a GK-equivariant function

¯
:

(By definition, f WO.T /! Cp is GK-equivariant if f .�z/ D �f .z/, for any � 2 GK
and any z 2 O.T /.) It is easy to see that any f 2HK.T / can be defined in a canonical
way by a set of functions ¹fiº1�i�s , where fi WOi .T /! Cp is GK-equivariant, for
any 1 � i � s, which means that fi .��i .T // D �fi .�i .T //, for any � 2 GK . If

HK.T / D ¹� 2 GK W �.T / D T º;

then HK is a subgroup of GK and Fix.HK.T // DAKŒT �. With f as above, we have
that fi .��i .T // D �fi .�i .T // D fi .�i .T //, for any � 2 HK.�i .T // � GK and any
1 � i � s. Then

fi .�i .T // 2 Fix.HK.�i .T /// D CKŒ�i .T /�:

Two cases may appear:

(a) K � AQpŒT �, then AKŒT � D AQpŒT �, or

(b) K 6� AQpŒT �.
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In case (b) we have

AKŒT � D AQpŒT �.˛/ D

qX
jD1

ej AQpŒT �;

where the sum is direct, q D ŒAKŒT � W AQpŒT �� � ŒK W Qp�, and ¹e1; e2; : : : ; eqº �
¹1; ˛; ˛2; : : : ; ˛s�1º is a basis of AKŒT � over AQpŒT �. In both cases we deduce, via
Proposition 2.1, that

fi .z/ D
X
n�0

� qX
jD1

eja
.j /
n .i/

�
Mn.z/; for any z 2 Oi .T /;

where a.j /n .i/ 2 Qp is such that limn!1 a
.j /
n .i/ D 0 for any 1 � j � q and any

1 � i � s. We conclude that any f 2 HK.T / has the representation

(7) f .z/ D
X
n�0

� qX
jD1

eja
.j /
n

�
Mn.z/; for any z 2 O.T /;

where a.j /n 2Qp is such that limn!1 a
.j /
n D 0 for any 1 � j � q. (We note here that if

z 2 Oi .T /, then f .z/ D fi .z/, and for any 1 � j � q we have a.j /n D a
.j /
n .i/.) From

the proof of [3, Proposition 6.1], we have that Mn.T /Mm.T / D
P
k�0 bkMk.T / for

any m; n � 0, with bk 2 Zp for any k � 0, and this shows us how the product works
in the K-algebra HK.T /, via the representation (7).

We know that the monomials ¹Mn.X/ºn�0 are linearly independent over Qp and,
since T is transcendental over Qp, we have that the set ¹Mn.T /ºn�0 is linearly inde-
pendent over Qp. Now, let F 2 QpŒX� be a polynomial. By applying several times
the theorem of division of polynomials, as in the proof of [3, Theorem 6.3], we have
that F D

P
i�0 aiMi , with ai 2 Qp , for any i � 0. We know that QpŒX� is dense in

C.O.T /;Cp/, which is the set of all continuous functions defined on the Galois orbit
of T with values in Cp. By this, we have that the space generated by the monomials
Mi .T / over Qp is also dense in C.O.T /;Cp/. We remark that ifK is a finite extension
of Qp ,K ¤Qp , and f has the representation f .T /D

P
n�0 anMn.T /, with an 2K,

it cannot be unique, even though the set ¹Mn.T ºn�0 is linearly independent over Qp ,
because AQpŒT � could contain algebraic elements from K nQp .

We collect the above results, via Theorem 3.3, in the following theorem.

Theorem 3.5. Let T be a transcendental element of Cp and letK � Cp be a field
that is a finite and normal extension of Qp . We have:

(i) The set HK.T / ofGK-equivariant Cp-valued functions defined onO.T / coincides
with the set CGK

.O.T /;Cp/ of continuous functions defined on O.T / with values
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in Cp , which are GK-equivariant. In the case K � AQpŒT �, we have that HK.T / is
isomorphic with s copies of AQpŒT � as Qp-algebras, and in the case K 6� AQpŒT �,
we have that HK.T / is isomorphic, as a vector space, with a product of sq copies
of AQpŒT �, where

q D
�AKŒT � W AQpŒT �

�
� s D ŒK W Qp�:

(ii) Let f W O.T /! Cp be a GK-equivariant function and let

f .z/ D
X
n�0

� qX
jD1

eja
.j /
n

�
Mn.z/

be its representation as in (7). If we assume that the sequence²
max1�j�q ja.j /n j
jT � 
nj

³
n�0

is uniformly bounded, where 
n is a root of Mn, which is the closest to T , then f
is Lipschitz. If limn!1.max1�j�q ja.j /n j/=jT � 
nj D 0, then f is differentiable
on O.T /.

(iii) If T is normal, that is, Qp �
AQpŒT � is a normal extension, then

S1
nD1 HKn

.T / is
dense in C.O.T /;Cp/, where

Qp � K1 � K2 � � � � � Kn � � � � � AQpŒT �

is a tower of normal and finite fields extensions of Qp , such that
1[
nD1

Kn D AQpŒT � \Qp:

In what follows we study some aspects related to the problem of analytic continuation
for the functions from the class of Galois equivariant functions defined onO.T /, where
T is an integral transcendental element of Cp .

Let F WO.T /! Cp be a Galois equivariant function with the property that F.T / 2
AZpŒT �. By [5, Theorem 3.1], we know that F has a unique Galois equivariant analytic
continuation toBŒO.T /; jpj1C"�, which is, for any " > 0, also denoted by F . Moreover,
if ˛ 2 Qp \ BŒT; jpj

1C"�, then we have

(8) F.z/ D

1X
nD0

an.˛/.z � ˛/
n; for any z 2 BŒT; jpj1C"�;

where an.˛/ 2 ZpŒ˛�. We see that F.T / can be represented as a convergent power
series in T � ˛ with coefficients in ZpŒ˛�. Denote Pn.T /DHs.n/.T /, see Remark 3.4
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for notation. By Proposition 2.1 and the fact that T is integral, we see that Pn.T / is a
polynomial with integral coefficients of degree n. Developing .T � ˛/n with respect
to the polynomials Pn.T / 2 ZpŒT �, n � 0, we find, by (8), that

(9) F.T / D

1X
nD0

bn.˛/Pn.T /;

where bn.˛/ 2 ZpŒ˛�, so that

F.�T / D �F.T / D
X
n�0

bn.˛/Pn.�T /; for any � 2 H.˛/;

whereH.˛/D ¹� 2G W �.˛/D ˛º. Choosing �n 2H.˛/, n � 1, such that �nT ! T ,
we conclude, by the identity theorem in p-adic fields, that

(10) F.z/ D
X
n�0

bn.˛/Pn.z/; for any z 2 BŒT; jpj1C"�:

The convergence of the series on the right-hand side of (10) follows from the equality
limn!1 jPn.z/j D 0, which is a consequence of the fact that the number of the roots
of the polynomial Pn.z/ into the ball BŒT; jpj1C"� tends to infinity as soon as n!1.
Also, this is an argument for the fact that the series on the right-hand side of (9) is
convergent.

Now letF WBŒO.T /; jpj1C"�!Cp be an analytic function that is Galois equivariant
and such that (8) holds. Denote d D deg˛. Of course (9) is also true and the restriction
of F to O.T / is not necessarily in AZpŒT �. From (9) we have bn.˛/ 2 ZpŒ˛�, so

bn.˛/ D

d�1X
iD0

b.i/n ˛
i ;

with b.i/n 2 Zp for any n � 0 and any 0 � i � d � 1. Then we derive

(11) F.T / D

d�1X
iD0

Gi .T /˛
i ;

where Gi .T / D
P1
nD0 b

.i/
n Pn.T / 2 AZpŒT �, for any 0 � i � d � 1. Again, by [5,

Theorem 3.1], we see that Gi .T / has a unique Galois equivariant analytic continuation
to BŒO.T /; jpj1C"�, which we denote by Gi . Denote

F .z/ D

d�1X
iD0

Gi .z/˛
i ; for z 2 BŒO.T /; jpj1C"�:
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Then, by (11), we know that F.�T / D �F.T / D
Pd�1
iD0 Gi .�T /˛

i , so that F.�T / D
F .�T /, for any � 2 H.˛/. Again, choosing �n 2 H.˛/, n � 1, such that �nT ! T ,
we conclude, by the identity theorem in p-adic fields, that F.z/ D F .z/, for any
z 2 BŒT; jpj1C"�. Consequently, we can finally summarize in the following theorem
what has been developed so far.

Theorem 3.6. Let T be an integral transcendental element of Cp and let " be a
positive real number. Let F WBŒO.T /; jpj1C"�! Cp be a Galois equivariant analytic
function such that

F.z/ D

1X
nD0

an.˛/.z � ˛/
n; for any z 2 BŒT; jpj1C"�;

where ˛ 2Qp \BŒT; jpj
1C"�, d D deg˛, and an.˛/ 2ZpŒ˛�, for any n� 0. Then, for

any 0 � i � d � 1, there existsGi .T / 2 AZpŒT �, which has a unique Galois equivariant
analytic continuation to BŒO.T /; jpj1C"� denoted also by Gi , such that

F.z/ D

d�1X
iD0

Gi .z/˛
i ; for any z 2 BŒT; jpj1C"�:
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